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Chapter 1: Introduction

Understanding how systems respond to internal and external perturbations is a key

part of designing systems that operate safely and perform adequately. This idea is

the driver behind robustness analysis. Robustness in the context of this research is

a property of systems that tend to retain acceptable, if reduced, performance even

when faced with internal faults, external perturbations, and unexpected interac-

tions with other systems. Many methods exist for improving system robustness,

perhaps the most salient of which is the Taguchi method [2]. Such methods tend

to focus on finding the optimal parameter settings given knowledge of noise factors

such as manufacturing variability and variable environmental conditions. These

approaches have enjoyed much success in improving product quality.

Many of these methods, however, break down when confronted with complex-

ity. Complexity stems from structural or dynamic characteristics [3] or from socio-

technical integration [4, 5]. Complexity presents unique design challenges. Specifi-

cally, complex systems may exhibit nonlinear behavior and emergent characteristics

and may be difficult to understand, with unclear cause and effect. Additionally,

coupling in complex systems may also lead to small perturbations causing large,

system level effects, known as the butterfly effect [6]. These characteristics lead to

challenges in accurately predicting behavior in such a way as is necessary for ro-

bustness analysis methods such as the Taguchi method. Beyond behavior specifica-

tion, there are logistical challenges in designing such systems. Large-scale complex

systems require the cooperation of a large number of professionals, complicating

the systems engineering and design processes. Such challenges are evident in the

budget overruns and delays that are notorious in large scale complex engineering

projects [7]. For instance, data from 2018 indicates the National Aeronautics and

Space Administration (NASA) operating at a cost growth of 27.6% over its base-

line, with a launch delay averaging approximately thirteen months [8]. Even more
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drastic results have been reported in large-scale construction projects [9]. Worse,

many large-scale engineering projects fail and are never completed [10]. Delayed

and failed projects can result in enormous costs to organizations and to the public.

In response, increasingly sophisticated approaches to systems engineering and,

in particular, complexity management have been implemented. There are two

common approaches: modularity, which involves dividing a system into more man-

ageable parts [11], and abstraction, which involves representing only the essential

elements of the system for analysis [10]. Such approaches have been implemented

successfully in many complex engineering projects and are intrinsically tied to the

standard systems engineering process. The systems engineering process utilizes

both approaches as it progresses from models and specification of the system at

a high level of abstraction to lower-level, more detailed models and specification

of subsystems. NASA’s Team X is another example of a modularized (by disci-

plinary expertise) design process [12]. More recently, researchers have introduced

novel approaches to complex engineered system design that are built on these

ideas [13, 14, 15]. Both modularity and abstraction make possible the otherwise

intractable problem of analyzing large-scale complex systems, and are generally

useful approaches.

However, analyses that utilize such approaches are prone to overlooking or

oversimplifying two important system properties: emergent behavior and inter-

connectedness. Emergent behaviors occur when the behavior of a system is indis-

cernible from the sum of its parts, and are difficult to discern taking a reductionist

approach to system analysis [16]. For example, a component with many connec-

tions in the completed system (a “hub”, from a network perspective) may become

overloaded and fail or perform poorly. In other words, the parts of a system alone

may be well understood, but their integrated behavior may be more difficult to

predict. Thus, an integrated (rather than modular) approach is needed in order to

understand the behavior of the system as a whole. Because of the importance of

interactions between system parts, and between the system and its environment,

it is desirable to study complex systems holistically and in context [17]. Addi-
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tionally, abstractions can inhibit analysts’ understanding of the interconnections

within a system, unintentionally abstracting away seemingly minor interactions

which, under certain conditions, may produce important behaviors. Neglecting

these essential properties of complex engineered systems can lead to unanticipated

failure modes and unintended consequences, or side effects of actions taken during

the design process. These effects reduce the robustness of the designed system –

that is, the system may not operate as expected under the influence of internal

faults and external perturbations. With full specification being infeasible for com-

plex systems, however, there are currently few options available for avoiding these

pitfalls.

This research addresses these vulnerabilities that are under-recognized in con-

ventional robustness analysis in three stages. Specifically, this research investigates

three types of under-recognized vulnerabilities at three different levels of hierar-

chy in systems: unintended consequences at the system-of-systems level, archi-

tectures that help or hinder robustness at the system level, and system elements

that are key to controlling robustness at the module level. Each of these three

under-recognized vulnerabilities is addressed in Chapters 3–5. There are two main

approaches leveraged: a machine learning approach, in Chapter 3, and a network

theoretic approach, in Chapters 4–5.

Chapter 3 leverages machine learning in order to detect leading design stage

indicators and archetypes of unintended consequences from a large data set of ad-

verse events. Unintended consequences in this context can be described as unex-

pected behaviors occurring as a result of the interaction between systems that can

be traced to a specific design decision. Particularly in highly complex, large scale

systems that interact heavily with other systems and their environment, model ab-

straction is inevitable. All models are by definition abstractions of reality, but for

complex systems, models are likely to be more abstracted than for simpler, smaller

systems. By leveraging machine learning to link leading design indicators to un-

intended consequences, the system is effectively treated as a black box, enabling

prediction of likely adverse outcomes without the drawbacks of abstraction.



4

Chapters 4–5 use a type of abstracted white box model – a network model.

Network-based modeling and analysis of complex engineered systems enables anal-

ysis of emergent behavior that can be difficult in conventional models. Using net-

work models, the topological or structural features of complex engineered systems

are explored at two levels of hierarchy in Chapters 4 and 5. In Chapter 4, the

ability of a system’s architecture, in particular its modularity, to help or hinder

robustness is investigated. In Chapter 5, variables with specific topological roles,

specifically nodes that connect modules, are identified as key to controlling a sys-

tem’s robustness.

1.1 Objective and Research Questions

The overall objective of this work is to understand the robustness of large-scale

complex engineered systems to failure in a way that focuses on capturing under-

recognized vulnerabilities. This research identifies general patterns of vulnerability

and robustness in complex engineered systems at three levels of hierarchy: the

system-of-systems level, systems level, and module (subsystem) level. Each hier-

archical level is addressed as one of three primary research questions in Chapters

3–5:

1. Which sets of system characteristics tend to produce failures that can be de-

scribed as unintended consequences? At the system-of-systems level, unin-

tended consequences occur when a system or subsystem has side effects on

another system or subsystem. By clarifying the theory behind unintended

consequences and by applying machine learning techniques, it is possible to

identify design-stage leading indicators of the occurrence of unintended con-

sequences. These indicators, or risk factors, can be used to predict likely

archetypes of unintended consequences, or specific behavioral patterns that

produce adverse outcomes.

2. Which system topologies are most vulnerable to failure? System level topol-

ogy, or architecture, has significant bearing on multiple system characteris-
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tics, such as maintainability and robustness. One descriptor of architecture

is modularity, or the property of systems that have tightly coupled modules

that are more loosely connected to one another. Modularity has many bene-

fits in design, but some evidence has suggested that it may reduce robustness.

It is possible to use network modeling and analysis to study the relationship

between modularity and robustness in complex engineered systems, thereby

gaining an understanding of system architectures that are resistant to faults.

This information can guide decision-making regarding modularization and

protection measures for intermodule connections.

3. What is the topological role of the variables that are key to controlling a sys-

tem’s robustness to failure? Approaches such as sensitivity analysis are often

used to identify parameters that increase the fragility of systems. Such ap-

proaches, however, rely on detailed and accurate system models which, in

complex systems, may neglect emergent properties and key interfaces be-

tween systems. Finding vulnerable system elements is important to planning

redundancy and health management systems. By representing systems as

networks, it is possible to use network metrics to identify vulnerabilities in

complex systems in such a way as to capture such emergent properties.

1.2 Contributions

The contributions of the research are summarized in this section. The empirical

findings of this work, relating to Chapters 3–5, respectively, are listed below.

1. New archetypes of unintended consequences are identified from historical data.

These archetypes are more granular and rare than existing archetypes. This

result provides descriptive models of ways in which unintended consequences

can occur, even for relatively rare events, and enables the prediction of un-

desirable outcomes using risk factors.

2. More modular complex engineered systems are shown to be less robust to
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random failure, from architectural, functional, and behavioral perspectives.

This result identifies the trade-off between the benefits of modularity and its

potential risks.

3. Bridging nodes are identified as vulnerable nodes from the perspective of sys-

tem robustness. This result enables the a priori prediction of system param-

eters that contribute to fragility, while accounting for system-level, emergent

behaviors.

Second, conceptual and methodological advances, relating to Chapters 3–5,

respectively, are listed below. These contributions are both necessary for the em-

pirical findings and useful in their own right in enabling early design assessment

of robustness of complex systems.

1. A conceptual foundation is proposed for describing unintended consequences

in the context of engineering design. In Section 3.3, a conceptual framework

for unintended consequences is proposed, laying the groundwork for studying

unintended consequences in the design of complex engineered systems.

2. A methodology is proposed for modeling components, functions, and parame-

ters in various combinations as bipartite networks. In Chapter 4, these mod-

els are utilized to study modularity and robustness from different modeling

perspectives.

3. A methodology is proposed for modeling logical and embedded behavior in

network-based behavioral models of complex engineered systems. In Chapter

5, existing network modeling methods [18] are extended to new types of

system behaviors.

1.3 Limitations

This research is intended as a complement rather than a replacement to con-

ventional failure analysis. This research provides a different perspective that is
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useful for designing complex systems with unexpected behaviors that are difficult

to capture using conventional methods. However, this approach does not pro-

vide quantitative assessment of risk, in terms of probability of failure, as in other

methods. This approach enhances risk assessment of complex systems by capturing

under-recognized vulnerabilities, and can be used earlier in the design process than

existing approaches – although it should be followed by conventional approaches.

1.4 Definitions

For ease of reference, technical definitions used in this dissertation are summarized

in Table 1.1. Importantly, many of these definitions have specialized meanings in

the context of this research. Many are detailed in later chapters.

1.5 Chapter Summary

The objective of this work is to understand the robustness of large-scale complex

engineered systems in a way that focuses on capturing under-recognized vulner-

abilities. Robustness in this sense refers to systems that demonstrate acceptable

performance even under the influence of internal or external faults or perturbations.

The research questions investigate the robustness of complex engineered systems

at three levels of hierarchy: the system-of-systems level, the system level, and the

subsystem level. Specifically, at the system-of-systems level, this research inves-

tigates the unintended consequences of decisions made in one system on another

system. At the system level, this research investigates which system architectures

help or hinder robustness. Finally, at the subsystem or module level, this research

investigates the topological role of variables that increase fragility. The objective,

research questions, and contributions of this research are summarized in Fig. 1.1.

Chapters 3–5 each address one of the research questions of this work, investigating

robustness at progressively lower levels of hierarchy.
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Table 1.1: Key definitions used in this research.

Terminology Definition
Complexity A property of systems that cannot be fully understood

by a single human observer; typically characterized as
highly interconnected and interdependent with nonlinear
and emergent behavior, multiple levels of hierarchy, and
adaptation

Emergence A phenomenon in which a number of elements interact
in such a way as to produce a higher-level behavior that
is non-evident from the sum of the individual elements

Failure A loss of system-level performance
Fault An off-nominal condition in a system element
Fragility The opposite of robustness; a property of systems whose

performance is easily upset by small perturbations or
faults

Risk An adverse outcome, its likelihood of occurring, and its
consequence

Risk Factors Characteristics that can be identified during the design
phase that are associated with certain risks; effectively,
design stage leading indicators of certain types of failures

Robustness The ability of a system to retain acceptable performance
even when faced with faults, perturbations, and/or un-
intended consequences

System A collection of interrelated and interdependent elements
forming a whole

Under-
Recognized
Vulnerabilities

Sources of fragility in complex systems that are difficult
to capture in conventional risk assessment; examples in-
clude topological characteristics and unintended conse-
quences

Unintended Con-
sequence

A side effect of one system on another system
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Research Questions Contributions

Chapter 3: Identification of Unintended Consequences

Which sets of system 
characteristics tend to 
produce failures that 
can be described as 
unintended 
consequences?

Empirical

• Sixty-six archetypes of 

unintended consequences are 
identified from historical data.

Conceptual 
• A conceptual foundation is 

proposed for describing 
unintended consequences in 
the context of engineering 
design.

Chapter 4: Identification of Robust System Architectures

Which system 
topologies are most 
vulnerable to failure?

Empirical

• More modular systems are 

found to be less robust to 
random failure from 
architectural, functional, and 
behavioral perspectives.

Methodological 
• A methodology is proposed for 

modeling components, 
functions, and parameters in 
various combinations as 
bipartite networks.

Chapter 5: Identification of Vulnerable System Elements

What is the topological 
role of the variables 
that are key to 
controlling a system's 
robustness to failure?

Empirical 
• Bridging nodes are identified 

as vulnerable nodes from the 
perspective of system 
robustness.

Methodological

• Network-based behavioral 

modeling of complex 
engineered systems are 
extended to logical and 
embedded behavior.

Research Framework for Understanding the Robustness of Complex Engineered Systems

The objective of this work is to understand the robustness of large-scale complex engineered systems 
in a way that focuses on capturing under-recognized vulnerabilities.

Module 1 Module 3

Module 2

System 
2 System 

3

System 
1

Figure 1.1: Overall framework for addressing the main research objective. The
research questions assess robustness at three levels of hierarchy: system-of-systems,
system, and module.
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Chapter 2: Background

Robustness refers to a system property that relates to the system’s tolerance to

faults, perturbations, and/or unintended consequences. A fault refers to an off-

nominal condition in a component. Effectively, if there is a fault in a component,

the performance of robust systems will change less significantly than the perfor-

mance of less robust systems. Chapter 3 begins with a slightly broader view of this

understanding and considers how unanticipated external perturbations or interac-

tions may affect system performance. Chapters 4–5 investigate how faults injected

in components with varying structural roles affects system performance, enabling

an understanding of the system’s robustness to different topological characteristics.

Robustness is related to risk and failure analysis more generally. This chap-

ter will provide an overview of the state-of-the-art in failure analysis techniques

as well as describe the particular challenges associated with complex engineered

systems. Many complex engineered systems, such as aerospace systems, require

sophisticated failure analysis techniques for certification and to prevent adverse

events that could jeopardize mission success or result in loss of property or life.

Failure, in the context of this research and as summarized in Table 1.1, refers to a

loss of performance at the system-level, and could have any of these consequences.

Many approaches to failure analysis emphasize the estimation of failure probabili-

ties of components and their downstream effects. These methods can be dynamic,

meaning based on the system’s behavior over time, or static, meaning based on

the connectivity between system elements. System reliability is measured through,

for example, Mean Time Between Failures (MTBF). Other approaches consider

various undesirable system states and possible scenarios that could result in these

states. This research differs from existing approaches in that, rather than focusing

on quantifying risk, this research investigates various structural characteristics at

different hierarchical levels that contribute to a system’s robustness.



11

2.1 Failure Analysis and Prevention

Failure analysis and prevention are incredibly important aspects of the systems

engineering process, particularly for safety critical systems. In certifying aerospace

systems, typically a safety case is constructed. A safety case is used to certify

that a system is safe to operate within a certain set of bounds. Safety cases are

typically supplied to an appropriate regulatory agency for approval [19]. Generally,

a safety case is produced towards the end of the system development process [19].

However, if safety issues are identified late in the system development process, it

is often expensive to rework the system. Because subsystems are often designed

by separate design teams or companies, vulnerabilities are not known until the

full system is integrated and tested, leading to costly and time consuming design

changes. For this reason, it is desirable to identify safety issues early in the design

process and account for mitigation strategies such as redundancy earlier. While

conventional methods for failure analysis are typically carried out late in the design

process, there are developing methods available for assessing failures earlier in the

design process. However, there are particular challenges associated with large-scale

complex systems which make early design failure analysis particularly difficult.

This section highlights particular shortcomings and challenges of existing failure

analysis and prevention approaches which lead to under-recognized vulnerabilities

being overlooked during system design.

2.1.1 Late Design Stage Failure Analysis

A well known failure analysis approach is Failure Modes and Effects Analysis

(FMEA) [20]. FMEA is used to identify failure modes in a systematic manner. In

FMEA, component failure modes and their effects are listed, generally using expert

analysis [21]. Contributing factors to each risk are also usually assessed. The

consequences, or effects, of each failure mode area also considered. Some methods

also consider the severity of the effects of the failure mode, usually using a numeric

rating indicating whether the effect is negligible (a lower number), catastrophic (a
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higher number), or somewhere in between. The probability of the failure mode

is also assessed, again using a numeric rating. Finally, the detectability of the

failure mode is also considered and given a numeric rating. This rating refers to

the difficulty in detecting the failure mode during operation, which may prevent

mitigation strategies from being taken in time to prevent or lessen the consequences

of failure. The probability, severity, and detectability ratings can be multiplied

together to attain a Risk Priority Number (RPN). Failure modes with higher RPNs

are considered more critical. Based on this information, designers can prioritize

developing appropriate countermeasures for failure modes with high RPNs.

Fault Tree Analysis (FTA) utilizes a state-based tree structure model, which

shows paths leading to an undesirable system state, or top event [22]. Fault trees

are constructed using expert analysis and historical data. Combinations of events

that cause the top event are called minimal cut sets. These cut sets can be used to

compute the top event probability, which is compared to risk requirements to verify

that a design meets risk requirements. Redundancy is one method of decreasing

the top event probability. Redundancy is typically added to components of high

importance within the fault tree. There are multiple metrics available for deter-

mining a component’s importance. Common ones are statistical importance, or

Fussell-Vesely importance, and Birnbaum importance. The statistical importance

of a component measures the contribution of cut sets that contain the component

to the top event probability. The equation for the statistical importance of a com-

ponent is given in Eq. 2.1, where F is the Fussell-Vesely importance, j is an index

for individual cut sets, m is the number of cut sets, R is the reliability function, c

is a vector of all cut sets, i is an index for individual components, and cij is a cut

set j containing component i.

F (i) =

∑m
j [1−R(cij)]∑m
j [1−R(cj)]

(2.1)

Birnbaum importance has two forms: reliability importance and structural im-

portance [23, 24]. Reliability importance is based on failure rates of components,
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while structural importance assumes equal failure rates for all components. The

equation for the reliability importance of a component is given in Eq. 2.2, where

B(i|p) is the reliability importance [23] and p is the vector of failure rate infor-

mation for all components within an architecture. The equation for the structural

importance of a component is given in Eq. 2.3, where n is the total number of

components within an architecture [23].

B(i|p) =
∂R(p)

∂pi
(2.2)

B(i) =
∂R

∂pi

∣∣∣∣
p1=...=pn=0.5

(2.3)

There have been numerous proposed extensions to FTA in the literature. For

example, fuzzy set theory has been used to consider imprecision in the probabilities

used to calculate the top event probability [25]. Other work has improved the

computations of top event probabilities when the number of minimal cut sets is

large [26]. There have been numerous advances used to make fault trees consider

time-dependent information, called dynamic fault trees [27]. This is typically done

using Markov chains [28, 29]. Other extensions include Monte Carlo analysis [30],

Petri nets [31], binary decision diagrams [32], dependent events [33], and repairable

trees [34]. Similar to FTA, Event Tree Analysis (ETA) uses a tree structure, but it

considers events rather than states and begins with a single initiating event rather

than a top event [35].

Bow tie diagrams are often used in safety cases to assess the risk of a certain

undesirable event. They provide a more comprehensive understanding of hazardous

events [36] and provide a useful visualization of safeguards in place to prevent the

occurrence of adverse events, enabling practitioners to discover shortcomings in

their risk management plans. They can be used retrospectively, after an accident

has occurred, as well as proactively, during an initial hazard analysis. Bow tie

diagrams provide an overview of possible initiating events, on the left side of the

diagram, as well as the consequences of the top event, on the right, with the top
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event in the middle. This forms a bow tie shape from which the method gets its

name. Safeguards can be visualized on each side of the diagram, depending on

whether they are prevention or mitigation strategies, respectively.

Probabilistic Risk Assessment (PRA) is a rigorous approach to enhance safety.

Risk, in the context of risk assessment, has three parts: the adverse outcome,

its likelihood, and its consequence [37]. In PRA, certain undesirable outcomes

are first identified. PRA identifies various paths and contributors to these un-

desirable outcomes. For this purpose, it generally utilizes special types of fault

trees called master logic diagrams and event trees that model accident scenarios.

This approach is followed by uncertainty and sensitivity analyses, typically using

Monte Carlo simulation. Sensitivity analysis enables an understanding of which

parameters are capable of influencing the outputs the more than others. Bayesian

statistical methods are often used when data is difficult to obtain [38]. Once

PRA is complete, vulnerabilities are often ranked by importance. PRA has been

extended to include organizational factors that contribute to accidents [39]. Dy-

namic PRA, or DPRA, considers both aleatory and epistemic uncertainty whereas

PRA primarily considers aleatory uncertainty [40].

Reliability Block Diagram (RBD) is a graphical tool using the system archi-

tecture and the failure probabilities of components [41, 42] that aids in the identi-

fication of areas that hinder system reliability. Based on the findings of an RBD,

decisions can be made to improve reliability of or add redundancy to certain compo-

nents in order to improve system reliability. In this approach, blocks are arranged

in series or in parallel depending on whether components are redundant, enabling

the computation of system failure rates. The entire diagram can be simplified

into a series architecture using simplification rules. There have been a number of

extensions to RBD, including dynamic RBD [43].

