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Manufacturing technology has continuously evolved and advanced over the past 

century; this has led to an increase in the production of consumer and industrial goods 

driven by simultaneous growth in population and wealth. Despite the resulting 

economic and labor growth, environmental impacts of manufacturing have increased 

dramatically due to the dependence on exhaustible material and energy resources 

necessary to meet these growing product demands. Increasing awareness and concern 

over these impacts has encouraged sustainable thinking toward managing material 

resources, alternative energy sources, and advanced manufacturing technologies. 

However, the primary emphasis of manufacturing system design decision making has 



 

 

remained focused on the reduction of cost of goods sold (in discrete part production) 

and total production cost (in continuous production). Manufacturing system design 

decision makers face challenges in defining, evaluating, and implementing sustainable 

manufacturing practices, which include the time-intensive nature of complex system 

design and analysis, data integrity, and deficiencies in assessment methods. In 

particular, the challenges of collecting, curating, analyzing, and presenting 

environmental, economic, and social metrics and indicators (sustainability performance 

information) remains a barrier to operational decision-making. Existing assessment 

methods and tools are not well-suited to evaluating the sustainability performance of 

manufacturing processes and systems, as they tend to be product-focused and have 

limited ability to adapt to changes at the manufacturing process or system level.  

 

The objective of this dissertation research is to facilitate sustainable manufacturing 

system design decision making by integrating a systematic and structured information 

modeling framework with a manufacturing system design approach. To accomplish 

this goal, the research approach involves four steps: (1) Performing a review of recent 

literature to identify the existing challenges in the development and application of 

sustainable manufacturing methods, tool, models, algorithms, metrics, and indicators; 

(2) Introducing a functional and object-oriented information modeling methodology to 

characterize the sustainability performance of unit manufacturing processes (UMPs) 

using the concepts of abstraction and instantiation, which is demonstrated by reusing 

and extending a manual milling UMP model for two and a half-axis milling process; 

(3) Applying information modeling approaches in characterizing the sustainability 



 

 

performance of manufacturing process flows composed of UMPs, which is 

demonstrated for a discrete part manufacturing system; and (4) Synthesizing the results 

of the prior steps to provide an information modeling framework for sustainable 

manufacturing system design decision making. The framework is applied to discrete 

and continuous product manufacturing to demonstrate the flexibility of this system 

design approach. The framework provides an accessible approach for detailed analysis 

of the sustainability performance of manufacturing processes and systems by enabling 

the reuse, extension, and composability of new and previously developed UMP models. 

The coupling of information modeling concepts (e.g., abstraction, instantiation, and 

polymorphism) along with hierarchical, structured, and systematic manufacturing 

system design enables the framework to address the challenges stated above, namely: 

(1) Modeling complexity is simplified through a bottom-up approach for characterizing 

individual UMPs, which are built up for system-level characterization; (2) Model 

development, verification, and validation efforts are reduced by reusing and extending 

UMP models, thereby also reducing the time-intensity of modeling; (3) Data reliability 

is improved, since the framework is agnostic of existing process-specific data sources, 

rather than restricting data sources and types necessary for analysis; and (4) Multi-

criteria decision-making is facilitated by using a hierarchical data structure for model-

quantified metrics of interest, which supports analysis using decision trees. The 

research lays a foundation for developing an ontologies based decision support for 

sustainable manufacturing system design, as ontologies describe relationships and links 

between systems and sub-systems which enables the framework to have high-fidelity 

and understanding of the manufacturing system model and data.  
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Chapter  1: INTRODUCTION 

 Motivation 

Manufacturing industry is undergoing significant advancements in the fields of 

computing technology, architecture, and infrastructure; real-time (big) data analytics, 

instrumentation, and control; materials science, multi-scale physics-based 

manufacturing process modeling, and precision tooling and equipment; and many other 

synergies between facets of science, technology, engineering, and mathematics [1,2]. 

According to the U.S. Bureau of Economic Analysis (BEA), these technologies enabled 

manufacturing (e.g., in chemical, food, automobiles, metal fabrication, and petroleum 

industries) to have a combined contribution of 10.8% to the U.S. Gross Domestic 

Product in 2020 [3]. At the same time, according to the U.S. Energy Information 

Administration (EIA), the industrial sector consumed 35% [4] of total energy 

production (lagging only the transportation sector, at 37%), while employing 12.5% [5] 

of the total workforce.  

 

Along with these technological advancements and economic growth, there has been 

increasing emphasis on sustainable manufacturing [6–8] due to governmental and 

global policies, international standards, and an increase in customer awareness and 

societal concerns [9,10]. Historically, economic factors such as reduced product cost, 

increased revenue, and market presence have been the driving forces in advancing 

manufacturing innovation and productivity. However, it has been projected that 

manufacturing technologies that promote economic and social sustainability will grow 

from a market value of $8.79 billion in 2019 to $48.36 billion by 2027 [11].  
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Sustainable development defined by the Brundtland report [12] states that 

“development which meets the needs of the present without compromising the ability 

of future generations to meet their own needs.” Since the Brundtland report was 

published, academic researchers and industrial practitioners have developed a number 

of methods and tools to promote sustainable manufacturing practices. Sustainability 

thinking has paved the way to design and manufacturing practices, which in turn have 

aided environmentally responsible and sustainable manufacturing philosophies 

[13,14]. However, there continues to be a need for engineering decision-making 

approaches to accommodate the sustainable growth in manufacturing output, energy 

demand, and consumption, while conserving and sustaining resources for future 

generations. 

 

Implementing sustainable manufacturing practices is attendant with several challenges 

due to the complex nature of interactions among the various processes and activities 

taking place within a manufacturing system. A number of key challenges inhibit the 

drive to incorporate sustainability thinking into manufacturing system design [15–18]:  

(1) Difficulty of  making manufacturing decisions that emphasize the three pillars 

of sustainability (i.e., economic, environmental, and social),  

(2) Complexity of integrating sustainable manufacturing practices along with other 

manufacturing activities such as lean, quality control, manufacturing and 

regulatory standards, and supply chain management,  
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(3) Limited model accuracy and precision in sustainability assessment due to 

generic representations of manufacturing processes and a broad emphasis on all 

phases of the product life cycle,  

(4) Difficulty of the industrial application of life cycle assessment (LCA), due to a 

lack of reliable and efficient models, methods, and tools, and  

(5) Level of expertise required to develop and analyze sustainability assessment 

models for manufacturing systems and to apply LCA methods for process 

analysis.  

 

 Background 

It can be noted that LCA remains at the forefront of the many methods developed to 

evaluate sustainability performance. LCA focuses on evaluating the environmental 

performance of a product from its cradle to grave. Existing LCA methods primarily 

address environmental impacts rather than focusing on all three pillars of sustainability. 

LCA methods/tools often focus on energy consumption and the challenges associated 

with reducing energy-related carbon footprint. The few tools that emphasize the three 

pillars of sustainability in product design and manufacturing lack supporting data and 

reliable models to enable multi-criteria decision-making [19]. Due to the complexity of 

manufacturing systems, the models within these LCA tools are often too generic for 

characterizing specific instances of known classes of manufacturing processes [20,21]. 

Additionally, LCA tools lack the robustness to assess sustainability performance at the 

manufacturing system level as these tools are unable to handle the myriad (information, 

data, and material) exchanges between manufacturing processes. As a result, LCA tools 
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and supporting models are made in an ad hoc manner for sustainability assessment. 

Due to these limitations, LCA methods are not well-equipped for manufacturing system 

design decision support.  

 

A manufacturing system is defined as “the arrangement and operation of elements 

(machines, tools, material, people, and information) to produce a value-added physical, 

information or service product whose success and cost is characterized by measurable 

parameters of the system design” [22]. As such, manufacturing system design focuses 

on designing the manufacturing process flow, organization of materials, and resources 

(people, tools, and information) required for producing a product. It is a subset of 

production system design, and focuses on designing the type of manufacturing system 

and processes that best suit the product design. The ability to evaluate the performance 

of a manufacturing system during its design through the integration of existing 

sustainability assessment methods/tools would support sustainability decision making. 

To address this need, several efforts have been pursued for evaluating product 

sustainability performance during the manufacturing phase of the lifecycle.  

 

For nearly the past century, researchers have been investigating the performance 

measurement of the fundamental building blocks (distinct manufacturing processes) of 

manufacturing systems, termed unit manufacturing processes (UMPs) [23]. UMPs 

have been defined as “the individual steps required to produce finished goods by 

transforming raw material and adding value to the workpiece as it becomes a finished 

product” [24]. Formalized representations for characterizing the structure of UMPs 
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have changed over time, beginning with Kim et al. [25], who applied IDEF0 functional 

modeling to represent the functions, constraints, and actions of UMPs. More recently, 

ASTM subcommittee E60.13 [26] has focused on disseminating knowledge, and 

developing and promoting information modeling-based standards for sustainable 

manufacturing assessment. Within the family of sustainability standards developed by 

the ASTM sub-committee, ASTM E3012-20 [27] defines UMPs as shown in Figure 

1.1. While UMPs have been classified using a variety of taxonomies [28–30], the 

formalized representation is agnostic to the modeled manufacturing process. 

 

 

Figure 1.1. Graphical representation of a unit manufacturing process [27] 

 

A manufacturing system consists of one or more UMPs arranged in sequential manner 

to output a finished product. Based on ASTM E3012-20, composability is defined as 

“the act of linking individual unit manufacturing process (UMP) models together to 

create a composite of UMP models that can characterize the metrics of interest of a 

production system or product” [27]. Composition is essential for establishing 

relationships between UMPs, tracking material and information exchanges, and 



6 

 

 

defining a structured representation of a manufacturing system, all of which enable 

holistic manufacturing system design decision support through information modeling. 

 

Existing sustainable manufacturing assessment methods/tools focus on characterizing 

and evaluating process-level performance, and have been applied to optimize process 

parameters for a variety of metrics of interest [31]. However, little effort has focused 

on sustainable manufacturing performance assessment through the evaluation and 

composition of UMPs to represent a manufacturing system. In particular, existing 

methods/tools are limited in their ability to reuse and compose UMP models, and thus, 

require analysts to devote significant time to model setup and deployment.  

 

The formalized UMP information modeling structure is amenable to the fundamental 

blocks of object-oriented programming such as abstraction, instantiation, and 

polymorphism. Information models help in defining relationships, constraints, model 

structure, rules and operations [32]. The core attributes of object-oriented programming 

help in faster deployment of sustainability assessment for manufacturing systems, since 

models can be reused and modified (extended) with relative ease to suit any 

manufacturing process flow of interest. The application of information modeling for 

evaluating the sustainability performance of manufacturing systems has not been given 

much attention, which has led to ad hoc, non-standard practices. The advantages that 

arise from integrating UMP information modeling into sustainability performance 

evaluation have not been realized for multi-criteria manufacturing system design 

decision support. 
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 Research Objective 

The primary objective of the dissertation research presented herein is to facilitate 

sustainable manufacturing system design decision making by integrating a systematic 

and structured information modeling framework with manufacturing system design 

methodology. This integrated approach will enable systematic assessment of discrete 

and continuous manufacturing systems using a variety of sustainability metrics. 

 

 Research Questions 

Four research questions were posed to address the research objective stated above: 

• Question 1: What is the state-of-the-art in systemic sustainable manufacturing 

assessment, with regard to current metrics/indicators, methods/tools, and 

models/algorithms in use and opportunities for future research? 

• Question 2: How can information modeling methods be leveraged to reuse and 

extend Unit Manufacturing Process (UMP) models to support sustainability 

assessments for specific instances of manufacturing process configurations? 

• Question 3: How can information modeling methods be leveraged to define 

shared information context (linking information) for UMP model composition 

to support sustainability assessments of manufacturing systems? 

