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There are nearly two million limb amputees living in the United States of America.

Loss of limbs results in profound changes in one’s life. However the underlying neu-

ral circuitry and much of the ability to sense and control movements of their missing

limb is retained even after limb loss. This means that amputee has the ability to con-

trol artificial limbs in a manner similar to how the limb was controlled before the loss.

The goal of this research is to develop technologies for creating prosthetics arms that

behave like the natural limb. Movement intent decoders allow amputees to control

prostheses by interpreting motor-related bioelectrical signals, restoring their ability

to perform day-to-day tasks. Such systems have to overcome a number of challenges

before they can become practical. These challenges include the recursive nature of

the human decision making process, the limited amount of data typically available

for training and the time-varying properties of the nervous system. In this disserta-



tion, we apply data-driven techniques to develop precise movement intent decoders

and prosthetic controllers. Specifically, this work makes three major contributions to

the field:

1- We developed movement intent decoders based on different neural network

architectures including multilayer perceptron networks, convolutional neural net-

works and long short-term memory neural networks. These systems were trained

with a dataset aggregation (DAgger) approach, an imitation learning algorithm. DAg-

ger augments the training set based on the decoder outputs in the training stage, mit-

igating possible mistakes that the decoders could make. The decoders were validated

in offline analyses using data from two amputee arm subjects. The results demon-

strated an improvement of up to 60% in the normalized mean-square decoding error

over state-of-the-art decoders.

2- Movement intent decoders can be of different types, including proportional

controllers, classification-based decoders or goal-based estimators. Each of these

type of decoders come with their own set of advantages and weaknesses. We de-

veloped a shared-controller framework able to combine multiple decoders to con-

trol a prosthetic limb taking advantage of the individual strengths of the compo-

nent decoders. The shared-controller framework was validated using two shared

controller-systems. The first one combined a Kalman Filter (KF)-based decoder and

a classifier-based decoder. The second system consisted of a KF-based decoder and a

controller with knowledge of the final goal with a substantial amount of uncertainty.

The controllers were validated using three amputees and three intact-arm subjects.

The shared-controller systems outperformed the component decoders in most of the



used metrics. An example of this is the subjects were able to stay in the intended

position 70% longer using the KF-based decoder combined with a classifier-based

decoder when compared with the KF-based decoder alone and 283% longer when

compared with the classifier-based decoder alone.

3- Although the human body is a time-varying system, the decoders parameters

are kept unchanged after training in many prosthesis systems. This causes a perfor-

mance deterioration for the decoders over time. We developed an online-learning al-

gorithm that is able to adapt itself during the post-training phase. The performance

of such decoders were validated using data from two amputee subjects with tran-

sradial amputation. After 5 months of the initial training, the decoder with adap-

tation exhibited a 27% lower normalized mean-squared decoding error when com-

pared with the same decoder without adaptation.

In summary, the contributions of this research resulted in better training algo-

rithms creating more accurate volitional movement intent decoders than previously

possible, shared prosthesis controllers that combines multiple decoders in ways that

perform better than the component decoders, and an online learning algorithm that

enables the decoders to perform significantly better in the long term than current de-

coder realizations. Together, these contributions have brought us closer to the goal

of creating limb prostheses that work and feel like the real limb.
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1 Introduction

There are nearly two million limb amputees living in the United States of America.

Such amputations may have different causes including severe injury, cancerous tu-

mor, serious infection, and frostbite. The loss of a limb can change one’s life, limit

the daily tasks that can be performed, and many times even remove them from the

workforce. Current prostheses are limited to passive devices and body powered de-

vices (e.g. arm prosthetics controlled by shoulder movement). These devices do not

restore full capabilities of the original limb. Prosthetic devices that can behave and

feel like the original limb will improve the life quality of amputees by enabling them

to perform simple life activities and possibly inserting them back in the workforce.

The dexterous limb movements performed by intact-arm people are enabled by a

sophisticated feedforward decision movement planning and sensory feedback. Most

people with limb loss retain the neural circuitry to sense and control their missing

limb. In this work, this ability is used to develop the motor intent decoders based

on intramuscular electromyographic (EMG) and peripheral nerve signals recorded

from the residual limb of individuals with transradial amputation. The goal of this re-

search is to develop technologies for creating prosthetics arms that behave like a nat-

ural limb. Specifically, we aim to create natural and graceful prosthetic controllers by

extracting movement intent precisely from bioelectrical signals. Data-driven tech-

niques were developed for precise volitional motor intent decoders and prosthetic
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controllers. We created machine learning-based models for movement intent de-

coders employing better training algorithms, shared prosthesis controllers able to

to combine multiple decoders in ways that perform better than the component de-

coders and an online learning algorithm that reduces the performance degradation

over time. This works has three major contributions for the prosthetic devices:

Contribution 1: We improved the learning algorithm to train deep neural net-

works to perform motor intent decoding. The decoders trained using our algo-

rithm outperformed the state-of-the-art approaches. This work was presented in

[27, 28] ©2019 IEEE. The performance of traditional approaches to decoding move-

ment intent from EMGs and other biological signals typically degrade over time. Fur-

thermore, conventional algorithms for training neural network-based decoders may

not perform well outside the domain of the state transitions observed during train-

ing. This contribution mitigates both these problems, resulting in an approach that

has the potential to substantially improve the quality of life of people with limb loss.

Chapter 2 presents and evaluates the performance of four decoding methods for vo-

litional movement intent from intramuscular EMG signals. We improved the train-

ing algorithm for motor intent decoders. We employed a dataset aggregation (DAg-

ger) algorithm, in which the training data set is augmented during each training it-

eration based on the decoded estimates from previous iterations, to train the four

methods: polynomial Kalman filters (KFs), multilayer perceptron (MLP) networks,

convolution neural networks (CNN), and long-short term memory (LSTM) networks.

The performance of the four decoding methods was evaluated using EMG data sets

recorded from two human volunteers with transradial amputation. Short-term anal-
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yses, in which the training and cross-validation data came from the same data set,

and long-term analyses in which training and testing were done on different data

sets, were performed. Short-term analyses of the decoders demonstrated that CNN

and MLP decoders performed significantly better than KF and LSTM decoders, show-

ing an improvement of up to 60% in the normalized mean-square decoding error in

cross-validation tests. Long-term analysis indicated that the CNN, MLP and LSTM

decoders performed significantly better than KF-based decoder at most analyzed

cases of temporal separations (0 to 150 days) between the acquisition of the train-

ing and testing data sets. In conclusion, the short-term and long-term performance

of MLP and CNN-based decoders trained with DAgger, demonstrated their potential

to provide more accurate and naturalistic control of prosthetic hands than alternate

approaches.

Contribution 2: We developed a shared controller algorithm capable of com-

bining decoders of different types to control a prosthetic. Such shared controller

were able to outperform the component decoders in experiments where the sub-

jects were to control a virtual limb in real-time. This work was presented in [26].

A number of movement intent decoders exist in the literature for prosthesis con-

trol. They differ based on the inputs they use (electromyograms, peripheral nerve

signals, electroencephalograms, signals from externally-worn sensors such as video

outputs fromcameras, etc.), and the type of movement estimates they make (incre-

mental movements, determination of the degrees of freedom that move, estimation

of movement goals, etc.) Each approach comes with their own advantages and disad-

vantages. Controlling prosthesis using a combination of movement intent estimates
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from multiple algorithms working in parallelmay performbetter than any of the in-

dividual methods, and substantially improve the quality of life of people living with

limb loss or paralysis. We present a Markov decision process-based framework for

shared-controller for prosthetic limb by combining movement estimates from differ-

ent types of decoders working in parallel to create the control signal. The capabil-

ities of the approach was validated using two different types of shared controllers.

The first method combined a Kalman filter-based decoder with a classifier based de-

coder. In the second method, movement goals were assumed known with a large

amount of uncertainty, and decoder outputs based on a Kalman decoder and a goal-

based estimator were combined to form the shared controller. The performance of

the shared controllers were evaluated offline when the data was pre-recorded, and

in online experiments, when the subject was in the loop controlling a virtual limb in

real-time. We present results for these two methods for amputee and intact subjects.

The shared-controllers were able to outperform the component decoders in many

of the metrics used to evaluate them. An example of this is the shared-controller

that employed a classifier and a Kalman filter-based decoder resulted in a 25% im-

provement in the performance compared with the KF-only decoder in the normal-

ized mean-square decoding error sense in offline experiments and a 41% improve-

ment over the classifier-based decoder. During the online experiments, when the

shared controller was employed the subjects were able to stay in the commanded po-

sition 72.5% longer when compared with the KF-based decoder and 2.6 times longer

when compared with the classifier-based decoder. The shared controller presented

here combines the good qualities of component decoders. For example, combining a
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Kalman decoder with a classifier-based decoder inherits the flexibility of the Kalman

Filter decoder and the low jitter and unwanted movements from the classifier-based

decoders resulting in a more precise system.

Contribution 3: We developed an adaptive system able to track the human body

changes and adapt to them. This method decreased the performance degradation

over time and reduces the necessity of constant retraining the motor decoders.

Most of the decoders are trained offline and the parameters are kept frozen over time.

The behavior of the human body is time varying, making the decoders performance

degrade over time. We developed an online-learning algorithm for predicting move-

ment intent using electromyogram (EMG) signals and controlling a prosthetic arm

capable of tracking the human body changes and adapting accordingly. The adaptive

decoder enables use of the prosthetic systems for long periods of time without the ne-

cessity to retrain them. This method employs a neural network-based decoder and

we present a method to update its parameters during the operational phase. Initially,

the decoder parameters are estimated during a training phase. During normal opera-

tion of this system, the parameters of the algorithm are updated in a semi-supervised

manner based on a movement model. The results presented here, obtained from

two amputee subjects, suggest that this approach improves long-term performance

of the decoders over the current state-of-the-art with statistical significance. The re-

sults demonstrated a 27% improvement in the normalized mean-squared decoding

error when adaptation was employed over systems with no adaptation of their pa-

rameters.

The contributions of this work improved the prosthetics performance. We devel-
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oped better movement intent decoders training algorithms, a framework to combine

multiple decoders and an online-learning algorithm able to adapt the movement in-

tent decoder after the training phase. Such improvements made prosthetics systems

behave more naturally and gracefully.

The rest of this thesis organized as follow: Chapter 2 described earlier relevant

work related to motor intent decoder. Chapter 3 presents the DAgger algorithm as

well as the performance improvements when this method is employed. A discussion

of the shared controller algorithms is presented in Chapter 4. The online-learning

algorithm is presented and validated in Chapter 5. Finally, concluding remarks are

made in Chapter 6.
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2 Prior Work

The nervous system consists of the central nervous system (CNS) and the peripheral

nervous system (PNS). The peripheral nervous system contains nerves innervating

the entire body. While the CNS consists of the brain and the spinal cord. These both

subsystems make a sophisticated control system, which is responsible for keeping

the sensory and motor activity working in humans. Figure 2.1 provides a simplified

Figure 2.1: Schematic block diagram of nervous system.

view of the how the nervous system works. The peripheral nervous system has sen-

sory components as well as motor components. These sensory nerve fibers detect

changes in the body and sends the information to the brain through the spinal cord,
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via discrete electrical signals known as action potentials. The brain processes the

information received from the peripheral nerves and sends the appropriate control

signals through the spinal cord to the motor nerves to evoke desired responses.

Figure 2.2: Schematic block diagram of nervous system with an artificial limb replac-
ing the original limb.

Most people with limb amputation, retain most of the underlying neural circuitry

responsible for sensing and controlling their missing limb. This means that the re-

maining peripheral nerves in the residual liimb can transport motor and sensory in-

formation from the residual limb through the spinal cord to the brain and back. Ar-

tificial limbs (Figure 2.2) could be employed to re-enable amputees to perform daily

tasks, such as object manipulation. An ideal limb prosthetics devices have sensory

encoder to encode information from external sensors to the corresponding electrical

nervous impulses. They also contain a motor decoder, responsible for interpreting

the motor intent from nerve or electromyograph (EMG) signals, then motors, in the
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prosthetics, perform the decoded movement intent.

Figure 2.3: Schematic block diagram of decoding pipeline.

Decoding movement intent from biological signals is a hard task, possibly due to

the complex underlying biochemical systems responsible for the human movement.

Most of the decoding systems follow a signal processing pipeline (Figure 2.3). For

each time instance the bioelectrical signals are collected, then such signals are pre-

processed, using the appropriate filters and the best features are selected. The final

features are combined with the prosthesis current state to estimate the next state of

the prosthetic device. The device is updated with the estimate. The human sees the

position of the prostheses and sends a new command to the phantom limb and the

cycle continues.

The design of a movement intent decoder involves many choices including the

bioelectrical signals source to be used, the features to be employed, the feature selec-

tion algorithms, the decoder type and architecture. The most popular signals used

to extract movement intent, as well as the most used feature selection methods and
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popular decoding algorithms are reviewed here.

2.1 Signals Used For Movement Intent Decoding

Motor-related signals can be acquired using a variety of spatial resolutions, from sin-

gle units action potentials to large neural populations. Each of these configurations

offers a set of unique characteristics for the compromise between invasiveness and

signal fidelity. The signal acquired with different scales may differ, therefore the em-

ployed method of analyses must be chosen carefully. Motor related bioelectrical sig-

nals can be sensed from the central nervous system (CNS signals), peripheral nervous

signals (PNS signals) and from the muscles (EMGs signals). In this section, the details

of these three main sources of signals are discussed.

2.1.1 CNS Signals

The human brain is the center of the decision making process, therefore, it is natu-

ral to sense signals directly from the brain and try to extract motor intent from such

signals [39]. The techniques to sense signals from the brain try to balance between

signal resolution and surgical invasiveness.

2.1.1.1 Measurements of a Single Neuron Activity

The most basic neural signal available for decoding is the spike event of single neu-

rons [3, 4, 42]. Such signals are the action potential of neurons. In order to sense
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such events, recording electrodes are placed in close proximity to the desired neuron

(within 100 µm [15]). The neurons related to motor activity are generally placed 1-2

mm away from the surface of the cortex. As a result, electrodes that penetrate into the

cortex are employed for recoding such signals. A common used electrode is the Utah

electrode array (UEA) [16] (Figure 2.4). Spike events may be detected using a voltage

or energy thresholds. Researches have used this method of acquiring data to encode

direction of arm movement [40,57,94], hand trajectories [114], rapidly decode of con-

tinuous motor movement [45,95,103] and control a cursor [56]. This sensing method

results in a data with high resolution, but it also requires invasive surgical procedures

because the electrodes are implanted in the brain using penetrating electrode arrays.

Figure 2.4: The Utah Electrode Array used to record neural activity and stimulate pe-
ripheral nerves. At the tip of each of the 100 shafts us a metal electrode. The length
of the shafts vary between rows so the electrodes can reach nerve fibers at different
depths. ©2016 IEEE [112].
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2.1.1.2 Population Measurements

In contrast to action potentials recordings, one can record the electrical activity of

population neurons in a small area. The nature of such signals will depend on the

size of the electrode and the separation between the electrode and neurons. The

most common population measurements signals used to extract movement intent

are Local Field Potential (LFP), electroencephalogram (EEG) and electrocorticogram

(ECoG) signals.

The population recording with the highest resolution is the LFP, which is acquired

using similar electrodes as the ones used to sense action potentials. LFP signals come

with the similar drawbacks as the spike activity measures. Another possible method

to sense neuron population is the EEG, where the electrodes are placed on the scalp

(Figure 2.5). This method does not requires surgical intervention, but has low spa-

tial resolution. EEG recording techniques have been used for different neural pros-

thesis systems [32, 36, 58, 62, 71, 73, 75, 85, 107, 115]. The ECoG signals, placed on

the cortical surface (Figure 2.6a) provides a compromise between invasiveness and

spatial resolution. This methods requires surgical intervention to place the micro-

electrodes (Figure 2.6b) between the cranium and the gray matter, but it does not

penetrate the gray matter, like the LFP electrodes. ECoG signals have been used

recently [6, 12, 52–54, 89, 109, 111] for decoding movement intent, including move-

ment for finger movements [69, 83, 121], arm movements [52, 81, 90, 120] and two-

dimensional movement trajectories [91].
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Figure 2.5: Example of an EEG recording system. ©2012 ProQuest. [55]

2.1.2 PNS Signals

Spike activity can be recorded from neurons in the PNS using penetrating electrodes

placed in the peripheral nerves. For the specific case of gaining motor and sensory

information from the hand, the electrodes should be placed in the nerve between the

spinal cord and the point which the small nerve branches leave the nerve trunk in the

middle upper arm. In most of the studies involving PNS, the electrodes are placed

in the median and ulnar nerves [113]. Moreover PNS signals may have sensory and

motor information, therefore motor intent decoders must be designed to retain the

motor information only.
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(a) (b)

Figure 2.6: (a)Representative schematic of the implant location of an ECoG array. The
electrode placed on the cortical surface can measure the electrical activity of neurons
up to 3 mm deep. ©2012 ProQuest [55]. (b)Comparative size between a ECoG grid
with 16 electrodes and an American Quarter coin. ©2016 IEEE [112].

2.1.3 EMG Signals

Electromyogram signals are an alternative of recording using peripheral information,

with state-of-the-art prosthesis commercially available [68]. These signals measure

the muscle electrical activation during movements. They can be recorded with elec-

trodes placed on the subjects skin to acquire surface EMG (sEMG) [78, 105], or with

surgically implanted electrodes to measure intramuscular EMG (iEMG) [26]. Such

signals may have some drawbacks, especially for long time amputees including mus-

cle loss and may present limited ability to separate the contribution of each muscle,

each degree of freedom (DoF) of movement is not necessarily controlled with a ho-
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mologous muscle.

2.2 Feature Selection Algorithms

Decoding multichannel movement intent becomes more challenging as the amount

of data to be processed increases. Recent studies [26–28, 72, 113] have shown pros-

thetic devices able to use almost 700 features per time sample. Such systems use fea-

ture selection algorithms to reduce the dimensionality, especially when the signals

are sensed over a population of neurons, which generates a large amount of redun-

dancy. This section reviews common methods for reducing the dimensionality by

selecting the most important features or channels to be used.

2.2.1 Correlation-Based Channel Selection

Probably the simplest method of channel selection is to select the most correlated

signal channels with the hand kinematics. The correlation coefficient of two real sig-

nals x(t ) and y(t ) is given by

cx y = E [x(t )y(t )]√
E [x2(t )]E [y2(t )]

(2.1)

where E [(·)] represents the expectation value of (·). In practical implementation, if

ergodicity is assumed, it is possible to use the time average withing the training set as

the expected value. This method can reduce the dimensionality, but does not elimi-

nate redundancy among the channels. This method was used in [113].
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2.2.2 Mutual Information-Based Channel Selection

Mutual information of two variables estimates the amount of information of one vari-

able contained in the other. The joint mutual information of N random variables

X1, ..., XN is defined as

I (X1, X2, ..., XN ) =
∫

x1

∫
x2

· · ·
∫

xN

fX1,X2,...,XN (x1, x2, ..., xN )

× log
fX1,X2,...,XN (x1, x2, ..., xN )

fX1 (x1) fX2 (x2) · · · fXN (xN )
d x1d x2 · · ·d xN

(2.2)

where fX (x) is the probability density function of the random variable X . Joint den-

sity functions follows similar definitions. Larger values of joint mutual information

indicate that the members of the set of random variables can be estimated with small

errors using the other members in the set. The mutual information between the bio-

electrical signals and the hand kinematics associated with all possible combinations

are calculated and the L channels that corresponds the highest joint mutual informa-

tion are selected.

