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Modeling of hydraulic fracturing wastewater treatment systems must be very accurate 

so it can be used for real-time modeling and control of the process. The treatment of 

hydraulic fracturing wastewater is complex because of the variability of the 

composition of hydraulic fracturing wastewater. In this work, literature review of 

hydraulic fracturing wastewater and its existing treatment options is presented to 

demonstrate the difficulties of treating this type of wastewater, including the presence 

of azeotropic contaminants that cannot be removed by straightforward distillation. 

Additionally, modeling of individual water treatment system components, in particular 

low-pressure Venturi mixing nozzles, was conducted using several modeling methods, 

including analytical, empirical, and neural network models. Both analytical and 

empirical models were determined to be insufficiently accurate for wastewater 

treatment applications despite the empirical models being at least twice as accurate as 

the analytical model, for this application. To create a more general, computationally 

efficient, and accurate model, artificial neural networks were implemented. The 

concept of physics-guided artificial neural networks is introduced and evaluated on 

three different multi-species mixing applications. It was found that physics-guided 

artificial neural networks can reduce the error of the model by up to 40% for a given 

network architecture or can reduce the network architecture, and thus computational 

intensity, by up to 60% for a given error value, as compared to traditional black box 

artificial neural networks. In order to train the physics-guided network model, both the 



 

 

analytical and empirical models must be used. Once the physics-guided network model 

is trained it can be applied to any case within its training range with low error and 

computational intensity. The now-proven physics-guided network model concept can 

be applied to full wastewater treatment technologies, with sufficiently low error and 

computational intensity to be used for real-time modeling, control, and optimization of 

the system, using critical input parameters identified by literature review of existing 

treatment options.   
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CHAPTER ONE 

Introduction 

Hydraulic fracturing is the practice of injecting high pressure water and additives into 

the ground to break open rock formations and gain access to the oil and gas trapped 

within. The largest byproduct of this process is hydraulic fracturing wastewater. 

Hydraulic fracturing wastewater is difficult to effectively manage or treat due to the 

variability of its composition based on the age and location of the hydraulically 

fractured well, as well as the company that owns the well. In order to better understand 

the scope of this problem as well as existing solutions, a thorough literature review was 

conducted. The literature review includes the production, variable composition, 

management and treatment methods, and azeotropic contaminant removal of hydraulic 

fracturing wastewater. The ultimate goal of this research is to develop a modeling tool 

that can be applied to a number of hydraulic fracturing wastewater treatment 

technologies. In order to quantify the parameters critical to the successful operation of 

various existing wastewater treatment technologies, it was first necessary to conduct a 

literature review to identify the parameters these components have in common that 

apply to the larger process and application rather than the specific technology. It was 

also found that existing literature does not consider the possibility of water-based 

azeotropic contaminants being present in the wastewater and therefore review of 

treatment options specifically for azeotropic contaminants was also necessary. In order 

to optimize and control hydraulic fracturing wastewater treatment systems in real time, 

highly accurate and computationally efficient system models are required.  

To evaluate the accuracy and cost of modeling techniques for wastewater treatment 

systems as well as their components, empirical modeling was used to study a single 

component that can be applied to wastewater treatment technologies. Low-pressure 

Venturi nozzles were selected as a case study both because of their relevance to 

wastewater treatment applications and because they are difficult to accurately model 

analytically. In the low-pressure Venturi nozzles, losses that would be negligible in the 

more common high-pressure thermal ejectors are critical to the performance of the low-

pressure nozzles. Even when minor losses are included in the analytical model the error 
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is too high for the model to be useful. For these reasons low-pressure Venturi mixing 

nozzles were taken as a case study and several empirical models were developed to 

predict the suction ratio (a key parameter to control product water purity), or ratio of 

suction mass flow rate to motive mass flow rate, of the nozzles based on a parametric 

study of 109 cases. The empirical models can be used to inform the design of low-

pressure Venturi nozzles if a specific suction ratio is desired, or to determine the suction 

ratio of a commercially available nozzle. Two analytical models were also used to 

calculate the suction ratio. While the empirical models have significantly lower error 

than the analytical models, neither is sufficient for real time modelling and control of 

wastewater treatment systems. To address this issue, artificial neural networks were 

developed for low-pressure Venturi mixing nozzles, as well as swirling demisters and 

spray humidification applications, which are also relevant to wastewater treatment 

technologies.  

In order to further reduce the error and computational cost of the neural networks, 

physics-guided artificial neural network framework was developed and tested on the 

Venturi nozzle, swirling demister, and spray humidification applications. The novel 

physics-guided artificial neural network methodology combined traditional black box 

neural networks with analytical models such that the physics-guided network model is 

more accurate and less computationally intensive than either the black box neural 

network or CFD model. The physics-guided neural network model uses the result of 

the analytical model as an input parameter to improve the accuracy of the network. This 

physics-guided neural network framework has been proven and can be applied to 

complete wastewater treatment systems rather than individual components, with low 

error and low computational intensity, as soon as enough system data is available to 

train and test the network.  

Three research goals were identified to evaluate the above-described work:  

1. Identify common parameters among existing wastewater treatment methods 

such that a new model can be developed based on the common parameter space 

to accurately model hydraulic fracturing wastewater treatment for a number of 

technologies.  
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2. Develop empirical models for a component that is not well characterized 

analytically to provide a design guide for applications that need precise 

measurement or control of the mixing ratio, such as selective condensation of 

water from a muti-species gaseous flow.  

3. Develop framework for physics-guided artificial neural networks and optimize 

changes in network performance between traditional black box and novel 

physics-guided artificial neural networks using various components relevant to 

a wide variety of wastewater treatment systems.  

In order to address these three research goals, first a literature review was conducted to 

identify the parameter space for hydraulic fracturing wastewater treatment 

technologies. Once the parameter space had been identified, several modeling methods 

were used to model individual components used in wastewater treatment to help 

develop the framework for a versatile neural network model that can accurately model 

any thermally-driven hydraulic fracturing wastewater treatment technology.  

In Chapter Two, literature review of hydraulic fracturing wastewater and associated 

management and treatment methods is presented. This work discusses the most 

common treatment methods for hydraulic fracturing wastewater: the application of 

existing desalination technologies to wastewater. Desalination technologies are not 

well suited to the treatment of hydraulic fracturing wastewater due to its variability and 

the presence of azeotropic contaminants. Methods for the removal of azeotropic 

contaminants from wastewater are also presented. Existing review articles primarily 

focused on qualitative description of parameters and processes. To realize the goal of 

this research a thorough analysis of the parameter space overlap between various 

thermal technologies was needed to remove technology-specific elements from the 

modeling framework and develop a versatile tool for hydraulic fracturing wastewater 

treatment, instead of one applicable to a narrow range of technologies.  This manuscript 

is published in Desalination & Water Treatment.  

In Chapter Three, the development of empirical models to describe the performance of 

small-scale, low-pressure Venturi mixing nozzles is presented. These models can be 

used to inform the design of low-pressure Venturi mixing nozzles, or alternatively 

determine the suction ratio, or ratio of suction mass flow rate to motive mass flow rate, 
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for a given nozzle geometry. A parametric study was conducted using experimentally 

validated CFD simulations and the results of the parametric study were used to develop 

empirical models of the nozzle performance. The most general empirical model, that 

considers all cases studied, predicts the suction ratio within 22%, as compared to an 

analytical model that predicts the suction ratio within 270%. This work resulted in a 

manuscript published in Applied Mechanics.  

In Chapter Four, the framework for physics-guided artificial neural networks is 

developed and analyzed using three case studies across various wastewater treatment 

technologies: low-pressure Venturi mixing nozzles, swirling demisters, and spray 

humidification. In each case empirical models from existing literature were used to 

expand the data set used to train and test the networks. The physics-guided artificial 

neural networks use the same system input parameters as traditional black box neural 

networks plus an additional input: an initial guess for the output parameter of the 

network. This initial guess was generated using analytical models that are 

insufficiently accurate to be used as standalone models, with error between 20% for 

the swirling demister case and 617% for the spray humidification case. By including 

an initial guess as an input parameter, the error of the system can be reduced by up to 

40% for a given network configuration, or the network size can be reduced by up to 

60% for a given error value, as compared to traditional black box neural networks. 

The manuscript describing this work has been submitted to Engineering Applications 

of Artificial Intelligence.  

In Chapter Five, the dissertation is summarized. Each of the three research goals is 

addressed. The error and computational intensity of the various modeling methods 

considered in this work are compared. Future work for the physics-guided artificial 

neural network framework, both to quantify the limitations and potential applications 

of this type of network, is outlined.  

Nomenclature, acknowledgements (if applicable) and references are provided 

individually at the end of each chapter.  
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Reducing the Water Intensity of Hydraulic Fracturing: A Review of Treatment 

Technologies 

Abstract 

A novel thermal treatment technology is presented that can separate multitudes of 

dissolved solids, volatile contaminants, and azeotropes from wastewater, and may be 

able to fill a gap that currently exists in hydraulic fracturing wastewater treatment 

technologies. The vast majority of wastewater treatment methods are tuned to extract 

only certain contaminants; however, it can be difficult to predict the composition of 

hydraulic fracturing wastewater. This introduces a major technical challenge to design 

a treatment system that is largely composition agnostic. The novel technology 

presented in this paper uses humidification-dehumidification in nozzle-demister 

assembly to separate clean water from dissolved solids, suspended solids, and various 

volatile compounds.  

Several review papers already exist that discuss the difficulties and options around the 

treatment of hydraulic fracturing wastewater. These tend to focus on variations of 

existing desalination technologies which are adopted for hydraulic fracturing 

wastewater treatment. These reviews are also devoid of discussion of azeotrope 

removal from wastewater. This paper, in addition to discussing the difficulties and 

existing treatments for hydraulic fracturing wastewater, analyzes the treatment options 

for the separation of volatile contaminants and azeotropes, and illustrates the 

advantages of a thermal-based treatment. Treating hydraulic fracturing wastewater is 

different from treating seawater or other types of wastewater due to the higher 

concentration and variety of contaminants. The unique challenges as well as the 

necessity of treating hydraulic fracturing wastewater are explained. The relative merits 

of several existing treatment technologies are discussed. The existing literature on the 

topic lacks discussion of azeotropes in hydraulic fracturing wastewater as well as which 

technologies can be used to remove them. This paper addresses all of the above with 

particular focus on separation of contaminants and water-based azeotropes. 

2.1 Introduction 

Hydraulic fracturing is the practice of injecting high-pressure fluid into shale rock 

formations to break open the rock and gain access to the oil and gas trapped within. 
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This process, while less water intensive than conventional oil and gas extraction 

methods, still uses large volumes of fresh water per well [1–3]. Additionally, not all of 

the water used to fracture the well returns to the surface, thus the net water lost through 

this process may outweigh the low water intensity in terms of net impact on water 

resources [4]. Approximately 30 – 92% of the injected fluid remains in the formation 

[2,5,6]. Between 2005 and 2014, 9.4 billion cubic meters of water were used to 

hydraulically fracture wells in the United States [7]. Fracturing a single well uses 

anywhere from 7,000 to 21,000 m3 of fresh water [2,6]. Further reducing the water 

intensity of oil and gas extraction methods is necessary to reduce the total water load 

of energy production—especially considering the fact that ~15% of global water 

consumption is used for energy production [8]. The reduction of water consumption 

for hydraulic fracturing should be reduced whenever possible, especially in arid regions 

where water scarcity is already an issue.  

There has been a rapid increase in unconventional oil and gas development since the 

beginning of the millennium, particularly in the United States [2–4,7,9–12]. In 2018, 

there were 139,977 hydraulically fractured wells in the United States. This is 12,846 

more wells than there were in 2017 and 131,492 more wells than there were in 2000 

[13]. The largest byproduct of hydraulic fracturing is wastewater. Between 2004 and 

2013, the annual wastewater production from hydraulic fracturing increased 570% in 

Pennsylvania [1]. Additionally, water use per unit length of well has increased in recent 

years [4]. Natural gas production is projected to increase by 45% by 2040 [9]. As 

natural gas production increases, so will the consumption of water used to hydraulically 

fracture wells and the associated production toxic wastewater—posing serious 

environmental and health threats [7,12,14,15].  

The contaminants in hydraulic fracturing wastewater typically come from two sources: 

the chemicals added to the water used to frack the well, also called hydraulic fracturing 

fluid, and the water native to the rock formation, also called formation water (also 

known as connate water). Hydraulic fracturing fluid is typically about 90% clean water, 

8% sand, and 2% other additives [16,17].  Additives to the hydraulic fracturing fluid 

typically include gelling agents, friction reducing polymers, corrosion and scale 

inhibitors, surfactants, acids, and biocides, all used to increase the efficiency of the 
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hydraulic fracturing process [1,18]. Table 2.1 summarizes common chemicals in 

hydraulic fracturing wastewater as well as their concentrations five days after the well 

was drilled. While there are any number of chemicals a company could use, there are 

about 60 that are commonly used in industry, and only about 12 chemicals used per 

well [18]. The actual chemicals added to the water vary from company to company and 

well to well. The chemicals in the injected fluid may return to the surface in wastewater, 

may remain in the formation, or may degrade [19]. Additionally, chemical reactions 

may take place between the additives and formation water which create compounds 

more toxic than the parent compounds [7]. In the well, the chemical additives are 

exposed to high temperatures, pressures, and salinities, as well as a range of pH levels 

[20,21].  The conditions in the well, or downhole conditions, are extremely variable 

and may even differ between wells in the same shale play [20]. Some common additives 

have been studied in downhole conditions to determine how the reaction mechanisms 

may differ from near-surface environment reactions. One of the most commonly used 

biocides in hydraulic fracturing is glutaraldehyde. The downhole reactions of 

glutaraldehyde were found to be a function of temperature, pH, and salinity [20]. 

Additionally downhole decomposition of some corrosion inhibitors has been shown to 

produce hydrogen sulfide gas [21]. Given the extreme and unpredictable nature of 

downhole well conditions it can be difficult to predict the downhole reactions of 

hydraulic fracturing additives [20].     

Wastewater may contain salts, metals, metalloids, organics, or naturally occurring 

radioactive materials at various concentrations. The contaminants in the wastewater as 

well as their concentrations are a function of the additives in the hydraulic fracturing 

fluid, the local geology, and the time [3,7]. The salinity of the wastewater can vary 

from nearly that of fresh water to 14 times that of seawater, and the pH can be lower 

than that of produced water from oilfields or coalmine drainage [22,23].  
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Table 2.1: Most common components in hydraulic fracturing wastewater and their 

concentration in the wastewater 5 days after the well was fractured [24].  

Compound Boiling point 

(°C) 

Density 

(g/ml) 

Concentration 5 days 

(ppm) 

Total dissolved 

solids (TDS) 
- - 94,000 

Ammonia -33 0.77 70 

Benzene 80 0.89 625 

Toluene 100 0.88 833 

Ethylene glycol 197 1.11 29,700 

2-Butoxy-ethanol 171 0.9 10,000 

Other: chlorides, sulfates, Na, B, Sr, Ba, trace 

compounds 

Chlorides + Na: 98,000 

Wastewater is typically separated into two types: flowback water and produced water. 

Flowback water is the wastewater produced immediately after the well is drilled and is 

produced at a relatively high flowrate, up to 1000 m3 per day. It typically has 

contaminants that are very similar to that of the hydraulic fracturing fluid. After the 

flowback period ends (~2 - 3 weeks), produced water is then recovered from the well 

for the remaining life of the well (~30 - 40 years) at a relatively low and constant 

flowrate, between 2 and 8 m3 per day [25,26]. Produced water typically has 

characteristics similar to that of the brackish formation water, or water that was 

contained within the rock formation before the well was drilled, and therefore is more 

saline than the flowback water [1,27]. While flowback and produced waters are 

considered to be different by the oil and gas industry, they are both ultimately 

wastewater that will be disposed of or treated [7]. On average, produced water tends to 

be extremely saline with salt concentrations greater than 100,000 mg/L [28]. The most 

common salt in the wastewater is NaCl. The salt concentration tends to increase with 

time as the wastewater is in contact with the native brine for more extended periods of 

time. As the salt concentration increases, the concentration of naturally occurring 

radioactive material increases as well. The naturally occurring radioactive material is 

typically radium [16,29–33]. The change from flowback to produced wastewater is 

relevant to treatment because it demonstrates the temporal change in composition of 

the wastewater. A treatment that is well suited to the treatment of flowback water may 

not be suitable to treat produced water, or vice versa.  
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Hydraulic fracturing wastewater composition varies significantly [34]. Produced 

waters from the Marcellus (PA), Eagle Ford (TX), and Barnett (NM) shale plays were 

tested and the ten most common chemicals in produced waters were found to be 

sodium, potassium, lithium, magnesium, calcium, strontium, iron, silicon, sulfur, and 

phosphorus. However, even among the most common chemicals in produced water the 

concentration of the chemicals varies by orders of magnitude between plays [35]. Over 

1000 organic compounds have been identified in wastewater samples [34]. Volatile 

organic compounds, such as toluene and benzene, have also been found in wastewater 

samples [36]. Volatile organic compounds are toxic and may cause health issues even 

in low concentrations if not properly removed and disposed of [37]. 

2.2 Hydraulic fracturing wastewater management 

Due to the toxicity, high levels of salinity, total dissolved solids (TDS), and total 

suspended solids (TSS), proper management of hydraulic fracturing wastewater is 

difficult. The concentration of TDS tends to be much higher for wastewater produced 

by hydraulic fracturing as compared to other types of oil and gas production [38]. The 

range of TDS levels as well as its average level will vary based on local geology. For 

example, the Denver-Julesberg formation has TDS levels ranging from 20,000 to 

65,000 mg/L, and the Bakken formation has values ranging from 150,000 to 300,000 

mg/L [39]. Wastewater from the Marcellus formation in Pennsylvania has TDS levels 

ranging from 8,000 to 360,000 mg/L, with an average around 100,000 mg/L [6,25,27]. 

The suspended solids in the wastewater are largely made up of the sand used as 

proppant in the hydraulic fracturing fluid. TSS levels in wastewater range from 300 to 

3,000 mg/L [40].  

High salinity wastewater is not suitable to be treated by traditional wastewater 

treatment operations, among other reasons because the salt can harm the biological 

treatment processes that are common to municipal wastewater plants and therefore 

specialized methods of wastewater treatment are necessary [41]. About 95% of the 

wastewater produced in the United States is temporarily stored in surface pools before 

being transported to deep injection wells for disposal [42]. Deep injection disposal 

wells, also called Class II disposal wells, are geologically isolated from the hydraulic 

fracturing wells and are solely used for injection of wastewater, as shown in Figure 2.1. 
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Numerous production wells utilize the same disposal well. There are about 36,000 deep 

injection disposal wells in the United States, so the wastewater from a hydraulic 

fracturing well will be transported, sometimes across state lines, to a disposal well. 

Approximately 7.5 million cubic meters of wastewater are disposed of in deep injection 

wells every day in the United States [43]. 

 
Figure 2.1: Schematic of a hydraulic fracturing well (left) and deep injection disposal 

well (right). 

The annual cost associated with the transportation of hydraulic fracturing wastewater 

is estimated to have reached $2.1B in 2020 [10]. The transportation of wastewater to 

centralized disposal wells represents a significant expense for the industry, as well as 

an environmental risk. Approximately half of the wastewater produced over the 

lifetime of a well is produced in the first few weeks given the high flowrate of flowback 

water [44]. If a low cost on-site treatment approach was available, it would be more 

economical to treat wastewater where it is produced than at a central facility. Also, the 

on-site treatment of the wastewater may reduce many of the concerns about the 

management and potential risks of the wastewater [28]. Table 1.2 lists the approximate 

cost ranges of some disposal and treatment methods used in the industry. Such figures 
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tend to be proprietary information and are extremely difficult to find in publicly-

accessible resources. Table 2.2 shows figures based on one source [45].  

Table 2.2: Treatment cost for some existing approaches [45]. 

Disposal or treatment method Cost ($/m3) 

Underground injection 10 – 16 

Membrane-based 19 – 62 

Ion exchange 13 – 50 

Electro-coagulation 13 – 31 

Chemical precipitation 19 – 31 

 

Surface pools, transportation, and disposal wells all represent potential environmental 

and health risks. If the water seeps into the ground from a surface pool or leaks out of 

a disposal well, the contaminants can affect local ecosystems or water supplies. The 

most common sources of contamination from hydraulic fracturing wastewater are 

surface leaks and spills, illegal disposal, and inadequate treatment and discharge of 

wastewater [29,46]. Additionally, deep well injection has been shown to induce 

seismicity in the region of the disposal well [47–50]. In the central United States, where 

approximately 85% of all Class II injection wells are located, there has been an 804% 

increase in the number of earthquakes per year between 1973 – 2008 and 2009 – 2014 

[48,51]. Fortunately, with the right approach, treatment and reuse can be an attractive 

alternative to surface storage and deep well injection.  

