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Chapter 1: Introduction

High Performance Computing (HPC) system refers to computers that can perform

large amounts of data and high-speed operations that personal computers cannot

handle. This type of cluster mainly solves the calculation of large-scale scientific

problems and the processing of massive data, such as scientific research, weather

forecasting. Since the switching delay is relatively large compared to the line and

microchip injection delay, Therefore, the structural optimization of interconnection

topology is very important for HPC systems. Our goal is to generate better network

topology.

Since the design space of generated graph is very complicated, it is difficult

to generate a good topology. This article investigates the methods of generating

topologies, such as common HPC system topologies, Distributed Loop Networks

(DLN), complex networks, and random shortcut topologies algorithm. This article

also investigates the methods explored in the huge design space, such as machine

learning and deep reinforcement learning methods.

This paper choose to add shortcuts to the base topology, to generate better

topology. The model draws on the application of Deep Reinforcement Learning

(DRL) Framework on Routerless NoC Case, and implements a model based on

DRL and MCTS, and explained various details in the model. This model is ded-

icated to solving the optimization problem of interconnection topology. That is,
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for an initial interconnection topology graph, we hope to add some shortcuts to

optimize the graph structure and reduce the diameter of the graph and the average

hop count between all point pairs.

For the results, we compare the DRL model with two random models. By

adjusting the size of the network, the maximum degree of each node, and the

maximum number of edges in the network, the DRL model will produce better

results. We also showed some examples of topology generation. At the end of this

paper, we also discuss the derivative work that this model can complete, such as

optimizing the topology if edges have weights.

This article is divided into 7 chapters, and the content of each chapter is roughly

as follows:

• Chapter 1 is introduction, which roughly describes the task to be completed

in this thesis;

• Chapter 2 is background, which mainly talked about the technology and

principles of DRL and MCTS, and also discusses the complexity of design

space;

• Chapter 3 investigates some reference methods and techniques, these meth-

ods directly or indirectly inspire the model of this article, some methods will

be compared with the model of this article as a comparison method in the

follow-up;

• Chapter 4 proposed the framework design of our model, and specifically

describes the implementation methods of each module;
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• Chapter 5 briefly describes the parameters and methods of program opera-

tion;

• Chapter 6 exhibits the results of our model and compares them with the

methods described in Chapter 3;

• Chapter 7 discusses the scalability of our model, that is, more problems can

be solved after modifying the constraints;

• Chapter 8 summarizes the work of this article.
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Chapter 2: Background

In this chapter, first expounds the extensiveness of interconnection topology in

HPC system, and then explains the complexity of design space. After that, the

main techniques designed in this article are introduced: deep reinforcement learn-

ing and Monte Carlo tree search

2.1 Design Space Complexity in HPC system topology

High Performance Computing (HPC) systems refers to computers that can perform

large amounts of data and high-speed operations that ordinary personal computers

cannot handle. The basic components are not much different from the concept

of a personal computer, but the specifications and performance are much more

powerful. Most of the existing supercomputers have a computing speed of more

than one trillion (trillion, not one million) times per second. This type of cluster

mainly solves the calculation of large-scale scientific problems and the processing

of massive data, such as scientific research, weather forecasting, computational

simulation, military research, CFD/CAE, biopharmaceuticals, gene sequencing,

image processing, and so on.

Large-scale parallel applications deployed on next-generation high-performance

computing (HPC) systems will suffer communication delays that can reach hun-
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dreds of nanoseconds. Therefore, the construction or development of low-latency

networks is particularly important in these systems. Since the switching delay is

relatively large compared to the line and microchip injection delay (for example,

about 100 nanoseconds in InfiniBand QDR), in order to achieve low delay, the

switch should have a better topology (for example, smaller diameter and lower

average shortest path length), both are measured by the number of switch hops.

Fortunately, high-cardinality switches with dozens of ports are now available. Com-

pared with traditional high-diameter topologies, these switches can be designed

with low-latency topologies that use more links per switch.

Figure 2.1: High-level organization of the Blue Gene/L supercomputer.