• Question 4: How can information modeling methods be integrated within 

manufacturing system design decision-making to support sustainability 

performance characterization, evaluation, and improvement?  
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 Research Tasks 

To help answer these research questions, the following research tasks were pursued: 

• Task 1:  Conduct a review of the domain literature and gather input from the 

advanced manufacturing research community, including industry, academia, 

and government labs. This work helps in defining the state-of-the-art in smart 

and sustainable manufacturing as well as a basis for future research to support 

performance metrics, characterization models, and analysis methods attendant 

with conventional manufacturing, nanomanufacturing, and additive/hybrid 

manufacturing, and process-level and system-level characterization.  

• Task 2: Develop an approach for extending and reusing UMP models to 

characterize a variety of sustainability metrics and indicators that applies core 

concepts of object-oriented information modeling, such as abstraction, 

inheritance, and polymorphism. Abstraction and inheritance enable the reuse of 

information models, and polymorphism helps in extending models to 

characterize process variants. Reuse and extension of existing UMP models 

enables modelers to more quickly develop new process models with better 

defined structure and with relative ease compared to developing models from 

scratch. The developed approach is demonstrated using an example of a manual 

milling UMP model, which is extended to represent a two and a half-axis 

milling process with a lubrication system. This is achieved by abstracting and 

instantiating the manual milling UMP model (template) and then adding  

instantiations of the table feed and the lubricant system, termed “layer models.”  
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• Task 3: Develop a method for representing a manufacturing system (a network 

of UMPs) by applying the composability principle of information modeling. 

Approaches for linking UMPs tend to be manual and open to subjective 

interpretation, which leads to inconsistencies in handling information flow and 

data exchange, unstructured representations, and significant time investment. 

Information modeling enables linking, handling, and processing of data in a 

hierarchical and structured sequence, as well as data traceability and potential 

automation using software applications. Composability enables the modeler to 

capture shared information context between the multiple UMPs that constitute 

a manufacturing system. In prior work, this information context has been 

represented as linking variables, which are further defined here as “specific” 

(associated with the two linked processes) and “generic” (associated with any 

instance of a particular process, independent of process links). The developed 

method is verified using a demonstrative case study of products manufactured  

using a distributed, cloud-based manufacturing system. The study details a 

trade-off analysis performed for a family of extruded parts using multi-criteria 

decision making to evaluate three procurement options/perspectives. 

• Task 4: Integrate the information modeling framework developed in Tasks 2-3 

along with manufacturing systems design methodology to facilitate sustainable 

manufacturing system design decision making. The integrated framework 

follows a systematic and structured information modeling approach for 

characterizing the sustainability performance of a manufacturing system. To 

verify the framework, a demonstrative case study is first undertaken to compare 
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the sustainability performance of two manufacturing systems producing the 

same aluminum product (wheel housing) across a range of production volumes. 

Next, to illustrate the application of the integrated framework beyond discrete 

part manufacturing, a case study for continuous manufacturing compares the 

environmental and cost performance for the production of a bulk chemical 

(ammonia) using two chemical process flows over a range of capacities.   

 

 Intellectual Merit 

The foregoing research tasks help in addressing the research questions posed above 

and, thereby, aid in achieving the research objective of this dissertation. In so doing, 

this research advances the state-of-the-art in sustainable manufacturing systems design 

decision making, providing a number of contributions to the body of knowledge: 

• Research Task 1 identifies the need for structured, repeatable, verifiable, and 

reliable methods and tools to characterize sustainability performance of 

manufacturing processes and systems to support manufacturing system design 

decision making. Further, this task helps identify barriers to advanced 

manufacturing process development, modeling, and analysis, as well as 

opportunities for future research to address these barriers with respect to 

metrics/indicators, models/algorithms, and tools/methods. 

• Research Task 2 presents an approach for reusing and extending UMP models 

through information modeling methods such as abstraction, instantiation, and 

polymorphism to evaluate the sustainability performance of manufacturing 

processes. The novel approach provides a structured, repeatable, and reliable 
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method for characterizing sustainability performance of UMPs. The approach 

lays the foundation for evaluating system-level sustainability performance, as 

demonstrated under Research Task 3. 

• Research Task 3 presents an information modeling approach for composing 

UMP models to characterize the sustainability performance of a manufacturing 

system. Composability of UMP models through functional block aggregation 

enables tracking of product and process information flows within the modeled 

manufacturing system. Such manufacturing systems models provide insights 

into the relationships between individual UMPs, which can support decision 

making for the design of new manufacturing systems, as demonstrated in 

Research Task 4.  

• Research Task 4 presents a framework for integrating the information modeling 

approaches developed in Tasks 2-3 with manufacturing systems design 

methodology to facilitate multi-criteria decision making for the design of 

sustainable manufacturing systems. The utility of this framework is its 

flexibility and adaptability for modeling various manufacturing systems, as 

demonstrated for discrete and continuous production. Further, the information 

modeling basis of framework lends it to the realization of computer-based 

applications and tools to support systems engineers and other decision makers. 
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 Dissertation Outline 

This research conducted as part of this dissertation is reported in manuscript format and 

includes six chapters and several appendices, all of which are used to address the 

objective of this research.  

 

Chapter 1 provides an introduction, motivation, and background to the research 

including objective, research questions, tasks, and intellectual merit. 

 

Chapter 2 presents a review of the literature (published in the ASTM Journal of Smart 

and Sustainable Manufacturing Systems). A detailed summary of the near to long term 

research opportunities for advancing smart and sustainable manufacturing is presented. 

The identified gaps for sustainable manufacturing systems design established the 

research objective for this dissertation. 

 

Chapter 3 is an article submitted to the ASME Journal of Computing and Information 

Science in Engineering. This chapter presents an information modeling methodology 

for reusing and extending UMP models for sustainability assessments using concepts 

of abstraction and instantiation which are core to information modeling. The 

methodology is demonstrated using an extension of manual milling UMP to a two and 

a half axis milling UMP. 

 

Chapter 4 is an article to be submitted to the ASME Journal of Manufacturing Science 

and Engineering and develops a methodology to compose UMPs for evaluating the 
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sustainability performance of manufacturing systems. Composition for a variety of 

processes under the manufacturing taxonomy were investigated to understand the 

characteristics of the shared information between UMPs for composition. This method 

was conceptually demonstrated for discrete part production using a trade-off analysis 

comparing the sustainability performance for making a design decision. 

 

Chapter 5 is an article to be submitted to the Journal of Cleaner Production, and 

develops an information modeling framework to support decision making for 

manufacturing system design, with the methods developed in Chapter 3 and Chapter 4 

as the foundation. The framework has been conceptually demonstrated for discrete part 

manufacturing and continuous product manufacturing. 

 

Chapter 6 summarizes the findings from the research, and reports on the conclusions, 

contributions, and potential future research directions of the dissertation work. 
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Chapter  2: DEFINING NEAR-TERM TO LONG-TERM 

RESEARCH OPPORTUNITIES TO ADVANCE METRICS, 

MODELS, AND METHODS FOR SMART AND 

SUSTAINABLE MANUFACTURING 

 Abstract 

Over the past century, research has focused on continuously improving the 

performance of manufacturing processes and systems – often measured in terms of cost, 

quality, productivity, and material and energy efficiency. With the advent of smart 

manufacturing technologies – better production equipment, sensing technologies, 

computational methods, and data analytics applied from the process to enterprise levels 

– the potential for sustainability performance improvement is tremendous. Sustainable 

manufacturing seeks the best balance of a variety of performance measures to satisfy 

and optimize the goals of all stakeholders. Accurate measures of performance are the 

foundation on which sustainability objectives can be pursued. Historically, operational 

and information technologies have undergone disparate development, with little 

convergence across the domains. To focus future research efforts in advanced 

manufacturing, the authors organized a one-day workshop, sponsored by the U.S. 

National Science Foundation (NSF), at the joint manufacturing research conferences 

of the American Society of Mechanical Engineers (ASME) and Society of 

Manufacturing Engineers (SME). Research needs were identified to help harmonize 

disparate manufacturing metrics, models, and methods from across conventional 

manufacturing, nanomanufacturing, and additive/hybrid manufacturing processes and 
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systems. Experts from academia and government labs presented invited lightning talks 

to discuss their perspectives on current advanced manufacturing research challenges. 

Workshop participants also provided their perspectives in facilitated brainstorming 

breakouts and a reflection activity. The aim was to define advanced manufacturing 

research and educational needs for improving manufacturing process performance 

through improved sustainability metrics, modeling approaches, and decision support 

methods. In addition to these workshop outcomes, a review of the recent literature is 

presented, which identifies research opportunities across several advanced 

manufacturing domains. Recommendations for future research describe the short-, 

mid-, and long-term needs of the advanced manufacturing community for enabling 

smart and sustainable manufacturing. 

 

 Introduction 

Manufacturing has undergone rapid advancement in the past few decades, due to 

improvements in information technology, sensing methods and technologies, tooling 

and equipment, new and improved materials, and improved understanding of process 

characteristics through data analytics, all of which has enabled new manufacturing 

methods (e.g., cyber-manufacturing and distributed manufacturing) and manufacturing 

processes (e.g., additive manufacturing and hybrid manufacturing) [1]. Integration of 

current-day manufacturing methods, processes, and equipment with sensors, controls, 

computational methods, new materials, data analytics, artificial intelligence, and 

communication technologies drive smart manufacturing [33], an emerging 

manufacturing concept that has seen a variety of definitions. The U.S. National Institute 
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for Standards and Technology (NIST), states, “[Smart manufacturing systems are] 

fully-integrated, collaborative manufacturing systems that respond in real time to meet 

changing demands and conditions in the factory, in the supply network, and in customer 

needs” [34]. The U.S. Department of Energy (DOE) Clean Energy Smart 

Manufacturing Innovation Institute (CESMII) posits, “Smart Manufacturing (SM) 

enables all information about the manufacturing process to be available when it is 

needed, where it is needed, and in the form it is needed across the entire manufacturing 

value-chain to power smart decisions” [35]. Such technological advances will enable a 

broad range of industries to lower costs, improve quality, increase productivity, 

improve material management, increase efficiency, reduce energy use, and improve 

worker health and safety, among other performance measures [33,36].  

 

Further, continuously monitoring and improving upon these key performance 

indicators (KPIs) helps in improving the sustainability performance of smart 

manufacturing systems beyond that previously attainable with asynchronous, manual 

collection and interpretation of performance data. Sustainable manufacturing requires 

a balance of KPIs that span the three pillars of sustainability (economic, environmental, 

and social) based on stakeholder preferences [37]. However, smart and sustainable 

manufacturing systems exhibit a complex nature, often due to varied, non-uniform 

manufacturing processes that make quantifying process metrics, ensuring data 

integrity, and establishing relationships between the systems and sub-systems 

extremely difficult [38,39]. Through the evolution of manufacturing, new processes, 

materials, and supporting technologies have been developed based on industry needs. 
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Complementary efforts were undertaken to quantify metrics, model systems and sub-

systems, and develop methods of quantification for performance measures. These 

developments have been completed quite independently, however, and have had little 

to no convergence. To address this deficiency, NIST worked to (a) develop standard 

smart manufacturing measurement methods, (b) model and characterize smart 

manufacturing system complexity, (c) develop guidelines for methods, metrics, and 

tools that enable manufacturing stakeholders to assess and assure cybersecurity of 

smart manufacturing systems, and (d) develop methods and protocols for the 

integration of smart manufacturing systems [40]. In addition, recently developed 

ASTM standards led by NIST researchers guide companies in evaluating and 

characterizing the sustainability performance of manufacturing processes in their 

facilities and supply chains [41,42].  

