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Multi-robot systems are versatile and extremely capable of exploration tasks in

complex environments. Increasingly sophisticated planners, which incorporate new

features of a multi-robot system, are necessary for the operation of the systems.

Marsupial robots are multi-robot systems consisting of a carrier robot (e.g., a

ground vehicle), which is highly capable and has a long mission duration, and

at least one passenger robot (e.g., a short-duration aerial vehicle) transported by

the carrier. These heterogeneous robot systems are more flexible than traditional

homogeneous multi-robot systems in handling the constraints of a complex envi-

ronment. However, the physical coupling of a carrier robot and passenger robots

requires planners that are capable of accounting for passenger robot deployment

planning in exploration. In this thesis, we present two algorithms for deploying

passenger robots from marsupial robot systems, culminating into a generalized

deployment framework.



First, we address the single marsupial robot case: deploying multiple passenger

robots from a single carrier robot. We optimize the performance of passenger robot

deployment by using an algorithm that reasons over uncertainty by exploiting in-

formation about the prior probability distribution of features of interest in the

environment. Our algorithm is formulated as a solution to a sequential stochastic

assignment problem (SSAP). The key feature of the algorithm is a recurrence rela-

tionship that defines a set of observation thresholds that are used to decide when

to deploy passenger robots. Our algorithm computes the optimal policy in O(NR)

time, where N is the number of deployment decision points and R is the number

of passenger robots to be deployed. We conducted drone deployment exploration

experiments on real-world data from the DARPA Subterranean challenge to test

the SSAP algorithm. Our results show that our deployment algorithm outperforms

other competing algorithms, such as the classic secretary approach and baseline

partitioning methods, and is comparable to an offline oracle algorithm.

Secondly, we expand to the multiple marsupial robot case, deploying mul-

tiple passenger robots from multiple carrier robots. While the single marsu-

pial robot deployment algorithm is an optimal, polynomial-time solution, the

multiple-carrier robot deployment problem is fundamentally harder as it requires

addressing conflicts and dependencies between deployments of multiple passenger

robots. We propose a centralized heuristic search algorithm for the multiple-carrier

robot deployment problem that combines Monte Carlo tree search with a dynamic

programming-based solution to the Sequential Stochastic Assignment Problem as a

rollout action-selection policy. Our results with both procedurally-generated data



and data drawn from the DARPA Subterranean Challenge Urban Circuit show the

viability of our approach and substantial exploration performance improvements

over alternative algorithms.
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Chapter 1: Introduction

Exploration of increasingly complex environments demands more flexible robotic

capabilities. Developments in heterogeneous multi-robot systems have yielded

carrier-passenger robot systems called marsupial robots (Fig. 1.1), in which highly-

capable carrier robots transport and deploy one or more low-capability passenger

robots. These marsupial robots can tailor their complementary capabilities to the

challenges of exploring complex environments [3]. During exploration, these envi-

ronments can contain multiple features of interest that the carrier robot may want

to observe but are prohibitive or difficult to reach [4, 5]. In marine environments,

a large ship may carry and deploy multiple heterogeneous robots to increase the

rate of information gathering of features such as seafloor mines, adversarial vessels,

and biological hotspots [6, 7, 8, 9]. In the case of urban environments [5, 10, 11],

a team of ground carrier robots carrying aerial passenger robots may seek to ex-

plore features like ledges, vertical shafts, stairways, or other urban features that

ground robots cannot easily reach [12]. The DARPA Subterranean Challenge [2]

exemplifies real-world complex environments that marsupial robots are well suited

for. Specifically, during the Urban circuit of the challenge, the stairs and vertical

shafts in the SATSOP Nuclear Power Plant (Fig. 1.2) presented ideal locations for

the carrier robot to deploy the passenger aerial drone.
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Figure 1.1: An example of a marsupial robot system by Team Explorer (CMU
and OSU) [1]. The carrier robot on the left has increased payload capacity, better
sensor capabilities, and longer battery life. The aerial passenger robot on the right
is more lightweight and has better agility compared to the carrier robot.

As we scale to larger and more complex environments, it is necessary to expand

these marsupial robot teams to comprise multiple carrier robots. This enables

carrying larger teams of passenger robots and achieving a wider spatial coverage

of passenger robot deployment locations. Critically, with the scaling of passenger

robots and carrier robots, the number of deployment decisions can rapidly rise,

placing an increasing amount of burden on the operator if in a teleoperation control

mode. Additionally, with the restrictions in communication-denied environments,

it becomes necessary to develop online passenger robot deployment methods for
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Figure 1.2: A potential deployment location for a passenger robot in the SAT-
SOP Nuclear Power Plant [2]. A large carrier robot may encounter difficulties in
ascending the staircase whereas an agile passenger robot drone would be able to
traverse the obstacle easily.

these marsupial robot teams. Lastly, not only do the deployment methods need

to account for varied numbers of carrier and passenger robots, they must scale to

larger environments with higher potential deployment locations.

During these missions, the carrier robots would ideally deploy the passenger

robots at locations that can maximize exploration coverage or information gain

and make use of the passenger robot’s complementary capabilities (e.g., flying in

3D). If a carrier robot deploys too early, it risks missing out on the potentially more
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valuable decision points later on. On the other hand, due to a late deployment,

backtracking to a previous potential deployment location that turned out to be

highly valuable is inefficient and undesirable.

To address the challenges above, we present passenger robot deployment algo-

rithms for single and multiple marsupial robot teams that are able to reason over

future expected rewards and conflicting passenger robot deployments in multiple

marsupial robot teams. The goal of the work is to directly address the passenger

robot deployment problem during exploration missions and enable online informed

deployment decision-making for the carrier robots.

1.1 Thesis Contributions

In this thesis, we will present the following contributions to the field of multi-robot

coordination with marsupial robots:

1. A single carrier robot deployment algorithm for multiple passenger robots,

which builds on the Sequential Stochastic Assignment Problem [13], that

maximizes the expected sum of the deployment rewards. The algorithm

reasons over future expected rewards compared to the current location based

on a known or estimated prior distribution.

2. A multiple carrier robot deployment algorithm for multiple passenger robots,

which employs Monte Carlo Tree Search (MCTS) [14] to reason over pas-

senger robot deployment conflicts and is coupled with a fast and effective

problem-specific heuristic rollout policy based on the single carrier robot
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deployment algorithm.

3. Drone deployment exploration simulated experiments with real-world data

from the DARPA Subterranean (SubT) Challenge Urban circuit [1], where

a ground robot seeks to deploy drones in exploration-valuable deployment

locations.

4. Marine robot deployment simulations with Regional Ocean Modeling System

(ROMS) temperature data, where marine robots are deployed in a large and

expansive environment to collect biological information.

The contributions in this work provide novel methods for marsupial robot teams

to make informed online decisions for passenger robot deployment using online

long-horizon planners built on Monte Carlo tree search [14] and the solution to the

Sequential Stochastic Assignment Problem [13].

1.2 Thesis Summary

The thesis is structured as follows.

Chapter 2 discusses prior and related work in optimal stopping, multi-robot

coordination, marsupial robotics, and passenger robot deployment.

Chapter 3 formulates the deployment problem as a Sequential Stochastic

Assignment Problem (SSAP) and presents the single carrier robot deploy-

ment algorithm.
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Chapter 4 presents the multiple carrier robot deployment algorithm that

deconflicts passenger robot deployments using MCTS.

Chapter 5 concludes the thesis and presents avenues for future work.
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Chapter 2: Related Work

This chapter presents related work necessary for contextualizing this thesis and the

key problem of general passenger robot deployments in marsupial robot systems.

Sec. 2.1 introduces marsupial robots and the limitations of current passenger robot

deployment algorithms. Sec. 2.2 presents background on optimal stopping theory,

upon which our work relates to and draws inspiration from. Lastly, our work

utilizes Monte-Carlo Tree Search (MCTS) to deconflict multiple passenger robot

deployments. MCTS background is provided in Sec. 2.3.

2.1 Marsupial Robots and Passenger Robot Deployment

Marsupial robots are heterogeneous robot systems that consist of two or more

different types of robots in carrier/passenger roles and typically consist of comple-

mentary but different capabilities [3]. These robot systems are termed “marsupial

robots” based on their physical coupling, where the larger and more capable carrier

robot transports a single or multiple passenger robots, which are lighter, smaller,

and agile but less capable.