The most common form of reuse is using wastewater as the hydraulic fracturing fluid 

for a new well. However, some treatment is still required. Without any treatment, 

wastewater would typically be unsuitable for fracturing new wells due to high 

concentrations of salt, hydrocarbon, grease, and biological matter [35]. Typically, the 

wastewater is filtered to remove the TSS and then mixed with fresh water before being 

used as hydraulic fracturing fluid [6]. While there are no uniform standards for the 

quality of the wastewater used to frack new wells, the water typically would not be 

reused when the TDS concentration is greater than 50,000 – 60,000 mg/L [3,17]. The 

treatment requirements vary based on what components are present in the wastewater, 

as well as the new well’s geology and hydraulic fracturing company. This form of reuse 

is only feasible while new wells are being hydraulically fractured. When more 
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wastewater is being produced than can be reused to hydraulically fracture new wells, a 

new reuse or treatment option will be necessary [6,52]. 

Beneficial reuse of the wastewater could help alleviate water scarcity issues rather than 

adding to them; however, nearly all beneficial reuse applications require significant 

treatment. One of the only cases of untreated wastewater being used outside of the oil 

and gas industry is dust suppression. Some states, including North Dakota, South 

Dakota, Nebraska, Kansas, Wyoming, Michigan, Indiana, Ohio, New York, 

Pennsylvania, and West Virginia, allow untreated wastewater to be sprayed on roads 

for dust control [28,53–55]. Beneficial reuse of treated water would include agricultural 

irrigation or livestock watering. All of these applications have minimum water quality 

standards. Agricultural irrigation is the most common application for beneficial reuse 

for treated wastewater from other industries [56]. 

2.3 Hydraulic fracturing wastewater treatment 

Treatment options for hydraulic fracturing wastewater often utilize well-established 

desalination technologies, such as reverse osmosis (RO), forward osmosis (FO), 

membrane distillation (MD), multistage flash distillation (MFD), multi-effect 

distillation (MED), and mechanical vapor compression (MVC) [57]. However, 

hydraulic fracturing wastewater and the seawater for which these technologies are 

optimized are very different. A desalination technology that works well for seawater 

treatment will not necessarily work well for wastewater treatment. The treatment of 

hydraulic fracturing wastewater poses unique challenges. Many technologies are 

limited by the TDS levels in the wastewater. Membrane based technologies (RO, FO, 

MD, etc.) also face the issue of fouling. Membrane processes rely on membranes that 

are specifically designed to work with a particular wastewater or separate specific 

contaminants. Hydraulic fracturing wastewater is highly variable and therefore it is 

difficult to design a membrane or draw solution that can treat all wastewaters. 

Additionally, azeotropic mixtures may exist in the wastewater which are mixtures that 

cannot be separated by simple distillation. One example is the binary azeotropic 

mixture of n-heptane and isoamyl alcohol in the chemical industry wastewater [58]. 

Another example is the wastewater from isopropanol industries. Such wastewater 

contains benzene and isopropanol which can form different azeotropes (i.e. binary or 
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ternary, and heterogeneous or homogenous) with water [59]. Most analyses of 

hydraulic fracturing wastewater are focused on organic compounds and further 

investigation is necessary in order to quantify the most common azeotropes in this kind 

of wastewater [19,34,35]. 

2.3.1 Membrane-driven technologies 

Membrane-driven technologies have the benefit of successfully filtering suspended 

solids and volatiles, but have the drawbacks of membrane fouling and the fact that it is 

not feasible to tailor membranes and draw solutions to each hydraulic fracturing 

wastewater stream due to their high compositional variability. Osmotic backwashing 

cleaning via the circulation of deionized water on both sides of a membrane has been 

shown to effectively restore water flux through membranes that has been reduced by 

fouling [60–63]. Additionally, backwash using ultrafiltration permeate, reverse 

osmosis concentrate and permeate, nanofiltration permeate, and forward osmosis draw 

solution have been used to membrane reduce fouling due to hydraulic fracturing 

wastewater [64]. To alleviate fouling issues, membrane-driven technologies typically 

utilize pretreatment to slow the fouling of the membrane [65,66]. Additionally, 

membrane treatments may be used to reduce membrane fouling in place of 

pretreatment. Use of double skinned membranes and zwitterionic polymers has been 

shown to significantly reduce membrane fouling and maintain water flux through the 

membrane [67]. There has also been anti-fouling progress using superhydrophilic 

ceramic membranes that have been shown to maintain permeate flux for at least ten 

days [68]. 
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Figure 2.2: Typical schematic of common membrane driven treatment technologies: a) 

RO, b) FO [57]. 

2.3.1.1 Reverse osmosis for wastewater treatment 

Reverse osmosis uses high pressure to force clean water through a semi-permeable 

membrane. Clean water is collected on one side of the membrane and concentrated 

brine effluent is collected on the other side. This process is shown in Figure 2.2a. 

However, for wastewater applications, this process is of limited applicability. 

Unfortunately, conventional RO is not economically attractive at TDS levels greater 

than 30,000 – 33,000 mg/L [69], and conventional RO is not capable of treating water 

with TDS levels in excess of 40,000 mg/L [10]. RO accounts for about 60% of the 

desalination of seawater and brackish water worldwide [70]. 

There are modifications to the traditional RO process that can increase the maximum 

treatable TDS level. Closed circuit desalination (CCD) increases the pressure on the 

feed side of the membrane with time, so as the concentration of the feed side increases 

the pressure used to overcome the osmotic pressure of the membrane also increases 

[71]. Given that hydraulic fracturing wastewater salinity also increases with time, the 

increase in pressure of CCD may help to treat the higher salinity produced water later 

in the life of the well. CCD RO was evaluated for hydraulic fracturing wastewater, and 

a TDS removal of 99.6% was obtained [72]. Additionally, a permeate side sweep, 

which uses fresh water to reduce the osmotic pressure gradient across the membrane, 

can be used. This is called osmotically assisted RO, which has been experimentally 

shown to increase the maximum TDS level to 100,000 mg/L – 140,000 mg/L [73]. 

Given the TDS limits, RO alone may be limited to a pre- or post-treatment, but when 
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modifications such as CCD or osmotic assistance are made to the process it may be 

suitable as a standalone treatment for hydraulic fracturing wastewater. 

2.3.1.2 Forward osmosis for wastewater treatment 

Forward osmosis utilizes a draw solution on one side of a semi-permeable membrane 

to draw clean water through the membrane, leaving a concentrated effluent. The water 

that permeates through the membrane mixes with the draw solution and must then be 

separated from the draw solution, as shown in Figure 2.2b. The limiting factor for this 

process is the concentration of the draw solution. The osmotic pressure across the 

membrane must push water to the draw solution, or more concentrated side of the 

membrane. If the wastewater is more concentrated than the draw solution, the FO will 

not purify water. There needs to be a draw solution that works for even the most 

contaminated wastewater. In order to maintain the concentration of the draw solution, 

another process, such as RO or distillation, must be used to separate the treated water 

from the draw solution [74,75]. For FO, the TDS limit of treatment is typically 70,000 

mg/L, but can be as high as 200,000 mg/L depending on the membrane [3,6,74]. A 

drawback of FO is that it is a relatively slow process. In the absence of high pressure 

forcing fluid motion through the membrane, the water permeates through the 

membrane very slowly [66]. On the other hand, a significant advantage to FO is that it 

has been shown to be capable of producing treated water that meets surface discharge 

and drinking water standards [66,76,77]. 

Alternatively, if purity of the treated water is not critical, the draw solution and treated 

water may not need to be separated; this is called osmotic dilution mode. For this type 

of operation, there is no re-concentration of the draw solution, instead the dilute draw 

solution is the product of this process and new draw solution is constantly introduced 

to the system [78,79]. Osmotic dilution may be well suited to the treatment of hydraulic 

fracturing wastewater as the draw solution concentration will not decrease with time. 

Osmotic dilution FO has been applied to the treatment of oil and gas wastewater in the 

Haynesville shale formation via the Green Machine, developed by Hydration 

Technology Innovations (Albany, OR) and Bear Creek Services (Shreveport, LA)  

[66,80]. The Green Machine treats over 80% of the wastewater from any given well. 

This water has been internally reused to hydraulically fracture other wells [66]. 
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2.3.1.3 Membrane distillation for wastewater treatment 

Unlike other membrane separation processes, membrane distillation (MD) is a 

thermally-driven process and the driving force for each component to pass through the 

membrane pores is its partial pressure gradient in the vapor phase inside the pores due 

to the temperature difference across each pore [81]. The hydrophobic, microporous 

membrane prevents liquids or solutions from entering its pores due to the surface 

tension forces. In the MD process a liquid feed mixture at relatively high temperature, 

typically 60 – 90°C, will be in contact with one side of a porous membrane which 

separates the warm solution of feed mixture and the permeate that then enters into a 

cooling chamber [81]. The more volatile component moves as vapor phase, from the 

feed mixture to the permeate side of the membrane. At the permeate side this vapor is 

either condensed or convected away from the membrane module, depending on the MD 

configuration. As a result, the feed side will be concentrated. MD is a thermally-driven 

technology, but because it utilizes a membrane, it is susceptible to fouling [82]. 

However, because the membrane in MD is not a physical barrier to contaminants, rather 

a support for the vapor-liquid interface, membrane fouling is less of an issue than it is 

for other membrane technologies, like RO and FO [81]. When MD was tested with 

hydraulic fracturing wastewater, iron-based deposits formed on the membrane, but was 

shown to have negligible effects on the performance of the membrane [31]. 

MD has been used to treat wastewater from a number of industries, including textile 

and pharmaceutical, as well as wastewater containing heavy metals and wastewater 

containing sulfuric acid solutions [83–86]. One of the benefits of using MD as a 

hydraulic fracturing wastewater treatment is that it is not significantly affected by 

salinity [3,6]. Therefore, the temporal change in salinity of hydraulic fracturing 

wastewater would not significantly impact the operation of MD. This process is capable 

of treating wastewater with TDS levels up to 350,000 mg/L [65]. MD has been shown 

to outperform RO and evaporative crystallization for hydraulic fracturing wastewater 

treatment, with ion removal efficiencies above 99.9% [87]. Additionally, MD tends to 

operate at temperatures near those typical of produced water [3]. In some cases MD 

has been paired with other technologies, such as precipitative softening and walnut 
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shell filtration, to treat hydraulic fracturing wastewater with water recovery rates 

greater than 80% [88]. 

2.3.1.4 Other membrane technologies 

RO, FO, and MD are by far the most common membrane driven treatment 

technologies, but there are a number of other, less common, membrane technologies 

that may be used for this application, at least as a pre- or post-treatment. Ultrafiltration 

(UF) and microfiltration (MF) are low pressure membrane-driven processes. Given the 

low pressure demand of these processes, they have a relatively small footprint which 

makes them suitable for on-site treatment [65]. UF & MF operate at pressures ranging 

from 0.5 to 5 bar [89].  UF & MF are rarely used as independent processes, but are 

commonly used as a pretreatment for RO, FO, or membrane distillation [90–92].  

Electrodialysis is an electrically-driven membrane process that has been shown to treat 

wastewater with TDS levels, below 5,500 mg/L, to drinking or livestock watering 

quality, making it a promising post-treatment option for treatment processes not 

capable of reducing TDS levels so dramatically [93]. For example, electrodialysis could 

be used as a secondary treatment after RO or FO to increase the quality of the clean 

water. 

2.3.2 Thermally-driven technologies 

Thermally-driven technologies are better able to deal with high levels of salinity and 

avoid issues with membrane fouling or the need of specifically tailored membranes or 

draw solutions. However, due to the lack of a physical filter, these processes do not 

always remove volatiles. Evaporation or crystallization have been suggested as the only 

ways to successfully treat high salinity wastewater in a single process [5,94]. 

Additionally, for on-site hydraulic fracturing wastewater treatment applications, 

thermal processes can take advantage of otherwise waste thermal energy from the 

flared gas [95]. 
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Figure 2.3: Schematic diagrams of common thermally-driven treatment technologies: 

a) MVC, b) MED [57]. 

2.3.2.1 Mechanical vapor compression for wastewater treatment 

In a mechanical vapor compression (MVC) system, heat is transferred to the 

wastewater from superheated compressed vapor in a tube evaporator. The wastewater 

is sprayed over the tube evaporator and the steam is then mechanically compressed and 

the distillate is collected in condenser channels. The main demand of energy for this 

process is the electricity or mechanical energy required to compress the vapor [96]. The 

heat required to evaporate the wastewater, on one side of the tube evaporator is supplied 

by the condensation of the distillate on the other side of the tube evaporator [97]. 

Additionally, the hot condensate is used to preheat the incoming wastewater to increase 

the energy efficiency of the system. A schematic of an MVC system is shown in Figure 

2.3a. The main advantages of MVC are that it does not require pre-treatment because 

it is not prone to fouling or clogging, and that it can treat wastewater with TDS levels 

up to 200,000  mg/L [3]. 

2.3.2.2 Multi-effect distillation for wastewater treatment 

Multi-effect distillation (MED) is a process in which feed water is sprayed over a hot 

tube bank. Some of the water will evaporate and will move to the next effect where the 

clean steam will be used as the heat source for the tube bank. Concentrated brine will 

be collected at the bottom of the system. Some of the steam will condense inside the 

tubes and will be collected as clean product water. The number of times the steam is 

used as the heat source for a tube bank defines the number of effects, as the number of 

effects is limited by the temperature difference between the condensing temperature at 

the first effect and the condensing temperature at the last effect [98]. Each successive 
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effect will take place at a lower temperature and pressure. This process is shown in 

Figure 2.3b. 

MED is one of the oldest desalination technologies and can effectively treat high 

salinity feeds [98–100]. MED has been tested as a hydraulic fracturing wastewater 

treatment only after significant pretreatment. The pretreatments were done to remove 

organics and oils from the wastewater prior to the MED process. The number of effects 

in MED is important to the operation of the process as the number of effects becomes 

a trade-off between the cost of the process and the quality of the treated water [101]. 

2.4 Azeotrope separation techniques 

There are a number of reviews on the topic of hydraulic fracturing wastewater 

[1,3,7,11,12,17,29], however, these reviews do not mention the formation of azeotropic 

mixtures in hydraulic fracturing wastewater. Removing contaminants that form 

azeotropes in the wastewater requires specialized methods beyond desalination 

treatments adapted to hydraulic fracturing wastewater. Therefore, there is a gap in 

existing review literature on this particular type of contamination and its removal 

methods. 

An azeotropic mixture is one in which the equilibrium compositions of the vapor and 

liquid phases are the same and do not change with simple distillation. Consequently, 

conventional distillation cannot be used to separate azeotropic constituents. Non-ideal 

behavior of some components in a mixture can yield azeotropic systems. If the 

components are dissimilar, repulsion forces are very strong, and activity coefficients 

are greater than unity, then minimum-boiling azeotropes can form.  Alternatively, if the 

components are similar, attract each other, and activity coefficients are less than unity, 

then maximum-boiling azeotropes can form [102]. The separation techniques used for 

azeotropic separation can be divided into two main categories: enhanced distillation 

techniques and membrane processes; however, there are other emerging techniques 

which have been investigated in some studies but are not yet industrialized. Also, there 

are treatment systems which take advantage of the combination of multiple separation 

methods. The most significant distillation techniques suitable for azeotropic separation, 

which are discussed in later sections, include azeotropic distillation, extractive 

distillation, pressure swing distillation and fixed-bed adsorption distillation; while 
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suitable membrane processes include pervaporation, vapor permeation, membrane 

distillation and frictional diffusion. 

2.4.1 Distillation 

Azeotropic distillation and extractive distillation are techniques based on the addition 

of a third component called an entrainer that alters relative volatility of components of 

the original azeotropic mixture. In azeotropic distillation, this leads to the formation of 

a new azeotrope with properties that differ from the target compound and enables 

separation. According to the number of phases present in the new azeotrope mixture, 

the azeotropic distillation will be either homogeneous or heterogeneous [103]. 

Considering a binary azeotropic mixture as a reference, in heterogeneous azeotropic 

distillation, adding the entrainer will increase the volatility of one of the two 

components, leading to a mixture of two liquid phases after the vapor from overhead is 

condensed. In this case, the process will consist of two distillation columns and a 

decanter to separate the entrainer from the other component [104–106]. In 

homogeneous azeotrope separation, however, the overhead product is one liquid phase, 

so a liquid-liquid extraction column is needed after the first column to separate the 

overhead product from the entrainer [105]. In industrial applications of azeotropic 

distillation, it is more common to form a heterogeneous minimum temperature 

azeotrope. In this way one of the components and the entrainer will be carried to the 

overhead of the column and then a decanter is applied to separate the two liquid phases 

[104]. Jordi et al. [103] used Aspen Hysys to simulate azeotropic distillation for a 

binary mixture of 1-propanol and water at 101.3 kPa, using diisopropyl ether as the 

entrainer. They showed that it is an effective entrainer for 1-propanol dehydration. In 

an experimental study, Vicente et al. [107] studied different potential entrainers for 

ethanol dehydration in azeotropic distillation. They performed the experiments in a 

pilot scale azeotropic distillation column and showed that naphtha is an effective 

entrainer for such azeotopic separation. Puyun et al. [108] also proposed two azeotropic 

distillation processes for the separation of azeotropic mixture of 2,2,3,3-tetrafluoro-1-

propanol and water, using chloroform and p-xylene as two potential entrainers. They 

showed their experimental results are in good agreement with those from the 

simulation. 
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2.4.2 Extractive distillation 

The extractive distillation method is similar to azeotropic distillation in terms of adding 

a third component to the azeotropic mixture, but they are different processes. In 

azeotropic distillation, the entrainer is a more volatile component than the azeotropic 

solution. Therefore, it changes the volatility of one of the two components and will be 

taken from the overhead of the column along with that component. Adding the third 

component in azeotropic distillation forms a new azeotrope, however, in extractive 

distillation adding the third component (solvent agent) only increases the relative 

volatility and does not form an azeotrope with any of the components of the original 

mixture. The other important difference is that the solvent agent added into an 

extractive distillation process is a heavy substance with a high boiling point which will 

be recovered from the bottom of the second column; while in azeotrope distillation, the 

entrainer added to the separation process is a low boiling point substance that will be 

recovered from the top of the column. Azeotropic distillation, compared to extractive 

distillation, uses more energy to vaporize the entrainer at the top of the column 

[103,106,109]. 

In extractive distillation, a sufficient change of relative volatility is essential within the 

separated components when the solvent agent is added to the feed mixture. The solvent 

agent can be either solid salt, liquid solvent, a combination of solid salt and liquid, or 

ionic liquid.  Selecting a suitable solvent is important to ensure effective and 

economical separation. Using solid salt as the solvent agent has the advantage of high 

separation ability; however, such salts be decomposed at high temperatures and can 

corrode the equipment. Liquid solvents may not have the same high separation capacity 

as solid salt, but are widely used due to the ease of their transport and recovery 

[110,111]. Extractive distillation using a mixture of solid salt and liquid solvent is a 

promising method for separation, since it integrates the advantages of solid salt and 

liquid solvent techniques, but it needs to be economically viable. Extractive distillation 

with ionic liquids has many advantages, including negligible vapor pressure (which 

means it does not pollute the top product of the column), as well as high thermal and 

chemical stability under the operating conditions of extractive distillation columns. 

However, distillation using liquids is not very common in industry due to material cost 
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[111]. Yong et al. [112] carried out some experiments to study the effect of deep 

eutectic solvents (DES) on the elimination of mixture’s azeotropic point in an 

extractive distillation process.  They used an ethanol-water system as it is a typical 

industrial azeotropic mixture and showed that adding ChCl/urea as the entrainer can 

increase the relative volatility of the mixture to more than 4.7 times and eliminate the 

azeotropic point [112]. In another study, Wang et al. [113] used the UNIQUAC model 

to investigate the separation of acetone and chloroform mixture by adding N-methyl-

2-pyrrolidone (NMP) as the heavy entrainer in an extractive distillation column. They 

compared their results with those from previous works that used dimethyl sulfoxide or 

ethylene glycol as the entrainer to show that using NMP is more economic in separation 

of this maximum-boiling azeotropic mixture. 

2.4.3 Pressure swing distillation 

Another distillation technique for azeotrope separation is pressure swing distillation 

which takes advantage of the fact that the azeotrope point can be shifted by changing 

the pressure when the azeotropic mixture is pressure sensitive. In this way, a 

homogeneous azeotropic mixture whose azeotrope point changes with pressure can be 

separated. This method applies two distillation columns working at two different 

operating pressures: one at low pressure and the other at high pressure. Depending on 

the type of azeotrope (i.e. maximum boiling or minimum boiling) the products are 

collected from the top or bottom of the column [59,105,114,115]. Figure 2.4 shows a 

schematic of pressure swing distillation for a minimum boiling azeotropic mixture. 

Yue et al. [59] studied the separation of a ternary mixture of benzene, isopropanol, and 

water. They compared the simulation results for two different techniques: pressure 

swing distillation and heterogeneous azeotropic distillation. The results from their 

study showed that total annual cost for pressure swing distillation is almost half of the 

combination of both techniques, so it is a more economic and energy efficient method. 