 

To support research efforts in smart and sustainable manufacturing, the authors 

organized a one-day workshop, sponsored by the U.S. National Science Foundation 

(NSF), at the joint manufacturing research conferences of the American Society of 

Mechanical Engineers (ASME) Society of Manufacturing Engineers (SME) held at 

Texas A&M University in June 2018. The workshop invited participants from the 

industry, academia, and government labs to engage in presentations and discussions of 

recent developments within emerging areas of advanced manufacturing. It aimed to 

identify the basis for future research in smart and sustainable manufacturing to support 

performance metrics, characterization models, and analysis methods attendant with 

conventional manufacturing, nanomanufacturing, and additive/hybrid manufacturing, 
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as well as for process-level and system-level characterization. This approach enabled 

the research team to gather perspectives from across various domains of manufacturing 

and to synthesize these findings to address common research needs for advancing smart 

and sustainable manufacturing with an emphasis on the role of standards in advancing 

the field. Workshop activities undertaken to generate and synthesize this information 

are described in Section 3. To supplement the findings from the workshop presented in 

Section 4, the research team conducted a literature review which identifies the current 

state of several key domains of manufacturing and their relevant challenges. Section 5 

reports future research opportunities and expected outcomes in short- to long-term time 

ranges. Section 2 provides background information in support of the work reported 

herein.  

 

 Background 

The objective of the study reported herein aims to focus future research efforts in 

advanced manufacturing, with an emphasis on smart and sustainable manufacturing 

processes and systems. A foundational assumption for smart manufacturing is that 

models of manufacturing processes provide a basis for computationally improving 

manufacturing operations.  The principles on which these models are organized are 

emerging. ASTM subcommittee E60.13 on Sustainable Manufacturing [26] has 

published an initial set of standards to codify these principles, yet more research is 

needed to understand the fundamental modeling concepts—the abstractions—needed 

to enable model reuse and composition across the variety of manufacturing processes 

and systems. 
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To provide an initial foundation for this work, the findings from a prior workshop on 

Reusable Abstractions for Manufacturing Processes (RAMP), held in 2017, and the 

purpose of the 2018 RAMP workshop are next introduced. Both workshops were held 

in conjunction with a competition for modeling manufacturing processes using 

standard methods under development by ASTM subcommittee E60.13.  The 

competitions motivated application of the standards to several manufacturing processes 

and user experiences from which to generate meaningful feedback.   

 

The first RAMP workshop also was supported by NSF and held in conjunction with 

the 13th ASME Manufacturing Science and Engineering Conference (MSEC) and the 

45th SME North American Manufacturing Research Conference (NAMRC) on June 7, 

2017 at the University of Southern California in Los Angeles, CA. The workshop was 

held in partnership also with NIST and ASTM International. The objectives of the 

workshop were to: 

1) Familiarize the research community with standards from the ASTM E60.13 

Subcommittee for modeling manufacturing processes, including the ASTM 

E3012 Standard Guide for Characterizing Environmental Aspects of 

Manufacturing Processes [42]; 

2) Provide an opportunity for participants to put those standards into practice in 

modeling processes of their own interest, and to share experiences in applying 

the standards; and 
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3) Provide a source of candidate models to populate an extensible repository of 

reusable manufacturing process models being developed by NIST and its 

academic partners. 

 

The workshop attracted several dozen participants from industry, academia, and 

government labs. The workshop highlighted the opportunities for an open repository of 

process models [43], and identified emerging efforts, including both standards 

development and academic and industrial research, to outline a vision for coalescing 

such efforts towards an open process model repository. Lessons from the workshop led 

to a new information model that facilitates more consistent characterization of physical 

artifacts in production systems, leading to better reusability of models and 

reproducibility of environmental analyses. Based on the 2017 workshop results and 

findings from ongoing research, the follow-on workshop held in 2018 and reported here 

was designed to:  

1) identify needs for education and research to support the characterization of unit 

manufacturing processes (UMPs) for sustainability assessment; 

2) define current limitations in associated education and research practices; and  

3) prioritize the challenges to be pursued by the manufacturing research 

community to best meet industry needs in adopting and applying analytical 

methods for improving smart and sustainable manufacturing process and 

system performance.  
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The outcomes of the workshop are expected to benefit basic research programs within 

NSF, for example by leading to funded research and advancements in topic areas such 

as sustainability of nanomanufacturing processes and nano-products, digitization of 

continuous and batch processes, fundamental models of manufacturing processes, and 

efficient process and system models for decision support in cloud manufacturing. 

Academic researchers with foci in smart and sustainable manufacturing systems, 

manufacturing machines and equipment, materials engineering and processing, 

nanomanufacturing, and engineering education were particularly encouraged to attend; 

the workshop attracted participants with broad interests in teaching undergraduate and 

graduate students and conducting basic and applied research in analytical methods for 

sustainable manufacturing. 

 

 Overview of the 2018 RAMP Workshop 

The second RAMP workshop was comprised of two half-day sessions and an evening 

poster session. The first half of the day was dedicated to presentations that introduced 

a variety of perspectives on manufacturing metrics and process modeling. The second 

half of the day was designed to engage the participants in defining relevant advanced 

manufacturing research challenges. In addition to participants from academia, industry, 

and government labs, the workshop hosted 46 undergraduate and graduate student 

participants, including 23 student finalists comprising six teams from the NIST-

sponsored RAMP competition [44].  The student participants presented posters 

reporting their research in manufacturing process modeling and sustainability 
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performance assessment.  Additional details of the sessions are described in the 

following sections. 

 

 Student presentations and expert lightning talks 

In the first session of the workshop, RAMP competition finalists presented their 

projects, summarized in Table 2.1. In the following session, experts from across the 

advanced manufacturing domain presented lightning talks to report ongoing research 

activities and their personal perspectives on the current and future research challenges 

and modeling needs for advanced manufacturing. These expert talks were not meant to 

be comprehensive, but provided context for participants in the afternoon session of the 

workshop to identify and discuss extant challenges across manufacturing research 

domains. 

 

Table 2.1: Summary of RAMP Competition finalist presentations 

Presentation Topic Author(s) Affiliation 

A Production Line for 

Polylactide Business Card 

Ian Garretson and Barbara 

Linke 

University of California, Davis 

Sustainability Analysis of 

Stereolithography using UMP 

Models 

Timothy Simon1, Yiran 

Yang1, Wo Jae Lee1, Jing 

Zhao1, Lin Li2, and Fu Zhao1 

Purdue University1, University 

of Illinois-Chicago2 

Aggregating UMP Models to 

Enable Environmental Impact 

Characterization of Polymer-

Based Hybrid Manufacturing 

Sriram Manoharan and Dustin 

Harper 

Oregon State University 

UMP Model for Flexible 

Manufacturing System 

Feng Ju, Daniel McCarville, 

Hashem Alshakhs, Weihao 

Huang, Xuefeng Dong, 

Hussain Alhader 

Arizona State University 

Data Driven UMP Model for 

Monitoring Specific Energy in 

Surface Grinding Process 

Zhaoyan Fan and Sai Srinivas 

Desabathina 

Oregon State University 

Grinding Analysis and Model Justin Canaperi, Yongxin Guo, 

John Park, Jun Yang, and Yuki 

Yoshinaga 

Stony Brook University 
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The talks in the second session started with Dr. Khershed Cooper of NSF presenting 

Nanomanufacturing Research at NSF. He discussed various NSF programs that 

address the growing demands and challenges of advanced manufacturing. He presented 

several specific approaches that have been pursued to address needs for scalability in 

nanomanufacturing under NSF funding. He also discussed avenues of NSF funding to 

support such work, including cyber-manufacturing and nanomanufacturing. 

 

Next, Dr. Ajay Malshe of the University of Arkansas outlined key drivers for 

standardization of nanomanufacturing in his talk titled Standardization and Scale-up 

of Nanomanufacturing Processes. He provided his perspective on the future of 

nanomanufacturing and described some of the limitations, specifically noting 

increasing stress levels in the research lab because of a dramatically changing 

invention-to-product life cycle. He also highlighted the missing link between research 

and industrial application, a need to account for the frequency of products changing 

hands, and the value of students being exposed to industry perspectives before 

contributing to lab research.  

 

Mr. Kevin Lyons of NIST then presented Standardization and Scale-up of Additive 

Manufacturing Processes. He began by defining additive manufacturing processes and 

then providing his perspective on the key drivers for advancing additive manufacturing 

technology. He indicated that data handling and sharing, model development and 

adaptation, and design for additive manufacturing were key shortcomings to be 

addressed. He also introduced potential research opportunities in additive 
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manufacturing, such as the need to integrate various process models while considering 

the inherent complexities, underlying assumptions, and constraints, the lack of a robust 

method to verify and validate process models for additive manufacturing, the need to 

develop an approach for capturing design rules for additive manufacturing, and the 

need to develop simulation testbeds for modelers to test their models against rigorous, 

highly-controlled additive manufacturing benchmark test data. 

 

Moving away from the process-specific focus, Dr. Fazleena Badurdeen of the 

University of Kentucky next spoke about Educating Engineers on Sustainable 

Manufacturing. She presented several engineering education challenges, and 

emphasized that realizing sustainable manufacturing innovations requires developing 

an educated and skilled workforce. One research opportunity she noted was a need for 

a multi-disciplinary approach to address sustainable manufacturing challenges that 

incorporates convergent research and education. In order to achieve this vision, a 

continuous effort of collaboration between key stakeholders, such as universities, 

industry, and state and federal agencies is required. She introduced various NSF 

programs and other funding opportunities that could be used to facilitate such efforts 

to bolster sustainable manufacturing engineering education.  

 

Dr. Barbara Linke of the University of California Davis next focused on Modeling 

Manufacturing Processes. She outlined the Unit Process Life Cycle Inventory (UPLCI) 

effort [45] to characterize a broad set of manufacturing processes. The UPLCI approach 

uses industrial information for each manufacturing process (machine) to estimate 
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material inputs, energy use, and material losses for a particular product design. Linke 

also introduced a more involved approach for modeling process environmental 

performance metrics developed under the Cooperative Effort on Process Emissions in 

Manufacturing (CO2PE!) initiative [46]. She discussed the challenges encountered 

during the creation of UPLCI, including data quality and availability, reduction of 

complexity while remaining generic, managing empirical models, dependence of 

materials and energy on machine setup, and an unclear vision of how to capture impacts 

of auxiliary processes. To improve dissemination, Linke encouraged researchers to 

report their UPLCI models in standard format as peer-reviewed journal articles in 

Production Engineering - Research and Development, where recent UPLCI studies 

have appeared for grinding and welding [47,48]. 

 

Mr. Arvind Shankar Raman of Oregon State University next presented the talk titled, 

Approach for Modeling of Manufacturing Processes and Manufacturing Systems. He 

discussed the motivations for companies to pursue sustainable manufacturing practices, 

including social responsibility, investor demands, government regulations, 

international standards, and customer consciousness. However, he noted a considerable 

number of challenges; for example, analysis applications for sustainability assessments 

are often deficient in supporting integrated system-, process-, and machine-level 

manufacturing decisions. Data collection and reporting within and across supply chains 

remain a large challenge for manufacturers. Prior manufacturing process modeling 

efforts (e.g., UPLCI and CO2PE!) have focused on developing information models that 

are problem-specific, making them extremely limited in their extensibility. In addition, 
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such approaches require technical understanding of the manufacturing processes, 

which makes them difficult to adopt and apply within different product designs and 

production settings. Shankar Raman presented an information modeling framework for 

reusing and extending existing models of manufacturing processes for sustainability 

characterization [49].  

 

To close out the lightning talks, Dr. Alex Brodsky of George Mason University, in his 

presentation titled Reusable Model Repository for Manufacturing Systems, introduced 

a web-based system, called Factory Optima, being developed in his lab for composition 

and analysis of manufacturing service networks based on a reusable model repository 

[50]. This architecture aims to overcome the limitations of current decision-making 

tools and models for smart manufacturing. Most analysis and optimizations tools are 

currently developed from scratch, which leads to high cost, long-duration development, 

and restricted extensibility. Factory Optima is a high-level system architecture based 

around a reusable model repository and the Unity Decision Guidance Management 

System. Brodsky described this software framework and system for composition, 

optimization, and trade-off analysis of manufacturing and contract service networks. 

The work is unique in its ability to perform tasks on arbitrary service networks without 

manually crafting optimization models.  

 

The expert lightning talks laid the foundation for the interactive afternoon sessions of 

the workshop. Three exercises were conducted to engage workshop participants: a 
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schema refinement activity, brainstorming on process modeling challenges and 

opportunities, and a reflective activity to contemplate the lessons of the day. 