2.1.2 Early Design Stage Failure Analysis

While less precise than many of the late design methods, early design methods

enable risk assessment to be carried out earlier in the design process. Early in
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design, critical design decisions are still relatively flexible, meaning designers have

maximum freedom to select a design with improved robustness and reliability. Con-

versely, precisely because fewer design decisions have been made, detailed models

for reliability analysis are unavailable. Since detailed models are unavailable, early

stage methods often rely on highly structured processes [21]. Examples include the

Taguchi method [2] and Design for Six Sigma [44], which are intended to reduce

variance and increase reliability [21]. Other, less established methods are also un-

der development for understanding possible system failure modes and their impact.

Other methods take a qualitative approach [21, 45, 46, 47]. For instance, Func-

tion Failure Identification and Propagation (FFIP) provides an understanding of

failure behavior by identifying fault propagation paths with behavioral simulation.

These paths can be related to the system’s components and functions [47]. Later

extensions to this work include Failure Flow Decision Functions (FFDF), which

utilizes FFIP as well as flow state logic to identify highly critical subsystems during

design [48]. Other approaches rely heavily on functional models, such as Function

Failure Design Method (FFDM). In functional models, failure is understood as

loss or degradation of a function rather than failure of a component [49]. Using

this definition, FMEA-like failure analysis is able to be performed in early design

[49]. An extension of FFDM is Risk in Early Design (RED), which enables further

quantification of risk [50]. More recently, researchers have turned to Bayesian Net-

work (BN)-based analysis of system risk and resilience early in design [51, 52] and

physics-based approaches [53]. Other authors have considered risk modeling in a

collaborative environment [54]. In sum, these methods enable analysis of failure

and risk in early design to guide key design decisions and avoid costly redesign

later in the design process.

Both early and late stage design methods are useful in assessing risk and failure

modes during the design of engineered systems. However, many of these methods

struggle to capture under-recognized vulnerabilities in complex systems due to in-

herent challenges in modeling and analyzing complex systems. This research takes

an alternative approach in considering the trends and patterns of vulnerability
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across complex systems, enabling a priori prediction of such vulnerabilities that

can be used in conjunction with conventional approaches to risk assessment. In the

next section, a more in-depth review of complex systems will be presented in order

to provide the theoretical context for the challenges of complex systems design.

2.2 Complexity in Engineering Design

Complexity is often attributed to systems or scenarios that are challenging to un-

derstand, typically with many interconnected parts. The terms “complex” and

“complicated” are often used interchangeably in everyday language; however, in

the systems sciences, even very complicated systems may not be considered com-

plex. In this research, what differentiates the two is that complex systems are

difficult to model and understand thoroughly for a human observer due to intri-

cate coupling, non-linearity, and scale. A common example of a complex system

is the National Airspace System (NAS). The NAS includes airplanes, the airspace

itself, rules and procedures, personnel, passengers, airports, and other elements. In

engineering design and systems engineering, complex engineered systems typically

refer to systems that require the integration of multiple disciplinary subsystems in

order to perform their intended function.

Complex systems display emergent properties, that is, they have properties that

their parts by themselves do not have [55]. These are often considered higher level

behaviors or characteristics. For example, the NAS has emergent properties such as

hubs and traffic patterns, which are not determinable from looking at the elements

of the system alone [56]. The airplanes themselves are capable of performing

functions, namely, powered flight, that are impossible for its parts alone. The

design process can introduce emergent behaviors due to the interactions between

various design team members [57]. Emergence is necessary for the functionality

of complex engineered systems; however, unintended emergent behaviors can also

cause unexpected failure modes or reduced performance.

Other characteristics that are often attributed to complex systems include au-

tonomous components, self-organization, and adaptation. Self-organization refers
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to situations in which order arises from parts that are originally disordered. An

adaptive system is capable of changing in response to environmental factors, usu-

ally resulting in an increase in complexity [56]. In the NAS, procedures and demand

adapt after terrorist attacks, pandemics, and due to market forces. These char-

acteristics of complex systems are not always seen in complex engineered systems

themselves, but may become apparent when viewing complex engineered systems

as a product of the systems engineering process or as being a part of a system of

systems. For example, autonomous system elements exist in the design process of

an airplane as well as the maintenance and operation schedule. After 9/11, locking

doors were retrofitted into existing aircraft between the cockpit and passenger area

– an adaptation to a changing environment.

Some authors measure the complexity of a system according to the amount of

information needed in order to describe it [17], often based on axiomatic design [58].

Complexity is also relatable to hierarchy [55], that indicating measuring emergent

behavior is another method of quantifying complexity. Other methods emphasize

structural complexity [59, 60]. Others treat complexity as a property that is either

present or absent, with no “degree” of complexity.

Complex systems are by nature difficult to understand by human designers

and therefore create challenges during design. The concept of bounded rationality

helps explain why it is so difficult to predict the consequences of actions taken

to influence complex systems, and why they are therefore difficult to design. Ac-

cording to bounded rationality, humans make generally rational decisions, but are

limited by time and resources available to them [61]. Because of bounded rational-

ity, in practical applications, heuristics are often used in decision-making [62, 63].

However, heuristics inherently do not always produce the optimal solution. Addi-

tionally, they may be influenced by cognitive biases [64, 65]. Fundamentally, any

decision made by human designers – and even decisions made using models made

by humans – will inherently be working with limited information in the context

of complex systems. This fundamental assumption about complexity explains the

occurrence of the under-recognized vulnerabilities explored in this research.
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These complexity-related challenges complicate efforts to perform robustness

assessment of engineered systems. Increasingly complex and evolving systems and

systems-of-systems that are also safety critical, such as advanced air mobility,

necessitate such methods. The means and methods proposed in this research are

designed to handle such challenges. Network-theoretic approaches enable modeling

and analysis of large-scale systems without the need for partitioning into smaller

parts. System dynamics modeling, leveraged our the analysis of unintended con-

sequences, enables consideration of organizational factors in a way that is often

difficult to integrate into computational models typically used in design. Machine

learning treats highly complex systems as a “black box”, enabling the identifica-

tion of patterns and correlations without a fully specified white box model. In

these ways, this research provides metrics and methods for assessing robustness of

complex engineered systems in early design.
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Chapter 3: Detecting Indicators and Archetypes of Unintended

Consequences in Engineered Systems

Starting at the highest level of hierarchy within Fig. 1.1, this chapter addresses

the first research question: which sets of system characteristics tend to produce

failures that can be described as unintended consequences? In the context of this

research, unintended consequences are side effects of one system on another sys-

tem, and are often perceived as unknown unknowns, unanticipated behavior, or

irrational behavior. Unintended consequences occur either within a system of sys-

tems context or, in highly complex projects, between subsystems of an engineered

system. In order to address this research question, further theoretical clarifica-

tion on unintended consequences is necessary. This initial research was published

in the Proceedings of the 2019 International Conference on Engineering Design

and was cowritten by Hannah S. Walsh, Andy Dong, and Irem Y. Tumer [66].

The research directly addressing the first research question was published in the

Proceedings of the 2020 International Design Engineering Technical Conferences

& Computers and Information in Engineering Conference and was cowritten by

Hannah S. Walsh, Andy Dong, Irem Y. Tumer, and Guillaume P. Brat [67].

3.1 Motivation

Complex engineered systems are often prone to unanticipated behaviors. This is

especially true in systems utilizing novel technologies or with high coupling. This

chapter focuses on unintended consequences, which are side effects of one system

on another system. Unintended consequences may cause system failures, but they

can occur even when no part of the system fails per se. As a simple conceptual

example, a part of one system may interact with another system in an unexpected

manner, reducing the performance of the supersystem. Further, they occur due
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to organizational factors or human-machine interaction within the broader system

that interacts with subsystems, creating unexpected behaviors. These can relate

to system safety [68] and can create system failures in systems of systems [69]. The

causes of unintended consequences may often be clear retrospectively, but can be

challenging to predict proactively. This is because many unintended consequences

have little precedent or are relatively rare events, and occur due to complex rela-

tionships between systems or subsystems that can be difficult to model and analyze

completely.

This research identifies leading indicators, or risk factors, that predict certain

archetypes of unintended consequences by learning from historical data. This ap-

proach ventures that learning about the trends and patterns in the occurrence

of unintended consequences can help prevent future unintended consequences.

Archetypes in this context are exemplars of unintended consequences that contain

certain sets of risk factors and can be modeled using system dynamics models.

There are existing archetypes, some of which describe unintended consequences,

modeled using system dynamics [68, 70]. These archetypes describe recurring pat-

terns of behavior within systems and/or organizations. However, these archetypes

are relatively high level and are not sufficiently granular to provide actionable

information about potentially hazardous scenarios in the context of engineering

design. Instead, in this research, a machine learning approach is used to discover

more granular archetypes based on patterns of leading indicators in a large data

set. Since the machine learning approach processes a large number of cases, it is

possible to detect not only commonly occurring archetypes, but also less common

archetypes. By detecting archetypes that are both more granular and less com-

mon, this research aims to improve existing descriptive and predictive models of

unintended consequences in the context of complex engineered systems.

Using a publicly available data set of lessons learned at NASA [1], we detect a

total of sixty six archetypes of unintended consequences. Lessons are first tagged

according to whether they contain unintended consequences. For the lessons con-

taining unintended consequences, certain risk factors are identified. Then, a self-
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organizing map is used to learn archetypes containing similar occurrences of unin-

tended consequences from the data set. A sample of the archetypes is then modeled

using system dynamics in order to provide descriptive models and to validate the

archetypes by comparing them with existing, high-level archetypes.

3.2 Background

The relevant literature is divided into two sections. First, literature on unintended

consequences and related concepts is explored. The term is clearly defined and

disentangled from related work. Second, existing work on archetypes is reviewed,

with an emphasis on archetypes in the systems thinking context.

3.2.1 Unintended Consequences

Unintended consequences are increasingly being recognized as important, under-

recognized vulnerabilities in engineered systems. In this section, unintended con-

sequences are related to more commonly recognized concepts such as risk and

failure. Additionally, existing work on unintended consequences in the context of

engineering design is reviewed.

3.2.1.1 Related Concepts

A risk generally refers to the probability of occurrence of an uncertain adverse

event. The characteristics and existence of the event are known; what is not known

is the likelihood of the event happening. Risk quantification and management is

a well-researched area [71, 72, 73]. Unintended consequences are, in this context,

under-recognized risks to engineered systems. They are under-recognized because

it is difficult for designers to model and analyze complex engineered systems with

modularized architectures and design processes, especially the interfaces between

modules. Whether these risks come from the interfaces between subsystems or

between systems, many can be described as unintended consequences.
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A failure is typically defined as a loss of ability to achieve an objective, in

other words, performance outside specifications. The accepted understanding of

failure within engineering has been that loss of performance in parts of a system

causes loss of performance of the system. More recent work has acknowledged that

failures can occur even when the individual parts perform within specification [74].

In this research, the understanding of unintended consequences is that they can

lead to failure. In other words, studying unintended consequences is one way to

identify under-recognized vulnerabilities that could lead to failures.

From a systems perspective, emergence refers to properties of a system that are

not determinable by considering the constituent parts alone [16, 75, 76]. However,

there are varying definitions and understandings of emergence [16]. The concept is

sometimes used to mean undesirable behavior that is not explicitly designed-in [77].

Others attribute the concept of emergent behavior to a lack of understanding of

a system [78, 79]. Despite the polysemous meanings, emergence typically refers

to an effect or property that is produced by a bottom-up process, in other words,

from the individual parts to the larger system within which the parts operate.

Emergence as a concept takes a nuanced view on causality in the sense that a

particular outcome can arise due to one or more sources, but explains that those

outcomes occur due to a bottom-up process rather than purposeful actions taken

at the system level and then propagated “downward” to the constituent parts,

which is the view taken in studying unintended consequences.

3.2.1.2 Prior studies on unintended consequences

There have been prior studies seeking to address unintended consequences. For in-

stance, Bahill defines unintended consequences as “future effects on other systems

that might be caused by the new system being designed” and proposes a systematic

approach for identifying unintended consequences during the systems engineering

process [80]. Similarly, Watz and Hallstedt conceptualize unintended consequences

as trade-offs related to sustainability and performance considerations in product

requirements [81]. Van Boussuyt et al. proposed a method for identifying “irra-
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tional system behaviors”, which are effectively similar to unintended consequences,

using the functional basis and functional modeling [82]. In their research, irrational

behaviors are failure flows from one system that affect another system within a

system-of-systems context and that are unexpected and/or difficult to predict or

understand [82]. This research is complementary to such approaches, but takes

an alternative approach in using machine learning to understand trends in the

occurrence of unintended consequences.

3.2.2 Archetypes

Archetypes refer to recurring patterns, typically of behavior or sets of character-

istics [70, 83]. In systems thinking, they are represented using system dynamics

modeling [84]. System dynamics models represent visually and mathematically the

relationships between variables [85]. Archetype identification involves a trade-off

between generality and specificity. All archetypes are, by their very nature, gener-

alizable at least to some extent. However, the general systems archetypes [70] are

very high level, whereas, for example, the archetypes of system safety proposed by

Marais et al [68] are more specialized and therefore more descriptive.

Not all of the known system archetypes describe unintended consequences. Us-

ing the definition that unintended consequences are side effects of control actions,

there are two high level system archetypes that describe unintended consequences.

One is shifting the burden, which describes scenarios in which a design decision

indirectly reduces the effectiveness of a more fundamentally effective design deci-

sion. This archetype is comprised of two balancing loops with an outer reinforcing

loop, as in Fig. 3.1a. Another relevant archetype is fixes that fail. In this scenario,

a design decision has a more directly adverse impact on its original objective. It

is composed of an inner balancing loop and an outer reinforcing loop, as in Fig.

3.1b. These archetypes, though, are highly general and not descriptive enough to

inform design changes.

Of the more granular archetypes, there are some that describe unintended con-

sequences. Specifically, a number of archetypes of organizational safety proposed
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(a) Shifting the Burden.

(b) Fixes that Fail.

Figure 3.1: Existing system archetypes describing unintended consequences.

by Marais et al. [68] describe unintended consequences. This includes stagnant

safety practices in the face of technological advances, which is effectively a more

specialized form of shifting the burden in Fig. 3.1a. In this example, the re-

duction in safety as a result of the lack of understanding of the new technology

is the unintended consequence. Other archetypes from Marais et al. that relate

to unintended consequences are unintended side effects of safety fixes and fixing

symptoms rather than root causes [68]. This research aims to identify archetypes

of similar level of granularity to these archetypes, but relating more to the design

of complex engineered systems.

3.3 A Theoretical Framework for Unintended Consequences in En-

gineering Design

In this section, a theoretical framework for unintended consequences as they re-

late to engineering design is proposed. This framework enables the development

of a theory-driven methodology to extract archetypes of unintended consequences

in the next section. The theoretical framework is driven primarily by the appli-
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cation of systems theoretic concepts, organized as two distinct systems “lenses”

through which unintended consequences are viewed. From each lens, a principle is

extracted.

3.3.1 First Lens: Control of Complex Systems

The model of socio-technical control from Leveson and Rasmussen can be used

to conceptualize the system development process as a hierarchy of control actions

[74, 86]. Within this model, there are two pillars – one for system development

(design) and one for system operation. Each pillar has a number of levels of

hierarchy, meeting at the lowest level of hierarchy: the physical process itself (e.g.

flight dynamics). Each level of hierarchy exerts control actions, which act upon

the hierarchical level(s) below each, and also receives information via feedback

from the lower hierarchical level(s). The behavior at each level is controlled by

the actions at each of the higher levels. A particular overarching design policy

can govern large sets of design actions and thereby change what objectives and

requirements are salient, eventually affecting the kinds of constraints that become

active. Within this perspective, a number of different actions taken within system

development and operation can be conceptualised as control actions. Generally,

in the context of engineering design, designers take control actions such as design

decisions to influence the engineered system.

Unexpected behaviors, however, can occur due to interfaces between the de-

signed system and other systems with which it interacts. Control of complex

systems is challenging because, by the definition of complexity, it is challenging to

accurately model all these interfaces and predict the related consequences of the

control action on other systems. Ashby’s Law of Requisite Variety has implications

on the nature of such actions [87]. Regulation acts to constrain the values of a

certain variable, x; that is, to lessen the variety of potential outcomes [87]. In or-

der to successfully regulate a system, the Law of Requisite Variety states that the

regulator must have at least as many states as the number of states in the system

that is being controlled [87]. Thus, when regulating a complex system, the na-
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ture of the regulation itself is non-trivial, and regulations that have an insufficient

number of states will fail to regulate the system effectively.

In short, the challenges of control of complex systems may lead to unexpected

behaviors. Because of complexity, implementing constraints, as is the nature of

the system development process according to the model of socio-technical control,

is likely to lead to side effects. This mental model can be used as a lens through

which to view unintended consequences, and is embodied in the first principle:

Principle 1 Control of complex systems indicates that attempts to control the

behavior of complex systems may lead to unintended consequences.

3.3.2 Second Lens: Boundary Critique

Boundary critique utilizes, at its core, the concept of boundary judgments. The

idea of a boundary judgment is that analysts constantly make judgments as to

which pieces of information are relevant during system analysis. Information within

a boundary is considered relevant; information outside a boundary is not. Bound-

aries are often defined using the area over which an emergent property, which is

a system property not shared by the individual parts [88], is identifiable [89]. For

example, an atom has properties that are not shared by its constituent protons,

neutrons, and electrons. However, Churchman argues that boundaries are “social

and personal constructs” [90], which implies that boundaries are, at least to some

degree, arbitrary. The placement of these boundaries can have significant impli-

cations on the results of any analysis performed of the system [91]. That is to

say, if a system analyst measures the performance of a system, that measurement

may differ depending on where system boundaries are drawn. As a result, con-

flict occurs when two analysts draw different boundaries, thereby making different

judgments regarding information that is considered relevant. The area included by

one analyst but not the other is marginalized [91, 92]. Boundary critique is useful

in a variety of fields. For instance, Midgley et al. applied boundary critique in

developing housing services for older individuals [90].
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Boundary critique becomes particularly important when considering which as-

pects of external systems should be considered as part of the systems engineering

process. The relationship between an engineered system and other systems is aptly

described by a system hierarchy: for example, an automobile is a part of a broader

transportation system. The automobile can be conceptualized as a subsystem of

the country’s transportation system. The boundaries between hierarchical levels

have traditionally been regarded as rigid; however, in actuality, the structure of

the hierarchy is more flexible [93]. It can be difficult, then, to define so-called

hierarchical boundaries, which are boundaries that occur between the hierarchical

levels of a system [94], leading to the marginalization of external variables. For

instance, designers of a particular subsystem of the automobile may marginalize

important higher-level properties of the full automobile.

This phenomenon is partially unavoidable; more than one person is generally

involved in the design of an automobile and many other systems. However, di-

viding work into rigid silos, when not carefully integrated, can lead to problems

in heavily interconnected systems. There are many possible explanations for the

marginalization of important external system elements. First, analysts could be

ignorant of the marginalized elements [95]. Experts for one system may not be

experts for another system, which could hinder their ability to identify key vari-

ables that are external to the engineered product. Second, studies have shown

that interdisciplinary collaborations can be challenging and often devolve into in-

dividual disciplinary collaborations [96]. Thus, it may be challenging to involve

experts in other domains, who may better be able to identify critical external el-

ements. Third, intense emphasis on one objective can lead to the the neglect of

others [97, 95]. This case is aptly described by an organization that is focused on

short-term profit rather than on sustainability.

Regardless of the cause, marginalization of important elements during the sys-

tems engineering process can lead to unexpected behaviors. As such, it is important

to critically consider the implications of these boundary judgments in the course of

system design. Clearly, it is impossible to model all possible systems with which a
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system may interact within the context of a systems engineering process. However,

when important variables are marginalized, it is possible for an engineered system

to have unintended consequences. If variables are marginalized, unintended conse-

quences may be undetected [70] because of interactions with unforeseen or ignored

variables.

In sum, considering system design through the lens of boundary critique em-

phasizes the importance of critical consideration of system boundaries, particularly

those involved in a hierarchical structure. Consideration of these boundary judg-

ments will reduce the marginalization of important system elements, thereby re-

ducing the occurrence of unintended consequences of engineered systems. This lens

enables an improved mental model for understanding unintended consequences and

suggests possible methods for predicting and mitigating unintended consequences.

This conceptual advance is embodied in the second principle:

Principle 2 Boundary critique reveals potential adverse effects when system ele-

ments are excluded from analysis of effects.

3.3.3 Propositions

We next present propositions based on the proposed theoretical principles.

3.3.3.1 Proposition 1: The Hierarchy of Control Actions

Within the model of socio-technical control [74], control actions occur within a

hierarchy. High level control actions include design policies, whereas lower level

control actions include design decisions. Control actions effectively influence all of

the levels below the point of their implementation. Therefore, control actions at the

lower levels of the model of socio-technical control influence only a portion of the

system influenced by higher level control actions. Further, the systems controlled

by higher level control actions are larger in scale and are often multi-disciplinary

and/or heterogeneous. As a result, it is expected that it will be more difficult to

trace the consequences of control actions at higher levels of the hierarchy.
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Proposition 1 Higher level control actions have more unintended consequences

than lower level control actions.