Traditional heterogeneous robot systems have loosely-coupled motion constraints

that are not physically constricted and have been coordinated with distributed

planners [15, 16]. In contrast, marsupial robots have tightly-coupled constraints
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that are physically imposed on the deployments of the passenger robots by the

carrier robots. The increased complexity requires new planners that are able to

handle tasks like coordination, deployment, retrieval, and manipulation. Some

marsupial robot planners are able to organize and coordinate between multiple

marsupial robotic systems to handle exploratory navigation actions [5, 17] but do

not explicitly decide on optimal deployment locations for passenger robots. Other

planners require known potential routes and deployment locations to decide opti-

mal passenger robot deployment locations [18]. Another marsupial robot planner

variant simplifies the deployment decision by deploying single passenger robots at

fixed times such as the beginning of the mission [19].

The problem of planning deployment locations is key to the success of all of

the above decision making, as a poor deployment location selection can result in

passenger robots being unable to contribute towards the mission objectives. These

deployment decisions have largely been left to human operators [20], who may

not have adequate situational awareness to effectively make these decisions. One

way to automate these decisions is to formulate a policy that triggers deployments

based on predefined Boolean conditions, such as the discovery of a goal that is

unreachable to the carrier ground robot [10, 19]. However, these relatively simple

approaches are limited in applicability and do not reason over the long term value

of decisions, particularly when there are multiple passenger robots to deploy. These

limitations have been addressed by our work in this thesis.

Other related deployment algorithms include formulating the problem as a

coverage-type problem [21, 22], as well as algorithms that combine more complex
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triggers such as power consumption and communication availability [23]. How-

ever, these approaches do not consider conflicts and dependencies between differ-

ent deployment decisions. Finally, prior domain knowledge, such as marine flow

fields [22], has been used to inform multiple passenger robot planners to maximize

information gain. However, these types of historical information field data may

not be readily available for other domains such as urban environments.

2.2 Optimal Stopping

Our deployment problem is closely related to optimal stopping theory [24], which

considers problems that require deciding online the right time to carry out a partic-

ular action. A key example of an optimal stopping problem is the Classic Secretary

problem, but it does not leverage prior information regarding future rewards [24].

However, the Cayley–Moser problem [25] reasons over predicted future rewards by

considering the prior probability distribution. This has been applied to robotics

problems by Lindhé and Johansson [26], who consider the problem of when to

communicate by utilizing a multi-path fading communication model to make pre-

dictions about future stopping decisions. Our method is a generalization of the

Cayley–Moser algorithm, adapted for the context of the deployment problem. Ad-

ditionally, we formulate a policy that considers all future deployments, rather than

just the single next deployment.

Optimal stopping variants have been generalized to multiple decision points.

Das et al. [6] apply multi-choice optimal stopping theory for Autonomous Un-
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derwater Vehicles (AUVs) to collect multiple plankton samples that minimize the

cumulative regret of the samples. They explore two applicable algorithms, the

multi-choice hiring algorithm [27] and the submodular secretary algorithm [28].

Both of these algorithms seek to select the best observations and do not consider

information such as the distribution of the observations. The sequential stochas-

tic assignment problem (SSAP) [13] generalizes the Cayley–Moser algorithm and

finds an optimal policy to maximize the expected sum of rewards from multiple

assignments of agents to tasks. SSAP has been applied to other fields [29] but, to

our knowledge, has not been utilized in robotics. A closely related body of work

focuses on multi-robot task assignment [30]; however, these problems generally as-

sume that task values are known a priori and are therefore not directly applicable

to online problems, such as ours.

2.3 Monte Carlo Tree Search

MCTS [14] is rising in popularity as a high performing search algorithm for sequen-

tial decision making in robotics. This is in part due to its flexibility to optimize

with respect to a general class of reward functions and its ability to naturally

handle uncertainty [9, 31, 32, 33, 34, 35]. Best results are often achieved when

replacing the default random rollout policy with problem-specific heuristics, which

are directly leveraged to guide the best-first search procedure [36]. In robotics, a

common problem-specific rollout policy is the greedy policy for information gath-

ering [9, 32, 37]. For the deployment problem, the single-carrier SSAP solution
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discussed above [38] presents a useful heuristic for the multi-carrier generalization.

MCTS-based algorithms have also recently been proposed for the context of

multi-robot systems. These include centralized algorithms where a single search

tree represents the action space of all robots [35], and decentralized algorithms

where each robot separately searches over a tree representing its own actions [32,

34]. Here, we focus on centralized contexts, and thus formulate a similar search

tree to [35], but our proposed SSAP-based rollout policy is also applicable to the

decentralized MCTS variants.

We leverage MCTS to reason over these conflicts and dependencies while bor-

rowing ideas from the SSAP-based algorithm [38].
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Chapter 3: Stochastic Sequential Assignment of Passenger Robots

in a Marsupial Robot System

This chapter presents an informed deployment algorithm for a single marsupial

robot system [38], which addresses the limitations of multi-robot planners dis-

cussed in the previous chapter. Furthermore, the single marsupial robot deploy-

ment algorithm for passenger robots sets the foundation for the multi-marsupial

robot deployment algorithm that addresses the generalized case of passenger robot

deployment discussed in the next chapter.

The complexities of heterogeneous marsupial robots enable a robot system to

consist of flexible and complementary capabilities that are typically not afforded

to single robot systems. However, the increase in capabilities and flexibility to

overcome challenges come at a requirement for more in-depth planners which are

able to reason over the deployment decisions of the passenger robots. As a mar-

supial robot system explores through the environment, ideally it would consider

the current and historical information in order to inform the deployment decision

of its passenger robots. Especially if the payload consists of multiple passenger

robots, the deployment decision becomes non-trivial when trying to optimize for

maximization of rewards from deployments.

We formulate the passenger robot deployment problem as a Sequential Stochas-

tic Assignment Problem (SSAP) [13] (Sec. 3.1). We optimize the performance of
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passenger robot deployment to best explore an environment by proposing an al-

gorithm that reasons over uncertainty by exploiting information about the prior

probability distribution of features of interest in the environment (Sec. 3.2). The

key feature of the algorithm is a recurrence relationship that defines a set of ob-

servation thresholds that are used to decide when to deploy passenger robots. We

conducted simulated drone deployment exploration experiments on real-world data

from the DARPA Subterranean challenge to test the SSAP algorithm. Our results

show that our deployment algorithm outperforms other competing algorithms, such

as the classic secretary approach and baseline partitioning methods, and is com-

parable to an offline oracle algorithm (Sec. 3.3). Finally, the implications of the

result and the algorithm are summarized (Sec. 3.4).

3.1 Passenger Robot Deployment Problem Formulation

We consider a marsupial robot system traveling through an unknown environment

that must make online decisions regarding when to deploy its passenger robots.

At each possible deployment location, the robot must reason if the reward gained

from deployment is expected to be more favorable than continuing onwards and

deploying at a later location. We formulate the multi-robot deployment decision

as a sequential stochastic assignment problem (SSAP). Multiple deployment deci-

sions are made based on sequentially revealed random variables. The problem is

formalized as follows.
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3.1.1 Prior Distributions of Features in the Environment

We propose an environment that contains a set of point features, which may repre-

sent points of interest that are ideal for additional exploration by passenger robots,

but are ill-suited for the carrier robot. As the carrier robot moves through the envi-

ronment, it must make decisions to deploy or not deploy a passenger robot. There

are assumed to be a total of N decision points, where N is known to the robot.

The carrier robot houses R passenger robots of equal capability. At each decision

point, the carrier robot may choose to deploy one passenger robot. Along the se-

quence of decision points, the independent observations of the number of features

in the sensing area are denoted (X1, ..., XN). Furthermore, the algorithm relies on

knowing a prior distribution of the random variable X, denoted as f(x). Later

in Sec. 3.3, we present an example where the features of interest correspond to

the number of exploration frontier cells observed by the ground robot with a prior

distribution f(x) defined as a Poisson distribution.

3.1.2 Deployment Decisions

At stage j ∈ {1, ..., N}, the carrier robot reaches a decision point, and the out-

comes of all random variables (X1, ..., Xj), denoted (x1, ..., xj), are known to the

robot. Along the path, the robot must make an irreversible decision at each deploy

location to deploy or continue on to deploy later. If the carrier robot decides to

deploy, it assigns one passenger robot to the deployment location and returns a

reward of xj. If the carrier robot decides to continue, no reward is claimed at



15

this stage. This process continues for the N stages. All passenger robots must be

deployed by stage N , with the constraint of one deployment per stage.