 

 Schema refinement activity 

Researchers from NIST led the activity to gather feedback from 2018 RAMP 

Competition participants and others to support extending and strengthening of the 

schema standardized in the ASTM E3012-16 standard (recently superseded by ASTM 

E3012-19). One of the key goals of ASTM E3012-16 is to characterize and record UMP 

models in a consistent manner to promote model reuse and sharing. The schema 

provided in the standard did not explicitly support reuse, which was made apparent 

from the NIST-hosted RAMP Competition in 2017, where use of the standard was a 

requirement for process model development. The submissions rarely conformed to the 

standard. NIST designed a formal implementation schema [51] for the 2018 RAMP 

Competition to ensure that the standard was followed more closely by process 

modelers. NIST also proposed revisions to the standard that are captured in the new 

schema, including the inclusion of more specific elements within the product and 

process information element as well as other elements and attributes to promote model 

traceability.  

 

The proposed revisions to the standard were reviewed and explained in a 15-minute 

presentation. Participants were then asked to navigate to the online tool, IdeaBoardz 

[52], on their personal devices (e.g., mobile phones, laptops, or tablets) and to respond 

under six categories of feedback: keep doing, start doing, stop doing, less of, more of, 
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and action items. Participants were asked to anonymously post concepts, ideas, and 

suggestions related to each category. The online tool allowed for “up-votes,” wherein 

workshop participants could show their agreement with ideas posted by other 

participants. Once concepts were posted to the board, participants volunteered to 

provide a verbal explanation of their ideas, which led to a discussion and clarification 

of key ideas. 

 

Based on the number of votes, it was evident that participants desired more modeling 

examples, specifically those that would be industry-relevant (19 total votes). There was 

also a considerable need for better definitions and documentations for the elements and 

attributes within the schema (7 total votes). With proper tools and frameworks, 

participants suggested that there would be fewer barriers to the use of UMP information 

models. Based on comments received, a critical future direction would be to 

demonstrate the use of the revised schema in industrial settings. In particular, validating 

the approach at scale would garner more interest and use of the standard. Validation 

could be facilitated by the generation of models (or adaptation of manufacturing 

process models) undertaken by the advanced manufacturing research community. 

 

 Brainstorming activity and results 

Parallel brainstorming discussions that focused on the six lightning talk topic areas 

were each facilitated by a subject matter expert. The session was guided by Dr. Karl 

Haapala, of Oregon State University, and focused on advancing discrete manufacturing 

processes, nanomanufacturing at scale, additive manufacturing at scale, process-level 
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sustainability assessment, system-level sustainability assessment, and manufacturing 

engineering education. The brainstorming session involved 26 participants from 

academia and three from government labs.  Each of the groups discussed challenges 

and opportunities related to metrics and indicators, models and algorithms, and tools 

and methods for each topic area. Participants first distributed themselves among the 

topic areas and then advanced through facilitated discussion rounds to brainstorm ideas 

related to the topics in a timed manner. The structure of this session allowed for a 

continuous flow of perspectives and ideas that were guided toward identifying 

challenges and approaches to overcoming them for each topic. Results of the activity 

were synthesized and provided in Table 2.2 (metrics/indicators), Table 2.3 

(models/algorithms), and Table 2.4 (methods/tools) for each topic area. 

 

 Reflection activity and results 

The final stage of the afternoon workshop session involved an individual activity that 

allowed participants to reflect on what they had heard and to offer their own insights. 

As such, the workshop organizers posed two questions: (1) What do you see as the most 

pressing need for advanced manufacturing research or advanced manufacturing 

education? and (2) What do you see as the key next step to be taken to address a 

pressing research or educational challenge in advanced manufacturing? 

  



30 

 

 

Table 2.2. Results for metrics and indicators from the brainstorming activity 

Topic Metrics and Indicators 

Discrete 

manufacturing 
• Identified challenges, including product customization, standardization, 

and bolstering the flexibility of processes 

• Identified connecting process level controls and system level metrics as 

a key barrier  

Nanomanufacturing at 

scale 
• Identified key metrics and indicators which include (depending on the 

process) fluid type, electron beam power, scan rate, beam diameter, 

material removal rate, structural resolution, feature size, tolerances, 

nanoparticle medium, roll-to-roll speed, printing speed, ink spread, 

sintering conductivity, circuit device design, and reactor design 

• Identified a key barrier as control over process parameters to achieve 

defined dimensional tolerances, which is difficult due to the extreme 

sensitivity of nanomanufacturing processes 

Additive 

manufacturing at scale 
• Identified metrics included temperature, layer thickness, material 

uniformity, material density, extrusion rates, feed rates, internal 

geometries, product dimensional constraints, melt pool geometry, build 

time, profile, accuracy, surface finish, and repeatability, including 

preventative maintenance, post-processing operations, and control of 

multi-axis equipment 

• Noted a need for developing and implementing methods of non-

destructive inspection for measuring features (internal and external). In 

addition, current indicators of process variables are deficient in their 

ability to control the melt pool within desired operating ranges of 

existing additive manufacturing processes 

Process-level 

sustainability 

assessment 

• Identified metrics and indicators at the process level, which broadly 

include cost, productivity, quality, energy, resources, waste, 

environmental impacts, personal health, and safety 

• Noted a difficulty in identifying and quantifying metrics at the process 

level, which requires sophisticated models for accurate characterization 

System-level 

sustainability 

assessment 

• Identified metrics included lead time, resource availability, material 

stability, and system reliability 

• Indicated importance of considering interactions of multiple 

manufacturing processes for accurate metric quantification and 

assessment, requiring integration of models across engineering domains 

and information-sharing across industries 

Manufacturing 

engineering education 
• Noted that an identifiable increase in confidence within manufacturing 

classes is a key indicator for education in advanced manufacturing 

• Identified the lack of sustainability topics in undergraduate studies is a 

weakness of advanced manufacturing education 

• Found metrics for engineering education in advanced manufacturing 

difficult to define 
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Table 2.3. Results for models and algorithms from the brainstorming activity 

Topic Models and Algorithms 

Discrete manufacturing • Noted that complexities in model composition and optimization are 

barriers to developing flexible models and algorithms, requiring support 

of related products with complementary models across multiple 

enterprises 

• Indicated that scheduling intricacies are a challenge for modeling 

flexible discrete product manufacturing systems 

• Noted that modeling dynamic processes and processes that are 

interdisciplinary (involving various engineering technologies) can be 

extremely difficult 

Nanomanufacturing at 

scale 
• Noted current modeling methods include modeling of nano-scale fluid 

dynamics, roll-to-roll modeling, circuit modeling, molecular dynamics, 

and density functional theory 

• Indicated a lack of models or algorithms for metrics and indicators of 

interest such as electron beam power, scan rate, beam diameter, 

structural resolution, feature size, nanoparticle medium, printing speed, 

ink spread, and sintering conductivity 

Additive manufacturing 

at scale 
• Indicated some of the existing modeling challenges include support 

structure optimization, design features (form, fit, and function), and 

model fidelity  

• Expressed a need for representing key performance indicators (KPIs) as 

a function of control parameters 

• Noted that cloud-based process design is needed, perhaps combining 

parameterized product design methods with new process design 

approaches 

Process-level 

sustainability 

assessment 

• Indicated limited availability of models and algorithms that enable the 

assessment of process-level sustainability metrics 

• Noted that exploration of physics-based and empirical models, 

predictive models, optimization methods, process planning, and sensor 

data collection and storage for data-driven models should be studied as 

disparate means to assess and improve process-level sustainability 

System-level 

sustainability 

assessment 

• Noted a need to develop models for risk assessment and evaluating 

system dynamics 

• Indicated models that describe manufacturing processes accurately have 

an important role in robust system-level sustainability assessment 

Manufacturing 

engineering education 
• Identified the need for models to apply sustainability concepts in real 

life, as well as the need for models that are easy-to-apply with existing 

software solutions and sustainability assessment methods  

• Indicated a need to incorporate design methodologies, especially 

Design for X concepts, into manufacturing engineering curricula 
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Participants recorded their answers to the two questions on individual notecards. The 

answers received were varied, but could be grouped into the following categories: 

1) Connection between academia, industry, and government 

2) Manufacturing engineering education improvement and workforce 

development 

3) Development, verification, and validation of manufacturing process models 

4) Development of advanced manufacturing technologies and novel materials 

5) Scalability improvements and standardization for advanced manufacturing 

6) Integration of advanced manufacturing with cross-functional engineering 

domains 

 

The categorization of responses to the open-ended first question are indicated in Figure 

2.1. More than one quarter (27%) of the participants reported that manufacturing 

engineering education improvement and workforce development efforts are most 

needed to advance manufacturing research or education. Individual responses indicated 

that participants perceived a lack of industry-relevant curricula in advanced 

manufacturing engineering education or a lack of adoption of basic engineering 

education in manufacturing industry. Key ideas shared by workshop participants 

included improving education, providing hands-on experience, promoting 

manufacturing education to inspire younger generation, and developing online 

resources for manufacturing education. 
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Figure 2.1. Summary of responses to Question 1: What do you see as the most 

pressing need for advanced manufacturing research or advanced manufacturing 

education? 

 

The third category (process model development, verification, and validation) and the 

last category (integrating manufacturing with cross-functional engineering domains), 

scored high as well; 21% of respondents identified these areas as having the most 

pressing need. In particular, participants noted that process models with validated 

datasets, methods, and algorithms were needed. These responses may have been due to 

the workshop discussions tailored toward addressing a need for models to fill current 

characterization gaps and engineering education needs. Respondents indicated that 

fields of engineering such as design (connecting design and manufacturing) and 

computer science (artificial intelligence, machine learning, and improvements in 

analytical tools) play a critical role in advancing manufacturing industry and enabling 

smart manufacturing. 
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Table 2.4. Results for methods and tools from the brainstorming activity 

Topic Methods and Tools 

Discrete manufacturing • Identified a need to classify problems of existing manufacturing 

processes to advance the understanding and optimize the performance 

of discrete manufacturing processes using machine learning 

• Expressed a need to develop software for interpreting and linking 

disparate process models 

Nanomanufacturing at 

scale 
• Noted that common tools include mathematical solvers, computational 

fluid dynamics software, finite element analysis software, and finite 

volume methods, as well as analytical tools (e.g., scanning electron 

microscopes and transmission electron microscopes) 

• Noted that key barriers include the precision and accuracy of current 

metrological methods/tools and limited ability to control motion 

components with extreme precision 

Additive manufacturing 

at scale 
• Indicated a need for tools that aid selection of the process type, build 

orientation, and material, in addition to tools that support metrology, 

in-process monitoring, quality measurement, and verification and 

validation 

• Noted a need to develop/improve tools that perform cross-validation, 

and provide sustainability decision support, cost modeling, and product 

design optimization  

Process-level 

sustainability 

assessment 

• Indicated a need for tools that support teaching of sustainability 

assessment at the process level through adaptable, easy-to-use, open 

source methods of quantification 

• Identified skills training, societal influence, and social behaviors as 

approaches to communicate the importance of considering 

sustainability factors 

System-level 

sustainability 

assessment 

• Indicated current challenges include how to collect, sort, and validate 

data for system-level assessment 

• Noted a need to develop tools that establish and define process 

relationships between models for systemic assessments  

Manufacturing 

engineering education 
• Noted that manufacturing techniques that can be taught using in-house 

demonstrations would be highly beneficial for students to develop a 

physical understanding of processes 

• Indicated that basic technical knowledge should be included in physics-

based classes, and taught using case studies in an interactive manner 

(e.g., labs associated with reading materials) 

 

For the second question, the responses were coded using the same six categories 

(Figure 2.2). More than one-third of the participants felt that the key next step was 

related to manufacturing engineering education improvement and workforce 
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development. In particular, workshop participants noted needs in providing internship 

opportunities for students, developing online educational tools on advanced 

manufacturing, promoting engineering at all levels of education, enabling education 

research, recruiting people for advanced manufacturing careers, and combining 

industry practice with traditional educational methods. 