Figure 2.1 shows the structure of the IBM Blue Gene/L Supercomputer[3]. Two
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chips share a compute card that also contains SDRAM-DDR memory. Sixteen

compute cards can be plugged in a node board. A cabinet with two midplanes

contains 32 node boards for a total of 2048 CPUs. The complete system has 64

cabinets and 16 TB of memory. Generally speaking, topologies are widely used

in HPC systems. In a cabinet, 32 node boards will be connected to each other

according to a certain topology; in Blue Gene/L, 64 cabinets will also be connected

according to a certain topology. The widespread topology connection makes the

delay also widespread in the HPC system. Therefore, the structural optimization

of interconnection topology is very important for HPC systems.

For the HPC system, we optimized its topological structure, thereby reducing

the transmission time of information in the system, thereby increasing the calcu-

lation speed of the HPC system. Then for the same amount of calculation, the

HPC system can get results in less time, which can save a lot of electricity bills.

Taking weather forecast as an example, the optimized HPC system can analyze

more weather data and run more complex algorithms to get more accurate weather

forecast results.

Design space complexity in HPC system problem poses a significant challenge

requiring efficient exploration. The topology problem in this article can be ab-

stracted into a graph theory problem. There are n switches in the HPC system,

and each switch has a total of d ports and a maximum of m shortcuts; that is,

there are n nodes in the graph, and the degree of each node is at most d, and

there are at most m edges. Then there can be at most C(n, 2) = n(n−1)
2

edges

in the graph, so there are a total of C(n(n−1)
2

,m) available graphs. Taking IBM
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BlueGene/L Supercomputer as an example (n = 64 and assume m = 128), there

will be C(64, 2) = 2016 available edges and C(2016, 128) ≈ 10205 available graphs.

Suppose we use IBM Blue Gene/L to verify a feasible solution, and its comput-

ing speed is about 360 Teraflops of peak computing power[3]. Assuming that the

time complexity of verifying each feasible solution is O(1), the processing time is

10205

360×1012
≈ 2.7 × 10194 seconds ≈ 8.5 × 10186 years. Therefore, it is completely

impossible to use this exhaustive method.

2.2 Reinforcement Learning

Machine learning (ML) has come a long way in the last two decades, from a

laboratory curiosity to a real technology with extensive commercial use. Machine

learning has emerged as the preferred approach for producing practical software for

computer vision, speech recognition, natural language processing, robot control,

and other applications in artificial intelligence (AI).

Reinforcement learning: Reinforcement learning (RL) is the study of how

an agent can interact with its environment to learn a policy which maximizes

expected cumulative rewards for a task. Recently, RL has experienced dramatic

growth in attention and interest due to promising results in areas like playing Go

(Silver et al. 2016)[13]. Recent deep reinforcement learning (DRL) techniques,

in particular, enable efficient exploration in vast design spaces where conventional

design strategies may be inadequate.

Reinforcement learning is also a learning, forecasting, and decision-making ap-
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Figure 2.2: Reinforcement Learning Framework

proach framework. Reinforcement learning is likely to help solve an issue if it can be

stated or translated into a sequential decision problem with defined state, action,

and reward. Reinforcement learning, in general, has the potential to assist in the

automation and optimization of humanly created strategies. Supervised learning

often addresses one-time difficulties, focuses on short-term benefits, and considers

immediate returns, whereas reinforcement learning considers sequence problems,

has a long-term viewpoint, and considers long-term returns. This long-term per-

spective on reinforcement learning is crucial for discovering the best solutions to

a variety of issues. For example, if only the nearest neighbor nodes are considered

in the shortest path problem, the shortest path may not be obtained.

Deep Reinforcement Learning: Deep learning breakthroughs have prompted

academics to reconsider the uses of deep neural networks (DNNs) in a variety of

fields. Deep reinforcement learning is one of the outcomes, which combines DNNs

and reinforcement learning techniques to solve complicated problems. Through

efficient data-driven exploration based on DNN output, this synthesis mitigates

data reliance without introducing convergence difficulties. These ideas have re-

cently been applied to Go, a grid-based strategic game in which players position
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stones. A trained policy DNN learns optimal actions in this model by exploring a

Monte Carlo tree that records DNN-suggested actions during training[13, 14]. By

developing a sequence of actions with superior cumulative rewards, deep reinforce-

ment learning can beat traditional reinforcement learning.