3.1.3 Problem Statement

We define the set of stage indices, that indicates what stages the passenger robots

were deployed at, as (d1, ..., dR). The goal of the carrier robot is to maximize the

expected sum of the reward returned from the deployment locations; i.e., find the

optimal deployment sequence:

(d1, ..., dR)∗ = arg max
(d1,...,dR)

E
[ R∑
r=1

xdr

]
. (3.1)

Here, xdr denotes the reward from passenger robot r and the expectation is taken

over the distribution f(x).

3.2 Online Passenger Deployment Algorithm

We present the online passenger deployment algorithm, which finds the optimal

deployment policy in linear time that scales with the number of passenger robots

and deployment locations. The algorithm is computed via dynamic programming,

using a technique that stems from sequential stochastic assignment [13]. We con-

sider the general case of R passenger robots to deploy. Finally, we provide an

analysis of the optimality and runtime complexity of the algorithm.
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3.2.1 Deployment of Multiple Passenger Robots

Our deployment algorithm precomputes a set of thresholds, which are a function

of the distribution of the observations and the number of remaining stages, n.

The current observed value xj, defined in Sec. 3.1.1, at stage j is compared to

the threshold values and informs the carrier robot whether or not to deploy now.

At each stage j, we define a sequence of values (p1, ..., pn), such that pi = 1 for

n − r < i ≤ n, representing the remaining r passenger robots, and pi = 0 for

1 ≤ i ≤ n− r. This can be thought of as assigning a pi at each stage to each xj.

Specifically, the optimal policy for the passenger robot assignment is to assign

pi to the observed deployment value xj, if xj falls into an ith non-overlapping

interval comprising the real line [13].

3.2.2 Deployment Thresholds

These non-overlapping intervals are separated by a set of thresholds, denoted as

ai,n. Each threshold ai,n is computed recursively and depends only on the prior

distribution f(x), as well as the number of remaining stages n. For stage j, where

there are n = N − j + 1 stages remaining, there are a set of n+ 1 thresholds, such

that

−∞ = a0,n ≤ a1,n ≤ a2,n ≤ ... ≤ an,n =∞. (3.2)

At stage j, the optimal choice is to assign pi if the realization xj of the random

variable Xj is contained in (ai−1,n, ai,n]. For example, given n = 4 remaining stages
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and r = 2 robots to deploy, p3, p4 = 1 and p1, p2 = 0. If the observed value of xj is

a2,4 < xj ≤ a3,4, then the decision is to deploy and returns a reward of p3xj = xj.

At the next stage with n = 3 and r = 1, we only have p3 = 1 and p1, p2 = 0. If the

next observed value xj < a2,3, then there is no deploy action and returns a reward

of p2 · xj = 0.

An assignment of pi = 1 to xj results in a deployment of the passenger robot

whereas an assignment of pi = 0 to xj leads to a non-deployment action. There is

no need to differentiate between interval containment below the deploy threshold

ai−R,n since all of the n−R assignments of pi = 0 result in the same non-deployment

behavior. Thus, only R thresholds, instead of n+ 1 as shown in (3.2), need to be

calculated for each stage n beyond n = R, and this reduces the complexity from

quadratic [13] to linear in N , as discussed later in Sec. 3.2.3.

The threshold ai,n+1 is defined as the expected value, if there are n stages

remaining, of the quantity to which the ith smallest p is assigned [13]. This for-

mulates the recurrence relationship

ai,n+1 = Pr(xn < ai−1,n)ai−1,n

+ Pr(ai−1,n < xn < ai,n)× E(xn|ai−1,n < xn < ai,n)

+ Pr(xn > ai,n)ai,n (3.3)

= ai−1,n

∫ ai−1,n

−∞
f(x)dx+

∫ ai,n

ai−1,n

xf(x)dx+ ai,n

∫ ∞
ai,n

f(x)dx, (3.4)

where −∞ · 0 = 0 and ∞ · 0 = 0. In both (3.3) and (3.4), the second term is for

the case where xn lies within the ith interval, and therefore pi receives the value
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4 - - - ∞
3 - - ∞ a3,4

2 - ∞ a2,3 a2,4

1 ∞ a1,2 a1,3 -

0 −∞ −∞ −∞ −∞
1 2 3 4i

n

Figure 3.1: The method for the recurrence threshold calculation and terms re-
lationship in Eq. (3.3), for R = 2 and N = 4. ai,n is the threshold for the ith
non-overlapping interval when there are n stages left to go. The term a2,3 is cal-
culated from the ai−1,n term, which is a1,2, and the ai,n term, which is a2,2 = ∞.
a1,4 does not need to be calculated since R = 2.

of xn. The first term is for the case where xn is below the ith interval, meaning

that xn is assigned to a pk < pi, and thus pi is assigned in a later stage with an

expected value of ai−1,n. Similarly, the third term is for the case where xn is above

the interval and pi has an expected future assignment of ai,n.

The recurrence process is illustrated in Fig. 3.1, where the cells in the table can

be computed from left to right by reusing the previous values, as indicated by the

arrows. Furthermore, an outline of the algorithm is provided in Alg. 1. The outer

loop iterates through the N stages while the inner loop iterates through only R

thresholds. The algorithm’s recurrence process has a computational complexity of

O(NR). In the R = 1 single passenger robot deployment case, the threshold calcu-

lations are identical to the thresholds used in the Cayley–Moser optimal stopping

problem [25].
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Algorithm 1 SSAP optimal policy threshold calculation for passenger robot de-
ployment

Input: Number of stages: N , Number of robots: R,
Prior distribution: f(x)
Output: SSAP Thresholds: ai,j

1: for j = 0, 1, 2, . . . , N do
2: aj,j =∞
3: for i = j −R, . . . , j − 1 do
4: ai,j ← Eqn. (3.4)

3.2.3 Analysis

The dynamic programming proceeds by iteratively solving optimal subproblems for

ai,n+1 using the recurrence relationship in (3.4), and thus computes the optimal

set of thresholds ai,n,∀i, n. The full proof of the results that these subproblems

are optimal, and that these thresholds lead to an optimal online assignment pol-

icy, is presented in [13]. The proof proceeds by induction, and relies on Hardy’s

Theorem [39], which states that the optimal assignment between two sets with

a sum-product objective is to pair the smallest values in each set, then the next

smallest, and so on until the largest values are paired.

As illustrated in Fig. 3.1 and Alg. 1, there are O(NR) sub-problems to be

computed, where N is the number of stages and R is the number of passenger

robots to deploy. The integral (3.4) is computed once per sub-problem, thus the

computation time is O(NRF ), where F is the time to compute (3.4).
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3.3 Experiments and Results

In order to evaluate our proposed SSAP passenger robot deployment algorithm,

we performed drone deployment exploration experiments using simulated data and

real-world data from the DARPA Subterranean challenge, against various other

deployment strategies. A single carrier robot was utilized for each deployment

operation with varying numbers of passenger robots.

3.3.1 Comparisons of Alternative Deployment Strategies

Different deployment strategies were employed, each aiming to maximize the num-

ber of features captured during drone deployment, to test the efficacy of our SSAP

deployment algorithm. These deployment strategies were adapted from optimal

stopping algorithm variants to explicitly handle multiple robot deployments. As

such, for these comparison methods, the carrier robot path is naively divided into

R equal partitions in the case of multi-robot deployment and treat each partition

independently from each other. Lastly, the Random deployment algorithm was

selected as a baseline deployment strategy, as other naive deployment strategies

(e.g., greedy deployment) returned similar results. The deployment algorithms are

described below:

• Sequential Assignment (SSAP): Performs our method as described in Sec. 3.2.1

and considers the entire path as a singular deployment, without partitions.

The prior distributions are described below in Sec. 3.3.2.1 and Sec. 3.3.3.1.
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• Oracle: Selects the top R deployment locations across all the partitions, with

perfect knowledge of the world in advance.

• Partition Oracle: Selects the best deployment location within each partition,

with perfect knowledge of the world in advance.

• Partition Cayley–Moser : Performs as described in Sec. 3.2.1 when R = 1, in

each partition.

• Partition Classic Secretary : An optimal stopping variant that only observes

for the first N/eR, where e is Euler’s number, of decision points and then

selects the next value that is higher than the max value observed in the

observation phase [24]. The algorithm runs within each partition.

• Random: Selects a decision point randomly within each partition.

The experiments were conducted on a standard desktop computer, with an i5-

4690K CPU and 16 GB of RAM.