 

 

Figure 2.2. Summary of responses to Question 2: What do you see as the key next 

step to be taken to address a pressing research or educational challenge in 

advanced manufacturing? 

 

A significant fraction of participants (19%) reported key next steps related to 

connection between academia, industry, and government, noting that academic 

research, government policies, and industry adoption need to work hand-in-hand for 

advancing manufacturing. Some of the key points mentioned by participants were 

needs for better communication between academia and industry, in addition to 

implementing policy changes for encouraging more sustainable practices, using 
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industry-driven research to create value, and bridging the gap between people and 

technology through defined guidelines for practitioners. 

 

 Summary of Workshop Findings 

The workshop activities identified potential directions for basic and applied research 

related to sustainability of nanomanufacturing processes and nano-products, 

digitization of continuous and batch processes, development of physics-based models 

of manufacturing processes, and efficient process and system models for cloud- and 

cyber-manufacturing. In particular, the following research directions emerged: 

1) Machine learning methods can support understanding of a variety of discrete 

manufacturing processes, e.g., nanomanufacturing, as well as system-level 

sustainable manufacturing analysis and optimization. 

2) Metrics and indicators for nanomanufacturing are plentiful and span process 

parameters, material properties, and part characteristics. They should be 

unified/harmonized to enable technology comparisons. 

3) Scalability in nanomanufacturing needs to lead to reduced defects, improved 

metrology methods and tools, and measurement of moving parts and 

assemblies. 

4) Scalability of additive manufacturing requires optimization methods for new 

material development, part geometry generation, and support structure design. 

5) Additive manufacturing key performance indicators must be connected as a 

function of process controls. 
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6) Integration of in-situ and out-of-process metrology, sustainability decision 

tools, model selection tools, cost models, and product design optimization tools, 

are all areas of research need, especially in emerging domains, e.g., additive 

manufacturing. 

7) Transient analysis of complex manufacturing systems can lead to robust 

manufacturing process models.  

8) Bridging the gap between process-level controls and system-level metrics can 

enable deeper insight for discrete and bulk product manufacturing.  

9) Systemic sustainable manufacturing requires insight from risk assessment and 

system dynamics methods to capture the emergent behaviors of interconnected, 

complex systems. 

10) Societal influences of sustainable manufacturing, e.g., stakeholder behavior, 

must be better understood to enhance development and adoption of new 

materials, processes, and products. 

11) Robust methods to characterize interactions of physical processes, human 

activities, and decisions across systems are needed to advance systemic 

sustainable manufacturing. 

12) Problem identification and diagnostics can be aided through classification of 

physical asset degradation. 

13) Innovative engineering education approaches are needed to address the growing 

urgency for accurate and meaningful sustainability assessment at the process 

and system levels. Engineering students often need a more physical connection 
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to the process, while technical students require more fundamental knowledge 

and skills for advanced manufacturing. 

14) Developing and sharing knowledge (e.g., learning metrics, models, and 

approaches) for improving the effectiveness of learning in advanced 

manufacturing should be a focus of engineering education research. 

15) Standards can support the reusability and replicability of research into advanced 

manufacturing processes. 

 

 A Review of Future Research Opportunities 

Based on these workshop findings, the authors synthesized the research directions that 

emerged into five advanced manufacturing topics: conventional manufacturing, 

nanomanufacturing, additive/hybrid manufacturing, process and system 

characterization, and workforce education and training. These categories follow key 

NSF areas of research interest. Next, a review of the recent literature was undertaken 

with a goal of identifying future research opportunities in each of these domains. We 

focused on first defining the state of current research in each topic area by reviewing 

recent NSF advanced manufacturing projects and related literature from the 

manufacturing research community. Based on this work, we present short-, mid-, long-

term research challenges raised to help define key gaps to be addressed by the advanced 

manufacturing community. Finally, we identify expected outcomes of successful 

research undertaken in each area. We caution that these findings are limited (specific 

technology development may not have broad consensus); the community should 

expand areas of research opportunity through continued discourse. 
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 Conventional manufacturing 

Conventional manufacturing commonly includes established processes, categorized as 

primary shaping, deformation, material removal, coating, heat treatment, and joining 

processes [28]. While the physical phenomena of each of these processes have not been 

completely characterized, a majority of recent phenomenological research has been 

directed at additive manufacturing, as discussed in Section 5.3. In addition, in the U.S., 

welding process research has been well-supported by the NSF. The emphasis has been 

on solid-state welding processes, which occur below the melting temperature of the 

components to be joined. These research efforts include advancements in friction stir 

welding (e.g., defect detection and prevention [53,54], joining dissimilar metals 

[55,56], and effects of temperature and force control [57,58]); hybrid ultrasonic 

resistance welding [59–61]; magnetic pulse welding and friction stir blind riveting [62–

64]; and impact welding [65]. Fewer research efforts have tackled fusion welding 

processes, such as vibration-assisted laser keyhole welding [66].  

 

Recent research in material removal operations have explored specific challenging 

phenomena, such as those attendant with ultra-precision machining of ceramics [67–

69]; machining-induced distortion in milling [70,71]; through-tool minimum quantity 

lubrication drilling [72]; and atomized dielectric-based electro discharge machining 

[73]. Research in this domain is also directed at improving machine tools, such as 

software-supported improvement of speed and accuracy of vibration-prone machines 

[74–76]; at metrology, such as measurements of part features using freeform optics 
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[77–79], measurement of dynamic moving parts in manufacturing tools [80], and 

manufacturing of optics used in metrology [81]; and at non-destructive evaluation of 

composites [82]. Table 2.5 identifies the relevant potential research opportunities and 

expected outcomes in the short-, mid-, and long-term ranges. 

 

Table 2.5. Research opportunities for conventional manufacturing processes 

 Research Opportunity Expected Outcome 

1-3 

years 
• Develop physical process models, in particular 

for new and hybrid processes 

• Develop transient analysis models of complex 

systems, especially non-steady state 

manufacturing elements 

• Optimized digital twins of processes 

• Robust models with easier 

transferability and scalability 

4-5 

years 
• Develop robust and process-representative 

machine learning algorithms  

• Develop scheduling models for flexible discrete 

systems 

• Develop models and controls for integrating 

robots into manufacturing processes, and model 

interactions between robots and processes 

• Develop models of metrology processes to 

allow smart manufacturing control 

• Optimized performance of discrete 

manufacturing through improved 

process understanding 

• Process and process chain 

improvements 

5+ 

years 
• Develop models for product categories across 

multiple enterprises, in particular the connection 

of physical process models across factories 

• Higher competitiveness of various 

industry sectors 

 

With the trend towards smart, automated, and cyber-integrated manufacturing, the need 

for realistic digital representations of conventional manufacturing processes is also 

gaining importance [38,83]. Though much insight can be gained through purely data-

driven models, a hybrid approach, wherein physical knowledge is also leveraged, is 

preferred [84]. Emerging electronic, biomedical, and aerospace products are driving 
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applications of new smart technologies, providing challenging material combinations, 

tolerances, and lot sizes for conventional manufacturing. 

 

 Nanomanufacturing 

Nanomanufacturing has been used in producing materials and products in almost all 

major industry sectors, such as electronics, automobile, aerospace, biomedical, energy, 

and food, among others [85]. Nanomanufacturing is the production of nanoscale 

features (surface and sub-surface), materials (nanoparticles), parts (3D nanostructures, 

nanotubes, and nanowires), devices, and systems [86]. Scalable nanomanufacturing 

involves the high volume manufacturing of nanomaterials and nanostructures, 

assembly into parts, devices and sub-systems, and integration into a complete system. 

Nanomanufacturing generally has a minimum of one lateral dimension in the range of 

1-100 nm [87].  

 

Nanomanufacturing has been broadly classified into three categories: top-down 

(producing nanoscale features using physical processes that remove material from a 

larger mass), bottom-up (building up nanoscale features from an atomic or molecular 

scale using chemical synthesis and self-assembly), and hybrid (a combination of top-

down and bottom-up) approaches [88]. Due to the application of nanomanufacturing in 

a variety of industry sectors, research of novel nanomanufacturing technologies focuses 

on scaling up from lab-scale to large volume production, lowering tooling and 

equipment cost, improving quality and reliability, increasing yields, reducing wastes, 
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developing materials compatible for new techniques, and multi-material production 

[89–91]. 

 

Since nanomanufacturing relies on many fields of engineering for materials 

development, equipment and tool development, optical characterization of nanoscale 

features, and sensing and instrumentation, these fields need to work cohesively to 

advance new nanomanufacturing technologies. Current tools to characterize surface 

and sub-surface level topographical information are time-consuming [92], which is a 

bottleneck in high-volume manufacturing. Unlike discrete manufacturing processes, 

each nanoscale process is unique due to its complexity in controlling process variables, 

measurement, sensing, and material homogeneity at the nanoscale [89]. These 

variations result in products of varying quality, introduce large failures, and decrease 

the relative reliability of resulting products. 

 

Mechanical components in nanomanufacturing devices and equipment are subjected to 

multiple failure patterns due to system complexities such as, multiple sub-systems, 

complex underlying physical phenomena, and rapid degradation of tool components 

[93,94]. Extensive research is often needed to troubleshoot equipment failures, 

occupying valuable human resources. Educating engineers in nanomanufacturing 

processes is a key to overcoming many of these barriers [93]. In particular, educational 

materials for design for manufacturing and assembly (DFMA) and failure modes and 

effects analysis (FMEA) should be developed for nanomanufacturing process 

technologies. Another key area of emerging nanomanufacturing research is self-



43 

 

 

assembly of nano-components to form nanoscale systems. Robust self-assembly 

methods are needed, for example, in order for nanoscale components developed though 

bottom-up approaches to have a hierarchically-ordered structure with high quality [95–

97].  

 

It should be noted, nanomanufacturing technologies require large amounts of in-

process manufacturing data to support robust process modeling. To overcome this 

challenge, statistical tools and machine learning methods could be applied for real-time 

process control to achieve desired quality levels. Researchers would thus be able to 

correlate process parameters that are crucial to performance improvement, while 

developing scientific understanding of the underlying physical phenomena. Such 

knowledge would facilitate development of hybrid (combination of physics-based and 

data-driven) models of nanomanufacturing processes [98]. Table 2.6 identifies the 

potential research opportunities and expected outcomes for nanomanufacturing in the 

short-, mid-, and long-term ranges. 

 

 Additive manufacturing 

Additive manufacturing is a process of joining materials to make objects from 3D 

model data, usually layer upon layer, as opposed to subtractive manufacturing 

methodologies [99]. Additive manufacturing is at a turning-point due to its increasing 

application in manufacturing a wide range of products in various industrial sectors 

[100]. Industry sectors where innovations can be seen include food and consumer 

products, medicine and medical products, automotive, aviation, architecture, and 
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construction [101,102]. Competitive advantages of additive manufacturing processes 

include their adaptability to the geometric complexity of shape-optimized components, 

suitability for production of customized or tailored products, flexibility for just-it-time 

production approaches, and ability to reduce the need for part transportation and storage 

[85,103]. Moreover, design for additive manufacturing approaches have enabled 

industry to generate lightweight product designs, reduce assembly errors, and improve 

sustainability performance of manufacturing by reducing waste and energy.  