Figure 2.3: Deep Reinforcement Learning Framework

2.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a method of making optimal decisions in

artificial intelligence problems, generally in the form of move planning in combina-

torial games. It combines the generality of stochastic simulation and the accuracy

of tree search.

The rapid attention of MCTS is mainly due to the success of the computer

Go program and its potential application to many difficult problems. Beyond the

game itself, MCTS can theoretically be used in any field where (state, action) is

used to define and use simulation to predict output results.
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The basic MCTS algorithm is very simple: according to the output results of

the simulation, a search tree is constructed according to the nodes. The process

can be divided into the following steps:

Figure 2.4: Monte Carlo Tree Search Framework

• Selection: Starting from the root node R, select the best child nodes in a

edge (explained) until the leaf node L is reached.

• Expansion: If L is not a termination node (that is, leading to the termina-

tion of the game game selection), then create more word child nodes, one of

which is C.

• Simulation: Run the simulation output from C until the end of the game.
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• Back-propagation: Update the current action sequence with the simula-

tion result output.

MCTS estimates will be unreliable at the beginning of the search, and will

eventually reach a fixed time estimate, and the best estimate can be reached under

infinite time.
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Chapter 3: Related Work

3.1 Graphs with Low Diameters

For decades, graph theorists have been studying the problem of maximizing the

number of vertices in a graph with a given diameter and degree, and trying to

get close to the famous Moore boundary[5]. Several graphs with easy-to-handle

hierarchical structure and good diameter properties have been proposed for in-

terconnection networks, including the well-known De Bruijn graph[12], (n, k)-star

graph[1] and so on. These diagrams are rarely used for interconnection topologies

in current HPC systems. However, their diversity indicates that there is a lot of

room for the design of interconnect topologies.

3.2 Topologies of HPC Systems

Direct topologies: each node has direct point-to-point link to a subset of other

nodes in the system[4]. Popular direct topologies include k-ary n-cubes, with a

degree of 2n, which lead to tori, meshes, and hypercubes. Each topology leads to a

specific trade-off between degree and diameter. These topologies are regular, which

means that all switches have the same degree, because each switch is connected to

the same number of switches. (3-ary 2-cube (2-D torus) Graph)

Indirect topologies: each node is connected to an external switch, and switches
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have point-to-point links to other switches[4]. They have low diameter at the

expense of larger numbers of switches when compared to direct topologies. The

best known indirect topologies are Fat trees, Clos network and related multi-stage

interconnection networks such as the Omega and Butterfly networks. (Fat-Tree)

More recently, variations of these networks, such as the flattened butterfly[9],

have been proposed as a way to improve cost effectiveness. The flattened but-

terfly gives lower hop count than a folded Clos and better path diversity than a

conventional butterfly.

3.3 Distributed Loop Networks (DLN)

The distributed loop network (DLN) consists of a simple ring topology, to which

chord edges or shortcuts are added. The purpose is to reduce the diameter of these

shortcuts without causing a significant increase in the degree. One option is to add

a set of ”evenly spaced” shortcuts, the other option is to add shortcuts in a less

regular way. It turns out that it is more efficient to add shortcuts in a less regular

manner. For instance, [6] shows an example in which adding only five shortcuts

for a 36-vertex ring can reduce the diameter from 18 to 9.

3.4 Complex Networks

The usefulness of random or seemingly random shortcuts for complex networks

such as social networks and Internet topologies has been noted. The small-world
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nature of these networks has received considerable attention in the literature.

Watts and Strogatz [15] proposed a small-world network model based on prob-

ability parameters, which smoothly transforms a one-dimensional lattice into a

random graph, in which a small number of long sides are used to greatly reduce

the diameter. In addition, the scale-free and clustering characteristics of complex

small-world networks lead to small diameters and average shortest path lengths,

as well as robustness to random edge removal.