This approach is probabilistic and does not depend on the decoder model. A large

value of mutual information suggests that a decoder possibly nonlinear, which esti-

mated the hand position based on the bioeletrical signals, exists. In practical appli-

cations, the probability density function are unknown and must be estimated from

the training data. As the number of degrees of freedom increase the amount of data

needed to estimate the density function increases too. A computationally efficient,

but suboptimal method to perform feature selection using mutual information was

presented in [25].
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2.2.3 Principal Component Analysis

Principal Component Analysis (PCA) [50] transforms the data set whose members are

uncorrelated with each other through an eigenanalysis technique. In the cases when

the data set contains highly-correlated members, the eigenvalues of the correlation

matrix have large disparity, and a few principal components (PC) of the signal can

represent the information content in the entire dataset, resulting in a dimensionality

reduction. Moreover, the PCs can be further down-selected based on its correlation

coefficient with hand kinematics data [72]. This method has been implemented im-

plemented in common software libraries.

2.2.4 Auto-Decoders and Auto-Encoders

As deep architectures become more popular due to their ability to achieve good re-

sults and the viability of implementing them in Graphic Processor Units (GPU), auto

encoders started to be used as a feature selector for movement intent decoders [18,

19, 98]. Auto-decoders are trained to minimize the reconstruction error from a code

with reduced domain size, estimated by the auto-encoder. Such a system tries to

minimize the following cost function:

J (z,θ1,θ2) =
N∑

t=1
||z(t )− f2( f1(z(t ),θ1),θ2)||2 +λ1||θ1||2 +λ2||θ2||2 (2.3)

where z(t ) are the original bio-electrical features at time t , f1(·,θ1) is the auto-encoder

system fully described by the parameters θ1, f2(·,θ2) is the auto-decoder system fully
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described by the parameters θ2 and λ1 and λ2 are regularization terms. The output

of auto-encoder has lower dimension than original input. Once the stop criteria of

the neural network training is achieved, the output f1(·,θ1) is used as the decoding

feature.

Auto-encoders find a set of features from which the original signal can be recon-

structed by using the auto-decoder. Auto-encoder can be interpreted as a lossy com-

pression system.

2.3 Motor Decoders

Motor intent decoders are responsible for interpreting the human motor intent from

bioelectrical signals. A variety of algorithms have been employed to infer human mo-

tor intent from bioelectrical signals. Refer to [10, 13, 61, 112] for a complete list of

methods. In this section, the methods are clustered into traditional signal process-

ing approaches, mainly focused on Kalman Filter-based approaches, and machine

learning-based approaches, mainly focused on artificial neural networks. The meth-

ods described herein can be applied to any kind of features calculated based on the

raw CNS, PNS, EMG signals.

Let zi ,k be the k-th measurement from the i -th feature channel and let Zk be the

vector of features at the kth time step, i.e, Zk = [z1,k , ..., zN ,k ]T , where N is the number

of features and zi ,k is the feature at time k. Let x j ,k be the j -th DoF position at time

k and let Xk be the vector of all M DoFs positions at the kth time step, i.e., Xk =
[x1,k , ..., xM ,k ]T .
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2.3.1 Traditional Signal Processing-Based Decoding Methods

A number of methods have been proposed for extracting motor intent from neural

and bioelectrical signals and controlling the prostheses in a more intuitive and natu-

ralistic manner. These decoding algorithms fall into broad categories of Wiener filters

[45,114] population vectors [40,104], probabilistic methods [38,96,116], and recursive

Bayesian decoders such as Kalman filters (KFs) [23,25,29,41,47,60,65,67,70,112,113].

There have been multiple reports of both offline and online performance of KF-based

decoders applied to the control of a prosthetic arm [23, 25, 28, 29, 112, 113].

KF-based decoders have become very popular due to its performance, when com-

pared with other linear methods and probabilistic approaches [112,118], and the low

computational cost associated with them. In the traditional KF framework, the tem-

poral evolution of the state vector is assumed to be linear, given by

Xk+1 = AXk +wk (2.4)

where A time state evolution matrix and wk is the error vector assumed to follow a

zero mean Gaussian distribution with covariance matrix W. Similarly, a linear gen-

erative model is assumed [118] that relates the features, Zk , to the state vector, Xk ,

as

Zk = HXk +qk (2.5)

where H is the generative model and qk is the error vector assumed to follow a Gaus-

sian distribution with zero mean and covariance matrix Q.
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Table 2.1: Kalman filter update equations

A priori state update: x̂−
k = Âx̂k−1

A priori error covariance matrix: P−
k = ÂPk−1Â

T +Ŵ

Kalman gain: Kk = P−
k Ĥ

T
(ĤP−

k Ĥ
T + Q̂)−1

State update: x̂k = x̂−
k +Kk (zk − Ĥx̂−

k )
Error covariance matrix: Pk = (I −Kk Ĥ)P−

k

In this formulation, the information about the hand kinematic is modeled as the

hidden states to be estimated by the KF, and the KF is acting as the system state es-

timator, where Zk is the observation vector. The problem then becomes that of esti-

mating Xk given the features Zk and the matrices A, H, W, Q. The matrices A, H, W,

Q can be estimated following the steps described in [25, 118]. Table 2.1 describes the

steps to iteratively estimate the hand kinematics [118]. The iterations may be initial-

ized with P0 = [0], K0 = [0], and X0 = [0], where the matrix [0] is the matrix of zeros

with appropriate dimensions.

Over the years, a number of improvements have been suggested to the KF frame-

work. Gilja et. al. [41] proposed a number of changes in the original framework to

recognize the presence of a user controlling the system. Mulliken et. al. [67] included

the final goal estimation in the KF framework as one of the hidden states to be es-

timated. Hotson et. al. proposed a framework based on the KF able to fuse data

from cameras as a source of extra information in the decoding process. Others have

explored nonlinear generative models. Li et. al. [65] used the Unscented Kalman Fil-

ter (UKF) to introduce a second order nonlinearity to the KF framework. Dantas et.

al. [25] introduced a concept of nonlinear augmented feature vector but a linear-in-
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the-parameters generative model given by

Z (nl )
k = H(nl )Xk +q(nl )

k (2.6)

where the observation vector, Z (nl )
k , is composed by linear and nonlinear functions

of the elements in Zk . The number of elements in Z (nl )
k may be different from that

in Zk . Such model can leverage efficient implementations of the linear KF [67] and

introduce nonlinearities in the system model.

2.3.2 Machine Learning-Based Decoding Methods

The second category of the movement intent decoders uses modern machine learn-

ing algorithms [2, 105] such as extreme machine learning [20], kernel learning [77],

radial basis networks [48], recurrent neural networks [100], deep learning [74, 78,

93, 119], and reinforcement learning [66, 74] algorithms to learn the relationship be-

tween kinematic movements and the neural signals. Reinforcement learning algo-

rithm such as Q-learning via kernel temporal differences [9] and attention-gated re-

inforcement learning [110] have also been used to train movement intent decoders.

Machine learning-based decoders estimate the model parameters that predict the

next kinematic states based on the feature channels and the current kinematic state

as in

X̂k+1 = f (Zk , Xk ,θ) (2.7)

where f (·) is a possible nonlinear model fully described by θ. During training the
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parameters θ are estimated in order to minimize a nonnegative cost. In may cases,

the least-square cost function is employed as

J =
H∑

i=1
||Xk+1 − f (Zk , Xk ,θ)||2 +λ||θ||2 (2.8)

where H is the number of samples in the training set and λ is a regularization term.

Finally, the parameters θ can be estimated using a gradient descent approach as fol-

lows:

θl+1 = θl −α∇θl J (2.9)

whereα is a nonnegative number interpreted as the learning rate, ∇θl J is the gradient

of the cost, J , with respect θl and l corresponds to the training iteration. This method

is general and can be used to train a variety of models such as multilayer perceptrons

networks, convolutional neural networks, long short-term memory networks, radial

bias networks and other methods as long as the gradient of the cost function with

respect to the parameters exists.

Other studies have employed classification analyses to identify which signals pat-

terns are responsible for certain movements. Most of these approaches use linear

classifiers [91], support vector machines (SVM) [59], Gaussian mixture models (GMMs)

[24], naive Bayes classifier [21] and multilayer perceptron networks [37]. Lately, deep

learning neural network-based decoders have became very popular showing sub-

stantial improvements over traditional machine learning approaches to classify hand

positions [7, 22, 35, 44].

Neural network-based classification algorithms try to correlate a finite number of
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movements with the input feature as

Ŷk = f (Zk ,θ) (2.10)

where Ŷk has L element with values between [0,1], where L is the number of possible

movements and
∑L

j=1 Ŷk, j = 1. Here, Ŷk, j can be interpreted as the probability of the

kth time step being related to the j th movement. In such scenario, the cross entropy

cost may be employed to train the decoder as in

J =−
H∑

i=1

L∑
j=1

Yk, j log f (Zk ,θ)+λ||θ||2 (2.11)

It is important to notice that J is always positive since log f (Zk ,θ) is a negative num-

ber, because f (Zk ,θ) is in the interval [0,1]. Finally the parameters θ can be estimated

using a gradient descent approach described in (2.9).
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3 Deep Learning Movement Intent Decoders Trained with Dataset

Aggregation for Prosthetic Limb Control

3.1 Introduction

Most people with limb loss retain the neural circuitry to sense and control their miss-

ing limb. In this work, we take advantage of this ability to investigate offline decod-

ing of the motor intent for the missing limb from intramuscular electromyographic

(EMG) signals recorded from the residual limb of individuals with transradial ampu-

tation.

The vast majority of current clinical practices in EMG-controlled prostheses di-

rectly control one or two degrees of freedom (DoFs) with the level of EMG activity

from multiple muscles measured on the surface of the skin overlying the muscles.

Commonly, activity from one group of muscles is used to switch between which DoF

is controlled (i.e., a classifier) and another group of muscles is used to proportionally

control movements. Alternatively, the controller switches between a proportional

controller and a pattern recognition algorithm that uses a classifier to select among a

set of desired hand positions [5, 11, 92, 97].

A number of methods have been proposed for extracting motor intent from neu-

ral and EMG signals and controlling the prostheses in a more intuitive and natural-

istic manner. These decoding algorithms fall into broad categories of Wiener filters



25

[45, 114] population vectors [40, 104], probabilistic methods [38, 116], and recursive

Bayesian decoders such as Kalman filters (KFs) [23,25,29,41,47,60,65,67,70,112,113].

There have been multiple reports of both offline and online performance of KF-based

decoders applied to the control of a prosthetic arm [23, 25, 28, 29, 112, 113]. However,

the KF framework assumes a linear generative model, and nonlinear decoders have

been shown to perform better than linear decoders when applied to the highly non-

linear biological control of arm movement [25, 65, 67, 70, 112].

Deep learning and reinforcement learning algorithms have become popular alter-

natives for processing biological data [66]. There are reports of using deep architec-

tures to decode hand position using electroencephalogram (EEG) and local field po-

tentials (LFP) [74]. Sussillo et al. [100] proposed the use of a recurrent neural network

as a neural decoder. Radial basis networks have also been used for this purpose [48].

Chen et al. [20] presented a practical implementation of neural decoders based on

extreme learning machine. Deep architectures were used to process EMG signals to

decode speech [31, 78, 108] and classify hand positions [7, 35, 44]. Bae et al. [9] em-

ployed reinforcement learning using Q-learning via kernel temporal differences to

control a robotic arm. Wang et al. [110] used a variation of this approach based on

attention-gated reinforcement learning to directly predict among seven possible ac-

tions in a center out task.

Although the methods cited above provide good results for movement prediction

in general for simple tasks, as the tasks becomes more complex the performance of

most these methods deteriorates. A possible explanation for this is that it is imprac-

tical to obtain training data from human subjects which contain all possible state
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transitions. As a result, the decoders are trained with a limited view of the domain,

and it may perform poorly outside the region for which it was trained. Further, such

systems are prone to making mistakes that accumulate and increase with time [87],

implying the inability to use the trained parameters even after a short period of time.

Herein, we address these problems using a dataset aggregation (DAgger) algorithm

[88].

The effects associated with limited training data is mitigated in DAgger using an

iterative approach. In the first iteration of DAgger, the decoder is trained using train-

ing data with an appropriate learning algorithm. In subsequent iterations, the visited

states from the trained system are aggregated into the training set. In this work, we

use the Markov Decision Process (MDP)-DAgger framework using four nonlinear de-

coding methods which are polynomial Kalman filters (KFs), multilayer perceptron

(MLP) networks, Long Short-term memory (LSTM), and convolutional neural net-

works (CNN). We also offer a comprehensive set of analyses for short-term decod-

ing (training and testing done during the same experimental session) and for up to

five months between the training and testing sessions (long-term analyses). The re-

sults presented in this manuscript demonstrate that (1) training using the DAgger

approach improved the performance of all three neural networks analyzed, but not

the Kalman decoder; and (2) the MLP network and CNN-based decoders perform

significantly better than KF-based decoders. The LSTM-based decoder had similar

performance to the KF-based decoder in the short-term, but outperformed the KF-

based decoders in the long-term analyses.

The rest of this chapter is organized as follows: Section II describes the MDP
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framework for EMG decoding and also how DAgger is used to train the system. Sec-

tion III describes the experiments and the four decoding algorithms employed in this

work. Experimental results are provided in Section IV. A discussion of the experi-

mental results and the evaluated algorithms are presented in Section V. Finally, the

concluding remarks are made in Section VI.

3.2 Methods

Broadly, the function of any decode algorithm is to decide how to best command

movement of the prosthesis given the current state of the prosthesis and the biologi-

cal signals related to movement. Markov decision processes have been used to model

motor tasks [64, 79] and neural decoders [9], where the goal is to learn a probabilistic

description πθ(uk |sk ) of the control signal uk for the kth time step, given sk , the sys-

tem state and the biological signals at time step k. In general, it is desirable that the

chosen control signal maximizes πθ(uk |sk ), which maximizes the probability of the

system reproducing a desired trajectory. In this section, we follow the steps similar to

those described by Peter and Schaal [79] to derive this recursive prediction problem.

In prostheses control problems, EMG signals contain incremental information

about the movements. Consequently, we design the prosthetic control system in such

way that the state of the system contains information about EMG signals and the

kinematic state of the limb. We define zi ,k as the k-th measurement from the i -th

EMG channel and Zk as a vector of measurements from the EMG channels at the

kth time step, i.e, Zk = [z1,k , ..., zN ,k ]T , where N is the number of EMG channels. We
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also define x j ,k as the limb kinematic state at time k corresponding to the j -th DoF

and Xk as a the vector of all M kinematic states of the limb at the kth time step, i.e.,

Xk = [x1,k , ..., xM ,k ]T . Finally, the system state sk is defined as

sk = [Zk , ..., Zk−H1+1, Xk , ..., Xk−H2+1] (3.1)

where we have assumed that the system model remembers the most recent H1 in-

stances of features calculated based on EMG signals and H2 instances of the limb

kinematic state vector. The control signal, uk , is the desired kinematic state for the

next time sample, i. e.,

uk = [Xk+1] (3.2)

To train the decoder, we start by assuming that the state sk evolves according to the

Markov property that the next state is only dependent upon the current state, i.e.,

p(sk+1|sk , ..., s1) = p(sk+1|sk ) (3.3)

For a given desired trajectory τ = ⋃H−1
i=1 (si ,ui )

⋃
sH , where H is the number of sam-

ples in the trajectory and H > 1, it is possible to write the probability of the system

following the desired trajectory, p(τ), in a parameterized form, pθ(τ), in the following

manner:

pθ(τ) = p(s1)
H−1∏
i=1

p(si+1|si ,ui )πθ(ui |si ) (3.4)
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The parameters, θ, of the model are learned by maximizing the objective function:

J (θ) = 1

H −1
log(pθ(τ)) (3.5)

Because the log function is a monotonically increasing function, maximizing log(pθ(τ))

also implies maximization of pθ(τ). Further, the application of the log function allows

replacing the product of terms with the sum of the log of the terms. The gradient of

J (θ) is given by

∇θ J (θ) = 1

H −1

H−1∑
i=1

∇θ[logπθ(ui |si )] (3.6)

where ∇θ[·] is the gradient of [·] with respect to θ. This results means that no knowl-

edge of the system dynamics p(si+1|si ,ui ) is needed to maximize pθ(τ). In particular,

we only need to know the parameterized model forπθ(ui |si ) to perform the optimiza-

tion [79].

Similar to the method proposed by Peters and Schaal [79], we assume thatπθ(ui |si )

is a Gaussian probability density function as given by

πθ(ui |si ) = 1p
2πσ2

e
−

[ui −φθ(si )][ui −φθ(si )]T

2σ2 (3.7)

where φθ represents a possibly-nonlinear model of the control signal (i.e., the de-

coder) and is completely specified by the vector of parameters θ. Since πθ(ui |si ) is

assumed to be a Gaussian distribution, ∇θ J (θ) can be written as

∇θ J (θ) = 2

H −1

H−1∑
i=1

[
[ui −φθ(si )][∇θφθ(si )]T ]T (3.8)
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Table 3.1: Algorithm for the movement intent decoder post-training

Initialize X1 at the desired position
For i = 1 to H ′ do

Create ŝi ŝi = [Zi , ..., Zi−H1 , X̂i , ..., X̂i−H2 ]
Run the decoder φθ(·) to estimate control signal ûi =φθ(si )
Update the state of the arm X̂i+1 based
on the estimated control signal ûi X̂i+1 = ûi

The decoder parameters are updated using a gradient ascent approach for the j th

iteration as

θ j+1 = θ j +α∇θ j J (θ j ) (3.9)

where α is a positive constant and controls the learning rate. During the training

phase, for a given trajectory τ, the decoder φθ can be trained using (3.9) and (3.8).

During training, the desired hand movements represent the kinematic data. In

the experiments done on amputee subjects, the kinematic data was obtained from a

virtual hand during training. Details of the training process are described in Section

III. During normal operation of the decoder as well as during testing, this data was

replaced by estimates of hand kinematics produced by the decoder, ûi . Table 3.1

describes the operation of the decoder, assuming that the system is fully trained and

its parameters θ are not adapted after training. Here, H ′ is the number of samples in

the testing phase.

The above derivation is quite general, and can be applied to a variety of system

models. This work explores decoder architectures involving KF, MLP networks, CNN

and LSTM to learn the parameters of the system model φθ(·).

In human studies, there is a limited amount of data available for training, which
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makes effective training a challenging task. It is also common for a neural network

to have a large number of parameters, and learning general motor task models with-

out over-fitting requires very large training sets. The challenge becomes that of ex-

ploiting the available training data to its maximum to yield the best decoders. Re-

searchers have addressed this issue using regret-based reinforcement learning tech-

niques [64], which require a significant amount of data, and non-regret-based rein-

forcement learning, in particular imitation learning [1], which provides a compro-

mise between performance and training data requirements.

In this work, we use the dataset aggregation algorithm [88], an imitation learning

approach, to improve the training efficacy of the neural network. In the DAgger al-

gorithm, the training data set is augmented in every DAgger iteration with a mixture

of the known correct control signal that the prosthesis would take and the estimated

control signal, uk , by the decoder represented by the distribution π̂θ. The DAgger al-

gorithm used to train the decoder is described using a pseudo-code in Table 3.2. In

our implementation, the decoder is trained initially using the original EMG data and

the intended movements. In subsequent iterations, the training data is augmented

based on decisions ûi made by the system and the known movement intent, ui . For

the experimental results presented in this manuscript, the CNN, MLP and LSTM-

based decoders were trained using a back-propagation algorithm. For the KF de-

coder, we used the least-mean-square error algorithm described in [25, 112]. At each

iteration, a zero-mean Gaussian pseudo-random noise is added to the EMG signal to

mitigate problems with over-fitting the model. In summary, the DAgger algorithm

samples the states visited by the controller, which are close to the desired trajectory,
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Table 3.2: Algorithm for the DAgger algorithm

Initialize D1 as the original training set Z l
i D1 ←

H−1⋃
i=1

(sl
i ,ul

i )

Estimate parameters θ from D1

For l = 1 to NBR DAgger Iterations do
Estimate X̂ l

k by decoding the EMG
training sequence, Z l

i Algorithm 3.1
Generate all visited states ŝl

i , as [Z l
i +noi se, ..., Z l

i−H1
+noi se, X̂ l

i , ..., X̂ l
i−H2

]

Generate all chosen control signals ûl
i , as ûi = X l

i+1
Aggregate D ′

l Dl+1 ← Dl
⋃

D ′
l

Estimate parameters, θ from Dl+1

and augments such states to the original dataset. This yields richer datasets, allowing

the system to follow trajectories more accurately.