 

Table 2.6. Research opportunities for nanomanufacturing processes 

 Research Opportunity Expected Outcome 

1-3 

years 
• Improve control of in-process parameters (e.g., 

melt pool temperature, flow rates, and power 

levels) to achieve desired feature tolerances 

• Reduce scan speeds to improve upon current 

metrology methods, which take a long time to scan 

and require frequent calibration 

• Develop an initial repository that contains design 

for manufacturing methods for varied 

nanomanufacturing processes 

• Increased product quality 

• Reduced cost for metrology and 

quality inspection 

• Improved process selection and 

design 

4-5 

years 
• Integrate more precise control in current optical 

methods employed in fabrication and metrology to 

overcome inconsistencies in part quality due to 

power, beam diameter, and machine precision 

• Improve optimization and control of real-time 

process parameters, e.g., via artificial intelligence 

methods, to improve efficiencies, and reduce costs, 

environmental impacts, and wastes 

• Products with higher quality and 

reduced defects 

• Efficient, high-throughput 

metrology 

• Reduced cost of nano-products 

through high-volume production 

5+ 

years 
• Develop standard guidelines for establishing 

performance metrics, analytical models, and 

evaluation methods for nanomanufacturing 

• Better understanding of process 

and system factors to be 

prioritized for efficient 

manufacturing and high quality 

products 
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These advantages of additive manufacturing processes are attendant with their own 

inherent disadvantages. While conventional manufacturing processes are capable of 

making thousands to millions of identical parts at low cost, for example, current 

additive manufacturing process technologies are better suited for high-value, low-

volume production applications [100] due to their relatively high capital investment 

needed to achieve high production volumes [104]. Thus, the cost of products made 

using additive manufacturing is typically much higher than those made using 

conventional mass production methods. Current additive manufacturing equipment 

also imposes limitations on product size and part quality, and requires more highly 

skilled labor.  

 

To address these challenges, new additive manufacturing capabilities have been 

investigated, including multi-material, multiscale, multiform, and multifunctional 

printing [105–107]. Nano-positioning in micro-scale additive manufacturing [108,109] 

has also gained attention from researchers. Process modeling [110], precision 

improvement [111], and cost reduction [112] are the other areas in micro-scale additive 

manufacturing that have been investigated recently. In addition to micro-scale, some 

researchers have focused on developing new materials for nano-scale additive 

manufacturing[113].  

 

An extant challenge is the limited set of materials available for industrial additive 

manufacturing use. These materials generally have limited mechanical and thermal 

properties, which restricts their broader application [104]. Moreover, the sustainability 
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performance of many materials in additive manufacturing is not well-understood [114]. 

It has been suggested that developing lower cost biocompatible materials can help 

improve economic and environmental aspects of sustainability [115]. In addition to 

material-related issues, the effect of different equipment and process technologies on 

various materials are poorly understood, often resulting in poor surface finish and 

tolerances, warping, and layer misalignment [116]. Table 2.7 identifies the potential 

research opportunities and expected outcomes for additive manufacturing in the short-, 

mid-, and long-term ranges.  

 

Table 2.7. Future research opportunities for additive manufacturing 

 Research Opportunity Expected Outcome 

1-3 

years 
• Develop automated geometric decomposition 

methods for efficient part buildup and assembly 

• Develop geometric dimensioning and tolerancing 

models for a priori, predictive analytics 

• Develop models to characterize product and process 

information (and/or performance) based on 3D 

model and 2D slice data  

• Improved product quality by 

predicting warping and 

distortion 

• Better data sharing, storing, 

access, and modifying 

4-5 

years 
• Develop new equipment and controls to reduce 

capital investment 

• Develop new materials and compatible deposition 

mechanisms to enable multi-material and multiscale 

additive manufacturing 

• Develop multifunctional processes to enable 

production of tailored alloys and microstructures  

• Mass production of identical 

parts at low cost 

• Broad potential applications 

using new materials and 

equipment 

5+ 

years 
• Develop precision control strategies reduce cycle 

time while maintaining desired quality 

• Rapid manufacturing of 

products with multiscale 

complex geometries 
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 Process and system characterization 

Characterizing manufacturing processes at an in-depth level of detail and 

understanding manufacturing systems have traditionally been considered mutually 

exclusive activities. Entire disciplines and research communities have been built 

around each one in isolation. Engineering teams to address each perspective reside in 

many organizations. As a result, the tools to support these activities do not easily relate 

to one another [117]. For example, manufacturing execution system (MES) and 

enterprise resource planning (ERP) software have been designed to singularly address 

the performance of manufacturing systems at different levels of control, while tools to 

assess manufacturing processes are often developed in an ad hoc manner within 

individual companies [118].  

 

With the emergence of industrial internet of things (IIoT) and related smart 

manufacturing concepts [119], there has been a recent uptick in solutions to bridge the 

moat between these two domains. Realizing semantic interoperability across MES and 

ERP software is a current focus area in the manufacturing research, industry, and 

standards communities for characterizing manufacturing processes for sustainability 

assessment [24], developing repositories of manufacturing process information 

[43,120], and analyzing manufacturing processes for designing smart manufacturing 

systems [121]. For example, Industrie 4.0, a German effort to develop a common 

framework that facilitates vertical integration across the traditional ISA-95 perspective, 

has gained much attention across the rest of the world [122]. For manufacturers to 

remain competitive, react amid unforeseen disruptions, and become more 
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environmentally efficient, a perspective that bridges these two traditionally separated 

domains is necessary. Table 2.8 identifies the potential research opportunities and 

expected outcomes for process and system characterization in the short-, mid-, and 

long-term ranges. 

 

It is clearly beneficial to link perspectives related to manufacturing processes and 

manufacturing systems. Benefits include more accurate prediction in critical system 

objectives, e.g., cycle time, throughput, and cost estimation. However, there are 

significant challenges that must be overcome to realize these benefits. One challenge 

is the computational cost of simulating detailed, process-level models residing in large 

networks of manufacturing activities [123]. For example, in traditional operations 

management problems, process-level metrics, such as cycle time and energy 

consumption, are simplified, e.g., assumed to be fixed, in order to deal with the 

complexity on the systems level. 
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Table 2.8. Research opportunities in process and system characterization 

 Research Opportunity Expected Outcome 

1-3 

years 
• Construct guidelines for training data for data-

driven models 

• Develop methods for integrating between data 

contexts based on different standard information 

modeling paradigms (e.g., SysML, E3012, and 

Modelica) 

• Tightly integrate physical systems with analytical 

applications  

• Understand computational complexity of process-

level and systems-level analyses 

• Public manufacturing process 

datasets and models 

• Usability of the current smart and 

sustainable manufacturing 

standards 

• New guidelines for standards 

integration (e.g., CCOM and 

E3012, MTConnect and OPC-UA) 

• Better communication across 

engineering domains 

4-5 

years 
• Devise methods for consistent predictive models 

for process-level optimization 

• Define standards for linking process-level 

simulation to systems-level optimization 

• Develop methods for real-time monitoring and 

control from sensor data 

• Improve sensor development/deployment for 

higher quality data 

• Better manufacturing analysis 

tools 

• High quality systems-level 

analysis 

• Better adaptability to changes at 

the process level 

• Near real-time trade-off analysis 

for assessing sustainability 

performance 

• Better public datasets for 

education, training, and process 

improvement 

5+ 

years 
• Improve scalability, flexibility, and adaptability of 

process-level to systems-level approaches 

• Define model verification, validation, and 

uncertainty quantification (V&V) 

• Develop standards to port process-level to 

systems-level thinking in an automated manner 

• Integrate broad-based security methods with data 

flow for robust, trusted process and system 

analysis and optimization 

• Clear understanding of limits of 

paired process-to-systems 

approaches and standards that link 

the two perspectives 

• Clear guidelines for characterizing 

uncertainty of models 

• Pilot studies that demonstrate 

potential to educators, researchers, 

and practitioners 

• Tools for secure and private data 

transfer (e.g., blockchain for 

manufacturing) 

• Improved standards for process 

model and manufacturing data 

security  
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Other process and system characterization challenges include the following: 

(1) Validation modeling and uncertainty quantification methods across different 

abstraction levels (e.g., machines, processes, and systems) are not 

standardized1.  

(2) Even if process-level models are available, e.g., in a repository, appropriateness 

of their reuse for a specific instance is not well-understood [120]. Bridging the 

existing standards at the various levels is another open research question, e.g., 

relating MTConnect to the E3012 standard. 

(3) To produce “what-if” scenario exploration in complex supply chain networks, 

relating disparate databases to one another is particularly challenging. 

 

Privacy and security associated with sharing data across and between distributed 

manufacturing enterprises remains a primary concern of many manufacturing 

companies and an area of very rapid evolution. Applying best practices and known 

methods for incorporating levels of traceability, e.g., blockchain or digital signatures, 

is essential for enterprises to feel comfortable in sharing data. Articulating 

manufacturing needs is important to influencing ongoing development in these areas. 

  

 

1 ASME’s Verification, Validation, and Uncertainty Quantification (VVUQ) initiative is an emerging standard area 

that provides guidance to develop, analyze, and enhance the credibility of computational models and simulations 

[124] 
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 Workforce education and training 

Beyond traditional engineering and technical curricula, the current and future 

manufacturing workforce needs to be educated in advanced manufacturing and 

provided with the skills that will enable decision making in smarter, more sustainable 

industrial environments. Process and system modeling are primary mechanisms to 

continuously improving broad-based manufacturing performance [101,125]. As noted 

above, manufacturing processes account for the most intensive energy use and waste 

production in many manufacturing facilities [126,127], yet are often overlooked 

because their solutions are complex and varied. 

 

While process improvement based on Plan-Do-Check-Act cycles are well-established, 

technical standards for applying the practice routinely for improving individual 

manufacturing processes remain under development and deployment. ISO 14001 [128] 

provides guidelines for companies to establish environmental management systems 

that address waste and energy management, but stops short of offering guidance on 

improvements for individual processes. Engraining standards such as those from 

ASTM E60.13 [129,130] into widespread practice, first through standards education 

program development [131], will spur industry adoption of sustainability improvement 

practices [132]. These standard practices can be extended with a focus on individual 

manufacturing processes to enable more replicable and repeatable evaluation. In 

addition, techniques for applying foundational yet interdisciplinary (cross-cutting) 

technologies that promise revolutionary impacts to manufacturing performance need to 

be integrated into manufacturing education. These technologies include sensing 
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technology, computational skills, artificial intelligence (AI), machine learning, data 

analytics, ontological definition, cognitive computing, augmented and virtual reality, 

and quantum computing, among others. Process modeling may serve as a platform for 

such integrations. 

 

The challenges of workforce education and training are diverse, and include 

establishing practices in process and system modeling, sustainable thinking, life cycle 

assessment, and continuous improvement at all levels of the manufacturing enterprise 

as well as a need for personalized education and training experiences to inspire the next 

generation to pursue manufacturing careers [133]. Such efforts need to be undertaken 

at all educational levels. Often, the sustainability-related trade-offs of our decisions are 

unknown, either due to a lack of information at the time the decisions are made, a lack 

of metrics by which the factors can be quantified (i.e., the externalities), or lack of 

visibility of the trade-offs to the decision maker [134,135]. Standard practices for 

instilling manufacturing process modeling are lacking [118], and how such standards 

can by systemically employed in cyber-human systems must be better understood [40]. 

Early work has been done in this area, but more is needed to characterize manufacturing 

processes for sustainability [129,136], for representing manufacturing processes using 

information modeling [129,136], for reusing such information models variations of 

manufacturing processes [49,130]. What distinguishes these concepts from more 

traditional curricula is the heavy reliance on information to guide decision making. 

Information modeling and capture have traditionally not been part of manufacturing 

engineering curricula. The field of structural engineering has seen a similar 
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transformation and several researchers have reported on educational aspects of this 

transformation [137–139].  

 

While industry is in need of skilled workers in smart and sustainable manufacturing to 

enable the development, implementation, and continuous improvement of advanced 

manufacturing processes, interests in manufacturing careers has decreased due to the 

poor image young people have of industry [1]. Integrating sustainability concepts into 

engineering curricula has been shown to improve student perceptions, in particular for 

students underrepresented in engineering [140,141], as well as motivating students to 

pursue careers in sustainability [142,143] and increase student interest in the job 

opportunities in manufacturing [144,145]. A concerted effort is needed to synthesize 

existing resources through convergent research that raises the conscientiousness of 

sustainability objectives in the profession, develops the data and methods needed to 

inform effective decision making, and provides insight and intuition to externalities, 

while also focusing the educational objectives of the advanced manufacturing 

community. For instance, a key gap in existing science and engineering education is 

the lack of an appropriate learning environment for students to address technical 

solutions that consider the three aspects of sustainability [146]. Further, the more 

mundane aspects of manufacturing [147–149] and manufacturing education can be 

improved through the application of gamification techniques [150,151]. With a deep 

understanding of the principles of manufacturing processes themselves, in some cases 

these techniques may be applied to improve the performance of those processes.  
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Another fundamental distinction of future manufacturing systems is the interplay 

between the virtual and the physical worlds.  This distinction is manifest throughout 

the discipline.  AR and VR technologies are being applied in manufacturing training 

systems where significant training can take place without any physical engagement.  