3.3.2 Capturing Poisson-Distributed Features

3.3.2.1 Experimental Setup

A carrier robot travels through a 2D simulated world containing features of in-

terest distributed as a stationary Poisson point process. At decision point j, the

carrier robot detects features within a circular sensing area centered at the current
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location. The number of features xj detected within a sensing area are modeled

as a Poisson distribution with probability mass function

f(x) =
λxe−λ

x!
, for x ∈ {0, 1, ...}. (3.5)

Here, the Poisson distribution f(x) in (3.5) is an example of a distribution used

in the threshold calculations in (3.4). The rate of this Poisson distribution, λ, is

the expected number of features of interest in the robot sensing area. The SSAP

thresholds are calculated by substituting (3.5) into (3.4), yielding

ai,n+1 = ai−1,n

bai−1,nc∑
x=0

λxe−λ

x!
+

bai,nc∑
x=dai−1,ne

x
λxe−λ

x!
+ ai,n

1−
bai,nc∑
x=0

λxe−λ

x!

 . (3.6)

3.3.2.2 Results

An example of a trial of the algorithm selection process is illustrated in Fig. 3.2.

The Oracle algorithm optimally selects the top R = 3 rewards. SSAP decided to

deploy and select the reward in an optimal fashion in the first two decision cases.

In comparison, the Classic Secretary algorithm does not reason over possible future

observations and locally selects a decision point in each partition.

The results of SSAP through repeated trials are very encouraging. Trials with

three passenger robots and n = 60 stages are shown in Fig. 3.3. During each trial,

the algorithms’ results are compared to the maximum possible number of features

captured by the Oracle. On average, SSAP performed within 96% of the Oracle.
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Figure 3.2: Illustrative example of the deployments for three passenger robots to
be deployed over 30 decision points. Our method (reward: 21) performs similar
to the Oracle (reward: 24) that has full knowledge of the observation sequence
in advance. The Classic Secretary (reward: 19) algorithm collected less reward,
in part due to being constrained by having one deployment in each of the three
partitions (dotted lines).

Also, Partition Oracle is not perfect like the Oracle but performs similarly when

compared to SSAP.

The partitioned Cayley–Moser algorithm has a lower performance than SSAP

since the calculated thresholds are only local to each partition and partitioned

algorithms are constrained to one deployment location per partition. SSAP is

able to account for the expected future values over the total number of stages,

whereas the partitioned Cayley–Moser locally calculated the thresholds only for

the number of stages in a partition.

Lastly, we show the scalability of SSAP to R passenger robots in Fig. 3.4. The

offline computation of the thresholds is linear in N stages and R number of robots.

In practice, the computation of the thresholds takes on the order of seconds. As R
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Figure 3.3: Algorithm comparisons with three passenger robots over 150 trials.
Partition Oracle is denoted as Oracle-P. CM is Cayley–Moser and CSP is Classic
Secretary. The simulated environment was populated with random features.

increases, the performance of SSAP clearly outperforms other algorithms. SSAP

is mathematically equivalent to Cayley Moser in the case where R = 1 and yields

identical results, as discussed in Sec. 3.2.1.

3.3.3 Aerial Robot Deployment for Exploration

3.3.3.1 Experimental Setup

Recorded LiDAR data from the Urban Circuit of the DARPA Subterranean Chal-

lenge [2] provided a real-world scenario to test the efficacy of our passenger deploy-

ment algorithm. Multiple drone-carrying ground robots autonomously explored
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Figure 3.4: Algorithm comparisons with average utility, as a percentage of the
Oracle, over R passenger robots and 150 trials. Standard error of the mean (SEM)
error bars are displayed. The simulated environment was populated with random
features.

the Satsop Nuclear Power Plant in Elma, Washington. For many teams in the

competition, a drone deployment was manually triggered by the operator. Identi-

fying an ideal deployment location required constant attention from the operator,

already burdened with other tasks. Furthermore, it would be advantageous to uti-

lize prior knowledge from the first robot entering the environment or information

from a similar environment.

An occupancy grid of the world was generated from the collected LiDAR data

using OpenVDB [40]. Using these data, a deployment decision location was set

every 2.5 meters along the path that the robot travelled throughout the environ-

ment. We defined the value of a deployment location based on the total number of

frontier cells within a 10 m radius of the ground robot’s location. Frontier cells in
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Figure 3.5: Deployment locations along a 105 m path in the Alpha environment
from the DARPA SubT Urban Circuit. The SSAP algorithm decides to deploy in
the optimal locations. Deploy location 1 is adjacent to a vertical shaft, reachable
only by an aerial drone. Location 2 has a higher ceiling and is a larger space than
the first CM location. Lastly, location 3 leads to the rest of the environment and
provides high exploration value.
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the occupancy grid are defined to be free cells neighboring at least one unknown

cell [41]. Furthermore, we filter out frontier cells that are considered accessible to

the ground robot. Only frontier cells that are above 1 m and below 0.1 m of the

ground robot’s position are included. These filtered frontier cells may represent

openings such as shafts and ledges that are inaccessible to the ground robots but

are ideal for aerial drones.

Different distributions, representing different prior knowledge, for f(x) in (3.4)

were defined in the calculation of the SSAP thresholds. In addition to the Poisson

distribution, we compared two other distributions utilized by SSAP : (1) the his-

togram distribution and (2) Conway-Maxwell-Poisson (CMP) distribution. First, a

distribution was generated from a histogram of the deployment values encountered

during the robot’s run and can be considered the ground truth distribution for that

specific robot’s path. Secondly, the CMP distribution generalizes the Poisson dis-

tribution and can better handle over/under-dispersion [42], with the probability

mass function

f(x) =
λx

(x!)ν
1

Z(λ, ν)
, for x ∈ {0, 1, ...} (3.7)

where Z(λ, ν) is a normalization constant. The parameters ν and λ were estimated

using a Mean-Squared-Error fit to the histogram data. Similar to the Poisson dis-

tribution in Sec. 3.3.2.1, the CMP distribution in (3.7) can be substituted into (3.4)

to generate the SSAP thresholds.
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Figure 3.6: Algorithm comparison results from real data of a robot (R2) exploring
Alpha environment. The SSAP Beta R2 algorithm utilizes histogram data as the
prior distribution from the same robot in another environment (Beta). The SSAP
Alpha R1 algorithm uses the histogram data from another robot (R1) in the same
environment.

3.3.3.2 Results

The SSAP algorithm performed strongly in the real-world experiments and outper-

formed the competing deployment algorithms. The CMP distribution was able to

better model the higher variability of real-world deployment values than the Pois-

son distribution. As seen in Fig. 3.6, SSAP using the CMP distribution performs

within 87% of the oracle. While slightly less than the performance of the ground

truth histogram distribution (91% of oracle), the SSAP-CMP distribution out-

performs the SSAP-Poisson distribution by 18%. For the remaining experiment

variations, SSAP-CMP is comparable to the SSAP-Hist algorithm and outper-
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forms SSAP-Poisson by at least 10% and in one case, up to 28%.

We explored two cases of inter-robot information transfer to take advantage

of prior domain knowledge: one where the histogram from one robot is used by

another robot in the same environment and another where the data from an-

other environment are used. The results of the same environment, inter-robot

histogram transfer (Alpha R1 ) can be seen in Fig. 3.6. The SSAP algorithm us-

ing the histogram distribution from another robot performs comparably to the

high-performing CMP and ground truth histogram distribution, above 90% of the

oracle on average. In the other case, the histogram distribution from a differ-

ent environment performed on average around 80% of oracle. Despite a lower

performance than inter-robot histogram transfer, the inter-environment histogram

transfer (Beta R2 ) can still provide better results than SSAP-Poisson or the other

baseline methods, partition Cayley–Moser and partition CSP.