In order to go beyond traditional topologies in current HPC systems and achive

a small-world effect, Michihiro Koibuchi et al. [10] propose an approach that adds

random shortcuts to a base topology. In this algorithm, random shortcut topologies

are generated by augmenting classical topologies with random links. Specifically,

when d shortcuts are added to the node, k × d random feasible target nodes will

be found, where k ≥ 1. Calculate the length (in hops) of the shortest path to

each of these vertices. The d vertices with the longest shortest path are selected

as the destination of the shortcut. Continue to find points where the degree does

not reach the upper limit and add edges Until the total number of edges reaches

the upper limit.

Since dn ≫ m, the complexity of this algorithm is O(mk + mn3

d
).

This algorithm has a certain reference: it can produce a reasonable shortcut

addition method in a fast time. But the paper only discusses the application of

some specific initial graphs. The structure of these graphs has certain rules, but it

is not general. That is, the algorithm may only have some optimizations for specific

graphs and constraints. This method will be used as a method to be compared in
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the future.

3.5 Network-on-Chip (NoC)

The network on chip is a router-based packet switching network between SoC

modules. NoC technology applies the theory and methods of computer networking

to on-chip communication and brings notable improvements over conventional bus

and crossbar communication architectures. The topology of NoC has a profound

effect on the overall network cost and performance. It significantly influences the

latency and power consumption. It also affects the network traffic distribution,

and hence the network bandwidth and performance achieved.1

3D NoC Design is an emerging technology that has the potential to achieve

high performance with low power consumption for multi-core chips. Sourav Das

et al. [7] propose a robust design optimization method to intelligently explore

the design space by combining the advantages of small-world (SW) networks and

machine learning technologies. This model optimize the placement of both planar

and vertical communication links for energy efficiency, which improves the energy

efficiency of the 3D NoC architecture.

Routerless NoCs use a network of buses in a sophisticated way and typically

need some sort of switching that earlier bus systems do not need[2]. Ting-Ru

Lin, Drew Penney et al.[11] proposes a novel deep reinforcement framework, tak-

ing routerless NoC as an evaluation case study. The new framework successfully

1https://en.wikipedia.org/wiki/Network_on_a_chip
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resolves problems with prior design approaches, and learns (near-)optimal loop

placement for routerless NoCs with various design constraints. A deep neural

network is developed using parallel threads that efficiently explore the immense

routerless NoC design space with a Monte Carlo search tree.

Specifically, the method proposed by this model is:

• DNN provides a suggestion loop;

• Add subsequent loops by MCTS based on some strategies;

• Use the results to train DNN and MCTS;

• Repeat the above steps until the limit condition is reached;
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Chapter 4: Materials and Methods

4.1 Objective

Our goal is to optimize interconnection network topology. That is, for an initial

topology, some shortcuts will be added to optimize this structure. In order to

simplify this problem and make sure that a feasible solution can be generated in

the end, we ensure that the given initial graph is fully connected, and all points in

the graph must be connected to each other. That is, there are a total of n points

in the graph, and the degree of each point is at most d. On the basis of the initial

graph, we can add some edges, so that there are at most m edges in the graph,

so that the average hop count and diameter of the final graph can be as small as

possible.

Figure 4.1: Topology Modification Example
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4.2 Framework Overview

The deep reinforcement learning framework modified according to Routerless NoCs

is shown in the Figure 4.2. The framework starts with an empty tree and a neural

network with no prior training to initialize Monte Carlo Tree Search (MCTS). The

whole process consists of many iterative processes. Each iteration starts with an

initial graph (for example, a ring connecting all nodes to ensure that the graph is

fully connected), and then continuously implement actions to modify the design.

For each iteration, DNN first suggests a good initial action to direct the search to

a specific area in the design space; follow the MCTS in that area to take multiple

actions. Starting from the current design, MCTS uses a greedy strategy to explore

and select actions until it reaches the leaf node (a feasible solution). Finally, the

overall reward (”evaluation index”) is calculated and combined with information

about state, action, and value estimates to train the neural network and update

the search tree. Repeat the exploration cycle to optimize the design until the limit

conditions (such as the upper limit of the number of edges, etc.) are reached. After

the search is complete, we will evaluate the design (calculate the average number

of hops and diameter for this graph).