3.3.3.2 Proposition 2: Design Novelty

There is inherently less relevant historical knowledge available when designing novel

systems. Therefore, it is more likely that there will be marginalized variables. As

such, control actions will tend to produce unintended consequences.

Proposition 2 More novel designs have more unintended consequences than less

novel designs.

3.3.3.3 Proposition 3: Design Methods

Causation-like processes choose the means in order to produce a certain effect [98].

In contrast, effectuation-like processes choose the effect based on the means avail-

able [98]. Engineering design processes generally are more causation-like than

effectuation-like. Effects of engineering design processes, i.e. functions, are selected

in the form of requirements and design objectives. After these effects are chosen,

the design process selects the means needed to produce those effects. However,

this causation-like process inherently involves prediction. That is, when select-

ing means in order to produce an effect, there is inevitably prediction involved in

whether those means will produce the effect. There will inevitably be marginal-

ized variables that prevents human designers’ perfect prediction capability. Thus,

a design process that minimises the amount of prediction required will be more

effective in producing unintended consequences as compared to a causation-like

process.

Proposition 3 Design processes that aim to control possible effects decrease un-

intended consequences more effectively than processes that simply try to prevent

effects.
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3.3.4 Framework Evaluation: Urban Air Mobility

In this section, a real-world example is used to evaluate the theoretical framework’s

explanatory power. Specifically, an urban air mobility (UAM) model is evaluated

in order to ascertain whether theorized elements of unintended consequences are

present in the model and whether they interact in a way that is consistent with the

proposed theory. Urban air mobility refers to the idea of “air taxis”, i.e. a number

of unpiloted aircraft vehicles that transport people within an urban environment.

The model is shown in Figure 3.2. All variables, including types, are provided

in Table 3.1. Notes regarding assumptions made and initial values for stocks are

also given in Table 3.2. The evaluation seeks to address the question: does the

proposed theoretical framework help explain the unintended consequences of urban

air mobility?

Table 3.1: Variables in system dynamics model.

Symbol Variable Name Type Units

aUAM Airspace Allowed to UAM Stock m2

eTauto Automobile Emissions Auxiliary tCO2e/year

sauto Automobile Seat Allowance Parameter passengers/

automobile

vavg Average Airspeed Parameter m/s

tflight Average Flight Time Auxiliary s

thover Average Hover Time Parameter s

r Average Range Parameter m

dbatt Battery Density Parameter Ws/kg

Ebatt Battery Energy Auxiliary J

mbatt Battery Mass Auxiliary kg

Dc Clean Energy Demand Auxiliary J/year

Ic Clean Energy Initiative Parameter J/tCO2e

eE Emissions from Energy Production Auxiliary tCO2e/year

Continued on next page
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Table 3.1 – Continued from previous page

Symbol Variable Name Type Units

eauto Emissions per Automobile Parameter tCO2e/year/

automobile

DE Energy Demand Auxiliary J/year

Df Fossil Fuel Demand Auxiliary J/year

Ff Fossil Fuel Emissions Factor Parameter tCO2e/J

g Gravitational Constant Parameter m/s2

p Incidents of Privacy Violation Flow incidents

N Noise Flow dB

FN Noise Influence Factor Parameter %/year/dB

NUAV Noise per UAV Parameter dB/UAV

nauto Number of Automobiles Auxiliary automobiles

nUAV Number of eVTOL UAVs for UAM Stock UAV s

mpass Passenger Mass Parameter kg/passenger

PWR Power to Weight Ratio Parameter W/N

P Public Acceptance Stock %

FP Privacy Influence Factor Parameter %/year/incident

Fp Privacy Violation Factor Parameter incidents/m2

eT Total Emissions Auxiliary tCO2e/year

ET
UAV Total UAV Energy Consumption Auxiliary J/year

T Transportation Needs Parameter automobiles

C UAM Deployment Flow UAV s/year

CP UAM Initiative Parameter UAV s/tCO2e/%

mUAV UAV Airframe Mass Parameter kg/UAV

Fa UAV Airspace Factor Parameter m2/UAV

mempty UAV Empty Mass Auxiliary kg/UAV

EUAV UAV Energy Consumption Auxiliary J/UAV

mpayload UAV Payload Mass Auxiliary kg/UAV

sUAV UAV Seat Allowance Parameter passengers/UAV

Continued on next page
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Table 3.1 – Continued from previous page

Symbol Variable Name Type Units

mUAV UAV Mass Auxiliary kg/UAV

wUAV UAV Weight Auxiliary N/UAV

v Visual Pollution Flow UAV s/m2

Fv Visual Pollution Influence Factor Parameter %/year/(UAV/m2)

RUAV Yearly Trips per UAV Parameter 1/year

System dynamics modeling reveals four unintended consequences in the model.

First, UAM interacts with existing energy systems such that a finite ability to pro-

duce clean energy to power the UAVs increases fossil fuel demand. This unintended

consequence is modeled as a reinforcing loop between UAM Deployment and Fos-

sil Fuel Demand, with the intended consequence being the balancing loop between

UAM Deployment and Total Emissions. Second, UAM creates noise pollution.

Third, UAM creates visual pollution. Fourth, UAM raises privacy concerns. The

latter three unintended consequences have the effect of reducing Public Accep-

tance, which in turn decreases the availability of UAM Deployment as a control

action.

First, Principle 1 is evaluated in terms of its ability to explain the unintended

consequences of urban air mobility. This principle states that attempts to control

the behavior of complex systems may lead to unintended consequences. Thus,

in evaluating this principle’s explanatory power, it is necessary to determine that

there is an attempt to control the behavior of a system. Using the model of

socio-technical control, an attempt to control the behavior of a system can be

described as a control action. In the urban air mobility model, the effects that

are modeled are primarily related to the introduction of urban air mobility into

society. In other words, the control action of interest is UAM Deployment. From

the control of complex systems lens, then, all unintended consequences in the model

should be traceable to the control action, UAM Deployment. Second, Principle 2 is

evaluated. This principle uses boundary critique as a means of understanding how
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Figure 3.2: System dynamics model of eVTOL UAVs for UAM application, made
in Vensim.



34

Table 3.2: Assumptions in system dynamics model.

Variable Notes & assumptions
Airspace Allowed to UAM Assume no vertical expansion;

initial value 100
Automobile Emissions Neglect growth of electric car industry
Automobile Seat Allowance Average
Average Airspeed Neglect stop-and-go emissions
Clean Energy Demand Assume zero emissions for clean energy
Emissions from Energy Production Includes only emissions from fossil fuels
Emissions per Automobile Average
Energy Demand Neglect other energy consumers
Fossil Fuel Emissions Factor Estimate
Gravitational Constant Assume operation close to Earth’s surface
Incidents of Privacy Violation Assume no change in privacy laws
Noise Only for UAVs for UAM
Noise per UAV Average
Number of Automobiles Neglect growth of electric car industry
Number of eVTOL UAVs for UAM Assume no unorganized use;

initial value 10
Passenger Mass Average; including luggage
Public Acceptance Initial value 37% (approval)
Privacy Violation Factor Average per unit airspace
Total Emissions Yearly, only from automobiles and UAM
Total UAV Energy Consumption Assumes no unorganized use of UAVs
Transportation Needs Assume no change from 0 < t < T
UAV Airframe Mass Empty mass without batteries
UAV Energy Consumption Assume no change from 0 < t < T
UAV Payload Mass Average
UAV Seat Allowance Assume full autonomy is possible
UAV Mass Average
UAV Weight Assume constant altitude of operation
Visual Pollution Average
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the marginalization of key system elements may cause unintended consequences.

In the UAM model, failure to consider (i.e. marginalization of) the effects of UAM

energy demands on fossil fuel demand could lead to an increase in emissions, as

opposed to a reduction in emissions. Marginalization of privacy, visual pollution,

and noise concerns could also reduce the use of UAM Deployment if unaddressed.

Overall, the proposed theoretical framework provides a useful mental model for

considering the causes and considerations involved in unintended consequences.

3.4 Detecting and Characterizing Archetypes of Unintended Con-

sequences

The previous section provides a theoretical foundation for the study of unintended

consequences. In this section, archetypes of unintended consequences are identified

in relation to a number of leading design indicators, which in this research are called

risk factors. The goal of this section is to (1) identify and descriptively model a

number of archetypes of unintended consequences that occur in complex engineered

systems and (2) provide a path forward for predicting unintended consequences

by understanding how certain risk factors interact to increase the likelihood of

occurrence of an unintended consequence.

3.4.1 Methodology

The methodology used in this research for extracting the archetypes of unintended

consequences is divided into three parts, each detailed in this section. In the first

part, the method used for archetype detection is presented. In the second part,

the detected archetypes are characterized using system dynamics modeling. In

the third part, a validation method for the archetypes is described in which the

identified archetypes are compared to the high level known archetypes. All stages

are summarized in Fig. 3.3.
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Figure 3.3: Flowchart of the methodology used to identify, characterize, and vali-
date archetypes of unintended consequences.
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3.4.1.1 Data Set

This research uses a data base of historical cases of unintended consequences in

order to identify unintended consequences. Specifically, the National Aeronautics

and Space Administration (NASA) Lessons Learned Information Systems (LLIS)

[1] data base is used. This data base contains 2079 lessons learned.

3.4.1.2 Archetype Detection

First, archetypes of unintended consequences are detected using a combination

of human encoding and machine learning. In this stage, the theory-driven human

coding scheme enables the identification of unintended consequences from historical

cases. Human coders also use rules to encode leading design indicators, which are

called risk factors, of the cases of unintended consequences. The last step is to

encode unintended consequences into a self-organizing map. The self-organizing

map then identifies archetypes in the form of clusters of encoded characteristics

that frequently occur together. Each of these steps will be detailed in the remainder

of this section.

Identifying Lessons with Unintended Consequences Not all lessons within

the database contain unintended consequences; therefore, a method is necessary

for determining whether an unintended consequence is contained in a given lesson.

This set of rules is derived from the definition of unintended consequences and prior

literature that differentiates unintended consequences from other concepts such as

emergence, as described in Section 2. A simple tool is proposed in Table 3.3 in

order to check that the conditions are met for a scenario to contain an unintended

consequence. An identifiable control action is required. A control action is an

action taken during system development, such as a design decision. The model of

socio-technical control from Leveson and Rasmussen can be used to conceptualize

the system development process as a hierarchy of control actions [74, 86]. Control

actions can be high level, such as policy and regulations, or lower level, such as
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Table 3.3: Framework used for identifying unintended consequences from the
dataset.

Element Description
Control Action Organized action such as design policy
Intended Effect Behavior desired in taking control action
Side Effect Behavior resulting from the control action,

separate from intended effect

design decisions. Systems engineers utilize control actions in order to influence the

completed design. The control action must have both an intended effect, i.e. goal

of the control action, and a side effect, which is an unintended consequence. If

these three elements can be identified, then the scenario contains an unintended

consequence. A human coder uses this tool in order to identify whether each lesson

contains an unintended consequence.

As an example, consider the following scenario. Following September 11, 2001,

commercial aircraft were retrofitted with a locking door between the cockpit and

passenger area. If a pilot were to exit the cockpit, the first officer would be required

to unlock the door using a control inside the cockpit to allow the pilot to re-enter.

This door lock control was similar in terms of placement and operation to the

rudder control in the Boeing 737-700, causing a first officer on one occasion to

inadvertently activate the rudder control instead of the door lock control [99].

This error sent the aircraft into a nose dive [99]. Conventionally, this event could

be described as a human error. However, in the context of this research, it can also

be described as an unintended consequence. Using Table 3.3, the control action is

the requirement to add a locking door between the cockpit and passenger area, the

intended effect is to prevent illicit takeover of the cockpit area, and the side effect

is inadvertent activation. Since all three conditions are met, this scenario qualifies

as an unintended consequence.

Encoding Unintended Consequences Using Risk Factors Next, each les-

son that contains an unintended consequence is analyzed to determine which risk
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factors, given in Table 3.4, contribute to the occurrence of the unintended conse-

quence. Similarly to the use of safety indicators in accident analysis [100, 101], risk

factors are contributors to adverse events. Risk factors are identified during the

encoding process, and are added to the list of risk factors in Table 3.4 as they are

discovered in the data base. The identified risk factors must completely describe,

at least based on the information given in the data base, the occurrence of the

unintended consequence, and are based on the characteristics of the system before

the unintended consequence occurs. Encoding the risk factors for each lesson is a

four step process:

1. Read the entire lesson. Identify the intended (main) and the unintended

(side) effects. There may be multiple unintended consequences in one les-

son. In this case, focus on the unintended consequence with the most severe

impacts.

2. Define the system boundary. Control actions act on a system boundary and

are not themselves contained in the defined system boundary. This step helps

with the identification of the control action, next.

3. Identify the control action. If there are multiple, choose the one relating to

the most severe unintended consequence.

4. Identify the risk factors. Identify only risk factors that relate to the qualities

of the system or of the control action, not qualities of the effect or outcome.
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Table 3.4: Risk factors with example text from the NASA LLIS database [1].

Risk Factors Description Example

1 Complexity Inability of a hu-

man to assess

the entire state

of the system

Pulse width modulator cir-

cuit card assemblies (PWM

CCAs), valued at $150, 000

each were inadvertently ex-

cessed to the KSC excess prop-

erty storage area. The PWM

CCAs were attached to hold-

ing fixtures, and were sub-

sequently purchased as scrap

metal by a local salvage com-

pany. The sole decision crite-

rion for excessing items was us-

age rate. The computerized lo-

gistics system documented the

holding fixtures as not being

in use. The individuals in-

volved in the excessing pro-

cess believed that they were

only excessing holding fixtures.

The holding fixtures were en-

tered as separate items from

the PWM CCAs, because the

system lacked the capability to

document and track integrated

components.

Continued on next page
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Table 3.4 – Continued from previous page

Risk Factors Description Example

2 Coupling Elements within

the system are

tightly inter-

connected and

interdependent,

e.g. presence of

a bridging node

[102]

TCS blankets by nature have a

close and critical dimensional

relationship to the surrounding

hardware they are insulating.

3 Human-

machine

interaction

There is a hu-

man operator

interacting with

the system

or within the

system

Clean room certified adhesive

tape 5413 was used inadver-

tently in construction of multi-

layer insulation (MLI) blanket

for a vacuum chamber (instead

of clean room certified adhe-

sive tape 1205). The two tapes

look virtually identical and are

packaged similarly.

4 Integration

into an exist-

ing system

A new feature

or technology is

added to an ex-

isting system

Using new equipment in haz-

ardous environments without

full understanding all the ca-

pabilities and restrictions can

easily cause injury or equip-

ment destruction.

Continued on next page
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Table 3.4 – Continued from previous page

Risk Factors Description Example

5 Lack of isola-

tion or pro-

tection from

environment

Interactions

between the

system and its

environment are

not appropri-

ately isolated or

protected

After the launch of the NOAA-

15 spacecraft, an EMI/EMC

interference affecting science

data was noted in the Ad-

vanced Microwave Sounding

Unit (AMSU)-B data. This

interference was subsequently

attributed to the SAR and S

band transmitters and was due

to inadequate AMSU-B shield-

ing.

6 Scale of effect A large number

of individuals

or units can be

affected by the

control action

or the system,

e.g. high degree

nodes

The combined problems caused

a broadcast storm across the

network and affected the

VLANs on the trunked in-

terfaces and rendered the

network unable to process

user traffic and thus caus-

ing the user servers and

field instrumentation to lose

connectivity.

Continued on next page
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Table 3.4 – Continued from previous page

Risk Factors Description Example

7 Decentralized

decision

making

An action

requires the

decision-making

of a number of

individuals or

units

On April 29, 2010, a subcon-

tractor employee received sec-

ond and third degree burns

while working at Building

01385, also known as the Mis-

sion Control Center (MCC).

The Injured Person (IP) and

Coworker were tasked with

preparing a transformer, asso-

ciated with an electrical sub-

station, for removal as part of

the MCC demolition project.

It was their understanding

that this electrical substation

was de-energized.

Continued on next page
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Table 3.4 – Continued from previous page

Risk Factors Description Example

8 Centralized

decision

making

An action

requires the

decision-making

of a central

prioritized in-

dividual or

unit

Space Vision System (SVS)

targets have become an un-

due burden during EVA. The

requirement to restrain cables

away from SVS targets added

45 minutes to 1 hour EVA

time and will change during

the mission. The EVA com-

munity has been informed that

the targets can be easily dam-

aged by EVA loads, yet the tar-

gets are in or near translation

paths. A better understand-

ing of the criticality of keep-

ing the targets free of obstruc-

tions and the sensitivity of the

targets to EVA contact is re-

quired. The SVS community

must understand the EVA en-

vironment and not place unre-

alistic constraints on the con-

duct of the EVA.

9 Time depen-

dency

The need to take

action is time-

sensitive

Add to this dangerous situa-

tion the “hurry up, let’s get

this job done” attitude, is only

adding fuel to an accident

waiting to happen.
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Once identified, risk factors are also given weights on a scale of [0, 1] in in-

crements of 0.1 representing their relative importance. A weight of 1 is the most

important while a weight of 0 is the least important. The sum of the risk factor

weights for a single lesson must sum to 1. To obtain weights for each risk factor,

the human coder counts the number of times a risk factor is mentioned (often im-

plicitly) in the lesson. Then, the risk factor count for a single risk factor is divided

by the total number of risk factor mentions to obtain the weight for an individual

risk factor. If rounding is needed, less important risk factors are rounded down.

The encoding is validated using a second coder for a portion of the data set.

The validation measures the consistency between the two coders. The second coder

first reviews a training set generated by the first coder, which contains identified

risk factors and weights along with the original textual description of the risk

factor. Then, the second coder assesses a different portion of the lessons containing

unintended consequences, approximately 10% of these lessons. This data is then

used to validate the coding scheme using Krippendorff’s alpha [103, 104] using a

MATLAB implementation [105]. Upon completion of the validation, the human

coders discuss their disagreement and come to consensus on the lessons on which

they originally disagreed.

Identifying Archetypes with a Self Organizing Map Once the data has

been encoded, a self-organizing map is used for clustering and archetype identifi-

cation. A self-organizing map is an artificial neural network (ANN) based approach

to clustering. There are two layers in a self-organizing map. The input layer has

dimensions n ×m, where n is the number of lessons and m is the number of risk

factors. Input layer data should in general be normalized [106]. In this study, the

data is normalized in the previous step when weights are assigned. The next layer,

called the Kohonen layer, has dimensions l × l where l2 is the number of neurons

in the map, which is also the maximum number of clusters. The second layer can

either have a rectangular or hexagonal structure. In a rectangular structure, each

non-edge neuron has four neighbors [106]. In a hexagonal structure, each non-edge
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Figure 3.4: Self-organizing map minimal example.

neural has six neighbors [106]. A hexagonal map is used in this research. A m× l2

weight matrix lies between the two layers. A heuristic is used to estimate the

required map size for a given data set size, Eq. 3.1 [107]. The structure of the

self-organizing map is visualized in Fig. 3.4.

l2 ≈ 5×
√
n (3.1)

The map is implemented in the SOM Toolbox in MATLAB [108]. The learning

algorithm is as follows:

1. Initialize weights w with small random values.

2. Select input vector xi.

3. Identify neuron k with the highest similarity to the input.

4. Reward winning weights and neighbor weights w.

5. Set t = t+ 1. Repeat Steps 2–4 until convergence.

The third step is sometimes called the competitive step since it selects a “win-

ning” neuron based on the similarity of its weights wj to the input xi. Similarity

is measured using Euclidean distance, given in Eq. 3.2 and sometimes called the

discriminant function, where dk is the Euclidean distance for neuron k and m is
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the number of attributes. Eq. 3.3 is used to find ci, the winning neuron for input

xi [106], once all discriminant functions have been computed. In this equation, t

is the iteration step.

dk(t) =

√√√√ m∑
j=1

(wjk(t)− xij)2 (3.2)

ci(t) = arg min
k
{dk(t)} (3.3)

The fourth step is sometimes called the combined cooperative and adaptive

step. In this step, the weights of the winning neuron and its neighbors are up-

dated. Weights are updated more significantly for the winning neuron, and less

significantly for its neighbors. The weight update is governed by Eq. 3.4, which

is dependent on α(t), which is the learning rate, and hck(t), which is the proxim-

ity to the winning neuron. α(t) should decrease with respect to t [106] and falls

between 0 and 1. hck(t) is called the neighborhood function and is defined in Eq.

3.5 [109], where r is the location of the neuron and σ(t) controls the width of the

neighborhood function and decreases with respect to t [109].

wk(t+ 1) = wk(t) + α(t)hck(t)
[
xi(t)− wk(t)

]
(3.4)

hck(t) = exp−||rc − rk||
2

2σ2(t)
(3.5)

Convergence of the learning algorithm is determined after a specified number

of iterations has been completed, usually 500 times the number of neurons [106].

After learning, the neurons containing at least one lesson are interpreted as a

cluster. Clusters contain lessons with similar sets of risk factors. Then, silhouette

coefficient is used to validate the cluster quality. For each sample i, s(i) measures

how well the sample fits into its cluster Ci. Higher silhouette coefficients indicate

a high quality cluster. Low values may indicate that the number of clusters should

be reassessed.
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3.4.1.3 Archetype Characterization Using System Dynamics

The groups of risk factors are modeled using system dynamics in order to better

understand the causal mechanisms at play and to visualize their relationship to

control actions and unintended consequences. The previous clustering step pro-

duces an empirical result in which certain risk factors are found to occur together.