3.4 Summary

In this chapter, we provided a passenger deployment algorithm for a single carrier

robot that can accommodate scaling numbers of passenger robots. The deployment

algorithm generates a set of thresholds based on a known prior knowledge of the

distributions of features of interest in the environment. Finally, these thresholds

inform the carrier robot at each deployment location for the passenger robot de-

ployment decision. Our results on simulated data of Poisson-distributed features

and real data from the DARPA Subterranean challenge showcased the efficacy
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of our deployment algorithm compared to other deployment strategies. However,

while this algorithm provides optimal performance for a single carrier robot with

multiple passenger robots, the deployment algorithm is not able to account for de-

ployment conflicts between multiple carrier robots. In the next chapter, we present

work that leverages Monte Carlo tree search in order to address the multi-carrier

robot deployment conflicts while utilizing the SSAP deployment algorithm from

this chapter as an optimal rollout heuristic.
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Chapter 4: Passenger Robot Deployments from Multiple Carrier

Robots using Monte Carlo Tree Search

The previous chapter discussed the advantages and flexibility of a single marsupial

robot team, as well as incorporating an intelligent passenger robot deployment

decision-maker in the exploration planning. However, in a large and complex

environment, a single marsupial robot system may not be sufficient or even capable

of exploring and accomplishing the mission in a satisfactory amount of time. This

can be accomplished by scaling the number of robots to meet the demands of larger

and more complex environments. For a single marsupial robot team, the scaling

can be managed by increasing the number of passenger robots transported by the

carrier robot. However, this approach has a limit based on the carrier robot’s

payload constraint and deployment from a single carrier robot.

In this chapter, we explore scaling the number of marsupial robot teams, which

both increases the number of carrier robots and the transported passenger robots.

We present algorithm which provide the framework for a generalized deployment

algorithm for any number of carrier and passenger robots. We specifically ad-

dress the problem of planning the deployment times and locations of the carrier

robots to best explore an environment while reasoning over uncertain future ob-

servations and rewards. Our work in single marsupial robot teams proposed an

optimal, polynomial-time solution to single-carrier robot systems. However, the



32

Figure 4.1: A deployment problem example with R = 3 carrier robots. Each
colored circle represents a deployment decision location with the associated stage
j. Here, overlap conflicts can be seen inside the blue circles. The first overlap
conflict would be defined as o1 = {[r1, 3], [r2, 7], [r3, 6]} and the second conflict
defined as o2 = {[r1, 6], [r3, 3]}.

multiple-carrier robot deployment problem is fundamentally harder as it requires

addressing conflicts and dependencies between deployments of multiple passenger

robots. We propose a centralized heuristic search algorithm for the multiple-carrier

robot deployment problem that combines Monte Carlo Tree Search with a dynamic

programming-based solution (Sec. 3.2) to the Sequential Stochastic Assignment

Problem as a rollout action-selection policy. Our results with both procedurally-

generated data and data drawn from the DARPA Subterranean Challenge Urban

Circuit show the viability of our approach and substantial performance improve-

ments over alternative algorithms.
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4.1 The Multiple Marsupial Robot Deployment Problem

We consider a marsupial robot system consisting of multiple carrier robots, each

carrying multiple passenger robots. A centralized decision maker must make online

decisions regarding when to deploy the passenger robots. These decisions must be

made while reasoning over both the reward gained from deploying immediately and

the estimated rewards for deploying at an unknown later deployment location. The

decision maker must also consider potential deployment conflicts by reasoning over

the loss of reward caused by multiple deployments in close proximity. We formalize

this problem as follows.

4.1.1 Marsupial Robot Team Decision Points

The multi-robot team consists of R carrier robots denoted (r1, r2, ..., rR), with each

carrier robot carrying D passenger robots to deploy. Along each carrier robot’s

path, there are N stages that represent possible deployment locations. For each

carrier robot r, there are a sequence of N random variables (Xr
1 , X

r
2 , ..., X

r
N), which

represent deployment rewards associated with each decision point (ignoring the

conflicts introduced below in Sec. 4.1.2). We assume the random variables x are

distributed according to a known prior distribution f(x) and are assumed to be

independent. At stage j ∈ {1, ..., N}, the carrier robot reaches a decision point,

and the outcomes of all random variables (Xr
1 , X

r
2 , ..., X

r
j ), denoted (xr1, x

r
2, ..., x

r
j),

have been observed and are known to the decision maker.

For each carrier robot, a subset of the N stages may be invalid deployment
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locations; for example, due to staggered start times between the carrier robots. To

maintain consistent indexing between the different carrier robots, we denote the

realized observations at an invalid deployment stage j for a robot r as xrj = ∅.

4.1.2 Deployment Conflicts

As illustrated in Fig. 4.1, some possible deployment locations may be in close

proximity to each other. However, in many applications, it is undesirable to deploy

passenger robots in close proximity to each other since it may, for example, lead to

inefficient exploration of the environment. We refer to groups of decision points in

close proximity with each other as conflicts. Each conflict is defined by an overlap

o ∈ O, where O is the set of all overlaps. Each overlap o ∈ O is defined as a set

of robot–stage pairs o = {[r1, j1], [r2, j2], ...}, which implies that the deployment

location for carrier robot r1 associated with stage j1 is in conflict with the robot–

stage pairs with o. For simplicity, we focus on addressing problems with overlap

definitions where each carrier robot r does not have conflicts with itself at later

stages (i.e., ri 6= rj,∀[ri, ji] 6= [rj, jj] ∈ o), although the proposed algorithm allows

for relaxing this constraint.

If carrier robot r deploys a passenger robot at stage j, then a reward of vrd =

xrj/p is received, where 1/p is a penalty factor associated with conflicts. Specifically,

we define p as the number of selected passenger robot deployments that are within

the same conflict set as [r, j]. This penalty factor defines a loss of reward associated

with making multiple deployments in close proximity (conflict) with each other.
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We note that while we focus on this conflict penalty definition throughout this

chapter, our proposed algorithm would also be applicable to other definitions such

as set cover formulations or any other quantifiable penalties arising from passenger

robot deployments.

4.1.3 Deployment Actions

The action of carrier robot r at stage j is defined as arj . At each deployment

location, carrier robot r has two possible actions: deploy the passenger robot, or

continue to the next deployment location. The joint actions of all of the R carrier

robots at stage j is defined as Aj = {a1
j , a

2
j , ..., a

R
j }. If the carrier robot has no

remaining passenger robots to deploy, the carrier robot defaults to a no-deploy

action. At stage j, the decision maker knows the previous deploy actions of all

carrier robots.

4.1.4 Problem Statement

The set of stage indices where the passenger robots are deployed by carrier robot r

are defined as dr = (dr1, d
r
2, ..., d

r
D). Furthermore, the set of all of the deployed stage

indices across all carrier robots is defined as π = {d1, d2, ..., dR}. As such, the goal

of the decision maker is to maximize the expected sum of the rewards returned
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from the chosen deployment locations; i.e., find the optimal deploy sequences

π∗ = arg max
π

E
[ R∑
r=1

D∑
d=1

vrd

]
, (4.1)

where R is the number of carrier robots, D is the number of passenger robots

per carrier robot, and vrd is the reward for each deployment after accounting for

conflicts (penalty factor 1/p). The expectation in (4.1) is with respect to the

unknown outcomes (xr1, x
r
2, ..., x

r
j) of random variables (Xr

1 , X
r
2 , ..., X

r
j ).

The key computational challenges presented by this problem lie in the need to

reason over these unknown rewards of future deployment decisions and also the

need to account for deployment conflicts, which lead to dependencies in the reward

structure.

4.2 MCTS with Sequential Stochastic Assignment Rollout Policy

We propose a centralized algorithm for the multiple marsupial robot deployment

problem that combines MCTS [14] with heuristics derived from solutions to SSAP [13].

MCTS is a general-purpose sequential decision making algorithm that admits

problem-specific heuristics. As discussed in the previous chapter, an SSAP-based

algorithm has been proposed as an optimal solution to the single carrier robot

deployment problem, here that SSAP-based algorithm serves as a strong heuris-

tic to guide our MCTS-based algorithm for the multiple carrier robot deployment

problem, which requires additionally addressing deployment conflicts.
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This section begins by providing an overview of the tree data structure and

overall algorithm, followed by a detailed description of the key algorithmic com-

ponents and a brief analysis of runtime complexity and optimality.

4.2.1 Search Tree and Algorithm Overview

At stage j, our online algorithm incrementally expands and searches over a search

tree Tj, which represents the search space for the remaining deployment decisions.

The root of Tj represents stage j, while subsequent layers of Tj are associated with

future stages {j + 1, ..., N}. The outgoing edges of a vertex enumerate all possible

joint actions Ai available to the team at stage i.

Pseudocode for the algorithm is provided in Alg. 2. The search proceeds by

employing standard MCTS [14] (described further in Sec. 4.2.2) with an adapted

rollout phase that exploits information provided by the optimal solution to the

single carrier deployment problem to guide the search tree expansion (described

further in Sec. 4.2.3). The algorithm does this while reasoning over the various

inputs introduced in Sec. 4.1, which we summarize as follows:

• the current observations xrj by each carrier robot of the associated random

variables,

• the prior belief distribution f(x) for all possible future deployment locations,

• the previous actions of the carrier robots (A1, ..., Aj−1), which influences po-

tential future deployment conflicts,
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Algorithm 2 Overview of the online deployment algorithm for selecting the de-
ployment actions Aj at stage j.