3.3 Experiments

3.3.1 Experimental Setup

The results presented here are from two amputee subjects, described as HS1 and HS2.

After approvals from the University of Utah and Department of the Navy Human Re-

search Protection Program Institutional Review Boards, and receiving informed con-

sent from the subjects, they were implanted with 32 EMG electrodes to acquire intra-

muscular EMG data. The subjects were also implanted with two 96-electrode Utah

Slanted Electrode Arrays [14] in the ulnar and median nerves of their residual arm

but these devices were not used in this analysis. The thirty two single-ended EMG

signals were acquired at 1 KHz sampling rate by a Grapevine NIP system (Ripple,
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Salt Lake City, UT) using proprietary front-end hardware. These signals were filtered

with a 6th-order Butterworth high-pass filter with 3 dB cut-off frequency at 15 Hz, a

2nd-order Butterworth low pass filter with 3 dB cut-off frequency at 375 Hz, and 60,

120, and 180 Hz notch filters. More information about the implants can be found in

Page et. al. [76]. Differential EMG signals for all 496 possible combinations of the 32

single-ended channels were calculated in software. For each of the single ended and

differential EMG channels, the mean absolute value was calculated over a 33.3-ms

window of time and subsequently smoothed with a 300-ms rectangular window. To

reduce the dimensionality and the computational complexity of the decoder, prin-

cipal component analysis was performed on the EMG-based features in the training

data set [112]. The first sixteen principal components (PCs) were used as decoding

features to the MLP and CNN-based decoders, and the first 64 PCs were used as de-

coding features for the KF-based decoder. We analyzed the performance of a range of

larger and smaller number of PCs and, for each decoding method, the number of PCs

used herein resulted in the smallest mean normalized mean-square-error (NMSE,

Eq. 3.11) during the testing, averaged across all datasets. We also considered differ-

ent features including slope change in a window of time, signal change in a window

of time, and wave length in a window of time as described by Hudgins et. al. [34].

However, decoders trained with MAV feature alone had the best performance. Simi-

lar results have been reported by Phinyomark et al. [80]. Therefore, we present only

results using MAV features.

We trained the algorithms using a virtual environment (Musculoskeletal Model-

ing Software [30]). This environment modeled a virtual hand with the following 12



34

DoFs: flexion and extension of each digit, adduction and abduction of all digits ex-

cept for the third digit, and wrist roll, pitch and yaw. For the decoding results de-

scribed herein, we collected data for 5 to 8 DoFs depending on the session, but for

the analyses we used only the data of the 5 DoFs corresponding to flexion and exten-

sion movements of the 5 digits in this analysis, given that some of the datasets had

only these 5 DoFs. Further, the chosen DoFs are directly responsible for grasp actions

and thus are useful for dexterous highly-enabled prosthetics devices.

Figure 3.1: Experimental setup used in this work. The study volunteer (HS2) had
intramuscular EMG electrodes implanted in his arm and was asked to follow the the
movements shown on the screen using his phantom limb. The screen on the left
was used to show the movements during the training phase. The screen on the right
showed the decoder results during a possible online phase. ©2019 IEEE [27].

Figure 3.1 displays the training and testing set-up used in this work. During train-

ing, the subject was instructed to mimic the movement of a hand displayed in the vir-

tual reality environment with his phantom limb while the EMG signals were recorded.

The instructed movement followed a semi-sinusoidal path at a velocity deemed com-

fortable by the subject. Only movements of a single DoF were instructed during each
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training trial, and 10 training trials of each movement were performed. The single

DoF movement trials within the same session were concatenated and used to train

and test the decoder. In this work, the collected data was used for the offline analyses

and no online experiments were performed.

Typically, subjects participated in multiple experimental sessions for the duration

of their implantation, with each session resulting in a single data set. Typically, the

sessions were separated by a few days, but, in a small number of cases, two session

occurred on the same day. We assessed the decoder performance within an exper-

imental session (both training and testing were performed on non-overlapped data

acquired during the same session to perform short-term analyses) or between ses-

sions (data from one session used for training and data from a different session used

for testing, to perform long-term analyses). Twenty three datasets from HS1 over

four months (first four months post-implant) and fifty seven datasets from HS2 ob-

tained over eleven months (first eleven months post-implant) were used in this work.

The short-term analyses explored how the hyperparameters (i.e. number of hidden

nodes, number of convolutional layers, convolutional filter size, polynomial order)

impact the performance of each decoder. In the short-term analyses, 70% of the per-

movement data in a dataset was used for training, the remaining 30% was "held out"

to use for testing. For each subject, the first 14 datasets (total of 28 datasets) were

used for the short-term analyses.

The best performing set of hyperparameters found with the short-term analysis

was used in the long-term analyses. In the long-term analyses, the robustness of the

decoder to variations occurring over L days was evaluated by assessing the decoder
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performance using a data set acquired on day n when the decoder was trained with a

data set acquired on day n-L. For the long-term analyses, the systems were retrained,

and the data used to train the systems were never identical to those used in the train-

ing process for the short-term analyses. For this study, L was in the range of 0 to 150

days. This time span was selected because HS1 was implanted for a little more than 4

months, including data over 5 months excludes HS1 data from parts of the analyses.

The long-term analyses used all ten trials from a session for training and all ten trials

from a different session for testing.

The global delay between the EMG activity and the kinematic movement was es-

timated during training and was incorporated into the decoder. For each method an-

alyzed, the delays were estimated by finding the time lags between the EMG signals

and the desired kinematic information that resulted in the best overall performance.

This approach is similar to what was done in [25] for Kalman filter-based decoders. In

our experiments, the 30-samples memory used by the MLP and the CNN-based de-

coders was enough to incorporate the time lag into the system, while the 5 samples

memory used by the KF-based decoder required the addition of a 5-sample delay (167

ms) to accommodate the time lag between the EMG signals and the kinematic activ-

ity. We experimented with a large set of memory and delay parameters for all three

systems. The above choices of the hyperparameters of the decoders resulted in the

smallest NMSE for each type of decoder.

The methods presented in the subsection were implemented in a central process-

ing unit (CPU) and a graphical processing unit (GPU) in Python. For the CPU version

we used the Theano [106] branch optimized by Intel. This implementation improved
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the execution time by more than one order of magnitude over the standard branch.

For the GPU version, we used the standard Theano [106] library optimized by the

NVIDIA CUDA Deep Neural Network (cuDNN) package. This implementation made

a time efficient performance of the methods described here possible on an NVIDIA

Tesla K40 GPU and a Intel Xeon E3-1231 CPU.

3.3.2 Decoders Architecture

The MLP network used in this work had four layers as shown in Figure 3.2 and had

two inputs: the EMG input belonging to RH1×N and a kinematic input belonging to

RH2×M . This inputs were transformed into a flat vector in R1×H1N+H2M . The second

and third layers had Nhn nodes and employed a rectifier linear unit (ReLU) activation

function defined as

f (x) = max(x,0) (3.10)

The final layer was the output layer belonging to R1×M . The output, ûk = X̂k+1, of the

network is the prediction of the next kinematic state of the arm X̂k+1.

The decoder based on CNN [63] is shown in Figure 3.3 and had two inputs: the

EMG input belonging to RH1×N and a kinematic input belonging to RH2×M . The EMG

input was processed by 2 consecutive blocks consisting of a 1-D convolutional layer

with Lc f -coefficient finite impulse response (FIR) filters processing the input signal

along the temporal axis, Nc f filters per layer with ReLU activation, and a 1-D max-

pooling layer. The maxpooling operation partitioned the input matrix into a set of
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Figure 3.2: A schematic diagram of the MLP network-based decoder. ©2019 IEEE [27].

non-overlapping 1×2-element vectors and, for each such sub-region, presented the

maximum value in the vector at the output. The output of the last convolutional layer

was processed by a fully connected MLP layer. The kinematic signals were reshaped

into a vector of M H2 elements and processed with a fully-connected hidden layer

with ReLU activation functions. The addition of convolutional layers to process the

kinematic data did not result in performance improvements, and therefore only one

fully-connected MLP layer was employed to process the kinematic data. The output

of the hidden layer for the kinematic data and the last hidden layer for the EMG data

were merged and then used as the input to another fully connected layer as shown in
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Figure 3.3. The output of this final layer belonged to R1×M and was ûk , the prediction

of the kinematic state of the arm X̂k+1.

Similar to the CNN-basde decoder, the LSTM-based decoder had two main dataflows.

The first one processed the EMG data using four stacked LSTM [46] layers with a fully

connected layer in the end. The second flow, processed the Kinematic data with a

single fully connected layer. The two branches were merged and the data was finally

processed by two other fully connected layers. All fully connected layers, with the

exception of the very last layer, in this decoder used Relu activation functions.

Multiple combinations of learning rates and momentums were tested for all CNN,

MLP and LSTM-base decoders. The best results were obtained when the networks

were trained with a learning rate of 0.01 and momentum of 0.4 momentum. Addi-

tional considerations on choosing these parameters can be found in [86, 101].

The MLP, CNN and LSTM-based decoders had memory of the preceding 1 second

of EMG state data (H1 = 30 samples) and 0.166 seconds (H2 = 5 samples) of prosthe-

sis state data. We analyzed the performance of the system with a range of larger and

smaller values of these parameters. The parameters used herein resulted in the small-

est mean NMSE during the testing, averaged across all datasets. We used a convolu-

tional kernels size (N br f ) of 5 samples. For the polynomial KF-based decoder [25],

the EMG states were an (N L)th order polynomial expansion of the previously de-

scribed EMG states as in (3.1). We examined different combinations of H1 and H2,

the amount of memory in the state vector, but only report the performance results

when H1 and H2 were 5 samples (0.166 seconds). This choice of parameters resulted

in the smallest mean NMSE during the testing, averaged across all datasets.
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Figure 3.3: A schematic diagram of the convolutional neural network-based decoder.
©2019 IEEE [27].
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3.3.3 Performance Analyses

The experiments described in this manuscript were performed in an offline fashion,

the measure of performance used in this work is the normalized mean-square error

defined as:

MSEnor mali zed =

H∑
k=1

||Xk − X̂k ||2

H∑
k=1

||Xk ||2
(3.11)

where || · ||2 denotes the Euclidean norm of (·), Xk is the desired kinematic state, X̂k is

the decoded kinematic state, and H is the number of samples in the testing dataset.

This performance metric averages the errors across DoFs and time samples and can

clearly report the distance between the predicted movement and the desired move-

ment.

To establish the statistical significance of the relative performance of each decod-

ing approach and the set of hyperparameters for the short-time analysis, we used

Friedman’s test followed by, if statistically significant, a multiple comparisons post

hoc test using Tukey’s honest significant difference correction [122]. Principally,

we compared the decoder performance as a within subject effect and treated each

participant as an independent subject (unexamined between subject effects), and

each of the data sets as a repeated observation within a cell. We selected this non-

parametric test as it readily and effectively provides a way to manage "multiple obser-

vations within a cell" in a repeated measures design [122]. To establish the statistical

significance of the relative performance of each decoding approach for the long-time

analysis, we used a two-factor, repeated measures analysis of variance test (ANOVA),
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followed by, if statistically significant, a multiple comparisons post hoc test using

Tukey’s honest significant difference correction. The two factors were the decoding

method and the time between the dates of training and testing sessions. All statisti-

cal analyses were performed in MATLAB with the functions friedman, multcompare,

anova, manova, and ranova. Whenever data are presented in the text as X X ±Y Y ,

X X is the arithmetic mean and Y Y is the sample standard deviation. In all graph-

ics, error bars represent standard deviation of the particular configuration over all

datasets used in the analysis from both subjects. Finally, the graphs presented herein

show results from the testing data.

Finally, we used layer-wise relevance propagation (LRP) [8, 99] to investigate the

impact of each EMG principal component to the DoF movement. LRP was first pro-

posed by Bach et. al. [8], to show the contribution of the input features to outputs of

a machine learning system. LRP transforms the output of the neural network into a

heatmap, where high values associated with any input feature indicate more contri-

bution from that input feature to the output. To find the relevance map, the neural

network makes a prediction and then LRP propagates the output all the way to the

input. Sturm et. al. [99] have used such an approach to explain the most relevant

patterns in the input for a movement classification based on electroencephalogram

signals.
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3.4 Results

3.4.1 Short-Term Analyses

We analyzed the performance of the polynomial Kalman filter-based decoder for poly-

nomial orders 1 to 5 for multiple iterations of the DAgger algorithm. Here, a poly-

nomial order of 1 corresponds to the standard linear Kalman filter. Consistent with

earlier work [25], polynomial orders above 3 resulted in no better decoding perfor-

mance, and we provide results only for orders 1 to 3. Figure 3.4 displays the NMSE of

the polynomial KF-based decoders of order 1, 2 and 3 for the first ten DAgger itera-

tions on testing data. The performance of the polynomial KF-based decoders appear

to degrade for all three orders with increasing order of DAgger iteration. This result

was found to be statistically significant using the Friedman test (p < 10−10 for all three

orders of nonlinearities). There was no statistical evidence indicating different per-

formance among the three polynomial orders for either the first or the tenth iteration

(Friedman’s test, p = 0.8 and 0.6 for the first and tenth iterations, respectively). Across

all polynomial orders and DAgger iterations, the best performance, averaged across

the 28 datasets, was the second-order polynomial for the first DAgger iteration, and

this set of hyperparameters resulted in an NMSE of 0.099±0.033.

We analyzed the performance of the MLP network-based decoders for multiple

numbers of hidden nodes for multiple iterations of the DAgger algorithm. As can be

seen in Figure 3.5, applying the DAgger algorithm to MLP networks-based decoder

resulted in substantive performance improvement for all decoder parameterizations.

This result was found to be statistically significant via Friedman test (p < 10−5 for the
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Figure 3.4: Normalized MSE as a function of the number of iterations in DAgger for
EMG signals using Kalman filter-based decoders on testing data. ©2019 IEEE [27].

cases of 10, 32, 128 and 256 hidden nodes per layer), and a multiple comparison test

indicated that the tenth DAgger iteration is statistically-significantly different from

the first iteration (p < 10−8 for all four cases). Furthermore, no statistical evidence

indicating performance improvement after two DAgger iterations was found for any

of the competing configurations (p > 0.5 for all four cases). The MLP networks-based

decoders with 128 and 256 hidden nodes per layer were found to perform statistically-

significantly better than the MLP network-based decoders with 32 hidden nodes for

ten DAgger iterations (Friedman’s test p < 10−8, followed by a multiple comparison

test p < 10−5 for both cases). The MLP-based decoder with 128 hidden nodes per
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layer performed statistically-significantly better than the MLP-based decoder with

256 hidden nodes per layer for the first iteration via Friedman’s test (p < 10−10). How-

ever, there was no statistical evidence of performance difference between 256 and 128

hidden nodes per layer after two or more DAgger iterations (Friedman’s test p > 0.4).

Across all four competing MLP-based decoder parameterizations and DAgger itera-

tions, the best performance, averaged across all the 28 datasets, was for the system

with 256 hidden nodes for the tenth DAgger iteration, and this set of hyperparameters

resulted in an NMSE of 0.039±0.017.

Figure 3.5: Normalized MSE as a function of the number of iterations in DAgger for
EMG signals using MLP network-based decoders. ©2019 IEEE [27].

We analyzed the performance of the CNN-based decoders for multiple numbers
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of hidden nodes, convolutional filters and iterations of the DAgger algorithm. As can

be seen in Figure 3.6, applying the DAgger iterations to a CNN-based decoder im-

proves its performance in all three cases presented. This result was found statisti-

cally significant via Friedman test (p < 0.002 for all 3 cases), and multiple compar-

ison tests indicated that the tenth DAgger iteration is statistically-significantly dif-

ferent from the first (p < 10−10 for all three competing hyperparameter settings).

Furthermore, no statistical evidence indicating performance improvement after four

DAgger iterations was found for each competing configurations (p > 0.4 for all pair-

wise comparisons). The CNN-based decoders with 64 and 128 hidden nodes were

found to perform significantly better than the CNN-based decoders with 32 hidden

nodes after two or more DAgger iterations (Friedman’s test p < 0.02 for 2 to 10 DAg-

ger iterations). The CNN-based decoder with 64 hidden nodes per layer performed

statistically-significantly better than the CNN-based decoder with 128 hidden nodes

per layer for the first iteration (Friedman’s test p < 10−10). However, there was no

statistically-significant evidence of performance difference between 128 hidden nodes

per layer and 64 hidden nodes per layer after four or more DAgger iterations (Fried-

man’s test p > 0.4). Furthermore, as shown in Table 3.3, the number of filters per con-

volutional layer did not substantively change the CNN-based decoder performance

for the 4 presented cases (4, 8, 16 and 32 filters). There was no statistical evidence

indicating different performance for the number of convolutional filters per layer af-

ter two or more DAgger iterations via Friedman test (p > 0.4 for 2 to 10 iterations).

Therefore, we selected four convolutional filters per layer to keep the complexity low.

Across all competing CNN-based decoders parameterizations and DAgger iterations,
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the best performance, averaged across all the 28 datasets, was provided by the system

with the 64 hidden nodes and four convolutional filters per layer for the 10th DAgger

iteration, and this set of hyperparameters resulted in an NMSE of 0.033±0.017.

Figure 3.6: Normalized MSE as a function of the number of iterations in DAgger for
EMG signals using CNN-based decoders. ©2019 IEEE [27].

We analyzed the performance of the LSTM network-based decoders for multiple

numbers of hidden nodes for multiple iterations of the DAgger algorithm. As shown

in Figure 3.7, applying the DAgger algorithm to LSTM network-based decoders re-

sulted in increased performance improvement for all decoder parameterizations. This

result was found to be statistically significant via a Friedman test (p < 10−5 for the

cases of 32, 64 and 128 hidden nodes per layer), and a multiple comparison test in-
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Figure 3.7: Normalized MSE as a function of the number of iterations in DAgger for
EMG signals using LSTM network-based decoders. ©2019 IEEE [27].

dicated that the second DAgger iteration was statistically-significantly different from

the first iteration (p < 10−8 for all four cases). No statistical evidence indicating per-

formance improvement after two DAgger iterations was found for any of the compet-

ing configurations (p > 0.5 for all four cases). There was no evidence via Friedman

test that the three decoders performed statistically different from each other (p >
0.1). Across all three competing LSTM network-based decoder parameterizations

and DAgger iterations, the best performance, averaged across all the 28 datasets, was

for the system with 32 hidden nodes for the second DAgger iteration, and this set of

hyperparameters resulted in an NMSE of 0.096±0.013.
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Table 3.3: PERFORMANCE OF THE MOVEMENT INTENT DECODERS WITH DIF-
FERENT HYPERPARAMETER CONFIGURATIONS. THE BEST PERFORMANCE FOR
EACH METHOD IS IN BOLD. ©2019 IEEE [27].

Methods NMSE

Kalman Filter NL 1 0.099±0.032
Kalman Filter NL 2 0.099±0.032
Kalman Filter NL 3 0.101±0.032
MLP 64 Nodes 0.051±0.017
MLP 128 Nodes 0.041±0.017
MLP 256 Nodes 0.039±0.017
CNN 32 Nodes and 4 Filters 0.040±0.017
CNN 64 Nodes and 4 Filters 0.033±0.017
CNN 128 Nodes and 4 Filters 0.041±0.017
CNN 64 Nodes and 8 Filters 0.040±0.017
CNN 64 Nodes and 16 Filters 0.041±0.017
CNN 64 Nodes and 32 Filters 0.040±0.017
LSTM 32 Nodes 0.096 ±0.013
LSTM 64 Nodes 0.100±0.013
LSTM 128 Nodes 0.121±0.013
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Figure 3.8: Normalized MSE performance for the best decoder configurations. The
red lines represent the median, the black dashed lines represent the amplitude of
maximum and minimum NMSE not considered to be outlier values, the blue boxes
display the interquartile ranges, the magenta dots represent the means and the ma-
genta bars represent the standard deviations. ©2019 IEEE [27].