They also showed that pressure swing distillation is an effective method for wastewater 

treatment containing benzene and isopropanol. William L. [116] applied Aspen to 

simulate and optimize the separation of a binary mixture of methanol and 

trimethoxysilane in a pressure swing distillation process. The above mixture forms a 

maximum-boiling homogeneous azeotrope at 1 bar and 87.94°C when the 
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concentration of methanol reaches to 28.65 mol %.  In this study, they showed the 

optimum operating condition for the low pressure and high pressure columns are 0.25 

and 7 bar, respectively. Furthermore, Shisheng et al. [117] have explored various 

aspects of pressure swing distillation, especially the application of this method in 

azeotrope separation, and published their review study in 2017. 

 
Figure 2.4: Schematic of pressure swing distillation for a minimum boiling azeotropic 

mixture. 

There are other distillation techniques that are applicable for azeotrope separation, such 

as fixed-bed adsorption distillation which applies molecular sieves as active packing 

material in a packed-bed distillation column instead of the conventional inert packing 

materials. Molecular sieves can alter the vapor-liquid equilibrium of feed components 

and improve the relative volatility to help azeotropic mixture separation [118]. An 

azeotrope dividing wall column is another enhanced distillation column technique 

useful in azeotrope separation. The dividing wall column reduces the number of 

required columns by installing a partition wall inside the column which leads to a 

significant reduction in energy consumption and capital cost. 

2.4.4 Membrane distillation for azeotrope separation 

Conventional distillation and membrane distillation both depend on vapor-liquid 

equilibrium as the basis for separation. However, the most significant difference 

between these processes is the feed water temperature. Membrane distillation does not 

require heating the feed to its boiling temperature, which is necessary for conventional 

distillation. Moreover, the target components to be separated can have similar boiling 

points or form azeotropes. There are four different configurations developed to perform 
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membrane distillation: direct contact membrane distillation (DCMD), air gap 

membrane distillation (AGMD), sweeping gas membrane distillation (SGMD), and 

vacuum membrane distillation (VMD). They differ in the way in which the vapor is 

condensed and/or removed from the membrane distillation module. Sarita et al. [119] 

carried out experimental studies on the separation of HCl–water azeotropic mixture 

(20.2 wt% HCl) using air gap membrane distillation. Specifically, they investigated the 

effects of parameters such as feed temperature, air gap widths and selectivity on the 

permeation and total flux. Their experimental results also showed there is an increase 

in permeate flux by decreasing air gap thickness and increasing temperature at the air 

gap. They showed that 31 wt% is the maximum concentration level of HCl achievable 

at 45°C of feed temperature. They also developed heat and mass transfer correlations 

for this separation process [119]. Hong et al. [120] introduced a methodology for 

designing and optimizing a membrane-assisted distillation process for dehydrating 

ethanol which is a common example of aqueous azeotrope dehydration in industry. 

They showed that enriching the ethanol up to 99.6 wt% is achievable by using their 

methodology to define the optimum hybrid configuration. More information can be 

found in [121]. 

2.4.5 Pervaporation 

Membrane-based processes are cleaner than conventional distillation because they 

require less energy and do not need additional chemicals. Pervaporation is an effective 

membrane technique for azeotropic separation. Unlike distillation, it is not limited by 

the thermodynamic vapor–liquid equilibrium. In distillation, separation is based on the 

difference in relative volatilities of the components. However, in pervaporation the 

driving force for separation is the difference in chemical activity and diffusion rate of 

the components into a membrane [122,123]. Pervaporation is an energy efficient 

process compared to most conventional separation methods such as distillation because 

only the latent heat of minor component that permeates within the membrane must be 

supplied. Also, pervaporation units often have small footprints and do not require 

entrainers [123,124]. Nitin et al. [122] built up an experimental setup to study the 

pervaporation separation of two azeotropic mixtures: ethanol/water and 

acetonitrile/water. They performed experiments to investigate the effects of feed 
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temperature and solution concentration on the separation process. They also carried out 

experiments for two different membranes: poly vinyl alcohol (PVA) and PVA-poly 

ether sulfone (PES). Results from their experiments revealed that the flux of both 

membranes increases by increasing the feed temperature and concentration. They 

showed for both binary systems, using PVA-PES membrane in pervaporation leads to 

a higher flux [122]. Pervaporation has been proven to be one of the most promising 

techniques for azeotrope separation. However, choosing a suitable membrane is 

crucial, as it affects the efficiency of the separation. In this regard, Yee et al. [124] have 

accomplished a review study on recent development of membranes in pervaporation 

processes. 

2.4.6 Vapor permeation 

Vapor permeation is similar to pervaporation, except that in vapor permeation the feed 

is a gaseous as opposed to a liquid mixture. In the vapor permeation process, the feed 

temperature and the driving force do not reduce within the vapor permeation module, 

so there is no need for a heat exchanger after each module. A vacuum is often needed 

on the permeate side to run the process at lower pressures which leads to lower 

condensation temperatures. Consequently, it has high operating costs due to the need 

for low operating pressure and is usually not used as a standalone separation unit. In 

many applications, because of high operating costs of the pervaporation technique, a 

more economical way is to use pervaporation or vapor permeation only to break the 

azeotropes and then couple that with a secondary separation process such as distillation 

columns [125,126]. Petr et al. [127] carried out experiments to compare pervaporation 

and vapor permeation techniques with different membranes. They examined the 

separation of an azeotropic mixture of dimethyl carbonate and methanol, and asserted 

that vapor permeation using PIM-1 membranes is the most selective membrane-based 

technique in removing the dimethyl carbonate from this azeotropic mixture. 

2.4.7 Frictional diffusion 

In 2007, Marcel at al. [128] introduced a novel separation technique for azeotropic 

mixtures. They claimed that by using a gas that has a higher binary diffusive friction 

with one of the two components of a binary azeotropic mixture, diffusion of the gas 

leads to the separation. They modeled this concept and performed the experiments in a 
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shell and tube module with a counter current configuration similar to what is shown in 

Figure 2.5. In order to prevent the mixing of feed mixture with the enhancer gas (sweep 

gas), they applied a porous barrier. Using CO2 as the enhancer gas for the separation of 

ethanol/water mixture, they performed the experiments and provided results to support 

this novel concept which they named frictional diffusion [128]. Frictional diffusion 

(also called friction difference or FricDiff) is based on the difference in diffusion rates 

of the constituents of a gas or vapor mixture when they diffuse through an enhancer 

gas. In this separation technique, flow of the feed mixture and that of enhancer gas are 

separated by a porous barrier.  The feed mixture passes through this nonselective barrier 

and gasses diffuse due to the concentration difference of the components on each side. 

For example, heavier components in the feed mixture have lower diffusion rates as they 

have larger molecular weights. So they have more friction with the sweep gas. This 

leads to enrichment of the target product either on the feed or sweep side. One of the 

advantages of this separation process is low energy consumption and absence of 

hazardous solvents [106,126]. However, pressure drop across the porous barrier should 

be minimized as it causes convective mass transfer and adversely affects the separation. 

Breuer et al. were another group who examined using FricDiff for the separation of an 

azeotropic mixture of 2-propanol and water. They studied the effects of operating 

conditions and the porous barrier on the separation process using a detailed numerical 

model [126]. 

 

Figure 2.5: Schematic of frictional diffusion. 

Table 2.3 shows a summary of separation techniques that can be useful in azeotrope 

separation.
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Table 2.3: Separation techniques applicable for azeotrope separation. 

Separation Processes Description Advantages Drawbacks Ref 
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Azeotropic 

distillation (AD) 

A third component (entrainer) is 

added to the mixture. The 

entrainer is more volatile than 

the azeotropic solution and 

increases the volatility of one of 

the two components, facilitating 

the separation. 

• Well understood process  

• Abundant theoretical and 

practical knowledge  

• Energy intensive   

• Large column diameter  

• More difficult control 

• Need for a secondary 

distillation of the 

entrainer 

[103–

105,107,1

09,114,11

5,129,130] 

Azeotrope dividing 

wall column (A-

DWC) 

Only requires one column for 

separation. This leads to energy 

savings and significantly reduces 

the capital and operating cost. 

• Low capital cost • High actual steam cost 

due to combining two 

reboilers into one 

[131,132] 

Extractive 

distillation 

(ED) 

with 

solid 

salt 

A third component (separating 

agent) is 

used to change relative volatility 

of the components and overcome 

the azeotrope. For binary feed, 

one pure component exits as the 

top product of first column and 

the other component plus solvent 

agent accumulates at the bottom 

and can be separated in a 

secondary distillation column.  

• High separation ability • Corrosion [110,111,1

33–137] 

with 

liquid 

solvent 

• Easy operation  

• No problems of dissolution, 

reuse and transport  

• High consumption of 

energy in case of large 

solvent ratio 

• Impurities in the top 

product because of 

volatile solvents 

with a 

mixture 

of solid 

salt and 

liquid 

solvent 

• Easy operation  

• High separation ability 

• Impurities in the top 

product because of 

volatile solvents 

• Corrosion and salt 

decomposition at higher 

temperature 

• Impurities of solvent in 

the products 

with 

ionic 

liquid 

• Easy operation 

• High separation ability  

• Negligible vapor pressure at 

room temperature (i.e. lower 

loss of solvent and no 

impurities in the top product) 

• High cost  

• Impurities of solvent in 

the products 

• Large energy 

consumption and capital 

investment 
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Separation Processes Description Advantages Drawbacks Ref 

 

 

 

 

 

 

 

 

 

 

Distillation 

Processes  

• Operating at a wide 

temperature range 

• Difficulty of controlling 

the process due to the use 

of a third components 

• Need for a secondary 

distillation of the 

auxiliary solvent 

Pressure swing 

distillation (PSD) 

It takes advantage of the 

sensitivity of the azeotrope point 

to pressure variation in order to 

accomplish the separation in a 

two-column process operating at 

different pressures. 

• Low contamination in the 

product due to the absence 

of a third component 

• Complexity of operation 

and process control 

• Decomposition of heat-

sensitive components 

with increasing pressure 

• Higher operating cost in 

case of using a vacuum 

pressure 

[59,102,11

7,138–

140, 141] 

Fixed-bed 

adsorption 

distillation (FAD) 

Molecular sieves or ion-

exchange resins are used as 

separating agents. The molecular 

sieves alter the vapor-liquid 

equilibrium of the mixture's 

components.  

• Environmentally friendly  

• No extra organic solution  

• No solvent loss 

• Difficulty to regenerate 

the molecular sieves  

• Lower separation effect 

than the separating agent 

used in the extractive 

distillation 

[118,123] 

Membrane 

Processes 

Pervaporation (PV) 

It is a combination of two 

mechanisms: permeation and 

evaporation. Components of a 

liquid mixture permeate through 

a membrane and evaporate into 

the other side. It is useful in 

azeotropic separation, because it 

is based on the difference in 

sorption and diffusion of the 

components, not the relative 

volatility. 

• Small footprint 

• Environmentally friendly  

• Simplicity and flexibility  

• Low energy consumption   

• Independent of relative 

volatility, so suitable for 

azeotrope separation 

• No additional impurities in 

the final product  

• High capital cost  

• Relatively low permeate 

fluxes (i.e. large 

membrane areas)  

• Low condensation 

temperatures (i.e. high 

operating costs) 

• Need for integration with 

conventional separation 

units  

[122–

124,142] 

 

Vapor permeation 

(VP) 

It is similar to the pervaporation, 

except that in vapor permeation 

the feed is a mixture of vapors or 

vapor and gas. 

• Simple operation and control 

• Reliable performance and 

high flexibility 

• Rather expensive  

• Relatively low permeate 

fluxes (i.e. large 

membrane areas)  

[125,127] 
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Separation Processes Description Advantages Drawbacks Ref 

• High product purity (no 

contamination 

by entrainer) 

• Small footprint  

• Low condensation 

temperatures (i.e. high 

operating costs)  

• Need for integration with 

conventional separation 

units  

Membrane 

distillation (MD) 

It is based on thermal gradient 

across a porous membrane that 

only passes the vapors. 

Nonvolatile components remain 

on the feed side; so there will be 

neither solid nor nonvolatile 

components in the product. 

• Relatively low cost and low 

energy consumption 

• Large vapor-liquid interface 

area per unit volume 

compared with conventional 

distillation  

• Possible under mild 

operating conditions (i.e. not 

necessary to increase feed 

temperature to its boiling 

point.) 

• Low permeate flux 

• Relatively small thermal 

efficiency in DCMD 

configuration  

[120,121,1

43] 

Frictional diffusion 

(FricDiff) 

 

It is based on differences in 

diffusive velocities of the feed 

components when diffusing 

through a sweep gas.  

• Relatively low energy 

consumption and absence of 

hazardous solvents 

• Need to avoid pressure 

drop across the porous 

barrier (it causes 

convective mass transfer 

and adversely affects the 

separation).  

[106,126,1

28] 
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2.5 Humidification-dehumidification nozzle-demister 

We are developing a new wastewater treatment technology which uses 

humidification-dehumidification in a subsonic swirling nozzle combined with an 

in-line demister to reclaim clean water from wastewater (US Patent Application 

62882970). The method takes advantage of a widely-observed trend in water 

azeotropes as well as the thermodynamics of the humid streams to efficiently 

separate and selectively condense water vapor. The technology is largely insensitive 

of the composition of the feed wastewater. It can be containerized and mobilized 

from site to site with minimal mounting and dismounting time and expense. 

Supersonic swirling nozzle-demisting is used in the oil and gas industry to 

dehydrate natural gas after extraction [144]. By taking advantage of the same 

principles of operation, but at subsonic velocities, the nozzle-demister will treat 

hydraulic fracturing wastewater while utilizing technology that is already familiar 

to the oil and gas industry. 

2.5.1 Azeotrope separation 

The prevalent method of separation is to break an azeotrope by introducing a 

compound that forms a stronger azeotrope with one/some of the constituents, as 

previously discussed. However, this approach is not practical for hydraulic 

fracturing wastewater due to the vast variety of chemicals and azeotropes. The new 

treatment approach, which avoids this limitation, relies on two observations: 

1. Hundreds of water azeotropes have been documented, and in a large majority of 

cases the saturation temperature deviates significantly from that of water (Figure 

2.6). Our process will operate narrowly around the saturation point of water such 

that azeotropes with saturation temperatures that are different from that of water are 

separated from the treated water. This will be accomplished by heating the 

wastewater to nominally 1°C above the saturation temperature of water and then 

cooling the vapor to nominally 1°C below the saturation temperature, as discussed 

further below. If the process is controlled within ±1°C of water’s saturation 

temperature, only 2.5% of azeotropes may remain; some of which have not been 

reported in hydraulic fracturing wastewater and some are innocuous, such as butyric 

acid-water. 

2. Hydraulic fracturing wastewater is by-and-large made of dissolved solids and 

low-volatility compounds. Many of these contaminants are likely to be present in 
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concentrations which are orders of magnitude smaller than their respective 

azeotropic mixtures with water. As little as 2% of all contaminants may evaporate 

and even fewer form a water-based azeotrope. Furthermore, in that 2%, the mass 

ratio of water in the azeotrope is relatively small; in almost half of its azeotropes, 

water makes up less than 30% of the total mass.  This means that the vast majority 

of water is not engaged in an azeotrope and is recoverable. 

Figure 2.6 shows the saturation temperature of 280 common azeotropes versus the 

water ratio in each azeotrope. The saturation temperature of water is shown as a red 

line. In the new treatment, first the wastewater will be heated to 1°C above the 

saturation temperature of water. The waste vapor will contain all the azeotropes 

shown in the red box. The azeotropes in the white box will remain in the wastewater 

tank. Then, the vapor will be cooled to 1°C below the saturation temperature of 

water. Only the azeotropes in the narrow blue band will condense with the clean 

water. Thus, by carefully controlling the temperature of the process, 98% of 

potential azeotropes can be separated from the treated water. 

 

Figure 2.6: Saturation temperature vs. water mass ratio for 280 common binary 

and ternary water azeotropes, raw data extracted from [145,146].  

2.5.2 Operation  

The process schematic is shown in Figure 2.7. Dry air is drawn into the nozzle, 

shown as point 0 in Figure 2.7, and is heated via low-grade heat. Next, the fast-

moving hot air comes into contact with a vortex generator (labeled as point 1) which 

swirls the incoming stream. Then, wastewater vapor enters the nozzle (point 2) and 

mixes with the air (point 3), the wastewater vapor is at a temperature 1°C above the 

saturation temperature of water. The humid air mixture, at point 3, continues 
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through the converging nozzle. As the velocity of the air increases due to the 

reduction in cross-sectional area, the temperature of the air will decrease as the 

thermal energy is converted to kinetic energy. As the temperature drops to the 

saturation point, clean water will condense out of the humid air. As the water 

condenses, the latent heat of condensation is released and rejected to a jacket heat 

exchanger with cold feed wastewater flowing over the nozzle. The jacket heat 

exchanger allows the temperature in the nozzle to be maintained at 1°C below the 

saturation temperature despite the latent heat of condensation being released. The 

flowrate of cold feed wastewater through the jacket heat exchanger can be adjusted 

in order to control the temperature. As the water condenses into suspended droplets, 

the flow becomes misty. The swirling motion pushes the droplets to the periphery 

of the nozzle where the clean water is collected by an in-line demister (point 5). The 

dry air and gaseous contaminants pass through the demister and flow through a 

diffuser to reduce the velocity and increase the temperature of the flow (points 7 & 

8), thus allowing more energy to be recouped from the waste stream via heat 

exchangers. Both the clean water and contaminants flow through heat exchangers 

in the wastewater pool before collection (point 9). Heat is also added to the 

wastewater pool (point 13) to generate the waste vapor that is the feed stream 

entering the nozzle. All points and what they indicate in the nozzle-demister are 

shown in Table 2.4. Based on the energy consumption of the treatment our process 

is projected to treat hydraulic fracturing wastewater at a cost of $7/m3.  

Component-level testing has proven the concept of the treatment system. The 

nozzle uses the Venturi effect to suck the wastewater vapor into the nozzle. 

Experimental-validated simulations have shown that the nozzle can achieve a 

suction ratio of air to steam ranging from 5 to 1 up to 1 to 1, which is ideal for the 

humidity in the nozzle before condensation. In-house experiments on azeotrope 

separation have shown that over 95% of the azeotropes can successfully be 

separated from the clean water. Additionally, the demister has been proven collect 

99% of the clean water. Details of these results are outside the scope of this article 

and will be the subjects of upcoming publications.  

The control of the system is critical to the quality of the resulting treated water. If 

the temperature in the nozzle is controlled within ±1°C, then only 2.5% of potential 

contaminants would remain in the treated water. Controlling the temperature within 

to that level of accuracy is complicated by the thermal mass and inertia as well as 
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variability in the fluid composition, thus making traditional control insufficient for 

this system. The temperature in the nozzle will be controlled using a digital twin. A 

physics-based model of the system will be paired with real-time experimental data 

to create a digital twin that will use machine learning to predict the performance of 

the nozzle, as well as the temperature. The predictions from the digital twin will 

then be used to adjust the operation of the system to maintain a temperature of 1°C 

above the saturation temperature of water. 

 

 

Figure 2.7: Schematic of the thermally-actuated nozzle-demister. Locations 

marked by numbers are explained in Table 2.4.  