These themselves can be interpreted as archetypes, but for consistency with more

common models, it is necessary to model a sample of lessons using system dynam-

ics. Five archetypes are selected for modeling; from each of these archetypes, one

lesson is chosen.

Building system dynamics models involves returning to the original textual

description of the lesson. Specifically, causal loop diagrams are used. These are

mainly used for visualization of system behavior. Loops are important structures

in causal loop diagrams. Balancing loops, which contain an odd number of pos-

itive edges, show stabilization over time in terms of behavior. Reinforcing loops,

which contain an even number of positive edges, show exponentially increasing or

decreasing behavior over time. Initially, all relevant variables should be included

in the system dynamics model. Once the model is completed, the modeler can

simplify in order to compare the lesson model with the general archetype. Gener-

ally, the control action, side effect (unintended consequence) and main or intended

effect will be represented in the final system dynamics model.

3.4.1.4 Archetype Validation

The causal loop diagrams from each of the five selected archetypes are compared

to existing, known archetypes of unintended consequences in order to validate

their consistency with existing theory. The simplified causal loop diagrams are

easily comparable to more general archetypes by analyzing the fundamental loop

structure. If the same loop structure is found, the more granular archetype can

then be said to be a more specialized version of the general archetype.
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Table 3.5: First ten lessons identified as unintended consequences in a total of 381
lessons. Detailed information about each lesson is available from the NASA LLIS
database [1].

No. Description Lesson No.
1 Thermal Control System blankets 2716
2 Aligning system development models 24502
3 Liquid hydrogen tank 5004
4 Aircraft tow incident 884
5 Hold-down strap problem 631
6 Fan screen placement problem 628
7 SOFIA tow incident 857
8 KAO bulkhead fit problem 928
9 Test procedure deviation 1601
10 Sheet metal handling 1032

3.4.2 Results and Analysis

Approximately 18% of the lessons in the database, for a total of 381 lessons, are

identified as being unintended consequences. The first ten of these lessons are

given in Table 3.5. The lessons that are not unintended consequences may describe

failures of the main effect. Others describe successes rather than adverse events.

Finally, other lessons do not contain sufficient information to determine whether

an unintended consequence is present. For an initial analysis of the breadth of

topics in the 381 identified lessons of unintended consequences, topic modeling

is performed. Specifically, a goodness of fit of latent Dirichlet allocation (LDA)

models is used. This analysis finds forty topics in the lessons containing unintended

consequences, given in Fig. 3.5 along with the probability of each topic occurring.

This analysis confirms that a breadth of topics is studied, making this data set

suitable for archetype identification. This is because archetypes describe behavioral

patterns occurring in different contexts, so it is desirable for the data set to contain

many different situations.

Inter-rater reliability, as measured using Krippendorff’s alpha, is found to be

0.7239, where a value of 1 indicates perfect agreement. Krippendorff’s alpha in

this research measures the agreement between the clusters found from ratings of

two different raters and the data is treated as nominal. Krippendorff’s alpha is
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Figure 3.5: Probability of observing each topic in the unintended consequence data
set illustrating breadth of topics.
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Table 3.6: Krippendorff’s alpha for inter-rater reliability of each risk factor.

Risk Factor Krippendorff’s Alpha
Complexity 0.92
Coupling 0.93
Human-Machine Interaction 0.80
Integration into an Existing System 0.99
Lack of Isolation or Protection 0.89
from Environment
Scale of Effect 0.78
Decentralized Decision Making 0.60
Centralized Decision Making 0.73
Time Dependency 1.00

also computed by risk factor, treating the data as interval data. These results are

given in Table 3.6. Decentralized decision making has a relatively low inter-rater

reliability, indicating that it may require further definition and clarification for

future research. Other risk factors including integration into an existing technology

and time dependency, however, were particularly well agreed upon.

A self-organizing map of dimensions 10×10 is used. This results in the identifi-

cation of sixty-six archetypes, with a mean cluster silhouette coefficient of 0.9699.

The occurrences of the archetypes are given in Fig. 3.6. As in Fig. 3.6, many

of the archetypes occur infrequently, i.e. their probability of observation is low.

At least in this data set, these archetypes are considered rare. This may imply

that these archetypes are unlikely to be anticipated due to a lack of relevant prior

experience. A larger scale study is necessary to verify this finding.

Additionally, Table 3.7 provides the relative influence of each of the risk factors

in the data set. Influence of a risk factor is measured as the sum of all its ratings in

the study. The most influential risk factor is coupling. Interestingly, decentralized

decision making is the second most influential risk factor, while centralized decision

making is the second least influential risk factor. This implies a potential design

rule: centralize decision making in order to prevent more unintended consequences.

Further research is needed to verify this finding across larger data sets.

The identified archetypes contain between one and four risk factors, roughly

normally distributed, as shown in Fig. 3.7a. Therefore, only 11%–44% of the
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Table 3.7: Risk factor influence in the dataset, ranked by sum of ratings across all
lessons.

Risk Factor Sum of Ratings
1 Coupling 94.7
2 Decentralized Decision Making 86.7
3 Lack of Protection or Isolation 50.3

from Environment
4 Integration into an Existing System 47.1
5 Human-Machine Interaction 36.5
6 Scale of Effect 21.4
7 Complexity 17.0
8 Centralized Decision Making 14.3
9 Time Dependency 12.9

(a) Histograms of risk fac-
tors per cluster.

(b) Histogram of lessons per
cluster.

Figure 3.7: Histograms of archetype data.
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risk factors are required in order to fully describe the formation of an unintended

consequence, implying that the archetypes are relatively well differentiated. As

shown in Fig. 3.7b, most archetypes describe only a small number of lessons.

This, along with Fig. 3.6, implies that the data set contains rare archetypes.

Causal loop diagrams for one lesson from five different archetypes are given

in Table 3.8. These models describe how risk factors contribute to the formation

of unintended consequences. As an example, Lesson 18 describes how Human-

Machine Interaction, Coupling, and Complexity contribute to the unintended con-

sequence, which is that Retainer Usage causes Undetected Cracks. As demon-

strated in Table 3.8, each of the lesson CLDs is a derivative of one of the high level

system archetypes. This is easily demonstrated by comparing the loops between

the general archetypes and lesson CLDs in Table 3.8. This finding verifies the con-

sistency between the causal mechanisms that generate unintended consequences

more generally and those at work in the lesson CLDs. The lesson CLDs, however,

are more granular and specialized because they include risk factors. In Lesson

1333, for instance, Lack of Protection or Isolation from Environment creates the

conditions under which Radiation Vulnerability will increase. In other words, it

creates a bifurcation in which COTS Hardware Usage increases Radiation Vulnera-

bility. Without this risk factor, COTS Hardware Usage may not increase Radiation

Vulnerability, or at least not to the degree that it would affect Mission Success.

This finding implies that the identified archetypes of unintended consequences are

specialized versions of the general archetypes.

This research has identified sixty-six archetypes of unintended consequences –

significantly higher than the existing number of archetypes of unintended conse-

quences. This finding is likely due to the use of machine learning on a large data

set. Machine detection enables the processing of large amounts of lessons which

would be infeasible for a human to model and process. The identified archetypes

are also more specialized than some of the existing archetypes. This means, nec-

essarily, that they are also less generalizable. Each set of archetypes, the more

general and the more specific, is useful depending on the application.
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Table 3.8: Causal loop diagrams of five lessons, each from a different archetype.
One of these archetypes is a specialized case of the more general, well-known
shifting the burden archetype. Four are specialized cases of fixes that fail.

Shifting the Burden
General Archetype Lesson CLDs

(a) CLD of lesson 2716 with
risk factor coupling=1.

Fixes that Fail
General Archetype Lesson CLDs

(b) CLD of lesson 1607 with
risk factors complexity=0.2,
coupling=0.2, integration into
an existing system=0.6.

(c) CLD of lesson 18 with risk
factors complexity=0.2, cou-
pling=0.2, human-machine in-
teraction=0.6.

(d) CLD of lesson 884 with risk
factors human-machine interac-
tion=0.4, decentralized decision
making=0.6.

(e) CLD of lesson 1333 with
risk factor lack of protec-
tion or isolation from envi-
ronment=1.
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An interesting observation from this study is the risk factors that are more or

less influential in producing unintended consequences. Specifically, decentralized

decision making, much more than centralized decision making, is associated with

the formation of unintended consequences. This finding is of particular concern

considering the decentralized systems such as the Internet of Things, which are

becoming more widespread. Research on risk factors that are likely to produce

unintended consequences may be useful for improving design strategies surrounding

the prevention or mitigation of unintended consequences. Additionally, some of the

risk factors identified from the database correspond to the propositions in Section

3.3. Specifically, integration into an existing system, which is one of the risk factors

identified, has a clear correlation to Proposition 2, which is related to the novelty

of a design.

3.5 Chapter Summary

In understanding the structural characteristics of robustness, this chapter begins

with a high-level view of a system and other systems with which it interacts. At this

level, system dynamics models enable an assessment of the structure of the system.

Patterns and characteristics of robustness are explored using archetypes of unin-

tended consequences. The approach utilizes a scheme for human raters to encode

semantic descriptions of unintended consequences such that clusters are identifiable

using machine learning. These clusters are then modeled using system dynamics

and interpreted as archetypes of unintended consequences. Sixty-six archetypes are

identified, compared to the small existing number of archetypes. The archetypes

are verified to be specialized versions of existing, high-level archetypes of unin-

tended consequences. In general, archetypes are useful as tools to test various

dynamic theories of adverse events. Given a number of identified risk factors, their

associated archetypes can be used as risk assessment tools in order to identify

potential hazards that can be incorporated into, for example, an FMEA.

This section primarily investigates side effects of systems on other systems.

Some of the unintended consequences studied in this chapter, however, occur be-
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tween subsystems of highly complex, large scale systems, rather than within a

system of systems context. In other words, some unintended consequences are

perturbations of one subsystem on another subsystem – meaning they occur at a

system level rather than at a system of systems level. At this level, it is possible

to investigate how system architectural decisions affect fragility. The second re-

search question – explored in the next chapter – addresses the impact of system

architecture on fragility.
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Chapter 4: Identifying Robust Architectures for Complex

Engineered Systems

This chapter addresses the second core research question: which system topologies

are most vulnerable to failure? A network-based approach is taken in order to

analyze vulnerabilities in complex engineered systems. The content of this chapter

was published in the Journal of Mechanical Design and in the Proceedings of the

2018 International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference and was cowritten by Hannah S. Walsh,

Andy Dong, and Irem Y. Tumer [110, 111].

4.1 Motivation

Engineering design utilizes a number of design rules and principles. Examples of

the use of design rules include axiomatic design, in which the independence axiom

states that functional requirements should be independent and the information

axiom states that the design with the lowest information content should be selected

[112]. By the principle of simplicity, a design should be explicitly simple, and any

necessary complexity should be intrinsic [113]. Using more elements than needed

improves reliability, according to the principle of redundancy [114] – although, the

system topology also plays a significant role, as is explored in this research.

One design principle of particular interest is modularity. In general, modu-

larity refers to the division of a system into smaller parts, usually with tighter

interconnectivity within modules than between modules. Modularity can be de-

fined more specifically according to the context. Modularity in production aims

to manufacturing components separately in order to streamline production [115].

Manufacturing modularity considered the dependencies related to manufacturing

[116]. Modularity in use enables freedom for the end user to customize their prod-
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uct by selecting from a set of modules according to their own needs [115], such

as purchasing a mouse, keyboard, and computer from separate companies. In this

work, however, the focus is modularity in design, also known as modular design.

In modular design, systems are divided into subsystems in which the interfaces

between subsystems are well defined [115, 117]. System modularization can be

accomplished by dividing a system into subsystems during the design process. Ad-

ditionally, modules can be identified using the system’s specified architecture [118].

Ideally, modules should have minimal interactions with other modules [119].

Modularity is widely utilized in system design, especially for management of

complex products and systems. However, by modularizing a system and study-

ing the behavior and properties of the modules separately, it is often difficult to

trace emergent behaviors that arise from the interaction between modules. While

modularity-based approaches are convenient for dividing work on a large-scale

project, issues can occur when the system is integrated later in the design process,

at which point it is more difficult and more expensive to make design changes.

Often, emergent behaviors are not identified until the integrated system is tested.

This can lead to unexpected failure modes and underperformance. In this chapter,

the impact of modular architecture on system robustness is considered. That is,

are modular systems more or less robust than less modular systems?

4.2 Background

In this section, the literature on two topics will be reviewed. First, modularity and

its seemingly paradoxical relationship with robustness will be reviewed. Second,

network theory and its use in modeling and analysis in complex engineered systems

will be reviewed.

4.2.1 The Paradox of Modularity

High degree of modularity offers a number of benefits in system design [120].

For example, modularity enables the parallel completion of design and produc-
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tion [117], reuse of components in other products [120], and change of components

over the product life cycle [117]. Additionally, modularity enables failed compo-

nents to be swapped out for new components, rather than replacing the entire

systems. The same is true if there is a design flaw in one module. Finally, mod-

ularity enables the management of complexity by dividing a large-scale complex

task into smaller, more manageable tasks [117]. These benefits can ultimately save

cost [121]. However, there are some concerns regarding the universal applicability

of modularity as a design principle. Systems with significant intermodule inter-

actions may require significant design work, negating the benefits of modularity

[122]. Further, systems with significant technical constraints have been found to

have more integral architectures [121]. This means that it may become necessary

to violate modularity when performance is critical [121].

One concern about modularity that is of particular interest in this work is the

relationship between modularity and robustness. In robust systems, performance

is minimally affected by variation in environmental conditions, faults, or input

parameters [123] – all of which are sources of uncertainty that affect a system

throughout its life cycle. [124]. Robustness is particularly important in safety

critical systems in which significant variations in system behavior can put lives

and property at risk; unfortunately, many of these same systems, such as many

aerospace systems, are the same systems that benefit from the principle of mod-

ularity. Findings on the relationship between modularity and robustness have so

far been inconclusive. Some authors argue that modularity increases robustness

because faults will be relatively well contained within modules [125, 126], as in the

case of cascading failures [127]. Other evidence suggests that modularity decreases

robustness [127, 128]. Consider a conceptual example. A targeted attack on a

bridging node (connection between modules) is likely to cut off the flow of infor-

mation entirely between two modules, as in the left hand model in Fig. 4.1. In

the right hand model in Fig. 4.1, however, the higher coupling between modules

means more connections to absorb a fault [129]. Thus, this conceptual exercise

leads to the hypothesis that robustness and modularity are negatively correlated.
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module 1

module 2

module 3 module 4

module 5

module 6

module 7 module 8

Figure 4.1: Left: conceptual model of a highly modular system. Right: conceptual
model of a less modular system. If the flow between module 2 and module 4
were removed, those modules would no longer be connected. However, if the
flow between module 6 and module 8 were removed, the modules would still be
connected.

Beer’s string of pearls analogy can also be used to describe this concept [130].

Pearls strung together in a necklace are vulnerable to failure since breakage of a

single link causes the entire necklace to unravel, whereas pearls are arranged in a

more integrated structure in which every pearls is connected to every other pearl

are more robust since the breakage of a single link would leave the pearls intact

[130].

However, existing findings are inconclusive, in part due to their spanning across

different disciplines [129, 125] and, perhaps more importantly, due to varying types

of perturbations used in the studies [129, 127]. Further, in engineering, failures

can be viewed from component, functional, and/or behavioral perspectives. Many

studies on modularity in engineering focus on architectural or functional perspec-

tives, whereas many robustness approaches rely on behavioral simulation. There-

fore, it can be challenging using conventional approaches to test such a relationship.

Thus, it is unclear whether the relationship between modularity and robustness

varies based on this modeling perspective.

In addressing this question of modularity and robustenss, this work focuses on a

system’s response to random injected faults using a network-based approach based
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on the developments of the previous chapter. The system’s robustness and mod-

ularity are measured using various network-based representations of the system.

Analysis of robustness and modularity using the same network models enables a

consistent and less biased comparison of robustness and modularity as compared to,

for example, comparing a system’s architectural modularity from a design structure

matrix (DSM) to its robustness as computed through a Monte Carlo simulation,

which rely on separate underlying models. Three different systems are represented

using four different network representations, each representing a different aspect

of the system’s architecture and behavioral morphology.

4.2.2 Network Theory

This chapter utilizes network theoretic modeling and analysis in order to identify

the topological role of vulnerable system elements. Network theory provides a num-

ber of powerful computational tools for identifying key features and interactions

within such systems. These tools enable efficient analysis of large-scale complex

systems. In this section, network theory and the use of networks in modeling and

analyzing engineered systems will be reviewed.

The origin of the study of networks is often traced to Euler’s famous 1736

solution to the Königsberg bridge problem. As described by Barabási [131], in the

city of Königsberg, Prussia (modern day Kaliningrad, Russia), there were seven

bridges connecting four land masses separated by a river. At the time, people in

the city undertook the challenge of attempting to cross all seven bridges in one

walk of the city without crossing any bridge more than once; however, no-one could

find such a path across the bridges [131]. Euler, however, realized that the only

relevant feature of the problem was the sequence of bridges crossed, rather than

the path through the land area, and that the problem could be reduced to what

we now recognize as a network, or graph, in which nodes represent land area and

edges represent bridges [131]. In the modern language of network thinking, Euler

realized that it is the connectivity of the network that is important rather than

the properties of the nodes. Based on his network representation Euler realized
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that the degree, or number of connections, of the nodes in the network determined

whether or not such a walk was possible, and he showed that such a path is only

possible if there are exactly zero or two nodes with odd degree [131]. A path

through all bridges in the city without repeating a single bridge was impossible

unless another bridge were added [131]. Solving this problem in such a manner is

often cited as the origin of network thinking.

Subsequent significant developments to network theory included the work of

Erdős and Rényi, who proposed the idea of a random graph [132]. In a random

graph, all nodes have equal probability of connections. This means that its degree

distribution, which is a histogram showing frequency of degrees, or numbers of

connections, of all the nodes in the network, has a bell-curve shape. However, very

few, if any, truly random graphs are found in nature. Most graphs representing

phenomena found in the real world display some degree of clustering. For this

reason, other models such as scale-free networks and small world networks are often

used. Scale-free networks have a degree distribution following a power law [133].

In small world networks, the distance between nodes is related to the logarithm of

the number of nodes in the network [134].

Complex networks are networks with large numbers of nodes arranged into

irregular structures, often evolving over time [135]. The structure of complex net-

works can be characterized by certain network metrics such as node degree, which

is the number of connections of a node, and network diameter, which is the longest

path between nodes in a network [135]. Complex networks are incredibly useful

for modeling, visualizing, and analyzing complex systems due to their represen-

tational and computational power, particularly at scale. Subsequently, modeling

and analyzing natural phenomena using complex networks has led to insights in

various domains including social networks [136], the world wide web [137], and

biology [138, 139].

In engineering design, network theory has been used to analyze system mod-

ularity [140], predict customer responses to technological changes [141], analyze

the effects of design changes [142], and analyze the network structure of product
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development processes [143]. Applying network theory to the analysis of complex

engineered systems is based on the assumption that complex engineered systems

can be modeled as complex networks. The most common justification for this as-

sumption is that there are meaningful similarities between complex networks and

complex systems [144]. In particular, there is a relationship between structure and

function in complex networks, much as there is in complex systems.

Much as connectivity affects how information can spread through social net-

works [145], the topological features of engineered systems affect their robustness,

modularity, performance, maintainability, and other aspects. This work is par-

ticularly focused on the relationship between an engineered system’s topological

structure and its robustness. Specifically, this work exploits the similarity between

the attack tolerance of complex networks and the robustness of engineered systems.

This is possible because the structure of networks is relatable to their response to

faults and failures, much as some engineered systems are more robust than others.

For example, the spread of a contagion through a biological network is much like

failure propagation in an engineered system [146]. A common way of representing

failure in complex networks is by attacking or removing nodes, which results in the

fragmentation of the network into smaller connected components (parts). These

attacks can be either random or targeted, where targeted attacks generally focus

on high degree nodes. Networks with different structures tend to resist certain

types of attack differently [147, 148]. In network modeling of engineered systems,

this node removal or attack mirrors component degradation or failure, and the

subsequent fragmentation of the network represents loss of functionality.

Previous work has already developed the fundamental concepts and mathe-

matics for representing engineered systems as networks [146, 149, 150]. However,

many of the approaches presented thus far have focused primarily on architec-

tural representations of the system, abstracting or neglecting important functional

and behavioral relationships. Component architectural models often make varying

assumptions as to what designates a connection between components. Typically

physical connections count, but architectural models make varying assumptions
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about other types of connections, such as heat transfer. In this work, the robust-

ness of network models will be considered from a behavioral perspective as well as

an architectural perspective. This will enable the identification of vulnerabilities –

the ultimate goal of this robustness research, and the one that directly addresses

the research question – from multiple perspectives.

4.3 Methodology

In this work, network-based methods are used to model the systems, analyze their

modularity, and analyze their robustness. Similar modeling techniques to those

used in Chapter 5 are used in this work. The difference is that in this work, both

architectural and behavioral characteristics are modeled individually as well as

within the same network. Two metrics – a graph distance based principle and a

linear degradation principle – are used in this chapter to analyze the robustness of

each network representation.