The improvements for the MLP and the CNN-based decoders over the KF-based

and LSTM network-based decoders observed in the short-term analysis are summa-

rized in Figure 3.8 and in Table 3.3, where the performance of multiple configurations

of each decoder are shown. The best performance of each decoding method is indi-

cated by bold text in the table. Figure 3.8 shows the variability of the data across

multiple datasets and DoFs. A Friedman’s test was applied to the four competing

methods resulting in p < 10−10, indicating that at least one of the decoders is differ-
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Figure 3.9: Representative samples of the decoder output for the four methods for
HS1 and HS2. ©2019 IEEE [27].

ent from the others. Post-hoc multiple comparison tests indicated that the CNN and

MLP network-based decoders performed significantly differently than the KF and

LSTM-based decoder (p < 10−4). There was no statistical evidence that the CNN-

based decoder performed differently than the MLP network-based decoder (p > 0.6).

In addition, there was no statistical evidence that the KF and LSTM-based decoder

performed differently. Given the relationships of the CNN, MLP, KF and LSTM de-

coding performance illustrated in Figure 3.8, we conclude that the MLP network and

the CNN-based decoders performed better than the KF and LSTM-based decoder.

The better performance is also easily seen in representative time traces of the four

decoding methods (Figure 3.9), although the following observations were not all for-

mally analyzed statistically. The KF and LSTM-based decoders exhibited jitter in the
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estimated intent and had difficulty tracking the desired hand movements. The KF

and LSTM-based decoders also appeared to have difficulty in returning to the rest

position. Observationally, the MLP networks and the CNN-based decoders did not

appear to have this problem. All methods exhibited some degree of cross-movements

(movement of a stationary DoF while a different DoF is commanded to move). Gen-

erally, the KF and LSTM network-based decoders exhibited more jitter and cross-

movement compared with the MLP and the CNN-based decoders. The decoders

based on MLP networks and CNN-based decoders yielded smoother and more ac-

curate decoded trajectories.

Finally, we used layer-wise relevance propagation (LRP) to analyze the impor-

tance of the principal components of the input features to the prediction of the move-

ments by the neural networks. A representative sample of these results is shown in

Figure 3.10. The first heatmap column represents the PCs used in the decoding pro-

cess, the other three columns represent the LRP heatmap output for the MLP, CNN

and LSTM-based decoders as a function of time on the x-axis, and the y-axis cor-

responds to input feature index to the decoder output. In the LRP heatmaps, the

intensity of the pixel values is a measure of the contribution of the input features to

the final output prediction. A higher pixel value associated with a specific feature can

be interpreted as the input having a high relevance to the final output. High values

of the pixels in the first column of Figure 11 indicates which PCs were prominent at

any given time. The LRP heat maps suggest that the same PCs had higher relevance

for the same movements for a given DoF. This is shown with the overlaid circles in

the figure. In addition, within the same decoding method, we noticed that 13th and
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14th PCs had high relevance to the movements of the middle and little fingers. The

12th-15th PCs were relevant to the movements related to the thumb and index finger.

The 12th-15th PCs and the 8th PC were relevant to the movements related to middle

finger. Finally, in most of the cases, the same PCs were the most relevant for the same

movement across decoders, although the relevance pattern changed between the dif-

ferent decoders, probably, due to the systems converging to different local minima of

the non-convex cost functions employed by the decoder.

Figure 3.10: PCs and LRP amplitude across time for one the same session used in
Figure 3.9 for HS2. The PCs and LRPs were rescaled to the interval [0,1] in order to
facilitate the comparison. The overlaid blue line represent the desired movement for
the digit. ©2019 IEEE [27].

3.4.2 Long-Term Analyses

To investigate the robustness of each method’s performance over time, we examined

the decoding performance when the decoders were tested on data sets recorded up

to 150 days after the systems were trained. In this long-term performance analysis,
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Figure 3.11: Normalized MSE for CNN, MLP, KF and LSTM-based decoders as a func-
tion of the days between training and testing. The solid lines represents the mean of
the NMSE for each decoder’s in a ten-days block, while the dashed lines represents
the linear fit performed in order to the detect a trend. ©2019 IEEE [27].

we used the best hyperparameter configuration from the short-term analysis for each

decoder.

To establish statistical significance of the performance differences among the meth-

ods and the variations in the performance with changes in the time difference be-

tween training and testing, we performed a two-factor repeated measures ANOVA

test, where the first factor was the decoder method and the second factor was the

time between training and testing. To have a similar number of samples per time

point, we partitioned the time between training and testing into blocks of ten days.

The class day zero represents cases where there were more than one data set from

the same day. For this class, training was performed with one data set and testing
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was performed with a different data set from the same day that was acquired after

the training data set. For the long-term analysis we did not include the short-term

results, where the training and testing was performed within the same data set.

In the first set of analyses, we determined if, on average across all time classes, the

performance of the four decoding methods were different in a statistically-significant

manner. The four decoding methods differed via repeated measure ANOVA (p <
0.001) and the performance in time also differed (p < 0.001). The system with the best

performance was the CNN decoder significantly outperforming the other three com-

peting methods (p < 10−8 via multi-comparison tests). The MLP-based decoder had

the second best performance, significantly outperforming the KF and LSTM-based

decoder (p < 10−8 via multi-comparison tests). Finally, the LSTM-based decoder

significantly outperformed the KF (p < 10−8 via multi-comparison tests).

We also analyzed the data to determine whether, on average across all methods,

the performance changed over the time between training and testing. We performed

a two-piece-wise linear fit in the data, the first interval was in the range of zero and

30 days, the second piece was between 31 and 150 days. For the first analyzed inter-

val, the decoders based on MLP, CNN and LSTM had slopes of 0.003 NMSE/day, 0.003

NMSE/day, 0.004 NMSE/day respectively. All three slopes were significantly different

than zero (p < 10−7). There was no statistical evidence that the slope of the KF-base

decoder method was different from zero (p > 0.17). For the second investigated inter-

val, there was no statistical evidence that any of methods had a slope different from

zero (p > 0.07).

The subsequent post-hoc analyses indicated that each method had a different
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change in performance across time. The KF method showed no evidence of changing

with time. In contrast, the CNN, MLP and LSTM have a small degradation during the

first month, but that degradation stopped in the next 4 months. Despite this degra-

dation, the CNN and MLP decoders had better performance at all times analyzed,

compared with the KF and LSTM decoder (Figure 3.11).

3.5 Discussion

The results presented in this work demonstrated a statistically-significant 60% im-

provement over the KF-based decoder performance for MLP-based decoders from

0.099 ± 0.037 to 0.039 ± 0.017 in the NMSE sense and a 66% improvement for the

CNN-based decoders from 0.099±0.05 to 0.033±0.017 in the NMSE sense. In addi-

tion, LSTM and KF-based decoders had similar performance when testing with data

recorded in the same session as the dataset used for training. The long-term analysis

indicated that the CNN, MLP and LSTM-based decoders perform significantly better

than the KF decoders, even up to five months separating the training and testing ses-

sions. Furthermore, only modest performance degradations were observed for the

CNN, MLP and LSTM networks-based decoders at the one month point. No statisti-

cal evidence was found in the following 4 months to support any degradation. CNN,

MLP and LSTM networks-based decoders outperformed the KF-based decoder in the

long-term analyses.

CNN, MLP and LSTM network-based decoders trained with DAgger exhibited sig-

nificant performance improvements during the first few iterations of DAgger. By aug-
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menting the training data in each iteration of DAgger, the system trains on more pos-

sible scenarios that are likely to happen during the normal operation of the decoder.

The performance of the KF-based decoders deteriorated with DAgger iterations and

additional investigations are needed to better understand this phenomenon.

For decoders based on CNN, we experimented with varying the numbers of hid-

den nodes in the fully connected layers, as well as with different number of filters

per convolutional layer. The convolutional neural network with 64 hidden nodes per

layer had the best performance although no statistically-significant difference was

found between the performances of the competing sets of hyperparameters after four

DAgger iterations. Increasing the number of filters beyond 4 did not have statistically-

significant impact on the performance of the CNN-based decoder. Therefore we

chose to keep the complexity of the CNN-based decoders as low as possible by em-

ploying four convolutional filters per layer. There were no statistically-significant

difference between the performances of the CNN and the MLP network-based de-

coders. Both performed similarly in the short-term. The CNN-based decoder has

better performance than the MLP networks-based decoder. Although a statistical

evidence was found to support this claim, the performance gain was small, 0.02 in

the NMSE sense. Therefore, the performance improvements seen in the CNN-based

decoder may not be sufficient to justify the additional computational complexity as-

sociated with them.

For the LSTM-based decoders, we experimented with the size of hidden nodes in

the fully connected layers. We noticed that the best decoders had 32 hidden nodes in

the hidden layers. We speculate that as the number of hidden nodes increased over-
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fitting occurred. In the short-term analyses, the LSTM-based decoders had the same

performance level as the KF-based decoders. However, the LSTM-decoders outper-

formed the KF-based decoders in the long-term analyses.

A disadvantage of the MLP network, CNN and LSTM-based methods is their com-

putational burden. We used GPUs to train the methods, which reduced their run

time, but used only CPUs to test our models, which is representative of our current

subject-in-the-loop hardware. On average, the KF decoder took 2 ms to make a pre-

diction of the next kinematic state of the prosthetic arm whereas the MLP network-

based decoder took 20 ms and the CNN and LSTM-based decoder took 25 ms. On the

basis of these results, it is possible to conclude that despite of the increase in compu-

tational cost, all three methods can be implemented in our current, 33-1/3 ms per de-

coding cycle configuration. Further, we anticipate substantive performance increase

when the framework is translated from the present interpreter Python environment

to compiled code.

3.6 Conclusion

This chapter explored the use of DAgger to train EMG decoders of movement intent

for a high-degree-of-freedom prosthetic limb. The MLP networks, the CNNs and

the LSTM networks were used to parameterize the decoder output, and the perfor-

mance of these algorithms were compared with that of standard linear Kalman fil-

ters and polynomial Kalman filters. Use of the DAgger algorithm improved the de-

coding performance of the MLP, the CNN and the LSTM-based decoders, but not
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the KF-based decoder, with just a few iterations. In comparison with the best per-

forming KF configuration, MLP and CNN-based decoders reduced the normalized

mean-square decoding error by 60% and 66%, respectively for the short-term analy-

ses. There was no evidence that the KF and LSTM-based decoder had different per-

formance levels in the short-term analyses. The performance of the MLP, CNN and

LSTM-based decoders had a small performance degradation in the first 30 days after

training. Such degradation was not observed for the KF. After the first 30 days, no per-

formance degradation was observed in any of the decoders. The results presented in

this chapter suggest that the MLP and the CNN-based decoders are feasible decod-

ing algorithms with better near-term decoding performance, compared with current

practices. The methods presented in this chapter should be further investigated in

a real-time setup with a human subject in the loop. In the configuration reported

herein, the parameter of the decoding algorithm were set by training alone and kept

frozen during the testing phase. The authors are currently working on extending the

decoder capabilities by updating their parameters online. Given the high computa-

tional burden of the neural network-based decoders, future work should also focus

on more computationally efficient implementations of the methods.
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4 Shared-Prosthetic Control Based on Multiple Movement Intent

Decoders

4.1 Introduction

Interpreting movement intent from biological signals is a key component of neu-

ral prostheses. In the context of this paper, neural prostheses may involve pros-

thetic limbs controlled by biological signals or re-animation of paralyzed limbs us-

ing functional neuromuscular stimulation. Typical biological signals used for inter-

preting motor intent include electromyogram (EMG), electroencephalogram (EEG),

Local Field Potential (LFP) or neuronal action potentials acquired via implanted elec-

trode arrays in the cerebral cortex, and Peripheral Nervous System (PNS) signals ob-

tained via electrode arrays implanted in nerves in upper and lower limbs.

A number of different movement intent decoders have been presented in the lit-

erature. Many decoders uses traditional signal processing techniques such as Wiener

filters [45,114], probabilistic methods [38,117], and recursive Bayesian decoders such

as Kalman filters [23,25,29,41,47,60,65,67,70,112,113] to estimate kinematic intent.

Many KF-based decoders incorporate nonlinear aspects of the neural system in the

decoders [25, 65, 67, 72, 112]. Modern machine learning algorithms, such as extreme

machine learning [20], radial basis networks [48], recurrent neural networks [100],

and deep and reinforcement learning algorithms [9,27,28,66,74,110] have been used
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to infer the relationship between kinematic movements and biological signals. All

the decoders presented above are capable of estimating movements simultaneously

and continuously in all the degrees of freedom (DoF) of the limb involved. In this

paper, we refer to such systems as continuous decoders. As the number of DoFs in-

creases these methods have a tendency to present unwanted movements in some

DoFs, which we refer to as cross-movement artifacts. In addition, we may also ob-

serve random fluctuation in movements estimates, or jitter.

A second approach to interpreting movement intent from biological signals is to

use classifier-based decoders. Classifier-based algorithms first identify the move-

ment as one of a finite number of pre-determined movement types, and then instruct

the prosthetic limb to move along the trajectory prescribed by the movement type.

These methods allow only a limited set of prosthetic movements, but tend to pro-

duce less crosstalk and jitter than continuous decoders [43]. Classifier-based algo-

rithms that employ linear classifiers [91], support vector machines (SVM) [59], Gaus-

sian mixture models (GMMs) [24], naive Bayes decoders [21] and multilayer percep-

tron neural networks [37] are available in the literature. Lately, deep learning neural

networks-based decoders have shown improvements over traditional machine learn-

ing approaches to classify hand positions [7, 22, 35, 44].

A third class of decoders estimates the movement goal from biological and/or

other types of sensor signals, such as cameras. Mulliken et. al. [70] incorporated a

goal estimate to the KF framework. Hotson et. al. [47] proposed a KF-based frame-

work that incorporated a camera-based goal estimate in the decoding system. These

decoders exhibited a performance improvement over continuous decoding methods,



62

but they may also require large training datasets with a diverse set of movements in

different scenarios.

As we can see from the above, different type of decoder algorithms possess their

own unique advantages. Downey et al. [33] have used the combined output of move-

ment intent decoder, based on a proportional controller, and a computer estimate

for grasp movements. In this paper we present an approach that combines multiple

decoders to create a single movement intent decoder and consequently a prosthetic

controller that shares the positive characteristics of each of the component decoders

employed by the system. We use a Markov decision process (MDP) framework to

design this shared controller and validate the algorithm’s capabilities using amputee

and non-amputee human subjects. Further, we examined two differnt shared con-

troller implementation. The first approach used in the experimental validation in-

volved a combination of a classifier-based decoder and Kalman decoder. The second

approach combined a Kalman decoder with a controller based on movement goals,

assumed to be known, with a substantial amount of uncertainty. The results pre-

sented here will demonstrate that the shared controller performs better in a statisti-

cally significant manner than the component systems individually in almost all the

performance metrics used.

A preliminary version of this work was presented at a conference, but the content

of this paper differs substantively from the conference proceeding paper [26]. First,

this paper generalizes the approach in [26] to combine arbitrary decoders to produce

a shared controller. The analyses presented in this paper includes a shared controller

based on a classifier-based decoder in addition to the goal-based decoder presented
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in [26]. In addition, the experimental results here are based on more amputee and

non-amputee subjects than in the conference presentation.

The rest of this paper is organized as follows: Section II describes the MDP frame-

work for decoding signals and also how to train the system. Section III describes

the experiments and the decoding algorithms employed in this work. Experimental

results are provided in Section IV. A discussion of the experimental results and the

evaluated algorithms are presented in Section V. Finally, the concluding remarks are

made in Section VI.

4.2 Methods

Broadly, the function of prosthesis controllers is to interpret the desired action from

biological and other auxiliary signals related to movements and determine the best

movement for the prosthetic limb. Similar to the derivations in [27, 28], we use an

Markov Decision Process (MDP) to model the decision making process. The objec-

tive is to combine the estimates of B different decoders based on their input signals

and the current state sk of the system to reproduce the desired limb trajectory by

learning a probabilistic representation πθ1,...,θB (u1
k , ...,uB

k |sk ) of the relation between

the state sk and the bth decode control signal, ub
k . In general, the decoder outputs

are selected to maximize πθ1,...,θB (u1
k , ...,uB

k |sk ), which maximizes the probability of

the system reproducing a desired trajectory.

The state, sk , is defined as the union of the most recent H1 instances of the mea-

sured biological signals Zk = [z1,k , ..., zN ,k ]T and the most recent H2 instances of the
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position of the prosthetic limb Xk = [x1,k , ..., xM ,k ]T . Here zi ,k is the kth measurement

from the i th measurement channel, N is the number of biological channels, x j ,k is

the limb position along the j th degree of freedom at time k, and M is the number of

degrees of freedom of the limb. That is,

sk = [Zk , ..., Zk−H1+1, Xk , ..., Xk−H2+1] (4.1)

and the control signal of the bth decoder is

ub
k = X̂ b

k+1 (4.2)

interpreted as the bth decoder prediction of the next position of the limb. The fi-

nal shared-controller kinematic estimate, Xk+1, is the result of a combination of the

output of all component decoders output.

We assume that the system evolves according to the Markov assumption, where

that the next state of the limb, sk+1, only depends on the current state, sk ; that is,

p(sk+1|sk , ..., s1) = p(sk+1|sk ). For a given set of independent trajectories, τ=⋃A
a=1τa ,

where A is the number of trajectories in a training set, the trajectory τa is given by

τa =
Ha−1⋃
i=1

(sa
i , fc (ua,1

i , ...,ua,B
i ))

⋃
sa

Ha
(4.3)

Here, fc (·) is a mixing function responsible for combining the different decoders out-

put into the estimated next kinematic state Xk+1, Ha is the number of samples in the

desired trajectory, and sa
i and ua,b

i represent the state and bth decoder output in the
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i th time step, respectively, in the trajectory a. It is possible to write the probability of

the system following a desired trajectory, p(τa), parameterized as pθ1,...,θB (τa) in the

following manner:

pθ1,...,θB (τa) = p(sa
1 )

Ha−1∏
i=1

p(sa
i+1|sa

i , fc (ua,1
i , ...,ua,B

i ))πθ1,...,θB ( fc (ua,1
i , ...,ua,B

i )|sa
i ) (4.4)

During the training phase, the objective is to learn the set of parameters θb associated

with the bth decoder for 1 ≤ b ≤ B which maximizes the following objective function:

J (θ1, ...,θB ) = 1

A

A∑
a=1

1

Ha −1
log(pθ1,...,θB (τa)) (4.5)

Given that the log function is a monotonically increasing function, maximizing the

objective function in (4.5) is equivalent to maximizing
∏A

a=1 pua,1
i ,...,ua,B

i
(τa), which

maximizes the overall probability of the decoder following the intended trajectories.

We modeled the mixing function fc (·) as a weighted average of the B decoder out-

puts fc (ua,1
i , ...,ua,B

i ) = ∑B
b=1βbub

i . Here we chose to the weighted average due to its

ability to measure the contribution of each decoder. Similar to Peter and Schaal [79]

we assume that the probabilistic description, πθ1,...,θB ( fc (ua,1
i , ...,ua,B

i )|si ), follows a

Gaussian density function and we extend their formulation to accommodate multi-

ple decoder outputs used in this work, given by

πθ1,...,θB ( fc (ua,1
i , ...,ua,B

i )|si ) = 1p
2πσ1

e
−
||Xi+1 −∑B

b=1βbub
i ||2

2σ2
1 (4.6)

where βb ’s are mixing parameters for the different decoders,
∑B

b=1βb = 1, and σ1 is
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the variance of the distribution. The constraint of
∑B

b=1βb = 1 is imposed to avoid

adding gains to the output. The bth decoder estimate, ub
i , is given by

ub
i = fb(si ,θb) (4.7)

where fb(·) is the bth decoder that is fully defined by the parameter vector θb .