Table 2.4: Explanation of points marked in Figure 2.7 

Point in Figure 

2.7 

Location in Nozzle-Demister 

0 Air inlet to nozzle 

1 Swirl generator 

2 Waste steam inlet to nozzle 

3 Converging section of nozzle 

4 Inlet to in-line demister 

5 Clean water separation from demister 

6 Clean water outlet 

7 Outlet of demister 

8 Diverging section of nozzle 

9 Fluid waste outlet 

10 Wastewater inlet to jacket heat exchanger 

11 Wastewater outlet from jacket heat exchanger to settling 

tank 

12 Sludge outlet from settling tank 

13 Heating zone 

 



 35 

 

2.6 Conclusions 

Although membrane-driven technologies have the advantage of filtering out 

suspended solids and volatiles, the TDS limits for membrane technologies are 

significantly lower than those of thermally-driven technologies. Additionally, 

vaporization has been suggested as the best way to treat wastewater. Of the 

thermally-driven technologies, membrane distillation is capable of dealing with the 

highest TDS levels; however, the use of a membrane in this process makes it 

susceptible to fouling. Additionally, few treatment processes are capable of 

removing azeotropes from the hydraulic fracturing wastewater. Membrane 

distillation is the main common treatment technology that separates azeotropes. A 

humidification-dehumidification nozzle-demister process that is not susceptible to 

fouling or clogging was described. This process has the advantage of high TDS 

limits and azeotrope separation. The next steps for the new design are fabrication 

and experimental validation. Component validation has been completed. Thermal-

based processes show promise for treating the highly variable and toxic hydraulic 

fracturing wastewater, and a process that does not require pretreatment or fouling 

treatment would be ideal. Given the difficulties of hydraulic fracturing wastewater 

treatment, a hybrid or novel treatment system may be best suited as treatment 

methods. 
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Nomenclature 

TSS Total suspended solids 

TDS Total dissolved solids 

RO Reverse osmosis 

FO Forward osmosis 

MD Membrane distillation 

MFD Multistage flash distillation 

MED Multi-effect distillation 

MVC Mechanical vapor compression 

CCD Closed circuit desalination 

UF Ultrafiltration 

MF Microfiltration 

DES Deep eutectic solvents 
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NMP N-methyl-2-pyrrolidone 

DCMD Direct contact membrane distillation 

AGMD Air gap membrane distillation 

SGMD Sweeping gas membrane distillation 

VMD Vacuum membrane distillation 

PVA Poly vinyl alcohol 

PES Poly ether sulfone 

AD Azeotropic distillation 

A-DWC Azeotropic dividing wall column 

ED Extractive distillation 

PSD Pressure swing distillation 

FAS Fixed-bed adsorption distillation 

PV Pervaporation 

VP Vapor permeation 
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A Design Method for Low-Pressure Venturi Nozzles 

Abstract 

The purpose of this work is to provide empirical design models for low-pressure, 

subsonic Venturi nozzles. Experimentally validated simulations were used to 

determine the effect of nozzle geometry and operating conditions on the suction 

ratio (ratio of suction mass flow rate to motive mass flow rate) of low-pressure, 

subsonic Venturi nozzles, over a wide range of geometries and operating conditions, 

through a parametric study. The results of the parametric study were used to develop 

seven empirical models, each with a different range of applicability or calculating 

a different indicator of nozzle performance (i.e., suction ratio, momentum ratio, or 

dynamic pressure ratio), of the Venturi nozzles using a constrained multi-variable 

global optimization method. Of the seven empirical models, the best models were 

found to be those for low- (less than one) and high-suction ratios (greater than one), 

with mean absolute percentage errors of 5% and 18%, respectively. These empirical 

models provide a design tool for subsonic, low-pressure Venturi nozzles that is 

more than an order of magnitude more accurate than a governing equation approach 

or conventional flow head calculations. These newly-developed empirical models 

can be applied for initial nozzle design when precise suction ratios are required. 

3.1 Introduction 

Venturi nozzles use a fast-moving motive fluid stream to entrain a nearly quiescent 

suction fluid (Figure 3.1). In a Venturi nozzle, the motive stream is accelerated by 

flowing through a converging section, with the highest velocity achieved at the 

throat of the nozzle. The high velocity of the motive fluid creates a region of low 

static pressure and therefore a pressure difference between the motive fluid at the 

throat of the nozzle and the suction fluid. The pressure difference draws the suction 

flow into the nozzle, where the suction and motive streams mix before leaving the 

nozzle outlet. Thermal ejectors can be used to achieve the same suction and mixing 

but have a few more internal parts and are typically in the supersonic regime. 

Venturi nozzles and ejectors are used in many industries due to their energy 

efficiency and lack of moving parts [1,2]. The use of such nozzles allows for two 

streams to mix while only using a compressor to move one of the streams, thus 

reducing the necessary energy input to operate a system. Venturi mixing nozzles 
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are used in irrigation and fertilization both to spread water and to mix fertilizers and 

other chemicals into the water using the Venturi effect [3,4]. The concentration of 

dissolved oxygen in water has also been increased utilizing high-pressure Venturi 

nozzles [5]. High-pressure or supersonic Venturi nozzles are also utilized in 

refrigeration and chiller applications [6–9]. Variable geometry nozzles have been 

studied for the application of variable load cooling, where the geometry of the 

nozzle can be changed as the cooling demand changes [10–12]. Bio-gas injection 

studies have also utilized Venturi nozzles to enhance mixing [13]. Venturi nozzles 

can also be used for vacuum generation in industrial applications such as vacuum-

assisted brakes, powder ejection, the development of end-of-arm tools for robotic 

applications, and aerospace applications [14–16]. 

 

 

Figure 3.1: Cross-section of representative nozzle with key geometric parameters 

identified. 

Due to their widespread use, the performance and operation of these supersonic 

ejectors and high-pressure Venturi nozzles have been studied extensively.  In 

particular, steam ejector geometry has been thoroughly studied from a first-

principles basis, as waste steam from industrial processes may be made usable again 

once entrained in the nozzle [17–20]. Steam ejectors have been studied utilizing 

CFD methods as well as experimental methods [21–23]. 

There has been significant effort to model the behavior of high-pressure Venturi 

nozzles and supersonic thermal ejectors. Keenan and Neumann developed a one-

dimensional theory based on gas dynamics to design ejectors [24]. Other first-

principal analyses have considered gas dynamics for adiabatic ideal gas air mixing 
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and the Bernoulli equation for incompressible fluid mixing to model the nozzle 

behavior [3,7]. Additionally, second law analysis has been used to define ejector 

efficiency with reference to a reversible ejector, and it was found that if the motive 

and suction fluids are the same fluid, the reversible entrainment ratio efficiency and 

exergetic efficiency are nearly the same value [25]. Other studies utilized CFD to 

determine the effect of geometric features such as the throat shape, diffuser presence 

and angle, and motive inlet shape and diameter, showing that mixing length, 

diffuser angle, and effective throat area are all critical parameters to nozzle 

performance [8,9,12,26,27]. Additionally, the effect of adding swirl vanes to the 

nozzle diffuser to enhance the turbulent kinetic energy has been studied [28]. 

Cavitation in high-pressure Venturi nozzles has been found to further accelerate the 

flow and suppress turbulent velocity fluctuations [29,30]. For Venturi nozzles with 

incompressible flow, the effect of the injection angle for the suction fluid has been 

studied and a correlation for jet trajectory developed with standard error of 0.27 

[31]. The effect of the ratio of the length to diameter of the mixing chamber has 

been studied for both supersonic and subsonic cases indicating that as the length to 

diameter ratio of the mixing chamber increases, the suction flow rate will first 

increase and then decrease [32,33]. 

Only a few studies have considered subsonic ejectors, and those studies typically 

only consider the case with air as both the motive and suction fluid [2,12,34]. For 

subsonic air-to-air Venturi mixing nozzles, the effect of the angle of the diverging 

section of the nozzle has been considered and found to be optimal between 4° and 

14° [2,33,35]. The angle at which the suction stream meets the motive stream also 

impacts the performance of the nozzle. It was found that a larger angle leads to 

better penetration of the suction stream into the motive stream [31]. Additionally, 

any bend or flow separation in the nozzle will degrade the performance of the nozzle 

[31]. Predicting the suction flow rate of an arbitrary nozzle is still not well 

quantified. 

This literature review shows that certain geometric features such as diffuser angle 

and throat design have been studied for supersonic or high-pressure Venturi 

nozzles. However, similar studies of subsonic, low-pressure Venturi nozzles are 

lacking. This work fills this gap by creating a design guide for such nozzles. The 

purpose of this work is to analyze subsonic, low-pressure Venturi mixing nozzles 

in order to characterize their performance and optimum geometry, and to develop 
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empirical models of Venturi nozzle performance can be used to determine the 

suction flow rate and inform the design of subsonic, low- pressure Venturi nozzles. 

If the suction flow rate of a particular nozzle is known, there have been multiple 

studies demonstrating the effect the addition of a diffuser will have on that flow rate 

[2,12,33,35]. 

There are many possible applications for low-pressure, subsonic Venturi nozzles, 

such as wastewater treatment. In this application, such Venturi nozzles can be used 

to accelerate air on the motive side and entrain wastewater steam on the suction 

side. In order to successfully separate clean water from contaminants in wastewater, 

the humidity of the air needs to be carefully controlled, which can be achieved by 

carefully controlling the ratio of suction flow rate to motive flow rate. Supersonic 

or high-pressure Venturi nozzles would be inappropriate for this application 

because supersonic nozzles would operate at temperatures too low for water 

treatment and high-pressure nozzles would increase the condensation rate of steam, 

potentially allowing steam to condense before it is separated from contaminants. 

Using a low-pressure, subsonic nozzle is an energy efficient way to control the 

humidity of air in some wastewater treatment applications [25,36,37]. Many other 

chemical and pharmaceutical processes also use such nozzles and would benefit 

from the ability to precisely control gas phase mixtures. 

In subsonic Venturi nozzles, the suction flow rate is a function of the low pressure 

developed, and therefore, the high velocity at the throat of the nozzle. The velocity 

and pressure at the throat are dictated by the geometry of the nozzle and the motive 

stream flow rate. The static pressure at the suction inlet also influences the suction 

flow rate: increased pressure at the suction inlet leads to a larger pressure difference 

between the inlet and the throat and thus increases the suction flow rate. In this 

study, the effect of four different geometric parameters (Figure 3.1) on the suction 

flow rate are studied: the motive diameter (30–50 mm); the throat diameter (8–16 

mm); the diameter through which the suction stream enters the nozzle, or the suction 

diameter (15–27 mm); and the distance between the throat and outlet of the nozzle, 

or the mixing length (30–80 mm). 

Despite the relative simplicity of the Venturi nozzle and how well known the 

Venturi effect is, it is not straightforward to calculate the suction flow rate of these 

nozzles. The Bernoulli equation can be used to determine velocity from a known 

pressure drop but is not applicable to these nozzles because of the mixing of the 
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motive and suction streams. Gas dynamics relationships could be used to determine 

the low pressure at the throat of the nozzle based on the Mach number, but the 

Bernoulli equation or Darcy–Weisbach equation, which do not account for mixing, 

would still be needed to determine the suction flow rate from the calculated pressure 

difference. Alternatively, energy head loss calculations could be used to determine 

the outlet flow rate, and therefore the suction flow rate, based on a known pressure 

drop and major and minor losses across the entire nozzle; however, charts and 

empirical equations for the friction factor are based on constant cross section pipes 

or ducts and it is therefore difficult to accurately determine for nozzles with variable 

cross sections. Sample calculations for using governing equations and head loss to 

determine the suction flow rate were performed and are presented in Section 2.3. 

In this paper, we present an empirical model or correlation that can be used as a 

design guide for low-pressure, subsonic Venturi nozzles for cases of air and air 

mixing, as well as air and steam mixing. Low-pressure, subsonic Venturi nozzles 

without diffusers were investigated experimentally, analytically, and numerically. 

The results of these investigations are combined into empirical models for the 

suction ratio as a function of the dimensionless groups formed from the geometric 

parameters, operating conditions, and fluid properties. The empirical model for 

suction ratio can be used to inform the design of Venturi nozzles given a desired 

suction ratio. This work allows one to determine the suction ratio of a Venturi 

nozzle based on known geometry and operating conditions. 

3.2 Simulation and experimental validation methodology 

Fifteen different Venturi nozzles were designed and simulated in ANSYS Fluent 

[38] to determine the effect of the geometry and operating conditions on the suction 

flow rate, with a total of 109 case studies considered. The geometries were 

simulated with different suction inlet pressures and motive mass flow inlet 

boundary conditions. In all cases, it was assumed that the outlet of the nozzle was 

at ambient pressure. The simulations were experimentally validated by measuring 

the pressure drop in the nozzles from the motive inlet to the outlet as a function of 

the motive mass flow rate and geometry. The results of those experiments were used 

to validate the simulations of the nozzles. In this study, the motive stream was air 

and the suction stream was either air or steam. The experimental setups and 

simulations are described in the following sections. 
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3.2.1 Air mixing experiment 

In order to determine the mass flow rate suctioned into a nozzle by the Venturi 

effect, several Venturi mixing nozzles were designed in SolidWorks© and 3D 

printed on a MakerBot Replicator+, using CPE+ material. Figure 3.1 shows the 

internal geometry of one Venturi mixing nozzle. All geometries considered have 

the same basic shape as shown in Figure 3.1, with different motive diameters, throat 

diameters, suction inlet diameters, and mixing lengths. 

The goal of these experiments was to determine the pressure drop across different 

Venturi nozzles as the motive mass flow rate was varied and to use the measured 

pressure drop to validate CFD simulations used to determine model boundary flow 

conditions. To achieve this goal, an experimental setup, shown in Figure 3.2, was 

developed. The air mass flow rate into the motive inlet of the nozzle was controlled 

using a pressure regulator (1) and measured using an Endress + Hauser Promass I 

Coriolis flow meter, with an instrument uncertainty of ±0.5% of the reading (2). 

The motive mass flow rate was varied from 1 g/s to 5 g/s. The outlet of the nozzle 

was open to ambient pressure. This experiment was conducted with two different 

suction inlet conditions. The first was with the suction inlet open to ambient and the 

second was with the suction inlet sealed such that there could be no flow into the 

nozzle from the suction inlet. The motive pressure drop (dP) across the nozzle (3) 

was measured for both cases using a Setra 230 differential pressure transducer with 

a full scale of 1 psi and an instrument uncertainty of ±0.25% of full scale or 14 Pa. 

The motive pressure drop was used as a proxy measurement for the suction flow 

rate because when a flow meter was attached to either the suction inlet or outlet of 

the nozzle to directly measure the suction flow rate, a pressure drop was introduced 

in the system such that there was no suction flow. There were 36 experimental data 

points without suction and 36 data points with suction for the air and air mixing 

experiment. Table 3.1 shows the nozzles and motive mass flow rates tested for each 

nozzle. Each experiment was repeated three times. 

3.2.2 Air and steam mixing experiment 

In order to determine the suction flow rate with steam as the suction fluid, a similar 

procedure was used to measure the motive pressure drop as a proxy measurement 

for the suction flow rate because a direct measurement of the suction flow rate adds 

an additional pressure drop on the suction side and changes the suction flow rate. 
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The experimental design is shown in Figure 3.3. The setup is similar to the previous 

experimental design, but with a few additional components. To supply air flow to 

the motive inlet, air was fed through a pressure regulator (1), into a Endress + 

Hauser Promass I Coriolis flow meter (2) and then an Omega AHPF-121 inline 

heater (4) that was controlled by an ITC-100VH PID (3). The pressure regulator (1) 

was adjusted until the desired air motive flow rate was read on the Coriolis flow 

meter (2). This allowed the mass flow rate of air to be measured, and the 

temperature of the air to be increased just before entering the nozzle to minimize 

condensation in the nozzle. An industrial 12 kW SteamSpa steam generator (9) was 

used to supply steam to the suction inlet. The steam generator produces a single 

source of steam, which is then split into two hoses (7 and 8) upon leaving the 

generator. The first of these hoses (7) was connected to the suction inlet of the 

nozzle (6), while the second (8) was directed away from the experimental setup to 

serve as a bypass for the steam not entering the nozzle. The opening of the second 

hose (8) was restricted using a clamp so that constant pressure could be maintained 

at the suction inlet as the motive flow varied between experiments. 

 

Table 3.1: Air mixing experimental test matrix. 

Nozzle 

Name 

/Code 

Motive 

Diameter 

(m) 

Throat 

Diameter 

(m) 

Suction 

Diameter 

(m) 

Mixing 

Length 

(m) 

Motive 

Mass 

Flow Rate 

(g/s) 

Suction 

Inlet 

Condition 

T1 0.04 0.012 0.027 0.0385 1–5 
Sealed and 

Open 

LR3 0.04 0.016 0.027 0.08 1–5 
Sealed and 

Open 

AR5 0.04 0.016 0.0175 0.0385 1–5 
Sealed and 

Open 
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Figure 3.2: Air mixing experimental setup schematic. 

Instrumentation locations can be seen in Figure 3.3, represented by dP for the 

motive pressure drop, P for the gage static suction pressure, and T for the 

thermocouple at the motive inlet to measure the air temperature. One Setra 230 

differential pressure transducer with a full scale of 5 psi was used to measure the 

motive pressure drop from the motive inlet to the outlet. A second Setra 230 

differential pressure transducer with a full scale of 1 psi was connected to the steam 

inlet, with the other side open to ambient, to read the gage static pressure at that 

location. Air temperature was held constant at 105°C to ensure it was above the 

saturation temperature of the steam to avoid phase change in the nozzle. Air mass 

flowrates were varied between 1.5 and 4.5 g/s. The T1 and T3 nozzles were tested, 

the geometric details of these nozzles are shown in Table 3.1, with a total of 11 data 

points. Each test was repeated three times. 
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Figure 3.3: Steam mixing experimental setup schematic. 

For these experiments, the sources of uncertainty were the Coriolis flow meter, the 

differential pressure transducers, and the thermocouple. The mass flow rate was 

measured using an Endress + Hauser Promass I Coriolis flow meter with an 

instrument uncertainty of ±0.5% of the reading. The suction inlet pressure (9) was 

measured using a Setra 230 differential pressure transducer with a full scale of 1 psi 

and an instrument uncertainty of   ±0.25% of full scale or 14 Pa. The motive inlet 

pressure drop (10) was measured using a Setra 230 differential pressure transducer 

with a full scale of 5 psi and an instrument uncertainty of ±0.25% of full scale or 70 

Pa. The type k thermocouple used to measure the air temperature had an instrument 

uncertainty of ±2.2°C. 

3.2.3 Air mixing determination and validation 

CFD simulations were used as a tool to determine the suction flow rate from the 

measured pressure drop, such that the simulations, once validated, could provide 

the basis for the empirical model development. ANSYS Fluent 19.2 [38] was used 

for all CFD simulations. The geometries and boundary conditions from the 

experiment were used to determine the suction mass flow rate for each experimental 

case. 

For each simulation case, the motive flow rate, motive pressure drop across the 

nozzle, and static pressure at the suction inlet were known from the experiments. 

For the case with no suction, the suction inlet was defined as a wall rather than an 
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inlet in simulation so no flow could cross the boundary. For the case with suction, 

the suction inlet was open to ambient conditions and thus the suction inlet gage 

static pressure was set to zero. The motive inlet was defined as a mass flow inlet 

boundary. The nozzle outlet was to open ambient conditions in all cases, so the 

outlet boundary condition was defined to be zero gage static pressure. The energy 

model and realizable k-ε turbulence model were the only models used. The 

simulations were steady, to mimic the steady state measurements of the 

experiments. A pressure-based solver with a second-order discretization scheme 

was used for each simulation. The SIMPLE pressure-velocity coupling algorithm 

was also used for each simulation. Additionally, the ambient pressure condition was 

set to match the ambient pressure of the experiments (88 kPa). Each simulation was 

considered to be converged when all residuals had values less than 0.0001 for air 

mixing and 0.001 for air and steam mixing. The measured motive pressure drop 

from experiments was compared to the simulated motive pressure drop from CFD 

to validate each simulation. Three nozzles were tested for each suction condition. 

Symmetry was used so only half of the fluid body (Figure 3.1) was meshed and 

simulated. In the simulations, the symmetrical half of the nozzle fluid body was 

meshed, using a 3D linear mesh, and mesh size was reduced (increasing resolution) 

until residuals were less than 0.0001 and the predicted suction mass flow rate varied 

by less than 0.2% from one mesh to the next, indicating that the primary result of 

interest from the simulation was independent of the mesh. The results of the mesh 

independence study are shown in Figure 3.4. Table 3.2 shows the grid refinement 

study and discretization error with a fine-grid convergence index (CGIfine
21 ) of 

5.5% and 0.7% for two critical parameters [39]. 
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Figure 3.4: Mesh refinement study. Once the number of elements was increased 

past 828,360, there was effectively no change in the result and mesh independence 

was reached. 

Table 3.2: Grid refinement study and discretization error. 

Grid Specifications 

Number of Cells:  

Case I: 4,702,076, Case 

II: 1,439,997, Case 

III:828,620  

𝒓𝟐𝟏 = 𝟏. 𝟒𝟖 

𝒓𝟑𝟐 = 𝟏. 𝟐𝟎 

Physical Parameter (φ) 
Suction Mass Flow Rate 

(kg/s) 

Motive Pressure Drop 

(Pa) 

𝜑 𝑖𝑛 Case I 0.004325 8980.95 

𝜑 𝑖𝑛 Case II 0.004489 9020.66 

𝜑 𝑖𝑛 Case III 0.004617 9151.77 

𝜑2 − 𝜑1 1.64 × 10−4 39.71 

𝜑3 − 𝜑2 1.28 × 10−4 31.11 

𝑝 1.59 1.56 

𝜑𝑒𝑥𝑡
21  0.00414 8934.04 

𝜑𝑒𝑥𝑡
32  0.00411 8926.41 

𝑒21 3.8% 0.4% 

𝑒32 2.8% 0.3% 

𝑒𝑒𝑥𝑡
21  4.6% 0.5% 

𝑒𝑒𝑥𝑡
32  9.2% 1.1% 

𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21  5.5% 0.7% 

 

Figures 3.5 and 3.6 show the experimental results for the closed and open suction 

inlet, respectively, for each tested nozzle compared to the simulation result. For all 

motive flow rates and suction conditions, the experimental and simulated results for 

motive mass flow rate agree to within 10%. The no suction case has a mean absolute 

percentage error of 7.5% and a root mean square error of 8.4%. The suction case 
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has a mean absolute percentage error of 5.7% and a root mean square error of 6.5%. 