In this framework, DNN generates rough designs, and MCTS effectively refines

these designs based on prior knowledge to continuously generate more optimized

configurations. Unlike traditional supervised learning, this framework does not

require a training data set; on the contrary, DNN and MCTS gradually train

themselves from past exploration cycles.
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Figure 4.2: Deep reinforcement learning framework

4.3 Representation of graphs (States)

State representation in our model uses a hop count matrix to encode current graph

state as shown in Figure 4.3. Assuming that there are a total of n nodes in this

topology, then the overall state representation is an n × n matrix. Among them,

the element in the ith row and the jth column represents the shortest path length

from the ith node to the jth node. In particular, the element in the ith row and

the ith column is always 0. Given the initial graph, all nodes are connected, so the

initial value of the matrix can be set to n.
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Figure 4.3: Graph Hop Count Matrix Example

4.4 Representation of edges (Actions)

Actions are defined as adding an edge to an graph with n nodes. Since an edge

connects 2 nodes, the actions can be encoded as:

(x, y) (4.1)

where x and y represent the sequence number of the node. To avoid ambiguity, we

force x ≤ y (if x > y, exchange them).

4.5 Returns After Edge Addition

The reward function encourages exploration by rewarding zero for all valid actions,

while penalizing repetitive, invalid, or illegal actions using a negative reward.

• Repetitive action: refers to adding a duplicate edge, receiving a -1 penalty;

• Invalid action: refers to adding a self-loop, receiving a -1 penalty;
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• Illegal action: involve additions that violate the degree limit of each node, a

penalty of -1 is obtained;

The agent receives a final return to characterize overall performance by subtract-

ing average hop count in the generated topology from average mesh hop count.

Minimal average hop count is therefore found by minimizing the magnitude of

cumulative returns.

4.6 Deep Neural Network

Residual Neural Networks: Adequate network depth is essential, but high net-

work depth can lead to overfitting of many standard DNN topologies. Residual

networks provide a solution by introducing additional shortcut connections be-

tween layers, allowing robust learning even if the network depth is 100 or more

layers. The building blocks of the residual network are shown in Figure 4.4. Here,

the input is X, and the output after two weighting layers is F(X). Note that both

F(X) and X (via shortcut connection) are used as inputs to the activation function.

This shortcut connection provides a reference for learning the best weights and al-

leviates the problem of vanishing gradients in the back propagation process[8].

Figure 4.5 depicts a residual box (Res) composed of two convolution (conv) layers.

Here, the numbers 3x3 and 16 represent a 3x3x16 convolution kernel.

DNN architecture: The proposed DNN uses the dual-head architecture

shown in Figure 4.6, which learns both the strategy function and the value function

at the same time. We use convolutional layers because edge placement analysis is
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Figure 4.4: A generic building block for residual networks

Figure 4.5: A building block for convolutional residual networks

similar to spatial analysis in image segmentation, and it performs well on convo-

lutional neural networks. Use batch normalization after the convolutional layer to

normalize the value distribution, and use maximum pooling (denoted as ”pooling”)

after a specific layer to select the most important features. Finally, both the policy

and the value estimate are produced in the output as two independent heads. The

strategy discussed in Section 4.5 is the action with two dimensions (x, y), which

are generated by following the ReLU function. Refer to Figure 4.6, the softmax

input after ReLU is {aij} where i = 1, 2 and j = 1, · · · , N . Dimensions x and y

are maxj(exp(a1j)/Σjexp(a1j)) and maxj(exp(a2j)/Σjexp(a2j)). The value head
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uses a single convolutional layer followed by a fully connected layer without an

activation function to predict the cumulative return.