We followed similar ideas of ensemble learning [123], where the decoders are

trained separately and their output are combined during the testing phase. Moreover,

it is desirable that each decoder predicts next kinematic state as precise as possible

according to the model capabilities and training. Therefore, we decide to train each

decoder separately. We trained the decoders separately, by estimating the parame-

ters θb by setting βb = 1 and all other mixing parameters to zero. Once the decoders

are trained, the final mixing parameters, βb ’s, can be estimated using a stochastic hill

climbing approach, described in [51] during cross-validation. The parameters θb can

be estimated using a gradient ascent approach as

θb = θb +αb∇θb J (θb) (4.8)

where αb is a positive non-zero number interpreted as the learning rate and ∇θb J is

the gradient of J with respect to θb . The gradient of the objective function is given by

∇θb J (θb) = 1

A

A∑
a=1

1

Ha −1

Ha−1∑
i=1

∇θb [logπθb (ua,b
i |sa

i )]

= 1

A

A∑
a=1

1

Ha −1

Ha−1∑
i=1

[
[Xi+1 − fb(sa

i ,θb)][∇θb fb(sa
i ,θb)]T ]T

(4.9)



67

Once the systems are trained, the parameters θb are kept static while operating

the prosthetic system in the post-training phase. During this stage we want to esti-

mate the next kinematic state of limb, X̂ t+1. Since we assume thatπθ1,...,θB (u1
i , ...,uB

i |si )

follows a Gaussian distribution the next kinematic state of the limb can be estimated

as

X̂ t+1 =
B∑

b=1
βbub

i (4.10)

That is, the final output is a weighted average over all the decoders output.

The derivation provided above is very general. This framework is capable of mix-

ing multiple decoders with different strengths into a single and more efficient de-

coder. There are no restrictions placed on component decoders in this framework,

and therefore they can belong to any of the types discussed in the introduction in-

cluding neural networks and Kalman filters. The shared-controller framework de-

rived above is summarized in Table 4.1.

4.2.1 Experimental Setup

The results presented here are from three transradial arm amputee subjects, referred

to as HS1, HS2 and HS3. Data from three subjects with intact arms are also presented

here, they are referred to as IHS1, IHS2, IHS3 and IHS4 in this paper.

After approvals from the University of Utah and the Department of Navy Human

Research Protection Program Institutional Review Boards, Veteran Affair, when ap-

propriated, and receiving informed consent from the amputee subjects, they were

implanted with 32 EMG electrodes to acquire intramuscular EMG (iEMG) data. The
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Table 4.1: Algorithm for the movement intent decoder post-training for shared-
control

Training phase
Collect the training data
Train all the B decodes using equations (4.8) and (4.9)
Estimate βb ’s via cross validation, if applicable

Post-training phase
Initialize X1 at the desired position
For each time instance, i

For each decoder, b

Estimate the decoder output ua,b
i ub

i = fb(si ,θb)
Update the state of the arm X̂ a

i+1 X̂ t+1 =∑B
b=1βbub

i

subjects were also implanted with two 96-electrode Utah Slanted Electrode Arrays

(USEA) [14] in the ulnar and median nerves of their residual arm but these devices

were not used in the data analyses for subjects HS1 and HS2. Surface EMG (sEMG)

signals from the intact-arm subjects were acquired using a forearm sleeve with 32

surface electrodes distributed across the entire sleeve. The thirty two single-ended

EMG signals were acquired at 1 KHz sampling rate by a Grapevine NIP system (Rip-

ple, Salt Lake City, UT) using proprietary front-end hardware. These signals were

filtered with a 6th-order Butterworth high-pass filter with 3 dB cut-off frequency at

15 Hz, a 2nd-order Butterworth low pass filter with 3 dB cut-off frequency at 375 Hz,

and 60, 120, and 180 Hz notch filters. Differential EMG signals for all 496 possible

combinations of the 32 single-ended channels were calculated in software. For each

of the single ended and differential EMG channels, the mean absolute value (MAV)

was calculated over a 33.3-ms window of time and subsequently smoothed with a

300-ms rectangular window. In our previous work [27], different features described
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by Hudgins et. al. [34] were considered. However, decoders trained with only MAV

features provided the best performance. Consequently, the results described here are

based on MAV of EMG signals. The PNS data, when used (HS3 subject only), was pre-

processed following the steps described in Wendelken et. al. [113]. More information

about the implants can be found in Page et. al. [76] and Wendelken et. al. [113]. To

reduce the dimensionality and the computational complexity of the decoder, prin-

cipal component analysis [27] (for offline analyses) and Gram-Schmidt orthogonal-

ization [72] (for online analyses) were performed on the features in the training data.

Finally, the best 48 features were used as input features for the decoders for the on-

line experiments following Nieveen et al. [72] and 32 features were used for the offline

experiments similar to our previous work [27].

Data from iEMG, sEMG and/or USEA were recorded while the subject followed

a set a of pre-determined movements of a virtual hand (Musculoskeletal Modeling

Software [30]) with their phantom or real limb. The virtual environment modeled a

hand with the following 12 DoFs: flexion and extension of each digit, adduction and

abduction of all digits except for the third digit, and wrist roll, pitch and yaw. Each

DoF can assume values between [−1,1] [30] and the relaxed position corresponds to

zero value. Figure 3.1 displays the training and testing set-up used in this work.

During training, the subjects were instructed to mimic the movement of a hand

displayed in the virtual reality environment with their phantom limb or intact limb

depending on the subject while the EMG signals and PNS, when applicable, were

recorded simultaneously with the desired hand position. The instructed movement

followed a semi-sinusoidal path at a velocity deemed comfortable by the subject.
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We performed two experimental paradigms. In the first one, the data was pre-

recorded and the analyses was performed offline. Here, we refer to this paradigm

as offline experiments. The decoders were trained using only movements of sin-

gle DoFs, and 10 training trials of each movement were performed. The single DoF

movement trials within the same session were concatenated and used to train and

test the decoder. The first seven trials of each DoF within a session were used to train

the decoder and the remaining data were used to test the decoder, when the mix-

ing parameters were fixed beforehand. We also estimated the mixing parameter for

this scenario using cross-validation, where the first 6 trials out of the 7 training tri-

als of each DoF were used to train the decoders and the remaining one trial of each

DoF was used to estimate the mixing parameter via a stochastic hill climbing algo-

rithm [51]. In the second paradigm, the decoders were trained after the training data

was recorded, and then the subject was asked to control a virtual limb in real time.

We refer to this experimental paradigms as online experiments. The decoders were

trained using movements of a single DoF as well as movements involving multiple

DoFs, and 5-10 training trials of each movement were performed. During the testing

phase, the final position of the hand was displayed on the screen and subject was in-

structed to take the virtual limb to the final position. Each tested set of movement

(single digits or multiple digits movements) was tested in a time interval in which six

or eight trials for each movement were performed, depending on the number of mix-

ing parameters being tested. The experiments were performed in such way that each

trial was tested with at least one possible value ofβ2 parameters in a movement inter-

val. The values of mixing parameters were randomly selected during testing phase.
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As a result, neither the subject nor the researchers administering the test knew the

value of the mixing parameter during the experiment.

4.2.2 Shared Controller Architectures

In this work, we present results from two different shared controllers containing two

decoders each (B = 2). Both controllers involved a continuous decoder and an aux-

iliary decoder. The first controller combines the output of a KF-based decoder and

an MLP classifier-based decoder. The second decoder combines the output of a KF-

based decoder with a controller with imperfect information about the final goal, as-

sumed to be known with a substantial amount of uncertainty. That is, the goal-based

system assumed that the final goal, ĝ , is given by ĝ = g +µ where g is the true goal

and µ is a random perturbation with zero mean value. The level of uncertainty on the

goal information is controlled by the variance of µ. In both scenarios, we denote the

output of the continuous decoder as u1
k . The shared controllers combined two de-

coders, implying that β2 = 1−β1. Herein, we refer to β2 as the mixing parameter. As

discussed earlier, continuous decoders like Kalman filter-based approaches are capa-

ble of controlling multiple DoFs simultaneously, but may suffer from jitter and cross

movement errors. Combining such decoder with another decoder that has low jit-

ter and cross movement errors may result in a prosthetic controller that inherits the

good qualities of the component decoders. The goal of the experiments described

here is to validate this conjecture.

The continuous decoder used in this work followed the KF framework described



72

in [25]. The classifier-based decoder, when used, employed an MLP network with two

hidden layers with 128 hidden nodes in each layer and a rectifier linear unit (ReLU)

as the activation function. The classifier was designed assuming thirteen movements

corresponding to a total flex, and total extension of each single digit of the hand, a

grasp and open hand movements and a position corresponding to neutral position of

all digits. Once the classifier estimated the intended movement, u2
k value was calcu-

lated as the current position plus some δT in the direction of the selected movement.

For the experiments we used δT = 0.1. When the final goal-based controller was em-

ployed, the perturbation µ was a zero-mean and white Gaussian noise with variance

equal to 0.13. This level of noise in the assumed goal was enough to make 48% of the

trials fail for the case of β2 = 1.0, goal-only case, i.e. in 48% of the trials, the system

failed to reach a neighborhood of the final good. The noise was added only in the

DoFs that were supposed to move. The rational of this setup for the controller con-

sisting of KF-based decoder and the classifier-based decoder is that the final goal can

guide the virtual limb, and if the goal is noisy, the subjects can overcome the noise by

interacting with the KF-based decoder.

The controller consisting of KF-based decoder and the classifier-based decoder

was evaluated using HS1 and HS2 data in offline analyses and using IHS2, IHS3 and

IHS4 in online analyses. At the time the shared-control architecture using a KF-based

decoder and a classifier-based decoder was implemented all amputee subjects were

already explanted. Therefore we analyzed HS1 and HS2 data offline and used IHS2,

IHS3 and IHS4 to assess the system perform in online analyses. Mixing parameter

from the set [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0] were used for the offline anal-
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yses. In addition, we show the results corresponding to the β2 value estimated via

the hill climbing algorithm through cross-validation. Results from the subject IHS3

are provided in the result session for the online analyses, 288 training trials and 1152

testing trials were collected from IHS3 to test this controller. Twenty three datasets

from HS1 over four months (first four months after implant) and fifty five datasets

from HS2 obtained over eleven months (first eleven months after implant) were used

in this work for the offline analyses.

During the online experiments the mixing parameter could assume the follow-

ing values [0,0.15,0.25, 0.4,0.5,0,6,0.75,1.0] to explore the effect of the mixing pa-

rameter in the controller performance. The shared controller consisting of the KF-

based decoder and the final goal was tested in real-time experiments using HS3,

IHS1, IHS2 and IHS3 in the loop. The mixing parameter took values from the set

[0,0.05,0.1,0.15,0.2,0.25] in these experiments. For the shared controller composed

by the KF and noisy goal information we did not tested higher values of β, because of

the large amount of noise added in the goal. We did not used higher values of mixing

parameters because they were corrupted with a fairly large amount of noise. The hy-

pothetical case of mixing parameter equals to 1 was simulated, since the subject was

not required to be on the loop. Three datasets containing 108 training trials and 648

testing trials in total were recorded from HS3 and 648 training and 2592 testing trials

were collected from IHS1, IHS2 and IHS3.
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4.2.3 Performance Analyses

4.2.3.1 Offline Experiments

In the offline experiments, we measured the performance of the decoders using the

normalized mean-square error (NMSE) between desired movements and the decoded

output, defined as:

MSEnor mali zed =

H∑
k=1

||Xk − X̂k ||2

H∑
k=1

||Xk ||2
(4.11)

where || · ||2 denotes the Euclidean norm of (·), Xk is the desired kinematic state, X̂k is

the decoded kinematic state, and H is the number of samples in the testing dataset.

This performance metric averages the errors across DoFs and time samples and re-

ports the average distance between the predicted movement and the desired move-

ment over the time span of the experimental session. Whenever data are presented

in the text as X X ±Y Y , X X is the arithmetic mean and Y Y is the sample standard

deviation.

To establish the statistical significance of the relative performance of the different

shared controllers defined by the parameters choice of β2, we used an analysis of

variance (ANOVA) test followed by, if statistically significant, a multiple comparisons

post hoc test using Tukey’s honest significant difference correction [122]. Principally,

we compared each combination performance as a within subject effect and treated

each participant as an independent subject (unexamined between subject effects),

and each of the datasets as a repeated observation within a cell. We selected this
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non-parametric test as it readily and effectively provides a way to manage "multiple

observations within a cell" in a repeated measures design [122].

4.2.3.2 Online Experiments

The online experiments did not have access to the desired trajectory to calculate the

NMSE similar to the offline experiments. In order to perform a comprehensive data

analyses for the online experiments, we used three performance metrics, which are

the percentage of time in success zone, root-mean-squared error (RMSE) between

the acceptance region and moving DoFs, and RMSE between the target position and

stationary DoFs. In order to define these metrics, we first define the success zone

associated with each commanded movement. We will assume that a trial succeeded

in achieving its goal if the controller moves each DoF of the virtual arm to within ∆R

of the desired final goal and stays there for a specified amount of time. That is, if xDM
j

represents the desired goal for the j th DoF, the success zone is defined by the interval

[xDM
j −∆R, xDM

j +∆R]. Across the online experiments ∆R = 0.1. Then, the moving

RMSE is calculated as

DM =
√√√√ 1

H Mm

H∑
k=1

Mm∑
j=1

(max(|xM
j ,k −xDM

j |−∆R,0))2 (4.12)

where xM
j ,k is the position of the j th DoF that was instructed to move at the kth time

bin, and there are Mm moving DoFs. This metric provides a clear view of the average

distance of the final target from the positions of the DoFs that were commanded to
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move. The stationary RMSE (also called jitter herein) is calculated as

DS =
√√√√ 1

H Ms

H∑
k=1

Ms∑
j=1

(xS
j ,k )2 (4.13)

where xS
j ,k is the positions of the j -th stationary DoF for the k-th time bin and Ms

represents the number of stationary DoFs. This metric provides a clear view of the

amount of unwanted movement in a trial. Finally, the percentage of time in the suc-

cess zone is the ratio of the amount of time steps all DoFs spent in the success zone

divided by the total number of time steps in a trial, averaged over all trials.

Similar to the offline analyses, we used the ANOVA test followed by, if statistically

significant, a multiple comparisons post hoc test using Tukey’s honest significant dif-

ference correction to establish statistical relevance. For each metric of performance,

we compared the different controller configurations as a within subject effect and

treated each participant as an independent subject, and each trial was treated as a

repeated observation within a cell.

4.3 Results

4.3.1 Shared Controller with Kalman Decoder and Classifier-Based Con-

troller

We analyzed the shared controller composed of the KF-based decoder and the MLP-

based classifier with different mixing parametersβ2 over all datasets available for HS1
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and HS2 in an offline manner. Here, a mixing parameter of zero corresponds to the

Kalman decoder alone. The case of mixing parameter of one corresponds to the case

of a classifier-based decoder only. Figure 4.1 displays the NMSE of the shared con-

troller decoder for different mixing parameters. The case of KF-only decoder had

an NMSE of 0.10±0.03 and the case of the goal-only decoder had a performance of

0.13±0.03 in the NMSE sense. The shared controller architecture with mixing param-

eters of [0.2,0.3,0.4,0.5] outperformed the component decoders when they were used

without mixing β2 6= 0 and 1. This result was found to be statistically significant using

the ANOVA test (p < 10−4). A post-roc test indicated that the cases ofβ2 = [0.3,0.4,0.5]

and the estimated mixing parameters statistically outperformed the the cases of the

mixing parameter equals to zero and one (p < 10−4). Finally, there was no statisti-

cal evidence that the cases of β2 = [0.3,0.4,0.5] and the estimated mixing parameter

statistically performed differently from each other. Across all mixing parameters, the

best performance, averaged across 78 datasets recorded from HS1 and HS2, was the

case of β2 = 0.4, and this set of hyperparameters resulted in an NMSE of 0.072±0.033.

In comparison, the β2 value 0.38 ± 0.05 chosen via cross-validation resulted in an

NMSE of 0.074±0.033.

We analyzed the relative performance of eight different controller conditions cor-

responding to β2 = [0,0.15,0.25,0.4,0.5,0.6,0.75,1.0] for the controller composed of

the KF and the classifier-based decoder in online experiments. As a baseline, the

controller based on KF-only was able to keep the virtual hand in the success zone for

30±29.9% of the time (Figure 4.2). The classifier only decoder was able to keep the vir-

tual limb in the success zone for 16.8±5.9% of the time. Using the shared controller,
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Figure 4.1: Normalized MSE performance for different mixing parameter, where
the "Est." case employed a mixing parameters estimated via cross-validation β2 =
0.38±0.05. The red lines represent the median, the black dashed lines represent the
amplitude of maximum and minimum NMSE not considered to be outlier values, the
blue boxes display the interquartile ranges, red crosses represent outliers, the ma-
genta dots represent the means, the magenta bars represent the standard deviations
and the red crosses represent outliers.

the amputee was able to stay in the target zone for up to 61.7±25.5% of the time for

the case of β2 = 0.15. There was statistical evidence that at least one decoder perform

differently from the others via ANOVA test (p < 10−5). Using a post-hoc test we found

that the shared controller configuration, with the mixing parameter of 0.15, had the

best performance across all mixing parameters and was able to statistically outper-

form most configurations, including KF-only decoder and goal-only based decoders

(p < 10−8). Although, there was no statistical evidence that the shared controllers

with mixing parameters of 0.15 and 0.25 performed differently from each other.

The next set of analyses of the online experiments involved the distance between

the moving DoFs and the desired target (Figure 4.3). The KF-only decoder resulted
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Figure 4.2: Percentage of time in the success zone for the intact subjects online ex-
periments using shared controller composed by KF and classifier-based decoders.

in a 0.13±0.06 RMSE in the moving DoFs, while the classifier-only decoder resulted

in trajectories with 0.21±0.07 RMSE in the moving DoFs. The shared controller con-

figuration with best performance for this metric had the mixing parameter equals to

0.15, and exhibited a RMSE in the moving DoFs of 0.13±0.05. Using an ANOVA test we

found evidence that at least one of the decoder configurations performed differently

from the others (p < 10−5). We followed the ANOVA test with a post-hoc test to deter-

mine that the shared controller configuration with mixing parameter of 0, 0.15 and

0.25 statistically outperformed all other configurations (p < 10−3). However, there

was no statistical evidence that these three mixing parameters performed differently

from each other.
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Figure 4.3: RMSE between the target position for the intact subjects in online experi-
ments using the shared controller composed by KF and classifier-based decoder.

Subsequently, we analyzed the amount of cross movement errors in the decoded

trajectories (Figure 4.4). The KF-only method exhibited a cross movement RMSE of

0.08± 0.07, while the classifier-based decoder resulted in a cross-movement RMSE

of 0.01± 0.06. Using an ANOVA test we found evidence that at least on of the de-

coder configurations performed differently for each other (p < 10−3). We followed

the ANOVA test with a post-hoc test to determine that all shared controller configu-

rations with non-zero all mixing parameters outperformed the KF-only scenario. A

mixing parameter of 0.15 resulted in a cross movement RMSE of 0.03±0.05.

