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The rapid growth in the number of roundabouts raises some significant research 

challenges, especially around safety performance and evaluation in the U.S. Despite 

the safety advantages that roundabout geometric design brings, crashes still occur. 

While operationally roundabouts are good at preventing severe crashes, they may lead 

to more less severe crash outcomes. Much attention has been given to injury severity 

at signalized intersections in the past, but little to no work has been performed on 

roundabout crash severity.  One possible reason for this is the lack of data and given 

that roundabouts are a growing trend among many states for their safety performance, 

data is still tricking in slowly. The challenge with current data is its lack of detail that 

would allow for a clearer understanding of how the complex interactions between 

roundabout crash related factors, crash types, injury severity and roundabout 

configurations can be captured with current econometric methods utilized by 

transportation safety analysts today.  

 However, there have been considerable advancements over the last few years 

especially in econometrics methods that account for unobserved heterogeneity. These 

advancements have been shown to provide a more reasonable understanding of 

contributing factors to overall safety. In addition, there has been a greater push to 

improve predictability and performance of these econometric techniques by utilizing 

complementary approaches such as machine learning. With this in mind, the goal of 



 

 

 

 

this dissertation is to present an exploratory crash-based approaches that utilize both 

advanced econometric methods and machine learning techniques to better understand 

the factors that may influence less severe crashes to those of more severe crashes given 

various configurations and crash types utilizing Oregon and Washington state crash 

data at roundabouts.  

 The first manuscript investigates a crash-based analysis to better understand the 

factors that may influence less severe crashes to those of more severe crashes given 

various roundabout configurations and crash types in Oregon. Using Oregon’s crash 

database from 2011 to 2015 in which 1,006 crashes occurred at roundabouts. A series 

of log likelihood ratio tests were conducted to validate that four separate random 

parameters binary probit models by configuration type were warranted. 

 The second manuscript develops a machine learning methodology that evaluates 

crash injury severity at roundabouts and compares this with traditional econometric 

techniques. This work estimates a Random Parameter Binary Probit model (RPBP) and 

compares its predictions with those rendered from machine learning techniques, 

namely, Support Vector Machine (SVM) with linear, radial, polynomial, and sigmoid 

kernels. This is accomplished by utilizing Oregon crash data from 2011 to 2015 and 

focuses on both three- and four-leg roundabouts. Two significant variable sets have 

been conducted by utilizing random forest and binary model. 

 Finally, the third manuscript investigates risk factors that significantly contribute to 

driver injury severity at roundabout crashes while systematically accounting for 

unobserved heterogeneity and the variance in means of the random parameters within 

the crash data. In this method data from the Washington State Department of 

Transportation (WSDOT) over a six-year period (2013 to 2018) in which 8548 crashes 

occurred at roundabouts is used. A random parameter binary probit model with 

heterogeneity in random parameter means is estimated to explore the effects of a wide 

range of variables on driver injury severity outcomes. Although the results of this work 

are exploratory, they provide evidence that crashes are occurring at roundabouts and 

several factors lead to crashes that result in an injury. In addition, the modeling 

approaches in this work offer a methodology that can account for unobservable factors 



 

 

 

 

in roundabout crash data. The findings of this research underscore the importance of 

fully accounting for unobserved heterogeneity by considering possible heterogeneity 

in the means of parameters. With the growing and importance relating to roundabout 

safety, this work provides some essential initial findings with Washington data, but 

also hopefully can provide some guidance for the analysis of other roundabouts-crash 

databases from other geographic locations and time periods. Several low-cost 

mitigation measures can reduce the number of crashes at roundabouts. First, improving 

pavement marking and signage to guide the motorist better and enhance driver 

expectancy. Furthermore, educating the public, including public-private partnerships 

between law enforcement agencies, driver's education instructors, transportation 

engineering groups, and insurance companies. 
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Chapter 1: Introduction 

1.1 Motivation  

A roundabout is a type of circular intersection or junction in which road traffic is 

permitted to flow in one direction around a central island, and priority is typically given 

to traffic already in the junction. The major characteristics than distinguished the 

roundabouts from other circular intersections are there is a yield control on all the 

entries whereas there is stop sign or no control at the traffic circle. Additionally, No 

parking is allowed within the circulatory roadway or at the roundabout’s entries 

whereas some traffic circles allow parking within the circulatory roadway. Finally, all 

vehicles circulate counter-clockwise and pass to the right of the central island and the 

roundabout, whereas some traffic circles allow left-turning vehicles to pass to the left 

of the central island. 

 Roundabouts are increasingly popular in the United States due to the advantages of 

improving safety and reducing delays at intersections. Although modern roundabouts 

were first designed in the United Kingdom in the 1960s, their prevalence in the United 

States did not begin until the 1990s (Qin et al. 2011). Roundabout implementation has 

been on the rise in the United States, with less than 100 in 1997 to about 1000 in 2007 

(Montella 2011).  Roundabouts are generally used as a solution in some cases of some 

intersections with different leg types. At the roundabout, vehicles coming from each 

road, heading towards the roundabout, move in one direction when entering the 

roundabout and around a central island in a circle. Traffic in the roundabout is 

continuous but at a relatively slow speed. 

 The conversion of intersections into roundabouts produces a substantial 27% growth 

in the number of injury accidents involving bicyclists on or nearby the roundabouts in 

Flanders. (Daniels et al. 2008) tried to figure out if roundabouts have an impingement 

on the safety of different cases of road users to develop adequate decision-making 

criteria for places when the structure of a carousel is being taken. So, compared to other 

types of intersections, roundabouts have some intrinsic properties favoring traffic 

safety: they reduce speeds considerably, and they decrease the number of possible 
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conflict points between road users (Daniels et al. 2011). For instance, many 

intersections have been converted into roundabouts to enhance the capacity and to 

reduce the number of more severe crashes; that is, roundabouts have fewer conflict 

points compared to the more traditional intersection reducing the crash potential 

(Montella 2011). FHWA formally defines a conflict as an "observable situation in 

which two or more road users approach each other in time and space to such an extent 

that there is a risk of collision if their movements remain unchanged." Three types of 

conflicts are possible: merge, diverge, and crossing. Crossing conflicts are often the 

most severe in terms of vehicular injuries and fatalities. Recent studies of intersections 

converted to roundabouts indicate a steady reduction in injury crashes, particularly for 

crashes with fatal or more severe injuries (Daniels et al. 2010a). Moreover, these 

studies have reported a larger decrease in the number of severe crashes (fatalities and 

crashes involving severe injuries) compared to the reduction of the total number of 

injury-related crashes. However, the effects of property-damage-only crashes are 

highly uncertain (Daniels et al. 2008).  

 The construction of roundabouts as alternatives to signalized or STOP-controlled 

intersections has increased in Oregon due to their safety performance characteristics. 

The rapid growth in the number of roundabouts in Oregon and the United States raises 

some significant research challenges, especially in the area of safety performance and 

evaluation for U.S. specific data under varying conditions. Despite the advantages in 

the roundabout geometric design, crashes still occur. While roundabouts are great at 

preventing severe crashes, they may bring on more non-fatal wrecks. Although the 

increase of using roundabouts as a superior alternative to other intersection types in 

urban and rural areas, there is still a high need for further research to develop advanced 

injury severity prediction models that account for unobserved heterogeneity and to get 

the contributing factors that lead to a specific type of injury. 

1.2 Background  

 Modern roundabouts have become increasingly popular in the United States due to 

their innovative design, benefits on traffic operations, and increased safety. 
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Considerable research has been conducted in better understanding design and improved 

traffic operations of roundabouts (Chen et al. 2013; Coelho et al. 2006; Flannery 2001; 

Pratelli 2006; Valdez et al. 2011), and from a safety perspective, roundabouts have also 

been studied quite extensively (De Brabander et al. 2005; Kamla et al. 2016; Montella 

2007; Persaud et al. 2001). Yet, literature that attempts to capture the complex 

interactions of crash factors, injury severity, crash types, and configuration is sparse. 

There have been several efforts that attempt to capture these complex interactions 

through advanced econometric techniques  (Lord and Mannering 2010, Mannering and 

Bhat 2014, and Mannering et al. 2016) from the perspective of analyzing signalized 

and unsignalized intersections, but not much on roundabouts. Some of these methods 

have been confined to the development of crash rates/frequency models. Table 1.1 

summarizes the most commonly used econometric techniques for crash rate/frequency 

as found in the literature. Still, from an advanced econometric methodology 

perspective, Table 1.2 illustrates the sparseness of these methods as applied to 

roundabout injury severity.  

Table 1.1:Summary of research accounting for crash frequency modeling for the 

roundabouts. 
Methodological Approach Previous Research 

Linear regression (Taekratok 1998), (Ambros et al. 2016) 

Poisson  (Daniels et al. 2010b), (Dixon 2012), (Daniels et al. 2011), 

Gamma probability (Daniels et al. 2010b), (Daniels et al. 2011), 

Negative binomial (NB) 
(Chen et al. 2013), (Dixon and Zheng 2013), (Chiu 2014), (Dixon 

2012), (Qin et al. 2011a), (Kamla et al. 2016) 

Zero-Inflated Poisson (ZIP) (Chen et al. 2013),  

Zero-inflated 

negative binomial (ZINB) 

(Anjana and L. R. Anjaneyulu 2015) 

 

Table 1.2: Summary of research accounting for Crash Severity Modeling at the 

roundabouts. 
Methodological Approach Previous Research 

Logit (Daniels et al. 2010a), (Polders et al. 2015) 
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 To deal with the data and methodological issues associated with crash severity and 

crash frequency data, a variety of methods have been used over a long time. Table 1.3 

provides a summary of advantages and disadvantages for some of these methodological 

approaches used to analyze crash severity and crash frequency at roundabouts. 

Table 1.3: Summary of methodological approach characteristics 
Methodological Approach Advantages Disadvantages 

Linear regression • when relationships between 

the independent variables and 

the dependent variable are 

almost linear, it shows 

optimal results 

• Linear regression is often 

inappropriately used to model 

non-linear relationships. 

• Linear regression is limited to 

predicting the numeric output. 

• The dependent variable must 

be continuous. 

• Linear regression only looks at 

the mean of the dependent 

variable. 

• Regression is sensitive to 

outliers. 

Poisson  • Counts of events that occur 

randomly in each interval of 

time (or space). 

• Maintains the constancy of 

the sums 

• Poisson has support only on the 

positive integers. 

• It does not account for over 

dispersion because it assumes 

that the mean and variance of 

the errors are equal 

Negative Binomial (NB) • It loosens the highly 

restrictive assumption that 

the variance is equal to the 

mean so it can easily handle 

the crash data over dispersion 

• The negative binomial has 

support only on the positive 

integers. 

• The constancy of sums is not 

maintained 

• Cannot handle under-

dispersion 

Zero-Inflated Poisson (ZIP) • Use to model count data that 

has an excess of zero counts 

• It does not account for over 

dispersion problems 

• Can create theoretical 

inconsistencies 

 

Zero-inflated 

negative binomial (ZINB) 
• Count data that exhibit over-

dispersion and excess zeros 

• Can create theoretical 

inconsistencies 

• can be adversely influenced by 

the low sample-mean and small 

sample size bias 

Gamma  • Account for under dispersion • Dual-state model with one state 

having a long-term mean equal 

to zero 

Logit • Use to model dichotomous 

outcome variables 

• Allows properties of a linear 

regression model to be 

exploited 

• Cannot predict continuous 

outcomes 

• Data should be independent 

• High bias 
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• The logit itself can take 

values between - ∞ and + ∞ 

• The probability remains 

constrained between 0 and 1 

 

  

 The current econometric models, as previously shown (see Table 1.4), were good 10 

to 15 years ago; however, since that time, there has been considerable advancement in 

econometrics, especially econometrics methods that account for unobserved 

heterogeneity. These advancements have been shown to provide a more reasonable 

understanding of contributing factors to overall safety issues. 

 

Machine learning algorithms for crash severity predictions have been addressed so far 

at different roadway locations and become popular due to their good predictive 

performance. Through methods like Nearest Neighbor Classification (NNC), Support 

Vector Machines (SVM), Random Forests (RF), and deep learning model using a 

Recurrent Neural Network Objectives, there is high potential to highlight significant 

factors as they relate to crash injury severities in addition to increased predictive power 

over more conventional econometric techniques. Many different studies provided 

invaluable insights for the use of predictive analytics in this domain and exposed the 

relative importance of crash related risk factors with the changing levels of injury 

severity in different locations except at the roundabouts (Aghayan et al. 2015; Ahmadi 

et al. 2020; Delen et al. 2017; Iranitalab and Khattak 2017a; Jeong et al. 2018; Kashani 

and Mohaymany 2011; Li et al. 2018a; Mafi et al. 2018; Pal et al. 2016; Rezapour et 

al. 2020; Sameen and Pradhan 2017a; Tang et al. 2019a; Tay 2015a; Toran n.d.; Yu 

and Abdel-Aty 2014; Zhang et al. 2018a).  

 In addition, from an injury severity analysis, crash type, and configuration, there is 

much more that can be done, as seen from the lack of literature that captures the 

complex interactions of these variables. Considerable research has been conducted in 

better understanding design and improved traffic operations of roundabouts (Chen et 

al. 2013; Coelho et al. 2006; Flannery 2001; Pratelli 2006; Valdez et al. 2011), and 

from a safety perspective, roundabouts have also been studied quite extensively (De 

Brabander et al. 2005; Kamla et al. 2016; Montella 2007; Persaud et al. 2001). Yet, 
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literature that attempts to capture the complex interactions of crash factors, injury 

severity, crash types, and configuration is sparse. There have been several efforts that 

attempt to capture these complex interactions through advanced econometric 

techniques  (Lord and Mannering 2010, Mannering and Bhat 2014, and Mannering et 

al. 2016) from the perspective of analyzing signalized and unsignalized intersections, 

but not much on roundabouts.  

 With this in mind, what is still not clearly understood is the relationship between 

roundabout crash-related factors, crash types, injury severity, and roundabout 

configurations. A reason for this may stem from the lack of available detailed crash-

related data. Recent studies (Al-Bdairi et al. 2018; Al-Bdairi and Hernandez 2017; 

Anderson and Hernandez 2017a; Pahukula et al. 2015; Romo et al. 2014) have 

illustrated the use of limited crash data sources to discover relationships between crash-

related factors and injury severities through the use of advanced unobserved 

heterogeneity based econometric techniques. Hence, the objective of this study is to 

conduct crash-based analyses to better understand the factors that may influence less 

severe crashes to those of more severe crashes given various configurations and crash 

types. In addition, used an artificial intelligent method to predict better injury severity 

models with different outcome ratio. This will be accomplished by exploring relatively 

new techniques applied to roundabout crash data to fill the gap in the literature. Both 

advanced econometric techniques and machine learning methods were applied to 

predict traffic injury severity models at the roundabouts to accomplish the following 

aims: 

• What are the contributing factors and the unobserved heterogeneity that lead to 

a specific type of injury severity? Is this related to the configuration of the 

roundabout? 

• Is the machine learning method could perform better than the econometric 

technique in predicting injury severity outcomes? 

• Is there a relationship between specific driver injury severity and the gender 

and the age of the driver at the roundabout crashes? 
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 To answer the previous questions, three extensive studies have been conducted to 

present clearer insight about the crash’s characteristics at the roundabout and distinctive 

of applying specific advance statistical methods. This is accomplished through 

exploring advanced econometric techniques applied to roundabout crash data that 

account for unobserved heterogeneity (unobservable in the data). These advanced 

econometric techniques have been shown to provide a more accurate understanding of 

contributing factors to overall safety issues (Mannering et al. 2016; Mannering and 

Bhat 2014). Specifically, this work utilizes the random parameters binary probit model. 

The random parameters binary probit model is used here to gain a better understanding 

of the complex interactions between factors found to be significant and those 

unobserved factors that may be influencing estimated outcomes. So, the study conducts 

crash-based analyses to better understand the factors that may influence less severe 

crashes to those of more severe crashes given various roundabout configurations. Then 

developed a machine learning methodology that evaluates crash severity at 

roundabouts and conducts two datasets as a significant variable by using both 

traditional method and machine learning techniques and compare these methods with 

traditional econometric techniques by using the two conducting datasets. Precisely, this 

work will estimate a random parameter binary probit model (RPBP) and compare its 

results with those rendered from machine learning techniques, namely, Support 

Machine Vector (SVM) with linear, nonlinear, polynomial, and sigmoid kernels. The 

comparison will focus on predictions of the two crash outcomes for three- and four-leg 

roundabouts. 

 Finally, to understand the relationship between specific driver injury severity and 

the gender and the age of the driver at the roundabout crashes. The majority of research 

focusing and intends to contribute to a better understanding of driver characteristics on 

specific injury severity at the roundabouts with heterogeneous mean specified as a 

function of age and gender. This has been done by conducting crash-based analyses by 

taking into consideration the unobserved heterogeneity, and the variance in random 

parameter means. 
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1.3 Organization of Dissertation 

 The current dissertation is a component of three journal manuscripts that briefly 

establish a better understanding of the dissertation’s scope. Chapter 2 represents the 

first journal manuscript published in the “International Journal of Transportation 

Science and Technology.” This manuscript investigated the applying of fixed and 

random parameters binary probit models to model the probability of two possible crash 

severity outcomes. These outcomes represent the aggregation of injury-type crashes 

and fatal crashes, and no injury crashes.  

 Chapter 3 describes the development of a machine learning methodology that 

evaluated crash injury severity at roundabouts and compared this method with 

traditional econometric techniques. Precisely, this work estimated a random parameter 

binary probit model (RPBP) and compared its predictions with those rendered from 

machine learning techniques, namely, support vector machine (SVM) with linear, 

radial, polynomial, and sigmoid kernels. To compare the two methods, two variables 

selection techniques were used. First, variables identified as being significant in the 

econometric method were used to predict crash severity in both methodologies. Second, 

variables were identified through a random forest analysis and used to predict crash 

severity in both methodologies. Regardless of the variable selection technique, results 

demonstrated that the SVM models outperformed the econometric models in crash 

severity predictions.  

 Chapter 4 presents the effect of the driver age and gender on driver injury severity 

outcome at the roundabouts, a random parameter binary probit model with 

heterogeneity in means developed. An additional layer of heterogeneity has been added 

that is associated with the mean of the distribution of the estimated random parameter, 

in other words allowing the random parameter to vary by the explanatory variables. 

Chapter 5 includes the conclusion of this work and future work, and finally, Chapter 6 

illustrates the references. 
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Abstract 

Intersections present a significant safety concern; as such, in an effort to reduce the 

more serious injuries occurring at or near intersections, many jurisdictions have turned 

to implement roundabouts. Despite the advantages that roundabouts provide, crashes 

still occur, and less severe crashes are on the rise. The study presented in this paper 

investigates a crash-based analysis to better understand the factors that may influence 

less severe crashes to those of more severe crashes given various roundabout 

configurations and crash types. Using Oregon’s crash database from 2011 to 2015, a 

series of log-likelihood ratio tests were conducted to validate that four separate random 

parameters binary probit models by configuration type were warranted. The outcome 

of each tested configuration (full, three & four leg, four leg, and three leg models) 

shows a major difference in both the combination and variables included in each model 

and the magnitude of the impact of those variables. These differences illustrate that 

various roundabout configurations (full, three & four leg, four leg, and three leg 

models) do, in fact, have different factors highlighting the need to examined crashes at 

roundabouts by configuration type.  Variables related to driver error, weather, alcohol 

use, barrier conditions, vehicle movement, location of the crash, and restraint use were 

found as key differences between the various tested configurations.   

 

 

 

 

Keywords: Roundabouts, Safety, Injury Severity, Unobserved Heterogeneity, Random 

Parameters Probit 
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2.1 Introduction 

 Intersections present a significant safety concern, accounting for roughly 2.21 

million crashes and 6,770 fatal crashes in 2009, while during the period of 2011 to 

2014, there were 48,733 (28%) drivers involved in fatal intersection crashes (AARP 

and WALC 2014; Gross et al. 2013; Lombardi et al. 2017; NHTSA 2009). Almost one 

in every four fatal crashes occur at or near an intersection (Haleem and Abdel-Aty 

2010). In an effort to reduce the more serious injuries occurring at or near intersections, 

many jurisdictions have turned to implement roundabouts, a proven countermeasure 

(FHWA 2015; Gross et al. 2013; Nikitin et al. 2017). The construction of roundabouts 

as an alternative to signalized or stop sign-controlled intersections has increased over 

the years, with less than 100 in 1997 to as many as 3,200 in 2013 and growing (FHWA 

2015; Montella 2011; Qin et al. 2011a). Many intersections have been converted to 

roundabouts to enhance traffic capacity and reduce crashes (Montella 2011). Compared 

to other types of intersections, roundabouts have some intrinsic properties favoring 

traffic safety; for example,  they reduce speeds considerably and decrease the number 

of possible conflict points between road users (Daniels et al. 2011).  

 The Federal Highway Administration (FHWA) formally defines a conflict as an 

"observable situation in which two or more road users approach each other in time 

and space to such an extent that there is a risk of collision if their movements remain 

unchanged." Traffic at a roundabout is governed by the yield-at-entry rule, and the 

relatively lower levels of geometric design standards are intentionally applied to force 

vehicular trajectories at roundabouts into a very narrow space. International studies of 

intersections that have been converted to roundabouts indicate a steady reduction in 

injury crashes, particularly for crashes with fatal or severe injuries (Daniels et al. 

2010a).  These studies indicate that the crash frequencies (average annual crashes per 

roundabout) in the United States are still high compared to results from Australia, 

France, and the United Kingdom (Robinson et al. 2000).  These same studies also report 

a considerable decrease in the number of severe crashes (fatalities and crashes 

involving severe injuries) compared to the reduction of the total number of injury 

crashes. However, the effects of property-damage-only (no injury) crashes are highly 
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ambiguous (Daniels et al. 2008). Despite the advantages that roundabouts provide, 

crashes still occur.  