Figure 4.6: Proposed deep neural network
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4.7 Topology Design Exploration

MCTS: In our implementation, each node s in the tree represents a graph (state),

and each edge represents an additional edge (action). In addition, each node s

stores a set of statistical information: V (snext), P (ai; s), and N(ai; s). V (snext) is

the average cumulative return from snext, which is used to approximate the value

function V π(snext). P (ai; s) is the prior probability of taking action ai based on

π(a = ai; s). Finally, N(ai; s) is the access count, which represents the number of

times ai is selected in s. The exploration starts from the state s, and then the

best action a∗ is selected according to the expected exploration reward given by

the following formula[11]:

a∗ = argmax
ai

(U(s, ai) + V (snext)) (4.2)

U(s, ai) = c ∗ P (ai; s) ∗

√∑
j N(aj; s)

1 +N(aj; s)
(4.3)

where U(s, ai) is the upper confidence limit and c is a constant. The first term in

Equation 4.2 encourages extensive exploration, while the second term emphasizes

fine-grained development.

The MCTS algorithm shown in Figure 2.4 is divided into 4 stages: selection,

expansion, simulation, and back-propagation. In our model:

• Selection: the agent selects the best action (cyclic placement) by following

Equation 4.2 with a probability of 1 − ϵ or using a greedy search with a

probability of ϵ. Greedy search algorithm evaluates the benefits of adding
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various edges and selects the edge with the highest return. Traverse the tree

until reaching a leaf node without any child nodes.

• Expansion + Simulation: the leaf state is evaluated using the DNN to deter-

mine an action for rollout/expansion. Here, π(a = ai; s) is copied, then later

used to update P (ai; s) in Equation 4.3. A new edge is then created between

s and snext where snext represents the routerless NoC after adding the edge

to s.

• Back-propagation: after calculating the final cumulative gain, propagate

the statistics of the traversal edge backward through the tree. Specifically,

V (snext), P (ai; s), and N(ai; s) are all updated.

Greedy algorithm: During MCTS process, model will use the greedy algo-

rithm to find suitable edges according to the same rules, and then add them to the

graph.

When the program starts to execute, the program will generate a search se-

quence based on the initial graph, that is, sort all the nodes. The sorting rule is:

take the sum of the hop count from this node to all other nodes as the first key,

sort from big to small; if the first key is the same, the second key is the number of

node, from small to big Sort. The larger the sum of the hop count from this node

to all other nodes, the greater the distance from this node to other nodes, and the

higher priority is to add edges for this node.

During MCTS process, there are two greedy methods.

• For the node currently being searched, find an another node with the longest
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path between them, and then add a shortcut between them. Continue to

search for the current point until the upper limit of the degree of the point

is reached , and then continue to search for the next point in the search

sequence. Until the upper limit of the number of edges is reached. The

pseudo code of this method is as Algorithm 1:

• Select the two points with the largest shortest path. If the shortest paths

are the same, the one with the smallest integer pair is selected.

Combining these two methods can have a good search effect.

Algorithm 1 Greedy Algorithm used in MCTS

1: x = next available node in search sequence
2: y = argmax

z
(HopCount[x][z])

3: Add (x, y) to the graph
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Chapter 5: Methodology

This model is implemented by Python 3, and DNN is implemented by TensorFlow.

For the parameter setting of program operation:

Table 5.1: Framework Parameter Setting
Parameter Value

Constant value c in Equation 4.3 1.0
Probability of using greedy search 0.1

Discount factor for rewards 0.8
Gradient norm clipping 40.0

Maximum degree of each node 10
Number of nodes in graph 64

Maximum number of edges in graph 128

Each time the program runs, the complete feasible solution generated each time

will be recorded and the average hop count will be calculated. For those given

parameters, after the program runs for a period of time, the average hop count

will show a downward convergence trend. After convergence, the corresponding

actions and the average hop count can be output.
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Chapter 6: Results

For a known graph, I proposed another random edge addition algorithm with a

greedy strategy:

Algorithm 2 Random edge addition algorithm that I proposed

1: Randomly generate t edges (t ≤ 10)
2: For each edge, try to add it to the graph, calculate the contribution of this edge

to the graph (such as the reduction of the shortest path between two nodes,
or reduction of average hop count)

3: Choose the edge that makes the most contribution and add it to the graph
4: Keep adding until the upper limit of the number of added edges is met

If the reduction of the shortest path is used as a contribution, the complexity of

this algorithm is O(m(t+n2)). This method will be used as a comparison method

later.