The better performance is also easily observed in representative time traces of the

KF-only case and two configurations of the shared controller composed by the KF-
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Figure 4.4: RMSE between the DoFs with stationary targets for the intact subjects
in online experiments using a shared controller composed by KF and the classifier-
based decoder.

based decoder and the classifier-based decoder (Figure 4.5), although the following

observations were not all formally analyzed statistically. It is notable that the case of

KF-only and the shared controller using β2 = 0.15 exhibited the similar performance

for the commanded DoF, while using the classifier-only decoder resulted in large os-

cillations around the target in the commanded DoF. The shared controller employing

β= 0.15 exhibited less unwanted movements in the static DoFs than the KF-only de-

coder. When the classifier-based decoder was employed no unwanted movement in

the statical DoF was present. All these empirical observations are reflected in the

metrics of performance previously discussed. Further, the shared controller kept the



82

Figure 4.5: Representative examples of the performance of three different mixing
parameters with the IHS3 subject. All cases represent the testing phase, where the
IHS3’s sEMG signals were used to derive the movement action via a previously trained
Kalman filter and the classifier-based decoder. For each condition, the dashed line
represents the true goal and the solid line represents the controller’s real-time pre-
diction of the desired position. The color of each line represents a particular joint.

compromise between performance and flexibility.

4.3.2 Shared Controller with Kalman Decoder and Goal-Based Controller

4.3.2.1 Testing on Intact-Arm subjects

We analyzed the relative performance of the six controller conditions and the hypo-

thetical 7th condition when the information about the long-term goal is combined

with the KF-based decoder using intact-arm subjects. The controller based on KF-
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Figure 4.6: Percentage of time in success zone for the intact subjects in online exper-
iments using the shared controller composed by KF and goal-based controllers.

only was able to keep the virtual hand in the success zone for only 9.8±14.6% of the

time (Figure 4.6). The goal-only decoder was able to keep the virtual limb in the suc-

cess zone for 53.4±49.4% of the time. Using the shared controller framework the am-

putee was able to stay in the target zone for up to 77.9±30% of the time for the case of

β2 = 0.25 statistically outperforming most of the other configurations via ANOVA test

followed by a post-hoc (p < 10−3). However, there was no statistical evidence that

shared controller with mixing parameters of 0.2 and 0.25 performed different from

each other in the percentage of time in the success zone metric.

The next set of analysis involved the distance metric between the commanded

DoF and the desired target (Figure 4.7). The RMSE of the moving DoFs for KF-only
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Figure 4.7: RMSE between the target position for the intact subjects online experi-
ments using shared controller composed by KF and goal-based decoders.

decoder was 0.27 ± 0.07, while the goal-only decoder resulted in trajectories with

0.10±0.06 RMSE in the moving DoFs. The shared controller configuration with best

performance for this metric had the mixing parameter of 0.25, and resulted in an

RMSE in the moving DoF of 0.06 ± 0.02 outperformed all other configurations via

ANOVA test followed by a post-hoc test (p < 10−3).

Finally, we analyzed the amount of cross movement in the decoded trajectories

(Figure 4.8). The KF-only method presented a cross RMSE of 0.11±0.09. The goal-

only case did not present any cross movement, since no noise was added in the static

DoF. The shared controller with best performance had β2 equals to 0.25 and pro-

duced trajectories with 0.02±0.01 RMSE in the statical DoFs. Using an ANOVA test
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Figure 4.8: RMSE between the target stationary DoFs for the intact subjects online
experiments using shared controller composed by KF and goal-based decoders.

we found evidence that at least one of the decoder configurations performed differ-

ently for each other (p < 10−5). We followed the ANOVA test with a post-hoc test to

determine that the shared controller configuration with mixing parameter of 0.25 sta-

tistically outperformed the other configurations (p < 10−3), except for the goal-only

decoder and the case of the shared controller with β2 = 0.2. There was no statistical

evidence that the shared control configuration with the mixing parameter equals to

0.25 and 0.2 performed different from each other.
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Figure 4.9: Percentage of time in the success zone for the amputee subject online
experiments using shared controller composed by KF and goal-based decoders.

4.3.2.2 Testing on Amputee Subjects

We validated the shared-controller composed by the KF-based decoder and the goal-

based decoder in one amputee subject. In this set of analysis, we also simulated the

behavior of the goal-only case and we obtained the same results as the above, there-

fore we do not comment them again. Similar to the intact subjects analyses, we ana-

lyzed the percentage of time of the virtual hand in the success zone (Figure 4.9). The

KF-only decoder was able to keep the virtual hand in the success zone for 2.3±6.5% of

the time. The addition of a perturbed version of the goal improved the time the suc-

cess zone via ANOVA test (p < 10−5). Employing a post-hoc test we determined that
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shared controller with mixing parameter of 0.15, 0.2 and 0.25 outperformed all other

configurations (p < 10−3). However, there was no statistical evidence that shared con-

troller with mixing parameter of 0.15, 0.2 and 0.25 performed differently from each

other. Using shared controller framework the amputee was able to stay in the target

zone for 77.8±29.5% of the time for the case of β2 = 0.25.

Figure 4.10: RMSE between the target position for the amputee subject in online ex-
periments using shared controller composed by KF and goal-based decoders.

The next set of analyses involves the distance metric between the moving DoF and

the desired target (Figure 4.10). The RMSE of the commanded DoF for the KF-only

decoder was a 0.30±0.07 RMSE in the moving DoFs. Using an ANOVA test followed by

a post-hoc test we determined that the configurations with mixing parameter 0.2 and

0.25 outperformed all other configurations (p < 10−5). The shared controller config-
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uration with best performance for this metric had the mixing parameter of 0.25, and

presented a RMSE in the moving DoF of 0.06±0.04.

Figure 4.11: RMSE between the target stationary DoFs for the amputee subject online
experiments using shared controller composed by KF and goal-based decoders.

Finally, when analyzing the amount of cross movement in the decoded trajecto-

ries (Figure 4.11), we observed that the KF-only method presented a cross RMSE of

0.19± 0.15. Employing an ANOVA test and a post-hoc test we determined that the

shared controller configuration with mixing parameter 0.25 and 1.0 outperformed all

other configurations. The shared controller employing β2 = 0.25 produced trajecto-

ries with 0.02±0.03 cross-movement RMSE.



89

4.4 Discussion

The shared-controller composed by KF and classifier-based decoder presented in

this work demonstrated a statistically-significant 24% improvement over KF-only de-

coder from 0.10±0.03 to 0.07±0.03 in the NMSE sense and a 41% improvement over

goal-only decoder from 0.13± 0.03 to 0.07± 0.03 in the NMSE sense for the offline

experiments. Further, using a mixing parameter of 0.15 for the online experiments

we were able to keep the same level of control for the commanded DoF as KF-based

decoder, but the amount of cross movement was reduced from 0.08±0.04 (KF-only)

to 0.03±0.01, a 63% improvement. Resulting in an improvement in the time in the

success zone from 29.8±28.8% to 61.7±25.5%, a 107% improvement when compared

with the KF-only decoder and a 267% improvement from 16.8±5.9% to 61.7±25.5%

when compared with the classifier-based decoder. Such results demonstrate that the

shared controller can combine a continuous decoder and a classifier-based decoder

into a shared decoder that can outperform both base decoders individually in the

time in the desired position.

We also provided an extensive analyses for the case when the final goal with noise

is used to guide the KF-based decoder in the online experiments when validated on

an amputee subject. The shared controller improved the time in target zone up to

3200% when used with the amputee compared with the KF-based decoder, increas-

ing the percentage of time in success zone from 2.3± 6.5% to 77.8± 29.5%. It also

improved this metric when compared with the case of a noisy goal only in 43%. Im-

provements in the RMSE of the moving DoF were also observed. The shared con-
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troller decoder improved the RMSE of the moving DoF in 80%, for the amputee exper-

iments, from 0.30±0.07 to 0.06±0.04 in RMSE sense for the combining factor equals

to 0.25. Under such configuration, the shared controller also improved RMSE of the

moving DoF when compared to the case of the goal only decoder in 43%. Moreover,

a reduction in the cross movement was observed when the shared controller was ap-

plied compared to the case of the KF-only. An improvement of 90% from 0.20±0.16

to 0.02± 0.03 in RMSE of statical DoF was observed. Similar results were observed

when this shared controller was validated on intact-arm subjects.

Based on the obtained results, we believe that the positive iteration between shared-

controllers happens because the KF-based decoder is used to control the commanded

DoF, while the classifier and goal-based decoders reduces the amount of cross-movement.

This resulted in a greater time in the desired position for both shared-controller sys-

tems.

4.5 Conclusion

This Chapter presented a framework capable fo combining multiple decoding meth-

ods. Two shared controller architectures were used to validate the presented frame-

work to control a high-degree-of-freedom prosthetic limb based EMG and/or PNS

signals. The shared controller decoders were tested with multiple mixing parame-

ters to balance the influence of the continuous decoder based on KF and the auxil-

iary decoder. The continuous decoder combined with a classifier decoder improved

the NMSE by 24% if compared with the continuous decoder only and improved in
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41% if compared with the goal-only decoder in the offline tests. During the online

experiments, the shared controller outperformed the KF-only decoder by 75% and

outperformed classifier-only decoder by 280% in the percentage of time in the target

zone. Similar performance improvements were observed when the shared controller

composed by the KF-based decoder and goal-decoder were employed. In the future,

other input signals coming from external sensors, such as cameras and pressure sen-

sors, could be used to understand the environment. Further, the authors are working

on the long-term goal estimator based on cameras and others external sensors. The

mixing parameter should be further estimated online in a blindly manner. In the

configuration reported herein, the parameter of the decoding algorithm were set by

training alone and kept frozen during the testing phase. The authors are currently

working on extending the decoder capabilities by updating their parameters online.

Given the high computational burden of the neural network-based decoders, future

work should also focus on more computationally efficient implementations of the

methods.
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5 Semi-Supervised Adaptive Learning for Decoding Movement Intent

from Electromyograms

5.1 Introduction

In past the few years, prosthetic devices have progressed from cable-driven systems

controlled by shoulder movements to systems that can interpret biological signals

such as electromyograms (EMG) to determine the intended movement. Further, highly-

enabled prosthetic arms have been sensorized to provide the amputee sensory stim-

ulation, such as those involving tactile sensation, for closed-loop control of the arti-

ficial limb [84]. Advanced prostheses rely on human movement intent decoders to

interpret the biological signals and estimate the desired movement. In current prac-

tice [25,26,28,112], the decoder parameters are estimated during a training phase and

kept frozen during the operational phase. The human body is a time-varying system,

and consequently the movement decoders must be retrained frequently. This work

presents a new approach to update the decoder parameters by adapting them during

the operational phase.

Motor intent decoders based on Kalman filters (KF) [25,29,60,65,72,112,113,118]

have become very popular due to its simplicity and relative low computational costs.

In recent years, machine learning-based approaches [7,17,28,44,48,100] have shown

substantially improved performance over Kalman decoders. Dantas et. al. [28] have
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shown that multi-layer perceptron networks (MLP) trained using dataset aggregation

(DAgger) [88] produce smooth, natural, and precise output trajectories. Sussillo et

al. [100] proposed the use of a recurrent neural network as a neural decoder. Radial

basis networks have also been used for this purpose [48]. Chen et al. [20] presented

a practical implementation of neural decoders based on extreme machine learning.

Further, some studies have shown that the incorporation of a higher-level goal to the

decoder can yield a more natural trajectory and assist the people with limb loss with

movements of the prosthetic hands [26, 47, 70].

Although these methods have shown performance improvement immediately af-

ter training, they all suffer from performance degradation over the course of time

due to the dynamic nature of the human body. Consequently, frequent retraining is

needed to overcome this degradation. Retraining such systems, in an online manner,

is challenging, mostly because of the absence of knowledge about the movement in-

tent in real time. If movement intent were known, online learning algorithms could

be used to adapt the system parameters. A possible solution this is to check most re-

cent decoded movements against known movement patterns. If a movement pattern

is found, such information may be used to retrain the decoder. Tadipatri et. al. [102]

used similar idea to retrain relevance vector machines (RVM) assuming that the de-

coder output follows a straight line on 2-D center-out tasks. This approach might not

be realistic for highly enabled prostheses, which can have complex movements and

a high number of degrees of freedom (DoF) to control.

In this work, we use a Markov decision process (MDP)-based framework similar

to the one used in Dantas et. al. [27,28] to train an MLP-based decoder using the DAg-
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ger algorithm to produce precise decoders. During the operational phase, we assume

a movement model for each degree of freedom of the limb. We use such movement

models to recreate a desired trajectory, which is then used to update the decoders

parameters based on the difference between the actual trajectory and the estimated

desired trajectory in a semi-supervised manner. We present a gradient approach that

can be used to update the parameters of any neural network-based decoder includ-

ing deep networks. We use EMG signals recorded from two amputees over 4 and 11

months to show that the algorithm reduces the long-term performance degradation

of the decoder. These results demonstrate the ability of the method to accurately

decode EMG signals and keep acceptable performance levels at all times.

5.2 Prosthetic Controller Design

Broadly, the function of any decoder is to interpret the biological signals and decide

the best movement for the prosthetic limb. We wish to estimate a probabilistic de-

scription πθ(uk |sk ) of the control signal uk at the kth time step, given sk , the sys-

tem state and the biological signals at time step k. We follow steps similar to those

described by Dantas et. al. [27, 28] to derive this recursive prediction problem. We

present the framework to estimate the decoder parameters first in an offline manner

and then describe the algorithm used to update these parameters online during the

operational phase.
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5.2.1 Offline Training

The state sk is defined as the union of the most recent H1 instances of the measured

EMG signals Zk = [z1,k , ..., zN ,k ]T and the most recent H2 instances of the position

of the prosthetic hand Xk = [x1,k , ..., xM ,k ]T . Here zi ,k is the kth measurement from

the i th measurement channel, N is the number of EMG channels, x j ,k is the hand

position at time k corresponding to the j th DoF, and M is the number of DoFs of the

hand. That is, sk = [Zk , ..., Zk−H1−1
⋃

Xk , ..., Xk−H2−1]. The control signal is defined by

uk = [Xk+1].

We assume that the system evolves according to the Markov assumption, where

the next state of the hand, sk+1, only depends on the current state sk , i.e., p(sk+1|sk , ..., s1) =
p(sk+1|sk ). For a desired trajectory τ = ⋃H−1

i=1 (si ,ui )
⋃

sH , where H is the number of

samples in the trajectory and H > 1, it is possible to write p(τ), the probability of the

system following the desired trajectory, in a parameterized form pθ(τ) in the follow-

ing manner pθ(τ) = p(s1)
∏H−1

i=1 p(si+1|si ,ui )πθ(ui |si ).

As described in [28], if we assume πθ(ui |si ) to be a Gaussian distribution, we can

write the cost function as

∇θ J (θ) = 2

H −1

H−1∑
i=1

[
[ui −φθ(si )][∇θφθ(si )]T ]T (5.1)

where φθ represents a possibly-nonlinear model of the control signal (i.e., the de-

coder output) and is completely specified by the vector of parameters θ. The param-

eter vector θ that maximizes the probability of the system following a trajectory τ can



96

be estimated using a gradient ascent framework for the j th iteration as

θ j+1 = θ j +α1∇θ j J (θ j ) (5.2)

where α1 is a positive constant and controls the learning rate during the training

phase and ∇θ represents the gradient with respect θ. During the training phase, for a

given trajectory τ, the decoder φθ can be trained using (5.1) and (5.2) using the DAg-

ger algorithm described in [28]. During the training phase, uk corresponds the next

kinematic position in the training data. During operation phase, this data is replaced

by estimates of hand kinematics produced by the decoder, ûi .

In the experiments and analyses described in Section III, we assumed that the

decoder is parameterized as a MLP, however, the derivation is equally applicable to

convolutional neural networks (CNN) and long short-term memory (LSTM)-based

decoders.

5.2.2 Online Adaptation

A block diagram of the adaptive learning algorithm is shown in Figure 5.1. In order

to update the parameters of the decoder model during normal operation, we assume

a specific movement model for each DoF of the hand. The system also assumes a

memory buffer for the last H3 kinematic samples and, another buffer containing the

last H3 EMG data samples. At each time sample, the system first looks for specific

movement patterns in the kinematic memory buffer. If a movement pattern is found
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for a DoF, the kinematic for that DoF are estimated and used as the desired move-

ments by the parameter update algorithm. Using similar steps as described earlier,

we can derive the gradient to update the parameter vector θ as follows:

Figure 5.1: Block diagram of the semi-supervised adaptive controller.

∇θ Jonl i ne (θ) = 2

H3

H3∑
i=1

[
[u′

k − ûi ][∇θφθ(si )]T ]T (5.3)

In this equation u′
k is the estimated kinematic of the hand computed using the move-

ment model. Finally we update the decoder parameters in the j th iteration using the

following equation:

θ j+1 = θ j +α2∇θ j Jonl i ne (θ j ) (5.4)

Here α2 is a positive constant and controls the adaptive learning rate.

Table 5.1 describes the operation of the adaptive decoder, assuming that the sys-

tem was initially trained. This approach assumes a movement model that can be

completely specified by a finite number of parameters, the parameters θ of the de-

coders are adapted according to the movement model. It is important to notice that
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Table 5.1: Algorithm for the movement intent decoder post-training with semi super-
vised decoder adaptation

Initialize X1 at the desired position
For time instance, i , do

Create ŝi ŝi = [Zi , ..., Zi−H1 , X̂i , ..., X̂i−H2 ]
Run the decoder φθ(·) to estimate control signal ûi =φθ(si )
Update the state of the arm X̂i+1 based

on the estimated control signal ûi X̂i+1 = ûi

Update the kinematic and EMG memory
buffers with X̂i and Zi

Check if a known movement pattern
is present in the kinematic buffer

If movement apttern was found, do
Update the parameters θ θ = θ+α2∇θ Jonl i ne (θ)

the above derivation can be used for adapt any decoder using a variety of movement

models. In Section III-B, we detail the movement model used in this work.

5.3 Experiments

5.3.1 Experiment Setup

The results presented here are from two amputee subjects, referred here as HS1 and

HS2. After approvals from the University of Utah and Department of the Navy Human

Research Protection Program Institutional Review Boards, and receiving informed

consent from the subject, they were implanted with 32 EMG electrodes to acquire

intramuscular EMG data. The subjects were also implanted with two 96-electrode

Utah Slanted Electrode Arrays [14] in the ulnar and median nerves of their residual

arm, but these devices were not used in this analysis. The thirty two single-ended
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EMG signals were acquired at 1-KHz sampling rate by a Grapevine NIP system (Rip-

ple, Salt Lake City, UT) using proprietary front-end hardware. These signals were

filtered with a 6th-order Butterworth high-pass filter with 3 dB cut-off frequency at

15 Hz, a 2nd-order Butterworth low pass filter with 3 dB cut-off frequency at 375 Hz,

and 60, 120, and 180 Hz notch filters. More information about the implants can be

found in [76]. Differential EMG signals for all 496 possible combinations of the 32

single-ended channels were calculated in software. For each of the single ended and

differential EMG channels, the mean absolute value was calculated over a 33.3-ms

window of time and subsequently smoothed with a 300-ms rectangular window. To

reduce the dimensionality and the computational complexity of the decoder, princi-

pal component analysis was performed on the EMG data in the training data set [112].

The first sixteen principal components (PCs) were used as decoding features to the

MLP-based decoder with and without adaptation. The first thirty two PCs were used

as input features to the KF-based decoder. These configurations yielded the best de-

coding output for each method analyzed in this work.

The subjects were instructed to track the movement of a simulated hand with

their phantom limb while the EMG signals were recorded. The instructed movement

followed a semi-sinusoidal path at a velocity deemed comfortable by the subjects.

Only movements of a single DoF was instructed during the experimental sessions.

For each DoF, ten trials of each movement were performed, including flexion and ex-

tension. The range of the DoFs movements is limited to between [−1,1], where −1

represents full extension and 1 represents full flexion of a DoF. The resting position

is represented by the zero value. To train multi-DoF decoding methods, movement
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trials for different DoFs were concatenated. Data from the five digits were used in

these analyses. Twenty three datasets from HS1 over four months (first four months

post-implant) and fifty seven datasets from HS2 obtained over eleven months (first

eleven months post-implant) were used in this work. We measured the decoder per-

formance variations over L days by evaluating the decoder performance on day n,

when the decoder was originally trained on day n −L. The maximum separation be-

tween training and testing sessions used in this work was 5 months.