4.3.1 Modeling Complex Engineered Systems as Networks

The systems used in the study are modeled using four different network representa-

tions: one purely architectural, one purely behavioral, and two that include aspects

of both. The architectural (component) network models the system’s components

and their connectivity, similarly to in Section 5.3, except with undirected edges.

In this network, edges represent physical interfaces between components. The be-

havioral network models functions and parameters, as in Section 5. The other

two types of networks have not yet been introduced in this work. One includes

components and parameters. The other includes components and functions. The

component network is unipartite (only one type of node), while the other three net-

works are bipartite (two types of nodes). The bipartite networks are transformed

to unipartite-like networks for analysis [18].

The method of network construction is illustrated using a simplified jet en-

gine model. Three of the main components of the jet engine are the compressor,
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compressor

combustion chamber

turbine

(a) Component network

compressor

compressor pressure ratio

pressure after compressor

pressure before compressor

combustion chamber combustion chamber pressure ratio

pressure after combustion chamber

turbine turbine pressure ratio

pressure after turbine

(b) Component-parameter network

F1

compressor pressure ratio

pressure after compressor

pressure before compressor

F2 combustion chamber pressure ratio

pressure after combustion chamber

F3 turbine pressure ratio

pressure after turbine

(c) Function-parameter network

F1 compressor

combustion chamberF2

F3 turbine

(d) Component-function network

Figure 4.2: Network models for simple jet engine example at high degree of ab-
straction.
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compressor combust. ch. turbine( )compressor 0 1 0
combustion chamber 1 0 1

turbine 0 1 0

Figure 4.3: Adjacency matrix for component network. This matrix is square and
symmetric since the network is uni-partite.

combustion chamber, and turbine. At a high level of abstraction, the jet engine

can be modeled as a network of these three components, as in Fig. 4.2a. In Fig.

4.2a, each component is a node. These nodes share an edge if there is a physical

interface between their corresponding components, such as the connection between

the compressor and combustion chamber. In the bipartite component-parameter

network, nodes can represent either components or parameters. For instance, the

compressor pressure ratio is a property of the compressor, so the compressor node

and compressor pressure ratio node are connected. As in all bipartite networks,

nodes of one type may only connect to nodes of the other type. A simple example of

the component-parameter network is given in Fig. 4.2b. In the function-parameter

network, Fig. 4.2c, functions and parameters are modeled as nodes. Parameter

nodes are connected to function nodes if they are involved in the completion of

that function. In the given example, the functions are changing the pressure across

each component. In each case, domain knowledge is used to build the first three

networks.

The final network, the component-function network given in Fig. 4.2d, can be

obtained by multiplying the adjacency matrix of the component-parameter net-

work and the inverse of the adjacency matrix of the function-parameter network.

Adjacency matrices for networks show the node connections in matrix form. Ad-

jacency matrices for unipartite networks are square and symmetric, as in Fig. 4.3.

These matrices have dimensions n× n where n is the number of nodes in the net-

work. Bipartite networks, in contrast, have rectangular adjacency matrices of size
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F1 F2 F3



compressor pressure ratio 1 0 0
pressure before compressor 1 0 0
pressure after compressor 1 1 0

combustion chamber pressure ratio 0 1 0
pressure after combustion chamber 0 1 1

turbine pressure ratio 0 0 1
pressure after turbine 0 0 1

Figure 4.4: Adjacency matrix for function-parameter network. This matrix is
rectangular since the network is bi-partite.

n×m, where n is the number of nodes of one type and m is the number of nodes

of the other type, as in Fig. 4.4. To generate the component-function network,

the component-parameter adjacency matrix (dimensions C × P , where C is the

number of components and P is the number of parameters) is multiplied by the

inverse of the function-parameter adjacency matrix (dimensions P ×F , where F is

the number of functions) in order to obtain an adjacency matrix with dimensions

C × F , the component-function matrix. In the case that some of the resulting

matrix elements are greater than one, which sometimes occurs when, for instance,

a component is associated with two parameters, these values are reduced to 1.

Using this method, the generation of the fourth network can be automated using

knowledge of two other networks.

4.3.2 Q-Modularity

Modularity metrics are typically applied to component-based representations of

system architecture. Examples include Whitney Index (WI), Change Cost (CC),

and Singular Value Modularity Index (SMI) [151]. WI considers the number of

interactions among elements of the system [151], whereas CC uses a visibility or

reachability matrix to measure the percentage of modules affected by a change in
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one modules [151]. SMI is computed from the design structure matrix (DSM) and

considers singular value decay structure [151, 152]. More recently developed mea-

sures include metrics that consider the distribution of complexity in a system [153].

In complex networks, Q-modularity is typically used. Q-modularity considers the

strength of intra-module connections and of inter-module connections in determin-

ing modularity, rather than the number of modules in the network. In networks,

modules are sometimes called communities. Modules represent groupings of nodes

that generally have emergent properties. In the network-based models of engi-

neered systems used in this research, a module can be interpreted as a component

or functional sub-unit, depending on the specific network representation.

The process for computing Q-modularity begins with the identification of mod-

ules in the network, which is typically done using a community detection algorithm.

Modules are identified using the approach outlined in Section 5.2.2. Modularity

can then be computed using Eq. 5.16. Q-modularity is a particularly useful mea-

sure of modularity for this research because it can be used on various different

network representations of systems (architectural, functional, behavioral, etc.).

4.3.3 Network-Based Measures of Robustness

Typical approaches to robustness analysis include measuring the likelihood of ful-

filling intended functionalities even in the presence of external perturbations [154].

These approaches tend to involve the representation of variation in input param-

eters and quantifying the effect of this variation on system outputs [154]. One

example of such an approach is a Monte Carlo simulation in which standard de-

viation of the output distribution is used to measure robustness [155]. Other ap-

proaches include measuring the probability of fulfilling intended product functions

in the presence of input variation [154]. Such approaches indicate the probabilities

of fulfilling certain functions [154, 156].

Recent advances in network-based representations of complex engineered sys-

tems have measured robustness in using a conceptually different approach. Ro-

bustness is generally defined as a property of systems with little variation in perfor-
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mance even in the presence of faults or other variation in input parameters [123].

That is, performance variation that results from faults is relatable to robustness.

Robust systems will continue to perform, at least to some degree, even if, for in-

stance, a fault reduces the coefficient of friction of a car tire. In network science,

degradation of performance of a part is understood as node attack or removal.

In systems, when the performance of a part is degraded, the performance of the

system is degraded as well. For example, when a car tire is worn, the handling ca-

pabilities of the car may worsen. Similarly, in networks, when a node is attacked,

it affects the topological structure of the network. Conceptually, the network’s

resistance to attack is analogous to the automobile’s ability to maintain its per-

formance, to some degree, even in the presence of faults. This loss of performance

even after a fault, which is related to the system robustness, is captured using

network topological concepts. On the other hand, other types of failures are better

captures using cascading failures, such as a worn tire causing alignment problems,

which causes problems with the steering mechanism.

4.3.3.1 Average Shortest Path Length

Certain network metrics can be used to measure network robustness. The first,

average shortest path length (ASPL), is an a priori measure of network robustness.

That is, it can be used to assess a network’s resistance to attack without directly

simulating network attack. ASPL is the mean of the shortest distances between

all pairs of nodes in the network. Networks with low ASPL tend to be more robust

[157] because nodes are still reachable within a relatively short distance even if

some paths are attacked. In the string of pearls example, the robust string with

every pearl connected to every other pearl has an ASPL equal to one, whereas the

standard string has an ASPL greater than one (assuming the string has greater

than two pearls). ASPL is defined in Eq. 4.1 [158], where N is the number of

nodes and d is the shortest distance between nodes i and j as identified using

Dijkstra’s algorithm. This method of measuring robustness is efficient and can be

used in any of the networks presented. However, note that the bipartite networks
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are treated as unipartite-like networks in computing this metric [18].

ASPL =
1

N2

∑
ij

dij (4.1)

4.3.3.2 Robustness Coefficient

The second network-based measure of robustness involves the simulation of node

attack. Specifically, robustness coefficient (RC) measures the changing size of the

largest connected component in the network as nodes are systematically attacked

[125]. In robust networks, the largest connected component decreases in size more

slowly than in less robust networks. Robustness coefficient is computed according

to Eq. 4.2, where S is the size of the largest connected component after k nodes

have been attacked. RC falls between 0 and 100.

RC =
200

∑N
k=0 Sk − 100 S0

N2
(4.2)

4.3.4 Systems Studied

Three systems are used in this study: a bicycle drivetrain, an automobile drive-

train, and an aircraft. These particular systems are selected in order to include

various system sizes (see Table 4.1), degrees of compelxity, and architectures. The

four different network models are generated for each system. Characteristics of

these networks are summarized in table 4.2. Network diameter is the longest of

the shortest paths between all nodes in the network. To study whether each net-

work contains a sufficient degree of granularity, a sensitivity analysis is performed

in order to test the sensitivity of the network’s Q-modularity to random node dele-

tion. These results are summarized in Table 4.3. The small modularity changes,

especially for the larger models, indicate that an acceptable degree of granularity is

used in the modeling process. The bicycle model is more sensitive to node deletion,

which is expected since it is a smaller network overall. The degree distributions
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Table 4.1: Sizes of systems used in case study. Number of nodes in each network
can be derived from this information. For example, the aircraft function-parameter
network has 34 function nodes plus 81 parameter nodes for a total of 115 nodes.

Components Functions Parameters
Bicycle Drivetrain 10 3 8
Automobile Drivetrain 19 8 23
Aircraft 375 34 81

Table 4.2: Network characteristics.

Component Component Function Component
-parameter -parameter -function

Minimum degree
Bicycle 1 1 1 1
Automobile 1 1 1 1
Aircraft 1 3 1 17

Maximum degree
Bicycle 3 4 4 8
Automobile 6 7 5 10
Aircraft 58 375 13 375

Network diameter
Bicycle 7 11 6 4
Automobile 8 7 10 5
Aircraft 18 4 10 4

of the networks (histograms of node degrees) are also analyzed in Fig. 4.5. The

variety of characteristics in the dataset reduce the probability of bias in the results.

All networks are visualized in Fig. 4.6.

The first system considered, and the simplest one, is a bicycle drivetain. This

model is the smallest at 10 components, 8 parameters, and 3 functions, as given

in Table 4.4. The second system is larger at 19 components, 23 parameters, and

8 functions. This is an automobile drivetrain, presented in work by Haley et al.

[18]. The third model is the largest – a high-level model of an aircraft in steady,

level flight. The models for this system are the most detailed at 375 components,
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Figure 4.5: Degree distributions for each network model used in the case study.
Each column shows different network representations of the same system. Each
row shows different systems represented using the same combination of component,
parameter, and function information.
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Table 4.3: Percent change in Q-modularity due to node removal, averaged over
independent removal of each node in the network. Low percentages show that the
Q-modularity estimates are not significantly impacted by choice of model granu-
larity.

Component Component Function Component
-parameter -parameter -function

Bicycle 17% 3% 11% 15%
Automobile 3% 1% 2% 3%
Aircraft < 1% < 1% 2% < 1%

Table 4.4: Components, functions, and parameters for the bicycle model.

Components Functions Parameters

Pedal F1: Fcrank =
Fapplied×Rcrankarm

Rchainring
Fcrank: force from crank arm

Crank arm F2: Fcogset = Fcrankarm Fapplied: force applied to pedal

Chain F3: Fpropel = Fcogset×Rcogset

Rrearwheel
Rcrankarm: length of crank arm

Chain rings Rchainring: radius of chain ring
Cogset Fcogset: force from cogset
Rear derailleur Rcogset: radius of cogset
Rear spokes Rrearwheel: radius of rear wheel
Rear hub Fpropel: force propelling bicycle
Rear rim
Rear tire

81 parameters, and 34 functions. Rib and spar connectivity is determined using

work by Perry as reference [159]. The structural arrangement of the fuselage is

determined using Roskam [160] and Gudmundsson [161]. In the behavioral model,

thrust is equal to drag and lift is equal to weight for steady, level flight. The

equations for lift, weight, thrust, and drag are as described by Roskam [162].
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Figure 4.6: All twelve models used in the study. Each column shows different
network representations of the same system. Each row shows different systems
represented using the same kind of network.
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Figure 4.7: Plot of ASPL versus modularity showing a negative correlation. Higher
modularity is associated with lower robustness (higher ASPL). Points are labeled
by network kind: C (component), CF (component-function), CP (component-
parameter), and FP (function-parameter).

4.4 Results and Analysis

The Q-modularity and robustness of the sampled systems are plotted in Fig. 4.7,

indicating a positive correlation between modularity and ASPL with a linear cor-

relation coefficient R = 0.8869 (p < 0.001). A quadratic model also fits the data

with R2 = 0.8910. Since high ASPL means lower robustness, this result is inter-

preted as a negative correlation between modularity and robustness. Since this

result is found using four different network models and three systems, it is unlikely

to be exclusive to any of the types of networks used in this study. There is also a

negative correlation between modularity and robustness when RC is used instead

of ASPL (R = −0.7733, p = 0.003), as in Fig. 4.8.

Interestingly, Table 4.5 indicates that modularity estimates are significantly

different for the different network models of the same system. This finding sug-
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Figure 4.8: Plot of RC versus modularity showing a negative correlation. Points
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Table 4.5: Q-modularity in each model. Larger difference in Q-modularity signals
that the error in modularity estimation is higher.

Component Component Function Component Max
-parameter -parameter -function difference

Bicycle 0.3550 0.5663 0.4650 0.3671 0.2113
drivetrain
Automobile 0.5952 0.6777 0.6621 0.4024 0.2753
drivetrain
Aircraft 0.7626 0.1932 0.6439 0.0340 0.7286
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gests that considering only a single perspective (architectural, functional, etc.) in

modularizing a system may lead to under- or overestimates of system modular-

ity. For instance, the component-parameter network is more modular than the

component network in both the bicycle and automobile. However, in the aircraft,

the component network is more modular than the component-parameter network.

This is likely due at least in part to a small number of very high degree nodes

in the aircraft component-parameter network, namely the load factor (the lift to

weight ratio). Because every component experiences stress due to load factor, this

node has a degree of 375, significantly reducing the modularity of the network.

Systems with large differences in modularity between models may present prob-

lems in modularizing the system. For instance, if the behavioral model is much

more integrated than the component model, behavioral interactions may compli-

cate interfaces between modules, reducing the benefits of modularity.

The finding that modularity is negatively correlated with robustness indicates

a design trade-off between the benefits of modularity and robustness. Further, the

findings on the differences in modularity between network models may indicate

that a system is “not as modular as they think” due to behavioral or functional

interfaces neglected by component-based assessments of modularity. This is a

particularly interesting considering that it is often desirable for there to be a one-

to-one mapping between structure and function [163]. The findings in this study

indicate that this one-to-one mapping may be difficult to attain, particularly for

systems with higher complexity. Importantly, these empirical results relate only

to the robustness of systems to random faults. They do not apply to systems

prone to cascading failures. Previous studies have indicated a possible connection

between cascading failures and modularity [126, 146] in that modular systems

are more resistant to cascading failures. This is likely because in highly modular

systems, faults are contained in modules. Further work is required to verify this

relationship between system modularity and other types of failure such as cascading

failure. Further, it should be noted that even in highly modular systems, it is still

possible to attain highly reliable systems using rigorous maintenance and highly
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proceduralized operation, as well as redundancy. These factors are not considered

in the robustness measures in this research. This means that even highly modular

systems can still be very safe.

4.5 Chapter Summary

This chapter explores the use of network metrics to examine the benefits and

drawbacks of modularity as a design principle, specifically as it relates to sys-

tem robustness. The new findings indicate a trade-off between modularity and

robustness in engineered systems. Further, the findings indicate discrepancies be-

tween behavioral and architectural modularity, potentially complicating processes

for modularizing systems. Thus, the benefits of increasing a system’s modularity

should be carefully weighed against desired robustness and required health man-

agement systems, and modularization should not be considered a universal design

principle. Given the usefulness and ubiquity of certain design principles, it is essen-

tial to examine their rationality. Understanding the use case of design principles

can help designers create safer and more innovative systems in the future.

The new finding that modularity influences robustness implies that the inter-

faces between modules are especially important to robustness analysis. When there

are more variables that interface between modules, there are more pathways for

information to travel between modules from a network perspective. These vari-

ables serve as essential pathways for information spread – and for maintaining

performance even when there are faults present. This leads to the hypothesis that

certain system elements, or nodes from a network perspective, are more significant

contributors to fragility than others, based on their structural role in the system.

This is investigated in the following chapter.
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Chapter 5: Identifying Vulnerable Elements in Complex Engineered

Systems

This chapter addresses the first research question: what is the topological role

of the variables that are key to controlling a system’s robustness to failure? To

this end, the behavioral aspects of the system – i.e. its governing equations –

are modeled and analyzed as an undirected network in order to identify critical

variables. This research was published in Design Science and in the Proceedings

of the 2017 International Design Engineering Technical Conferences & Computers

and Information in Engineering Conference and was cowritten by Hannah S. Walsh,

Andy Dong, and Irem Y. Tumer [164, 165]. As a further elaboration of this research

question, a methodology is also proposed for identifying structurally important

nodes in a particular system architecture, Structural Consequence Analysis (SCA).

This proposed method is effectively a more accessible version of a fault tree that

also takes into consideration the cost of component failures and can be implemented

earlier in the design process. This research was published in the Proceedings of

the 2019 International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference and was cowritten by Hannah S. Walsh,

Mohammad Hejase, Daniel Hulse, Guillaume Brat, and Irem Y. Tumer [166].

5.1 Motivation

System wide vulnerabilities can be difficult to detect in large-scale, complex engi-

neered systems. Obtaining accurate behavioral models for the purposes of perform-

ing a sensitivity analysis is difficult in complex systems due to under-recognized

vulnerabilities. Specifically, these approaches tend to struggle to capture emer-

gent behavior that occurs due to the integration of different modules that are

often designed and modeled independently. Instead, this research utilizes network
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modeling to identify vulnerabilities, effectively using abstraction to study vulner-

abilities in systems. These vulnerabilities can be confirmed by observing patterns

in large quantities of network-based models of systems.

In this chapter, a behavioral network approach is used to identify vulnerabili-

ties in engineered systems. Specifically, general topological vulnerability patterns

are identified in behavioral network models of complex engineered systems. Be-

havioral networks represent the governing equations of a system using a network.

This representation, proposed in prior work [167, 18], is used to study robust-

ness by relating the local failure of nodes to the network’s structural degradation.

Robustness in this work is conceptualized as the system’s resistance to high-level

behavioral degradation, measured by the topological fragmentation of the behav-

ioral network, caused by faults injected in parameter nodes. This work utilizes

the modeling and robustness analysis approaches of this prior work in order to

identify bridging nodes as a generalized pattern of vulnerability in behavioral net-

work models of engineered systems. In other words, the hypothesis of this work

is whether the behavioral degradation of complex engineered systems is correlated

with faults in bridging nodes.

To test this hypothesis, an experimental study is constructed in which forty

engineered systems are modeled as behavioral networks. Behavioral networks are

selected in this study because, as shown in the previous chapter, more conventional

architectural networks do not always fully capture a system’s morphology. A net-

work robustness metric, average shortest path length (ASPL), is measured when

faults are injected into bridging and non-bridging nodes in each of these systems.

Fault injection is performed by adjusting the weights of the edges associated with

the node into which a fault is being injected, a form of node attack comparable to

the degradation of performance of the relevant parameter. In order to perform this

experiment, existing modeling approaches are also extended in order to describe

embedded behaviors and logical behavior.
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5.2 The Role of Bridging Nodes in Behavioral Network Models of

Complex Engineered Systems

Determining system sensitivity to variation in component performance in early

design aids in planning for mitigation strategies such as redundancy or health

management systems before major design decisions are made, ultimately saving

cost and time. This assessment can be challenging, however, especially in complex

systems. This section utilizes network based modeling and analysis of complex

engineered systems to enable computationally efficient analysis in early design.

While network models are ultimately relatively abstract models of the system,

they enable the analysis of the topological structure and behavioral morphology

of the system without the need for computationally expensive sensitivity analyses.

Additionally, their abstraction enables the analysis of large scale models – that is,

the entire system can be analyzed in one model, rather than relying on separate

subsystem-level models. This enables the assessment of emergent behavior that

may arise due to interaction between subsystems. This chapter results in the iden-

tification of bridging nodes as vulnerable system elements. Knowledge of bridging

nodes can be used as an a priori assessment of vulnerability during system design.

5.2.1 Conceptual Proof

In the previous chapter, it was shown that modularity is negatively correlated

with robustness. This finding implies that the interfaces between modules may be

particularly influential in controlling a network’s robustness. Thus, in this chap-

ter, the role of bridging nodes in controlling a system’s robustness is investigated.

Before presenting the experiment, a conceptual proof will be used to show how net-

work attacks (changes in edge weights associated with a node, i.e. fault injection)

on bridging nodes tend to induce larger changes in ASPL than in non-bridging

nodes. The definition of ASPL is the average of all of the distances (shortest

paths) between each pair of nodes in a network. ASPL is computed according to

Eq. 5.1 [158], in which n is the number of nodes in the network, d is the shortest
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Figure 5.1: Small example net-
work with ASPL = 1.