As the training process progresses, the average hop count will tend to converge

and converge to the local optimal value. Take n = 64(number of nodes), d =

10(maximum degree of each node), m = 128(maximum number of edges) as an

example:

By setting different parameters, we compare the test results with random meth-

ods (completely random adding edges and random shortcut topologies) to prove

that the structure produces better results.
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Figure 6.1: Model training process example

6.1 Different number of nodes in the graph

In this part, we will fix the initial graph as a ring, the maximum degree is 10, and

the maximum number of edges is twice the number of nodes, and test different

graph sizes (n). The test results are as follows:

Looking at the diameter again, each line in the graph shows an increasing

trend, which is reasonable, because as the size of the graph increases, the internal

structure of the graph will become more complicated, and more edges need to be

added to reduce the diameter by 1. But we can also find that the diameter of

the random shortcut topology algorithm has a very large increase, the full random

algorithm and the reinforcement learning model have a very small increase, and

the diameter of the reinforcement learning model is smaller than the other two.

Looking at the diameter again, each line in the graph shows an increasing
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Figure 6.2: Avg hop count vs. network size (ring, d=10, ratio=2)

trend, which is reasonable, because as the size of the graph increases, the internal

structure of the graph will become more complicated, and more edges need to be

added to reduce the increase in diameter by 1 . But the random edge addition

algorithm line completely coincides with our frame, and the diameter of the random

shortcut topology algorithm is slightly larger. It can be seen here that compared

to the other two algorithms, our algorithm can add edges more effectively and can

generate a graph with a smaller diameter and average hop count.

Therefore, as the graph size increases, the superiority of the results produced

by the reinforcement learning model will not change.
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Figure 6.3: Diameter vs. network size (ring, d=10, ratio=2)

6.2 Different maximum degree limit of each node

In this part, we will fix the initial graph as a ring, the number of points in the

graph is 64, and the maximum number of sides is 128 (2 times the number of

points), and test different degrees of each node.

You can see that each line in the graph shows a downward trend. This is

reasonable, because as the degree increases, even if the total number of edges does

not change, each point is more likely to have a higher degree, that is, it becomes

the local center of the graph, so the average hop count will decrease.

It can be seen from the Figure 6.4 that the average hop count of the rein-

forcement learning model is lower than that of the full random algorithm and the

random shortcut topology algorithm, so the increase in degree will not change the

betterness of the reinforcement learning model.
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Figure 6.4: Avg hop count vs. maximum degree (ring, n=64, ratio=2)

6.3 Different maximum number of edges

In this part, we will fix the initial graph as a ring, the number of points in the

graph is 64, the maximum degree is 10, and the different maximum number of

edges are tested. As the graph size increases, the edges that need to be added also

need to increase. So simple consideration, we assume that the maximum number

of edges and the size of the graph are linearly positive, then we adjust the ratio in

this comparison.

All the lines in the graph show a decreasing trend, and the decreasing range

gradually becomes smaller. This is reasonable, because as the number of edges

increases, the graph will be closer to a fully connected state, that is, the average

hop count is 1. It can be seen from the Figure 6.5 that the superiority of the

results produced by the reinforcement learning model will still not change with the

increase of the maximum number of edges.
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Figure 6.5: Avg hop count vs. maximum number of edges ratio (ring, n=64, d=10)

6.4 Selection of the initial graph

In this part, we will fix the number of points in the graph to 64, the maximum

degree to 10, and the maximum number of sides to be 128 (two times the number

of points) to test the effect of different initial graphs on the results. Because HPC

system topologies generally have symmetry, rings and full binary trees are selected

for testing here.