 Turning to driver injury severity analyses, various methodological and statistical 

modeling techniques have been developed and applied to identify various contributing 

factors to intersection-related crashes (Lombardi et al. 2017). Roadway geometric 

features, driver behavior, demographic information, traffic control elements, traffic 

compositions, and environmental characteristics are some examples of these factors 

(Liu et al. 2016; Lombardi et al. 2017; Mannering et al. 2016). To better understand 

the influences of these factors on roundabout crashes, it is essential to investigate their 

impacts on crash occurrences in order to develop effective countermeasures to reduce 

crash risk and severity. 

 Still, what is not clearly understood is the relationship between roundabout crash-

related factors, crash types, injury severity, and roundabout configurations. Therefore, 

the objective of this study is to conduct a crash-based analysis to better understand the 

factors that may influence less severe crashes to those of more severe crashes given 

various configurations and crash types for roundabouts. This will be accomplished 

through exploring advanced econometric techniques applied to roundabout crash data 

that account for unobserved heterogeneity (unobservable in the data). These advanced 

econometric techniques have been shown to provide a more accurate understanding of 

contributing factors to overall safety issues (Mannering et al. 2016; Mannering and 

Bhat 2014). Specifically, this work utilizes the random parameters binary probit model. 

The random parameters binary probit model is used here to gain a better understanding 

of the complex interactions between factors found to be significant and those 

unobserved factors that may be influencing estimated outcomes. To accomplish this, 

Oregon crash data is used. The dataset consists of 1,006 crashes in seventeen counties 

in the State of Oregon for a five-year period (2011 to 2015).  To the best of the authors’ 

knowledge, this is the first attempt at modeling driver-injury severity for crashes 

occurring at roundabouts using a random parameter binary probit approach on two 

injury severity outcomes (injury or no injury) in Oregon.   
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2.2 Background  

 Given the sparsity of literature on roundabout injury severity modeling, this section 

presents studies related to methodological approaches that establish any links between 

crash characteristics, injury severity, road environments, and other factors related to 

roundabouts. 

 According to previous studies in Belgium, no studies for designing and improving 

road safety policy have ever been carried out in-depth. Considering this, De Brabander 

et al. (2005) studied the impact of roundabouts on the number of crashes and injury 

severity. Based on a classic negative binomial distribution, the results showed 

that roundabouts lead to a reduction of 34% in the number of injury crashes. After that 

study, many studies were completed in Belgium to evaluate the effectiveness of 

roundabouts. One such study found that the conversion of intersections into 

roundabouts led to a substantial rise (27%) in the number of injuries crashes involving 

bicyclists on or nearby roundabouts in Flanders, Belgium. This outcome was confirmed 

by Daniels et al. when attempting to ascertain if roundabouts have an impact on the 

safety of different types of road users; this was used to develop adequate decision-

making criteria for roundabout design (Daniels et al. 2008). Then, in an expanded study 

in Flanders, Belgium, conducted by Daniels et al., the authors looked into which factors 

might explain the severity of crashes or injuries at roundabouts constructed between 

1990 and 2002 (Daniels et al. 2010b). To do this,  Daniels et al.  investigated the 

application of the Poisson and gamma modeling techniques to determine which 

variables might explain a structural part of the variation in crash rates at roundabouts 

in Flanders, Belgium (Daniels et al. 2010a).   

 Next, Daniels et al. extended the prediction models for crashes at roundabouts, in 

which regression models were fitted using available geometric and traffic variables 

(Daniels et al. 2011). The Poisson and gamma models were equipped with the resulting 

list of variables. Vulnerable road users (moped riders, motorcyclists, bicyclists, 

pedestrians) are more often involved in injury crashes at roundabouts. The overall 

number of crashes is more or less proportional to the number of motorized vehicles 
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(AADT). Three-leg roundabouts tend to perform worse than roundabouts with four or 

more legs. The larger the central island, the more single-vehicle crashes seem to occur. 

Substantial and highly significant crash reductions were observed by Montella 

following the conversion of signalized and stop-controlled intersections to roundabouts 

(Montella 2011). However, roundabout performances can degrade if precautions are 

not taken during either the design or the operation phase. Thus, the paper aimed to 

investigate the contributory crash factors at fifteen urban roundabouts located in Italy 

and to study the interdependencies between these factors. It was found that the most 

frequent category of contributory crash factors was geometric design. Markings were 

a contributory factor in more than half of the total crashes. The pavement was identified 

as a contributory factor in more than one-third of the total crashes, with the most 

common factor being low friction. Road environment factors were designated as a 

contributory factor in one-fifth of the crashes. 

 Furthermore, Kim and Choi investigated the significant factors that contribute to 

crashes at roundabouts in South Korea by comparing two conventional models: Poisson 

regression and negative binomial regression (Kim and Choi 2013). Based on their 

statistical analysis, it was found that the negative binomial regression approach 

performed best. In addition, the study provided a model with which to capture the 

relationship between geometric design elements and the occurrence of crashes at 

roundabouts. 

 Although roundabouts have gained popularity nationally and in Oregon, it is still not 

clearly understood what the relationship might be between crash types, injury severity, 

and roundabout configurations. As such, there is a need for further research to develop 

advanced crash prediction models that account for unobserved heterogeneity. In 

addition, from an injury severity analysis and configuration perspective, the lack of 

literature shows there is much more that can be done to capture the complex 

interactions of these variables. A reason for this may stem from the lack of available 

detailed crash-related data. Recent studies have illustrated the use of limited crash data 

sources to discover relationships between crash-related factors and injury severity 

through the use of advanced unobserved-heterogeneity-based econometric techniques 

(Al-Bdairi et al. 2018; Al-Bdairi and Hernandez 2017; Anderson and Hernandez 2017a; 
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Pahukula et al. 2015; Romo et al. 2014). Hence, the objective of this study is to conduct 

crash-based analyses to better understand the factors that may influence less severe 

crashes to those of more severe crashes given various configurations and crash types.  

2.3 Empirical Setting 

 It is generally accepted that the number of crashes at roundabouts are fewer than 

those at signalized intersections. Therefore, obtaining detailed data that can capture the 

factors that contribute to crash severity is more complicated regarding the required 

sample size that accurately represents the population. As such, this research is based 

on crash data collected and compiled by Oregon’s Department of Transportation 

(ODOT) Crash Analysis and Reporting Unit. The data includes crashes over a five-year 

period (2011 to 2015), in which 1,006 crashes occurred at roundabouts (shown in Table 

2.1). Figure 2.1 illustrates the difference between the normalized crash data vs. the non-

normalized crash data to compare the crash patterns during the period 2011 to 2015. 

The normalization was performed by calculating the average number of the crashes 

over five years and their distribution over this time period. These crashes occurred in 

seventeen counties at different types of roundabouts (unknown, three leg, four leg, and 

five leg roundabouts), as shown in Figure 2.2, with a different geometric design in both 

rural and urban areas.   

Table 2.1: Crash Injury Severity at Roundabouts in Oregon from 2011-2015. 

 

Year Severe Minor No Injury Sum % of Total 

2011 1 28 125 154 15.31 

2012 1 41 179 221 21.97 

2013 1 30 165 196 19.48 

2014 1 34 160 195 19.38 

2015 2 31 207 240 23.86 

Total 6 164 836 1006 100 
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           Figure 2.1: Normalized vs Non-normalized Data of Roundabout Crashes in  

                                                Oregon from 2011 to 2015. 

 

             

                 Figure 2.2: Number of crashes according to the type of roundabout. 

 As illustrated in Figure 2.2, roundabouts with four leg had the highest number of 

crashes at 704(70%), followed by roundabouts with three leg at 209 (21%) crashes, 

unknown roundabout type at 75(7%), and roundabouts with five leg at seventeen 

crashes. The distribution of the crash injury severity is comprised of six fatal and 

0.1

0.15

0.2

0.25

2011 2012 2013 2014 2015

A
v
er

ag
e 

o
v
er

 5
 y

r-
p

er
io

d

Year

Roundabout Crashes in Oregon 

No-norm

Norm

7%

21%

70%

2%

0

100

200

300

400

500

600

700

800

Unknown 3-Leg 4-Leg 5-Leg

N
u
m

b
er

 o
f 

C
ra

sh
es

Roundabout Type



22 

 

 

 

incapacitating injuries (severe), 164 minor injuries (non-incapacitating and possible 

injuries – complaint of pain), and 836 no injuries. 

 Table 2.2 provides descriptive statistics of variables that were used to model injury 

severity for all roundabout types (full model), three and four leg roundabouts (three 

and four leg), four leg roundabouts (four leg), and three leg roundabouts (three leg). 

These varibles consisted of factors related to gender, age of the driver, participant 

cause, crash level cause, safety equipment use, light condition, population, speed limit, 

weekdays, movement of the vehicle, weather condition, alcohol use ownership and the 

type of the vehicle, and barrier type and condition. The dependent variables in each of 

these models consisted of two specific outcomes: (1) no injury and (2) injury. The 

sample size characteristics and the frequency for each of these models are illustrate in 

Table 2.3.  

Table 2.2: Descriptive Statistics of Key Variables in all Models. 

Variable 

 

Mean/Standard Deviation 

Full Model 
Three and Four 

leg Model 
Four leg Model 

Three leg 

Model 

Vehicle Type (1 the vehicle 

weight <10,000 lb., 0 otherwise) 

0.95/0.22 0.95/0.22 0.96/0.21 0.92/0.27 

Gender (1 if male, 0 otherwise) 0.51/ 0.50 0.5/0.5 0.49/0.50 0.53/ 0.50 

Age of Driver (1 if 21< age ≤35, 

0 otherwise) 

0.22 /0.42 0.22/0.41 0.21/0.41 0.97/0.17 

Participant Safety Equipment 

Use (1 if seatbelt is used, 0 

otherwise) 

0.58/ 0.49 0.58/0.49 0.55/ 0.5 - 

Participant Level Cause (1 if the 

driver followed too closely,0 

otherwise) 

0.13/0.33 0.13/0.34   

Vehicle Level Action (1 if the 

driver stopped in traffic not 

waiting to make a left turn, 0 

otherwise) 

0.16 /0.37 0.16/0.36   

Roadside (1 if the crash 

happened at the right roadside, 0 

otherwise) 

0.33/0.47 - 0.22/0.41 - 

Participant level cause (1 if 

failed to avoid vehicle ahead, 0 

otherwise) 

0.04/ 0.21 - 0.07/0.26 - 

Weekdays (1 if the crash 

happened during the weekdays, 

0 otherwise) 

- - 0.79/0.41 0.78/0.41 

Crash Level Cause (1 if the 

crash happened because careless 

driving, 0 otherwise) 

- - 0.03/0.18 0.04 /0.19 
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Variable (Continued) 

 

Mean/Standard Deviation 

Full Model 
Three and Four 

leg Model 
Four leg Model 

Three leg 

Model 

Movement of the Vehicle at the 

Time of the Crash (1 if stopped 

in traffic, 0 otherwise) 

- - 0.18/0.38 0.15/0.36 

Participant Level Cause (1 if the 

driver followed too closely,0 

otherwise) 

- - 0.14/0.35 - 

Barrier Condition (1 if fair 

condition, 0 otherwise) 

- - 0.003/0.05 - 

Posted Speed Limit (1 if the 

speed limit more than 35, 0 

otherwise) 

- - 0.61/0.49 - 

Crash Level Cause (1 if the 

driver disregarded other traffic 

control device, 0 otherwise) 

- - - 0.04/ 0.19 

Crash Level Cause (1 if failed to 

avoid vehicle ahead, 0 

otherwise) 

- - - 0.07/ 0.25 

Barrier Type (1 if concrete type, 

0 otherwise) 

- - - 0.11 /0.31 

Weather Condition (1 if cloudy, 

0 otherwise) 

- - - 0.08/0.27 

Weather Condition (1 if rainy, 0 

otherwise) 

- - - 0.17/0.38 

Alcohol Use (1 if that 

participant had been drinking, 0 

otherwise) 

- - - 0.06/0.23 

* Population range is in thousand. 

 The vehicle type variable (passenger car, pickup, van, light delivery, and custom 

van) was found to be significant in all the models, additionally male driver and drivers 

older than 21 and but less than 36 years old was  also found to be significant in all the 

models.  Seatbelt being the safety equipment used by the driver was found to be 

significant in three models (full, three and four, and four leg models). Participant cause, 

such as the driver followed too closely and vehicle level action when driver stopped in 

traffic not waiting to make a left turn were found to be significant in the full and three 

& four leg models. Crash occurred at the right side of road and participant failed to 

avoid vehicle ahead were found to be significant in two models (full and four leg 

models).  The variables related to the crash occurring during the weekdays, crash 

occurred because careless driving, and speed limit were found to be significant in the 

three and four leg models.  
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Driver disregarded other traffic control device, failed to avoid vehicle ahead, concrete 

barrier, cloudy and rainy weather, alcohol involved were all found to be significant in 

three leg model. 

 

Table 2.3: Dependent Variable Frequency and percentage distribution in all the 

Models. 
Model Number No Injury Injury 

Full Model 836 (83.1%) 210 (16.9%) 

Three and Four leg Model 761 (83.35%) 152 (16.65%) 

Four leg Model 590 (83.81%) 114 (16.19%) 

Three leg Model 171 (81.82%) 38 (18.18%) 

 

2.4 Methodology 

 Many discrete choice modeling techniques have been used to formulate crash injury 

severity models. Such frameworks include multinomial logit models, ordered probit 

models, binary logit models, etc. For this research, fixed and random parameters binary 

probit models are used to model the probability of two possible crash severity 

outcomes. These outcomes represent the aggregation of: (1) injury-type crashes and 

fatal crashes, and (2) no injury crashes. This is done due to the substantial number of 

no injury crashes in comparison to crashes that result in injuries. Accordingly, the 

aggregated injury category consists of fatal, major, moderate, and minor injury 

outcomes, while the no injury category includes only no injury outcomes. The purpose 

for this aggregation is to increase the number of observations to reduce the variability 

caused by random effects when statistical methods are implemented (Chang and 

Mannering 1999). This is essential since the data that is used in this study has too few 

observations on incapacitating and fatal injuries to set apart their individual effects. 

Also, this research aims to discover what is influencing these no injury crashes. 

 To begin, the binary probit model takes on the form of a binary index response model 

(Wooldridge 2010): 

 

P(𝑦 = 1 | 𝑿) = 𝐺(𝑿𝜷) = 𝑝(𝑿) (2.1) 
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where 𝑿 is a 1 × 𝑲, 𝜷 is a 𝑲 × 1, and the first element of 𝑿 is taken to be unity. In the 

case of the probit model, in which 𝐺(∙) is a cumulative distribution function (CDF), a 

more general form of the effect of an explanatory variable 𝑿 on a binary outcome can 

be expressed as follows (Wooldridge 2010): 

𝑦∗ =  𝛼 + 𝜷𝑿 + 𝜀  (2.2) 

with: 

𝑦 =  1[𝑦∗ > 0] (2.3) 

where 𝑦 =  1[𝑦∗ > 0] represents a crash in which an injury occurred (𝑦 =  0 

otherwise). Considering these formulae, the probit model, which specifies the 

conditional probability, is then a special case of Eq. (1) (Cameron and Trivedi 2005; 

Wooldridge 2010): 

Φ(𝑿′𝜷) = ∫ 𝜙(𝑧) 𝑑𝑧
𝑿′𝜷

−∞

 (2.4) 

Where Φ(∙) is the standard normal CDF, with derivative: 

𝜙(𝑧) =
exp (−𝑧2 2⁄ )

√2𝜋
 (2.5) 

where the probit model above is derived if ℰ in the latent variable formulation has a 

standard normal distribution.  

 Using the presented probit model, the probability of being involved in an injury 

crash (i.e., 𝑦 takes on the value 1) is computed. Referring to Eq. (1), 𝜷 is a vector of 

estimable parameters and 𝑿 represents a vector of explanatory variables (e.g., gender, 

age, safety equipment use, participant errors, residency of the participant, vehicle 

ownership, type of vehicle, intended movement, crash location, road surface condition, 

speed, pavement condition, and effect of striking vehicle), and 𝜀 is a disturbance term 

with a standard normal distribution.  

2.4.1 Unobserved Heterogeneity 

 With the collected data, some of the many factors affecting the likelihood of a crash 

and the resulting injury severity are likely to be unavailable to the analyst. These 

unobservable factors, or unobserved heterogeneity, can introduce variation into the 
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model impacting crash likelihood and injury severity (Mannering et al. 2016). For 

instance, consider gender as an observed human element that affects injury severity 

outcomes. However, there are clear physiological differences between men and 

women, as well as many variations across people of the same gender (for instance, 

differences in heigh, weight, bone density, etc.). These unobservables can result in 

unobserved heterogeneity, and if not accounted for, can result is biased parameter 

estimates. Examples of random parameters methods to account for unobserved 

heterogeneity can be found in Castro et al. (2013), Venkataraman et al. (2013), and 

Venkataraman et al. (2014).  In an attempt to account for this data heterogeneity, a 

random parameters technique is applied as shown in Eq. (4) (Greene 2012): 

 

𝛽𝑖 =  𝛽 +  𝑢𝑖 (2.6) 

 

 Where ui is a randomly distributed term. To estimate these random parameters, 

maximum likelihood estimation is performed through a simulation-based approach to 

address the computational complexity of computing the outcome probabilities. The 

chosen simulation approach utilizes Halton draws which have been shown to provide 

a more efficient distribution of the draws for numerical integration than purely random 

draws (Bhat 2003; Halton 1960; Pahukula et al. 2015). Lastly, marginal effects are 

computed to show the impact of a one-unit change of explanatory variable 𝑋 on the 

injury outcome 𝑖 as shown in Eq. (7) and referred to in Washington et al. (2011).  

 

𝜕𝑌

𝜕𝑥𝑖
= 𝛽𝑖 𝜙 (𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 (2.7) 

 

2.4.2 Log-likelihood Test 

 Maximum likelihood and simulation-based maximum likelihood methods are used 

to estimate the parameter vector. During analysis, normal, lognormal, triangular, and 

uniform distributions were considered for the random parameters’ distribution; 

however, only the normal distribution was found to be statistically significant. In 
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addition, the binary probit model is estimated using two hundred Halton draws, as it is 

stated in the literature that such number of Halton draws produces accurate estimates 

of the parameters (Bhat 2003; Gkritza and Mannering 2008; Hasan et al. 2011; Milton 

et al. 2008). 

 As mentioned before, there are different types of roundabouts (three leg, four leg, 

and five leg roundabouts). According to ODOT, there were about 1,006 roundabout 

crashes over a five-year period (2011 to 2015). Of the 1,006 crashes, most occurred on 

four-leg roundabouts (704) and three-leg roundabouts (209). Grouping the data for 

roundabouts for analysis may lead to erroneous inferences on the significance of 

particular explanatory variables. Subsequently, a log-likelihood ratio test is proposed 

to statistically test the overall significance of using a full model (all roundabout crashes 

regardless of configuration type) over separate models (a model with crashes on three 

and four leg roundabouts combined, another with crashes on four leg roundabouts only, 

and a model with crashes on three leg roundabouts). The first log-likelihood ratio test 

for transferability is as follows: 

 

𝜒2 = −2[𝐿𝐿𝐹𝑢𝑙𝑙(𝛽𝐹𝑢𝑙𝑙) − ∑ 𝐿𝐿𝑆𝑒𝑝(𝛽𝑆𝑒𝑝)]  (2.8) 

 

 where 𝐿𝐿𝐹𝑢𝑙𝑙(𝛽𝐹𝑢𝑙𝑙) is the log-likelihood at the convergence of the full model (-

354.73), 𝐿𝐿𝑆𝑒𝑝(𝛽𝑆𝑒𝑝) is the log-likelihood at the convergence of a given subgroup (i.e., 

three and four leg, three leg, and four leg) using the same variables included in the full 

model, and 𝑆𝑒𝑝 is the total number of subgroups (-610.36 ). Using Eq. (8) results in a 

chi-square statistic of -511.26 (statistic (x2 = -511.26).  The critical chi-square (𝜒2) 

value associated with one-tailed probability level and degrees of freedom which equal 

to the summation of the number of the random estimated parameters in all separate 

models minus the number of the random estimated parameters in the full model provide 

a value much greater than 99.99% of confidence limit which the null hypothesis can be 

rejected. The null hypothesis states that there is no difference between the model 

parameters in the full model (all roundabout configuration) and the separate models 

(i.e., the parameters are the same).   
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 For further validation, a more extensive transferability test was conducted to test if 

modeling crash severity at the roundabouts need to be modeled separately. This log-

likelihood ratio test for transferability is as follows (Washington et al. 2011): 

 

𝑥2 = −2 𝐿𝐿(𝛽 𝑀1𝑀2
) −  ∑ 𝐿𝐿(𝛽𝑀1)] (2.9) 

 

 Where 𝐿𝐿(𝛽 𝑀1𝑀2
) is the log-likelihood at convergence for model 𝑀1 using the data 

from model 𝑀2 and is the log-likelihood at convergence for model 𝑀1. As an 

illustration, in this equation 𝑀1 refers to the model that utilizes the three and four legs 

data combination and 𝑀2 refers to the model that can predict this data as shown in 

Table 2.4. Then, the variables and parameters estimate from the three leg best model 

were fixed and run with the three and four legs data combination. The corresponding 

log likelihood minus the log likelihood at convergence for three and four legs 

combination model, will show how well the three legs model (both variables and 

parameter estimates) can describe the three and four legs data combination.    

Table 2.4: Chi-Square Statistics and Degrees of Freedom for Crash Severity related to 

the Roundabout Type Transferability Test. 