The error was calculated as the difference between the experimental and simulated 

pressure drop. Based on the 10% agreement between the simulation and 

experiments, the simulations were considered to be validated. From the validated 

simulation, the suction mass flow rate can be found.  

Table 3.3: Summary of nozzle geometries in parametric study. The AR code refers 

to the area ratio being varied while all other geometric parameters were held 

constant. Similarly, the LR, T, and S codes refer to varying the length ratio, throat 

diameter, and suction inlet diameter, respectively. 

Name/Code 

Motive 

Diameter 

(m) 

Throat 

Diameter 

(m) 

Suction 

Diameter 

(m) 

Mixing 

Length (m) 

D2 0.04 0.016 0.027 0.0385 

AR1 0.05 0.016 0.027 0.0482 

AR2 0.05 0.016 0.02 0.0482 

AR3 0.03 0.016 0.027 0.0289 

AR4 0.05 0.016 0.0175 0.0482 

AR5 * 0.04 0.016 0.0175 0.0385 

AR6 0.035 0.016 0.015 0.0337 

LR1 0.04 0.016 0.027 0.03 

LR2 0.04 0.016 0.027 0.06 

LR3 * 0.04 0.016 0.027 0.08 

T1 * 0.04 0.012 0.027 0.0385 

T2 0.04 0.01 0.027 0.0385 

T3 * 0.04 0.008 0.027 0.0385 

S1 0.04 0.016 0.015 0.0385 

S2 0.04 0.016 0.02 0.0385 

Asterisks denote a geometry that was experimentally validated. 

 

3.2.4 Air and steam mixing determination and validation 

For the steam simulation validation, the same procedure was followed as described 

above for air mixing. For the case of steam mixing, the suction inlet was at a 

pressure above ambient due to steam entering the nozzle at that location. For these 

simulations the multi-species model was used with ideal gas air and steam. With 

the exception of changing the suction inlet boundary condition to be steam above 

ambient pressure and using the Fluent multi-species model, all other boundary 

conditions, meshes, and models were the same as for the air mixing tests. The 

simulations were considered to be converged when the residuals reached 0.001. As 

shown in Figure 3.7, the experimental and simulation results agree within 11%, with 

a mean absolute error of 10.5% and a root mean square error of 10.6% for each 
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steam mixing case, and therefore the simulation is considered to be validated. For 

all cases, the experimental data had a lower motive pressure drop than the 

simulation predicted. This could be due to the fact that phase change was neglected 

in the simulations, but there was a small amount of condensation in the nozzle 

during each experiment. 

 

Figure 3.5: Motive pressure drop (Pa) vs. motive mass flow rate (g/s) for nozzle 

tests with no suction. See Table 3.3 for nozzle geometry details. For the T1 

geometry, the uncertainty bars are smaller than the experimental marker used. 
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Figure 3.6: Motive pressure drop (Pa) vs. motive mass flow rate (g/s) for air mixing 

tests. See Table 3.3 for nozzle geometry details. For the T1 geometry, the 

uncertainty bars are smaller than the experimental marker used. 

 

Figure 3.7: Motive pressure drop (Pa) vs. motive mass flow rate (g/s) for steam 

tests. See Table 3.3 for nozzle geometry details. 

In summary, both the air mixing as well as the air and steam mixing cases are 

validated with a maximum error of 10.6%, and therefore the simulations were 

considered to be validated and trusted moving forward with a parametric study and 

correlation development. 
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3.3 Governing equations and flow head calculations 

As previously discussed, some applications, such as water treatment, require precise 

knowledge of the suction flow rate, or suction ratio, in order to successfully operate. 

Unfortunately, the suction ratio of the nozzles can be difficult to accurately 

determine using flow design calculations. As an example, here governing equation 

calculations and energy head loss calculations are used to calculate the suction flow 

rate and compared to the suction flow rate from the validated simulations [40]. 

The governing equation calculation approach was evaluated based on the continuity 

(Equation 3.1), conservation of energy (Equation 3.2), and conservation of 

momentum (Equation 3.3) equations. For this analysis, a control volume that 

crosses the throat, suction inlet, and outlet of each nozzle was considered. For air 

and air mixing, Equation 3.6 was used to determine the enthalpy of the outlet 

stream. For air and steam mixing, where the psychrometrics of the humid air must 

be considered, Equations 3.6 – 3.9 were used to determine the relative humidity and 

thus the enthalpy of the outlet humid stream. For both cases, Equations 3.4 and 3.5 

were used to determine the densities of the air at the throat and outlet stream. 

Alternatively, a flow head loss method based on the head form of the energy 

equation could be used to calculate the suction mass flow rate based on the major 

and minor losses in each nozzle; however, it was found that the head loss method 

is less accurate than the governing equation approach, as shown in Figure 3.8. 

Figure 3.8 shows the suction mass flow rate as determined by the governing 

equations and validated simulations versus the motive mass flow rate for each 

experimental data point. On average, the governing equations predict the suction 

mass flow rate with a 270% error. This method is insufficiently accurate to 

determine the suction mass flow rate of the low-pressure Venturi nozzles considered 

in this study. A different method is necessary to precisely calculate the suction mass 

flow rate of these nozzles, and thus inform the design of the nozzles. The empirical 

models presented in Section 3.6 of this paper allow for precise calculation of the 

suction ratio and therefore suction mass flow rate. 
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Figure 3.8. Head loss predicted suction mass flow rate, governing equations 

predicted suction mass flow rate, and validated simulation suction mass flow rate 

vs. motive mass flow rate. The suction mass flow rate predicted by the governing 

equations method is 270% higher than the simulation result. The suction mass flow 

rate predicted by the head loss method is approximately 380% higher than the mass 

flow rate from the validated simulation. The simulation has an average error of 8% 

relative to the experimental data. 

�̇�𝑚 + �̇�𝑠 = �̇�𝑜 (3.1) 

�̇�𝑚 (ℎ𝑡 +
1

2
𝑉𝑡

2) + �̇�𝑠 (ℎ𝑠 +
1

2
𝑉𝑠

2) = (�̇�𝑜) (ℎ𝑜 +
1
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𝑉𝑜

2) (3.2) 

𝑃𝑡𝑔𝑎𝑔𝑒
𝐴𝑚 = �̇�𝑜𝑉𝑜 − �̇�𝑚𝑉𝑡 − �̇�𝑠𝑉𝑠 (3.3) 

𝜌𝑡 = 𝑓(𝑃𝑡 , 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) (3.4) 

𝜌𝑜 =
�̇�𝑚𝜌𝑡 + �̇�𝑠𝜌𝑠

�̇�𝑚 + �̇�𝑠
 (3.5) 

ℎ𝑜𝑎𝑖𝑟
= 𝑓(𝜌𝑜, 𝑃𝑜) (3.6) 

ℎ𝑜𝑠𝑡𝑒𝑎𝑚
= 𝑓(𝑇𝑜, 𝑃𝑜) (3.7) 

𝜔 =
�̇�𝑠𝑠𝑡𝑒𝑎𝑚

�̇�𝑚
⁄  (3.8) 
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ℎ𝑜 = ℎ𝑜𝑎𝑖𝑟
+  𝜔ℎ𝑜𝑠𝑡𝑒𝑎𝑚

 (3.9) 

3.4 Parametric study 

In order to determine the suction mass flow rate for different nozzles, a parametric 

study was completed in using the validated CFD simulations. Fifteen different 

geometries with varying motive inlet diameters, throat diameters, suction inlet 

diameters, and mixing lengths were simulated with varying boundary conditions. 

All geometries are given in Table 3.3. Geometries were chosen to provide a range 

of values for each of the selected geometrical parameters: motive diameter, throat 

diameter, suction diameter, and mixing length. Each parameter was varied to 

provide at least four different values. These values were chosen such that the 

average of each geometric parameter provides a fixed suction ratio to keep the ratio 

of steam to air below the carrying capacity of water in air for the majority of steam 

mixing cases. It was confirmed that flow in each geometry remains subsonic and 

incompressible for all relevant conditions prior to including the geometry in the 

parametric study. 

All flow conditions are shown in the simulation test matrix in Table 3.4. The motive 

inlet was defined to be a mass flow inlet with a flow rate of either 5.2 or 20.8 g/s. 

These flow rates were chosen because 20.8 g/s is the desired flow rate for one 

application of these nozzles and 5.2 g/s was selected to provide a lower range of 

suction ratios [33]. The motive inlet fluid was ideal gas air for all cases. The suction 

inlet boundary condition was a pressure inlet with a static gage pressure of either 

10 Pa, 100 Pa, or 500 Pa. The suction fluid was either ideal gas air or steam. For all 

cases, the nozzle outlet boundary condition was defined to be 0 Pa gage. Every 

combination of geometry and boundary conditions summed to 109 different cases 

considered in the parametric study. For each case, the suction mass flow rate and 

dimensionless suction ratio, or ratio of suction mass flow rate to motive mass flow 

rate, were calculated. 
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Table 3.4: Test matrix for parametric study. A total of 109 cases were studied. The 

AR code refers to the area ratio being varied while all other geometric parameters 

were held constant. Similarly, the LR, T, and S codes refer to varying the length 

ratio, throat diameter, and suction inlet diameter, respectively. 

Name/Code 
Motive Flow Rate 

(g/s) 

Suction Static Pressure 

(Pa) 

Suction 

Fluid 

D2 
20.8 10,100,500 Air, Steam 

5.2 10,500 Air, Steam 

AR1 20.8 10,100,500 Air, Steam 

AR2 20.8 10,100,500 Air, Steam 

AR3 20.8 10,100,500 Air, Steam 

AR4 20.8 10,100,500 Air, Steam 

AR5 20.8 10,100,500 Air, Steam 

AR6 20.8 10,100,500 Air, Steam 

LR1 
20.8 10,100,500 Air, Steam 

5.2 10,500 Air, Steam 

LR2 20.8 10,100,500 Air, Steam 

LR3 
20.8 10,100,500 Air, Steam 

5.2 10,500 Air, Steam 

T1 
20.8 10,100,500 Air, Steam 

5.2 10,500 Air, Steam 

T2 20.8 10,100,500 Air, Steam 

T3 
20.8 10,100,500 Air, Steam 

5.2 10,100,500 Air, Steam 

S1 
20.8 10,100,500 Air, Steam 

5.2 100 Air, Steam 

S2 
20.8 10,100,500 Air, Steam 

5.2 100 Air, Steam 

 

3.5 Empirical model formulation 

In order to develop a model for the suction ratio as a function of the geometry and 

operating conditions, the form of the model must first be determined. The suction 

mass flow rate (�̇�𝑠) was taken to be a function of the motive mass flow rate (�̇�𝑚), 

the motive inlet area (𝐴𝑚), the throat diameter (𝐷𝑡), the suction inlet diameter (𝐷𝑠), 

the mixing length (L), the motive fluid density (𝜌𝑚), the suction fluid kinematic 

viscosity (𝜈𝑠), the motive fluid viscosity (𝜇𝑚), and the gage static pressure at the 

suction inlet (𝑃𝑠𝑡𝑎𝑡𝑖𝑐) (Equation 3.10). Consequently, the functional form for the 

suction mass flow rate becomes: 

𝑚𝑠̇ = 𝑓(�̇�𝑚, 𝐴𝑚, 𝐷𝑡 , 𝐷𝑠, 𝐿, 𝜌𝑚, 𝜈𝑠, 𝜇𝑚, 𝑃𝑠𝑡𝑎𝑡𝑖𝑐)  (3.10) 

The Buckingham Pi Theorem was used to determine the dimensionless groups that 

define this system as: 
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�̇�𝑠

�̇�𝑚
= ℂ [(

𝐴𝑚

𝐴𝑡
)

𝑎

(
𝐿

𝐷𝑠
)

𝑏

(
�̇�𝑚

 𝜇𝑚 𝐷𝑡
)

𝑐

(
𝜈𝑠

𝜈𝑚
)

𝑑

(
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑡

4 𝜌𝑚 𝜋2

 8 𝑚�̇�
2 )

𝑒

] (3.11) 

The third independent dimensionless group on the right side of the above expression 

(
�̇�𝑚

 𝜇𝑚 𝐷𝑡
) is the Reynolds number at the throat of the nozzle. The last independent 

dimensionless group (
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑡

4 𝜌𝑚 𝜋2

 8 𝑚�̇�
2 ) is the ratio of the gage static pressure at the 

suction inlet to the dynamic pressure at the throat. Using these definitions, Equation 

3.11 can be written as: 

𝑚𝑠̇

�̇�𝑚
= ℂ [(

𝐴𝑚

𝐴𝑡
)

𝑎
(

𝐿

𝐷𝑠
)

𝑏
(𝑅𝑒𝑚𝑜𝑡𝑖𝑣𝑒,𝑡ℎ𝑟𝑜𝑎𝑡)

𝑐
(

𝜈𝑠

𝜈𝑚
)

𝑑

(
𝑃𝑠𝑡𝑎𝑡𝑖𝑐,𝑠𝑢𝑐𝑡𝑖𝑜𝑛

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐,𝑡ℎ𝑟𝑜𝑎𝑡
)

𝑒

]  (3.12) 

The coefficient and exponents of the correlation were determined using a multi-

variable global optimization code in Python. The global constrained minimization 

algorithm determined the best fit for the coefficient and exponents of the correlation 

based on the 109 parametric study cases, using the Levenberg–Marquardt scheme 

[41,42]. 

3.6 Results 

Seven different empirical models were developed and evaluated to determine which 

parameters are most important to prediction of nozzle performance, and to find 

which empirical model is best able to predict the nozzle performance. Details of 

each empirical model are given below. Every empirical model considered, as well 

as their errors and ranges of applicability are summarized in Table 3.5 in order to 

provide a design reference for Venturi nozzles. 

3.6.1 Suction ratio models 

Comparing the suction ratio predicted by the empirical model (Equation 3.17 in 

Table 3.5) to the suction ratio determined using the validated simulations, the 

empirical model predicts the suction ratio with a mean absolute percentage error of 

22% and a root mean square error of 27%. Figure 3.9 shows the suction ratio 

predicted by the global correlation compared to the suction ratio determined by the 

validated simulations. In Figure 3.9, the red circles indicate the correlation 

prediction for air mixing cases and the blue squares indicate the prediction for steam 

mixing. The solid black line indicates what the suction ratio should be to have 0% 
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error with the simulated suction ratio, and the dashed lines show ±10% and ±20% 

of the simulated value. Both air mixing and steam mixing cases are equally well 

predicted by the global correlation. If the correlation is developed considering only 

the air mixing cases (Equation 3.18) or only considering the air and steam mixing 

cases (Equation 3.19), the correlation becomes slightly more accurate but not 

significantly so, as shown in Table 3.5. Instead, the error in the global correlation 

comes from two flow regimes being predicted by the same correlation; there is a 

clear discrepancy in Figure 3.9 at the simulated suction ratio of one. Cases with low 

suction ratios, less than one, are relatively well predicted with a mean absolute 

percentage error of 20% while cases with high suction ratios, greater than one, are 

relatively poorly predicted with a mean absolute percentage error of 43%. 

 
Figure 3.9: Suction ratio predicted by global suction ratio correlation vs. suction 

ratio from validated simulation. 

The increase in mean absolute percentage error for the high suction ratio cases 

indicates that the correlation does not well predict the behavior of the mixing 

nozzles for those cases. Each of the high suction ratio cases has a low Reynolds 

number and a high-pressure ratio. This indicates that the high suction ratio cases 

may be driven more by the applied static pressure at the suction inlet than the 

Venturi effect from the motive mass flow rate and throat diameter. Additionally, 

the low suction ratio cases all have a relatively high Reynolds number and a 

relatively low pressure ratio. If the low and high suction ratio cases are considered 
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to be driven by different phenomena, inertia and pressure, respectively, then it may 

be better to model each regime separately. 

If only the low suction ratio cases are considered in the optimization, the result is 

Equation 3.20, given in Table 3.5. The low suction ratio correlation predicts the 

suction ratio with a mean absolute percentage error of 18%, and a root mean square 

error of 22% as shown in Figure 3.10. 

 
Figure 3.10: Suction ratio predicted by low suction ratio correlation vs. suction ratio 

from validated simulation. 

If only the high suction ratio cases are considered in the optimization, the result is 

Equation 3.21. The high suction ratio correlation predicts the suction ratio with a 

mean absolute percentage error of 5%, and a root mean square error of 6%, as shown 

in Figure 3.11. Separating the global correlation including both high and low 

suction ratios into one correlation for low suction ratio and one correlation for high 

suction ratio allows for more accurately informed decisions about the design of a 

Venturi nozzle geometry, assuming that the desired suction ratio can be identified 

as either high or low. Figure 3.12 shows the suction ratio predicted by the low and 

high suction ratios on one plot, with the correlation used for each suction ratio 

range. 

A sensitivity analysis was conducted by increasing then decreasing the value of 

each dimensionless group by 10% compared to the original value and calculating 

the maximum relative error, mean absolute percentage error, and root mean square 
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error for each case. The sensitivity analysis revealed that the area ratio (
𝐴𝑚

𝐴𝑡
) had 

the largest impact on the error of each correlation of all the dimensionless groups, 

followed by the kinematic viscosity ratio (
𝜈𝑠

𝜈𝑚
) and then the Reynolds 

number (
�̇�𝑚

 𝜇𝑚 𝐷𝑡
). Comparing the effect of each dimensionless group between the 

low and high suction ratio cases, it was found that the geometry has a larger impact 

on the suction ratio for the low suction ratio cases than the high suction ratio cases. 

The high suction ratio cases are more dependent on operating conditions than the 

geometry of the nozzle. These results support the hypothesis that the suction flow 

for high suction ratio cases is largely driven by the applied static pressure at the 

suction inlet, while the low suction ratio cases are more dependent on geometry 

because they are truly Venturi driven flow and the area ratio is critical to the 

performance. 

 
Figure 3.11: Suction ratio predicted by the high suction ratio correlation vs. the 

suction ratio from the validated simulation. 
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Figure 3.12: Suction ratio predicted by low and high suction ratio correlations vs. 

the suction ratio from the validated simulation. 

3.6.2 Momentum ratio and dynamic pressure ratio models 

Given the apparent dependence of the global suction ratio correlation on pressure, 

two alternative empirical models were evaluated: momentum ratio and dynamic 

pressure ratio. For these models, either the momentum ratio or the dynamic pressure 

ratio is predicted by the global correlation, instead of the suction ratio. For each of 

these cases, the form of the correlation can be determined, again, using the 

Buckingham Pi Theorem. 

For the momentum ratio, the suction momentum term (𝜌𝑠�̇�𝑠) was considered to be 

a function of the motive mass flow rate (�̇�𝑚), the motive inlet area (𝐴𝑚), the throat 

diameter (𝐷𝑡), the suction inlet diameter (𝐷𝑠), the mixing length (𝐿), the motive 

fluid density (𝜌𝑚), the motive fluid viscosity (𝜇𝑚), and the gage static pressure at 

the suction inlet (𝑃𝑠𝑡𝑎𝑡𝑖𝑐), which, when non-dimensionalized, yields the following: 

𝜌𝑠�̇�𝑠 = 𝑓(�̇�𝑚, 𝐴𝑚, 𝐷𝑡 , 𝐿, 𝐷𝑠, 𝜇𝑚, 𝜌𝑚, 𝜈𝑠, 𝑃𝑠𝑡𝑎𝑡𝑖𝑐)  (3.13) 

𝜌𝑠 𝑚𝑠̇

𝜌𝑚𝑚�̇�
= ℂ [(

𝐴𝑚

𝐴𝑡
)

𝑎

(
𝐿

𝐷𝑠
)

𝑏

(
 𝑚�̇�

 𝜇𝑚 𝐷𝑡
)

𝑐

(
𝜈𝑠

𝜈𝑚
)

𝑑

(
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑡

4 𝜌𝑚 𝜋2

 8 𝑚�̇�
2 )

𝑒

] (3.14) 

When the momentum ratio correlation is optimized, it yields Equation 3.22, also 

given in Table 3.5. The resulting correlation yields a mean absolute percentage error 
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of 28%, and a root mean square error of 36% when compared to the validated 

simulations. 

For the dynamic pressure ratio, the suction dynamic pressure (8 𝑚�̇�
2
/(𝐷𝑡

4𝜌𝑠𝜋2)) 

was considered to be a function of the motive mass flow rate (�̇�𝑚), the motive inlet 

area (𝐴𝑚), the throat diameter (𝐷𝑡), the mixing length (𝐿), the motive fluid density 

(𝜌𝑚), the motive fluid viscosity (𝜇𝑚), and the gage static pressure at the suction 

inlet (𝑃𝑠𝑡𝑎𝑡𝑖𝑐), yielding Equation 3.15 below, which when non-dimensionalized 

gives Equation 3.16. The coefficient and exponents determined using the global 

optimization are shown in Equation 3.23. The global dynamic pressure ratio has a 

mean absolute percentage error of 48%, and a root mean square error of 56%. In 

Equation 3.16, the mixing length is nondimensionalized using the throat diameter, 

rather than the suction inlet diameter as in the suction ratio and momentum ratio 

models because the suction diameter is on the independent side of the equation, but 

the remaining terms are identical to those of the previously discussed correlations. 