Figure 5.2: Small example net-
work with ASPL = 2.

distance between two nodes, and the indices i and j refer to individual nodes. Dis-

tance between a pair of nodes is computed by adding the edge weights of all edges

along the shortest path between the nodes. This concept is visualized in Fig. 5.1

and Fig. 5.2. In Fig. 5.1, the distance between each pair of nodes in the network is

one, i.e. all nodes are neighbors of each other. In contrast, in Fig. 5.2, some pairs

of nodes have longer distances between them, resulting in a higher ASPL.

ASPL =
1

n2

∑
ij

dij (5.1)

Given a pair of nodes i and j in a network, if the distance between node

i and node j decreases, the ASPL will decrease as well. In other words, local

changes to edge weights are detectable with ASPL. Specifically, given an attack

that decreases the edge weights associated with a node, the ASPL for a network

under attack is lower than the nominal network. Consider the changes in ASPL

for attacks on bridging and non-bridging nodes. Bridging nodes are nodes that

connect communities, i.e. have an edge between communities. Reducing the weight

of an edge between communities will shorten the paths between all nodes in these

communities, reducing the ASPL significantly. In comparison, a reduction in edge

weight between two nodes within a community is unlikely to have the same effect.
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Figure 5.3: Behavioral network
for voltage divider circuit with
bridging node highlighted.

Figure 5.4: Behavioral network
for voltage divider circuit with
non-bridging node highlighted.

This comparison is visualized in Fig. 5.3–5.4. The nominal ASPL of the network

(all edge weights equal to one) is equal to 8.059. Injecting a fault into a bridging

node (reducing the weights of its edges to 0.5) reduces the ASPL to 7.796. In

contrast, when a fault is injected into a non-bridging node, the ASPL is reduced

to 7.819. Therefore, a fault injected into a bridging node has a larger effect on the

degradation of network structure (and by extension the system behavior, because

this is a behavioral network) than a fault injected into a non-bridging node. In the

next section, a full experimental study will test this relationship with more nodes

and in larger networks.

5.2.2 Methodology

The methodology is summarized as follows. First, a set of forty engineered systems

are identified and modeled as behavioral networks. Second, the engineered systems

are modeled as behavioral networks. Third, for each network, each node is injected

with a fault and the resulting change in ASPL is measured. Fourth, in each

network, bridging nodes are identified. Finally, an independent samples t-test

with unequal variance is performed in order to test the hypothesis that bridging

nodes result in a higher change in ASPL when in a fault state than non-bridging

nodes. Each step will be detailed in the remainder of this section.
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5.2.2.1 Description of Systems Used

The systems are originally modeled in OpenModelica [168] in order to represent

their behavior. The forty systems used ranged in size from 33 to 1732 edges in their

behavioral network representation, as shown in Fig. 5.5. The systems represent a

range of different disciplines, including electrical, mechanical, fluid/heat transfer,

and magnetic, as in Table 5.2. Of forty total systems, thirty-eight are example

models from OpenModelica [168], one is a simple voltage divider circuit, and one

is synthetically generated. Table 5.1 provides high-level descriptions of each of the

forty systems. Additionally, degree distribution plots for four of the behavioral

networks, one from each disciplinary category, are given in Fig. 5.6a–5.7b. De-

gree distribution plots are histograms of the degree of nodes in the network and

reveal topological characteristics of networks and can be used to identify whether

a network is scale-free, random, or regular. All four networks roughly follow the

distribution of a homogeneous network, indicating that the networks are not par-

ticularly vulnerable to targeted attacks (attacks on vulnerable nodes).

Table 5.1: Descriptions of systems used in Section 5.

System Name Number

of Edges

System Description

1 Electrical analog

rectifier

335 B6 diode bridge, three-phase sinusoid

voltage, and DC current load

2 Simple triac circuit 263 Simple triac used in alternating current

circuit

3 AIMC DOL 1007 Asynchronous induction machine, squirrel

cage, and direct on line starting

4 AIMC inverter 878 Asynchronous induction machine, squirrel

cage, and ideal inverter

5 AIMS start 1617 Asynchronous induction machine, slipring

rotor, and resistance starting

Continued on next page
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Table 5.1 – Continued from previous page

System Name Number

of Edges

System Description

6 AIMC Steinmetz 943 Asynchronous induction machine, squirrel

cage, and Steinmetz connection

7 AIMC transformer 1732 Asynchronous induction machine with

squirrel cage, transformer supplies three-

phase voltage

8 AIMC YD 1189 Asynchronous induction machine and

squirrel cage, Y-D starting

9 SMEE generator 1246 Excited synchronous induction machine

used as a generator

10 SMEE load dump 1459 Excited synchronous generator, loaded

with generator

11 SMEE rectifier 1203 Excited synchronous generator, loaded

with rectifier

12 SMPM current

source

1280 Synchronous induction machine with per-

manent magnets fed by current source

13 SMPM inverter 1092 Permanent magnet synchronous induction

machine and ideal inverter

14 SMPM voltage

source

1435 Synchronous induction machine with per-

manent magnets fed by voltage source

15 SMR inverter 1064 Synchronous induction machine, reluc-

tance rotor, and ideal inverter

16 Multiphase rectifier 528 Diode bridge rectifier with star-connected

voltage source, line reactor, and DC bur-

den

17 Multiphase test

sensors

796 Sinusoid source loaded with resistor and

inductor

Continued on next page
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Table 5.1 – Continued from previous page

System Name Number

of Edges

System Description

18 Transformer YD 675 Y-D transformer with star-connected volt-

age source and load resistor

19 Transformer YY 665 Y-Y transformer with star-connected volt-

age source and load resistor

20 Cascode circuit 188 JFET cascode circuit

21 Electrical oscillator 341 Oscillator circuit with BJT transistors

22 Synthetic system 173 Test system with multiple mechanical

blocks

23 Heat flow, one mass 187 One hot mass cooling

24 Indirect cooling 435 Heat source dissipates heat with thermal

conductor and inner coolant cycle

25 Saturated inductor 185 Inductor with a saturated ferromagnetic

core

26 Accelerate 33 Demo moving a mass with predefined ac-

celeration

27 Grounded drive

train

117 Drive train with motor inertia, motor

torque, and grounded elements

28 Preload 318 Preload spool for hydraulic valve

29 Rolling wheel 84 Rolling wheel demonstrating coupling be-

tween rotational and translational compo-

nents

30 Sensors 84 Demo of sensors used for translational sys-

tems

31 Simple drive train 122 Drive train with motor inertia and motor

torque

32 Elasto gap 191 Demo model with elasto gap, springs, and

dampers

Continued on next page
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Figure 5.5: Sizes of systems studied.

Table 5.1 – Continued from previous page

System Name Number

of Edges

System Description

33 Parallel cooling 383 Cooling circuit, parallel branches

34 Pump and valve 280 Pump and valve cooling circuit

35 Pump drop out 203 Drop out of pump cooling circuit

36 Parallel pump drop

out

383 Drop out of pump cooling circuit with par-

allel branches

37 Simple cooling 203 Heat source dissipates heat with a thermal

conductor, coolant flow, and pump

38 Controlled temper-

ature

121 Demo of controlling temperature of resis-

tor

39 Heat transfer, two

masses

48 Conduction between two mass elements

40 Voltage divider 82 Voltage divider circuit
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Table 5.2: Characteristics of systems

System Category Number of Systems
Mechanical 8
Fluid/Heat Transfer 9
Magnetic 1
Electrical 22
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(a) Degree distribution plot for behavioral
network of indirect cooling system.
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(b) Degree distribution plot for behav-
ioral network of electrical multiphase
rectifier system.
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(a) Degree distribution plot for behav-
ioral network of simple drivetrain sys-
tem.
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(b) Degree distribution plot for behav-
ioral network of magnetic saturated in-
ductor system.
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5.2.2.2 Modeling Techniques

Behavioral information from OpenModelica is used to build behavioral networks

of each system. In general, it is also possible to use behavioral models from SysML

and Simulink rather than OpenModelica. When using OpenModelica, behavioral

information is obtained from the model instantiation information, which contains

the governing equations of the system. This information is exported to a text file

and processed with a text processing script in MATLAB in order to extract key

information about the functions and parameters of the system, which are used

to build the behavioral network. The nodes in a network behavioral represent

functions and parameters. The network is bipartite, such that functions and pa-

rameters are represented as different node types. In such a bipartite network,

functions may only connect to parameters and parameters may only connect to

functions via their edges. This modeling approach, detailed next, is based on the

approach proposed by Haley et al. [167, 18] and is extended in this work to include

a broader range of behaviors.

Standard Modeling Procedure Each equation in the set of governing equa-

tions obtained from the OpenModelica instantiation information is first assigned a

numbered function, e.g. F1–F10 for a set of ten functions. Next, each parameter

in a given equation is assigned as a parameter node, which shares an edge with

its corresponding function node. For instance, consider the example of the first

two functions from one of the systems used in the study, a rolling wheel. The

first two functions are F1 and F2, as provided in Eq. 5.2–5.3. By identifying the

parameters in Eq. 5.2–5.3, it is determined that there are four parameter nodes

connected to F1 and two parameter nodes connected to F2, as shown in Fig. 5.8.

F1 : inertia.J × inertia.a = inertia.f lange a.tau

+ inertia.f lange b.tau; (5.2)
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F1

inertia.J

inertia.a

inertia.flange_b.tau

inertia.flange_a.tau

F2

torqueStep.flange.tau

Figure 5.8: Network segment for basic BNA technique example from rolling wheel
system for Eq. 5.2–5.3.

F2 : inertia.f lange a.tau + torqueStep.flange.tau = 0.0; (5.3)

During the process of generating behavioral networks of the forty systems, it

is discovered that there are some behaviors that are not well-defined by existing

modeling techniques. Specifically, embedded behaviors and logical behavior, which

have specific mathematical manifestations in the OpenModelica instantiation in-

formation, are not well-defined by this process. Modeling them correctly is critical

to understanding the real behavior of these systems.

Modeling Embedded Behavior Embedded behaviors are represented math-

ematically with a function call. In the systems studied, the function calls are

sometimes used for a computation that is performed several times, or for a sub-
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system. Since embedded functions can sometimes be called several times, each set

of function outputs is unique, and should therefore be given a unique identifier.

For example, within a system’s set of governing equations, Eq. 5.4–5.8 define a

function and that function is called in Eq. 5.9. The two outputs are y and y0,

but these outputs are dependent on the values of inputs used, and it is possible

that those inputs are different each time the function is called. So, y and y0 must

be given unique identifiers each time the function is called. Each instance of the

function call is also given a new function node, for example F2 in Fig. 5.9.

function ToSpacePhasor (5.4)

input Real[3] x; (5.5)

output Real[2] y; (5.6)

output Real y0; (5.7)

end ToSpacePhasor; (5.8)

F1 : (electricalPowerSensor.i , ) = ToSpacePhasor(

{electricalPowerSensor.plug p.pin[1].i,

electricalPowerSensor.plug p.pin[2].i,

electricalPowerSensor.plug p.pin[3].i}); (5.9)

y({electricalPowerSensor.plug p.pin[1].i,

electricalPowerSensor.plug p.pin[2].i,

electricalPowerSensor.plug p.pin[3].i}) (5.10)
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F1

electricalPowerSensor.i_

y({electricalPowerSensor.plug_p.pin[1].i,
 electricalPowerSensor.plug_p.pin[2].i,

 electricalPowerSensor.plug_p.pin[3].i})

y0({electricalPowerSensor.plug_p.pin[1].i,
 electricalPowerSensor.plug_p.pin[2].i,

 electricalPowerSensor.plug_p.pin[3].i})

F2 electricalPowerSensor.plug_p.pin[1].i

electricalPowerSensor.plug_p.pin[2].i

electricalPowerSensor.plug_p.pin[3].i

Figure 5.9: Resulting network segment for function call example from SMEE gen-
erator system.

y0({electricalPowerSensor.plug p.pin[1].i,

electricalPowerSensor.plug p.pin[2].i,

electricalPowerSensor.plug p.pin[3].i}) (5.11)

Modeling Logical Behavior Another new modeling technique is introduced for

logical behavior, which is mathematically represented as discrete equations such as

if-clauses, when-clauses, and assert statements. In such a scenario, the parameters

in the condition of the if-clause are treated in the same manner as the parameters

in the body of the if-clause. That is, parameters in both the condition and the

body of the if-clause are modeled as parameter nodes and are connected to the

same function node. For instance, in Eq. 5.12–5.14, all parameters are connected

to the same function node as in Fig. 5.10.
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F1

out_p.m_leakBEcurrentIsGiven

out_p.m_c2IsGiven

out_p.m_leakBEcurrent

out_p.m_c2

out_p.m_satCur

Figure 5.10: Resulting network segment for if-clause example from electrical oscil-
lator system

if not out p.m leakBEcurrentIsGiven > 0.5 then (5.12)

out p.m leakBEcurrent :=

out p.m c2× out p.m satCur;
(5.13)

end if ; (5.14)
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5.2.2.3 Fault Injection

After the function and parameter nodes are identified for all forty systems, this

information is exported to Mathematica for the next portion of the methodology.

In particular, for each network, faults are injected into each node and the result-

ing change in ASPL (compared to the nominal i.e. non-faulted state of the net-

work) is measured. This value of interest is the ∆ASPL, computed as in Eq. 5.15,

where ASPL is defined according to Eq. 5.1. ∆ASPL is a relative measure of vul-

nerability for parameters in a behavioral network in which higher values indicate

higher vulnerability.

∆ASPL = ASPLnominal − ASPLfault (5.15)

Fault injection is performed in network models using the concept of network

attack. Failure in a network is simulated generally by either removing a node or by

reducing the edge weights associated with that node in order to signify the change

in the ability of information to travel through the node. Consider node n in a fault

state. To represent the presence of a fault in node n, all the weights of all edges

associated with node n are reduced. This reduction in edge weight represents a

degradation in performance in that node. Edge weights in the nominal case are

equal to one. In the fault case, the edge weights are equal to the value of the fault

variable chosen for the fault injection procedure. In this study, a fault variable

of 0.5 is chosen. Note that faults are injected only into parameter nodes, not

function nodes, due to the ambiguous physical meaning of injecting faults into

functions rather than parameters. The physical meaning of attacking a parameter

node is an off-nominal value due to operating conditions, manufacturing tolerances,

or component failure.

5.2.2.4 Identification of Bridging Nodes

Bridging nodes are identified by using a community finding algorithm and the

definition of bridging nodes [169, 170]. Any node with an edge connected it to a



96

community different than the one in which it is a member is considered a bridging

node. The specific community finding algorithm used in this study is called modu-

larity maximization, which identifies communities (modules) by iteratively testing

various possible community structures and selects the one that maximizes the net-

work’s modularity, measured as Q-modularity in Eq. 5.16. In Eq. 5.16, where m

is the number of edges, Aij is an element of the adjacency matrix, ki is the degree

of vertex i, δ is the Kronecker delta, and ci is the community in which node i be-

longs [158]. Positive Q-modularity indicates a higher degree of interconnectedness

within the communities in the network than is likely to occur by chance. Negative

Q-modularity indicates the opposite.

Q =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(ci, cj) (5.16)

5.2.3 Results and Analysis

The average ∆ASPL values for bridging and non-bridging nodes in a sample of the

systems studied are provided in Table 5.3. For comparison and validation of the

results, a second community finding algorithm, a spectral method, was also used to

identify bridging nodes. This method partitions the graph using eigenvectors and

eigenvalues of the adjacency matrix representation of the network. The average

∆ASPL is compared between bridging and non-bridging nodes for the hypothesis

test, which is an independent samples t-test with unequal variance. The results of

the t-test are given in Table 5.4. The results indicate that bridging nodes have a

significantly higher ∆ASPL than non-bridging nodes for both community finding

methods. Additionally, the effect sizes are strong and moderate for each respective

community finding method. The standard deviation measures are provided in

Table 5.5 for reference.

Additionally, the behavioral networks generated are visualized in Mathematica.

A few examples are given in Fig. 5.11–5.14 in which the communities (determined

by modularity maximization) are circled and the edges associated with the most
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Table 5.3: ∆ASPL and bridging nodes: average ∆ASPL of bridging parameter
nodes and non-bridging parameter nodes in a representative selection of systems.

System Category Non- Bridging, Non- Bridging,
Bridging, Modularity Bridging, Spectral
Modularity Maximization Spectral
Maximization

Multiphase Electrical 0.0519 0.0894 0.0508 0.0774
Rectifier
Saturated Magnetic 0.0998 0.1664 0.0984 0.1399
Inductor
Pump and Thermal 0.0751 0.1587 0.0718 0.1290
Valve /Fluid
Rolling Mechanics 0.1309 0.1935 0.1338 0.1638
Wheel

Table 5.4: ∆ASPL and bridging nodes: t-test results.

Method P-Value (one-tail) Effect size
Non-bridging node
mean ∆ASPL
(all 40 systems)

Bridging node
mean ∆ASPL
(all 40 systems)

Modularity
Maximization

< 0.001 1.2961 0.0828 0.1409

Spectral 0.005 0.7920 0.0818 0.1160

Table 5.5: ∆ASPL and bridging nodes: standard deviation.

Method
Non-bridging node
standard deviation of ∆ASPL
(all 40 systems)

Bridging node
standard deviation of ∆ASPL
(all 40 systems)

Modularity
Maximization

0.0448 0.0712

Spectral 0.0431 0.0712
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Figure 5.11: Behavioral net-
work for simple drive train with
grounded elements with edges as-
sociated with most vulnerable
parameter node darkened and
communities circled.

Figure 5.12: Behavioral network
for electrical rectifier circuit with
edges associated with most vul-
nerable parameter node dark-
ened and communities circled.

Figure 5.13: Elasto gap behav-
ioral network with edges associ-
ated with most vulnerable pa-
rameter node darkened and com-
munities circled.

Figure 5.14: Control tempera-
ture of a resistor behavioral net-
work with edges associated with
most vulnerable parameter node
darkened and communities cir-
cled.

vulnerable node in the network are highlighted. In each of these four cases, the

highlighted node is a bridging node.

To further validate the results, the value of the fault variable is varied in order

to test its effect on the results. To reiterate, a value of 0.5 is used for all nodes in all

networks in the main portion of the study. In this test, the study is repeated with

four different fault variable values: 0.2, 0.5, 0.7, and 0.9. The results are presented
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Figure 5.15: Effect of fault variable value on average ∆ASPL in each system.

in Fig. 5.15, which indicates that the average ∆ASPL decreases approximately

linearly with an increasing fault variable. The ranking of systems from smallest

to largest average ∆ASPL, however, does not change with varying values of the

fault variable. That is, while the fault variable does change the value of ∆ASPL,

it does not change the relative vulerability of the parameter nodes.

5.3 Measuring Component Importance with Structural Consequence

In the previous section, bridging nodes are identified as key topological features

for controlling the robustness of engineered systems in general. In this section, a

methodology for identifying vulnerable components in specific systems will be pro-

posed. In contrast to the previous section, an architectural network is used, where

functionality is assumed via directed network edges. The primary motivation for

the proposed methodology is to identify components that are likely to require risk

mitigation strategies early in the design process such that these mitigation strate-
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gies can be accounted for early. While risk prevention is essential to increasing

the safety of engineered systems, it often increases weight, cost, complexity, and

performance. One example is the space shuttle, which had redundant computers

with a voting system for on-board decision-making [171]. A second example is

cold standby redundancies in which a system for failure detection and mitigation

is required [172]. In general, the complexity added from such mitigation strategies

can increase development cost and time [173]. As such, there is a trade-off between

the necessary problem of failure prevention and mitigation and the negative effects

of redundancy and other mitigation strategies, motivating the need for an early

design method for including risk into the design with as little cost as possible.

It is useful to consider a component’s individual contribution to overall sys-

tem risk in order to identify components most in need of mitigation strategies.

Two classical approaches are Statistical Importance and Structural Importance.

These metrics are based on a fault tree, however, which do not fully represent

consequences of failure in addition to causes of failure, which is necessary for a

complete representation of safety architecture [174]. In this section, an alternative

measure of component importance, structural consequence, is proposed. Rather

than relying on a fault tree, which is often unavailable early in the design pro-

cess, Structural Consequence Analysis (SCA) relies on a causal directed network

quantifying the consequence of failure. This approach has the additional benefit

of a more complete understanding of failure, with its emphasis on consequence of

failure rather than probability of failure alone. This approach enables designers to

consider risk and design mitigation strategies into a system earlier.

5.3.1 Directed Network Modeling

SCA involves the representation of system architecture using a directed acyclic

network which enables an explicit representation of redundancy as well as archi-

tectural and causal information. Network representation of system architecture is

a natural extension of the commonly used design structure matrix (DSM), which

represents connections between system elements with a matrix. A network is sim-
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Component 1

Component 2

Component 3 Component 6

Component 4 Component 7

Component 5

Figure 5.16: Simple example of an architectural representation of system architec-
ture.

ply a graphical representation of a DSM. Networks by definition are simply a

collection of nodes and edges. In directed networks, the edges also have direction-

ality. In SCA, edges represent a physical connection between components and/or

the transmission of information or energy between components. A simple example

is presented in Fig. 5.16. There are three types of nodes in SCA: source nodes,

middle nodes, and sink nodes. Source nodes, such as Component 1 in Fig. 5.16,

have outgoing edges (edges directed away from the node) but no incoming edges

(edges directed toward the node). Middle nodes, such as Component 2, have both

incoming and outgoing edges. Sink nodes, such as Component 5, have incoming

edges only. All nodes in the network are assumed to be functionally necessary for

the operation of at least one of the sink nodes.