M1 
 

M2 

Three and Four legs  

(Model) 

Three legs  

(Model) 

Four legs  

(Model) 

Three and Four legs (Data) 0  254.44 (13) 146.32 (18) 

Three legs (Data) 26.56 (15) 0 144.48 (18) 

Four legs (Data) 8.17* (15) 287.25(13) 0 

 

 The results of the transferability test indicate with well over 99% confidence that 

injury severity analyses should be modeled according to the type of roundabout. The 

only exception being the four leg roundabout data, the chi-square 8.17 with fifteen 

degrees of freedom is less that the critical chi-square 24.996. This indicate that the 

estimated parameters from the three and four leg combination model are adequately 

describing the effects for four-legged roundabouts. 
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2.5 Discussion 

 Fixed and random parameters binary probit models were estimated based on two 

severity outcomes (no injury and injury) with 20 variables found to be statistically 

significant, where various variables were found to have estimated random parameters. 

The following sections illustrate the final estimation results of modeling crash data at 

roundabouts in Oregon.  

2.5.1 Full Model 

 The estimation results for the original 1,006 crashes for fixed and random 

parameters binary probit models are summarized in Table 2.5.  The marginal effects, 

which are illustrated in Table 2.5, provide additional insights on injury severity 

outcomes, their corresponding probabilities, and the magnitude of change. With regard 

to the interpretation of the marginal effects for roundabout crashes for example, such 

as the indicator variable representing drivers who are more than 21 and less than 36 

years old, the marginal effects indicate that this age group has a 0.01 higher probability 

of sustaining an injury compared to other age groups.  

Table 2.5: Fixed and Random Parameter Binary Probit Models of Injury Severity for 

All Roundabout Type. 
Variable 

 

Fixed Parameter Random Parameter 
Coefficient t-

statistic 

Coefficient t-

statistic 

Marginal 

Effects 

Constant -1.11 -1.87 -1.5 0.24  

Population (1 if the population is between 

50-100, 0 otherwise) 

-0.45 -3.77 -.90 -4.67 -0.01 

Crash Level Cause (1 if the driver did not 

yield right-of-way, 0 otherwise) 

-0.55 -4.10 -1.25 -5.26 -0.02 

Vehicle ownership (1 if private, 0 

otherwise) 

1.75 2.84 3.86 2.91 0.05 

Vehicle Type (1 vehicle weight <10,000 

lb, 0 otherwise) 

-1.64 -7.14 -3.51 -9.05 -0.05 

Age of Driver (1 if 21< age ≤35, 0 

otherwise) 

0.3 2.45 0.65 3.53 0.01 

Participant Level Cause (1 if the driver 

followed too closely,0 otherwise) 

-0.72 -3.19 -1.56 -3.78 -0.02 

Participant level cause (1 if failed to 

avoid vehicle ahead, 0 otherwise) 

-1.05 -2.06 -2.19 -2.16 -0.03 

Vehicle Level Action (1 if the driver 

stopped in traffic not waiting to make a 

left turn, 0 otherwise) 

0.51 3.62 0.92 4.40 0.01 

Standard Deviation of Parameter, 

Normally Distributed 

  0.56 3.54  
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Variable (Continued) 

 

Fixed Parameter Random Parameter 
Coefficient t-

statistic 

Coefficient t-

statistic 

Marginal 

Effects 

Safety Equipment Use (1 if seatbelt is 

used, 0 otherwise) 

0.94 6.97 0.87 4.15 0.01 

Standard Deviation of Parameter, 

Normally Distributed 

  2.25 11.25  

Gender (1 if male, 0 otherwise) -.052 -4.55 -1.32 -6.29 -0.02 

Standard Deviation of Parameter, 

Normally Distributed 

  1.18 7.53  

Roadside (1 if the crash happened at the 

right roadside, 0 otherwise) 

-0.49 -3.92 -1.32 -5.83 -0.02 

Standard Deviation of Parameter, 

Normally Distributed 

  1.07 6.19  

 

Model Statistics 

Log-likelihood function       

McFadden Pseudo R-squared    

Number of Observation    

 

 

-361.08 

0.21 

1006 

 

 

-354.73 

0.22 

1006 

Log-likelihood function at Zero -457.001 

 

 Turning to the model, if a crash occurred where the driver was stopped in traffic and 

not waiting to make a left turn, there is an increase in the outcome probability of 

sustaining an injury. In addition, the estimated parameter for stopping in traffic and not 

waiting to make a left turn was found to be random and normally distributed with a 

mean of 0.92 and standard deviation of  0.56. This suggests that for 5% of crashes 

where the driver was stopped in traffic and not waiting to make a left turn the estimated 

parameter mean is less than zero, while 95% of them have an estimated parameter 

greater than zero. In other words, 5%  of crashes involving drivers who stopped in 

traffic and not waiting to make a left turn are less likley to result in an injury, yet 95% 

are more likely to sustain an injury. This could possibly be attributed to unfamiliarity. 

 Seatbelt use by the driver was found to be significant and the estimated parameter 

was found to be random and normally distributed with a mean of 0.87 and standard 

deviation of 2.25. This implies that for roughly 35% (less than zero) of drivers, seatbelt 

decreased the likelihood of an injury while for 65.1 % of them it increased the 

likelihood of sustaining an injury. In spite of the benefits of the seatbelt in saving lives, 

there is a probability of getting injured due to unobserved factors. For example, body 

physiology differences and proper use of in-vehicle restraints as mentioned in Islam 

and Hernandez (2013). Anderson and Hernandez (2017)  found a similar result on the 

use of seatbelts and the effects on injury severity. Comparably, other studies have 
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suggested that seatbelt use is over-reported because of the legal implications of not 

wearing seatbelts (Amoros et al. 2006; Li et al. 1999; Malliaris et al. 1996; Stewart 

1993; Streff and Wangenaar 1989).   Li et al. (1999) showed that Australian police-

reported seatbelt use overestimated actual use by 9% in crashes resulting in injuries (Li 

et al. 1999). Chen et al.  illustrated that using seatbelts will significantly reduce the 

likelihood of drivers being fatally injured in rear-end collisions (Chen et al. 2015). 

However,  Xie et al. concluded that wearing seatbelts could result in possible injuries 

to the participants, but was still critical for mitigating driver injury severity (Xie et al. 

2012).  

 The indicator for males was also found to be statistically significant and negative. 

This may indicate that males are less likely to be involved in injury crashes, and this 

might be due to the physical differences between males and females as previously 

mentioned with seatbelt use (driver physiology). This indicator was also found to have 

a random and normally distributed estimated parameter with a mean of -1.32 and 

standard deviation of 1.18. This suggests that approximately 13.2% of observations 

have a mean of more than zero. That is to say, 13.2% of males are more likely to get 

injured in crashes, which follows findings of previous work (Al-Thaifani et al. 2016a; 

Leidman et al. 2016; Ulfarsson and Mannering 2004) . On the other hand, 86.8% of 

male drivers are less likely to sustain an injury. 

 Finally, for the roadside variable, results show that crashes which happened on the 

right roadside of the road have an estimated random parameter that is normally 

distributed with a mean of -1.32 and a standard deviation of 1.07. This implies that for 

roughly 11% of crashes that happened on the right side of the road increase the 

likelihood of sustaining an injury, while 89.1% of such crashes decrease the likelihood 

of sustaining an injury. This is most likely capturing driver inattentiveness.   
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2.5.2 Three and Four leg Combination Model 

 Table 2.6 illustrates the results of the three & four leg fixed and random parameter 

models.  

Table 2.6: Fixed and Random Parameter Binary Probit Models Results for Three and 

Four leg Roundabout Combination. 
 

Variable  

Fixed Parameter Random Parameter 

Coefficient t-

statistic 

Coefficient t-

statistic 

Marginal 

Effects 

Constant -2.13 -2.93 -3.98 -2.61  

Population (1 if the population is 

between 10-25, 0 otherwise) 

0.59 2.67 1.10 3.22 0.01 

Crash Level Cause (1 if the driver did 

not yield right-of-way, 0 otherwise) 

-0.43 -3.05 -1.001 -4.12 -0.01 

Vehicle Movement (1 if turning right, 0 

Otherwise) 

-0.63 -2.66 -0.9 -2.87 -0.005 

Vehicle Ownership (1 if private, 0 

otherwise) 

1.60 2.26 4.17 2.85 0.02 

Vehicle Type (1 vehicle weight 

<10,000 lb, 0 otherwise) 

-1.67 -6.84 -4.06 -8.55 -0.02 

Age of driver (1 if 15< age ≤21, 0 

otherwise) 

0.52 2.72 2.21 3.24 0.01 

Age of driver (1 if 21< age ≤35, 0 

otherwise) 

0.70 3.47 2.60 3.98 0.01 

Age of driver (1 if 35< age ≤50, 0 

otherwise) 

-0.55 3.21 2.56 3.90 0.01 

Age of driver (1 if 50< age ≤65, 0 

otherwise) 

1.06 2.39 1.84 2.82 0.01 

Age of driver (1 if 65< age, 0 

otherwise) 

1.27 2.02 1.34 1.99 0.01 

Participant Level Cause (1 if the driver 

followed too closely,0 otherwise) 

1.18 0.05 -1.59 -3.63 -0.01 

Safety Equipment Use (1 if seatbelt is 

not used, 0 otherwise) 

0.9 4.93 0.8 3.44 0.004 

Standard Deviation of Parameter, 

Normally Distributed 

  2.02 10.44  

Vehicle Movement (1 if the vehicle 

stopped in traffic, 0 otherwise) 

0.78 3.38 0.8 3.16 0.004 

Standard Deviation of Parameter, 

Normally Distributed 

  1.8 6.79  

Gender (1 if male, 0 otherwise) -0.76 -4.55 -1.99 -7.07 -0.01 

Standard Deviation of Parameter, 

Normally Distributed 

  1.87 8.48  

Model Statistics   

Log-likelihood function                  -318.76 -314.30 

McFadden Pseudo R-squared   0.22 0.24 

Number of Observation        913 913 

Log-likelihood function at Zero -411.09 
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 As seen from Table 2.6, three indicators were found to have random and normally 

distributed estimated parameters. As with the previous model (Table 2.5), males, 

seatbelt use, and being stopped in traffic were all found to have estimated random 

parameters. No seatbelt use was found to be random and normally distributed with a 

mean of 0.80 and a standard deviation of 2.02. This implies that for 34.6% of drivers 

who did not wear their seatbelt were less likely to be involved in an injury crashes and 

65.4% were more likely. One possible explanation for this result may stem from the 

influence of speed at the time of the crash. Again, roundabouts are a known traffic 

calming countermeasure where lower speeds are generally observed.  

 Next, the parameter for vehicles being stopped in traffic was found to be random 

and normally distributed with a mean of 0.80 and a standard deviation of 1.80.  This 

indicates that for 32.8% of crashes in which the vehicle was stopped in traffic the driver 

is less likely to sustain an injury and 67.2% of drivers are more likely. This might be 

due to the operational characteristics of roundabouts; specifically, as traffic approaches 

an entry point, drivers may have to stop to yield to traffic in the roundabout.  

2.5.3 Four leg Model 

 Table 2.7 show the results of the four leg fixed and random parameter models.  

Table 2.7: Random Parameter Binary Probit Model Results for Four leg Roundabout. 
 

Variable 

 

Fixed Parameter Random Parameter 

Coefficient 
t-

statistic 
Coefficient 

t-

statistic 

Marginal 

Effects 

Constant -0.58 -1.73 -0.70 -1.36  

Posted Speed Limit (1 if the speed limit more 

than 35, 0 otherwise) 
0.30 2.09 0.85 3.34 0.001 

Population (1 if the population is between 10-25, 

0 otherwise) 
0.62 2.34 1.32 2.82 0.002 

Weekdays (1 if the crash happened during the 

weekdays, 0 otherwise) 
0.34 1.94 0.99 3.18 0.002 

Crash Level Cause (1 if the driver did not yield 

right-of-way, 0 otherwise) 
-0.50 -2.90 -1.30 -4.01 -0.002 

Participant level cause (1 if failed to avoid vehicle 

ahead, 0 otherwise) 
-0.63 -2.07 -1.39 -2.72 -0.002 

Crash Level Cause (1 if the crash happened 

because careless driving, 0 otherwise) 
-0.92 -2.33 -2.46 -3.52 -0.004 

Movement of the Vehicle at the 

Time of the Crash (1 if turning right, 0 otherwise) 
-0.81 -2.52 -2.06 -3.43 -0.003 

Movement of the Vehicle at the 

Time of the Crash (1 if stopped in traffic, 0 

otherwise) 

0.55 3.01 1.54 4.81 0.002 

Age of driver (1 if 15< age ≤21, 0 otherwise) 0.67 2.87 1.74 4.03 0.003 
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Variable (Continued) 

 

Fixed Parameter Random Parameter 

Coefficient 
t-

statistic 
Coefficient 

t-

statistic 

Marginal 

Effects 

Age of driver (1 if 21< age ≤35, 0 otherwise) 0.92 5.23 2.29 6.52 0.003 

Participant Level Cause (1 if the driver followed 

too closely,0 otherwise) 
-1.05 -3.50 -2.68 -4.36 -0.004 

Roadside (1 if the crash happened at the right 

roadside, 0 otherwise) 
-0.4 -2.30 -0.95 -3.35 -0.001 

Condition of the Barrier (1 if fair condition, 0 

otherwise) 
2.62 2.27 6.88 3.13 0.01 

Safety Equipment Use (1 if seatbelt is used, 0 

otherwise) 

0.99 5.89 1.58 5.12 

 

0.002 

Standard Deviation of Parameter, Normally 

Distributed 
  

2.24 8.61 
 

Age of driver (1 if 35< age <51, 0 otherwise) 0.57 3.23 0.69 2.07 0.001 

Standard Deviation of Parameter, Normally 

Distributed 
  

2.37 6.57 
 

Vehicle Type (vehicle weight <10,000 lb, 0 

otherwise) 

-1.59 -5.49 -3.96 -6.82 -0.01 

Standard Deviation of Parameter, Normally 

Distributed 
  

0.53 4.28  

Gender (1 if male, 0 otherwise) -0.49 -3.41 -1.6 -5.20 -0.002 

Standard Deviation of Parameter, Normally 

Distributed 
  

1.62 6.87 
 

Model Statistics   

Log-likelihood function       -228.66 -224.34 

McFadden Pseudo R-squared   0.27 0.28 

Number of Observation        704 704 

Log-likelihood function at Zero -311.77 

 

 For the four leg model, seventeen variables were found to be significant of which 

three of them were found to have estimated random parameters. Turning to the random 

parameters, the parameter for seatbelt use by the driver was found to be random and 

normally distributed with a mean of 1.58 and a standard deviation of 2.24. This suggests 

that for roughly 24.1% of drivers who wore a seatbelt were less likely to sustain an 

injury and 75.9% of drivers were more likely.  

 The indicator for drivers aged 35 years to 51 years was found to have a random and 

normally distributed estimated parameter with a mean of 0.69 and standard deviation 

of 2.37. This suggests that for 38.6% of drivers in this age group the likelihood of 

sustaining an injury decreases, while for 61.5% the opposite is true. In general, other 

studies have found similar results (Al-Thaifani et al. 2016b; Amoros et al. 2006; Bédard 

et al. 2002; Daniels et al. 2011; Ulfarsson and Mannering 2004). Mannering and Bhat, 
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(2014) found that for drivers in this age group the likelihood of getting injured 

decreases. 

 Vehicle type with weight less than 10,000 lb. was found also to be random and 

normally distribute with a mean of -3.96 and standard deviation of 0.53. This suggests 

that for roughly a small percent of the drivers who drive these types of vehicle have an 

increased probability of injury, whereas a larger proportion of them have the opposite 

effect. A possible explanation for this specific observation could be due to the increased 

aggressive driving behavior (e.g., entering the roundabout) a finding consistent with 

research that explored smaller to medium sized vehicle speeds to larger ones (Al-

Thaifani et al. 2016b). 

 The indicator variable for male is statistically significant. The associated parameter 

was also found to be random and normally distributed with a mean of -1.60 and a 

standard deviation of 1.62. This suggests that for approximately 16.2% of male drivers 

there is an increase in the likelihood of sustaining an injury, while for 83.8% the 

opposite is true. Similar results are also found in  Ulfarsson and Mannering, (2004), 

Al-Thaifani, Al-Rabeei and Dallak, (2016), Leidman et al., (2016), and Grivna, Eid 

and Abu-zidan, (2017). 

2.5.4 Three leg Model 

 Finally, for the three leg model, twelve variables were found to be significant and 

four of them were found to have random and normally distributed estimated parameters 

as shown in Table 2.8.  

Table 2.8: Random Parameter Binary Probit Model Results for Roundabout with 

Three leg. 
 

Variable 

Fixed Parameter Random Parameter 

Coefficient t-

statistic 

Coefficient t-

statistic 

Marginal 

Effects 

Constant -0.82 -1.14 0.32 0.27  

Weather Condition (1 if cloudy, 0 

otherwise) 
0.65 1.67 1.16 1.93 -0.01 

Weather Condition (1 if rainy, 0 

otherwise) 
-1.17 -2.32 -3.44 -3.47 -0.007 

Weekdays (1 if the crash happened 

during the weekdays, 0 otherwise)  
-0.77 -2.44 -1.88 -3.57 0.007 

Crash Level Cause (1 if the driver 

disregarded other traffic control device, 

0 otherwise) 

0.95 1.73 1.93 2.05 -0.01 
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Variable (Continued) 

Fixed Parameter Random Parameter 

Coefficient t-

statistic 

Coefficient t-

statistic 

Marginal 

Effects 

Crash Level Cause (1 if the driver failed 

to avoid vehicle ahead, 0 otherwise) 
-1.22 -1.77 -3.08 -2.16 -0.01 

Vehicle ownership (1 if private, 0 

otherwise) 
1.96 2.34 2.92 1.99 0.01 

Gender (1 if male, 0 otherwise) -0.97 -3.38 -2.51 -4.04 -0.01 

Barrier Type (1 if concrete type, 0 

otherwise) 
0.67 1.73 1.62 2.42 0.01 

Vehicle Type (1 vehicle weight <10,000 

lb, 0 otherwise) 

-1.50 -3.49 -3.88 

 

-4.50 

 

-0.01 

Standard Deviation of Parameter, 

Normally Distributed 

  2.01 5.06 
 

Crash Level Cause (1 if the crash 

happened because careless driving, 0 

otherwise) 

1.23 2.38 2.89 

 

3.02 

 

0.01 

Standard Deviation of Parameter, 

Normally Distributed 

  1.86 1.83 

 

 

Alcohol Use (1 if that participant had 

been drinking, 0 otherwise) 

1.06 2.16 1.12 

 

1.03 

 

0.004 

Standard Deviation of Parameter, 

Normally Distributed 
  

4.32 2.80 
 

Movement of the Vehicle at the 

Time of the Crash (1 if stopped in 

traffic, 0 otherwise) 

1.15 3.55 2.66 

 

4.03 

 

0.01 

Standard Deviation of Parameter, 

Normally Distributed 
  

1.07 2.30  

Model Statistics      

Log-likelihood function       -72.64 -71.72 

McFadden Pseudo R-squared    0.27 0.28 

Number of observations 209 209 

Log-likelihood function at Zero                                                                                        -99.1 

 

 With respect to the random parameters, the estimated parameters for vehicle type, 

careless driving crash-level cause, driver alcohol use, and vehicles stopped in traffic 

were all found to be random and significant. In regard to vehicle type, the indicator for 

passenger car, pickup, van, light delivery, and custom van was found to have a random 

and normally distributed parameter with a mean of -3.88 and a standard deviation of 

2.01. This suggests that roughly 3% of the drivers who drive these types of vehicle have 

an increased probability of sustaining an injury, whereas 97% of them are less likely. 

Again, as previously stated, a  possible explanation for this specific observation could 

be due to the increased aggressive driving behavior (Al-Thaifani et al. 2016b).  

The estimated parameter for careless driving was also found to random and normally 

distributed, with a mean of 2.89 and a standard deviation of 1.83. This suggests that for 
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6% of crashes where the crash-level cause was reported to be careless driving are less 

likely to result in an injury, while 94% of such crashes are more likely to result in an 

injury.  

 The next random parameter is associated with driver alcohol use. Specifically, the 

parameter for driver alcohol use was found to random and normally distributed with a 

mean of 1.12 and a standard deviation of 4.32. This suggests that for 39.8% of drivers 

who had been drinking alcohol, the probability of an injury decreased. On the other 

hand, 60.2% of drivers who had been drinking were more likely to sustain an injury. 

This random parameter may be capturing the varying degree of inebriation on driver 

performance and safety attitude around three legged roundabouts (Zhao et al. 2014).  

The estimated parameter for vehicles that were stopped in traffic at the time of the crash 

was found to be random and normally distributed. A mean of 2.66 and a standard 

deviation of 1.07 suggest that for 0.06% crashes that occurred with a vehicle stopped 

in traffic were less likely to result in an injury, but 99.4% of them were more likely to 

result in an injury. Although stopping inside the roundabout is prohibited and 

dangerous, there is the possibility that in situations with dense traffic inside the 

roundabout or potential hazards, stopping may prevent a more serious crash from 

occurring.     

2.6 Summary and Conclusions 

 This study involved the estimation of a random parameters binary probit model to 

capture the significant factors that contribute to specific levels of injury severity 

sustained by drivers involved in crashes at roundabouts in different locations in Oregon. 

Four models were estimated using five years (2011 to 2015) of Oregon crash data. For 

the current study, two injury severity outcomes were considered: no injury and injury. 

The four estimated models were based on the geometric design of the roundabout: full 

model (unknown, three leg, four leg, and five leg), three and four-leg combination 

model, three leg model, and four leg model.  

 A number of important factors were found to influence the level of injury severity 

at roundabouts. In each individual model, a number of variables are homogenous across 

crash observations (i.e., their estimated parameters are fixed across observations) and 
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various variables are heterogeneous across crash observations (i.e., they have estimated 

random parameters). For example, vehicles stopped in traffic and not waiting to make 

a left turn, seatbelt usage, gender, type of vehicle, roadside crash characteristics, vehicle 

movement, age of the driver, careless driving, and alcohol use were found to have 

estimated random parameters. 