1: Tj ← initialize MCTS tree
2: . Incrementally expand the search tree Tj
3: for fixed number of iterations do
4: n← SelectNode(Tj) . Select node to expand using UCT [43]
5: n+ ← ExpandTree(n) . Add new child node
6: (xrj+1, ..., x

r
N )∀r ← SampleFutureObservations(f) . Sample from the prior belief distribution

7: (Aj , ..., AN )← SSAP Rollout(n+, (A1, ..., Aj−1), (xrj+1, ..., x
r
N )∀r,O) . SSAP heuristic: See Sec. 4.2.3

8: v ← EvaluateSolution((xr1, ..., x
r
N )∀r, (A1, ..., AN ),O) . Evaluate the selected action sequence

9: BackpropagateReward(n+, v) . Update statistics along the path back to the root node

10: . Extract the solution
11: n∗ ← best node in Tj
12: Aj ← first joint action in sequence for n∗

13: return Aj

• the set of deployment conflict overlaps O, and

• the number of stages remaining: N − j.

The search concludes after a predefined number of iterations and returns the esti-

mated best joint deployment action Aj to execute at stage j.

4.2.2 MCTS for Multiple Carrier Robot Deployments

Our deployment algorithm employs the standard MCTS algorithm [14] to incre-

mentally expand and search over the search tree Tj. We summarize MCTS as

follows, and defer our main innovation—the inclusion of a new SSAP-based roll-

out policy—to Sec. 4.2.3. MCTS consists of four phases: selection, expansion,

rollout, and backpropagation.

In the selection phase (Alg. 2 line 4) a path is followed through Tj from the root

node to a leaf node n. As per the standard Upper Confidence Bound 1 applied to

trees (UCT) selection policy [43], this path is created by recursively selecting child
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nodes that maximize an upper confidence bound:

v̄(n′) + c

√
ln t(n)

t(n′)
, (4.2)

where v̄(n′) is an estimate of the average reward associated with the node n′

that is being considered, t(n) is the number of samples that have passed through

the parent node n, t(n′) is the number of samples that have passed through the

considered node n′, and c is the exploration parameter (typically set as
√

2 if

the rewards are scaled between 0 and 1). The purpose of following this upper

confidence bound policy is to naturally balance between exploring the tree (i.e.,

pick nodes that have been considered fewer times) and exploiting the knowledge

gained so far (i.e., pick nodes with high expected rewards).

In the expansion phase (line 5), a new child node n+ is added to Tj that

extends from the selected node n. This node n+ is chosen arbitrarily from any of

the feasible joint actions that may be performed from the state represented by n.

For our context of the deployment problem, a joint action is considered feasible if

all carrier robots do not deploy more than the number of passenger robots they

are carrying, deployments only occur at valid deployment stages (see Sec. 4.1.1),

and at stage N all passenger robots have been deployed.

In the rollout phase (lines 6–8), a sequence of feasible actions is generated

according to some given policy and then evaluated with respect to the reward

function. In standard MCTS, the given policy is a random policy. However, there

is also an opportunity here to employ problem-specific heuristics here to improve
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the reward estimates and speed up the search. We discuss our proposed rollout

policy below in Sec. 4.2.3.

Every node n in the tree maintains a reward average v̄(n) and a count t(n) of the

number of rollouts that pass through this node. These two quantities are updated

during the backpropagation phase (line 9). The rollout evaluation v is merged into

the averages stored at all nodes on the path from the expanded node n+ back to

the root node, and the associated counts are incremented. These updated statistics

guide the selection phase in the following iteration, and thus the tree expansions

are directly influenced by the rollout evaluations.

At the end of the search (lines 10–13), the best node n∗ is picked as the node

with the highest expected reward. The first joint action in the sequence associ-

ated with n∗ defines the deployment actions to be executed at this stage j. The

algorithm is online such that the algorithm is run again at stage j + 1 while using

any new gathered information, particularly the previous deployment decisions and

new observations.

4.2.3 SSAP Action Selection Rollout Policy

As discussed above, problem-specific heuristics can be used within the rollout phase

to improve the reward estimates, which in turn improves the MCTS node selection

and therefore the overall search performance. Ideal rollout policies should be both

fast to compute and provide good reward estimates. For our deployment problem,

we draw inspiration from a solution to the single carrier robot problem presented
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in Sec. 3.2. While it is an optimal solution to the single carrier formulation, for

the multi carrier problem this strong guarantee does not hold due to the need to

address the conflicts, which breaks the independence assumption. However, we

adapt it to provide reasonable reward estimates for our generalized problem that

can be computed quickly within the online search algorithm.

Both the single carrier solution (Sec. 3.2) and our adapted heuristic for the

multiple carrier case are based on the solution to the Sequential Stochastic As-

signment Problem (SSAP) [13]. The aim of SSAP is to find the optimal subset

(with given cardinality) of a set of random variables whose realizations are revealed

sequentially. The decision to include or exclude a random variable from the subset

must be made immediately when its realization is revealed.

SSAP maps closely to our deployment problem, as the value of a deployment

location is only revealed as the carrier robot arrives at a location, and decisions

to deploy or not deploy at a decision point are irreversible. As a reminder from

the previous chapter and for convenience, we briefly formalize the optimal solution

to SSAP as follows (further details may be found in Sec. 3.2) and discuss how we

adapt it to be used as an MCTS rollout policy.

The optimal SSAP policy [13] consists of precomputing a set of thresholds

{ai,n} for each stage. The realization xrj of the random variable Xr
j is compared

to the relevant thresholds to determine whether to deploy now or wait until a

later decision point. These thresholds are computed by considering the number of

stages N and the prior belief distribution for the rewards f(x). Specifically, for

n = N − j + 1 stages remaining, the thresholds are computed via the recurrence
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relationship

ai,n+1 = ai−1,n

∫ ai−1,n

−∞
f(x)dx+

∫ ai,n

ai−1,n

xf(x)dx+ ai,n

∫ ∞
ai,n

f(x)dx,

where −∞ · 0 = 0 and ∞ · 0 = 0. The second term represents an expectation of

reward for the case where the reward is revealed to be within the two thresholds

and therefore the decision maker receives this reward. The first integral represents

the expected future reward if the reward lies in a lower threshold, and the third

integral is for the case where it lies in a larger threshold. The set of all thresholds

can be computed in quadratic time. If there are n − i passenger robots left to

deploy at stage j = N − n+ 1, then the optimal policy is to deploy if xrj is greater

than the ith interval, ai,n, and do not deploy otherwise.

However, while the SSAP deployment policy is optimal for a single carrier

robot, it does not consider multiple carrier robots and potential conflicts between

the deploy locations, as defined in Sec. 4.1.2. The conflicts can be partly accounted

for by adjusting the belief reward distributions f(x) at decision points that conflict

with known prior deployments by multiplying by the 1/p penalty factor. However,

addressing unknown future conflicts would require enumerating all permutations

of future deployments, which is infeasible to achieve within a fast MCTS rollout

policy. Therefore, we instead rely on future MCTS iterations to correct for any

error in the reward estimates by this SSAP heuristic.

The MCTS rollout policy (Alg. 2 lines 6–8) also requires evaluating the reward

that will be achieved by the selected sequence of actions. While for specific belief
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distribution structures, it may be possible to efficiently compute the expectations

in (4.1) for a specific deployment sequence, in general this will be impractical.

Instead, we suggest approximating this expectation via Monte Carlo sampling of

the random variable realizations from the prior distribution f(x). The actions

executed by a rollout can be selected by following the SSAP policy with respect to

a sampled realization of the random variables (Xr
j+1, ..., X

r
N),∀r. Within MCTS,

these reward estimates are then used within the backpropagation phase (line 9) to

guide the subsequent tree expansions.

4.2.4 Analysis

The fully expanded search tree contains 2RN tree nodes, where R is the number of

robots, and N is the number of stages. As MCTS is an iterative anytime algorithm,

the computation time is directly proportional to the number of iterations, which in

practice is typically selected by the user. The runtime complexity of each MCTS

iteration of our algorithm is dominated by the SSAP rollout computation, which

is achieved in quadratic time in the number of stages remaining (Sec. 3.2), and the

reward evaluation, which has runtime proportional to the number of samples used

in the Monte Carlo sampling.