The optimization effect of the reinforcement learning algorithm on the ring is

obvious, but the optimization effect on the binary tree is relatively small. These

two graphs have certain extremes: when the same number of edges are added, the

average shortest distance of the ring is the largest (linearly related to n), and the

binary tree has several identical substructures, but the average shortest distance is

shorter (with logn Linear correlation). Therefore, different initial graphs will not

affect the betterness of the reinforcement learning model.
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Figure 6.6: Avg hop count vs. different initial graph (ring, n=64, d=10, m=128)

6.5 Generated Graph Example

In this section some generated graphs will be shown. We choose the network size

n = 16, the maximum degree of each node d = 10, and the maximum number of

edges m = 32.

In addition, for the above restrictions, we found that 4*4 2D Torus and 4-

Hypercube also meet the requirements.

Since topology generated by our framework is similar to the random shortcut

topology, the edge distribution is not regular, the topology is not simple. Therefore,

it is necessary to use source routing or distributed routing of the routing table.
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Figure 6.7: Generated Graph Example (DRL Framework)

Figure 6.8: Generated Graph Example (Random Edge Addition Algorithm)
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Figure 6.9: Generated Graph Example (Random Shortcut Topology Algorithm)

Figure 6.10: Generated Graph Example (4*4 2D Torus)
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Figure 6.11: Generated Graph Example (4-Hypercube)
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Chapter 7: Future Work

7.1 Universality

Through the discussion of the results, the results produced by the reinforcement

learning model are better than the results of the random algorithm in all dimen-

sions. Therefore, the reinforcement learning model can play a good role in the

graph optimization problem. This model can replace the initial graph at will. The

random shortcut topology algorithm test uses a relatively common and regular

initial graph, most of which are symmetrical. This model can be replaced at will,

and it can be replaced with an irregular and asymmetrical initial graph. Even if it

is replaced, reinforcement learning will learn from it and help design space explo-

ration. In this way, the problem that this paper hopes to solve can be upgraded

from HPC system topology optimization to a general graph optimization problem.

7.2 Modification of restrictions

This model can also make certain modifications to the restriction conditions. The

restriction conditions set during the test in this paper are: the upper limit of the

degree of each point, and the maximum number of edges to be added.
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7.2.1 If the edge has weight

When this model is tested, it is assumed that the added cost of each edge is the

same, which is 1. In the actual HPC system topology, there may be a certain

distance between two machines. When we need to add a data cable between the

two machines, the added cost is not necessarily the same (for example, the cost of

the short distance is small, and the cost of the long distance is large). In order to

solve this problem, we can:

• Modify the cost of each edge from 1 to actual cost

• Set the upper limit of the total cost

• Consider the optimization effect of the cost when adding the edge

and so on.

7.2.2 Each machine has a flow limit

When testing this model, it is assumed that the maximum degrees of all points

are the same. In an actual HPC system, the processing capabilities and interface

connection capabilities of each machine may be different. The number of ports of

each machine may also be different. In order to solve this problem, we can set

different degree limits for different machines.
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7.2.3 Model training according to different needs

Consider the problems encountered by the HPC system in the actual process: we

hope to optimize not only the HPC system topology, but the overall HPC system

operating efficiency. Assuming that we can obtain historical data of the HPC

system running for a period of time (such as the amount of communication in each

edge, etc.), we can use these historical data as a training set to help choose among

candidate edges in each iteration. And assess the quality of the topology. The

topology obtained through such training fits the actual use situation. For different

HPC computer rooms, we can train to obtain different topological structures, and

achieve good use effects for different usage scenarios.
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Chapter 8: Conclusion

Topology exists widely in HPC systems. Since the delay is relatively large com-

pared to the line and microchip injection delay, structural optimization of inter-

connection topology is very important for HPC systems. There are many ways to

generate topologies. One option is to generate new topologies, but this method is

relatively mature, almost as a bottleneck; our work is to add shortcuts based on

an existing topology, this method is very promising but is also very challenging.

We proposed a model combines DRL and MCTS, and can produce very good re-

sults, which have lower average hop count and diameter, compared with random

shortcut topology algorithm and random edge addition algorithm that I proposed.

In addition, our model can also solve more problems, such as general graph opti-

mization problems, or when edges are weighted. We can solve those problems by

modifying model.
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