 This study provides useful insights and an increased understanding of the factors 

that contribute to either sustaining injury or not in in crashes at roundabouts through a 

random parameters approach. Although the results of this study are exploratory, they 

provide evidence that crashes are occurring at roundabouts and several factors lead to 

crashes that result in an injury. In addition, the modeling approach offers a 

methodology that can account for unobservable in the crash data.  

 This study aimed to analyze current and available databases to determine the most 

significant factors that contribute to injuries in crashes at roundabouts in Oregon.  In 

future work, additional crash-specific variables are recommended to investigate 

roundabout injury severity, such as the specific location of the crash or additional 

geometric design details. In doing so, an injury severity picture with a higher resolution 

can be obtained, which in turn can offer more understanding of the design related 

factors that lead to severe crashes at roundabouts.  
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Abstract  

The objective of this work is to assess the effects of variable selection methods on 

injury severity prediction at roundabouts using Oregon crash data. Variable selection 

was first determined using a random parameter binary probit model (econometric 

model), then through the use of a random forest. Based on marginal effects from the 

econometric model, careless driving, passenger cars, and male drivers have the highest 

effects on injury severity outcomes at three-leg roundabouts. For four-leg roundabouts, 

passenger cars, following too closely, and drivers aged 22-35 years have the highest 

effects on injury severity outcomes. From the random forest approach, time-of-day 

(afternoon), snowy weather, and drivers aged 36-50 years were found to be the most 

important injury severity predictors at three-leg roundabouts. At four-leg roundabouts, 

the most important injury severity predictors were poor pavement condition, lighting 

(dusk), and drivers losing control of the vehicle. Although these were deemed the most 

important, or impactful, a variety of additional variables were also considered during 

prediction comparison. Using the identified significant, or important, variables in each 

approach, injury severity predictions were compared between a traditional econometric 

model (binary probit) and a machine learning model, Support Vector Machine (SVM), 

where selected variables were used to predict in both models. For both prediction 

approaches, various training-and-testing proportions were considered, including 70-30, 

80-20, and 90-10. In the end, regardless of the variable selection approach, the SVM 

models (regardless of kernel function) outperformed the econometric model in injury 

severity prediction. This work highlights that under pure prediction consideration, it is 

not necessary to consider significant explanatory factors and variable selection through 

a machine learning approach results in a higher accuracy. However, this work also 

highlights the necessity of a traditional econometric approach to account for data 

limitations and make inference on the likelihood of a respective injury severity 

outcome. 

 

Keywords: Machine learning, Roundabout, Injury severity, Random parameters 

binary probit model, Support vector machine 
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3.1 Introduction  

 In recent years, many communities have resorted to either converting existing 

intersections to roundabouts or only using intersections as a calming traffic measure 

for improved safety. Although roundabouts decrease the probability of more severe 

crashes, the Federal Highway Administration claims that less severe crashes are on the 

rise (FHWA 2015). Understanding the contributing factors to such crashes is 

traditionally studied through the application and estimation of statistical and 

econometric models. Conventional models applied in this regard are those that take into 

account the ordinal nature of injury outcomes (e.g., no injury, non-fatal injury, and fatal 

injury) (Al-Bdairi and Hernandez 2017; Islam and Hernandez 2013b; Savolainen et al. 

2011). In recent years, more advanced statistical models have been proposed for 

estimating crash injury severities that account for unobserved heterogeneity (Anderson 

and Hernandez 2017a; b; Mannering et al. 2016; Romo et al. 2014; Tay 2015b). 

Statistical models have been widely used for injury severity analysis, but they come 

with certain limitations.  

 Traditionally, statistical models (e.g., parametric models) require a priori 

assumptions about the data distribution and have predefined underlying relationships 

between response (dependent) and explanatory (independent) variables. The difficulty 

of validating such assumptions in some cases could lead to erroneous estimations of 

model parameters. Additionally, these models’ prediction accuracy is often low; albeit, 

their strength is in explanatory power and addressing key data limitations (Ahmadi et 

al., 2018; Iranitalab and Khattak, 2017a; Abdel-Aty and Haleem, 2011).  

 Non-parametric methods and/or artificial intelligence models for analyzing injury 

severity have become popular due to their ability to outperform traditional statistical 

methods in predicting severity outcomes (Tixier et al., 2016). Specifically, machine 

learning provides a methodological approach that can account for nonlinearity and 

eliminates concerns of multicollinearity (Das et al. 2021; Goldstein et al. 2017; Storm 

et al. 2019; Wahab and Jiang 2019). 

 From a safety perspective, Abdel-Aty and Haleem (2011) explored the potential of 

applying a recently developed machine learning technique called multivariate adaptive 
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regression spline (MARS) at unsignalized intersections; they then compared its results 

with those of an estimated negative binomial (NB) model. Li et al. (2012) developed a 

support vector machine (SVM) model for predicting crash injury severities at freeway 

diverge areas and compared their findings with those of an ordered probability model.

  Zeng and Huang (2014) proposed a convex combination algorithm to train a neural 

network model for two-vehicle crash injury severity prediction; then, they compared it 

with the popular binary probit model. Chen et al. (2016) employed SVM models to 

investigate driver injury severity patterns in rollover crashes based on two years of 

crash data gathered in New Mexico. An artificial neural network was utilized by 

Alkheder et al. (2017) to predict the injury severity of traffic accidents based on 5,973 

traffic accidents that were recorded in Abu Dhabi from 2008 to 2013. Iranitalab and 

Khattak (2017) used a multinomial logit model, nearest neighbor classification, SVM, 

and random forest (RF) prediction methods for classifying two-vehicle crash injury 

outcomes. A deep-learning model using a recurrent neural network was developed and 

employed by Sameen and Pradhan (2017) to predict the injury severity of traffic 

accidents based on 1130 accident records that occurred along Malaysia’s North-South 

Expressway from 2009 to 2015. Ahmadi et al. (2018) applied a support vector machine, 

multinomial logit, and mixed logit for modeling the severity of rear-end crashes for 

five years of data from California. Zhang et al. (2018) compared the predictive 

performance, specifically prediction accuracy and estimation of variable importance, 

of various machine learning and statistical methods with distinct modeling logic in 

crash severity analysis for freeway diverge areas. Li et al. (2018) explored the process 

of significant factor identification from a multi-objective optimization standpoint at 

interstate highways. A two-layer stacking framework was proposed by Tang et al. 

(2019) to predict the crash injury severity at freeway diverge areas. 

 The application of non-parametric methods and/or artificial intelligence models to 

safety has become contemporary. A reason for this is that these methods have the 

potential to highlight important factors as they relate to injury severity, and they have 

more predictive power than do conventional econometric techniques (Abdel-Aty and 

Haleem 2011; Ahmadi et al. 2018; Wahab and Jiang 2019). With that in mind, although 

there have been a number of works related to safety, the application of machine learning 
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in the context of roundabouts is limited. Further limited is the assessment of variable 

selection between these two approaches and how it can impact predictions. 

 Therefore, the objectives of this work are: (1) fill the gap in literature as it pertains 

to assessing variable selection in prediction accuracy by selecting variables in a 

traditional econometric model and through a random forest, (2) develop a machine 

learning model (using variables selected from both methods) to predict injury severity 

at roundabouts, (3) develop an econometric model (one to select variables and one 

using the variables identified in the random forest) to predict injury severity at 

roundabouts, and (4) compare prediction results. In short, this work will use a binary 

probit model and a random forest to select variables, then use these variables to predict 

injury severity outcomes using said binary probit model and SVM. For the SVM model, 

linear, nonlinear, polynomial, and sigmoid kernels are considered. The comparison will 

focus on predictions of the two injury outcomes (injury and no injury) for three- and 

four-leg roundabouts in Oregon. To the best of the authors’ knowledge, this study is 

the first attempt at assessing variable selection within these two methods and applying 

it to roundabout safety. 

3.2 Empirical Setting 

 This research is based on crash data collected and compiled by Oregon’s Department 

of Transportation (ODOT) Crash Analysis and Reporting Unit. The data includes 

information on crashes over a five-year period (2011 to 2015) in which 1,006 crashes 

occurred at roundabouts (shown in Figure 3.1). 
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              Figure 3.1: Number of Crashes at Different Roundabout Configurations. 

 

 As illustrated in Figure 3.1, roundabouts with four legs have the highest number of 

reported crashes at 704 (70%), followed by roundabouts with three legs at 209 (20%). 

Of the remaining configures, 76 crashes (8%) occurred at roundabouts in which the 

configuration was unknown or not specified, and 17 crashes (2%) occurred at five-leg 

roundabouts. Based on these statistics, this study considers only three- and four-leg 

roundabouts. The distributions of injury severity outcomes for both types of roundabout 

configurations are shown in Figure 3.2. 

 

          Figure 3.2: Injury Severity Outcomes at (a) Three-leg Roundabouts and (b)  

         Four-leg roundabouts (“Injury” includes all injury types, including fatalities). 
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3.3 Research Methodology 

This section will outline each methodological approach used in the current study 

and Figure 3.3 illustrates the proposed methodology for both variable selection and 

prediction. 

 

 

    Figure 3.3: Methodological Process of Variable Selection and Model Prediction 

(numbers in parentheses refer to the split in training and test data, e.g., 80% training 

                                                           and 20% test). 

 

3.3.1 Variable Selection 

 The first step consists of selecting variables to be used in the two prediction methods: 

binary probit and SVM. The two variable selection methods considered are a random 

forest and an econometric model (binary probit). As it pertains to the random forest, 

this was applied to identify variables that were determined to be important predictors 
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for injury severity outcomes at roundabouts. Previous work has shown that random 

forests are helpful in this regard (Ahmed and Abdel-Aty 2012; Siddiqui et al. 2012; Yu 

and Abdel-Aty 2014).  

 The random forest method is a meta estimator that fits several decision tree 

classifiers on various sub-samples of the data and uses averaging to improve the 

predictive accuracy and control for over-fitting, unlike classification and regression tree 

models (Yu and Abdel-Aty 2014). The random forest classifier creates a set of decision 

trees (aggregating trees) from a randomly selected subset of the training data. It then 

aggregates the votes from different decision trees to decide the final class of the test 

object and helps with feature selection based on importance. Random forests, in 

general, deals with two free parameters: the number of trees (ntree) and the variables 

randomly sampled as candidates at each split (mtry). Random forests then work in three 

general steps, as shown in Figure 3.4. 

 

                                         Figure 3.4: Random Forest Classifier 

 

 The second variable selection method consists of fitting a binary probit model, 

where unobserved heterogeneity was addressed through the estimation of random 

parameters. Final model specifications were obtained through a forward stepwise 

procedure, and variables in the final model were used for predicting injury severity 

outcomes (i.e., the selected variables using an econometric model). These same 
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variables were then used in the SVM model. More detail on this model is given when 

prediction methods are discussed.    

3.3.2 Prediction methods 

 As stated previously, after selecting variables using a random forest and an 

econometric model, an SVM model and a binary probit model were used to predict 

injury severity outcomes. The nature of the data, specifically the outcome to be 

predicted, drove the selection of both prediction methods. Referring to Figure 3.3 the 

outcome to be predicted is binary: “Injury” if the injury sustained was fatal, 

incapacitating, non-incapacitating, or possible, and “No Injury” if there was no injury 

sustained. Although this particular aggregation is unusual, due to the low number of 

crashes at roundabouts, it was necessary to arrive at an adequate number of 

observations for both outcomes. In doing so, variability caused by random effects is 

reduced (Chang and Mannering 1999). Therefore, considering this type of outcome, 

the econometric model chosen for the current study is the binary probit model, while 

the machine learning approach selected is an SVM model that utilizes different kernel 

functions.  

3.3.2.1  Binary Probit Model 

 

 The specific model used for predicting was the binary probit model; however, 

random parameters were estimated in the model used for variable selection. This was 

done to address potential concerns related to unobserved heterogeneity. Of note, 

random parameters were not estimated when variables selected through a random forest 

were estimated in the binary probit model. In a random parameters model, some or all 

of the parameters are assumed to be random and will vary across observations. In this 

study, all random parameters were assumed to be normally distributed with a constant 

mean and variance. Since a normal distribution is symmetric and continuous, a 

coefficient for the same factor may be positive for some observations and negative for 

other observations regardless if the mean effect is positive (or negative). Also, if the 

variance or scale parameter is zero, then the parameter is not random, and the factor 

https://www.sciencedirect.com/topics/social-sciences/observation
https://www.sciencedirect.com/topics/engineering/normal-distribution
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will have the same effect across all observations (Tay 2015b). For random parameters 

binary probit estimation model, see Zubaidi et al. (2020) 

3.3.2.2 Support Vector Machine (SVM) 

 

 SVM is a powerful supervised machine learning technique developed by Boser et 

al. (1992) that can be utilized for linear and nonlinear classification and regression 

problems. This technique solves classification problems based on statistical learning 

theory, and it is best understood as approximating a target function 𝑓 that maps input 

variables 𝑋 to an output variable 𝑌 as follows: 

 

𝑌 =  𝑓(𝑋)      (3.1) 

 

 This characterization describes the range of classification and prediction problems 

and the machine learning algorithms that can be used to address them.  

 A crucial component of SVM is choosing the right kernel function to succeed in the 

classification task and have the best SVM performance with a given dataset. The kernel 

is a way of computing the dot product of two vectors 𝑿 and 𝒀 in some (possibly very 

high-dimensional) feature space, which is why a kernel function is sometimes called a 

“generalized dot product.” An important consideration in learning the target function 

from the training data is how well the model generalizes to new data. Generalization is 

essential because the collected data is only a sample; it is incomplete and noisy. In 

general, SVM has four types of kernel functions: linear function, radial basis function 

(RBF), polynomial function, and sigmoid function (as shown in Table 3.1).  

Table 3.1: SVM Kernel Functions 

Type of Classifier Kernel Function* 

Linear kernel  𝐾 = (𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 

Radial basis kernel (RBF)  𝐾(𝑥𝑖 , 𝑥𝑗) = exp (− 𝛾||𝑥𝑖−𝑥𝑗||2 )  

Polynomial kernel  𝐾(𝑥𝑖 , 𝑥𝑗) =  𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)𝑑   

Sigmoid kernel  𝐾(𝑥𝑖 , 𝑥𝑗) = tanh(  𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟)   

* 𝛾, 𝑟, and 𝑑 are kernel parameters. 

 In this study, the linear, radial, polynomial, and sigmoid kernels were applied to take 

into consideration the linearity and nonlinearity of the data with different data splitting. 
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3.3.3 Evaluation metrics 

 Methodological advancement (including recent applications of advanced analytics 

and ensemble models) has substantially improved the understanding of the factors that 

affect crash frequencies and crash severities. It is perhaps the combination of evolving 

methodologies and assessment techniques that holds the greatest promise in advancing 

the analytical studies in this application domain (Lord and Mannering 2010). To assess 

these applications, metric evaluation should be considered, and to calculate these 

metrics, the confusion matrix (classification accuracy) is used: 

 

Classification Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 (3.2) 

  

 where classification accuracy is the ratio of the number of correct predictions to the 

total number of input samples. 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, and 𝐹𝑁 represent the number of 

classification cases that fall under true positive, true negative, false positive, and false 

negative counts, respectively. The overall accuracy, shown by Eq. (2), estimates the 

proportion of correctly classified test examples (i.e., the sum of all correctly classified 

samples divided by all of the samples) and therefore provides the overall ratio of correct 

classifications. Therefore, to provide a comparison of the analytical models in this 

study, various performance measures are assessed (Chinmoy et al. 2016): 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3.3) 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (3.4) 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3.5) 

 where sensitivity is the true positive rate (TPR) that is defined as 
𝑇𝑃

𝐹𝑁+𝑇𝑃
. The TPR 

corresponds to the proportion of positive data points that are correctly considered as 

positive concerning all positive data points. Lastly, the false positive rate (FPR), or 

specificity, is defined as 
𝐹𝑃

𝐹𝑃+𝑇𝑁
. The FPR corresponds to the proportion of negative data 

points that are mistakenly considered as positive for all negative data points. 
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3.4 Modeling Results and Discussion 

 A total of five prediction models (binary probit and SVM with four different kernel 

functions) were estimated using different training and test data ratios: (70-30), (80-20), 

and (90-10). The test dataset was used for the investigation of the methods’ prediction 

accuracies, which were then compared. The details of the prediction processes are 

presented in this section. The coding and execution of the econometric and machine 

learning calculations were accomplished using NLOGIT6 and the R computer 

programming language development environment RStudio (The R Foundation for 

Statistical Computing).  

3.4.1 Selected Variables Using the Binary Probit Model 

 Considering outcomes of injury and no injury, a binary probit model was estimated 

for 209 crashes at three-leg roundabouts and for 704 crashes at four-leg roundabouts 

from 2011-2015. Once more, this process was the first variable selection method, in 

which all significant variables in final model specifications were selected for use in the 

SVM predictions. Final model specifications, and therefore the first set of selected 

variables, are shown in Table 3.2 (descriptive statistics are shown in Table 3.3). As 

observed, several variables were included in the models, where six variables were 

found to be significant for the three-leg roundabout model and ten variables were found 

to be significant in the four-leg roundabout model. Additionally, one advantage of such 

a model is the ability to readily interpret the effects of significant variables on the 

likelihood of some outcome; hence, that discussion is provided here (see marginal 

effects in Table 3.2).  

 Results indicate that crashes due to careless driving and using a seat belt increased 

the likelihood of an injury for three-leg roundabouts. Careless driving significantly 

increases the risk of a crash, which can be lead to more severe injuries; this outcome 

was also found in Bener et al. (2017). Concerning the seat belt variable, a possible 

explanation is using a seat belt reduces the risk of death and severe injury, but at the 

same time, there is a chance of getting injured in the shoulder or the neck, especially 

with high-speed driving. The estimated parameters for the weather, movement of the 

vehicle, and gender were all found to be random and significant. Cloudy weather has a 
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normally distributed parameter with a mean of 1.85 and a standard deviation of 1.97. 

This suggests that roughly 17% of those who drive in cloudy weather are less likely to 

sustain an injury, whereas 83% are more likely.  

 The indicators for safety equipment use, gender, drivers age 36-50 years, and crash 

cause in the four-leg roundabout model were found to be statistically significant. 

Additionally, the parameters for these indicators were random and normally 

distributed. The estimated parameter for a crash caused when the driver did not yield 

the right-of-way was found to be random and normally distributed with a mean of 2.74 

and a standard deviation of 1.76. In other words, this suggests that for 6% of those 

drivers, the likelihood of sustaining an injury decreased, while for 94%, the opposite 

was true.  

 One issue when fitting a model is how well the generated model behaves when 

applied to new data. Generally, in explanatory econometric models, the whole of the 

dataset is used to arrive and model specifications, after which a full discussion on 

significant variables is given. However, for the current study, the primary focus is 

prediction. Therefore, to address this issue for predicting, the data was partitioned in 

two portions three times, each with a different ratio. The first portion is a training 

partition used to create the model, and the second portion is the test partition to evaluate 

the prediction performance for both the three and four-leg roundabout models. Using 

the significant variables shown in Table 3.2, four prediction models were assessed 

(binary probit, SVM-linear, SVM-radial, SVM- polynomial, and SVM- sigmoid) using 

three distinct partitioned datasets: (70-30), (80-20), and (90-10).  
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Table 3.2: Random Parameter Binary Probit Model Specifications 
Variable Three-leg Roundabout Four-leg Roundabout 

Coefficient t-stat Marginal 

Effect 

Coefficient t-stat Marginal 

Effect 

       

Constant -0.23 -0.40 - 1.03 1.89  

Crash Level Cause (1 if the crash happened because of careless driving, 0 

otherwise) 

3.55 1.76 0.06 - - - 

Weather (1 if cloudy, 0 otherwise) 1.15 1.85 0.02 - - - 

(standard deviation, normally distributed) (1.6) (1.97) - - - - 

Type of Vehicle (1 if passenger car, 0 otherwise) -2.32 -3.30 -0.04 -3.67 -5.75 -0.019 

Participant Safety Equipment Use (1 if seatbelt was used, 0 otherwise) 

(standard deviation, normally distributed) 

0.65 4.23 0.01 1.73 

(1.44) 

4.85) 

6.95 

0.009 

Movement of the Vehicle at the Time of the Crash (1 if stopped in traffic, 0 

otherwise) 

0.17 

 

0.22 0.003 1.41 4.29 0.008 

(standard deviation, normally distributed) (3.93) (2.96) - - - - 

Gender (1 if male, 0 female) -3.002 -3.33 -0.05 -1.48 -4.62 0.008 

(standard deviation, normally distributed) (2.79) (3.65) - (1.6) (5.87) - 

Age of Driver (1 if the driver age 22-35, 0 otherwise) - - - 1.89 5.53 0.01 

Participant Error (1 if following too close, 0 otherwise) - - - -2.87 -4.05 -0.02 

Pavement Condition (1 if poor pavement, 0 otherwise) - - - -0.79 -2.92 -0.004 

Location of the Crash (1 if at the right-hand side, 0 otherwise) - - - -0.57 -1.82 -0.003 

Age of Driver (1 if driver age 36-50, 0 otherwise) - - - 0.04 0.12 0.0002 

(standard deviation, normally distributed) - - - (2.26) (5.55) - 

Crash Cause (1 if the driver did not yield right-of-way, 0 otherwise) - - - 0.86 2.74 0.005 

(standard deviation, normally distributed) - - - (0.41) (1.76) - 

Log Likelihood function -56.18 -156.58 

Log Likelihood at zero -72.78 -218.61 

AIC 132 343 

McFadden Pseudo R-squared       0.04 0.01 

No. of Observations 146 493 
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Table 3.3: Descriptive Statistics of Significant Variables 

Variable 

Three-leg Roundabout Four-leg Roundabout 

Mean 
Standard 

Deviation 
Mean 

Standard 

Deviation 

Crash Level Cause (1 if the crash happened because of careless driving, 0 otherwise) 0.04 0.19 - - 

Weather (1 if cloudy, 0 otherwise) 0.10 0.27 - - 

Participant Safety Equipment Use (1 if seatbelt was used, 0 otherwise) 1.78 1.20 0.55 0.50 

Movement of the Vehicle at the Time of the Crash (1 if stopped in traffic, 0 otherwise) 0.15 0.36 0.16 0.37 

Gender (1 if male, 0 female) 0.53 0.50 0.49 0.50 

Age of Driver (1 if the driver age 22-35, 0 otherwise) - - 0.21 0.41 

Participant Error (1 if following too close, 0 otherwise) - - 0.14 0.35 

Pavement Condition (1 if poor pavement, 0 otherwise) - - 0.34 0.47 

Location of the Crash (1 if at the right-hand side, 0 otherwise) - - 0.22 0.41 

Age of Driver (1 if driver age 36-50, 0 otherwise) - - 0.21 0.41 

Crash Cause (1 if the driver did not yield right-of-way, 0 otherwise) - - 0.33 0.47 
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3.4.2  Selected Variables Using Random Forest 

 Variable importance was determined through a random forest algorithm, which 

served as the second variable selection method. Important variables in this framework 

are identified by monitoring how much the prediction error increases when the out-of-

bag (OOB) data for that variable is permuted while all others were left unchanged (Yu 

and Abdel-Aty 2014). The R package ‘‘random forest’’ was used to generate the 

random forest and determine variable importance. In the three-leg model, 𝑚 = 1 was 

specified so that one variable was randomly samples as a candidate for each split, and 

a total of 400 trees were constructed. The algorithm computes two measures of variable 

importance: the mean decrease in the Gini coefficient and the mean decrease in 

accuracy. For each bootstrap iteration and related tree, the prediction error using data, 

not in the bootstrap sample, called the out of bag (OOB) data, is estimated, and the 

accuracy is the measurement value for the classification data. In other words, the mean 

decrease in accuracy is usually described as the decrease in model accuracy from 

permuting the values in each feature. The mean decrease in the Gini coefficient is the 

average (mean) of a variable’s total decrease in node impurity, weighted by the 

proportion of samples reaching that node in each decision tree in the random forest. A 

higher mean decrease in the Gini coefficient indicates a higher in variable importance. 