MCTS also provides strong convergence rate guarantees for the convergence to

the optimal action selection [43]. In practice, MCTS performance can be further

enhanced with the use of problem-specific rollout policy heuristics [36]. While the

proposed SSAP policy is optimal in the single-carrier case with no conflicts, this
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optimality guarantee does not extend to the generalized multiple-carrier case we

consider here as the conflicts break the independence assumption of the reward

distributions. Therefore, SSAP is instead best used as a strong heuristic within

a general search algorithm that provides optimality guarantees, such as MCTS as

we have proposed here.

We note that the search tree Tj that is incrementally expanded by our algorithm

branches on actions but not observations. Thus, the convergence guarantee is

toward the optimal open-loop action sequence rather than closed-loop policy. The

advantage of seeking the open-loop action sequence is a lower branching factor,

although it may come at the cost of optimality in some contexts. Alternative MCTS

algorithms have been proposed for addressing the policy search problem [44], and

our SSAP rollout policy could readily be used within these generalized MCTS

algorithms.

4.3 Experiments and Results

We evaluate our multi-carrier, multi-passenger robot deployment algorithm in sim-

ulated experiments with Poisson-distributed simulated data and real-world data

from the DARPA Subterranean Challenge [2]. The goal in these scenarios is for

the passenger robots to maximally observe a set of features of interest by deploying

passenger robots at high value locations. Our deployment algorithm is compared

to other deployment strategies in order to demonstrate the benefits of accounting

for the conflicts and employing a problem-specific MCTS rollout policy.
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4.3.1 Deployment Comparison Methods

In the following experiments, we compare the following deployment strategies:

• MCTS SSAP Rollout : Our method as described in Sec. 4.2.1 with the rollout

policy described in Sec. 4.2.3.

• MCTS Random Rollout : A variant of our method, however with the standard

random policy [14] during the rollout phase.

• Single Robot SSAP : An optimal online deployment strategy for a single car-

rier robot with multiple passenger robots. This deployment strategy is ap-

plied to each carrier robot independently, without consideration for the con-

flicts between the deployment locations.

• Random: A baseline method that selects D decision points randomly from

the path of each carrier robot.

4.3.2 Capturing Poisson Distributed Features of Interest

4.3.2.1 Experimental Setup

A system of multiple marsupial robots, composed of carrier robots transporting

multiple passenger robots, travels through a 2D simulated world. As each carrier

robot travels along the path, the robot detects features of interests at each decision

point j. The features of interest in the environment are distributed as a stationary

Poisson point process. Accordingly, the number of features xrj detected by carrier
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robot r at stage j is modeled as a Poisson distribution with probability mass

function

f(x) =
λxe−λ

x!
, for x ∈ {0, 1, ...}. (4.3)

If the carrier robot decides to deploy at the decision point, a reward of vrj = xrj/p

is received. The set of overlaps O were randomly generated and kept constant

throughout the trials.

To ensure the rewards were approximately in the range [0, 1], the rewards were

normalized by the 90th percentile of the belief distribution f(x). The exploration

constant c was set as 0.05×
√

2, which encouraged more exploitation of the problem-

specific rollout function.

4.3.2.2 Results

Fig. 4.2 shows results for simulated trials with R = 4 carrier robots, each carry-

ing D = 3 passenger robots. Both the MCTS SSAP Rollout and MCTS Random

Rollout algorithm captured more features than the Single Robot SSAP algorithm,

especially as the number of overlaps increased. The performance difference show-

cases the advantages of MCTS in accounting for overlap conflicts between the

carrier robots and avoiding reward penalties stemming from deployment conflicts

that the Single Robot SSAP is unable to do. Furthermore, by using an optimal

deployment policy for a single robot, the SSAP rollout policy serves as a better

heuristic than the random rollout policy, highlighted by the general better perfor-

mance. All methods consistently outperformed Random.
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Figure 4.2: Algorithm comparisons with error bars (one standard error of the
mean) of R = 4 carrier robots, each deploying D = 3 passenger robots, and trav-
eling for N = 10 stages over 50 trials. The simulated environment was populated
with random features. At each stage, MCTS ran for 10,000 iterations. The per-
formance of Single Robot SSAP suffers as conflicts increases, due to its inability to
account for overlaps. MCTS SSAP Rollout algorithm leverages the SSAP heuris-
tic to improve over MCTS Random Rollout as the number of overlap conflicts
increases, making more efficient use of the limited number of iterations.
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Figure 4.3: Algorithm comparisons with error bars (one standard error of the
mean) of various numbers of carrier robots, each deploying D = 3 passenger robots.
The simulated environment was populated with random features. The robots travel
for N = 10 stages and encounter 10 potential overlap conflicts over 50 trials. At
each stage, MCTS ran for 10,000 iterations.
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We also show the scaling of our algorithm as the number of carrier robots R

increases from R = 2 to R = 6. The number of MCTS iterations was kept con-

stant across all trials. Despite the increasingly large joint action space, the MCTS

algorithms consistently outperform the competing algorithms. By leveraging the

search capabilities of MCTS, both MCTS SSAP Rollout and MCTS Random Roll-

out are able to deploy large amounts of passenger robots without heavy penalties

incurred from conflicts. The potential for conflicts and overlap penalties increases

with more robots in the environment, hindering the performance of Single Robot

SSAP, which only considers each robot independently and does not account for

overlap conflicts.

4.3.3 Subterranean Challenge Urban Circuit Data

To provide a real-world scenario for the application of the algorithm, we tested the

efficacy of our deployment algorithm on recorded data from the Urban Circuit of

the DARPA Subterranean Challenge [2]. A team of marsupial robots consisting

of ground robots carrying aerial robots autonomously explore the Satsop Nuclear

Power Plant in Elma, Washington. At the competition, several teams utilized mar-

supial robots, but the aerial robot deployment decisions were manually initiated

by the human operator [45]. The operator needed to constantly look for valuable

deployment locations for the passenger drones to deploy. As such, the operator

was required to split their attention between other tasks and identifying ideal de-

ployment locations. This placed an additional burden on the operator, on top of
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many other operational tasks required in the competition. Our algorithm aims

to directly address the deployment problem autonomously, in order to relieve the

burden from the operator.

4.3.3.1 Experimental Setup

Frontier cells in an occupancy grid were selected as a representation of features

of interest (e.g., shafts, ledges, passageways) that are worthy for the passenger

aerial robot to explore but cost-prohibitive to access by the ground robot. Using

OpenVDB [40], an occupancy grid of the world was generated from the LiDAR data

collected from the competition. The value of a deployment location is based on

the total number of frontier cells captured within a 10 m radius of a ground robot’s

location. Cells are considered to be frontier cells if they are a free cell neighboring

at least one unknown cell [41]. Additionally, we filter out easily accessible frontier

cells by the ground robot and only retain frontier cells which are above 1 m and

below 0.1 m the ground robot’s position.

The carrier robots were deployed from the start location asynchronously and

deployment decision locations were set every 100 seconds from the start of the hour-

long run. The reward sequences for each robot were padded with ∅ observations

for times where the carrier robot had not yet deployed from the start location,

terminated the exploration early, or the robot’s progress was stalled. For example,

at stage j = 3, time-from-start t = 300, robot R1 has already started to explore

the environment but robot R2 is still at the start gate, awaiting to be deployed
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into the environment. The observations of robot R1 at stage j = 3 would be

{x1
1, x

1
2, x

1
3}, whereas for robot R2, it would be {∅,∅,∅}. For stages where robot

r has an ∅ observation value, the deployment algorithm removes the child nodes

containing deployment actions by robot r in the expansion phase and modifies

the SSAP threshold calculations in the rollout phase to only consider N ′ stages

remaining, where N ′ is the number of total non-∅ stages. For the overlap conflicts

between all three robots, any deployment points within 30 m (3 times the 10 m

observation radius) of each other were considered to be conflicting and added to

the overlap set O.