Similarly, like the 3D product design models that came before it, the concept of the 

“digital twin” has emerged to describe the virtual model of operational systems that 

allow for monitoring and prognosis based on real-time data.  What’s more, the use of 

robotics throughout manufacturing systems will require sophisticated human machine 

collaborations. The next generation of manufacturing engineers will need to shift 

seamlessly and accurately between the virtual and actual world in a way that has not 

been previously practiced, opening up a new area of research exploration.  Automation 

of systems means seeding control of those systems, yet human expertise and knowledge 

is necessary to maintain control though all types of failure modes.  The aviation 

industry has witnessed some highly-visible unexpected consequences from the 

introduction of automated navigation into the cockpit in terms of pilot preparedness in 

emergency situations resulting in loss of human life [152,153].  Avoiding similar 

catastrophes in the manufacturing setting will take study and work towards 

implementing fail-safe solutions.  Initial approaches to the problem have explored the 

form of interactions between humans and machines with the goal of identifying and 

optimizing those task for which a person’s unique skills are best suited by providing 

access to data on demand to improve their decision making capabilities [154,155].  

Table 2.9 identifies the potential research opportunities and expected outcomes for 

educational and training issues in the short-, mid-, and long-term ranges. 
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Table 2.9. Research opportunities in workforce education and training 

 Research Opportunity Expected Outcome 

1-3 

years 
• Use the design of products, processes, and 

systems as a basis to capture K-12 students’ 

imaginations and interests 

• Use web-based learning, augmented reality, and 

virtual reality technologies to promote advanced 

manufacturing technical skills 

• Create resources and tools for teaching process 

and information modeling in technical and 

engineering education programs 

• Integrate sustainable manufacturing and life 

cycle thinking into K-12 curricula  

• Motivated young people toward 

engineering and making for the 

social good 

• More engagement in engineering 

and manufacturing for a more 

productive society and more 

sustainable industry 

• Better trained students, technicians, 

and engineers to support advanced 

manufacturing 

4-5 

years 
• Innovate current online and virtual media to 

teach K-12 and undergraduate students about 

advanced manufacturing and build their 

confidence through learning by doing 

• Understand what is required of intuitive user 

interfaces to improve operational choices, 

including gamification  

• Integrate life cycle thinking and design for X 

methods in engineering education 

• Prevention of unintended 

consequence through proactive 

planning and informed decision 

making 

• Expanded knowledge and 

engineering intuition surrounding 

sustainability objectives 

• Effective learning tools and methods 

5+ 

years 
• Make estimation of impacts available to 

designers and other decision makers, e.g., real-

time analytics using cyber-technology 

• Develop frameworks for integration of real-time 

data into design decision making 

• Create tools that enable users to find relevant 

existing information and research, and perform 

trade-off assessment 

• Develop systemic approaches and methods for 

teaching smart and sustainable manufacturing 

• Ease of impact assessment for 

manufacturing processes and 

product life cycles 

• Integration of life cycle costs into 

design and manufacturing planning 

• Facilitated exploration of impacts of 

production systems on society in the 

presence or absence of life cycle 

thinking 

 

 Summary 

Over the past several decades, manufacturing industry has seen rapid development in 

sensing technologies, process equipment, and materials, among other areas, aided by 

the emergence of data and information technologies. These advancements have enabled 

new manufacturing methods (e.g., cyber-manufacturing and distributed manufacturing) 
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and processes (e.g., additive manufacturing and hybrid manufacturing), but often 

experienced little or no convergence during their development, which has inhibited 

more systemic development and growth. 

 

The foregoing presented the findings from a workshop organized within the 

manufacturing research community that aimed to identify challenges and barriers 

attendant with smart and sustainable manufacturing. The workshop activities (i.e., 

student presentations, expert talks, schema refinement feedback, and brainstorming and 

reflection) aided in defining challenges related to metrics and indicators, models and 

algorithms, and tools and methods across several advanced manufacturing fields. The 

ideas gathered from workshop participants reflect a range of potential opportunities for 

the manufacturing research and educational community to pursue. 

 

To supplement workshop findings, a review of recent literature was completed under 

the following themes: (a) conventional manufacturing processes and systems; (b) 

nanomanufacturing processes and systems; (c) additive/hybrid manufacturing 

processes and systems; (d) process and system characterization methods; and (e) 

workforce education and training for advanced manufacturing industry. Existing 

challenges and barriers, potential research opportunities, and expected outcomes were 

presented from the short- to long-term range for each topic area. This study arrived at 

the following findings: 

(1) Improvements in sensing, controls, metrology, and processes have been 

reported across the various manufacturing technology domains; 
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(2) There is a need for well-developed models, algorithms, and methods that can 

be utilized to improve process- and system-level performance for specific 

manufacturing applications; 

(3) Artificial intelligence (e.g., reasoning and machine learning) and other 

emerging technologies can have a great impact in process- and system-level 

improvements across manufacturing domains; and 

(4) Improved manufacturing education could inspire future generations into 

manufacturing engineering and research careers (e.g., through new hands-on, 

virtual, and off-site methods). 

 

These findings can help stimulate future manufacturing research and benefit 

stakeholders across academia, government, and industry for advancing smart and 

sustainable manufacturing, as discussed in greater detail in Section 5. The fundamental 

and applied research opportunities identified under these themes can be undertaken by 

existing and emerging consortia (e.g., NSF Industry-University Collaborative Research 

Centers, Manufacturing USA, and EU Factories of the Future programs), as well as 

through conventional university, industry, and government agency funding 

mechanisms that are addressing emergent manufacturing challenges. It will be crucial 

that research solutions derive actionable implementation pathways for industrial 

organizations and educational institutions at all levels and scales in order to achieve the 

vision of academic, industry, and governmental leaders and policy makers for a 

smarter, more sustainable future. 
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Chapter  3: REUSING AND EXTENDING STANDARDS-BASED 

UNIT MANUFACTURING PROCESS MODELS FOR 

CHARACTERIZING SUSTAINABILITY PERFORMANCE 

 Abstract 

Over the past two decades numerous efforts have characterized manufacturing 

processes for sustainability performance. These efforts have been pursued primarily by 

manufacturing researchers in academic and governmental labs, and involve the 

development of frameworks, methodologies, and standards for characterizing discrete 

manufacturing processes and their representation as information models. Further, 

characterization of sustainability performance of manufacturing process flows has been 

attempted through linking, or composing, these unit manufacturing process (UMP) 

models. This paper reviews these efforts and identifies existing research gaps that 

should be addressed by academic, industrial, and governmental researchers. The review 

includes the relevant sustainable manufacturing standards that have been recently 

published by ASTM International. A methodology for creating and extending 

composable models of UMPs that builds upon these standards is presented. This 

research demonstrates how formalization of these prior efforts can address the 

identified gaps. It is shown that reuse of UMP models can be enabled by encapsulating 

specific characteristics of complex processes into information models that can be 

applied for detailed process analysis and evaluation. This research proposes the concept 

of a template UMP information model, which can further be abstracted and customized 
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to represent an application-specific, higher-order manufacturing process model. The 

template model concept is illustrated for manual and computer numerically controlled 

(CNC) milling processes. 

 

 Introduction 

Manufacturing has traditionally been oriented toward providing goods, increasing 

profits and securing market share, but manufacturing with a broader sustainability 

focus continues to gain momentum [156]. Globally, a number of sustainable 

manufacturing efforts have been pursued in response to growing societal concerns over 

the non-monetized impacts of manufacturing [8,10,9]. In particular, green, or 

environmentally-responsible design and manufacturing philosophies have paved the 

way for assessment tools that promote sustainable manufacturing during the conceptual 

and early design stages of the product life cycle [13,14]. A variety of software tools are 

available to perform product life cycle assessment (LCA) [157,158]. LCA tools are 

able to guide manufacturers in making more informed decisions about the 

environmental impacts of their production processes and supply-chain activities 

[21,159]. These tools can sometimes offer insight into product- and process-related 

economic and social impacts during design and, thus, aid manufacturers in developing 

and implementing sustainable product design and manufacturing modifications.  

 

One major drawback of LCA tools, however, has been their limited ability to model 

specific manufacturing processes for analysis, which, in turn, limits their utility in 

evaluating the environmental impacts of changes to individual manufacturing 
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processes [21,160]. Manufacturing phase, or gate-to-gate, LCA studies tend to utilize 

process models that are not representative of the machine tool setup in the setting 

evaluated [160,161]. These generic process representations lead to a lack of confidence 

in assessment results. For example, a comparative LCA for the same machining process 

type used to produce a one-kilogram pyramid and a one-kilogram cube would yield 

identical results, since the generic machining process model contained in the database 

reports impact based on the mass of the part processed and the mass of the material 

removed. However, due to variations in the machine setups, cutting paths, and other 

process-specific factors, environmental impacts may vary significantly for the two 

parts. In addition, there is a lack of quality and granularity of process data, which 

underpins process models in LCA tools.  

 

To overcome these modeling limitations, efforts have been undertaken to improve 

manufacturing process characterization for sustainability assessment. One aim of these 

efforts is to enhance the ability of LCA tools to more accurately assess the 

environmental impacts of unit manufacturing processes (UMPs) [21,162,134,163]. 

UMPs have been defined as “the individual steps required to produce finished goods 

by transforming raw material and adding value to the workpiece as it becomes a 

finished product” [24], and as “the smallest elementary manufacturing activity required 

for a specific taxonomological [referring to a taxonomy of manufacturing process 

types] transformation and composed of machines, devices, or equipment” [164]. More 

accurate UMP models will also enhance evaluations for other metrics and indicators 

(e.g., cost and productivity). 
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The construction of a UMP model requires knowledge of process-specific data and 

information, including a familiarity with the process physical and/or chemical 

phenomena [162]. Thus, model development is cost- and time-intensive and has been 

largely ad hoc, leading to a lack of common structure, and inhibiting model 

transparency and reusability. These deficiencies have driven recent standards 

development through ASTM International and the International Organization for 

Standardization (ISO) [165] In particular, the ASTM E3012-20 standard provides an 

information modeling-based (hierarchical) structure for constructing process models, 

and offers a replicable method for representing UMPs [27]. Due to its structured 

approach, standards-based model development facilitates data handling within/between 

models and data sharing between business units/organizations, which will enable 

systemic sustainability assessment. However, these standards-based approaches do not 

remove the need for domain knowledge nor do they reduce the cost- and time-intensity 

of model development. The research present herein explores the application of two 

information modeling techniques (i.e., abstraction and instantiation) to support 

engineers and analysts lacking in-depth domain knowledge in the development of new 

UMP models through the reuse and extension of existing models. Related prior work 

is briefly introduced in Section 3.3. In Sections 3.4-3.5, a methodology for reuse and 

extension of existing models is presented and demonstrated for a machining process 

(manual and computer numerically controlled milling). Finally, advantages of this 

methodology are presented relative to existing approaches (Section 3.6). 
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 Background 

 Prior efforts on characterizing manufacturing processes for life cycle 

assessment 

Several efforts have pursued the development of methods for UMP characterization. 