 For the four-leg model, 𝑚 = 1 was also used, and a total of 500 trees were 

constructed. Table 3.4 provides variable descriptions for the essential variables that 

were determined. Figure 3.5 shows the final results of the variable importance rankings, 

where the mean decrease in accuracy was the selection criteria for both the three- and 

four-leg roundabout models. These variables are the second set of variables used to 

assess prediction. Variables that are equal to or more than 0.5 mean accuracy have been 

included in the study. It can be drawn from the figure that the indicators “Time of Day: 

12 p.m. - 6 p.m.” (ANOON in the figure), “Weather Condition: Snow” (SNOW), 

“Driver Age: 36-50” (AGE3650), “Vehicle Type: Passenger Car” (PSNGEVEH), and 

“Weather Condition: Rain” (RAIN) were identified as the most important variables in 

predicting injury severity at three-leg roundabouts. Figure 3.5 shows that “Pavement 

Condition: Poor” (POORV), “Light Condition: Dusk” (DUSK), “Participant (Driver) 
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Error: Speeding Too Fast for Conditions: Loss of Control” (PLSTCNTR), “Annual 

Average Daily Traffic” (AADT), “Number of Trucks” (TRKNM), and “Movement of 

the Vehicle at the Time of the Crash: Stopped” (STPVHACT) were identified as the 

most important variables in predicting injury severity at four-leg roundabouts. 

Table 3.4: Variable Descriptions for Random Forest 
Variable Description 

ANOON Time of Day:12pm-6pm 

WEKDAY Weekday 

SNOW Weather Condition: Snow 

RAIN Weather Condition: Rain 

CLOUDY Weather Condition: Cloudy 

ICE Weather Condition: Ice 

DUSK Light Condition: Dusk 

MALE Gender of the Driver 

AGEL16 Driver Age: 16 

AGE1621 Driver Age: 16-21 

AGE2235 Driver Age: 22-35 

AGE3650 Driver Age: 36-50 

AGEM65 Driver Age: More than 60 

PSNGERVEH Vehicle Type: Passenger Car 

TOTOCCUP Total Occupants in the Vehicle 

PTOCLOSE Participant (Driver) Error: Following Too Close  

PLSTCNTR Participant (Driver) Error: Speed Too Fast for Conditions: Loss of Control 

PDNTYELD Participant (Driver) Error: Did Not Yield Right-of-way 

PTOOFAST Participant (Driver) Error: Speed Too Fast for Conditions 

DICTRLCS Participant (Driver) Error: Disregarded Other Traffic Control Device 

STPVHACT Movement of the Vehicle at the Time of the Crash: Stopped 

STOP Traffic Control Device: Stop Sign 

YIELD Traffic Control Device: Yield Sign  

FAIRPV Pavement Condition: Fair 

POORPV Pavement Condition: Poor 

PAVC Type of Pavement: Concrete 

P10T25 Population Range: 10,000 to 25,000 

P100T200 Population Range: 100,000 to 200,000 

TWOLAN Number of Lanes 

AADT Annual Average Daily Traffic 

TRKNM Number of Trucks   

CLASS03 Vehicle Classes: Four-tire, Single Unit 

TRLR Presence of Trailer 
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(a) 

 

(b) 

 

             Figure 3.5: Random Forest Variable Importance for (a) Three-leg Roundabouts and (b) Four-leg Roundabouts 
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3.4.3 Comparison of prediction performance 

 The primary objective of this study is to assess the prediction performance of the 

binary probit model and SVM model under different variable selection methods. For 

comparisons, the binary probit model and the SVM models were fitted using the same 

randomly separated training and testing datasets. The training was used to fit the model, 

while the testing dataset was used to evaluate the prediction performance of the model. 

To examine the accuracy of the prediction models, a validation dataset can be used, 

and the prediction results for each method can be summarized in a confusion matrix. 

Accuracy is a comprehensive indicator to reflect the number of observations that were 

predicted correctly. Comparing the situations of a no-injury sample being misclassified 

as an injury or an injury sample being misclassified as a no-injury, the latter will lead 

to more severe consequences (i.e., ignoring the impact of serious accidents). The 

parameter accuracy, which is the percent of correct predictions, was used for comparing 

the prediction performance of the models. It can be calculated using Eq. (2). 

 The SVM algorithm was applied to predict injury severity for the three-leg and four-

leg roundabout crash data. In this study, four types of kernel functions were used to 

investigate the linear and nonlinear relationships between injury severity and the 

selected variables of both methods. SVM with a linear, radial, polynomial, and sigmoid 

kernels function were formalized in the RStudio environment.  

Severity Prediction with Selected Variables from a Random Forest: For three-leg 

roundabouts, as shown in Table 3.5, the SVM model with a polynomial kernel function 

had the highest prediction accuracy at 86% (this was under the 70-30 split in the data). 

The other kernel functions also performed well, with the sigmoid kernel leading to an 

84% prediction accuracy and the radial and linear kernels leading to 82% and 81% 

prediction accuracies, respectively. The binary probit model, using selected variables 

from a random forest, had the lowest accuracy at 76%. 

 For the 80-20 training-test split, the SVM model with polynomial and sigmoid 

kernels have the same accuracy at 83%. Accuracy also decreased for the radial kernel 

to 79%, while accuracy remained consistent with the linear kernel (81%). No 

predictions were made using the binary probit model in this scenario with the selected 

variables from the random forest. 
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 The highest accuracy occurred in the 90-10 split for training and test data and was 

obtained using the polynomial kernel, specifically, with a prediction accuracy of 91%. 

This split also led to the highest prediction accuracy for the sigmoid kernel (86%), 

while it had varying effects on the linear and radial kernels. For example, in the 90-10 

split, prediction accuracy was 81% (higher than the 80-20 split, but lower than the 70-

30 split). Similarly, the linear kernel had the lowest accuracy with this split at 76%, 

which was 4% lower than the other splitting ratios (81% accuracy for each).  

 Overall prediction accuracies for four-leg roundabouts are shown in Table 3.6, 

Under the 70-30 split, prediction accuracies remained fairly consistent regardless of the 

kernel. The linear, polynomial, and sigmoid kernels all led to an 84% prediction 

accuracy, while the radial kernel led to an 83% accuracy. Each of these, however, 

outperformed the binary probit model, for which a prediction accuracy of 75% was 

obtained.  

 For the 80-20 split, similar results are observed, with all prediction accuracies but 

the radial kernel being marginally higher or the same. Specifically, using the 

polynomial and sigmoid kernels, an accuracy of 85% was obtained, while the binary 

probit accuracy increased to 77%. Accuracy using the radial kernel decreased to 82%, 

while prediction accuracy remained the same for the linear kernel at 84%.  

 Under the 90-10 split, all prediction accuracies but the radial kernel were the same 

as the 70-30 split, where the accuracy of the radial kernel decreased to 80%. For all 

other kernels (linear, polynomial, and sigmoid), there was accuracy of 84%.  

 

Severity Prediction with Selected Variables from the Binary Probit Model: Table 3.7 

and Table 3.8 show the prediction accuracies of all models using the variables selected 

through the development of the binary probit model. Referring to Table 3.7, all SVM 

models had higher prediction accuracies for three-leg roundabouts. Under the 70-30 

split, the sigmoid kernel resulted in the highest accuracy at 86%. Accuracies using the 

radial and polynomial kernels were the same (82%), and prediction accuracy using the 

linear kernel was marginally lower at 81%. In regard to the binary probit model, this 

was the highest observed accuracy at 78%, which is likely linked to the selected 

variables being chosen based on the binary probit framework.  
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 Under the 80-20 split, prediction accuracies of injury severity on three-leg 

roundabouts notably changed contingent on the SVM kernel function. For two kernels, 

accuracies decreased, while accuracies increased for the other two. Specifically, 

prediction accuracy using the linear kernel decreased to 79% (from 81% in the 70-30 

split), and prediction accuracy using the sigmoid kernel decreased to 83% (from 86% 

in the 70-30 split). On the other hand, prediction accuracies using the radial kernel 

increased to 86% (from 82% in the 70-30 split), and prediction accuracies using the 

polynomial kernel increased to 83% (from 82% in the 70-30 split). For the 90-10 split, 

all accuracies were the same regardless of the kernel. 

 In regard to four-leg roundabouts (Table 3.8) under the 70-30 split, the highest 

accuracy was again obtained with the sigmoid kernel function at 87%. Accuracies for 

the other three kernels (linear, radial, and polynomial) were identical at 84%, while the 

accuracy of the binary probit model was notable lower at 75%.  

For the 80-20 split on four-leg roundabouts, the highest prediction accuracy was also 

observed using the sigmoid kernel (86%). Accuracies for the other three kernels were 

nearly identical to the 70-30 split, where the accuracy of the linear and polynomial 

kernels remained at 84%, and the accuracy of the radial kernel decreased marginally to 

83% (from 84% in the 70-30 split).  

 Lastly, under the 90-10 split on four-leg roundabouts, the radial, and polynomial 

kernel functions resulted in the highest prediction accuracy at 87%, while the sigmoid 

kernel resulted in a comparable accuracy at 86%. As for the linear kernel, as was the 

case with all other splits, prediction accuracy remained at 84%.  

 A visual comparison of prediction accuracies is shown in Figure 3.6, and a tabulated 

comparison is shown in Table 3.9. Overall, the SVM models outperformed the binary 

probit model regardless of training-test ratios, kernel functions, and variable selection 

methods. In addition, the prediction rate remained fairly consistent regardless of split 

ratios, roundabout configuration, and variable selection.  

 The highest prediction accuracy of the binary probit model (78%) corresponds to 

variables selected by said model, a 70-30 split, and for three-leg roundabouts. This 

scenario also resulted in the most comparable predictions across all models, with the 

exception of SVM-sigmoid.  
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 Additional noteworthy factors include the highest rate of prediction, which was 

observed for three-leg roundabouts, a 90-10 split, and predicted by the SVM-

polynomial model. This prediction accuracy was 91% (no other accuracy was greater 

than 87%).  All SVM models using selected variables from the binary probit model had 

the same prediction rates in a 90-10 split for three-leg roundabouts (81%). This was the 

only scenario in which this was observed. Ultimately, regardless of variable selection 

methods, kernel functions, and split ratios, the SVM-based models resulted in higher 

prediction accuracy in this context. In regard to SVM alone, while considering variable 

selection methods, results varied (in some cases, prediction rates were better with 

variables selected via a random forest, and in some cases, the opposite). 
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Table 3.5: Prediction models Results for Three-leg Roundabouts Using Selected Variables from a Random Forest. 

Model Type 

Three-leg Roundabout Model 

Confusion Matrix 

(70-30) 
Model 

Accuracy 

(%) 

Confusion Matrix 

(80-20) 
Model 

Accuracy 

(%) 

Confusion Matrix 

(90-10) 
Model 

Accuracy 

(%) 
 No-injury Injury No-injury Injury No-injury Injury 

Binary Probit Model 

No-injury 40 7 

76 

- - 

- 

- - 

- 
Injury 6 2 

- - - - 

Support Vector Machine 

(SVM-linear) 

No-injury 48 3 

81 

34 0 

81 

16 1 

76 

Injury 9 2 8 0 4 0 

Support Vector Machine 

(SVM- radial) 

No-injury 51 0 
82 

33 1 
79 

17 0 
81 

Injury 11 0 8 0 4 0 

Support Vector Machine 

(SVM- polynomial) 

No-injury 50 1 
86 

33 1 
83 

17 1 
91 

Injury 8 3 6 2 3 0 

Support Vector Machine 

(SVM- sigmoid) 

No-injury 51 0 
84 

34 6 
83 

17 0 
86 

Injury 10 1 7 1 3 1 

• The sign (-) means that the model couldn’t predict the outcomes for this ratio 
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Table 3.6: Prediction Results for Four-leg Roundabouts Using Selected Variables from a Random Forest. 

Model Type 

Four-leg Roundabout Model 

Confusion Matrix 

(70-30) Model 

Accuracy 

(%) 

Confusion Matrix 

(80-20) Model 

Accuracy 

(%) 

Confusion Matrix 

(90-10) Model 

Accuracy 

(%) 
 No-injury Injury No-injury Injury No-injury Injury 

Binary Probit Model 
No-injury 148 26 

75 
103 15 

77 
- - 

- 
Injury 25 8 

17 5 - - 

Support Vector Machine (SVM-

linear)  

No-injury 177 0 
84 

118 0 

84 

59 0 

84 
Injury 34 0 

23 0 11 0 

Support Vector Machine (SVM- 

radial)  

No-injury 175 2 
83 

115 3 

82 

56 3 

80 
Injury 34 0 

23 0 11 0 

Support Vector Machine (SVM- 

polynomial) 

No-injury 177 0 
84 

118 0 

85 

59 0 

84 
Injury 33 1 

22 1 11 0 

Support Vector Machine (SVM- 

sigmoid) 

No-injury 177 0 
84 

117 1 
85 

59 0 

84 
Injury 33 1 

20 3 11 0 
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Table 3.7: Prediction Results for Three-leg Roundabouts Using Selected Variables from Binary Probit Model 

Model Type 

Three-leg Roundabout Model 

Confusion Matrix 

(70-30) 
Model 

Accuracy 

(%) 

Confusion Matrix 

(80-20) 
Model 

Accuracy 

(%) 

Confusion Matrix 

(90-10) 
Model 

Accuracy 

(%) 
 No- 

injury 

Injury No-

injury 

Injury No-

injury 

Injury 

Binary Probit Model 

No-injury 43 8 

78 

- - 

- 

- - 

- 
Injury 5 4 - - - - 

Support Vector Machine (SVM-linear)  

No-injury 50 1 

81 

33 1 

79 

17 0 

81 

Injury 11 0 8 0 4 0 

Support Vector Machine (SVM- radial)  
No-injury 49 2 

82 
34 0 

86 
17 0 

81 

Injury 9 2 6 2 4 0 

Support Vector Machine (SVM- 

polynomial) 

No-injury 51 0 
82 

33 1 
83 

17 0 
81 

Injury 11 0 6 2 4 0 

Support Vector Machine (SVM- sigmoid) 
No-injury 51 0 

86 
33 1 

83 
17 0 

81 

Injury 9 2 6 2 4 0 
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Table 3.8: Prediction Results for Three-leg Roundabouts Using Selected Variables from Binary Probit Model. 

Model Type 

Four-leg Roundabout Model 

Confusion Matrices 

(70-30) Model 

Accuracy 

(%) 

Confusion Matrices 

(80-20) Model 

Accuracy 

(%) 

Confusion Matrices 

(90-10) Model 

Accuracy 

(%) 
# No-injury Injury No-injury Injury No-injury Injury 

Binary Probit Model 
No-injury 145 26 

75 
97 21 

72 
- - 

- 
Injury 25 12 

17 3 - - 

Support Vector Machine (SVM-linear) 
No-injury 177 0 

84 

118 0 

84 

59 0 

84 
Injury 34 0 

23 0 11 0 

Support Vector Machine (SVM- radial) 
No-injury 172 5 

84 

113 5 

83 

58 1 

87 

Injury 28 6 
19 4 8 3 

Support Vector Machine (SVM- 

polynomial) 

No-injury 170 7 
84 

118 0 

84 

57 2 

87 

Injury 26 8 
23 0 7 4 

Support Vector Machine (SVM- 

sigmoid) 

No-injury 176 1 
87 

115 3 
86 

56 3 

86 

Injury 27 7 
17 6 7 4 
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                            Figure 3.6: Visual Comparison of Prediction Accuracies by Model and Variable Selection Method 
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Table 3.9: Comparison of Prediction Accuracy Across Models and Variable 

Selection 

Model 
Three-leg Roundabout Accuracy (%) 

Random Forest Variables Binary Probit Variables 

 70-30 80-20 90-10 70-30 80-20 90-10 

Binary Probit 76 - - 78 - - 

SVM-Linear 81 81 76 81 79 81 

SVM-Radial 82 79 81 82 86 81 

SVM-Polynomial 86 83 91 82 83 81 

SVM-Sigmoid 84 83 86 86 83 81 

Model 
Four-leg Roundabout Accuracy (%) 

Random Forest Variables Binary Probit Variables 

Binary Probit 75 77 - 75 72 - 

SVM-Linear 84 84 84 84 84 84 

SVM-Radial 83 82 80 84 83 87 

SVM-Polynomial 84 85 84 84 84 87 

SVM-Sigmoid 84 85 84 87 86 86 
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3.5 Conclusion 

 This study compared the predictive performance of injury severity between various 

machine-learning and econometric techniques based on three-leg and four-leg 

roundabout crash data from 2011 to 2015 in Oregon. A key component of this analysis 

was to assess the impact of variable selection on injury severity prediction. Variable 

selection was conducted using a random forest and fitting a binary probit model, after 

which a series of SVM-based models and a binary probit model were used to predict 

injury severity outcomes. In addition to assessing variable selection on prediction 

accuracy, three different training-test data ratios were considered. Results showed that 

regardless of the variable selection method and training-test ratios, the SVM models 

consistently outperformed the traditional econometric approach.  

 The binary model performed best when predicting injury severity at three-leg 

roundabouts and under a 70-30 split in training-test ratio. Specifically, 76% accuracy 

using variables selected by a random forest and 78% accuracy using variables selected 

by the binary probit model. Prediction rates for the binary probit model were lower 

when considering four-leg roundabouts, but a 77% accuracy was observed when 

considered an 80-20 split and variables selected by a random forest. 

  The SVM-linear model has comparable predictions for both three-leg and four-leg 

models, under both variable selection methods, with 81% and 84%, respectively. SVM-

radial had a higher prediction, specifically for the four-leg model and using variables 

selected by the binary probit model (the highest prediction accuracy was 87% with a 

90-10 split). SVM-polynomial performed best in the three-leg model using variables 

selected by a random forest (91% accuracy under a 90-10 split, also the highest 

observed accuracy) and in the four-leg model using variables selected by the binary 

probit model (87% accuracy under a 90-10 split). Lastly, SVM-sigmoid was the most 

consistent of the SVM models across all training-test ratios and variable selection. 

Specifically, SVM-sigmoid performed best for four-leg models using variables selected 

by the binary probit model and had the lowest prediction rate in the three-leg model 

using the same variables. 
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 In regards to variable importance, a random forest analysis indicated that afternoon, 

snowy weather, and drivers aged 36-50 years were the most important injury severity 

predictors for three-leg roundabouts. For four-leg roundabouts, poor pavement 

condition, dusk lighting, and losing control of the vehicle were identified as the most 

important predictors for injury severity at four-leg roundabouts. For the econometric 

model, based on marginal effects, careless driving, passenger cars, and male drivers 

have the largest effect on injury severity outcomes at three-leg roundabouts. For four-

leg roundabouts, passenger cars, following too closely, and drivers aged 22-35 years 

have the largest effect on injury severity outcomes, according to marginal effects. 