In this work, we used three distinct decoders: KF-based decoder, MLP network-

based decoder without adaptation and an MLP network-based decoder with adap-

tation. We selected the KF-based decoder due to its popularity in the literature. The

MLP-networks without adaptation performs significantly better than the KF-based

decoder, and acts as a good baseline to demonstrate the effectiveness of the adaptive

decoder. For the MLP-based decoder with adaptation, the parameters update were

performed every time sample when a movement pattern was detected. For the other

decoders, no adaptation was employed.

5.3.2 Movement Model

The movement model is an important part of the algorithm presented here. In the

model used here, we assume that a DoF movement contains five parts: (1) A initial

resting phase where the DoF is in the resting region defined by the interval [−0.1,0.1];

(2) A rising or falling phase, depending on if the movement is a flexion or an exten-

sion, where the DoF is moving to its final position. This phase starts at time T1 and
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ends at time T2; (3) A holding phase, where the DoF is near the final target A. There

may be some jitter during the holding phase. This phase starts at time T2 and finishes

at time T3; (4) The falling or rising phase, depending if the movement is a flexion or

extension, where the DoF is moving back to the resting zone. This phase starts at

time T3 and end at time T4; and (5) The final resting phase, when the DoF is back to

the resting position. These five phases in the movement along a DoF are depicted in

Figure 5.2.

In order to use this movement model, the system must estimate the transition

points T1, T2, T3, and T4, and estimate the movement amplitude A. We assumed

that the desired movement follows a piecewise-linear model as in Figure 5.2, and de-

sired trajectory, in green, was estimated using linear regression. The algorithm to

estimate the model parameters followed the steps: (1) The starting time T1 was esti-

mated as the time at which the decoded output took the closest value to zero in the

five time samples prior to when the decoded output was grater than 0.1 for a flexion

movement or less than 0.1 for an extension movement; (2) The transition time T2 was

estimated as the time when the second derivative of the decoder output was zero or

negative for 2 consecutive time steps for a flexion movement or the second derivative

was equal to zero or positive for 2 consecutive time steps for a extension movement;

(3) Check if the newest sample in the buffer is in the resting zone, if the DoF is in

the resting zone we estimate time T4 as the time when the kinematic signal took the

closest value to zero in the five time samples after the decoded output had values

between [−0.1,0.1]; (4) If T4 was successfully estimated, we estimated the transition

time T3 using the second derivative test, by traversing from the newest samples to the
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oldest samples. The transition time T3 was estimated as the time when the second

derivative of the decoder output was zero or negative for 2 consecutive time steps

for a flexion movement or the second derivative was equal to zero or positive for 2

consecutive time steps for a extension movement; (5) The movement amplitude, A,

was estimated as the average of the output decoder values between T2 and T3. (6) We

checked if T1 < T2 < T3 < T4 to ensure the sanity of the estimated parameters, and

also assumed that no full movement was performed at a faster rate than 2 Hz, imply-

ing that T4 −T1 > 0.5 seconds. If such conditions were met the decoder was updated

with the estimated movement.

Figure 5.2: Sample movement of a full flexion. Desired movement based on the move-
ment model, in green, over the decoded position of a DoF, in blue.
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5.4 Results

The adaptive decoder was implemented in an offline manner to obtain the results

presented here. The performance metric used in the analyses was the normalized

mean-square error (NMSE) defined as MSEnor mali zed =
∑H

k=1 ||Xk−X̂k ||2∑H
k=1 ||Xk ||2 , where || · ||2

denotes the Euclidean norm of (·), Xk is the desired kinematic state, X̂k is the decoded

kinematic state, and H is the number of samples in the test dataset.

To investigate the robustness of the three competing decoding methods over long

periods of time, we analyzed the decoding performance up to 45 days separation

between the training and testing session. Figure 5.3 displays the normalized mean-

square decoding error for the three methods along with their standard deviations as

a function of the number of days between the acquisition of the training and testing

data.

In order to investigate the statistical significance of the relative performance of

each decoder along time, we employed a two-factor, repeated measures analysis of

variance test (RANOVA). The two factors were the decoding method and the time be-

tween the dates of training and testing sessions. In addition, a multiple comparison

post hoc test using Tukey’s honest significant difference correction was performed if

the RANOVA test indicated with statistical significance that at least one among the

three systems compared were different from the others.

Initially, we investigated if the three decoders had performances that differ in a

statistically significant manner. The three competing decoding methods differed via

a RANOVA within subject test (p < 0.001), The system with the best performance was
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Figure 5.3: Normalized MSE for KF, MLP, and MLP with adaptation-based decoders
as a function of the days between training and testing. The solid lines present the
mean of the NMSE in a five-day block, and the dashed lines represents the linear fit
performed to detect the trend.

the MLP network-based decoder with adaptation, which significantly outperformed

the other methods (p < 0.001). The second best method was the MLP network-based

decoder without adaptation, which significantly outperformed the KF-based decoder

(p < 0.001). Using RANOVA between subject test, the time categories significantly

differed (p = 0.013) but no trend in performance was seen, when averaging across all

decode methods

We selected not to study the interaction term between decode method and time

category but instead studied the slopes of each decode method across time to investi-

gate how the performance changed over time. We performed a two-piece-wise linear

fit in the data, the first interval was in the range of zero and 30 days, the second piece

was between 31 and 150 days. For the first analyzed interval, the decoders based on
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MLP and MLP with adaptation slopes of 0.003 NMSE/day and 0.002 NMSE/day re-

spectively. All two slopes were significantly different than zero (p < 10−7). There was

no statistical evidence that the slope of the KF-base decoder method was different

from zero (p > 0.17). For the second investigated interval, there was no statistical ev-

idence that any of methods had a slope different from zero (p > 0.07). Finally, after 5

months of the initial training the MLP-based decoder with adaptation exhibited 27%

performance improvement over the MLP-based decoder without adaptation.

The linear fitting analyses suggested that the performance of the MLP-based de-

coder with adaptation and the MLP-based decoder without adaptation changed in a

different manner. The KF-based decoder demonstrated no evidence of performance

change across the 150 days between training and testing. The MLP network without

adaptation showed the largest performance degradation in the first 30 days, after this

time frame no performance degradation was observed. Finally, the results suggested

that the adaptive decoder was able to reduce the slope of the performance degrada-

tion by 33% over the MLP-based decoders without adaptation. Despite the observed

degradation, both MLP networks with and without adaptation were able to outper-

form the KF-based decoder throughout the time frame analyzed.

5.5 Conclusion

In this work, we investigated the feasibility of a semi-supervised adaptation frame-

work based on a piece-wise linear model that can be used by neural networks-based

decoder. We used a model of the DoFs movements to provide feedback to the neural
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network during the operational phase and based on this feedback we were able to

adapt the MLP network. The presented results showed that the adaptation algorithm

improved the decoder stability over long periods of time for the MLP network-based

decoder. Our results suggest that the decoder was able to adapt to the changes in the

EMG signals over time to maintain an acceptable decoding performance over time.

In addition, our algorithm may not work for systems that present abrupt changes,

for example, changes due to broken wires or different sensor placement for surface

EMG signals. Finally, we anticipate that the performance of the adaptation frame-

work may degrade if the initial decoder estimates an elevated number of undesired

cross-movements, because these cross-movements will be used to retraing the de-

coder and this would encode wrong information in the decoder. A topic for future

work is to study cross-movement detection.

Experiments to validate the decoder performance on additional humans subjects,

for longer periods of time between the training and testing sessions, and different

movement models are currently underway. Further studies using deep architecture

models will be also explored.
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6 Conclusions

A limb prosthesis replaces an amputee’s missing limb. Such devices can re-enable

people with missing limbs to perform daily tasks and activities. One of the key com-

ponents of such devices is the movement intent decoder. They are responsible for

interpreting the movement intent from bioelectrical signals. This research improved

the state-of-the-art movement intent decoders and brought prostheses one step closer

to become practical systems.

In this Section 6.1 of this chapter, we review and discuss the main contributions

of this work and how such contributions impact the community. Possible topics to

be explored in the future are presented in Section 6.2. The finals remarks are made in

Section 6.3.

6.1 Main Results

6.1.1 Improved Training Algorithms

Traditional approaches when not trained properly can quickly degrade over time like

the Kalman Filter-based approaches or they lack training data to perform the proper

training for a neutral network. These two problems were mitigated using dataset

aggregation algorithm to train deep neural networks. Chapter 3 explored the use

of DAgger to train EMG decoders of movement intent for a high-degree-of-freedom
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prosthetic limb. Decoders based on MLP networks, CNNs and LSTM networks were

employed to parameterize the decoder output, and the performance of such approaches

were compared with that of standard linear Kalman filters and polynomial Kalman

filters. When DAgger was employed the performance of the MLP, the CNN and the

LSTM-based decoders was improved, but not the KF-based decoder, after just a few

iterations. In comparison with the best performing KF configuration, MLP and CNN-

based decoders reduced the normalized mean-square decoding error by 60% and

66%, respectively for the short-term analyses. There was no evidence that the KF and

LSTM-based decoder had different performance levels in the short-term analyses.

The MLP, CNN and LSTM-based decoders presented a small performance degrdation

in the first 30 days after training. Such degradation was not observed for the KF-based

decoder. After the first 30 days, there was no statistical evidence that degradation was

present in any of the decoders. The results presented in Chapter 3 suggest that the

MLP and the CNN-based decoders are feasible decoding algorithms with better near

and long-term decoding performance, compared with state-of-the-art decoders.

6.1.2 Shared Controllers for Prostheses

A variety of movement intent decoders have been presented in the literature for pros-

thesis control. They differ in the input signals and the characteristics of the move-

ment to be estimated. These methods have different weaknesses and strengths. In

Chapter 4, a framework that can combine multiple decoders to create a control sig-

nal was presented. We used two shared controller architectures to validate the frame-
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work to control multiple DoFs of a prosthetic limb based on EMG and/or PNS signals.

The shared controller approaches performed better than the component decoders in

many of the metrics used to measure the systems performance. Multiple configura-

tions employing different mixing parameters to balance the influence of different de-

coders were tested. The KF-based decoder combined with a classifier-based decoder

improved the NMSE by 24% when compared with the KF-only decoder and improved

41% when compared with the classifier-only decoder in the offline tests. During the

online experiments, the shared controller outperformed the KF-only decoder by 75%

and outperformed classifier-only decoder by 2.6 times in the percentage of time in

the target zone. Similar performance improvements were observed when the shared

controller composed of the KF-based decoder and goal-decoder were employed.

6.1.3 Online-learning System

Although the human body is a time varying system, many decoders are trained in

an offline manner and have their parameters kept unchanged during the operational

phase. This causes the performance of the decoders to degrade over time. Chap-

ter 5 presented an online-learning algorithm to update the parameters of a neural

network-based decoder in a semi-supervised manner during the post-training phase.

This adaptation algorithm was based on a movement model. Initially, the decoder

was trained offline and during the normal operations phase, the parameters of the

algorithm were updated in a semi-supervised manner. The results presented sug-

gested that this approach improved the long-term performance of the decoders over
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the current state-of-the-art with statistical significance.

6.2 Future Work

There are multiple ways to improve prosthetics controllers performance. Here, we fo-

cus on three future contributions that can change the field completely. The first one

aims to assist paralyzed people control a robotic arm using heterologous muscles.

The second improvement applies machine learning to create a movement model for

the online-learning algorithm described in Chapter 5, which is able to analyze the

trajectories of the decoders and predicts an intended past trajectory based on the

last DoFs positions. Finally, as computer vision techniques become more sophisti-

cated such methods could be used to understand the surrounding areas to guide the

prostheses movements.

6.2.1 Prosthetic Control Using Heterologous Muscles

As previously discussed, dexterous control of a limb in humans is achieved via a com-

bination of feedforward movement planning and execution, and a complex feedback

system based on tactile sensation and visual feedback. Quadriplegics often retain

most of the ability for movement planning and execution, thus control of paralyzed

limbs or robotic arms can be achieved if the movement intent can be learned from

bioelectrical signals recorded from healthy locations in the body after translating the

movement control to such heterologous locations. Most of the techniques presented
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in this work could be extended to enable paralyzed people to control a robotic arm

using bioelectrical signals from heterologous muscles.

Specifically, surface electromyograms electrodes could be placed on heterologous

muscles (for example, muscles of the neck) to remap the control of the robotic limb

from the muscles of limb to the new set of muscles. The human has to learn how

to control the robotic limb, and the decoder has to interpret the movement intent

from signals recorded from the heterologous muscles. This collaborative learning be-

tween the human and the machine requires new algorithms that helps both to learn

together to achieve graceful and natural control of the limb.

A possible way for doing that is training the system in an collaborative way. The

system begins the training regime in a fully automated control setting. The human is

instructed to try to generate control movements for the trajectory and the computer

will extract the patterns evoked by the human that correlates with the desired tra-

jectory. As the human control becomes more consistent and the computer acquires

the necessary ability to extract the desired intent from the bioelectrical signals from

heterologous muscles, the human will be given more control over the limb. In par-

ticular, the shift of control should happen gradually from no human control to full

human control.

We believe that employing the proposed online algorithm the paralyzed subject

will be able to learn to encode heterologous muscles movements to control other

muscles or robotic arms limbs as the decoder learns to extract the movement intent.
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6.2.2 Machine Learning-Based Movement Model for Online Decoder

Update

In Chapter 5, we presented a method able to track changes in the human body changes

and adapt the parameters of the prosthetic controller to respond to such changes.

This was done using a knowledge-based model where the desired movement was

estimated based on the last L DoFs positions (Figure 5.1). This method resulted in

substantial long-term performance improvement. We believe that we can train a ma-

chine learning system to learn more accurate movement model to improve the results

presented in Chapter 5.

In the last few years, our research group has acquired data from a large number of

decoding sessions. The recorded data includes the desired movements, the decoded

output and final position og each DoF. This data can be used to train a neural network

that take as input the last L positions of the N DoFs and it is able to predict the move-

ment of each DoF, allowing the the system to reconstruct the intended past trajectory

for each DoF.

The first step of the algorithm is to read all the data and discard the trials that have

correlation coefficient between the decoder output and the target position less than

a threshold Tcc . Then the training set can be artificially expanded by generating new

movements by combining multiple single DoF movements to generate a multiple-

DoF movements. A machine learning system can then be trained with the expanded

dataset to estimate the movement characteristics. Finally, this movement model can

be employed using the framework described in Chapter 5.
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We believe that the proposed machine learning model will be able to generate

more precise intended trajectories based on the kinematic historic data and will be

less cross-movement sensitive.

6.2.3 Computer Vision Approach to Understand the Environment

Information about the environment such as the position of objects that are possible

candidates to be grasped could help the prosthetic to perform such actions. Com-

puter vision techniques based on deep learning have exhibited excelent ability to de-

tect different objects in an image and finding their positions. One example of this is

the You Only Look Once 9000 (YOLO900) network [82]. This algorithm can run in real-

time and have shown high accuracy in objection detections tasks. We believe that the

addition of cameras and object detection systems will enable the advanced prosthe-

ses to detect possible objects that the amputee is trying to grasp, and the prosthetic

would be able to guide the human to accomplish such tasks accurately, naturally and

gracefully.

Many pre-trained real time object detection networks are available in online repos-

itories. Further, multiple cameras have been used to estimate the objects position

in the 3D space [49]. During the operational phase, object detection system can be

used to identify the objects in an image and 3D reconstruction techniques may be

employed to recover the 3D coordinates of such objects. This information can guide

the DoFs, for example to grasp the closest object.

Such systems can be interpreted as goal estimators and can be employed with the
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shared controller described in Chapter 4 to create prosthesis controllers that can un-

derstand their surroundings and can perform movements in a more natural manner.

6.3 Final Remarks

The contributions of this research resulted in better training algorithms creating more

accurate volitional movement intent decoders than previously possible, shared pros-

thesis controllers that combines multiple decoders in ways that perform better than

the component decoders, and an online learning algorithm that enables the decoders

to perform significantly better in the long term than previously-available decoder re-

alizations. Together, these contributions have brought us closer to the goal of creating

limb prostheses that work like the real limb. In the future, advances in machine learn-

ing will improve the performance of prosthetics by adding the abilities to understand

the world around them, and auto-correcting possible mistakes.



115

Bibliography

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learn-
ing. In ICML ’04: Proceedings of the twenty-first Int. Conf. on Machine learning,
pages 1–8, New York, NY, USA, Jul. 2004.

[2] L. F. Abbott. Decoding neuronal firing and modelling neural networks. Quar-
terly Reviews of Biophysics, 27(3):291–331, 1994.

[3] S. Acharya et al. Decoding individuated finger movements using volume-
constrained neuronal ensembles in the M1 hand area. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 16(1):15–23, Feb 2008.

[4] V. Aggarwal et al. Asynchronous decoding of dexterous finger movements using
M1 neurons. IEEE Transactions on Neural Systems and Rehabilitation Engineer-
ing, 16(1):3–14, Feb 2008.

[5] S. Amsuess et al. Context-dependent upper limb prosthesis control for natural
and robust use. IEEE Trans. on Neural Systems and Rehabilitation Engineering,
24(7):744–753, Jul. 2016.

[6] N. R. Anderson et al. Electrocorticographic (ECoG) correlates of human arm
movements. Experimental Brain Research, 223(1):1–10, Nov 2012.

[7] M. Atzori et al. Deep learning with convolutional neural networks applied
to electromyography data: A resource for the classification of movements for
prosthetic hands. Frontiers in Neurorobotics, 10(9):9, Sep. 2016.

[8] S. Bach et al. On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation. PLOS ONE, 10(7):1–46, Jul. 2015.

[9] J. Bae et al. Kernel temporal differences for neural decoding. Intell. Neuro-
science, 2015(17):1–17, Jan. 2015.

[10] A. Bashashati et al. A survey of signal processing algorithms in brain–computer
interfaces based on electrical brain signals. Journal of Neural Engineering,
4(2):R32–R57, mar 2007.



116

[11] J. A. Birdwell et al. Extrinsic finger and thumb muscles command a virtual hand
to allow individual finger and grasp control. IEEE Trans. on Biomedical Engi-
neering, 62(1):218–226, Jan. 2015.

[12] M. P. Branco et al. Decoding hand gestures from primary somatosensory cortex
using high-density ECoG. NeuroImage, 147:130 – 142, 2017.

[13] D. M. Brandman et al. Review: Human intracortical recording and neural de-
coding for brain-computer interfaces. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 25(10):1687–1696, Oct 2017.

[14] A. Branner et al. Selective stimulation of cat sciatic nerve using an array of
varying-length microelectrodes. Journal of Neurophysiology, 85(4):1585–1594,
May 2001.

[15] G. Buzsáki and A. Draguhn. Neuronal oscillations in cortical networks. Science,
304(5679):1926–1929, 2004.

[16] P. K. Campbell et al. A silicon-based, three-dimensional neural interface:
manufacturing processes for an intracortical electrode array. IEEE Trans. on
Biomedical Engineering, 38(8):758–768, Aug 1991.

[17] M. Chen and P. Zhou. A novel framework based on fastica for high density
surface EMG decomposition. IEEE Trans. on Neural Systems and Rehabilitation
Engineering, 24(1):117–127, Jan. 2016.

[18] N. Chen et al. Efficient movement representation by embedding dynamic
movement primitives in deep autoencoders. In 2015 IEEE-RAS 15th Interna-
tional Conference on Humanoid Robots (Humanoids), pages 434–440, Seoul,
South Korea, Nov 2015.

[19] N. Chen et al. Dynamic movement primitives in latent space of time-
dependent variational autoencoders. In 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids), pages 629–636, Cancun, Mex-
ico, Nov 2016.

[20] Y. Chen et al. A 128-channel extreme learning machine-based neural decoder
for brain machine interfaces. IEEE Trans. on Biomedical Circuits and Systems,
10(3):679–692, Jun. 2016.



117

[21] C. A. Chestek et al. Hand posture classification using electrocorticography sig-
nals in the gamma band over human sensorimotor brain areas. Journal of Neu-
ral Engineering, 10(2):026002, Jan. 2013.