5.3.1.1 Representing Redundancy

Redundant components are represented as separate nodes, named in a specific

manner, and generally share the same incoming and outgoing edges as the compo-
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Component 1

Component 2 Component 2 Redundant

Component 3

Figure 5.17: Representation of redundancy, where the redundant component is
called Component 2 Redundant.

nents to which they are redundant. An example is given in Fig. 5.17. As per the

naming convention, Component 2 Redundant is redundant to Component 2. In

general, the base component has no specialized name, but the components redun-

dant to the base component have an additional signified: the word “Redundant”

followed by a unique number.

5.3.1.2 Eliminating Algebraic Loops

To ensure the graph is acyclic, a procedure is developed for eliminating algebraic

loops. Eliminating algebraic loops ensures that the consequence propagation al-

gorithm is applied deterministically. Loops may form due to system feedback or

in certain shared redundancy cases. Feedback loops are eliminated by removing

the connection between the component providing information and the component

receiving information. For example, for a motor voltage sensor, the connection

between the sensor and motor is removed. While this feedback behavior is not

modeled in the network, this simplification is justified by reasoning that there is

no interest in propagating a motor malfunction to the sensor because a sensor

failure leads to a motor malfunction (an event that has already occurred). Shared

redundancies may also create loops, as in Fig. 5.18. BuR is redundant to Bu1

only. However, since Bu1 and Bu2 are the same type of component, it is possible

to use BuR as a redundancy for both, as in Fig. 5.19. This representation, however,
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Ba1

Bu1 BuR

Co1

Bu2

Mo1

Ba2

Figure 5.18: Network with a redundant component, BuR, which is redundant to
Bu1.

creates a loop that does not physically exist in the system, since BuR will never be

redundant to Bu1 and Bu2 simultaneously. To break this loop, BuR is separated

into two nodes: BuRA and BuRB, as in Fig. 5.20. This solution correctly implies

that BuR can only be redundant to one component at a time, although it can be

redundant to either.

5.3.2 Structural Consequence Calculation

The structural consequence metric quantifies the consequence of component fail-

ures in the directed acyclic network model of system architecture. The metric is

normalized on a scale of [0, 1] such that 0 corresponds to the absence of conse-

quence of failure and 1 corresponds to the most severe consequence possible. To

compute the metric, sink nodes are initialized with user-defined consequences, and

these consequences are propagated through the directed network to compute con-

sequences for each node. Consequences are computed according to set operations

within the consequences space.
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Ba1

Bu1

BuR

Co1

Bu2

Mo1

Ba2

Figure 5.19: BuR is redundant to Bu1 and Bu2. There is a loop between Co1 and
BuR.

Ba1

Bu1BuRA

Co1

Bu2 BuRB

Mo1

Ba2

Figure 5.20: Algebraic loop eliminated by splitting BuR intro BuRA and BuRB.
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5.3.2.1 Construction of the Consequence Space

The consequences space, Ω, is constructed using the aggregation of all sources of

cost. The cost of the entire consequence space is normalized to 1. Failure scenarios

representing different proportions of the consequence space are represented within

the consequence space as portions of the total set. Some failure scenarios may share

consequences, which is represented as an intersection. Set operations are used to

calculate consequences of various failure scenarios. In the following subsections,

Ck1 represents the consequence of node k1, Ek1:k2 represents the consequence of

the edge connecting Ck1 to Ck2 , and S(Ck1), S(Ek1:k2) represents the consequent

of component k1 and edge Ek1:k2 .

5.3.2.2 Scoring the Sink Nodes of the Network

The first step in the consequence calculation is to initialize the propagation algo-

rithm by estimating the cost of sink nodes. Estimations may be based on available

data such as expert opinion or field data. For instance, if a sink node is an aileron,

a cost estimate is made based on previous instances of aileron failures. Fig. 5.21

provides an example of the assignment of consequences in Ω for sink nodes.

5.3.2.3 Scoring the Edges of the Network

Once the sink nodes have been initialized, their consequences are backpropagated

through the directed network by computing the consequences of failure of both

edges and nodes. Edge consequences represent consequences of the severing of

connection or flow of information between two nodes.

Scoring Edges with No Redundancies Assuming no redundancy, failure of

an edge leads to a failure of the component to which it supplies information or is

connected. Failure of an edge for which no redundancies or protective factors exist

leads to the potential failure of the component it feeds (at the head of the edge).
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Ω
Set of all possible consequences.
Example overall cost : $10m

Set of potential consequences
due to sink node 1 failure
Example overall cost: $6m

Set of potential consequences
due to sink node 2 failure
Example overall cost : $7m

Intersections represent costs that
are due to the same items. For
example, both engine failure and
aileron failure may lead to same
repair costs of the aircraft wing.
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Figure 5.21: Consequence space visualization.

This means that the failure or loss of the edge bears the same consequence as the

loss of the component it feeds. Therefore, for no redundancy, Eq. 5.17 holds. This

concept is visualized in Fig. 5.22, in which the loss of either of the edges leads to

the failure of node A, as well as Property 1.

S(Ei:j) = S(Cj) (5.17)

Property 1 : An edge for which no redundancies or protective features exist

bears the same consequence as the component it feeds.

Scoring Edges with Redundancies Calculation of edge consequence differs

when there are redundancies. Redundant edges share the same function and their

leading edges are connected to the same component. If all redundant edges and the

original edge fail, the component they supply also fails. Mathematically, the union

of n redundant edges, Ei1:j · · ·Ein:j, is equally consequential to the component
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Figure 5.22: Example of scoring edges with no redundancies.

supplied, as in Eq. 5.18, also expressed in Property 2. Further, all redundant

edges are assumed to be equally consequential, as expressed in Assumption 1 and

Eq. 5.19. Eq. 5.20 can be obtained using Assumption 1 and Property 1.

S(Ei1:j ∪ Ei2:j · · ·Ein:j) = S(Cj) (5.18)

Property 2 : The union of a collection of redundant edges bears the same con-

sequence as the component they feed.

Assumption 1 : All redundant edges are assumed to have equivalent conse-

quences, where edge consequences represent mutually exclusive subsets of the com-

ponent consequence with equivalent consequences.

S(Ei1:j) = S(Ei2:j) = · · · = S(Ein:j) (5.19a)

Eik:j ∩ Eim:j = ∅ k,m ∈ {1, . . . , n}|k 6= m (5.19b)

S(Ei1:j) = S(Ei2:j) = · · · = S(Ein:j) =
S(Cj)

n
(5.20)
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Figure 5.23: Example of scoring edges with redundancies.

By Assumption 1, each redundancy equally shares the total consequences. If the

overall consequence Cj is subdivided into a set of shared and mutually exclusive

consequences Ci1:j
j , Ci2:j

j , · · ·Cin:j
j shared by redundant edges Ei1:j · · ·Ein:j (such

that Cik:j
j = Eik:j), Eq. 5.21 holds. For example, in Fig. 5.23, D and DR are

redundant, and the consequence of A is shared equally between the two edges.

Cil:j
j ∩ Cim:j

j = ∅ l,m ∈ {1, · · · , n} l 6= m (5.21a)

Ci1:j
j ∪ Ci2:j

j · · · ∪ Cin:j
j = Cj (5.21b)

Cil:j
j ∪ Cj = Cj (5.21c)

Cil:j
j ∩ Cj = Cil:j

j (5.21d)

5.3.2.4 Scoring the Nodes of a Network

Node consequences are computed based on the consequences of their outgoing

edges. This is because the failure of a component leads to the failure of all in-

formation flows originating from that component (Property 3), as in Eq. 5.22,
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are due to the same items. For
example, both engine failure and
aileron failure may lead to same
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Example overall cost : $3m
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2
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B
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2
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2

𝑆 𝐶𝐶 = 𝑆 𝐶𝐴
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+ 𝑆 𝐶𝐸

− 𝑆 𝐶𝐴
𝐷𝑅:𝐴 ∩ 𝐶𝐸

𝑆 𝐸𝐷𝑅:𝐴
= 𝑆 𝐶𝐴

𝐷𝑅:𝐴

=
𝑆 𝐶𝐴
2

Figure 5.24: Example of scoring nodes.

illustrated in Fig. 5.24. Consequences remain in set theoretic terms until all nodes

and edges are evaluated, at which point the set can be quantified as structural

consequence.

Property 3 : A component bears the same consequence as all of the outgoing

edges from that component.

S(Ci) = S(Ei:j1 ∪ Ei:j2 · · · ∪ Ei:jn) (5.22)

5.3.2.5 Propagation Algorithm

Node and edge consequences are computed in a given order by propagating sink

node consequences backward through the network. The propagation algorithm

assumes the network has no undirected edges and the network is acyclic (no loops).

Propagation begins with the initialized sink nodes. Edges associated with sink

nodes are first evaluated. The algorithm then proceeds randomly with a random

node with all its outgoing edges are evaluated. This random selection continues

until all node consequences are computed. This algorithm is summarized in Fig.
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Yes

No
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Figure 5.25: Flowchart of propagation algorithm.

5.25. Once propagation is complete, structural consequence of each node and edge

can be quantified based on the consequence space Ω.

5.3.3 Case Study: Electric Line for an Unpiloted Aircraft System

(UAS) for Urban Air Mobility (UAM)

The proposed approach is demonstrated using a case study of a simplified electric

subsystem of an all-electric fixed-wing unpiloted aircraft system (UAS). This sys-

tem powers electro-mechanical actuators, which manupulate an aileron and flap

of the UAS. The system without redundancy is represented as a block diagram in

Fig. 5.26. Two different redundancy schemes are evaluated. The first, given in Fig.

5.27, adds a single redundancy for each component. The second, Fig. 5.28, uti-
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Figure 5.26: Electrical subsystem block diagram for base architecture with no
redundancies added.
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Figure 5.27: Electrical subsystem block diagram for architecture with parallel
redundancies.

lizes a re-configurable redundancies, which can be shared by multiple components.

Structural consequence is used to evaluate the importance of each component,

thereby enabling the assessment of the redundancy configurations.

The consequence space consists of a total cost of $800, 000 assigned to aileron

failure, $300, 000 assigned to flap failure, and $100, 000 shared between the two

components for $1, 000, 000 in total cost. All costs are normalized on a [0, 1] scale,

meaning $1, 000, 000 in cost corresponds to a structural consequence S(Ω) = 1, and

the sink node consequences are given in Eq. 5.23. A directed network representa-
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Figure 5.28: Electrical subsystem block diagram for architecture with re-
configurable redundancies.

tion is constructed for each architecture (base, parallel, and reconfigurable), given

in Fig. 5.29–5.31. The white and gray portions of BuR1 and EM1R are recon-

figurable components with the same connections (essentially, two separate nodes

represented in a compact form). Using the approach presented, edge and node

consequences for all architectures are presented in Fig. 5.29–5.31 and tabulated in

Table 5.6.

S(CAi) = 0.8

S(CFl) = 0.3

S(CAi ∩ CFl) = 0.1

SCA reveals nodes with high consequence of failure based on system architec-

ture. This information enables the early identification of system vulnerabilities.

Additionally, the proposed modeling formalism enables the construction of causal

chains leading to multiple failures with potentially different consequences, not only

a single top-event as in a fault tree. Furthermore, structural consequence allows
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Figure 5.29: Network representation of the base architecture.

Table 5.6: Component consequences for base, parallel, and re-configurable archi-
tectures.

Component Base Parallel Re-config.
Ba1 1 0.5 0.5

Ba1R1 N/A 0.5 0.5
Bo1 1 0.5 0.5

Bo1R1 N/A 0.5 0.5
Bs1 1 0.5 0.479

Bs1R1 N/A 0.5 0.521
Bu1 0.8 0.4 0.33

Bu1R1 N/A 0.4 0.4
Bu1R2 N/A N/A 0.13

Bu2 0.3 0.15 0.15
Bu2R1 N/A 0.15 N/A
EM1 0.8 0.4 0.4

EM1R1 N/A 0.4 0.4
EM2 0.3 0.15 0.15

EM2R1 N/A 0.15 N/A
Ai1 0.8 0.8 0.8
Fl1 0.3 0.3 0.3
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Figure 5.30: Network representation of the architecture with parallel redundancies.
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Figure 5.31: Network representation of the architecture with parallel and re-
configurable redundancies (white & gray).
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the evaluation of various redundancy schemes. Nodes with high consequence are

good candidates for additional redundancy placement, and redundancy schemes

with very high consequences overall are less desirable than those with lower con-

sequences. The addition of redundancy reduces the share of consequence among

components.

Conceptually, SCA provides a different perspective on vulnerable nodes com-

pared to the analysis of bridging nodes. High-consequence nodes are not necessarily

critical from a network perspective, but rather from an estimation of costs associ-

ated with their failure. The distinction between SCA and identification of bridging

nodes demonstrates a key methodological difference between many graph-based ap-

proaches and the network theoretic approach spanning much of this research. In

SCA, the graph is primarily a modeling and visualization tool and the computation

is performed using set theory, whereas in the bridging node approach, vulnerable

nodes are identified through an analysis of network topology. In practice, bridging

nodes will be more useful in one of two scenarios: either in early design, when

detailed simulations or cost analysis are untenable, or in very large-scale, complex

systems where they are infeasible and in which emergent behaviors are expected.

Bridging nodes capture emergent behavior and require significantly less data and

modeling work to obtain, whereas high consequence nodes may be more suitable

for studying certain subsystems independently of the integrated system.

5.4 Chapter Summary

In this chapter, conceptual and empirical arguments for the correlation between

network metrics and bridging nodes are presented. Given the community structure

(modules) of a system, this finding makes possible the a priori prediction of vul-

nerable system variables without the use of expensive full-scale models. In other

words, the structure of the equations representing system behavior is sufficient for

gaining a preliminary understanding of system robustness without actually requir-

ing the simulation of these equations. Moreover, key parameters contributing to

fragility can be identified by locating bridging nodes in the network-based repre-
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sentation of these equations. This contribution directly addresses the first research

question by identifying bridging nodes as variables that are key to controlling a

system’s robustness to failure. This finding furthers the objective of the work by

identifying a pattern of vulnerability in engineered systems that can be used to

predict problems even in early design, when full-scale models are unavailable, and

in complex and/or large systems, when even the most sophisticated models may

fail to accurately predict behavior due to emergent behavior and unintended con-

sequences. As an alternative perspective on this research question, in the second

part of this chapter, a method is presented for identifying important components in

a system architecture in terms of their consequence of failure. This method enables

the early prediction of components that are likely to require redundancy or other

mitigation strategies. Rather than investigating a general pattern of vulnerability,

as in the first section of this chapter, the method presented in this section is used

to find vulnerabilities in specific cases. This method is applicable early in the de-

sign process, before detailed system models are available, enabling such mitigation

strategies to be considered earlier in the design process, saving cost and redesign

time. Both methods provide preliminary, low cost assessment of robustness. After

identifying these vulnerabilities, designers can focus their efforts on more tightly

controlling these vulnerabilities.
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Chapter 6: Conclusions

This research has addressed the structural characteristics of robustness in com-

plex engineered systems. Robustness in this context is considered the ability of

a system to retain acceptable performance even when faced with faults, pertur-

bations, and/or unintended consequences. This work presents empirical findings

in addition to novel conceptualizations and approaches for assessing robustness

of complex systems. Namely, this research utilizes machine learning and network

theory to identify patterns of vulnerability such that a priori analysis even of com-

plex systems that are difficult to model without abstraction and modularization is

possible. This research considers robustness at three levels of hierarchy.

This research begins by assessing the structural characteristics of robustness

at the macro-scale: first, the effect of an action implemented within one system

on another system is considered by identifying archetypes of unintended conse-

quences. To achieve this, the concept of an unintended consequence is first clarified

by developing a conceptual framework for unintended consequences in engineer-

ing design. Once this has been established, a combination of human coding of

semantic descriptions of unintended consequences and machine learning is used

to discern archetypes of unintended consequences from a data base of real-world

adverse events. In total, sixty-six archetypes of unintended consequences are iden-

tified. These archetypes are related to a set of weighted risk factors, which are

effectively design-stage leading indicators of unintended consequences. Because of

this relationship between risk factors and archetypes, it is possible to use these risk

factors as an a priori assessment of risk during design. Using machine learning to

identify leading indicators of adverse events from data circumvents issues of mod-

eling complex systems, namely abstraction and modularity, by instead treating

a system as a black box from which correlations between leading indicators and

adverse events can be determined.
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Second, at the meso-scale, the effect of various system architectures on robust-

ness is considered. Specifically, this research investigates whether modularity helps

or hinders topological robustness. A network perspective is taken in understanding

robustness. In networks, robustness is measured as the degree to which the struc-

ture of a network changes in response to node attack or removal. There are various

network theoretic metrics that can be used to measure a network’s resistance to

attack, specifically ASPL and robustness coefficient. This research measures net-

work topological robustness and modularity, measured as Q-modularity, in various

different network models of real engineered systems. Four types of network models

are used. Each network model represents various aspects of the system’s archi-

tectural and behavioral morphology. The results indicate that there is a negative

correlation between modularity and robustness, implying that modularity may

come at the expense of topological robustness. This finding provides a caveat to

the use of modularity as a design rule when designing complex systems.

Third, at the micro-scale, the relationship between a variable’s role within a

module and its effect on system robustness is considered. Network theory is again

used to model and analyze system robustness. This approach aims to identify

specific nodes, which in this case represent variables in the behavioral model of the

system, which are key to controlling a system’s behavior. The behavioral network

model is bipartite, containing function and parameter nodes, and is derived from

the governing equations of the system. Faults are injected into the network model

by attacking nodes. This is done by reducing the edge weights surrounding a node

that is in a fault state. Then, the network’s change in global performance as a

result of the injected fault is measurable through network metrics such as ASPL.

Larger changes in such network metrics due to fault injection are associated with

more vulnerable nodes. In this way, it is found that bridging nodes tend to be more

vulnerable than non-bridging nodes, where bridging nodes are nodes that connect

modules, or communities. This implies that the interfaces between modules or

subsystems are more important even than highly influential nodes within a module,

from a topological standpoint. With much of complex system design being highly
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modularized, this finding directs attention to the importance of integration of

subsystems and the design of interfaces.

Taken together, the findings provide a multi-faceted approach to understand-

ing the factors that promote or inhibit robustness in engineered systems, validated

through empirical findings. These findings can be used as early design stage indi-

cators of potential vulnerabilities that make a complex system more or less fragile

to perturbations, thereby informing robustness analysis. Complex systems present

challenges in modeling and analysis. All models are, by definition, abstractions to

some degree and will therefore neglect some behaviors or characteristics; modeling

complex systems, however, is even more fraught. Complex systems, due to their

size, tight coupling, and non-linearity, are difficult to understand for an outside

observer. Human observers have limits to their time and mental resources for anal-

ysis in decision making – in other words, they are bounded rational. Theoretically,

then, it is untenable to model all possible interactions and behaviors at a detailed

level in complex systems, and as such, unexpected behaviors may be discovered

after the system is integrated and tested. These advances in this research will

enable robustness analysis of complex engineered systems that captures emergent

behavior and unintended consequences – in other words, under-recognized vulner-

abilities in complex systems – before integration and testing occur. As such, the

methods in this research are most useful in high complexity, early design situa-

tions, differentiating this research from existing methods, as shown in Fig. 6.1.

They may additionally be moderately useful in low complexity, early design or

high complexity, late design situations.

The perspectives on robustness taken in this research extend conventional the-

ories on robustness in that they are more capable of handling complexity. Specifi-

cally, machine learning is able to identify leading indicators that a complex system

will respond poorly or, in other words, is fragile to unexpected perturbations. Net-

work theory, on the other hand, uses abstraction to avoid modularization common

in more detailed models, enabling the analysis of the interfaces between subsystems

in early design and detecting emergent properties such as high degree nodes and
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Figure 6.1: The methods discussed in this research are most useful in high com-
plexity, early design situations.

bridging nodes. These advances represent a shift in robustness analysis of complex

systems, such that designers can think not of how to improve optimization models

or uncertainty representations in robustness analysis, but rather to consider pat-

terns of vulnerabilities in network models and historical data as early indicators of

fragility.



122

Bibliography

[1] NASA. NASA Public Lessons Learned Information System. https://

llis.nasa.gov/, 2019. Accessed: 2019-11-01.

[2] Genichi Taguchi and Asian Productivity Organization. Introduction to Qual-
ity Engineering: designing quality into products and processes. The Organi-
zation Tokyo, 1986.

[3] Sarah A. Sheard and Ali Mostashari. A complexity typology for systems
engineering. INCOSE International Symposium, 20(1), 2010.

[4] Mohammad Hassannezhad, Marco Cantamessa, Francesca Montagna, and
P. John Clarkson. Managing sociotechnical complexity in engineering design
projects. Journal of Mechanical Design, 141(8):081101.

[5] Jairo da Costa Junior, Jan Carel Diehl, and Dirk Snelders. A framework for
a systems design approach to complex societal problems. Design Science,
5(e2), 2019.