 In summary, when accurately predicting outcomes is a primary goal, machine 

learning (SVM in the current study) is advantageous over traditional econometric 

methods. Such methods can be used to help confront issues of multiple and correlated 

predictors and non-linear relationships. However, when using machine learning 

methods, extra care is needed in the form of model validation. Although this study 

thoroughly investigated injury severity at roundabouts with three- and four-legs, there 

were some limitations. For example, due to the data limitations, injury severity was 

categorized into two levels, injury and no-injury. Also, there was information missing 

for several factors that could have been important, such as the geometric design of the 

roundabout, the exact location of the crashes, the presence of a work zone, and route 

numbers. With more crash data in the future, outlook studies could classify the 

outcomes into more levels and may focus on identifying new significant factors that 

may lead to more detailed classifications of injury severity. Until then, the application 

of different machine-learning techniques can handle the small ratio of specific 

outcomes with the existing data.  
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Abstract 

 

This paper investigates the risk factors that significantly affect the severity of drivers' 

injuries in roundabout-related accidents while systematically accounting for 

unobserved heterogeneity and variance in terms of the random parameter within the 

crash data. It uses the data collected by the Washington State Department of 

Transportation (WSDOT) over a six-year period (2013 to 2018), during which 8548 

crashes occurred at roundabouts. A random parameter binary probit model with 

heterogeneity in the means of random parameters employed to explore the effects of a 

wide range of variables on driver injury severity-related outcomes. The dataset was 

separated into four groups based on the age and gender of the drivers: young female, 

adult female, young male, and adult male. A log-likelihood ratio test and extensive 

transferability test were conducted to verify whether the modeling of crash severity at 

roundabouts needed to be carried out separately. The results indicate, with 99% 

confidence, that such accidents need to be modeled separately according to the drivers' 

age and gender. The model estimation results show that using the random parameter 

with heterogeneity in means improves overall model fit and yields essential new 

insights. Many factors potentially affect the likelihood of the driver injury severity 

estimation results for roundabout crashes outcomes. This includes crashes that occur 

during the weekdays and at two-lane roundabouts and those that involve sideswipes, 

driving under the influence of alcohol, collisions with pedal cycles, collisions with 

motorcycles, vehicles entering at an angle and so on. The findings of this research 

highlight the need to further study the factors that contribute to driver injury severity 

in roundabout-related accidents. 

 

 

Key Words: Driver injury severity; Roundabout; Random parameter; Heterogeneity in 

the mean; Driver age and gender 
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4.1 Introduction 

The construction of roundabouts continues to increase across the United States, as 

they serve as a favorable alternative to signalized or stop sign-controlled intersections 

(FHWA, 2015; Montella, 2011; Rodegerdts et al., 2015; WIDOT, 2020). A significant 

amount of research has indicated that drivers might not be as skilled at navigating 

roundabouts as they believe themselves to be. In a recent survey of 1,200 Washington 

and Oregon residents by the Washington State Department of Transportation WSDOT, 

three-quarters of the respondents claimed that they drive around roundabouts correctly, 

while two-thirds said that they see others making mistakes. In another study conducted 

by Day et al. (2018), it was found that some new drivers described being unsure about 

where to look at junctions and roundabouts while driving. Further, de Winter et al. 

(2009) indicated that drivers who learn to negotiate crossroads well do not 

automatically learn how to do the same for roundabouts as well. 

Furthermore, in a study conducted by Al-Saleh and Bendak (2012) on the drivers' 

behavior at roundabouts, it was found that two-thirds of the drivers left the roundabout 

without indicating, which was the most prominent violation type observed. In addition, 

more than one-third of the drivers were found to be entering the roundabout without 

giving way or taking into consideration other cars that were already in the roundabout. 

Changing lanes unnecessarily was the third most frequent violation, followed by not 

slowing down when approaching roundabouts, and, finally, tooting, which was the least 

frequent and least severe. Moreover, Ziolkowski (2014) found that drivers are more 

likely to meet in an accident when navigating large roundabouts due to the associated 

conditions when driving at high speeds. 

Regarding older drivers, Payyanadan et al. (2018) found that drivers who were 65 

years and older were also more likely to report having issues with the complicated 

driving maneuvers involved in negotiating a roundabout. Burdett et al. (2017) found 

that younger drivers, under the age of 25, were engaged in 29% of all single-vehicle 

roundabout crashes, drivers aged 18–24 were involved in 24% of such crashes. Further, 

drivers aged 45–64 were involved in 22% of roundabout crashes. Regarding the 

exploratory factors, younger drivers were involved in 35% of all weather-related 

crashes and 61.9% of speed-related crashes at roundabouts. Several studies have been 

https://www.pemco.com/poll/roundabouts
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recently carried out to improve safety at roundabouts. Nevertheless, only a limited 

number of them have explored the factors that influence the severity of driver injury in 

roundabout-related accidents. Thus, it can be assumed that studies that explore this 

aspect are limited and scattered in terms of their varying objectives. 

In addition to the previously mentioned studies, which evaluated the influence of 

the driver's characteristics on the frequency of roundabout crashes, another crucial 

research area is to identify the factors that lead to specific levels of injury severity for 

the drivers involved in these accidents. In an attempt to determine the impacts of such 

components, many studies have designed various sorts of discrete outcomes models. 

Driver injury severity have been statistically modeled using a wide variety of ordered 

and unordered discrete outcome approaches, such as the binary probit/logit models, 

ordered probit/logit models, multinomial logit model, and nested logit models. These 

models treat parameters as a constant across the observations (Ahmadi et al., 2018; 

Mannering and Bhat, 2014; Savolainen et al., 2011; Xie et al., 2012). A profusion of 

recent research has emphasized the importance of accounting for unobserved 

heterogeneity (factors that affect crash severity but are unobserved by the analyst) in 

the analysis of vehicle crash data (Mannering et al., 2016). Unobserved heterogeneity 

can arise from a number of sources, including unobserved environmental effects, 

interactions between the driver and vehicle, interactions between vehicles, and so on. 

Therefore, many studies accounted for unobserved heterogeneity through the inclusion 

of the random parameter approaches by assuming the estimated parameters vary across 

the observation according to some pre-specified distribution such as the random 

parameter multinomial logit model (mixed logit model), random parameter order probit 

model, random parameter binary probit model (Al-Bdairi et al., 2018; Anderson and 

Hernandez, 2017; Cerwick et al., 2014; Eluru and Yasmin, 2015; Haleem and Gan, 

2013; Kim et al., 2013; Milton et al., 2008; Moore et al., 2011; Wu et al., 2014, 2016; 

Yasmin et al., 2015; Ye and Lord, 2014; Zubaidi et al., 2020). 

In random parameter models, the distributions derived from the estimated random 

parameters are defined in terms of the full sample, and each respondent is randomly 

assigned an estimate drawn from the full distribution (Greene, 2012). However, this 

would make it impossible to verify whether the unobserved heterogeneity is a function 
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of the explanatory variables. Therefore, to assess whether such effects exist, many 

recent studies introduced heterogeneity around the mean and/or invariance of the 

random parameters (Al-Bdairi et al., 2020; Anastasopoulos, 2016; Behnood and 

Mannering, 2017a, 2017b; Seraneeprakarn et al., 2017). 

Despite the many studies conducted regarding roundabout safety (Al-Ghandour et 

al., 2011; Al-Marafi et al., 2019; AlKheder et al., 2020; Bahmankhah et al., 2019; 

Baker, 2020; Balado et al., 2019; Bastos et al., 2006; Burdett et al., 2017, 2016; Campisi 

et al., 2020; Chen et al., 2020; Echab et al., 2016; Ghanim et al., 2020; Landolsi et al., 

2015a, 2015b; Nikitin et al., 2017; Patnaik et al., 2020; Pratelli et al., 2020; Pratic et 

al., 2015; Qin et al., 2013; Sadeq and Sayed, 2016; Shaaban and Hamad, 2020; Shen et 

al., 2020; Sisiopiku and Oh, 2001a, 2001b; Tollazzi, 2015; Vasconcelos et al., 2012; 

Yap et al., 2013; Zohdy and Rakha, 2013), the effect of the driver characteristics 

remains vague. 

In other words, the relationship between the specific levels of driver injury severity 

and the gender and age of the driver remains unclear for roundabout-related accidents. 

Thereby, the majority of this research focuses on and intends to contribute to a better 

understanding of the influence of driver characteristics on the specific outcome of 

injury severity in roundabout crashes, with the heterogeneous mean being specified as 

a function of drivers' age and gender. This will be carried out by conducting crash-

based analyses in which the unobserved heterogeneity and variance in the means of the 

random parameter are taken into consideration. 

4.2 Methodology 

4.2.1 The statistical model 

 In an attempt to better understand the effect of the driver's age and gender on the 

driver injury severity outcome for roundabout accidents, a random parameter binary 

probit model with heterogeneity in the means was developed. An additional layer of 

heterogeneity has been added, which is associated with the mean of the distribution of 

the estimated random parameter—in other words, allowing the random parameter to 

vary as per the explanatory variables. The dataset was divided into four groups 

depending on the age and gender of the drivers: young female, adult female, young 
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male, and adult male. To begin, the effect of an explanatory variable 𝑿 on a binary 

outcome can be expressed by assuming the disturbance term ℇ to be normally 

distributed (Wooldridge, 2010) as follows: 

 

𝑦∗ =  𝛼 + 𝜷𝑿 + 𝜀     (4.1) 

 

Where, 

 

𝑦 =  1[𝑦∗ > 0] 

 

(4.2) 

Where, 𝑦 =  1[𝑦∗ > 0] represents a crash in which an injury occurred (otherwise, 𝑦 =

 0). 

To account for the unobserved heterogeneity—which can introduce variation into the 

model and, as a result, can affect the likelihood function of the driver injury severity 

outcome (Mannering et al., 2016)—a random parameter technique is applied as shown 

in Eq. (4.3) (Greene, 2012): 

 

𝛽𝑖 =  𝛽 +  𝑢𝑖 (4.3) 

 

Where, β is the mean parameter, and ui is a randomly distributed term that captures 

unobserved heterogeneity across crashes. Maximum log-likelihood estimation is 

performed to estimate the random parameter by utilizing 200 Halton draws, which 

provide an efficient distribution of the draws for numerical integration (Bhat, 2003; 

Pahukula et al., 2015). Then, to account for the impact of the one-unit change in the 

features (explanatory variable 𝑋) on the injury severity outcomes, marginal effects are 

computed as shown in Eq. (4.4) and referred to in Washington et al. (2011). 

 

𝜕𝑌

𝜕𝑥𝑖
= 𝛽𝑖 𝜙 (𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 (4.4) 
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 Finally, by assuming that the degree of unobserved heterogeneity could have some 

function of explanatory variables, the mean of the estimated parameter enabled the 

function of the explanatory variables, and Eq. (4.3) gets converted into Eq. (4.5). 

 

𝛽𝑖 =  𝛽 + 𝛩 𝑍𝑖 + 𝑢𝑖 (4.5) 

 

Where, 𝑍𝑖is a vector of the explanatory variables that influence the mean of 𝛽𝑖 , and 𝛩 

is a vector of the estimable parameters. 

 The maximum likelihood and simulation-based maximum likelihood methods are 

used to estimate the parameter vector. The normal distribution was found to be 

statistically significant among different distributions. In addition, the binary probit 

model is estimated using two hundred Halton draws, as it is stated in the literature that 

this number of Halton draws produces accurate estimates of the parameters (Bhat, 

2003; Gkritza and Mannering, 2008; Hasan et al., 2011; Milton et al., 2008). 

Subsequently, a log-likelihood ratio test is proposed to statistically test the overall 

significance of using all the data models overusing separate models (young female, 

adult female, young male, and adult male). The first log-likelihood ratio test for 

transferability is as follows: 

 

𝜒2 = −2[𝐿𝐿𝐴𝑙𝑙 𝐷𝑎𝑡𝑎(𝛽𝐴𝑙𝑙 𝐷𝑎𝑡𝑎) −  ∑ 𝐿𝐿𝑆𝑒𝑝(𝛽𝑆𝑒𝑝)] (4.6) 

  

Where, 𝐿𝐿𝐴𝑙𝑙 𝐷𝑎𝑡𝑎(𝛽𝐴𝑙𝑙 𝐷𝑎𝑡𝑎) is the log-likelihood at the convergence of the model with 

all the data, and 𝐿𝐿𝑆𝑒𝑝(𝛽𝑆𝑒𝑝) is the log-likelihood at the convergence of the subgroups 

mentioned above. 

 In addition to further validation, a more extensive transferability test was conducted 

to check if the modeling of crash severity at roundabouts needs to be carried out 

separately. This log-likelihood ratio test for transferability is as follows (Washington 

et al., 2011): 

 

𝑥2 = −2 [𝐿𝐿(𝛽 𝑀1𝑀2
) −  𝐿𝐿(𝛽𝑀1)] (4.7) 



86 

 

 

 

  

Where, 𝐿𝐿(𝛽 𝑀1𝑀2
) is the log-likelihood at convergence for Model 𝑀1 using the data 

from Model 𝑀2, and𝐿𝐿(𝛽𝑀1) is the log-likelihood at convergence for Model 𝑀1. 

Data Description 

 This study was based on crash data collected and compiled by the WSDOT. The 

data included information about all the accidents that occurred over a six-year period 

(2013 to 2018), during which time 8548 crashes occurred at roundabouts. To test the 

significance of the driver’s gender and age in the context of these crashes, the data was 

split into four categories: young female driver (under the age of 25, 831 crashes), adult 

female driver (25 years or older, 5020 crashes), young male driver (under the age of 

25, 910 crashes), and adult male driver (25years or older, 3491 crashes). 

 Due to the limited number of accidents that resulted in a disabling injury or fatality, 

it was not statistically possible to estimate all the five injury-level categories on 

KABCO scale (fatal, incapacitating, moderate, possible, and possible damage only). 

Thus, only two categories have been considered in this study: no-injury and injury. 

Table 4.1 presents the distribution level of injury severity across the four categories. 

Young males constitute the highest percentage of the no injury outcome with 86%, 

followed by both young females and adult males, who constitute have 85% of the total 

cases, and, finally, by adult females, who contribute to 55% of the cases. On the other 

hand, the adult females account for the highest number of accidents (55%), followed 

by both young females and adult males (15%), and, last, by the young males (14%). 

 Table 4.2 illustrates the descriptive statistics for the significant variables in the 

conducted models. The variables of using the lap and shoulder belts and collision with 

another vehicle present high percentages (86% and 84%, respectively) for adult male 

drivers. In contrast, 72% and 56% of crashes that occur during the weekdays and when 

entering roundabouts, respectively, can be attributed to adult females, whereas 49% of 

the accidents that occur when entering roundabouts are contributed by young males. 

Finally, young female drivers account for 23% of the crashes that occur when exiting 

roundabouts. 
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Table 4.1: Injury severity frequency and percentage distribution by different 

categories 
Driver Characteristics Injury Severity Observation Percentage (%) 

Young female < 25 

No-Injury 709 85 

Injury 122 15 

Total 831 100 

Adult female ≥ 25 

No-Injury 2263 45 

Injury 2757 55 

Total 5020 100 

Young male < 25 

No-Injury 785 86 

Injury 125 14 

Total 910 100 

Adult male ≥ 25 

No-Injury 2952 85 

Injury 539 15 

Total 3491 100 
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Table 4.2: Descriptive statistics of the significant variables in the injury severity models 
Variables Descriptive Statistics 

Adult Female Young Female Adult Male Young Male 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Temporal Characteristics 

Weekday (1 if the crash occurred during weekdays, otherwise 0) 0.72 0.45 - - - - - - 

Season (1 if winter (Dec–Feb), otherwise 0) - - - - 0.24 0.43 - - 

Spatial Characteristics 

County (1 if Snohomish, otherwise 0) 0.23 0.42 - - - - - - 

County (1 if Stevens, otherwise 0) 0.08 0.26 - - - - - - 

County (1 if Pacific, otherwise 0) - - 0.06 0.24 - - -  

County (1 if Island, otherwise 0) - - - - - - 0.17 0.38 

Roadway Characteristics 

Roadway characteristics (1 if the road is curve and graded, otherwise 0) 0.05 0.23 - - - - - - 

Roadway characteristics (1 if the road is straight and graded, otherwise 0) 0.05 0.22 - - - - - - 

Posted speed limit (1 if speed limit is ≤ 25 m/hr, otherwise 0) 0.07 0.26 - - - - - - 

Number of lanes (1 if two-lane roundabout, otherwise 0) - - - - 0.12 0.32 - - 

Posted speed limit (1 if 20m/hr under a speed limit of <50 m/hr, otherwise 0) - - - - 0.66 0.48 - - 

Driver Action and Contribution 

Vehicle action (1 if stopped on the road, otherwise 0) 0.11 0.31 - - 0.1 0.25 - - 

Vehicle action (1 if making a right, otherwise 0) 0.07 0.26 - - - - - - 

Vehicle action (1 if making a left, otherwise 0) - - 0.07 0.26 0.07 0.26 - - 

Vehicle action (1 if slowing down, otherwise 0) - - - - 0.03 0.17 - - 

Driver contribution (1 if passing incorrectly, otherwise 0) 0.03 0.17 0.03 0.16 - - - - 

Driver contribution (1 if under the influence of alcohol, otherwise 0) - - - - 0.07 0.26 0.06 0.23 

Contributing circumstance (1 if inattentive, otherwise 0) - - - - 0.14 0.34 - - 

Speed condition (1 if reasonable speed is exceeded, otherwise 0) 0.03 0.14 0.07 0.25 - - - - 

Collision Types 

Collision type (1 if entering at angle, otherwise 0) 0.08 0.27 - - - - - - 

Collision type (1 if sideswiped, otherwise 0) 0.23 0.42 - - 0.21 0.41 0.19 0.39 

Collision type (1 if collided head-on, otherwise 0) - - 0.11 0.32 0.14 0.35 - - 

Collision type (1 if a transport vehicle is involved, otherwise 0) - - - - 0.84 0.37 - - 

Collision type (1 if collided with fixed object, otherwise 0) - - - - 0.1 0.29 - - 

Crash type (1 if vehicle goes off the road, otherwise 0) - - - - 0.05 0.21 - - 

Junction Relationship 

Junction relationship (1 if entering the roundabout, otherwise 0) 0.56 0.5 - - - - 0.49 0.50 
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Variables (Continued) Descriptive Statistics 

Adult Female Young Female Adult Male Young Male 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Junction relationship (1 if circling the roundabout, otherwise 0) - - 0.17 0.37 0.19 0.39 0.20 0.40 

Junction relationship (1 if exiting the roundabout, otherwise 0) - - 0.23 0.42 0.22 0.41 0.23 0.42 

Airbag type (1 if deployed, otherwise 0) 0.04 0.15 - - 0.03 0.17 - - 

Road User Involvement 

Road user indicator (1 if a motorcycle is involved, otherwise 0) 0.03 0.12 0.03 0.11 0.04 0.19 0.03 0.16 

Road user indicator (1 if a pedal cycle is involved, otherwise 0) 0.03 0.18 - - 0.03 0.08 - - 

Road user indicator (1 if a pedestrian is involved, otherwise 0) 0.04 0.16 - - - - - - 

Truck involvement (1 if the truck weighs <10,000 lbs, otherwise 0) 0.47 0.5 - - - - - - 

Truck involvement (1 if the truck weighs >10,000 lbs, otherwise 0) - - - - 0.12 0.33 - - 

Restraint System Type 

Airbag type (1 if no airbag equipped, otherwise 0) 0.04 0.16 - - - - - - 

Airbag type (1 if deployed, otherwise 0) 0.03 0.15 - - - - 0.05 0.21 

Restraining system type (1 if lap and shoulder belts are used, otherwise 0) - - - - 0.86 0.34 - - 

Weather Condition 

Weather (1 if raining, otherwise 0) - - - - 0.16 0.37 - - 
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4.3 Model Estimation Results 

4.3.1 Likelihood ratio test results 

 Using Eq. (4.6), with regard to the model separation, a chi-square statistic of 236.56 

was determined. Further, it was found that the total number of estimated random 

parameters in the four age and gender models had 15 degrees of freedom minus the 

number of the random estimated parameters in all the data models. The results indicate, 

with 99% confidence, that the crashes that occur at roundabouts need be modeled 

separately as per the drivers' age and gender. Therefore, only the separated models will 

be presented and discussed in this study (adult female, young female, adult male, and 

young male). 

 The transferability test results obtained by applying Eq. (4.7) are shown in Table 

4.3. The results have been presented according to the estimated chi-squares (with the 

specific degrees of freedom values given in parentheses) with 99.99% confidence level 

using separated models based on driver age and gender. 

 

Table 4.3: Chi-square statistics and degrees of freedom for driver injury severity 

regarding driver age and gender transferability test. 

M2 

M1 

Adult Female 

(model) 

Young Female 

(model) 

Adult Male 

(model) 

Young Male 

(model) 

Adult Female (Data) 
- 

584(9) 

 [> 99.99%] 

2394.58 (22) 

[> 99.99%] 

765.48 (9) 

 [> 99.99%] 

Young Female (Data) 745.08 (20) 

[> 99.99%] 
- 

762 (22)  

[> 99.99%] 

210 (9) 

 [> 99.99%] 

Adult Male (Data) 1441.07 (20) 

[> 99.99%] 

290 (9) 

 [> 99.99%] 
- 

536.58 (9) 

 [> 99.99%] 

Young Male (Data) 361.14 (20) 

 [> 99.99%] 

53 (9) 

 [> 99.99%] 

442.46 (22) 

[> 99.99%] 
- 

 



91 

 

 

 

4.4 Models Result Discussion 

4.4.1 Temporal Characteristics 

 Many different temporal characteristics were found to be significant and to lead to 

different driver injury severity outcomes. In the current study, the "crashes that occur 

during weekdays" indicator variables were found to be statistically significant with a 

random parameter that is normally distributed, with a mean of 0.01 and a standard 

deviation of 0.73 for adult females. This result indicates that half of the crashes (more 

than zero) are more likely to involve injury, whereas the other half have less likelihood 

in the adult female model. This was not in line with the result obtained by Behnood and 

Mannering (2019) and Islam and Hernandez (2013). With regard to weather conditions 

(1 if winter (Dec–Feb), otherwise 0), the parameter was found to be statistically 

significant with a random parameter that is normally distributed using a statistically 

significant random parameter binary probit model with heterogeneity in the mean. The 

means of -1.07 and -1.03 and standard deviations of 1.5 and 1.49 were obtained for 

adult males using the binary probit model with and without heterogeneity in the mean, 

respectively. The result implied that 76% of the cases (for both models) involved 

vehicles that are less likely to result in injury, whereas 24% (for both models) are more 

likely to cause the same. This might be due to the snow season and the adverse weather 

conditions that occur during this period of time that could lead to driver impairment. 