8�̇�𝑠

𝐷𝑆
4𝜌𝑠𝜋2

= 𝑓(�̇�𝑚, 𝐴𝑚, 𝐷𝑡 , 𝐿, 𝜇𝑚, 𝜌𝑚, 𝜈𝑠, 𝑃𝑠𝑡𝑎𝑡𝑖𝑐) (3.15) 

�̇�𝑠𝐷𝑡
4𝜌𝑚

�̇�𝑚𝐷𝑠
4𝜌𝑠

= ℂ [(
𝐴𝑚

𝐴𝑡
)

𝑎

(
𝐿

𝐷𝑡
)

𝑏

(
 �̇�𝑚

 𝜇𝑚𝐷𝑡
)

𝑐

(
𝜈𝑠

𝜈𝑚
)

𝑑

(
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑡

4 𝜌𝑚 𝜋2

8 �̇�𝑚
2

)

𝑒

] (3.16) 
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Table 3.5: Summary of proposed empirical models, ranges of applicability, mean absolute percentage error (MAPE), and root mean 

square error (RSME). 

 Empirical Model MAPE RSME Applicability Equation 

Global 

suction ratio 

 

�̇�𝑠

�̇�𝑚
= 3.88 [(

𝐴𝑚

𝐴𝑡
)

0.734

(
𝐿

𝐷𝑠
)

0.006

(
�̇�𝑚

 𝜇𝑚𝐷𝑡
)

−0.288

(
𝜈𝑠

𝜈𝑚
)

2.17

(
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑡

4 𝜌𝑚 𝜋2

8 �̇�𝑚
2

)

0.123

] 22% 27% 

0.183 ≤
𝑚𝑠̇

𝑚�̇�
≤ 2.294 

(3.17) 

20,690 ≤ 𝑅𝑒𝑡 ≤ 165,521 

0.0001 ≤
𝑃𝑠𝑡𝑎𝑡𝑖𝑐

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐
≤ 1.319 

Air mixing, air and steam 

mixing 

Air only 

suction ratio 

 

�̇�𝑠

�̇�𝑚
= 12.7 [(

𝐴𝑚

𝐴𝑡
)

0.785

(
𝐿

𝐷𝑠
)

−0.134 

(
�̇�𝑚

 𝜇𝑚𝐷𝑡
)

−0.396

(
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑡

4 𝜌𝑚 𝜋2

8 �̇�𝑚
2

)

0.12

] 22% 26% 

0.199 ≤
𝑚𝑠̇

𝑚�̇�
≤ 2.294 

(3.18) 

20,690 ≤ 𝑅𝑒𝑡 ≤ 165,521 

0.0001 ≤
𝑃𝑠𝑡𝑎𝑡𝑖𝑐

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐
≤ 1.319 

Air mixing 

Steam only 

suction ratio 

 

�̇�𝑠

�̇�𝑚
= 1.5 [(

𝐴𝑚

𝐴𝑡
)

0.688

(
𝐿

𝐷𝑠
)

0.147

(
 �̇�𝑚

 𝜇𝑚𝐷𝑡
)

−0.214

(
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑡

4 𝜌𝑚 𝜋2

8 �̇�𝑚
2

)

0.124

] 20% 25% 

0.183 ≤
𝑚𝑠̇

𝑚�̇�
≤ 1.787 

(3.19) 

20,690 ≤ 𝑅𝑒𝑡 ≤ 165,521 

0.0001 ≤
𝑃𝑠𝑡𝑎𝑡𝑖𝑐

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐
≤ 1.319 

Air and steam mixing 



 75 

 

 Empirical Model MAPE RSME Applicability Equation 

Low suction 

ratio 

(suction ratio 

less than one) 

�̇�𝑠

�̇�𝑚
= 0.385 [(

𝐴𝑚

𝐴𝑡
)

0.594

(
𝐿

𝐷𝑠
)

0.03

(
 �̇�𝑚

 𝜇𝑚𝐷𝑡
)

−0.075

(
𝜈𝑠

𝜈𝑚
)

1.782

(
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑡

4 𝜌𝑚 𝜋2

8 �̇�𝑚
2

)

0.09

] 18% 22% 

0.183 ≤
𝑚𝑠̇

𝑚�̇�
≤ 0.797 

(3.20) 

20,690 ≤ 𝑅𝑒𝑡 ≤ 165,521 

0.0001 ≤
𝑃𝑠𝑡𝑎𝑡𝑖𝑐

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐
≤ 0.0825 

Air mixing, air and steam 

mixing 

High suction 

ratio 

(suction ratio 

greater than 

one) 

�̇�𝑠

�̇�𝑚
= 1.79 [(

𝐴𝑚

𝐴𝑡
)

0.624

(
𝐿

𝐷𝑠
)

0.271

(
�̇�𝑚

 𝜇𝑚𝐷𝑡
)

−0.138

(
𝜈𝑠

𝜈𝑚
)

3.127

(
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑡

4 𝜌𝑚 𝜋2

8 �̇�𝑚
2

)

0.166

] 5% 6% 

1.157 ≤
𝑚𝑠̇

𝑚�̇�
≤ 2.294 

(3.21) 

20,690 ≤ 𝑅𝑒𝑡 ≤ 41,380 

0.00165 ≤
𝑃𝑠𝑡𝑎𝑡𝑖𝑐

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐
≤ 1.319 

Air mixing, air and steam 

mixing 

Momentum 

Ratio 

 

𝜌𝑠�̇�𝑠

𝜌𝑚�̇�𝑚
= 3.88 [(

𝐴𝑚

𝐴𝑡
)

0.734

(
𝐿

𝐷𝑠
)

0.006

(
 �̇�𝑚

 𝜇𝑚𝐷𝑡
)

−0.288

(
𝜈𝑠

𝜈𝑚
)

3.17

(
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑡

4 𝜌𝑚 𝜋2

8 �̇�𝑚
2

)

0.123

] 28% 36% 

0.115 ≤
𝜌𝑠 𝑚𝑠̇

𝜌𝑚𝑚�̇�
≤ 2.294 

(3.22) 

20,690 ≤ 𝑅𝑒𝑡 ≤ 165,521 

0.0001 ≤
𝑃𝑠𝑡𝑎𝑡𝑖𝑐

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐
≤ 1.319 

Air mixing, air and steam 

mixing 
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 Empirical Model MAPE RSME Applicability Equation 

Dynamic 

pressure ratio 

 

�̇�𝑠𝐷𝑡
4𝜌𝑚

�̇�𝑚𝐷𝑠
4𝜌𝑠

= 8.58 [(
𝐴𝑚

𝐴𝑡
)

−0.626

(
𝐿

𝐷𝑡
)

1.121

(
 �̇�𝑚

 𝜇𝑚𝐷𝑡
)

−0.407

(
𝜈𝑠

𝜈𝑚
)

0.081

(
𝑃𝑠𝑡𝑎𝑡𝑖𝑐 𝐷𝑡

4 𝜌𝑚 𝜋2

8 �̇�𝑚
2

)

0.364

] 48% 56% 

0.00250 ≤
𝑚𝑠̇

2𝐷𝑡
4𝜌𝑚

𝑚�̇�
2𝐷𝑠

4𝜌𝑠

≤ 3.130 

(3.23) 

20,690 ≤ 𝑅𝑒𝑡 ≤ 165,521 

0.0001 ≤
𝑃𝑠𝑡𝑎𝑡𝑖𝑐

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐
≤ 1.319 

Air mixing, air and steam 

mixing 
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3.6.3 Venturi nozzle design guide 

Based on the results presented in Section 3.6.2, the suction ratio models (Equations 

3.17 – 3.23) can be used to determine the flow rate of a suction fluid into a low-pressure, 

subsonic Venturi nozzle. There are many commercially available Venturi nozzles [43–

46]; however, for subsonic nozzles, it can be difficult to determine which nozzle to 

select or what suction flow rate to expect from a particular nozzle. 

If a particular suction ratio is desired for an application of a subsonic, low-pressure 

Venturi nozzle, one could find several commercially available nozzle options and plug 

those geometries into the suction ratio empirical models from Section 3.6.2, along with 

some operating conditions from the application, and find the geometry that is best 

suited to deliver the desired suction ratio. Additionally, one could use the empirical 

models to design a geometry that is ensured to deliver the desired suction ratio, rather 

than using a commercially available option. 

As an example, for a humidification–dehumidification water treatment system, a 

specific suction ratio of 0.33 may be desired to ensure a maximum amount of water is 

treated without oversaturating the holding capacity of the air. Given this known suction 

ratio, the other parameters in the empirical model can be adjusted to inform the design 

of the nozzle. It is assumed that the ratio of kinematic viscosities is known, and 

therefore the adjustable dimensionless groups are the area ratio, length ratio, Reynolds 

number, and pressure ratio. To begin, choose an assumed throat diameter as the throat 

diameter appears in three of the five dimensionless groups in the suction ratio empirical 

correlation. Once the throat diameter has been assumed, select a motive mass flow rate. 

The motive mass flow rate can be calculated if there is a desired velocity in the system 

after the nozzle, otherwise an approximate value may be assumed. Based on these two 

selected parameters, the Reynolds number is known as well as the dynamic pressure at 

the throat of the nozzle. Next, the static pressure at the suction inlet can be determined 

so the pressure ratio may be fully defined. The static pressure at the suction inlet may 

be easily defined if the suction inlet is open to ambient pressure. In the case of the 

humidification–dehumidification example, the pressure is expected to be slightly above 

ambient pressure as steam is generated in a closed system with the suction inlet being 

the only opening. Once the Reynold number and pressure ratio terms have been 
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defined, the remaining terms are only a function of geometry. Next, the motive area 

can be defined as the area ratio is more impactful than the length ratio. Finally, the 

length ratio can be defined. This term may be determined by other constraints such as 

a given suction inlet diameter necessary to connect to another component or a given 

mixing length to ensure the mixed fluids exit the nozzle at a certain location. Based on 

these assumptions, an approximate suction ratio can be determined from the empirical 

models and each parameter adjusted iteratively until the desired suction ratio is 

achieved. As discussed in Section 3.3, using a head loss calculation to estimate of the 

suction ratio would yield a suction ratio much too high. Therefore, use of the 

correlations developed here and presented in Table 3.5 is recommended for design of 

low-pressure, subsonic Venturi nozzles. 

3.7 Conclusions 

A study on the effect of geometry and operating conditions on the suction ratio of low-

pressure, subsonic Venturi mixing nozzles was conducted. An ANSYS CFD model of 

the Venturi nozzle mixing was experimentally validated, and then used to calculated 

nozzle performance over a wide range of geometries and operating conditions. 

Governing equation calculations and flow head calculations were also used to 

determine the suction ratio of the experimentally tested nozzles and was found to be 

very inaccurate in these cases. To determine the suction ratio more accurately, seven 

potential empirical models were developed to examine the effect of different 

thermophysical parameters on the suction ratio and identify the parameters most critical 

to accurate prediction. The foundation for each of the empirical models is the results of 

a parametric study of nozzle geometry and operating conditions. 

The empirical models for suction ratio are more accurate than the empirical models for 

either momentum ratio or dynamic pressure ratio. For the five suction ratio models 

developed, the average mean absolute percentage error is 17%. Separating the flow into 

high-suction ratio and low-suction ratio regimes had the largest impact on the error of 

the models indicating that the regime change is the most critical aspect of nozzle 

operation. Based on these results, any of the presented suction ratio empirical models 

(global, air only, air and steam mixing only, high-suction ratio, or low-suction ratio) 

can be used to determine the suction ratio of a low-pressure, subsonic Venturi nozzle 
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within 22%, or a more specific model may be used if the application of the nozzle (low-

suction ratio, air only mixing, etc.) with reduced error. 

This work can be used to inform the design of low-pressure, subsonic Venturi nozzles 

for many applications. The suction ratio empirical models are, on average, 34-foldmore 

accurate than the flow head loss approach. The suction ratio empirical models can be 

used to determine the suction ratio or nozzle design when precise mixing is required 

for a given application. 

While the correlations proposed in this study provide a good initial design, it will be 

advantageous to have a secondary tool for a more accurate nozzle design. To that end, 

these correlations can be used as the basis for physics-guided machine learning 

algorithms to serve as a more accurate secondary tool for detailed nozzle design and 

analysis. The authors are in the process of developing such a design tool. The results 

will be evaluated and published in a follow-up article. 
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Nomenclature 

𝑑𝑃 Differential pressure drop (Pa) 

�̇� Mass flow rate (kg/s) 

ℎ Specific enthalpy (J/kg) 

𝑉 Velocity (m/s) 

𝑃 Pressure (Pa) 

𝐴 Area (m2) 

𝑇 Temperature (K) 

𝜌 Density (kg/m3) 

𝜔 Humidity ratio 

𝐷 Diameter (m) 

𝐿 Mixing length (m) 

𝜇 Dynamic viscosity (kg/m·s) 

𝜈 Kinematic viscosity (m2/s) 

𝑅𝑒 Reynolds number 

Subscripts 

𝑚 Motive 

𝑠 Suction 

𝑜 Outlet 
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Physics-Guided Artificial Neural Networks to Reduce Network Architecture in Multi-

Species Mixing Thermal Transport Applications 

Abstract 

Artificial neural networks are commonly used in place of traditional hard-computing 

methods to model the performance of complex systems. When using an artificial neural 

network, the choice of input parameters and network size are critical to the accuracy of 

the network as well as its computational intensity. In this work a physics-guided 

artificial neural network is developed that uses an initial guess of system performance, 

generated from traditional physics hard-computing models, as one of the input 

parameters to the network. The physics-guided artificial neural network methodology 

is applied to three applications of multi-species mixing: gas phase mixing in a Venturi 

nozzle, air and water flow in a swirling demister , and spray humidification in an 

airblast atomizer. The physics-guided neural networks are shown to have lower error 

than a traditional black box network for the same applications and data with smaller 

network architecture. The physics-guided artificial neural networks discussed in this 

study can be used to reduce the network error by up to 40%, or reduce the network 

architecture, or computational intensity, by up to 60% for the same value of error, as 

compared to traditional black box networks.  

4.1 Introduction 

Neural networks are commonly used to increase the accuracy of analysis where 

multiple disciplines of science intersect [1 – 4]. In wastewater treatment applications, 

the combination of phase change, heat transfer, and fluid dynamics makes system 

operation very difficult to model accurately using traditional analyses [1, 5].   

Artificial neural networks (ANNs) are often used for function approximation because 

the network will learn the inherent relationships between the input and output 

parameters without the need for assumptions or rules or relationships that may be 

unknown or difficult to model [3, 4]. In this way Artificial Intelligence (AI) soft-

computing may be better able to solve complex problems than traditional hard-

computing based on conservation laws or differential equations [1]. Additionally, 

ANNs can use noisy or incomplete data sets and can adapt to changes in parameters 
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through continuous learning [1, 3, 6 – 8]. ANNs are capable of universal approximation 

or, in other words, can approximate any measurable function to an acceptable level of 

accuracy [9].   

ANNs are composed of three or more layers: one input layer, one or more hidden layers, 

and one output layer. Each layer is made up of some number of neurons. Each neuron 

is connected to every neuron in the preceding layer and following layer. The connection 

between any two neurons has an associated weight. The input layer functions to define 

the parameter space for the problem and to read in the system data. The output layer 

corresponds to the unknowns of the system. The neurons in each hidden layer sum the 

product of the weight and neuron value from the previous layer then pass that summed 

value through an activation function (Equation 4.1)  

𝑦 = 𝑓 (∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

) (4.1) 

where y is the output value of a given neuron, f is the activation function of that neuron, 

x is the input from each of the n neurons in the previous layer, and w is the weight 

associated with each of the n connections between the given neuron and each neuron 

in the previous layer. The activation function introduces non-linearity into the 

networks, allowing ANNs to solve non-linear problems. Additionally, the activation 

function determines whether a specific neuron “fires.” If the sum of the product of input 

values and weights results in a small value, the activation function will output a very 

weak output signal. Conversely, if the sum of the products of the inputs and weights is 

large, the activation function will output a strong signal [1]. The most common 

activation functions are sigmoid, rectified linear, and hyperbolic tangent. The result of 

the activation function is the value of the neuron and is fed to the next hidden layer or 

output layer. Representative neural networks are shown in Figures 4.3, 4.7, and 4.11. 

Before the network is trained the weight of each connection is arbitrary. During 

training, the output layer is calculated using the initial arbitrary weights of the network 

and the output is compared to a target value of the output. A method called error back-

propagation is then used to adjust the weights in the network until a minimum error 

value is reached. This process is repeated multiple times with the entire training data 
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set until an acceptable error is attained. During training, the network is tested using data 

separate from the training data (data the network hasn’t seen before) to ensure that the 

network can predict unknown data as well as the training data. Typically, 70% of a data 

set is used for training and 30% for testing [1, 3, 4, 6, 10]. 

AI algorithms are becoming increasingly common in the analysis and optimization of 

many thermal systems, including energy systems and water treatment technologies. AI 

is well suited to these types of applications due to their complex nature [11].  In energy 

systems, ANNs have been applied to many hybrid energy systems, again due to their 

complex nature, including hybrid photovoltaic (PV) and wind, hybrid PV and thermal 

solar, and PV-diesel and PV-wind-diesel systems [2]. A geothermal based-organic 

Rankine cycle with solar system and a geothermal-energy-aided absorption-

refrigeration system have both utilized ANNs to predict system performance [10, 12]. 

ANNs have also been applied to prediction and optimization of energy management in 

grid and microgrid scales [2]. There are also many applications of ANNs to PV systems 

for weather and load forecasting as well as system performance [6, 8, 13 – 15]. ANNs 

have also been used to determine the thermodynamic properties of refrigerants [16, 17].  

The most common AI algorithms applied to wastewater treatment are ANNs [18]. 

ANNs have been used in conjunction with support vector machine and gene expression 

programming models to predict the presence of trihalomethanes in chlorinated waters 

and were able to model the non-linear nature of the data with root mean square errors 

between 3.63 and 4.05 [19]. For an application of removing starch from starchy water 

using a hydrophilic membrane, ANNs were compared to adaptive neuro-fuzzy 

interference systems and radial basis functions and all models were found to give 

similar results for the membrane permeate flux, with the best results obtained with four 

hidden layers [20]. The effect of four different parameters (flow rate, feed 

concentration, reaction temperature, and applied voltage) on NaCl removal via 

electrodialysis has been investigated using ANNs as the system model [21]. A 

comparison of semi-empirical and ANN models for the prediction of membrane fouling 

showed that the ANN models could predict the membrane flux more accurately (R2 = 

0.996) for a longer operating time than the semiempirical models [22]. Radial basis 

function neural networks have also been used for the prediction of temperature 
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elevation in multi-stage flash desalination plants with low error for newly introduced 

data. This method has error an order of magnitude lower than that of correlations used 

for the same purpose [23]. Ensemble machine learning methods have been applied to 

predict effluent composition from a municipal wastewater treatment plant and a neural 

network ensemble model was found to provide predictions with up to 24% lower error 

than non-ensemble methods, however, ensemble machine learning methods increase 

the computational intensity of the problem [24]. AI algorithms have also been paired 

with model predictive control to optimize control of municipal wastewater treatment to 

balance the effluent purity and energy consumption [25]. Multiple optimization 

strategies, including genetic algorithms and Bayesian optimization, have been used to 

reduce the error of ANNs in wastewater treatment applications [11, 26]. To the best of 

our knowledge, the use of analytical models to generate an input parameter to a neural 

network has not been investigated for any applications. 

ANNs have been applied to many complex systems with high levels of accuracy, 

however, they have important drawbacks. For example, many back-propagation 

learning schemes are susceptible to finding local error minima rather than the global 

minimum of the system. For this reason, other AI algorithms, such as genetic 

algorithms or particle swarm optimization, or statistical methods, such as Gaussian or 

Bayesian statistics, can be used to train the network rather than typical back-

propagation [1, 10, 11, 14, 26]. Error back-propagation is a process where the error of 

the network is calculated for the given data and the weights of each connection are 

altered to minimize the error. Back-propagation is still the most common method of 

ANN training [1, 3, 4, 8, 18, 27]. Another drawback of ANNs is that they are unable to 

operate outside of the range they are trained for, though by modeling extreme cases 

(such as rare weather events, etc.) the range of the networks can be expanded [1, 3]. 

Perhaps the most limiting drawback of ANNs is the amount of data necessary to train 

a network. The number of data points in a training data set should be at least ten times 

larger than the number of weights in the network [15, 28]. For networks with small data 

sets, the size and thus the accuracy of the network is limited. There have been cases 

involving the use of hard-computing modeling to supplement training data sets and 

networks can easily be updated as new data becomes available, but there is simply no 
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getting around the fact that large amounts of data are necessary to sufficiently train 

such a network [1, 4, 17].  