[22] H. Choi et al. Movement state classification for bimanual BCI from non-human
primate’s epidural ECoG using three-dimensional convolutional neural net-
work. In 2018 6th International Conference on Brain-Computer Interface (BCI),
pages 1–3, GangWon, South Korea, Jan. 2018.

[23] G. A. Clark et al. Using multiple high-count electrode arrays in human median
and ulnar nerves to restore sensorimotor function after previous transradial
amputation of the hand. In 2014 36th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, pages 1977–1980, Aug 2014.

[24] J. G. Cruz-Garza et al. Neural decoding of expressive human movement
from scalp electroencephalography (EEG). Frontiers in Human Neuroscience,
8(1):188, Apr. 2014.

[25] H. Dantas et al. Neural decoding using a nonlinear generative model for brain-
computer interface. In IEEE Int. Conf. on Acoustics, Speech, and Signal Process-
ing, pages 4683–4687, Florence, Italy, May 2014.

[26] H. Dantas et al. Shared human-machine control for self-aware prostheses.
In 2018 IEEE Inter. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
pages 6593–6597, Calgary, Canada, Apr. 2018.

[27] H. Dantas et al. Deep learning movement intent decoders trained with dataset
aggregation for prosthetic limb control. IEEE Transactions on Biomedical En-
gineering, pages 1–1, 2019.

[28] H. Dantas et al. Neural decoding systems using Markov decision processes. In
2017 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pages
974–978, New Orleans, USA, Mar. 2017.

[29] T. S. Davis et al. Restoring motor control and sensory feedback in people with
upper extremity amputations using arrays of 96 microelectrodes implanted in
the median and ulnar nerves. Journal of Neural Engineering, 13(3):036001, Jun.
2016.



118

[30] R. Davoodi et al. Model-based development of neural prostheses for move-
ment. IEEE Transactions on Biomedical Engineering, 54(11):1909–1918, Nov
2007.

[31] L. Diener et al. Direct conversion from facial myoelectric signals to speech us-
ing deep neural networks. In 2015 Int. Joint Conf. on Neural Networks (IJCNN),
pages 1–7, Killarney, Ireland, July 2015.

[32] E. Donchin et al. The mental prosthesis: assessing the speed of a P300-based
brain-computer interface. IEEE trans. rehabilitation engineering, 8:174–179,
2000.

[33] John E. Downey, Jeffrey M. Weiss, Katharina Muelling, Arun Venkatraman,
Jean-Sebastien Valois, Martial Hebert, J. Andrew Bagnell, Andrew B. Schwartz,
and Jennifer L. Collinger. Blending of brain-machine interface and vision-
guided autonomous robotics improves neuroprosthetic arm performance dur-
ing grasping. Journal of NeuroEngineering and Rehabilitation, 13(1):28, Mar
2016.

[34] K. Englehart and B. Hudgins. A robust, real-time control scheme for multifunc-
tion myoelectric control. IEEE Trans. on Biomedical Engineering, 50(7):848–
854, Jul. 2003.

[35] D. Farina et al. The extraction of neural information from the surface EMG for
the control of upper-limb prostheses: Emerging avenues and challenges. IEEE
Trans. on Neural Systems and Rehabilitation Engineering, 22(4):797–809, Jul.
2014.

[36] L. A. Farwell and E. Donchin. Talking off the top of your head: toward a mental
prosthesis utilizing event-related brain potentials. Electroencephalography and
clinical neurophysiology, 70:510–523, 1988.

[37] G. W. Favieiro et al. Decoding arm movements by myoeletric signals and arti-
ficial neural networks. In ISSNIP Biosignals and Biorobotics Conference 2011,
pages 1–6, Vitoria, Brazil, Jan. 2011.

[38] Yun G. et al. Probabilistic inference of hand motion from neural activity in
motor cortex. In Proceedings of the 14th International Conference on Neural In-
formation Processing Systems: Natural and Synthetic, NIPS’01, pages 213–220,
Cambridge, MA, USA, 2001. MIT Press.



119

[39] J. P. Gallivan and J. C. Culham. Neural coding within human brain areas in-
volved in actions. Current Opinion in Neurobiology, 33:141 – 149, 2015. Motor
circuits and action.

[40] A. P. Georgopoulos et al. Primate motor cortex and free arm movements to
visual targets in three-dimensional space. II. Coding of the direction of move-
ment by a neuronal population. The Journal of Neuroscience, 8(8):2928–2937,
Aug. 1988.

[41] V. Gilja et al. A brain machine interface control algorithm designed from a
feedback control perspective. In Annu. Int. Conf. of the IEEE Engineering in
Medicine and Biology Society, pages 1318–1322, San Diego, CA, Aug. 2012.

[42] S. B. Hamed et al. Decoding M1 neurons during multiple finger movements.
Journal of Neurophysiology, 98(1):327–333, Jul 2007.

[43] J. V. Haxby et al. Decoding neural representational spaces using multivariate
pattern analysis. Annual Review of Neuroscience, 37(1):435–456, Jun. 2014.

[44] J. He, , et al. User adaptation in long-term, open-loop myoelectric training: im-
plications for EMG pattern recognition in prosthesis control. Journal of Neural
Engineering, 12(4):046005, Jun. 2015.

[45] L. R. Hochberg et al. Neuronal ensemble control of prosthetic devices by a
human with tetraplegia. Nature, 442(7099):164–171, July 2006.

[46] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, November 1997.

[47] G. Hotson et al. High precision neural decoding of complex movement trajec-
tories using recursive bayesian estimation with dynamic movement primitives.
IEEE Robotics and Automation Letters, 1(2):676–683, Jul. 2016.

[48] M. S. Islam et al. Decoding movements from human deep brain local field po-
tentials using radial basis function neural network. In 2014 IEEE 27th Int. Sym-
posium on Computer-Based Medical Systems, pages 105–108, Washington, DC,
USA, May 2014.

[49] S. Izadi et al. Kinectfusion: Real-time 3d reconstruction and interaction using
a moving depth camera. In Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology, UIST ’11, pages 559–568, New York,
NY, USA, Jul 2011. ACM.



120

[50] I.T. Jolliffe. Principal Component Analysis. Springer Series in Statistics.
Springer, 2002.

[51] A. Juels and M. Wattenberg. Stochastic hillclimbing as a baseline method for
evaluating genetic algorithms. In D. S. Touretzky, M. C. Mozer, and M. E. Has-
selmo, editors, Advances in Neural Information Processing Systems 8, pages
430–436. MIT Press, 1996.

[52] S. Kellis et al. Human neocortical electrical activity recorded on nonpenetrat-
ing microwire arrays: applicability for neuroprostheses. Neurosurgical Focus,
27:3827–3830, Jul 2009.

[53] S. Kellis et al. Decoding spoken words using local field potentials recorded from
the cortical surface. Journal of Neural Engineering, 7:056007, Jul 2010.

[54] S. Kellis et al. Decoding hand trajectories from micro-electrocorticography in
human patients. In IEEE Int. Conf. on Engineering in Medicine and Biology,
pages 4091–4094, San Diego, CA, Aug 2012.

[55] Spencer Kellis. Surface Local Field Potentials For Brain-Computer Interfaces.
PhD thesis, University of Utah, May 2012.

[56] P. R. Kennedy et al. Direct control of a computer from the human central ner-
vous system. IEEE trans. rehabilitation engineering, 8:198–202, Jun 2000.

[57] R. E. Kettner et al. Primate motor cortex and free arm movements to visual tar-
gets in three-dimensional space. III. Positional gradients and population cod-
ing of movement direction from various movement origins. The Journal of Neu-
roscience, 8:2938–2947, Aug 1988.

[58] J. Kim et al. Decoding three-dimensional trajectory of executed and imag-
ined arm movements from electroencephalogram signals. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 23(5):867–876, Sep. 2015.

[59] K. H. Kim et al. Advantage of support vector machine for neural spike train
decoding under spike sorting errors. In 2005 IEEE Engineering in Medicine and
Biology 27th Annual Conference, pages 5280–5283, Shanghai, China, Jan. 2005.

[60] S. Kim et al. Neural control of computer cursor velocity by decoding motor cor-
tical spiking activity in humans with tetraplegia. Journal of Neural Engineering,
5(4):455–476, July 2008.



121

[61] A. Krasoulis et al. Evaluation of regression methods for the continuous de-
coding of finger movement from surface EMG and accelerometry. In 2015 7th
International IEEE/EMBS Conference on Neural Engineering (NER), pages 631–
634, Montpellier, France, April 2015.

[62] A. Kübler et al. The thought translation device: a neurophysiological ap-
proach to communication in total motor paralysis. Experimental brain re-
search, 124:223–232, Jan 1999.

[63] Y. Lecun et al. Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, Nov. 1998.

[64] S. Levine et al. Learning contact-rich manipulation skills with guided policy
search. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 156–163,
Seattle, WA, May 2015.

[65] Z. Li et al. Unscented Kalman filter for brain-machine interfaces. PloS one,
4(7):1–18, July 2009.

[66] M. Mahmud et al. Applications of deep learning and reinforcement learn-
ing to biological data. IEEE Trans. on Neural Networks and Learning Systems,
29(6):2063–2079, June 2018.

[67] W. Q. Malik et al. Efficient decoding with steady-state Kalman filter in neural
interface systems. IEEE Trans. Neural Syst. Rehabil. Eng, 19(1):25–34, Feb. 2011.

[68] S. Micera et al. Control of hand prostheses using peripheral information. IEEE
Reviews in Biomedical Engineering, 3:48–68, Oct 2010.

[69] K. J. Miller et al. Decoupling the cortical power spectrum reveals real-time rep-
resentation of individual finger movements in humans. The Journal of Neuro-
science, 29:3132–3137, Mar 2009.

[70] G. H Mulliken et al. Decoding trajectories from posterior parietal cortex en-
sembles. The Journal of Neuroscience, 28(48):12913–12926, Nov. 2008.

[71] H. Namazi et al. Decoding of upper limb movement by fractal analysis of elec-
troencephalogram (EEG) signal. Fractals, 26(05):1850081, Oct 2018.

[72] J. Nieveen et al. Polynomial Kalman filter for myoelectric prosthetics using effi-
cient kernel ridge regression. In 2017 8th International IEEE/EMBS Conference
on Neural Engineering (NER), pages 432–435, Shanghai, China, May 2017.



122

[73] F. Nijboer et al. A P300-based brain-computer interface for people with amy-
otrophic lateral sclerosis. Clinical Neurophysiology, 119:1909–1916, Jun 2008.

[74] E. Nurse et al. Decoding EEG and LFP signals using deep learning: Heading
truenorth. In Proceedings of the ACM Int. Conf. on Computing Frontiers, CF ’16,
pages 259–266, New York, NY, USA, May 2016. ACM.

[75] P. Ofner and G. R. Muller-Putz. Using a noninvasive decoding method to clas-
sify rhythmic movement imaginations of the arm in two planes. IEEE Transac-
tions on Biomedical Engineering, 62(3):972–981, March 2015.

[76] D. M. Page et al. Motor control and sensory feedback enhance prosthesis em-
bodiment and reduce phantom pain after long-term hand amputation. Fron-
tiers in Human Neuroscience, 12(1):352, Oct 2018.

[77] A. Paiva et al. A reproducing kernel hilbert space framework for spike train
signal processing. Neural Comput., 21(2):424–449, Feb 2009.

[78] K. H. Park and S. W. Lee. Movement intention decoding based on deep learning
for multiuser myoelectric interfaces. In 2016 4th Int. Winter Conf. on Brain-
Computer Interface (BCI), pages 1–2, Feb 2016.

[79] J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gra-
dients. Neural Networks, 21(4):682 – 697, May 2008.

[80] A. N. Phinyomark et al. Feature reduction and selection for emg signal classifi-
cation. Expert Systems with Applications, 39(8):7420 – 7431, Jun 2012.

[81] T. Pistohl et al. Prediction of arm movement trajectories from ECoG-recordings
in humans. Journal of Neuroscience Methods, 167:105–114, Jan 2008.

[82] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 6517–6525,
July 2017.

[83] S. Reinhold et al. Classification of contralateral and ipsilateral finger move-
ments for electrocorticographic brain-computer interfaces. Neurosurgical Fo-
cus FOC, 27(1), Jul 2009.

[84] L. Resnik et al. The DEKA arm: Its features, functionality, and evolution during
the Veterans Affairs Study to optimize the DEKA arm. Prosthetics and Orthotics
International, 38(6):492–504, Jul 2014. PMID: 24150930.



123

[85] N. Robinson and A. P. Vinod. Noninvasive brain-computer interface: Decoding
arm movement kinematics and motor control. IEEE Systems, Man, and Cyber-
netics Magazine, 2(4):4–16, Oct 2016.

[86] R. Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag New
York, Inc., New York, NY, USA, 1996.

[87] S. Ross and D. Bagnell. Efficient reductions for imitation learning. In Proceed-
ings of the Thirteenth Int. Conf. on Artificial Intelligence and Statistics, volume 9
of Proceedings of Machine Learning Research, pages 661–668, Chia Laguna Re-
sort, Sardinia, Italy, May 2010.

[88] S. Ross et al. A reduction of imitation learning and structured prediction to
no-regret online learning. In Proceedings of the Fourteenth Int. Conf. on Arti-
ficial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning
Research, pages 627–635, Fort Lauderdale, FL, USA, Apr. 2011.

[89] J. F. D. Saa et al. Asynchronous decoding of finger movements from ECoG sig-
nals using long-range dependencies conditional random fields. Journal of Neu-
ral Engineering, 13(3):036017, May 2016.

[90] J. C. Sanchez et al. Learning the contributions of the motor, premotor, and pos-
terior parietal cortices for hand trajectory reconstruction in a brain machine
interface. In First International IEEE EMBS Conference on Neural Engineering,
2003. Conference Proceedings., pages 59–62, Capri Island, Italy, March 2003.

[91] G. Schalk et al. Decoding two-dimensional movement trajectories using elec-
trocorticographic signals in humans. Journal of Neural Engineering, 4(3):264–
275, Jun. 2007.

[92] E. Scheme et al. Motion normalized proportional control for improved pattern
recognition-based myoelectric control. IEEE Trans. on Neural Systems and Re-
habilitation Engineering, 22(1):149–157, Jan. 2014.

[93] R. T. Schirrmeister et al. Deep learning with convolutional neural networks for
EEG decoding and visualization. Human Brain Mapping, 38(11):5391–5420,
Aug 2017.

[94] A. B. Schwartz et al. Primate motor cortex and free arm movements to visual
targets in three-dimensional space. I. Relations between single cell discharge



124

and direction of movement. The Journal of Neuroscience, 8:2913–2927, Aug
1988.

[95] M. D. Serruya et al. Instant neural control of a movement signal. Nature,
416:141–142, 2002.

[96] H. Shin et al. Neural decoding of finger movements using skellam-based
maximum-likelihood decoding. IEEE Transactions on Biomedical Engineering,
57(3):754–760, Mar 2010.

[97] L. H. Smith et al. Real-time simultaneous and proportional myoelectric control
using intramuscular EMG. Journal of Neural Engineering, 11(6):066013, Dec
2014.

[98] M. Spüler et al. Extracting muscle synergy patterns from EMG data using
autoencoders. In Alessandro E.P. Villa, Paolo Masulli, and Antonio Javier
Pons Rivero, editors, Artificial Neural Networks and Machine Learning – ICANN
2016, pages 47–54, Cham, Aug 2016. Springer International Publishing.

[99] I. Sturm et al. Interpretable deep neural networks for single-trial EEG classifi-
cation. Journal of Neuroscience Methods, 274(1):141 – 145, Jul. 2016.

[100] David Sussillo et al. A recurrent neural network for closed-loop intracortical
brain-machine interface decoders. Journal of Neural Engineering, 9(2):026027,
March 2012.

[101] I. Sutskever et al. On the importance of initialization and momentum in deep
learning. In Proceedings of the 30th Int. Conf. on Machine Learning, volume 28,
pages 1139–1147, Atlanta, Georgia, USA, Jun. 2013.

[102] V. A. Tadipatri et al. Overcoming long-term variability in local field poten-
tials using an adaptive decoder. IEEE Transactions on Biomedical Engineering,
64(2):319–328, Feb 2017.

[103] D. M. Taylor et al. Direct cortical control of 3D neuroprosthetic devices. Science,
296:1829–1832, Jun 2002.

[104] D.M. Taylor et al. Information conveyed through brain-control: cursor versus
robot. IEEE Trans. Neural System Rehabilitation, 11(2):195–199, Jun. 2003.



125

[105] F. V. G. Tenore et al. Decoding of individuated finger movements using surface
electromyography. IEEE Transactions on Biomedical Engineering, 56(5):1427–
1434, May 2009.

[106] Theano Development Team. Theano: A Python framework for fast computa-
tion of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[107] S. Waldert et al. Hand movement direction decoded from MEG and EEG. Jour-
nal of Neuroscience, 28(4):1000–1008, Jan 2008.

[108] M. Wand and T. Schultz. Pattern learning with deep neural networks in EMG-
based speech recognition. In 2014 36th Annual Int. Conf. of the IEEE Engineer-
ing in Medicine and Biology Society, pages 4200–4203, Chicago, IL, USA, Aug
2014.

[109] W. Wang et al. Human motor cortical activity recorded with micro-ECoG elec-
trodes, during individual finger movements. In 2009 Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society, pages 586–589,
Minneapolis, MN, USA, Sep. 2009.

[110] Y. Wang et al. Neural control of a tracking task via attention-gated reinforce-
ment learning for brain-machine interfaces. IEEE Trans. on Neural Systems and
Rehabilitation Engineering, 23(3):458–467, May 2015.

[111] Z. Wang et al. Decoding onset and direction of movements using electrocor-
ticographic (ECoG) signals in humans. Frontiers in Neuroengineering, 5:15, Aug
2012.

[112] D. J. Warren et al. Recording and decoding for neural prostheses. Proceedings
of the IEEE, 104(2):374–391, Feb. 2016.

[113] S. Wendelken et al. Restoration of motor control and proprioceptive and cu-
taneous sensation in humans with prior upper-limb amputation via multiple
utah slanted electrode arrays (USEAs) implanted in residual peripheral arm
nerves. J Neuroeng Rehabil, 14(1):121, Nov. 2017.

[114] J. Wessberg et al. Real-time prediction of hand trajectory by ensembles of cor-
tical neurons in primates. Nature, 408(1):361–365, Nov. 2000.

[115] J. R. Wolpaw and D. J. McFarland. Multichannel EEG-based brain-computer
communication. Electroencephalography and Clinical Neurophysiology,
90:444–449, Jun 1994.



126

[116] W. Wu et al. Closed-loop neural control of cursor motion using a Kalman filter.
volume 6, pages 4126–4129, San Francisco, CA, USA, Jul. 2004.

[117] W. Wu et al. Modeling and decoding motor cortical activity using a switching
Kalman filter. IEEE Trans. Biomedical Engineering, 51:933–942, Jun. 2004.

[118] W. Wu et al. Bayesian population decoding of motor cortical activity using a
Kalman filter. Neural Computation, 18(1):80–118, March 2006.

[119] Z. Xie et al. Decoding of finger trajectory from ECoG using deep learning. Jour-
nal of Neural Engineering, 15(3):036009, Feb 2018.

[120] T. Yanagisawa et al. Neural decoding using gyral and intrasulcal electrocor-
ticograms. NeuroImage, 45:1099–1106, May 2009.

[121] S. Zanos et al. Electrocorticographic spectral changes associated with ipsilat-
eral individual finger and whole hand movement. volume 2008, pages 5939–
5942, Vancouver, BC, Canada, Aug 2008.

[122] J. Zar. Biostatistics. Simon & Schuster, Upper Saddle River, NJ, (4th) edition,
1999.

[123] C. Zhang and Y. Ma. Ensemble Machine Learning: Methods and Applications.
Springer Publishing Company, Incorporated, New York, NY, 2012.