[6] S.D. Gribble. Robustness in complex systems. pages 21– 26, 06 2001.

[7] Abhijit Deshmukh and Paul Collopy. Fundamental research into the de-
sign of large-scale complex systems. In 13th AIAA/ISSMO Multidisciplinary
Analysis Optimization Conference, 13 September 2010 – 15 September 2010,
Fort Worth, Texas. 2010.

[8] Government Accountability Office. NASA assessments of major projects.
Technical Report GAO-19-262SP, May 2019.

[9] Camila Ludovique Callegari, Alexandre Szklo, and Roberto Schaeffer. Cost
overruns and delays in energy megaprojects: How big is big enough? Energy
Policy, 114:211–220, March 2018.

[10] Yaneer Bar-Yam. When systems engineering fails – towards complex systems
engineering. In SMC’03 Conference Proceedings. 2003 IEEE International
Conference on Systems, Man and Cybernetics. Conference Theme - System
Security and Assurance, 2003.



123

[11] Carliss Baldwin and Kim Clark. Design Rules: The Power of Modularity.
The MIT Press, 2000.

[12] Robert E. Oberto, Erik L. Nilsen, Ron Cohen, R. Wheeler, P. DeFlono, and
Chester Borden. The NASA exploration design team: blueprint for a new
design paradigm. In 2005 IEEE Aerospace Conference, 2005.

[13] Yupeng Li, Zhaotong Wang, Lei Zhang, Xuening Chu, and Deyi Xue.
Function module partition for complex products and systems based on
weighted and directed complex networks. Journal of Mechanical Design,
139(2):021101, 2017.

[14] Sendil Ethiraj and Daniel Levinthal. Modularity and innovation in complex
systems. Management Science, 50, 01 2004.

[15] Sulaiman F. Alyaqout, Diane L. Peters, Panos Y. Papalambros, and A. Galip
Ulsoy. Generalized coupling management in complex engineering systems
optimization. Journal of Mechanical Design, 133(9):091005, 2011.

[16] Nicolas F. Soria Zurita and Irem Y. Tumer. Towards understanding emergent
behavior in complex engineered systems. In Proceedings of the ASME 2017
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Volume 7: 29th International Con-
ference on Design Theory and Methodology, Cleveland, OH, USA, August 6,
2017–August 9, 2017, 2017.

[17] Yaneer Bar-Yam. Dynamics of complex systems. CRC Press, 2019.

[18] Brandon Haley, Andy Dong, and Irem Y. Tumer. A comparison of network-
based metrics of behavioral degradation in complex engineered systems.
Journal of Mechanical Design, 138(12), 2016.

[19] Tim Kelly, Iain Bate, John McDermid, and Alan Burns. Building a prelim-
inary safety case: An example from aerospace. In Proceedings of the 1997
Australian Workshop on Industrial Experience with Safety Critical Systems
and Software, Sydney, Australia, pages 1–10, 1997.

[20] Department of Defense. Procedures for performing failure mode, effects, and
criticality analysis. Technical Report MIL-STD-1629A, Washington, DC,
1980.



124

[21] David Jensen. Enabling safety-informed design decision making through sim-
ulation, reasoning and analysis. PhD thesis, Oregon State University, Cor-
vallis, Oregon, 2012.

[22] W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl. The fault tree
handbook. Technical Report NUREG0492, Washington, DC, 1981.

[23] Richard E. Barlow and Frank Proschan. Importance of system components
and fault tree events. Stochastic Processes and their Applications, 3(2):153–
173, 1975.

[24] Z. Birnbaum. On the importance of different components in a multicompo-
nent system. Technical Report 54, 1968.

[25] Dong Yuhua and Yu Datao. Estimation of failure probability of oil and gas
transmission pipelines by fuzzy fault tree analysis. Journal of Loss Prevention
in the Process Industries, 18(2):83–88, 2005.

[26] R. M. Sinnamon and J.D. Andrews. Improved accuracy in quantitative fault
tree analysis. Quality and Reliability Engineering International, 13(5):285–
292, 1998.

[27] E. Ruijters and M. Stoelinga. Fault tree analysis: A survey of the state-of-
the-art in modeling, analysis and tools. Computer science review, 15–16:29–
62, 2015.

[28] Hichem Boudali, Pepijn Crouzen, and Marille Stoelinga. A compositional
semantics for dynamic fault trees in terms of interactive markov chains. In-
ternational Symposium on Automated Technology for Verification and Anal-
ysis ATVA 2007: Automated Technology for Verification and Analysis, pages
441–456.

[29] J.B. Dugan, S.J. Bavuso, and M.A. Boyd. Fault trees and sequence depen-
dencies. Annual Proceedings on Reliability and Maintainability Symposium,
1990.

[30] X. Liang, H. Yi, Y. Zhang, and D. Li. A numerical simulation approach
for reliability analysis of fault-tolerant repairable system. Proceedings of the
8th International Conference Reliability, Maintainability and Safety, pages
191–196, 2009.



125

[31] X. Zhang, Q. Miao, X. Fan, and D. Wang. Dynamic fault tree analysis based
on petri nets. Proceedings of the 8th International Conference Reliability,
Maintainability and Safety, pages 138–142, 2009.

[32] Yves Dutuit and Antoine Rauzy. Efficient algorithms to assess component
and gate importance in fault tree analysis. Reliability Engineering System
Safety, 72(2):213–222, 2001.

[33] K. Buchacker. Modeling with extended fault trees. Proceedings of the 5th In-
ternational Symposium on High Assurance Systems Engineering, pages 238–
246, 2000.

[34] A. Bobbio and D. Codetta-Raiteri. Parametric fault trees with dynamic gates
and repair boxes. Proceedings of Reliability and Maintainability Symposium,
pages 459–465, 2004.

[35] Elmer Eugene Lewis. Introduction to reliability engineering, volume 2. Wiley
New York et al., 1987.

[36] Reece Clothier, Ewen Denney, and Ganesh J Pai. Making a risk informed
safety case for small unmanned aircraft system operations. In 17th AIAA
Aviation Technology, Integration, and Operations Conference, page 3275,
2017.

[37] Stanley Kaplan and B. John Garrick. On the quantitative definition of risk.
Risk Analysis, 1(1), 1981.

[38] Nathan O. Siu and Dana L. Kelly. Bayesian parameter estimation in prob-
abilistic risk assessment1the views and conclusions in this paper are those
of the authors and should not be interpreted as necessarily representing the
views or official policies, either expressed or implied, of the us nuclear regu-
latory commission or the us department of energy.1. Reliability Engineering
System Safety, 62(1):89 – 116, 1998.

[39] Zahra Mohaghegh, Reza Kazemi, and Ali Mosleh. Incorporating organi-
zational factors into probabilistic risk assessment (PRA) of complex socio-
technical systems: A hybrid technique formalization. Reliability Engineering
System Safety, 94(5):1000 – 1018, 2009.



126

[40] K. Vierow, K. Hogan, K. Metzroth, and T. Aldemir. Application of dy-
namic probabilistic risk assessment techniques for uncertainty quantification
in generation iv reactors. Progress in Nuclear Energy, 77:320 – 328, 2014.

[41] Brandon Haley. Evaluating complex engineered systems using complex net-
work representations. Master’s thesis, Oregon State University, Corvallis,
Oregon, 2014.

[42] Dimitri Kececioglu. Reliability engineering handbook. Technical report,
2002.

[43] S. Distefano and L. Xing. A new approach to modeling the system reli-
ability: dynamic reliability block diagrams. In IEEE Reliability and Main-
tainability Symposium (RAMS06), pages 189–195, 2006.

[44] Eric Maass and Patricia D. McNair. Applying Design for Six Sigma to Soft-
ware and Hardware Systems. Prentice Hall, 2009.

[45] Kai-Lu Wang and Yan Jin. An analytical approach to function design. In
Proceedings from the 14th International Conference on Design Theory and
Methodology, 2002.

[46] Jonathan Smith and P. John Clarkson. Design concept modelling to improve
reliability. Journal of Engineering Design, 16(5):473–492, 2005.

[47] Tolga Kurtoglu and Irem Y. Tumer. A graph-based fault identication and
propagation framework for functional design of complex systems. Journal of
Mechanical Design, 130(5):51401, 2008.

[48] Ada-Rhodes Short, Ann D. Lai, and Douglas L. Van Bossuyt. Conceptual
design of sacrificial sub-systems: failure flow decision functions. Research in
Engineering Design, 29(1), 2018.

[49] Robert B. Stone, Irem Y. Tumer, and Michael Van Wie. The function-failure
design method. Journal of Mechanical Design, 3(127):397–407, 2004.

[50] K. Grantham Lough, Robert B. Stone, and Irem Y. Tumer. Failure pre-
vention in design through effective catalogue utilization of historical failure
events. Journal of Failure Analysis and Prevention, 8(5):469–481, 2008.



127

[51] Nita Yodo and Pingfeng Wang. Resilience allocation for early stage design
of complex engineered systems. Journal of Mechanical Design, 138(9), 07
2016. 091402.

[52] Mohit Goswami and M. K. Tiwari. A predictive risk evaluation framework
for modular product concept selection in new product design environment.
Journal of Engineering Design, 25(1-3):150–171, 2014.

[53] Yao Cheng and Xiaoping Du. System Reliability Analysis With Dependent
Component Failures During Early Design StageA Feasibility Study. Journal
of Mechanical Design, 138(5), 04 2016. 051405.

[54] Yuming Qiu, Ping Ge, and Solomon C. Yim. Risk-based resource allocation
for collaborative system design in a distributed environment. Journal of
Mechanical Design, 130(6), 04 2008.

[55] Herbert A. Simon. The architecture of complexity. Proceedings of the Amer-
ican Philosophical Society, 106(6):467–482, 1962.

[56] Sarah A. Sheard and Ali Mostashari. Principles of complex systems for
systems engineering. Systems Engineering, 12(4), 2009.

[57] Kemper Lewis. Making sense of elegant complexity in design. Journal of
Mechanical Design, 134(12), 11 2012. 120801.

[58] Jami J. Shah and George Runger. What is in a name? on the misuse
of information theoretic dispersion measures as design complexity metrics.
Journal of Engineering Design, 24(9):662–680, 2013.

[59] GwangKi Min, Eun Suk Suh, and Katja Holtta-Otto. System architecture,
level of decomposition, and structural complexity: Analysis and observations.
Journal of Mechanical Design, 138(2), 2016.

[60] Kaushik Sinha and Olivier De Weck. Structural complexity quantification
for engineered complex systems and implications on system architecture and
design. 2013.

[61] Ashwin Gurnani and Kemper Lewis. Collaborative, decentralized engineering
design at the edge of rationality. Journal of Mechanical Design, 130(12),
2008.



128

[62] Bumsoo Lee, Kenton B. Fillingim, William R. Binder, Katherine Fu, and
Christiaan J.J. Paredis. Design heuristics: A conceptual framework and
preliminary method for extraction. In Proceedings of the ASME 2017 In-
ternational Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Cleveland, OH, August 6, 2017–
August 9, 2017, 2017.

[63] Elham Keshavarzi, Matthew McIntire, Kai Goebel, Irem Tumer, and Christo-
pher Hoyle. Resilient system design using cost-risk analysis with functional
models. In Proceedings of the ASME 2017 International Design Engineer-
ing Technical Conferences and Computers and Information in Engineering
Conference, Cleveland, OH, USA, August 6, 2017–August 9, 2017, 2017.

[64] Daniel Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, New
York, NY, USA, 2011.

[65] Slavisa Tasic. The illusion of regulatory competence. Critical Review,
21(4):423–436, 2009.

[66] Hannah S. Walsh, Andy Dong, and Irem Y. Tumer. Towards a theory for
unintended consequences in engineering design. In Proceedings of the Design
Society: International Conference on Engineering Design, volume 1, pages
3411–3420, 2019.

[67] Hannah S. Walsh, Andy Dong, Irem Y. Tumer, and Guillaume P. Brat.
Detecting and characterizing archetypes of unintended consequences in en-
gineering design. In Proceedings of the ASME 2020 International Design
Engineering Technical Conferences and Computers and Information in En-
gineering Conference, 32nd International Conference on Design Theory and
Methodology, 2020.

[68] K Marais, J Saleh, and N Leveson. Archetypes for organizational safety.
Safety Science, 44(7):565–582, 2006.

[69] Douglas L. Van Bossuyt and Ryan M. Arlitt. Toward a functional failure
analysis method of identifying and mitigating spurious system emissions in a
system of systems. In ASME 2019 International Design Engineering Techni-
cal Conferences and Computers and Information in Engineering Conference,
Volume 1: 39th Computers and Information in Engineering Conference, Au-
gust 1821, 2019, Anaheim, California, USA, 2019.



129

[70] E.F. Wolstenholme. Towards the definition and use of a core set of archetypal
structures in system dynamics. System Dynamics Review, 9(1):7–26, 2003.

[71] Elham Keshavarzi, Matthew McEntire, and Christopher Hoyle. Dynamic de-
sign using the kalman filter for flexible systems with epistemic uncertainty.
In Proceedings of the ASME 2015 International Design Engineering Techni-
cal Conferences and Computers and Information in Engineering Conference,
Volume 2B: 41st Design Automation Conference, Boston, MA, USA, August
2, 2016–August 5, 2016, 2016.

[72] Rose Crossland, Jon H. Sims Williams, and Chris McMahon. An object-
oriented modeling framework for representing uncertainty in early variant
design. Research in Engineering Design, 14(3):173–183, 2003.

[73] Hussein A. Abbass. Computational Red Teaming. Springer International
Publishing, 2015.

[74] Nancy Leveson. A new accident model for engineering safer systems. Safety
Science, 42(2):237–270, 2004.

[75] David Rousseau, Julie Billingham, and Javier Calvo-Amodio. Systemic se-
mantics: a systems approach to building ontologies and concept maps. Sys-
tems, 6(32), 2018.

[76] Mario Bunge. Emergence and Convergence: Qualitative Novelty and the
Unity of Knowledge. University of Toronto Press, Toronto, Ontario, Canada,
2003.

[77] Mohammad Moshirpour, Nariman Mani, Armin Eberlein, and Behrouz H.
Far. Model based approach to detect emergent behavior in multi-agent sys-
tems. In Proceedings of the 12th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2013), Ito, Jonker, Gini, and She-
hory (eds.), Saint Paul, MN, USA, May 6, 2013–May 10, 2013, 2013.

[78] W. Ross Ashby. An Introduction to Cybernetics. University Paperbacks,
Methuen, London, 1964.

[79] S Mittal and L Rainey. Harnessing emergence: the control and design of
emergent behavior in system of systems engineering. In Proceedings of the
Conference on Summer Computer Simulation, Chicago, IL, USA, July 26,
2015–July 29, 2015, 2015.



130

[80] Terry Bahill. Diogenes, a process for identifying unintended consequences.
Systems Engineering, 15(3):287–306, 2012.

[81] M Watz and S Hallstedt. Addressing sustainability in product requirements
– a systems perspective. In Philip Ekströmer, Simon Schütte, and Johan
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[84] Radim Špicar. System dynamics archetypes in capacity planning. Procedia
Engineering, 69:1350–1355, 2014.

[85] Jay Forrester. System dynamics, systems thinking, and soft OR. System
Dynamics Review, 10(2–3):245–256, 1994.

[86] Jens Rasmussen. Risk management in a dynamic society: a modelling prob-
lem. Safety Science, 27(2/3):183–213, 1997.

[87] W. Ross Ashby. Requisite variety and its implications for the control of
complex systems. In Facets of System Science, International Federation for
Systems Research International Series on Systems Science and Engineering,
vol 7. Springer, Boston, MA, 1991.

[88] David Rousseau. Three general systems principles and their derivation: in-
sights from the philosophy of science applied to systems concepts. In 15th
Annual Conference on Systems Engineering Research, Redondo Beach, CA,
Mar 23–25. 2017.



131

[89] David Rousseau, Jule Billingham, and Javier Calvo-Amodio. System seman-
tics: a systems approach to building ontologies and concept maps. Systems,
6(3):32, 2018.

[90] G. Midgley, I. Munlo, and M. Brown. The theory and practice of boundary
critique: Developing housing services for older people. The Journal of the
Operational Research Society, 49(5):467–478, 1998.

[91] Gerald Midgley and Luis A. Pinzon. Boundary critique and its implica-
tions for conflict prevention. Journal of the Operational Research Society,
62(8):1543–1554, 2011.

[92] Maurice Yolles. Viable boundary critique. Journal of the Operational Re-
search Society, 52(1):35–47, 2001.

[93] Paul Cilliers. Boundaries, hierarchies and networks in complex systems.
International Journal of Innovation Management, 5(2):135–147, 2001.

[94] Ben-Tzion Karsh and Samuel J. Alper. Work system analysis: The key to
understanding health care systems. In Kerm Henriksen, James B Battles,
Eric S Marks, and David I Lewin, editors, From Research to Implementation
(Volume 2: Concepts and Methodology). Agency for Healthcare Research and
Quality, 2005.

[95] Robert Merton. The unanticipated consequences of purposive social action.
American Sociological Review, 1(6):894–904, 1936.

[96] D.A. Bella and K.J. Williamson. Conflicts in interdisciplinary research. Jour-
nal of Environmental Systems, 6(2):105–124, 1976.

[97] David Bella. Emergence and evil. Emergence: Complexity and Organization,
8(2), 2006.

[98] Saras D. Sarasvathy. Causation and effectuation: Toward a theoretical shift
from economic inevitability to entrepreneurial contingency. Academy of Man-
agement Review, 26(2):243–263, 2001.

[99] Japan Transport Safety Board. Aircraft serious incident investigation report:
Air Nippon Co., LTD. JA16AN. Technical Report AI2014-4, Ministry of
Land, Infrastructure, Transport, and Tourism, 2014.



132

[100] K Øien, I.B. Utne, R.K. Tinmannsvik, and S. Massaiu. Building safety
indicators: Part 2 application, practices and results. Safety Science,
49(2011):162–171, 2010.

[101] R Flin, K Mearns, P O’Connor, and R Bryden. Measuring safety climate:
identifying the common features. Safety Science, 34(2000):177–192, 2000.

[102] Hannah S. Walsh, Andy Dong, and Irem Y. Tumer. The structure of vul-
nerable nodes in behavioral network models of complex engineered systems.
In ASME 2017 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, Volume 7: 29th In-
ternational Conference on Design Theory and Methodology, August 69, 2017,
Cleveland, Ohio, USA, 2017.

[103] A. F. Hayes and Klaus Krippendorff. Answering the call for a standard
reliability measure for coding data. Communication Methods and Measures,
1(1):77–89, 2007.

[104] K. Krippendorff. Reliability in content analysis. Human Communication
Research, 30(3):411–433, 2004.

[105] Jana Eggink. Krippendorff’s Alpha. https://www.mathworks.com/
matlabcentral/fileexchange/36016-krippendorff-s-alpha, 2020. Ac-
cessed: January 22, 2020.

[106] Umut Asan and Secil Ercan. An introduction to self-organizing maps. In
Cengiz Kahraman, editor, Computational Intelligence Systems in Industrial
Engineering, chapter 14. Atlantis Press, 2012.

[107] Jing Tian, Michael H. Azarian, , and Michael Pecht. Anomaly detection
using self-organizing maps-based k-nearest neighbor algorithm. In European
Conference of the Prognostics and Health Management Society 2014, 2014.

[108] Mathworks. MATLAB Version 2019b, 2019.

[109] Teuvo Kohonen. The self-organizing map. Neurocomputing, 21(1):1–6, 1998.

[110] Hannah S. Walsh, Andy Dong, and Irem Y. Tumer. An analysis of modu-
larity as a design rule using network theory. Journal of Mechanical Design,
141(3):031102, 2019.



133

[111] Hannah S. Walsh, Andy Dong, and Irem Y. Tumer. An analysis of modularity
as a design rule using network theory. In Proceedings of the ASME 2017
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, 30th International Conference on
Design Theory and Methodology, 2018.

[112] Nam Suh. Axiomatic design: advances and applications. Oxford University
Press, 2001.

[113] James Skakoon. The Elements of Mechanical Design. ASME Press, 2008.

[114] James Tomayko. Achieving reliability – the evolution of redundancy in amer-
ican manned spacecraft computers. Journal of the British Interplanetary
Society, 38:545–552, Dec. 1985.

[115] Carliss Baldwin and Kim Clark. Design Rules: The Power of Modularity,
volume 1. The MIT Press, 2000.

[116] John K. Gershenson and G. Jagganath Prasad. Modularity in product de-
sign for manufacturability. International Journal of Agile Manufacturing,
1(1):99–110, 1997.

[117] Carliss Baldwin and Kim Clark. Modularity in the Design of Complex Engi-
neering Systems, chapter 6, pages 175–205. Springer, 2006.

[118] Patrick J. Newcomb, Bert Bras, and David W. Rosen. Implications of mod-
ularity on product design for the life cycle. Journal of Mechanical Design,
120(3):483–490, 1998.

[119] Somwrita Sarkar, Andy Dong, James Henderson, and P.A. Robinson. Spec-
tral characterization of hierarchical modularity in product architectures.
Journal of Mechanical Design, 136(1):011006, 2013.

[120] Karl Ulrich. Fundamentals of Product Modularity, chapter 12, pages 219–231.
Springer, 1994.
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