Several studies have been conducted to investigate the effects of the impact factors on 

the occurrence of injury during the snow season (Heqimi et al., 2018; Seeherman and 

Liu, 2015). 

4.4.2  Spatial Characteristics 

 The probability of injury in Snohomish County was found to decrease by -0.020 in 

the adult female model only, as shown in Table 4.5 that displays the marginal effects. 

Another notable finding is that the county variable (1 if Stevens) resulted in a -0.048 

decrease in the probability of injury in the adult female model. Further, accidents that 
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occur in Pacific County are significantly less likely to result in a disabling injury (-

0.067) in the young female model. The indicator of the crashes that happen in Island 

County were found to have a random parameter that is normally distributed in the 

binary probit model with and without heterogeneity in the mean. The indicator variable 

for this variable as found to be statistically significant with a random parameter that is 

normally distributed, with a mean of -0.67 and standard deviation of 1.55 in the young 

model. This suggests that about 67% of the crashes involving multiple vehicles have a 

mean that is less than zero, while about 33% of them have a mean that is more than 

zero in the random parameter binary probit model with heterogeneity in the mean. In 

fact, there are many reasons that cause the accidents, and the explanations for each one 

are varied. Furthermore, the causes for the accidents differed according to the 

circumstances, times, and places associated with the occurrence of the crashes. 

4.4.3 Roadway Characteristics 

 Crashes that occurred on curved roads with a gradient were found to involve less 

minor injuries; the parameter decreased the probability of minor injuries by -0.032 in 

the adult female model, as shown in Table 4.5. This might be due to adult females being 

more aware and also having more experience, in general, with these types of roads, 

which could tend to encourage them to drive at low speeds. With regard to the effect 

of roadway characteristics, the analysis indicated that the estimated parameter for a 

straight road with a grade was found to be statistically significant and random, with a 

mean of 0.14 and a standard deviation of 1.51 for adult females only. This indicates 

that 46% of drivers present a value of less than zero, which means that they are less 

likely to cause injury to themselves; this might be related to the slow speed at which 

adult females drive when navigating roundabouts. In contrast, 54% of them present a 

value greater than zero, which means that there is an increased probability of them 

experiencing an injury. 

 Moreover, the study found that the crashes that occur at roundabouts that have two 

lanes present a higher probability of possible injury in the full model. The possibilities 
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involving the number of lanes (two lanes) resulted in an increase in the injury outcome 

by 0.004 in the adult male model. The one possible explanation for this is that the 

drivers might have been driving in the wrong lane. This may have caused them to 

change lanes, which is prohibited when driving around a roundabout and may lead to 

crashes. This finding in line with that of Isebrands and Hallmark (2012), Persaud et al. 

(2001), and Robinson et al. (2004). 

 With regard to the roadway characteristic, the speed of less than or equal to 20 mph 

was found to be normally distributed, with a mean of -1.32 and a standard deviation of 

1.48. The distribution is over zero for almost 29%, suggesting that the speed of less 

than or equal to 20 mph almost always result in injury. This might be due to the traffic 

conditions at the time of the accident, and this result is not in line with that of Martin 

(2002). Finally, the posted speed limit (1 if 20 mph less that a speed limit of less than 

50 mph) was found to increase the likelihood of severe injuries being sustained in the 

adult male model. 

4.4.4 Driver Action and Contribution 

 Crashed related to driver action (slowing down) were found to have an effect on the 

injury outcome and resulted in a normally distributed random parameter for both 

models (adult only). A mean of 1.25 and a standard deviation of 0.35 were obtained in 

the adult male model when using the binary probit model with heterogeneity in the 

mean. Thus, in 0.2% of the observed accidents, the crashes that occurred due to driver 

action (if slowing down) are associated with a lower probability of injury outcome.  

 Furthermore, the driver's action (making a right) was also found to be significant, 

with negative coefficients indicating that the likelihood of injury is increased by 0.026 

in the adult female model. This might be related to the lack of speed reduction when 

entering the roundabout. When examining the effect of driver action (making a left 

turn), the variable is found to have a normally distributed random parameter, with a 

mean of -2.5 and a standard deviation of 1.78 in the young female model. This implies 

that driver actions (making a left turn) that cause crashes increase the likelihood of 
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injury for 8% of the observed cases and decrease the likelihood of injury for 92% of 

them. As shown in Table 4.4, driver contribution (if inattentive) was found to be 

normally distributed and random in the adult male model, with a mean of 0.26 and a 

standard deviation of 1.2 in the binary probit model with heterogeneity in the mean. 

This result supports the hypothesis that the drivers involved in such crashes are more 

likely to sustain injuries. 

 Moreover, for the driver contribution (if under the influence of alcohol) that affects 

the likelihood of injury, the marginal effects indicated that the driver contribution (if 

under the influence of alcohol) increases the probability of the occurrence of injury by 

0.002 and 0.105 for the adult and young male models, respectively. This finding is in 

line with that of Behnood et al. (2014) and Behnood and Mannering (2017c). Among 

these variables, the crashes related to the driver contribution (if driving incorrectly) 

were found to be statistically significant with a random and normally distributed 

parameter. A mean of -6.1 and a standard deviation of 11.5 indicate that 70% (less than 

zero) of the crashes present less likelihood of causing injury, whereas 30% of them 

present more likelihood of this in the adult female model. Furthermore, the indicator 

variable for driver contribution (if stopped on the road) was found to be a statistically 

significant random parameter. The obtained mean (standard deviation) of the indictor 

variable were -0.82 (3.60) and -0.30 (3.7) in the adult female and male models, 

respectively. The results indicate that 59% and 53% of the distribution is less than 0, 

and the remaining 41% and 47% is greater than 0, for adult females and males, 

respectively. 

 Last, speed conditions (if the reasonable speed is exceeded) are also normally 

distributed, with an obtained mean (standard deviation) of 0.28 (1.12) and -0.08 (1.55) 

for adult and young females, respectively. For adult females, 40% of the distribution is 

less than 0, and the remaining 60% is greater than 0. Based on this, in 60% of the 

accident observations associated with speed conditions (if the reasonable speed is 

exceeded), adult females are more likely to suffer injuries. On the other hand, for young 

females, 52% of the distribution is less than 0, and the remaining 48% is greater than 
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0. The high-speed crashes related to traffic lights might be one acceptable reason for 

this result. 

4.4.5 Collision Types 

 In the collision-type variables, the random parameter for the variable "involving a 

transport vehicle" has a mean of -3.48 and a standard deviation of 2.09 for the adult 

male model using the random parameter binary probit model with heterogeneity in the 

mean. Thus, 5% of the crash observations involving transport vehicles are associated 

with a higher probability of injury. This might be due to the adult male drivers 

undertaking relatively longer journeys. Therefore, they are more susceptible to getting 

into crashes with other road users (Adebisi et al., 2019). 

 Moving on to other parameters, the collision type (1 if entering at an angle, otherwise 

0) was found to be statistically significant with a random and normally distributed 

parameter in the adult female model. A mean of 0.61 and a standard deviation of 0.22 

indicate that 0.28% (less than zero) of the crashes are less likely to involve injuries, 

whereas 99.72% of them have more likelihood of the same occurring. One possible 

reason for this could be that the drivers do not heed to the yield sign at roundabouts. In 

addition, the collision type (1 if sideswiped, otherwise 0) is also normally distributed, 

with an obtained mean (standard deviation) of 0.36 (0.59) and -0.26 (2.23) for adult 

females and adult males, respectively. For adult females, 27% of the distribution is less 

than zero, while the remaining 73% is greater than zero. Based on this, 27% of 

sideswipe-related crash observations for adult females are associated with fewer injury 

outcomes. This result might be related to the slow speed at which they navigate 

roundabouts. On the other hand, for the adult males (random parameter binary probit 

model with heterogeneity in mean), 55% of the distribution is less than zero, while the 

remaining 45% is greater than zero. This may be explained by the adult male drivers 

being more experienced and becoming more responsible while driving. Mandavilli et 

al. (2009) found that sideswipe-related crashes are one of the significant accident types. 
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 With regard to the collision types, head-on collisions were found to present a 

decreased likelihood of injury. The marginal effects show that head-on crashes 

decrease the probability of the occurrence of injury by -0.049 and -0.003 in the young 

female and adult male models, respectively. These results are expected and might be 

related to the fact that vehicles do not face each other at roundabouts. Moreover, the 

collision type (1 if involving a collision with a fixed object, otherwise 0) was found to 

decrease the likelihood of injuries occurring. The average marginal effect (Table 4.5) 

shows that the "collision with a fixed object" variable decreases the probability of 

injury by -0.03 in the adult male model. Several studies have shown that single-vehicle 

fixed-object collisions are frequent at roundabouts (Burdett et al., 2017; Mandavilli et 

al., 2009). The collision type (1 if the vehicle goes off-road, otherwise 0) resulted in a 

significant reduction in the probability of injury (with an average marginal effect of -

0.009) for adult males. 

4.4.6 Junction Relationship 

 The mean of the junction relationship (1 if entering a roundabout, otherwise 0) 

indicator increased if the adult driver was female. This variable has a mean of 0.23 and 

a standard deviation of 0.29, suggesting, with a normal distribution, that this variable 

is negative for 79% of the observations (increasing the likelihood of injury) and positive 

for 21% of the observations (decreasing the likelihood of injury). This might be 

attributed to high speeds and the driver not heeding to the yield sign when entering the 

roundabout. 

 With respect to the junction relationships displayed in Table 4.4, the analysis 

indicated that the estimated parameter of "if circling the roundabout" was found to be 

statistically significant using the random parameter binary probit model with and 

without heterogeneity in the mean. For this, the obtained mean (standard deviation) 

was -0.88 (1.27) and -1.61 (1.17) for the adult and young male models (random 

parameter binary probit model with heterogeneity in the mean), respectively. This 

indicates that 24% of the adult male drivers present a value of more than zero, while 
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8% of the young drivers present a value of more than zero, which means that they are 

less likely to bring about injury-related outcomes. This might be related to high speeds 

and the young drivers not having enough driving experience. 

 Finally, the junction relationship (1 if exiting the roundabout, otherwise 0) was 

found to be random and normally distributed, with a mean of -1.34 and standard 

deviation of 1.46 for young female drivers. Furthermore, 18% of the young female 

drivers were found to be more likely to sustain injuries, whereas 82% of the other 

drivers are less likely to yield the same outcome. This might be attributed to young 

female drivers who do not have enough driving experience or who drove at high speeds. 

4.4.7 Road User Involvement 

 In Table 4.4, the parameter for the road user indicator (1 if a pedal cyclist is involved, 

otherwise 0) is found to be statistically significant with random distribution for both 

models (adult only). The parameters of the distribution are estimated to have a mean of 

6.87 and a standard deviation of 8.44 for adult males using a random parameter binary 

probit model with heterogeneity in the mean. This revealed that almost 79% of the 

distribution is above zero, and only 21% of the drivers are less likely to be involved 

with injury-related outcomes. 

 Moving on to another parameter, the road user indicator (1 if a motorcycle is 

involved, otherwise 0) was found to be statistically significant with a random and 

normally distributed parameter using a random parameter binary probit model with 

heterogeneity in the mean in the adult male model. A mean of 5.20 and a standard 

deviation of 4.59 indicate that 87% (more than zero) of the crashes are more likely to 

involve injuries, whereas 13% of them present less likelihood for the same in the 

random parameter binary probit model with heterogeneity in the mean. This might be 

due to the adult males having sufficient driving experience and them driving carefully. 

This finding not in line with that obtained by Somasundaraswaran and Richardson 

(2019). 
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 Furthermore, the road user indicator (1 if a pedestrian involved, otherwise 0) 

produced a statistically significant result. The marginal effects in Table 4.5 show that 

this indicator variable has the effect of increasing the likelihood of possible injury by 

0.257 in the adult female model. This might be attributed to old adult females not 

focusing on the road at roundabouts. 

 For truck involvement (1 if the truck weighs more than 10,000 lbs, otherwise 0), 

adult male drivers were found to present less likelihood of sustaining injuries. The 

marginal effects indicate that adult male drivers decrease the probability of injury-

related outcomes by -0.008. Last, truck involvement (1 if the truck weighs less than 

10,000 lbs, otherwise 0) was found to be a normally distributed parameter, with a mean 

of -0.46 and a standard deviation of 0.70. This results in 26% of the distribution being 

more than 0, and 74% of the distribution being less than 0. Thus, for almost 26% of the 

roadway segments, the likelihood of injury-related outcomes is increased. 

4.4.8 Restraint System Type 

 In Table 4.4, the airbag type (1 if no airbag equipped, otherwise 0) was found to be 

a fixed parameter that was significant and to have a positive effect on injury-related 

outcomes. The marginal effects show that the airbag type (1 if no airbag equipped, 

otherwise 0) increases the probability of the occurrence of injury by 0.032 in the adult 

female model. 

 Moving to the other airbag type (1 if deployed, otherwise 0), this was determined 

using a normally distributed parameter binary probit model and a random parameter 

binary probit model with heterogeneity in the mean, with obtained means (standard 

deviations) of -1.03 (4.29) and 0.83 (2.36) for adult and young males (random 

parameter binary probit model with heterogeneity in the mean), respectively. With 

regard to the estimated parameters, 41% of the distribution is more than 0, and 59% is 

less than 0, for an adult male, while 64% of the distribution is more than 0, and 36% is 

less than 0, for young males. This implies that 38% of the airbag type (1 if deployed, 

otherwise 0) increases the likelihood of accidents that cause injuries for adult males, 
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while 19% of the airbag type (1 if deployed, otherwise 0) reduces the likelihood of 

injury-related outcomes. 

 Finally, the restraining system type (1 if lap and shoulder belts are used, otherwise 

0) was found to be a fixed parameter that significantly reduced the likelihood of injury. 

The marginal effects show that the restraining system type (1 if lap and shoulder belts 

are used, otherwise 0) decreases the probability of the occurrence of injuries by -0.003 

in the adult male model. 

4.4.9 Weather Conditions 

 Weather (1 if raining, otherwise 0) was found to decrease the likelihood of injury-

related outcome. The marginal effects (Table 4.5) show that the weather (1 if raining, 

otherwise 0) variable decreased the probability of injury by -0.003 in the adult male 

model. This might be due to adult male drivers preferring to reduce their speed during 

bad weather and them being more aware. 

4.4.10 Heterogeneity in the Mean of the Random Parameters 

 The explanatory variables in all the models were tested for the possibility of 

significantly affecting the means and variances of the random parameters. The only 

models that produced significant heterogeneity in the means of random parameters 

were the adult and young male models, as shown in Table 4.4. Using the adult male 

data in the mixed logit model with heterogeneity in means, involvement of alcohol use 

was found to significantly affect the mean of the five random parameters. 

 The indicator variable for alcohol involvement was found to increase the mean of 

the variable "involving a transport vehicle," which indicates an increase in injury-

related outcomes when a driver operating their vehicle under the influence of alcohol 

crashes into a transport vehicle. Further, alcohol involvement was found to decrease 

the mean of accidents involving inattentive drivers, making injuries less likely. In 

addition, a driver under the influence of alcohol was found to decrease the mean of the 

deployed airbag variable. This means that driving after consuming alcohol is less likely 

to result in injuries if the airbags are deployed. 
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 Finally, for the adult male model, alcohol involvement was found to decrease the 

mean for collisions involving sideswiping or slowing down, making injury less likely 

for adult males. With regard to using the young male data, in the mixed logit model 

with heterogeneity in the mean, sideswiping collisions were found to increase the mean 

of the accidents in Island County and make injury-related outcomes.  

4.5 Summary 

 This study was based on crash data collected and compiled by the WSDOT. The 

data included information about the crashes that occurred over a six-year period (2013 

to 2018), during which 8548 crashes occurred at roundabouts. To determine the effect 

of the drivers' gender and age on their driving ability to negotiate the roundabouts, the 

data was divided into four categories: young female drivers (under the age of 25, 831 

cases, adult female drivers (25 years or older, 5020 cases), young male drivers (under 

the age of 25, 910 cases), and adult male drivers (25 years or older, 3491 cases). 

 In an attempt to better understand the effect of the drivers' age and gender on injury 

severity outcomes for roundabout-related accidents, a random parameter binary probit 

model was used to account for the unobserved heterogeneity, which can introduce 

variation into the model and, as a result, affect the likelihood of the driver injury 

severity outcomes. An additional layer of heterogeneity has been added, which is 

associated with the mean of the distribution of the estimated random parameters. In 

other words, this allows the random parameter with heterogeneity in the means of the 

developed parameter to vary as per the explanatory variables, which improves the 

overall model fit and yields critical new insights. Due to the limited number of 

accidents that resulted in a disabling injury and fatality, only two categories have been 

considered: no-injury and injury. A log-likelihood ratio test and extensive 

transferability test were conducted to check whether the modeling of the crash severity 

at roundabouts needs to be carried out separately. 
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 The results indicate, with 99% confidence, that the crashes that occur at roundabouts 

need to be modeled separately according to the drivers' age and gender. This data has 

been classified into different groups, namely temporal characteristics, spatial 

characteristics, roadway characteristics, driver actions and contributions, collision 

types, junction relationships, and restraint system types. Overall, there were 21 

variables that presented a random parameter that is normally distributed. Both the adult 

male and the young male models have a parameter with heterogeneity in the mean of 

the random parameters. In addition, allowing for heterogeneity in the means of the 

random parameters empirically provides much more flexibility when tracking the 

unobserved heterogeneity in the data with any of the given distributional assumptions. 

 With regard to the estimation results for driver injury severity, a wide range of 

variables were found to increase the likelihood of drivers getting injured in roundabout-

related accidents, including those that occur during the weekdays and at two-lane 

roundabouts and those that involve sideswipes, driving under the influence of alcohol, 

collisions with pedal cycles, collisions with motorcycles, entering an angle, and so on. 

 The findings of this research underscore the importance of fully accounting for 

unobserved heterogeneity by considering the possible heterogeneity in the means of the 

parameters. With the growing importance of roundabout safety, this paper provides not 

only certain essential initial findings using the WSDOT data but also, hopefully, some 

guidance for the analysis of other roundabout-accident databases from other geographic 

locations and time periods.
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Table 4.4: Estimation results for random parameter binary probit model with/without heterogeneity in the mean. 
Variable Random parameter binary probit model Random parameter binary probit 

model with heterogeneity in mean 

Adult Female Young Female Adult Male Young male Adult Male Young Male 

Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat 

Constant -1.51 -14.31 -0.95 -12.78 0.69 2.20 -0.83 -4.74 0.92 2.83 -0.82 -4.51 

Standard deviation (normally distributed) 0.29 7.56 - - 0.38 7.93 - - 0.49 9.55 - - 

Temporal Characteristics 

Weekday (1 if the crash occurs during 

weekdays, otherwise 0) 

0.01 0.06 - - - - - - - - - - 

Standard deviation (normally distributed) 0.73 13.99 - - - - - - - - - - 

Season (1 if winter (Dec–Feb), otherwise 0) - - - - -1.03 -6.82 - - -1.07 -6.67 - - 

Standard deviation (normally distributed) - - - - 1.49 10.97 - - 1.5 10.86 - - 

Spatial Characteristics 

County (1 if Snohomish, otherwise 0) -0.26 -2.76 - - - - - - - - - - 

County (1 if Stevens, otherwise 0) -0.63 -3.51 - - - - - - - - - - 

County (1 if Pacific, otherwise 0) - - -0.55 -1.73 - - - - - - - - 

County (1 if Island, otherwise 0) - - - - - - -0.21 -0.99 - - -0.67 -2.21 

Standard deviation (normally distributed) - - - - - - 1.20 5.53 - - 1.55 5.71 

Roadway Characteristics 

Roadway characteristics (1 if the road is 

curved and graded, otherwise 0) 

-0.41 -2.24 - - - - - - - - - - 

Roadway characteristics (1 if the road is 

straight and graded, otherwise 0) 

0.14 .73 - - - - - - - - - - 

Standard deviation (normally distributed) 1.51 6.59 - - - - - - - - - - 

Number of lanes (1 if two-lane roundabout, 

otherwise 0) 

- - - - 0.42 3.17 - - 0.46 3.39 - - 

Posted speed limit (1 if the speed ≤ 20 mph) -1.32 -4.27 - - - - - - - - - - 

Standard deviation (normally distributed) 1.48 5.77 - - - - - - - - - - 

Posted speed limit (1 if 20 mph less than a 

speed limit < 50 mph, otherwise 0) 

- - - - 0.39 3.91 - - 0.43 3.99 - - 
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Variable (Continued) Random parameter binary probit model Random parameter binary probit 

model with heterogeneity in mean 

Adult Female Young Female Adult Male Young male Adult Male Young Male 

Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat 

Driver Action and Contribution 

Driver action (1 if slowing down, otherwise 

0) 

- - - - 1.09 4.73 - - 1.25 5.01 - - 

Standard deviation (normally distributed) - - - - 0.41 1.83 - - 0.35 1.54 - - 

Driver action (1 if making a right, otherwise 

0) 

0.33 2.26 - - - - - - - - - - 

Driver action (1 if making a left, otherwise 

0) 

- - -2.5 -2.49 -0.83 -3.73 - - -0.98 -4.15 - - 

Standard deviation (normally distributed) - - 1.78 0.72 - - - - - - - - 

Driver contribution (1 if inattentive, 

otherwise 0) 

- - - - 0.22 1.55 - - 0.26 1.78 - - 

Standard deviation (normally distributed) - - - - 1.09 8.08 - - 1.2 8.45 - - 

Driver contribution (1 if under the influence 

of alcohol, otherwise 0) 

- - - - 0.52 3.34 0.59 2.52 0.24 0.00 0.61 2.48 

Driver contribution (1 if driving incorrectly, 

otherwise 0) 

-6.1 -2.85 1.03 3.62 - - - - - - -  

Standard deviation (normally distributed) 11.50 3.48 - - - - - - - - - - 

Driver contribution (1 if stopped on the road, 

otherwise 0) 