The architecture of a network involves the size of the network: the number of input 

parameters, the number of hidden layers, the number of neurons in each hidden layer, 

and the number of output parameters. Any reduction in architecture leads to a reduction 

in computational cost. It has been established that reducing the number of inputs to a 

network leads to an increase in the error of the network [13, 15]. The choice of input 

parameters is critical to the success of the network [1, 3, 12, 13]. 

Additionally, there have been multiple studies about the number of hidden layers and 

the number of neurons per hidden layer of a network and their effect on the error of the 

network [3, 6, 12, 15]. It is widely accepted that the best network architecture is 

determined via trial and error or prior experience of the network creator [1, 3, 4, 13, 15, 

29]. There are a few guidelines in the literature for determining network size. As a rule 

of thumb, the first hidden layer should have the same number of neurons as the input 

layer and the number of neurons per layer should decrease toward the output layer [1, 

4]. Typically, a single hidden layer is considered to be sufficient for continuous 

problems, but a second layer may be required for discontinuous problems, such as cases 

where a single neural network is used to model multiple operating conditions [3, 30]. 

Only a single hidden layer is necessary for a network to be a universal approximator 

[9]. However, these guidelines are rarely followed in previous work reported in the 

literature. Often in practice, the first hidden layer has many more neurons than the 

number of inputs. 

Network architecture is critical to the successful application of the network. There is a 

tradeoff between network architecture and computational intensity. By combining 

traditional, statistical neural network and analytical models, the error of the system can 

be reduced without increasing the network architecture. This combined physics-guided 

artificial neural network uses hard-computing analytical models to generate an initial 

guess for the output of the network. That initial guess is provided to the network as an 

additional network input.  

Small-scale, low-pressure Venturi nozzles are difficult to model because losses that 

would be negligible in the more common high-pressure Venturi nozzles have important 



 91 

 

impacts on their performance. Even including various loss terms in governing equation 

analysis does not yield useable performance predictions for low-pressure Venturi 

nozzles. These nozzles are relevant to water treatment as well as chemical and 

pharmaceutical processes and other applications due to their low energy consumption 

and lack of moving parts [31]. The difficulty of conducting experiments, sensitivity to 

losses, and the need for highly precise predictions make low-pressure Venturi nozzle a 

very good candidate to assess our PGANN.  

Swirling demisters can be used in humidification-dehumidification water treatment 

processes to separate treated water from air and gaseous contaminants. In these 

systems, the water droplets are pushed to the perimeter of the demister by the swirling 

motion of the air and the treated water is then collected via a small gap along the edge 

of the demister while the air and gaseous contaminants pass through the center of the 

demister and are not collected. This component, like high-pressure venturi nozzles, is 

not usually sensitive to small losses. It was, therefore, selected to test our PGANN in 

this class of problem and complement the low-pressure Venturi nozzle case study and 

extends the applicability range of our PGANN. 

Humidification-dehumidification is a major field of research in desalination and 

therefore accurate prediction and optimization of humidification processes is critical to 

the success of the desalination systems. Existing prediction tools for spray 

humidification processes is typically based around droplet and bulk liquid analysis. 

These types of analysis have large fluctuations and are insufficient to pinpoint the 

thermodynamic state of the humid air [32]. This makes spray humidification a very 

useful case study for PGANN evaluation. It also helps extend the applicability of model 

to treatment systems that rely on atomization.  

In this work a physics-guided artificial neural network is developed and applied to a 

Venturi mixing nozzle, a swirl demister, and the mixing of air and water in a spray 

humidification system. A physics-guided network helps to inform the decision of which 

input parameters to use in a network as well as reducing the overall network 

architecture and increasing the accuracy. The quantity of data necessary to train and 

test artificial neural networks is one of the most important drawbacks to their 

development and application. Given that the data-to-weight ratio for a network should 
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always be greater than ten, any reduction in network architecture also helps to reduce 

the number of data points necessary to sufficiently train the network. The application 

of the physics-guided artificial neural network methodology to three multi-species 

mixing applications demonstrates the capability of physics-guided networks to reduce 

both network error and architecture.  

4.2 Methodology and results 

This study explores three specific applications to illustrate the efficacy of the proposed 

physics-guided artificial neural network approach: multi-species gas phase mixing flow 

in a Venturi nozzle, air and water flow in a swirling demister, and spray evaporation in 

an airblast atomizer. For each application a black box, or typical, artificial neural 

network (BBANN) and a physics-guided artificial neural network (PGANN) were 

developed. The PGANN has all the same inputs as the black box network plus an initial 

guess of the performance parameter of interest. Each neural network is implemented in 

Python using existing TensorFlow machine learning libraries [33].  

The initial guess input parameter for each system studied was calculated using 

fundamental governing equations. The Adamax gradient descent optimization method 

was used to train the networks [34]. A single hidden layer was used with 20% dropout 

and the sigmoid activation function for all networks. Several activation functions and 

dropout values were tested, and this combination was found to give the lowest error 

values. These “hyper-parameters” were held constant for all cases. The number of 

neurons in the single hidden layer was varied for each application and further analysis 

was conducted for three network sizes: the case with the largest difference in error 

between the BBANN and PGANN, the case with the lowest PGANN error, and an 

average case between the two. For these three network sizes an input parameter 

reduction study was conducted in order to compare the networks when they have the 

same number of input parameters.  

4.2.1 Venturi mixing nozzle application 

For the Venturi nozzle case, the output of each neural network, or the unknown in the 

system, is the suction ratio of the nozzle. The suction ratio is defined to be the ratio of 

the suction mass flow rate to the motive mass flow rate. In order to determine the initial 

guess of the suction flow rate, and thus the suction ratio, for the mixing nozzle, the 
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continuity, conservation of energy, and conservation of linear momentum equations 

were used for a control volume drawn such that it cuts through the throat of the nozzle, 

as well as the suction inlet and outlet of the nozzle. Figure 4.1 shows a labeled cross-

section of a representative Venturi mixing nozzle, with the control volume shown. For 

the cases with air as both the motive and suction fluid, Equations 4.2 – 4.7 were used, 

where the subscript m refers to the motive stream, s refers to the suction stream, o refers 

to the mixed outlet stream, and t refers to the throat of the nozzle.  

�̇�𝑚 + �̇�𝑠 = �̇�𝑜 (4.2) 

�̇�𝑚 (ℎ𝑡 +
1

2
𝑉𝑡

2) + �̇�𝑠 (ℎ𝑠 +
1

2
𝑉𝑠

2) = (�̇�𝑜) (ℎ𝑜 +
1

2
𝑉𝑜

2) 
(4.3) 

𝑃𝑡𝑔𝑎𝑔𝑒
𝐴𝑚 = �̇�𝑜𝑉𝑜 − �̇�𝑚𝑉𝑡 − �̇�𝑠𝑉𝑠 (4.4) 

𝜌𝑡 = 𝑓(𝑃𝑡 ,  𝑇𝑎𝑚𝑏) (4.5) 

𝜌𝑜 =
�̇�𝑚𝜌𝑡 + �̇�𝑠𝜌𝑠

�̇�𝑚 + �̇�𝑠
 

(4.6) 

ℎ𝑜 = 𝑓(𝜌𝑜, 𝑃𝑜) (4.7) 

For the cases with air as the motive fluid and steam as the suction fluid, the 

psychrometrics of the humid air must be considered. For these cases, Equations. 4.8 – 

4.15 were used.  

�̇�𝑚 + �̇�𝑠 = �̇�𝑜 (4.8) 

�̇�𝑚 (ℎ𝑡 +
1

2
𝑉𝑡

2) + �̇�𝑠 (ℎ𝑠 +
1

2
𝑉𝑠

2) = (�̇�𝑜) (ℎ𝑜 +
1

2
𝑉𝑜

2) 
(4.9) 

𝑃𝑡𝑔𝑎𝑔𝑒
𝐴𝑚 = �̇�𝑜𝑉𝑜 − �̇�𝑚𝑉𝑡 − �̇�𝑠𝑉𝑠 (4.10) 

𝜌𝑡 = 𝑓(𝑃𝑡 ,  𝑇𝑎𝑚𝑏) (4.11) 

𝜌𝑜 =
�̇�𝑚𝜌𝑡 + �̇�𝑠𝜌𝑠

�̇�𝑚 + �̇�𝑠
  

(4.12) 
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ℎ𝑎𝑖𝑟 = 𝑓(𝑇𝑜, 𝑃𝑎𝑡𝑚), ℎ𝑠𝑡𝑒𝑎𝑚 = 𝑓(𝑇𝑜, 𝑃𝑎𝑡𝑚) (4.13) 

𝜔 =
�̇�𝑠

�̇�𝑚
⁄  (4.14) 

ℎ𝑜 = ℎ𝑎𝑖𝑟 +  𝜔ℎ𝑠𝑡𝑒𝑎𝑚 (4.15) 

 
Figure 4.1: Cross-section of representative Venturi mixing nozzle, with control volume 

denoted by black dashed line. 

 
Figure 4.2: Suction mass flow rate as determined by CFD simulation and governing 

equations versus the motive flow rate. The governing equations overpredict the suction 

mass flow rate. 
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The governing equations for the system were solved using Engineering Equation Solver 

(EES) [35] and presented in an earlier study by the authors [31]. The results of the 

analytical model and CFD simulation are shown in Figure 4.2. On average this initial 

guess has an error of 270%, as compared to experimentally validated simulations of six 

different nozzle geometries with flow rates varying from 1 g/s to 5 g/s, and thus cannot 

be used to accurately determine the suction ratio of a mixing nozzle. However, this 

guess can be used as an input to the PGANN in order to reduce the error of the network.    

The input parameters for the BBANN for the Venturi mixing nozzle are the ratio of 

motive to throat area, the ratio of mixing length to suction inlet diameter, the Reynolds 

number at the throat, the ratio of motive fluid to suction fluid kinematic viscosity, and 

the ratio of static pressure at the suction inlet to the dynamic pressure at the throat and 

the output is the suction ratio (Equation 4.16).  

�̇�𝑠

�̇�𝑚
= 𝑓 (

𝐴𝑚

𝐴𝑡
,

𝐿

𝐷𝑠
,

�̇�𝑚

 𝜇𝑚𝐷𝑡
,

𝜐𝑠

𝜐𝑚
,

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐
) 

(4.16) 

The PGANN has the same inputs and output but uses the initial guess (
�̇�𝑠

�̇�𝑚𝑖
) generated 

by the governing equations as an additional input, as shown in Equation 4.17 and 

Figure 4.3.  

�̇�𝑠

�̇�𝑚
= 𝑓 (

𝐴𝑚

𝐴𝑡
,

𝐿

𝐷𝑠
,

�̇�𝑚

 𝜇𝑚𝐷𝑡
,

𝜐𝑠

𝜐𝑚
,

𝑃𝑠𝑡𝑎𝑡𝑖𝑐 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐
,

�̇�𝑠

�̇�𝑚𝑖

) 
(4.17) 
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Figure 4.3: Physics-guided neural network for Venturi nozzle mixing with eight 

representative neurons in the hidden layer. The input parameters shown in solid black 

circles are present in both the black box and physics-guided networks. The physics-

based initial guess input parameter is shown in a dashed red circle as it is only present 

in the physics-guided artificial neural network.  

To develop the networks, 3687 data points were used with 70% of the data used for 

training and 30% for testing. Experimentally validated simulations and empirical 

models were used to generate the data set for this application [31]. The number of 

neurons in the hidden layer was varied from 4 to 22, as shown in Figure 4.4. Regardless 

of the number of neurons in the hidden layer, the PGANN had lower error than the 

BBANN. For all cases, the data-to-weight ratio was greater than ten, as recommended 

[15, 28]. The PGANN had the lowest overall mean squared error (MSE) (1.78%) when 

there were twenty neurons in the hidden layer. The lowest error for the BBANN 

(1.89%) also occurred when there were twenty neurons in the hidden layer. As the 

number of neurons in the hidden layer was reduced, the difference in error between the 

two networks increased. When there were four neurons in the network, the difference 

in error between the BBANN and PGANN was the largest (22%). On average, the 

PGANN had 13% lower error than the BBANN for this application. Based on these 

results, if a certain error level is acceptable for an application, that error can be achieved 

with a reduced network architecture if a PGANN is used. 
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Figure 4.4: Mean squared error of the black box and physics-guided neural networks 

for the Venturi mixing nozzle as the number of neurons in the hidden layer is changed.  

In order for the two networks to have identical architecture, with the same data-to-

weight ratio and number of network connections for a direct comparison of the network 

errors, one input must be removed from the PGANN, such that both networks will have 

five input parameters. The input parameter reduction study was conducted for three 

different network configurations: with four neurons in the hidden layer as the 

configuration has the largest difference between the BBANN and PGANN, with twenty 

neurons in the hidden layer as this is the configuration with the lowest error, and with 

twelve neurons as an average configuration.  

Each input parameter was removed one at a time, so the PGANN would have five inputs 

rather than six, to match the BBANN. For all cases, with the exception of the removal 

of the pressure ratio from the twenty-neuron configuration, the PGANN still had lower 

error than the BBANN, with the exact same architecture for the three architecture cases 

considered (Table 4.1). When the initial guess for suction ratio is removed, the error is 

the same as the BBANN as the networks are identical. The case with all PGANN inputs 

present has the largest decrease in error between the two networks. For the cases where 

the area ratio, length ratio, viscosity ratio, and pressure ratio are removed, there is still 

an increase in accuracy for the PGANN but the improvement is less pronounced. The 
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choice of input parameters is critical for any application, but these results indicate that 

PGANNs are less sensitive to input parameter choice than traditional networks. If a 

system parameter is not included as an input parameter to a PGANN, the network will 

still be able to accurately predict system performance.  

Table 4.1: Venturi mixing physics-guided network mean squared error (MSE) as each 

input parameter is sequentially removed and comparison to the MSE of the black box 

network for each configuration. 

 Four Neurons 

(BBANN MSE = 3.08%) 

Twelve Neurons 

(BBANN MSE = 2.30%) 

Twenty Neurons 

(BBANN MSE = 1.89%) 

Removed 

Input 

PGANN 

MSE (%) 

Improvement 

from black 

box MSE (%) 

PGANN 

MSE (%) 

Improvement 

from black 

box MSE (%) 

PGANN 

MSE (%) 

Improvement 

from black box 

MSE (%) 

None 2.52 22 1.97 17 1.78 6 

Area Ratio 2.69 14 2.15 7 1.87 1 

Length 

Ratio 
2.52 22 1.97 17 1.78 6 

Reynolds 

Number 
3.06 1 2.25 2 1.84 3 

Viscosity 

Ratio 
2.98 4 2.08 10 1.85 2 

Pressure 

Ratio 
3.01 3 2.30 0 2.29 -17 

To further investigate the stability of the Venturi nozzle PGANN, a secondary input 

reduction study was conducted. As the length ratio was determined to be the least 

important input parameter, it was removed from the PGANN, then each other input 

parameter (area ratio, Reynolds number, viscosity ratio, and pressure ratio) were 

sequentially removed and the error for each configuration was recorded. The results of 

the secondary input reduction study are shown in Table 4.2. In this study with four 

input parameters to the PGANN, the MSE of the PGANN is still lower than that of the 

BBANN in all but two cases: the removal of the pressure ratio in the twelve- and 

twenty-neurons configurations. Again, these results indicate that the addition of a 

physics-based initial guess lends stability to the PGANN, ensuring low error results if 

an input parameter is erroneously omitted. 
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Table 4.2: Venturi mixing physics-guided network mean squared error (MSE) as the 

length ratio and each additional input parameter are sequentially removed and 

comparison to the MSE of the black box network for each configuration. 

 Four Neurons 

(BBANN MSE = 3.08%) 

Twelve Neurons 

(BBANN MSE = 2.30%) 

Twenty Neurons 

(BBANN MSE = 1.89%) 

Removed Input 

in Addition to 

Length Ratio 

PGANN 

MSE 

(%) 

Improvement 

from black 

box MSE (%) 

PGANN 

MSE 

(%) 

Improvement 

from black 

box MSE (%) 

PGANN 

MSE 

(%) 

Improvement 

from black box 

MSE (%) 

None 2.52 22 1.97 17 1.78 6 

Area Ratio 2.55 21 2.05 12 1.89 0 

Reynolds 

Number 
2.64 17 2.23 3 1.86 1 

Viscosity Ratio 2.61 18 2.03 14 1.80 5 

Pressure Ratio 2.94 5 2.74 -16 2.75 -31 

 

4.2.2 Swirling demister application  

In the case of the swirling demister (Figure 4.5), the parameter of interest is the ratio 

of the swirl pitch to the demister length [36]. The initial guess for this dimensionless 

group was calculated using the linear momentum equation to determine the angle at 

which the water exits the demister and trigonometry relations (Equations 4.18 & 4.19), 

where Pitch is the swirl pitch, D is the demister diameter, θ is the angle at which the 

air enters the demister and ϕ is the swirl angle. The analytical model predicts the ratio 

of swirl pitch to demister length with 20% error as shown in Figure 4.6. 

 
Figure 4.5: Schematic of swirling demister [36]. 

0 = �̇�𝑤𝑎𝑡𝑒𝑟𝑉𝑤𝑎𝑡𝑒𝑟𝑜𝑢𝑡
cos(𝜙) + �̇�𝑎𝑖𝑟𝑉𝑎𝑖𝑟𝑜𝑢𝑡

cos(𝜙) − �̇�𝑤𝑎𝑡𝑒𝑟𝑉𝑤𝑎𝑡𝑒𝑟𝑖𝑛

+ �̇�𝑎𝑖𝑟𝑉𝑎𝑖𝑟𝑖𝑛
cos(𝜃) 

(4.18) 
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𝑃𝑖𝑡𝑐ℎ𝑠𝑤𝑖𝑟𝑙 =
𝐷𝑑𝑒𝑚𝑖𝑠𝑡𝑒𝑟

tan(𝜙)
  

(4.19) 

 
Figure 4.6: Ratio of swirl pitch to tube length as determined analytically and 

experimentally versus the inlet air velocity. The analytical model predicts the pitch to 

length ratio with 20% error. 

The input parameters for the swirling demister BBANN are the ratio of inlet air velocity 

to inlet water velocity ( 
𝑉𝑎𝑖𝑟𝑖𝑛

𝑉𝑤𝑎𝑡𝑒𝑟𝑖𝑛

), the air injection angle (θ), and the ratio of demister 

diameter to air outlet diameter (
𝐷𝑑𝑒𝑚𝑖𝑠𝑡𝑒𝑟

𝐷𝑎𝑖𝑟 𝑜𝑢𝑡𝑙𝑒𝑡
) (Equation 4.20). The PGANN has the same 

input parameters as well as the initial guess for swirl pitch to demister length ratio 

(Equation 4.21 & Figure 4.7). 

𝑃𝑖𝑡𝑐ℎ𝑠𝑤𝑖𝑟𝑙

𝐿𝑑𝑒𝑚𝑖𝑠𝑡𝑒𝑟
= 𝑓 (

𝑉𝑎𝑖𝑟𝑖𝑛

𝑉𝑤𝑎𝑡𝑒𝑟𝑖𝑛

, 𝜃,
𝐷𝑑𝑒𝑚𝑖𝑠𝑡𝑒𝑟

𝐷𝑎𝑖𝑟 𝑜𝑢𝑡𝑙𝑒𝑡
) 

(4.20) 

𝑃𝑖𝑡𝑐ℎ𝑠𝑤𝑖𝑟𝑙

𝐿𝑑𝑒𝑚𝑖𝑠𝑡𝑒𝑟
= 𝑓 (

𝑉𝑎𝑖𝑟𝑖𝑛

𝑉𝑤𝑎𝑡𝑒𝑟𝑖𝑛

, 𝜃,
𝐷𝑑𝑒𝑚𝑖𝑠𝑡𝑒𝑟

𝐷𝑎𝑖𝑟 𝑜𝑢𝑡𝑙𝑒𝑡
,
𝑃𝑖𝑡𝑐ℎ𝑠𝑤𝑖𝑟𝑙

𝐿𝑑𝑒𝑚𝑖𝑠𝑡𝑒𝑟 𝑖

)  
(4.21) 
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Figure 4.7: Physics-guided neural network for the swirling demister with five 

representative neurons in the hidden layer. The input parameters shown in solid black 

circles are present in both the black box and physics-guided networks. The physics-

based initial guess input parameter is shown in a dashed red circle as it is only present 

in the physics-guided artificial neural network. 

To train and test the swirling demister neural networks, 3984 data points were used, 

with 70% used to train the networks and 30% to test them. Experimental data and an 

empirical model were used to generate part of the data set [36]. The number of neurons 

in the hidden layer was varied between four and twenty-two. For all network 

configurations, the PGANN had lower error than the BBANN, as shown in Figure 4.8. 

The PGANN configuration with twenty neurons in the hidden layer had the lowest 

mean squared error (5.67%) of the PGANN cases, and thus the lowest overall error 

including the BBANN cases. For the configurations with four and twenty neurons, 

there was the largest difference in error between the BBANN and the PGANN (40%). 