4.3.3.2 Results

Our deployment algorithm was able to handle the potential deployment conflicts

between the R = 3 robots and captured more features than the competing de-

ployment algorithms. The MCTS SSAP Rollout algorithm captured 157 features,

compared to Single Robot SSAP : 122 features, MCTS Random Rollout : 114 fea-

tures, and Random: 68 features. The selected deployment locations for each robot

are illustrated in Fig. 4.4. The set of deployment locations achieve good spatial

coverage across the environment while targeting the areas with high aerial robot

exploration value. As this was a real-world mission, multi-robot coordination plan-

ning was employed between the carrier robots, which naturally seeks to prevent

path overlap between the robots to maximize exploration efficiency. Compared to

the simulated data in Sec. 4.3.2, there is expected to be less non-uniformly dis-
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Figure 4.4: Deployment locations for each carrier robot in the Alpha environment
from the DARPA Subterranean Urban Circuit selected by MCTS SSAP Rollout
with 10,000 iterations and N = 19 stages. Robots 1 and 2 deploy in non-conflicting
locations, avoiding the overlap conflicts. Robot 3 explores down a stairwell in the
top left corner of the map and selects to deploy in those locations. The Single
Robot SSAP algorithm decided to deploy in high value but conflicting locations.
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tributed overlaps. However, there were several valuable locations that Single Robot

SSAP selects to deploy at but without consideration for overlap conflicts, leading

to penalties.

4.3.4 Marine Bioinformation Data collection

As shown in Sec. 4.3.3, the multi-marsupial robot deployment algorithm can effec-

tively deploy multiple passenger robots in a complex urban environment. However,

this environment has artificial boundaries in form of human-created structures,

which effectively limit the size and scale of the environment. To showcase the

efficacy of the algorithm in a larger environment with longer and varying path

lengths, we conducted simulated deployments of marine robots on temperature

data extracted from the Regional Ocean Modeling System (ROMS) in Monterey

Bay, California. Ocean surface carrier robots traverse a pre-defined path through-

out the bay, deploying underwater vehicles. Our algorithm not only scales with

number of carrier and passenger robots, but is able to accommodate varying num-

bers of deployment locations. Furthermore, the deployment algorithm is structured

as a framework that is able to utilize varying forms of prior knowledge as well as

employ domain-specific heuristics. In this application, a Gaussian process was

generated over the temperature data as the prior knowledge estimation, providing

a distribution for the threshold calculation of the next deployment location to be

visited.
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Figure 4.5: Regional Ocean Modeling System (ROMS) temperature data of Mon-
terey Bay, CA. Lawnmower paths of two carrier robots with length N = 20 and
different raster lengths are shown.

4.3.4.1 Experimental Setup

In order to simulate a marine deployment operation to collect biological informa-

tion from upwelling fronts, Regional Ocean Modeling System (ROMS) temperature

data of Monterey Bay, seen in Fig. 4.5, was utilized. Regions where cold, nutrient-

rich water from the ocean floor meets warm surface waters present biologically in-

formative areas [46] and are ideal locations for passenger robot deployment. Higher

temperature locations where the carrier robot deploys present higher rewards than

lower temperature locations, where the reward is defined as V =
∑R

r=1 xr
R

. Here, xr
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represents the temperature at the deployed location of the passenger robot r and R

denotes the total number of passenger robots. Two carrier robot paths were sim-

ulated on lawnmower paths with varying raster lengths to create different stages

where each robot would have potential overlaps with the other. The temperature

data was modeled using a standard Gaussian process approach with a radial basis

function (RBF) kernel and seeded with 10 randomly sampled locations from the

data. The same comparison algorithms from Sec. 4.3.3 were used.

4.3.4.2 Results

Our results show that the deployment algorithm is able to accommodate operations

with varying path lengths and utilize alternate forms of prior knowledge, such as a

Gaussian process. Furthermore, this second case study shows that our algorithm

can be generalized and applied to different domains, like this marine environment.

Additionally, the algorithm can be reconfigured to utilize domain-specific reward

functions such as temperature (as opposed to frontier cells for exploration).

As seen in Fig. 4.6, our deployment algorithm deployed the marine robots in

locations which captured higher average temperatures than the competing algo-

rithms of random deployments and the single marsupial robot deployment algo-

rithm applied independently to each robot. As the number of deployment locations

increases, the number of overlaps also increases, explaining the decrease in perfor-

mance of the competing algorithms. The MCTS deployment algorithms are able to

account for the increased conflicts in deployment locations of the passenger robots.
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Figure 4.6: Temperature performance of the deployment algorithm with error bars
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deployment locations. Over 50 trials, MCTS ran for 10,000 iterations at each stage.
As the path length increased, the number of overlap locations also increased.
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The Single Robot SSAP algorithm performs worse than the Random algorithm due

to the deterministic thresholds likely selecting deployment locations with penalties

but is unable to account for the penalty inducing conflicts.

The performances of the MCTS SSAP rollout and MCTS Random rollout al-

gorithms are comparable across the number of deployment locations and can be

attributed to a few reasons. Firstly, the SSAP rollout heuristic is sensitive to esti-

mations of domain-specific prior belief. In this case, the standard Gaussian process

parameters can be adjusted in the future to better represent the domain’s underly-

ing distribution, which may improve the performance of the SSAP rollout heuristic.

Secondly, the effects of the SSAP rollout heuristic may be less effective due low

data variance, which leads to narrow intervals from the thresholds. Lastly, the

performance of the SSAP rollout heuristic highlights the deployment algorithm’s

sensitivity towards different assumptions of the prior belief distribution.

4.4 Summary

In this chapter, we presented a multi-carrier robot deployment algorithm based on

MCTS which searches through the joint action space of multiple carrier robots to

inform the team of deployments and avoid passenger robot deployment conflicts.

The default MCTS random rollout policy is replaced with the optimal solution

to the single carrier robot deployment case, discussed in the previous chapter.

Our algorithm provides a framework for the generalized deployment problem, in-

corporating various forms of prior knowledge distributions of the environment’s
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features of interest and is able to scale to multiple carrier and passenger robot sys-

tems. We showcased the performance and the varied application of the algorithm

on Poisson-distributed simulated data, real data from the DARPA Subterranean

challenge, and real marine ROMS temperature data from Monterey Bay.
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Chapter 5: Conclusion and Future Work

The benefits and flexibility that marsupial robots provide for exploration of com-

plex environments require capable planners which can account for the deployment

of the passenger robots from the carrier robots. In this thesis, we have provided an

initial problem formulation of the passenger robot deployment problem for marsu-

pial robots and demonstrated the feasibility of the sequential assignment optimal

policy to passenger robot deployments. Real-world operation of robot exploration

tasks using marsupial robots can benefit from the application of our deployment

algorithms to autonomously and intelligently decide deployment locations.

5.1 Summary of Contributions

In Chapter 3, we presented a novel formulation of the passenger deployment prob-

lem from a single carrier robot that is addressed with the solution to the sequential

stochastic assignment problem [13]. Our simulation results showed that the de-

ployment algorithm is able to reason over the future expected rewards of each

deployment location and provide optimal performance.

In Chapter 4, we generalized the passenger deployment problem to multiple

carrier robots with multiple passenger robots for a multi-marsupial robot system.

In order to address the conflicting shortcomings of the single robot deployment
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algorithm, we utilized Monte Carlo tree search to explore the joint action space

of the carrier robots for passenger robot deployment deconfliction. Our results

demonstrated that our algorithms enable a significantly improved selection of robot

deployment locations for exploration tasks, in comparison to a variety of alternative

methods.

5.2 Future Directions

In the future, various avenues of improvements can be explored for the deploy-

ment algorithm. Since the current deployment algorithm considers only the carrier

robot’s actions and path, it would be important to incorporate the planned actions

of the deployed passenger robots in order to inform the main deployment planner

of potential future conflicts stemming from a potential deployment location and

better model system rewards across both the carrier and passenger robots. Fur-

thermore, the algorithm is scalable to varying numbers of deployment locations but

requires the total number of locations to be fixed beforehand for the threshold gen-

erations. Future work can explore online replanning methods in order to extend

the planner to an infinite horizon variant. Furthermore, a natural extension to

the centralized approach would be to develop decentralized algorithms, such as by

employing the SSAP rollout policy within Dec-MCTS [32], to enable deployment

planning in communication sparse environments. It would also be interesting to

plan over the space of closed-loop policies, rather than open-loop action sequence,

which may be achieved with an MCTS generalization such as POMCP [44], as
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noted in Sec. 4.2.4. Also, different forms of conflicts and dependencies may exist

between the deployment location rewards, which would lead to alternative reward

function definitions, such as a set cover formulation.

The sequential stochastic assignment component of the deployment algorithm

can also benefit from exploration of various extensions and variations of the prob-

lem. For example, it would be interesting to improve current distribution esti-

mation [47], study cases where the prior feature distribution [48] or number of

stages are not known, and consider a dependent relationship between consecutive

observations.
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