-0.82 -3.25 - - -0.30 -1.10 - - -0.27 0.33 - - 

Standard deviation (normally distributed) 3.60 9.66 - - 3.7 10.91 - - 4.12 11.17 - - 

Speed condition (1 if the reasonable speed is 

exceeded, otherwise 0) 

0.28 1.08 -0.08 -.25 - - - - - - - - 

Standard deviation (normally distributed) 1.12 3.94 1.55 3.69 - - - - - - - - 

Collision Types 

Collision type (1 if involving a transport 

vehicle, otherwise 0) 

- - - - -2.93 -9.79 - - -3.48 -

10.79 

- - 

Standard deviation (normally distributed) - - - - 1.81 19.33 - - 2.09 19.13 - - 

Collision type (1 if entering at angle, 

otherwise 0) 

0.61 4.62 - - - - - - - - - - 

Standard deviation (normally distributed) 0.22 1.83 - - - - - - - - - - 

Collision type (1 if sideswiped, otherwise 0) 0.36 3.31 - - -0.39 -2.48 0.37 2.48 -0.26 -1.55 0.29 1.76 

Standard deviation (normally distributed) 0.59 6.73 - - 2.11 13.3 - - 2.23 13.42 - - 

Collision type (1 if collided head-on, 

otherwise 0) 

- - -0.40 -1.67 -0.76 -4.15 - - -0.89 -4.49 - - 
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Variable (Continued) Random parameter binary probit model Random parameter binary probit 

model with heterogeneity in mean 

Adult Female Young Female Adult Male Young male Adult Male Young Male 

Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat 

Collision type (1 if collided with a fixed 

object, otherwise 0) 

- - - - -2.40 -7.60 - - -2.56 -7.68 - - 

Collision type (1 if vehicle goes off-road, 

otherwise 0) 

- - - - -2.04 -6.21 - - -2.17 -6.31 - - 

Collision type (1 if involving a transport 

vehicle, otherwise 0) 

- - - - -2.93 -9.79 - - -3.48 -

10.79 

- - 

Junction Relationship             

Junction relationship (1 if entering 

roundabout, otherwise 0) 

0.23 2.82 - - - - -0.61 -3.29 - - -0.61 -3.21 

Standard deviation (normally distributed) 0.29 5.61 - - - - - - - - - - 

Junction relationship (1 if circling 

roundabout, otherwise 0) 

- - -0.35 -1.94 -0.76 -4.75 -1.56 -4.94 -0.88 -4.82 -1.61 -4.71 

Standard deviation (normally distributed) - - - - 1.003 7.47 1.09 4.87 1.27 8.48 1.17 4.90 

Junction relationship (1 if exiting 

roundabout, otherwise 0) 

- - -1.34 -4.03 -0.65 -5.05 -0.78 -3.72 -0.77 -5.64 -0.79 -3.69 

Standard deviation (normally distributed) - - 1.46 5.22 - - - - - - - - 

Road User Involvement 

Road user indicator (1 if a pedal cycle is 

involved, otherwise 0) 

4.1 6.52 - - 6.19 1.65 - - 6.87 1.66 - - 

Standard deviation (normally distributed) - - - - 7.43 1.72 - - 8.44 1.76 - - 

Road user indicator (1 if a motorcycle is 

involved, otherwise 0) 

2.10 8.12 2.03 4.19 3.96 11.95 2.19 6.85 5.20 11.54 2.20 6.81 

Standard deviation (normally distributed) - - - - 3.06 8.33 - - 4.59 8.58 - - 

Road user indicator (1 if a pedestrian is 

involved, otherwise 0) 

3.34 5.98 - - - - - - - - - - 

Truck involvement (1 if the truck weighs > 

10,000 lbs, otherwise 0) 

- - - - -0.79 -4.42 - - -0.96 -5.01 - - 

Truck involvement (1 if the truck weighs < 

10,000 lbs, otherwise 0) 

-0.46 -5.44 - - - - - - - - - - 

Standard deviation (normally distributed) 0.70 10.31 - - - - - - - - - - 

Restraint System Type 

Airbag type (1 if no airbag equipped, 

otherwise 0) 

0.41 1.92 - - - - - - - - - - 



105 

 

 

 

Variable (Continued) Random parameter binary probit model Random parameter binary probit 

model with heterogeneity in mean 

Adult Female Young Female Adult Male Young male Adult Male Young Male 

Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat 

Airbag type (1 if deployed, otherwise 0) 1.62 7.34 - - -8.03 -2.62 1.12 4.18 -1.03 -3.01 0.83 2.33 

Standard deviation (normally distributed) - - - - 25.67 3.27 1.26 3.66 4.29 6.60 2.36 3.68 

Restraining system type (1 if lap and 

shoulder belts are used, otherwise 0) 

- - - - -0.34 -2.59 - - -0.40 -2.85 - - 

Weather Condition 

Weather (1 if raining, otherwise 0) - - - - -0.38 -2.92 - - -0.39 -2.84 - - 

Heterogeneity in the Means of Random Parameters 

Collision with vehicle in transit: Driver 

contribution (1 if under the influence of 

alcohol, otherwise 0) 

- - - - - - - - 2.45 6.39 - - 

Inattention during driving: Driver 

contribution (1 if under the influence of 

alcohol, otherwise 0) 

- - - - - - - - -3.35 -1.88 - - 

Deployed airbag: Driver contribution (1 if 

under the influence of alcohol, otherwise 0) 

- - - - - - - - -2.86 -3.93 - - 

Sideswipe collision: Driver contribution (1 

if under the influence of alcohol, otherwise 

0) 

- - - - - - - - -3.18 -3.68 - - 

Slowing down: Driver contribution (1 if 

under the influence of alcohol, otherwise 0) 

- - - - - - - - -2.53 -2.80 - - 

Island County: Collision type (1 if 

sideswiped, otherwise 0) 

- - - - - - - - - - 0.97 2.16 

Model Statistics  

Log-likelihood function -1106.58 -320.74 -1259.58 -312.65 -1242.83 -309.51 

Log-likelihood function at zero -1259.97 -348.22 -1509.04 -366.04 - - 

AIC 2275.2 665.5 2585.2 649.3 2573.7 649.0 

McFadden's pseudo r-squared 0.007 0.004 0.011 0.005 0.024 0.015 

No. of observations 2754 841 3533 923 3533 923 
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Table 4.5: Averaged marginal effects for the random parameter binary probit model with /without heterogeneity in the 

mean. 
Variable Marginal effect for random parameter binary 

probit model 

Marginal effect for 

random parameter 

binary probit model 

with heterogeneity in 

mean 

Adult 

Female 

Youth 

Female 

Adult 

Male 

Youth 

Male 

Adult 

Male 

Youth 

Male 

Temporal Characteristics   

Weekday (1 if the crash occurred during weekdays, otherwise 0) 0.0004 - - - - - 

Season (1 if winter (Dec–Feb), otherwise 0) - - -.0524 - -0.009 - 

Spatial Characteristics   

County (1 if Snohomish, otherwise 0) -0.020 - - - - - 

County (1 if Stevens, otherwise 0) -0.048 - - - - - 

County (1 if Island, otherwise 0) - - - -0.029 - 0.116 

County (1 if Pacific, otherwise 0) - -0.067 - - - - 

Roadway Characteristics   

Roadway characteristics (1 if the road is curved and graded, 

otherwise 0) 

-0.032 - - - - - 

Roadway characteristics (1 if the road is straight and graded, 

otherwise 0) 

0.011 - - - - - 

Posted speed limit (1 if speed limit ≤ 25 mph, otherwise 0) -0.101 - - - - - 

Number of lanes (1 if two-lane roundabout, otherwise 0) - - 0.030 - 0.004 - 

Posted speed limit (1 if 20 mph less than a speed limit < 50 mph, 

otherwise 0) 

- - 0.025 - 0.004 - 

Driver Action and Contribution   

Vehicle action (1 if stopped on the road, otherwise 0) -0.063 - 0.017 - -0.002 - 

Vehicle action (1 if making a right, otherwise 0) 0.026 - - - - - 

Vehicle action (1 if making a left, otherwise 0) - -0.304 -0.053 - -0.008 - 

Vehicle action (1 if slowing down, otherwise 0) - - 0.067 - 0.01 - 

Driver contribution (1 if passing incorrectly, otherwise 0) -0.469 0.126 - - - - 

Driver contribution (1 if under the influence of alcohol, otherwise 0) - - 0.048 0.082 0.002 0.105 

Contributing circumstance (1 if inattentive, otherwise 0) - - 0.007 - 0.002 - 

Speed condition (1 if the reasonable speed is exceeded, otherwise 0) 0.021 -.0103 - - - - 

Collision Types   

Collision type (1 if entering at an angle, otherwise 0) 0.047 - - - - - 

Collision type (1 if sideswiped, otherwise 0) 0.028 - -0.011 0.051 -0.002 0.049 
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Variable (Continued) Marginal effect for random parameter binary 

probit model 

Marginal effect for 

random parameter 

binary probit model 

with heterogeneity in 

mean 

Adult 

Female 

Youth 

Female 

Adult 

Male 

Youth 

Male 

Adult 

Male 

Youth 

Male 

Collision type (1 if collided head-on, otherwise 0) - -0.049 -0.048 - -0.003 - 

Collision type (1 if involving a transport vehicle, otherwise 0) - - -0.188 - -0.03 - 

Collision type (1 if collided with a fixed object, otherwise 0) - - -0.203 - -0.022 - 

Crash type (1 if the vehicle goes off-road, otherwise 0) - - -0.178 - -0.019 - 

Junction Relationship   

Junction relationship (1 if entering roundabout, otherwise 0) 0.017 - - -0.085 - -0.104 

Junction relationship (1 if circling roundabout, otherwise 0) - -0.043 -0.042 -0.218 -0.008 -0.277 

Junction relationship (1 if exiting roundabout, otherwise 0) - -0.164 -0.044 -0.109 -0.007 -0.136 

Road User Involvement   

Road user indicator (1 if a pedal cycle is involved, otherwise 0) 0.315 - 0.223 - 0.059 - 

Road user indicator (1 if a motorcycle is involved, otherwise 0) 0.162 0.247 0.284 0.306 0.044 0.379 

Road user indicator (1 if a pedestrian is involved, otherwise 0) 0.257 - - - - - 

Truck involvement (1 if the truck weighs > 10,000 lbs, otherwise 0) - - -0.05 - -0.008 - 

Truck involvement (1 if the truck weighs < 10,000 lbs, otherwise 0) -0.036 - - - - - 

Restraint System Type   

Airbag type (1 if no airbag equipped, otherwise 0) 0.032 - - - - - 

Airbag type (1 if deployed, otherwise 0) 0.125 - -0.051 0.157 -0.009 0.143 

Restraining system type (1 if lap and shoulder belts are used, 

otherwise 0) 

- - -0.027 - -0.003 - 

Weather Condition   

Weather (1 if raining, otherwise 0) - - -0.024 - -0.003 - 
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Chapter 5: Summary and Conclusion 

5.1 Summary 

 The construction of roundabouts as alternatives to signalized or STOP-controlled 

intersections has increased in the united states due to their safety performance 

characteristics (Montella 2011). The rapid growth in the number of roundabouts raises 

some significant research challenges, especially in the area of safety performance and 

evaluation for U.S. specific data under varying conditions. Despite the advantages in 

the roundabout geometric design, crashes still occur. While roundabouts are great at 

preventing severe crashes, they may bring on more non-fatal wrecks. This will be 

accomplished through exploring relatively new econometric techniques and machine 

learning algorithms applied to roundabout crash data. With this in mind, what is still 

not clearly understood is the relationship between roundabout crash-related factors, 

crash types, injury severity, and roundabout configurations. A reason for this may stem 

from the lack of available detailed crash-related data. The current econometric models 

were good 10 to 15 years ago; however, since that time, there has been considerable 

advancement in econometrics, especially econometrics methods that account for 

unobserved heterogeneity. These advancements have been shown to provide a more 

reasonable understanding of contributing factors to overall safety issues. It is 

envisioned that through this research, additional variables will be included that account 

for the human element compared to simply using exposure-based variables that current 

methods rely on (Mannering and Bhat 2014). This is important since most crashes are 

a result of driver behaviors and other environmental factors that play a big role in crash 

outcomes. 

 For that, the aim of this dissertation is to conduct crash-based analyses to better 

understand the factors that may influence less severe crashes to those of more severe 

crashes given various configurations and crash types utilizing Oregon crash data in the 

first and second manuscripts and Washington crash data for the third manuscript. 

 The first manuscript investigated a crash-based analysis to better understand the 

factors that may influence less severe crashes to those of more severe crashes given 

various roundabout configurations and crash types. Using Oregon’s crash database 
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from 2011 to 2015 in which 1,006 crashes occurred at roundabouts. A series of log-

likelihood ratio tests were conducted to validate that four separate random parameters 

binary probit models by configuration type were warranted. 

 The objective of the second manuscript is to develop a machine learning 

methodology that evaluates crash injury severity at roundabouts and compares this 

method with traditional econometric techniques. Precisely, this work will estimate a 

Random Parameter Binary Probit model (RPBP) and compare its predictions with those 

rendered from machine learning techniques, namely, Support Vector Machine (SVM) 

with linear, radial, polynomial, and sigmoid kernels. This is accomplished by utilizing 

Oregon crash data from 2011 to 2015 and focuses on both three- and four-leg 

roundabouts. Two significant variable sets have been conducted by utilizing random 

forest and binary models. 

 Finally, the third manuscript investigated risk factors that significantly contribute to 

the driver injury severity of roundabout crashes while systematically accounting for 

unobserved heterogeneity and the variance in means of the random parameter within 

the crash data. Using the data from the Washington State Department of Transportation 

(WSDOT) over a six-year period (2013 to 2018) in which 8548 crashes occurred at 

roundabouts. A random parameter binary probit model with heterogeneity in random 

parameter means is estimated to explore the effects of a wide range of variables on 

driver injury severity outcomes. 

5.2 Study Findings 

 It is generally accepted that the number of crashes at roundabouts are fewer than 

those at signalized intersections. Therefore, obtaining detailed data that can capture the 

factors that contribute to crash severity is more complicated regarding the required 

sample size that accurately represents the population. Accordingly, the aggregated 

injury category consists of fatal, major, moderate, and minor injury outcomes, while 

the no injury category includes only no injury outcomes. The purpose of this 

aggregation is to increase the number of observations to reduce the variability caused 

by random effects when statistical methods are implemented (Chang and Mannering 
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1999). This is essential since the data that is used in this study has too few observations 

on incapacitating and fatal injuries to set apart their individual effects. As a result, The 

dependent variables in each of these manuscripts consisted of two specific outcomes: 

(1) no injury and (2) injury, and the findings of this manuscript are summarized. 

First Manuscript: Four estimated models were developed based on the geometric 

design of the roundabout: full model (unknown, three-leg, four legs, and five legs), 

three and four-leg combination model, three-leg model, and four-leg model. A number 

of important factors were found to influence the level of injury severity at roundabouts. 

In each individual model, a number of variables are homogenous across crash 

observations (i.e., their estimated parameters are fixed across observations), and 

various variables are heterogeneous across crash observations (i.e., they have estimated 

random parameters). For example, vehicles stopped in traffic and not waiting to make 

a left turn, seatbelt usage, gender, type of vehicle, roadside crash characteristics, vehicle 

movement, age of the driver, careless driving, and alcohol use were found to have 

estimated random parameters.  

Second Manuscript: The results demonstrated that the binary model performed best 

when predicting injury severity at three-leg roundabouts and under a 70-30 split in 

training-test ratio. Specifically, 76% accuracy using variables selected by a random 

forest and 78% accuracy using variables selected by the binary probit model. Prediction 

rates for the binary probit model were lower when considering four-leg roundabouts, 

but a 77% accuracy was observed when considered an 80-20 split and variables selected 

by a random forest. 

  The SVM-linear model has comparable predictions for both three-leg and four-leg 

models, under both variable selection methods, with 81% and 84%, respectively. SVM-

radial had a higher prediction, specifically for the four-leg model and using variables 

selected by the binary probit model (the highest prediction accuracy was 87% with a 

90-10 split). SVM-polynomial performed best in the three-leg model using variables 

selected by a random forest (91% accuracy under a 90-10 split, also the highest 

observed accuracy) and in the four-leg model using variables selected by the binary 

probit model (87% accuracy under a 90-10 split). Lastly, SVM-sigmoid was the most 



118 

 

 

 

consistent of the SVM models across all training-test ratios and variable selection. 

Specifically, SVM-sigmoid performed best for four-leg models using variables selected 

by the binary probit model and had the lowest prediction rate in the three-leg model 

using the same variables. 

 In regards to variable importance, a random forest analysis indicated that afternoon, 

snowy weather, and drivers aged 36-50 years were the most important injury severity 

predictors for three-leg roundabouts. For four-leg roundabouts, poor pavement 

condition, dusk lighting, and losing control of the vehicle were identified as the most 

important predictors for injury severity at four-leg roundabouts. For the econometric 

model, based on marginal effects, careless driving, passenger cars, and male drivers 

have the largest effect on injury severity outcomes at three-leg roundabouts. For four-

leg roundabouts, passenger cars, following too closely, and drivers aged 22-35 years 

have the largest effect on injury severity outcomes, according to marginal effects. 

 In summary, when accurately predicting outcomes is a primary goal, machine 

learning (SVM in the current study) is advantageous over traditional econometric 

methods. 

Third Manuscript: To test the effect of the driver gender and age, the data was split 

into four categories: youth female driver <25 with 831 observations, adult female driver 

≥ 25 with 5020 observations, youth male driver <25 with 910 crashes, and 3491 crashes 

for adult male driver ≥ 25. The results indicate that with 99% confidence suggests that 

crashes at the roundabouts need to be modeled separately according to the driving age 

and gender. That data has been categorized into different groups like temporal 

characteristics, spatial characteristics, roadway characteristics, driver action and 

contribution, collision types, junction relationship, and restraint system type.  Overall, 

there were 21 variables that have a random parameter that is normally distributed.  With 

regard to driver injury severity estimation results, wide ranges of variables were found 

to increase the likelihood of getting injured in roundabout crashes, including crashes 

during the weekday, two-lane roundabout, sideswipe, drivers under the influence of 

alcohol, hit ped cycle, hit a motorcycle, and entering an angle and so on. 
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5.3 Discussion of Study Findings  

 Random parameters binary probit models were estimated based on two severity 

outcomes (no injury and injury) with many variables found to be statistically 

significant, where various variables were found to have estimated random parameters. 

In each individual model, a number of variables are homogenous across crash 

observations (i.e., their estimated parameters are fixed across observations), and 

various variables are heterogeneous across crash observations (i.e., they have estimated 

random parameters). With the collected data, some of the many factors affecting the 

likelihood of a crash and the resulting injury severity are likely to be unavailable to the 

analyst. These unobservable factors, or unobserved heterogeneity, can introduce 

variation into the model, impacting crash likelihood and injury severity (Mannering et 

al. 2016). For instance, consider gender as an observed human element that affects 

injury severity outcomes. However, there are clear physiological differences between 

men and women, as well as many variations across people of the same gender (for 

instance, differences in height, weight, bone density, etc.). These unobservable can 

result in unobserved heterogeneity, and if not accounted for, can result in biased 

parameter estimates Castro et al. (2013); Venkataraman et al. (2013); and 

Venkataraman et al. (2014). An additional layer of heterogeneity has been added that 

is associated with the mean of the distribution of the estimated random parameter, in 

other words, allowing the random with heterogeneity in means developed parameter to 

vary by the explanatory variables, which improves overall model fit and allow critical 

new insights.   

 Regarding the crash prediction, creating a model that most accurately predicts an 

outcome is the primary goal; machine-learning algorithms can be advantageous over 

traditional econometric methods. Such methods can be employed to help confront 

issues of multiple and correlated predictors and non-linear relationships. However, 

when using machine-learning methods, extra care is needed in the form of model 

validation. 
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5.4 Study Application 

 This study provides useful insights and an increased understanding of the factors 

that contribute to either sustaining injury or not in crashes at roundabouts through a 

random parameters approach. Although the results of this study are exploratory, they 

provide evidence that crashes are occurring at roundabouts and several factors lead to 

crashes that result in an injury. In addition, the modeling approach offers a 

methodology that can account for unobservable crash data. The findings of this research 

underscore the importance of fully accounting for unobserved heterogeneity by 

considering possible heterogeneity in the means of parameters. With the growing and 

importance relating to roundabout safety, this paper provides some essential initial 

findings with Washington data, but also hopefully can provide some guidance for the 

analysis of other roundabouts-crash databases from other geographic locations and time 

periods. 

 Several low-cost mitigation measures can reduce the number of crashes at 

roundabouts. First, improving pavement marking and signage to guide the motorist 

better and enhance driver expectancy. Furthermore, educating the public, including 

public-private partnerships between law enforcement agencies, driver's education 

instructors, transportation engineering groups, and insurance companies. 

5.5 Limitation and Future work 

 Although this study thoroughly investigated crash injury severity for roundabouts 

with a different configuration, there were some limitations. For example, due to the 

data limitations, crash injury severity was categorized into only two levels, injury and 

no-injury. Also, there was information missing for several factors that could have been 

important, such as the geometric design of the roundabout, the exact location of the 

crashes, the presence of a work zone or not, and route numbers. In future work, 

additional crash-specific variables are recommended to investigate roundabout injury 

severity, such as the specific location of the crash or additional geometric design 

details. In doing so, an injury severity picture with a higher resolution can be obtained, 

which in turn can offer more understanding of the design-related factors that lead to 
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severe crashes at roundabouts. Also, with more crash data in the future, outlook studies 

could classify the outcomes into more levels and may focus on identifying new 

significant factors that may lead to more detailed classifications of injury severity. Until 

then, the application of different machine-learning techniques can handle the small 

ratio of specific outcomes with the existing data.  
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