Among the BBANN cases the lowest error (7.94%) occurred with four neurons in the 

hidden layer. The average improvement in error for the PGANN across all network 

configurations for this application was 33%.  

The network reduction study was conducted for the four neuron, twelve neuron, and 

twenty neuron configurations, as shown in Table 4.3. When the velocity ratio term was 

removed from the twelve and twenty neuron configurations, the mean squared error of 

the PGANN was higher than the BBANN. Removal of the diameter ratio did not impact 

the error of the PGANN for any configuration. The velocity ratio was the most 
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important term in the swirling demister networks, as its removal had the largest impact 

on the overall error of the network.  

 
Figure 4.8: Mean squared error of the black box and physics-guided neural networks 

for the swirling demister application as the number of neurons in the hidden layer is 

changed. 

Table 4.3: Swirling demister physics-guided network mean squared error (MSE) as 

each input parameter is sequentially removed and comparison to the MSE of the black 

box network for each configuration. 

 Four Neurons 

(BBANN MSE = 7.94%) 

Twelve Neurons 

(BBANN MSE = 8.05%) 

Twenty Neurons 

(BBANN MSE = 7.97%) 

Removed 

Input 

PGANN 

MSE (%) 

Improvement 

from black 

box MSE (%) 

PGANN 

MSE (%) 

Improvement 

from black 

box MSE (%) 

PGANN 

MSE (%) 

Improvement 

from black box 

MSE (%) 

None 5.68 40 6.19 30 5.67 40 

Velocity 

Ratio 
7.94 0 10.65 -24 11.55 -31 

Injection 

Angle 
6.56 21 6.80 18 7.22 10 

Diameter 

Ratio 
5.68 40 6.19 30 5.67 40 



 103 

 

4.2.3 Spray humidification application 

For the spray humidification application (Figure 4.9) [32], the humidity ratio of the air 

leaving the humification system is the system parameter of interest. This value is 

difficult to determine via analytical methods because the state of the water in the spray 

nozzle cannot be fully defined. The analytical model for this system (Equations 4.22 – 

4.24) is based on the assumption that there is 100% efficient heat transfer between the 

hot air and relatively cool water streams entering the spray nozzle. This analytical 

model overpredicts the actual humidity ratio by 617% on average (Figure 4.10) and 

therefore is not suitable as a standalone model for the system but can still be used to 

generate initial guesses for the PGANN.  

 
Figure 4.9: Schematic of atomization through an external-mixing atomizer [32]. 

∆𝑇 = 𝑇𝑎𝑖𝑟 − 𝑇𝑤𝑎𝑡𝑒𝑟 (4.22) 

�̇�𝑎𝑖𝑟𝑐𝑃𝑎𝑖𝑟
∆𝑇 = �̇�𝑠𝑡𝑒𝑎𝑚𝑐𝑃𝑠𝑡𝑒𝑎𝑚

∆𝑇  (4.23) 

𝜔 =
�̇�𝑠𝑡𝑒𝑎𝑚

�̇�𝑎𝑖𝑟
⁄  (4.24) 
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Figure 4.10: Humidity ratio as determined experimentally and analytically versus the 

water mass flow rate. The analytical model greatly overpredicts the humidity ratio but 

still provides a useful input to the PGANN. 

The input parameters for the BBANN for the spray humidification application are a 

modified Jakob number (first term), the Lewis number (second term), the ratio of axial 

distance from the atomizer orifice to the spray diameter at that location, or geometric 

ratio (third term), the Reynolds number based on the total flow rate and effective 

atomizer diameter (fourth term), and the ratio of air mass flow rate to water mass flow 

rate, or mass ratio (fifth term) (Equations 4.25 & 4.26).  

𝜔 =
�̇�𝑣

�̇�𝑎
= 𝑓 (

𝑐𝑃(𝑇𝑎 − 𝑇𝑤)

ℎ𝑙𝑣
,

𝛼

𝔇
,

𝑥

𝐷
,
4(�̇�𝑎 + �̇�𝑤)

𝜋 𝐷𝑎𝑡𝑜𝑚 𝜇𝑎𝑣𝑔
 ,

�̇�𝑎

�̇�𝑤
 ) 

(4.25) 

𝜔 =
�̇�𝑣

�̇�𝑎
= 𝑓 (𝐽𝑎𝑚𝑜𝑑 , 𝐿𝑒,

𝑥

𝐷
, 𝑅𝑒𝐷 ,

�̇�𝑎

�̇�𝑤
) 

(4.26) 

The PGANN has the same inputs and output but uses the initial guess (𝜔𝑖) generated 

by the governing equations as an additional input, as shown in Equation 4.27 and 

Figure 4.11.  
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𝜔 =
�̇�𝑣

�̇�𝑎
= 𝑓 (𝐽𝑎𝑚𝑜𝑑 , 𝐿𝑒,

𝑥

𝐷
, 𝑅𝑒𝐷 ,

�̇�𝑎

�̇�𝑤
, 𝜔𝑖) 

(4.27) 

 
Figure 4.11: Physics-guided neural network for spray humidification with eight 

representative neurons in the hidden layer. The input parameters shown in solid black 

circles are present in both the black box and physics-guided networks. The physics-

based initial guess input parameter is shown in a dashed red circle as it is only present 

in the physics-guided artificial neural network. 

To train and test the BBANN and PGANN for this application, 3780 data point were 

used, with 70% for training and 30% for testing. Empirical models were used to 

generate this data set [32]. The number of neurons in the hidden layer was varied from 

4 to 22, as shown in Figure 4.12. The PGANN had lower error than the BBANN for 

each network configuration. The lowest error for the BBANN (2.33%) occurred when 

there were 20 neurons in the network. The PGANN had an error of 2.33% with only 

four neurons in the hidden layer. The lowest error for the PGANN (2.31%) occurred 

with 18 neurons in the hidden layer. With four neurons in the hidden layer the 

difference in error between the PGANN and BBANN is the largest at 17%. The average 

improvement in error across all network configurations is 5%.  
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Figure 4.12: Mean squared error of the black box and physics-guided neural networks 

for the spray humidification application as the number of neurons in the hidden layer 

is changed. 

As with the previous test cases, to compare the networks with the same number of input 

parameters, an input parameter reduction study was conducted. The input parameter 

reduction study was conducted on three different network configurations: with four 

neurons in the hidden layer as this case has the largest difference in error between the 

BBANN and PGANN, with eighteen neurons in the hidden layer as this case has the 

lowest error for the PGANN, and with twelve neurons in the hidden layer as an average 

case. Each input parameter was sequentially removed, both to determine the relative 

importance of each term and to investigate the effect of the PGANN on error when the 

number of input parameters is the same between the PGANN and BBANN.  
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Table 4.4: Spray humidification physics-guided network mean squared error (MSE) as 

each input parameter is sequentially removed and comparison to the MSE of the black 

box network for each configuration. 

 Four Neurons 

(BBANN MSE = 2.73%) 

Twelve Neurons 

(BBANN MSE = 2.44%) 

Eighteen Neurons 

(BBANN MSE = 2.41%) 

Removed 

Input 

PGANN 

MSE 

(%) 

Improvement 

from black 

box MSE (%) 

PGANN 

MSE 

(%) 

Improvement 

from black 

box MSE (%) 

PGANN 

MSE 

(%) 

Improvement 

from black box 

MSE (%) 

None 2.33 17 2.37 3 2.31 3 

Jakob 

Number 
2.51 9 2.41 2 2.32 2 

Lewis 

Number 
2.44 12 2.65 -8 2.70 -12 

Geometric 

Ratio 
2.72 0 2.67 -9 2.62 -9 

Reynolds 

Number 
7.55 -64 7.32 -67 7.28 -67 

Mass ratio 4.20 -35 2.94 -17 2.92 -19 

Table 4.4 shows the results of the input parameter reduction study for the spray 

humidification case. In this case the Jakob number was found to be the least important 

input parameter and the Reynolds number was found to be the most important 

parameter. For all three network configurations, if the Reynolds number is removed, 

the error increases significantly. For all cases, the error of the PGANN is still lower 

than that of the BBANN with the same input parameter removed, but the inclusion of 

an initial guess for the humidity ratio does not have a significant impact on the result 

of the network. The initial guess of the PGANN increases the accuracy of the network 

slightly but cannot overcome the significant dependence on the Reynolds number 

which has the largest impact on error. Given the significant dependence of both the 

PGANN and BBANN on the Reynolds number for this application, an input parameter 

reduction study was also conducted on the empirical model used to help expand the 

network data set [35]. It was found that removing the Reynolds number from the 

empirical model and re-optimizing the model results in a 101% increase in error. These 

results indicate that the Reynolds number is a critical parameter in the prediction of the 

humidity ratio for spray humidification, regardless of the prediction method (i.e., 

empirical model, ANN, etc.). 

In the case of the spray humidification, the physics-guided network was significantly 

more dependent on the Reynolds number than the analytical solution for the humidity 

ratio. For this case, the error of the physics-guided network with reduced inputs was 
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greater than that of the black box network in almost all cases, however, if the black box 

network has the same input parameter removed, the physics-guided network will have 

lower error. The inclusion of the physics-guided input parameter creates a more stable 

network such that if a parameter is accidentally omitted, the error of the network may 

still acceptable. However, changes in error are dominated by the Reynolds number and 

changes to any other input parameters has a relatively small impact on the error of the 

system. PGANNs can decrease the error of a system when all input parameters are of 

relatively equal importance but if there is one term with significantly higher system 

importance, the inclusion of an initial guess is less impactful. Future work is necessary 

to further study the lack of dependency on the initial guess in the case of the spray 

humification PGANN.  

4.3 Conclusions 

Physics-guided artificial neural networks, as well as black box networks, were 

developed to determine the benefits of adding an analytical initial guess as an input 

parameter to the neural network. The physics-guided artificial neural network 

methodology was applied to three multi-species mixing systems that are applicable to 

wastewater treatment; specifically to find the suction ratio of a Venturi mixing nozzle, 

the swirl pitch to demister length ratio for a swirling demister, and humidity ratio of a 

spray humidification system. The physics-guided network had lower mean squared 

error than the typical black box network for all network sizes for each applications 

studied.  

In the case of the Venturi mixing nozzle, even when input parameters are removed so 

the two network types have the same number of input parameters, the physics-guided 

network has lower error for all cases but one: the removal of the pressure ratio from the 

twenty-neuron configuration. Additionally, when two input parameters are removed, 

the physics-guided network has lower mean squared error in all cases but two. These 

results indicate that physics-guided artificial neural networks can be used to reduce the 

error and complexity of a network. Additionally, if an input parameter is accidentally 

left out of a network, physics-guided networks will maintain their high accuracy in 

almost all cases, making the choice of input parameters less critical to the success of 

the network.  
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In the case of the swirling demister, the PGANN has lower error than the BBANN, by 

33% on average. In the input parameter reduction study, the PGANN still had lower 

error than the BBANN in all cases except for the removal of the velocity ratio from the 

twelve and twenty neuron configurations. The swirl pitch is a strong function of the 

velocity ratio.   

In the case of spray humidification, the Reynolds number was identified as the most 

critical parameter for the success of predicting the humidity ratio. The inclusion of a 

physics-guided initial guess does not change the significant dependence on the 

Reynolds number. The PGANN does slightly outperform the BBANN in this case in 

terms of error and can therefore be used to reduce the network size.  

The physics-guided network has lower error for every network configuration and 

application if all input parameters are present. Thus, if a certain error is acceptable for 

a given application, the physics-guided network can be used to achieve that error at a 

smaller network size and computational cost. Physics-guided artificial neural networks 

can be used to reduce the network error by up to 40% for the same network architecture, 

or reduce the network architecture, or computational intensity, by up to 60% for the 

same value of error. 

When input parameters are removed from the PGANN such that it has the same number 

of input parameters as the BBANN, the PGANN still has lower error than the BBANN 

in the vast majority of cases examined. In the cases where a critical parameter is 

removed, the PGANN has higher error than the BBANN. In each application there is 

at least one critical parameter that, when removed, increases the error of the PGANN 

to above that of the BBANN. Therefore, the addition of a physics-guided initial guess 

is helpful to the error and stability of a given neural network, but cannot be used to 

replace important system parameters, and instead should be used to supplement logical 

system parameters. This shows that ANN is a powerful computational tool, but not a 

substitute for fundamental understanding and formulation of the physics of a process. 

When correct physical characterization and a first order governing equation analysis 

are paired with an ANN, it can produce the most reliable and computationally efficient 

predictions.  
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Future work on this topic is necessary to fully determine the capabilities of the physics-

guided artificial neural network methodology. This method must be applied to further 

applications in the topic of multi-species mixing, as well as other processes. The 

difference in error between the PGANN and BBANN increases as the error of the initial 

guess decreases, so further work to characterize at what error the initial guess becomes 

less impactful should be conducted. Additionally, cases with multiple output 

parameters of interest should be studied to determine if a single physics-based initial 

guess is sufficient for multiple network outputs or if each output parameter should have 

an initial guess as an input parameter. 

Nomenclature 

𝑦 Output value of a given neuron 

𝑓 Activation function 

𝑥𝑖 Input from ith neuron in previous layer 

𝑤𝑖 Weight of connection between given neuron and ith neuron in previous 

layer 

�̇� Mass flow rate (kg/s) 

ℎ Enthalpy (J/kg) 

𝑉 Velocity (m/s) 

𝑃 Pressure (Pa) 

𝜌 Density (kg/m3) 

𝜔 Humidity ratio 

𝐴 Area (m2) 

𝐿 Distance between nozzle throat and outlet (m) 

𝐷 Diameter (m) 

𝜇 Viscosity (kg/m·s) 

𝜈 Kinematic viscosity (m2/s) 

𝑇 Temperature (K) 

𝑐𝑃 Specific heat (J/kg·K) 

𝑅𝑒 Reynolds number 

𝐽𝑎𝑚𝑜𝑑 Modified Jakob number 

𝑥 Distance from atomizer outlet 

𝐿𝑒 Lewis number 

𝔇 Binary diffusion coefficient of water vapor and air 

𝑃𝑖𝑡𝑐ℎ Swirl pitch in demister (m) 

Subscripts 

𝑚 Venturi nozzle motive inlet 

𝑠 Venturi nozzle suction inlet 

𝑜 Venturi nozzle outlet 

𝑡 Venturi nozzle throat 

𝑎 Dry air 
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𝑤 Liquid water 

𝑎𝑡𝑜𝑚 Effective atomizer 

𝑣 Water vapor 

𝑠𝑤𝑖𝑟𝑙 In swirling demister 

𝑖 Physics-based initial guess 
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CHAPTER FIVE 

Conclusions 

In this chapter the work from Chapters Two, Three, and Four are summarized and a 

comparison of the various modelling methods used throughout the work is presented. 

Additionally, future work and applications of the physics-guided artificial neural 

network framework are outlined.  

Three research goals were identified to evaluate the work described in this dissertation. 

The first research goal was to identify common parameters among existing thermal 

wastewater treatment methods such that a new model can be developed based on the 

common parameter space to accurately model hydraulic fracturing wastewater 

treatment for a number of technologies. This research goal was addressed in Chapter 

Two. The literature review undertaken of hydraulic fracturing wastewater as well as its 

management and treatment helped to inform the design of possible novel treatment 

systems, to identify the parameters critical to the successful treatment of hydraulic 

fracturing wastewater regardless of the treatment technology, and to identify the need 

for very accurate system models to predict the real time performance of these complex 

treatment technologies.  

The second research goal was to develop empirical models for a component that is not 

well characterized analytically to provide a design guide for applications that need 

precise measurement or control of the mixing ratio, such as selective condensation of 

water from a muti-species gaseous flow. In order to address this goal, the work 

discussed in Chapter Three was completed. It was determined that the suction ratio of 

low-pressure Venturi nozzles can be determined analytically with 270% error. This 

method is insufficiently accurate to use in analysis of a wastewater treatment system 

involving low-pressure Venturi nozzles. To develop more accurate models for low-

pressure Venturi nozzles, CFD simulations of the process were experimentally 

validated and used to conduct a parametric study of 109 cases over 15 different 

geometries. The results of the parametric study were used to develop empirical models 

which are all at least twice as accurate as the analytical model. These empirical models 

can be used to design low-pressure Venturi nozzles. Despite the significant 

improvement in error between the empirical and analytical models, the empirical 
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models are still insufficiently accurate to be used for real-time modeling and control of 

wastewater treatment systems. Thus, a different modeling method was adopted in an 

attempt to further reduce the model error.  

The final research goal addresses the need for more accurate modeling methods: 

develop framework for physics-guided artificial neural networks and characterize 

change in network performance between black box and physics-guided artificial neural 

networks using various components relevant to wastewater treatment systems. This 

research goal is addressed in Chapter Four wherein the concept of a physics-guided 

artificial neural network is described and evaluated on three cases. For all cases the 

artificial neural networks have sufficiently low error to be incorporated in a real-time 

system model for hydraulic fracturing wastewater treatment applications. The error of 

these networks can be further reduced using a physics based initial guess as an input 

parameter in physics-guided artificial neural networks. The physics-guided artificial 

neural network framework can reduce both the error and computational cost of the 

model. The limitation of the physics-guided network framework is that it cannot be 

used to overcome the physics of the system, evidenced by other input parameters, such 

as the Reynolds number or ratio of static pressure to dynamic pressure, having a larger 

impact on the error of the network than the physics based initial guess. The range of 

cases studied provides a strong indication that the physics-guided network developed 

in this research can be applied to wastewater treatment and many other thermal-fluids 

applications, irrespective of the specific technology, as long as the network is supplied 

with correct input parameters based on the physics of the system, as well as a physics-

guided initial guess.  

Four types of models have been used in this work: CFD, analytical, experimentally-

driven empirical, and neural network. Each type of model was applied to the case of 

low-pressure Venturi nozzles. The CFD model predicted the suction ratio within 11% 

but is the most computationally intensive model of those considered. Using a computer 

with 40 parallel processors with a base speed of 2.6 GHz the suction ratio of a single 

nozzle can be found in approximately one hour.  Physics-guided artificial neural 

network models can produce predictions for Venturi nozzle suction ratio within one 

minute, using four parallel processors with a base speed of 2.5 GHz. The normalized 
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computational intensity can be found by calculating the product of the number of 

processors, the base speed, and the computational time. The normalized computational 

intensity of the physics-guided network model is approximately 624 times lower than 

that of the CFD model. The analytical model had the highest error: 270%. The 

empirical models had error of 22% and the physics-guided network had error of 2%. 

The physics-guided network model takes significant time to train and test before it can 

be used, but once trained can be used to quickly find the suction ratio with very low 

error for any case supplied to it. Functionally, for a single component the computational 

intensity of the analytical, empirical, and physics-guided network models is similar, 

however, for more complicated systems the differences in computational cost will be 

more pronounced. The results of the black box artificial neural network are five times 

more accurate than the CFD results and can be found with 624 times less normalized 

computational intensity. The black box and physics-guided artificial neural networks 

have comparable computational intensity, but the physics-guided network is, on 

average, 13% more accurate than the black box network for the case of the low-pressure 

Venturi nozzle.  

Though artificial neural network models have much lower normalized computational 

intensity than CFD simulations, the CFD simulations provide much more information 

than the artificial neural network models. The neural networks can only provide the 

output information they are trained to predict. On the other hand, CFD models can 

provide detailed information about any particular problem, as well as information about 

the velocity profile, species transport, etc. If one knows the exact information they want 

from a model and need to calculate that information repeatedly, the lower 

computational intensity of the neural network models makes them the ideal modeling 

tool. However, if one needs additional detailed spatial analysis, gradients, other detailed 

or granular information, or only needs information about a few cases, CFD models can 

provide more information without the need for training and testing of the model, as is 

necessary in neural network models.  

In this work, the concept of physics-guided artificial neural networks has been proven 

for multiple components used in larger wastewater treatment technologies, however, 

there is still significant future work necessary to further understand the limitations and 
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capabilities of the physics-guided network framework. First, for all cases considered a 

single hidden layer was used, as recommended by the literature. For more complicated 

processes, such as full treatment systems rather than individual components, additional 

hidden layers may be necessary. For cases with multiple hidden layers further 

architecture changes for the physics-guided networks should be investigated. It may be 

the case that fewer hidden layers are required for physics-guided networks than for 

black box networks. Second, a physics-guided neural network should be applied to a 

selective condensation process. Thus far the physics-guided networks have been 

applied to multi-species mixing and evaporation processes. It is necessary to investigate 

the error and computational intensity improvement for a multi-species selective 

condensation process, such as selective condensation in a packed bed, to see if the 

results mirror those of the mixing and evaporation processes. Finally, the physics-

guided network architecture should be applied to a complete hydraulic fracturing 

wastewater treatment system. Many of the critical input parameters (wastewater 

composition, flow rate, target effluent purity, etc.) have already been identified via the 

critical review of the field presented in Chapter Two. The additional input for the 

physics-guided network will be an analytically determined performance parameter of 

the technology. 

 