One of the primary efforts has been under the Unit Process Life Cycle Inventory 

(UPLCI) project [163,166–168]. The goal of the UPLCI project is to formalize a 

systematic framework for inventory analysis of the manufacturing phase of LCA. This 

inventory analysis is performed by dividing a manufacturing process into sub-

processes; the resulting representative models are much more reliable and precise. As 

such, the UPLCI project is pursuing the creation of a toolset that would help compile 

life cycle inventories (LCIs) of UMPs to support LCA. The framework could enable 

manufacturing system analyses by aggregating LCI data for individual manufacturing 

processes involved in the production of a part [31,45]. Developing a new UPLCI 

involves four steps: (1) preparing the UMP using illustrations and adding details of the 

UMP energy use phases by dividing the process into basic time, idle time, and peak 

energy time; (2) developing mass loss equations based on the type of process and 

ancillary systems used within the process; (3) developing a functioning model of the 

UPLCI to exhibit its capabilities; and (4) citing references to the obtained mechanistic 

models [45]. Recently, UPLCI efforts have been pursued to develop reusable 

manufacturing process models, and reported for grinding [47], gas metal arc welding 

[48], additive manufacturing [169], and metal injection molding [170]. In addition, 

Overcash and co-workers applied a UPLCI approach on an aviation assembly involving 

67 manufacturing process steps and 14 sub-assemblies with four different materials 
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[163]. Other efforts have applied the UPLCI approach to develop product and process 

life cycle inventories [162,171,172]. Table 3.1 summarizes a number of other recent 

efforts undertaken to characterize manufacturing processes for sustainability 

performance, which span the manufacturing taxonomy. 

 

Table 3.1: Recent efforts to characterize the sustainability performance of 

manufacturing processes 

Process type Description Reference 

Mass reduction Environmental impacts of machining Dahmus et al. [173] 

Environmental impacts of non-cylindrical grinding Murray et al. [174] 

Environmental impacts of milling Diaz et al. [175] 

Energy consumption of ball-end milling Quintana et al. [176] 

Energy consumption of grinding Linke et al. [47] 

Energy use in numerically controlled machining He et al. [177] 

Environmental and cost analysis of stamping Cooper et al. [178] 

Mass 

conservation 

Environmental impacts of sand casting Dalquist et al. [179] 

Environmental impacts of steelmaking and casting  Haapala et al. [180] 

Sustainability assessment of die casting Watkins et al. [181] 

Sustainability assessment of die casting Singh et al. [182] 

Energy consumption of injection molding Madan et al. [183] 

Exergy analysis of sheet metal forming Dittrich et al. [184] 

Sustainability assessment of extrusion Singh et al. [185] 

Energy consumption of metal injection molding Raoufi et al. [170] 

Heat treatment Sustainability assessment of induction hardening Eastwood et al. [171] 

Energy consumption of sintering process Wang et al. [186] 

Joining Energy consumption of gas metal arc welding Zhang et al. [48] 

Energy consumption of friction stir welding Shrivastava [187] 

Additive 

manufacturing 

Energy consumption of stereolithography Simon et al. [169] 

Energy consumption of laser powder bed fusion Ramirez-Cedillo et al. 

[188] 

 

Initial UPLCI framework development work was expanded in conjunction with the 

Cooperative Effort on Process Emissions (CO2PE!) in Manufacturing, an initiative 

undertaken by the International Academy for Production Engineering (CIRP) [21,160]. 

CO2PE! was launched to address the lack of precise and specific environmental impact 

data in LCI databases for manufacturing processes. The effort aimed to compile a 
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repository of data from research labs and other organizations from various geographic 

locations. The focus was to emphasize the coordination of the various global efforts in 

consolidating and analyzing environmental impacts of UMPs toward sustainability 

characterization of manufacturing [31,161]. Objectives of the CO2PE! were to (1) 

evaluate energy consumption and CO2 emissions with the focus of assessment of 

process-related environmental impacts, (2) develop a methodology for enabling data 

inclusion from multiple sources in LCI databases for sustainability assessments, (3) 

collaborate with machine tool designers to augment manufacturing processes for 

reduced environmental impact, and (4) incorporate eco-labeling for manufacturing 

systems.  

 

An effort that combined UPLCI and CO2PE! with a focus on emphasizing the 

coordination of various global efforts in consolidating and analyzing environmental 

impacts of UMPs toward sustainability characterization of manufacturing was reported 

by Duflou et al. [31] and Kellens et al. [161]. In merging these two initiatives, UPLCI 

formed a screening method for building LCI databases, while CO2PE! presented an in-

depth approach for quantifying LCI data. In spite of these efforts, manufacturing 

process characterization efforts have been siloed and have lacked a standard, structured 

modeling approach. This lack of standardization has inhibited model sharing and reuse. 

Further, model development, application, and interpretation necessitate domain 

expertise of modelers and end users. 

 

  



66 

 

 

 Standards development for sustainable manufacturing assessment 

A number of modeling efforts have been undertaken to evaluate the sustainability 

performance of manufacturing systems [189], and have been completed for a specific 

industry [190,191] or manufacturing system [192,193]. In addition, the resulting ad hoc 

models are often not scalable or transferable since they lack a common structure and/or 

standard model development approach. To aid in addressing these deficiencies, the 

International Organization on Standardization (ISO) published the ISO 20140:2019 

standard [194]. The standard instituted a method for environmental performance 

evaluation (EPE) of individual manufacturing processes by assessing energy efficiency 

and other factors of manufacturing systems. The standard helps in conducting EPEs of 

manufacturing systems by aggregating relevant UMP data. The application of ISO 

20140:2019 can be useful in (1) benchmarking environmental impacts of a UMP for 

producing a part, (2) improving an existing manufacturing process for better 

environmental impact performance, (3) establishing a goal for improving 

environmental impacts of a manufacturing system and breaking it down to the sub-

system level for process improvement, and (4) improving the production process for 

evaluation of environmental impacts of shopfloor activities. 

 

Collaborations within the ASTM International working group on sustainable 

manufacturing have also been engaged in standards development efforts to overcome 

the inherent gaps in manufacturing process and system modeling for sustainability 

performance assessment. These collaborations contributed to the ASTM E2986-18 

standard, which provides a method for the evaluation of manufacturing process-related 
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environmental impacts [41]. A second standard, ASTM E3012-20 [27], further 

developed ASTM E2986-18 to support analysts and decision makers in the systematic 

characterization of the environmental impacts of a UMP. The ASTM E3012 standard 

[27] defines a structure for representing a UMP, which is formalized in XML 

(eXtensible Markup Language) using XSD (XML Schema Definition). This 

formalization is meant to enable industry practitioners and researchers to more easily 

share UMP models [129,136]. The standard provides for the specification of variables 

for linking, or composing, multiple UMPs for sustainability characterization of 

manufacturing systems. However, implementation of the linking and composability 

concepts are not fully developed in the standard.  

 

 Limitations of prior work 

Despite the fact that several efforts aid in characterizing discrete manufacturing 

processes for sustainability performance evaluation (Table 3.1), there has not been 

significant development of accompanying methods and tools leading to industry 

adoption. Prior work has often focused on developing distinct and specific UMP 

information models. Developing these information models from scratch requires a 

high-level of process knowledge and expertise in characterizing specialized 

manufacturing processes and, thereby, requires significant time and effort. Also, these 

methods do not provide a standardized platform to develop consistent and reliable 

models for sharing information between models for efficiently evaluating the 

sustainability performance of a manufacturing system. The LCI data available cannot 

be reliably reused for LCA, as they are subject to the quality of the reporting sources. 
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Having robust information models based on first principles, which can be reused and 

expanded upon to specify configurations of manufacturing processes would greatly 

benefit manufacturers and researchers alike. In particular, UMP model development 

efforts have not focused on creating reusable abstractions for information models that 

can be expanded for sustainability characterization in a variety of settings. 

 

The methodology presented below extends prior framework development efforts based 

on the ASTM standards. Collaborative research with the U.S. National Institute of 

Standards and Technology (NIST) proposed an integrated methodology for assessing 

sustainability performance of manufacturing processes [164], in addition to 

terminology to facilitate manufacturing process characterization for sustainability 

assessment. Based on the methodology, a complimentary information modeling 

framework to capture UMP and workpiece information was demonstrated by 

characterizing process energy consumption. To extend the methodology, a 

complementary framework for composing UMPs to enable sustainability assessment 

of manufacturing systems was developed Smullin et al. [195,196]. However, the 

framework lacked aspects of model reusability and extensibility, which are addressed 

in this research. Related efforts have explored the need for an open repository of UMP 

models [43,50,197]. The reuse of models in such a repository is an ongoing challenge 

that this work addresses. Here, we posit that information models can be created for a 

specific manufacturing process and then abstracted to characterize variations of that 

manufacturing process. Using these open abstractions of UMPs, process model 

composability can be performed to conduct systemic sustainability assessment. 
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 Research Method 

The aim of the research presented here is to build on the existing ASTM E3012-20 

standard to improve the reusability and extensibility of UMP models. The standard 

provides a graphical model structure to represent UMPs (Figure 3.1), and defines five 

aspects: inputs, outputs, resources, product and process information, and 

transformation equations. Inputs indicate the types of energy, materials, and 

consumables flowing into the process. Outputs indicate the product and, when relevant, 

co-products and by-products, types of wastes/emissions, and process feedbacks (e.g., 

status of consumables and tools) that flow from the process. Resources define 

information related to resources used by the process, such as tooling/fixtures, 

equipment, software, and people. Product and process information is needed to enable 

transformation functions (equations), and includes information related to the product 

(material), process plans, and control programs. Product and process information 

comprises four categories: (1) Fixed parameters, (2) Intermediate variables, (3) Control 

parameters, and (4) Metrics of interest (MOIs). Fixed parameters are parameters that 

do not change during the manufacturing process (e.g., workpiece density). Control 

parameters are the user-tunable parameters for the manufacturing process (e.g., feed 

and depth of cut). Intermediate variables are the calculable variables that are used for 

evaluating the key performance indicators (KPIs) and MOIs (e.g., cutting energy).  The 

KPIs and MOIs are used in evaluating the sustainability performance of the UMPs and 

manufacturing systems under consideration. Transformation equations model the 

conversion of physical inputs to the UMP into the physical outputs from the UMP. 

These relationships are also used to calculate the KPIs and MOIs for the modeled UMP, 



70 

 

 

and provide a physical basis for characterizing manufacturing sustainability 

performance. 

 

 

Figure 3.1. Graphical representation of a unit manufacturing process [27] 

 

The ASTM standard provides a formal representation of all five UMP aspects using an 

XML schema [198]. Since these aspects are represented as element blocks in the 

standard model structure, they are easy to read, edit, and expand upon from a software 

programming perspective. The research herein contributes a methodology for 

abstracting an existing model and molding it into a specific model for a particular 

application (extension) using new layer models. Further proposed is the development 

of template models that can be reused, and extended to represent manufacturing 

processes. Figure 3.2 shows the activities comprising the methodology developed 

herein, which involve defining what constitutes a template model, devising a method 

to develop and represent a template model, presenting an approach for abstracting 

models for extensibility, and establishing a relationship between a template model and 

layer models. 
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Figure 3.2. Methodology for abstracting unit manufacturing process models for 

reusability, extensibility, and composability 

 

The remainder of this section discusses each of these activities in greater detail. Section 

3.5 then demonstrates the activities using the case of milling operations. 

 

 Define the template model for the process 

The ASTM E3012-20 standard guides researchers and industry practitioners in 

developing process-specific UMP models. Here, we present the concept of 

characterizing the most basic manufacturing process for a specific class or process type. 

We evaluate the feasibility of extending such basic UMP models to form configuration 

(machine)-specific models by layering subsystem models onto this template model. 

Thus, a template model can be defined as a model that completely characterizes the 

most simplistic instantiation of a manufacturing process class, where a process class 

comprises varying levels of machine configurations (complexity). The manufacturing 

process taxonomy defined by Todd et al. [30] can aid in establishing template models 

(abstractions) for the various process types. The taxonomy organizes manufacturing 

processes into two primary classes: shaping and non-shaping (Table 3.2).  
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Table 3.2: Manufacturing process taxonomy classification [30] 

Class Group Family Sub-class 

Shaping 

Mass reducing 

Mechanical 
Single-point, multi-point, abrasive machining, 

shearing, blanking, piercing  

Thermal 
Torch cutting, electrical discharge machining, 

high energy beam machining 

Chemical Chemical, electrochemical, photo-chemical 

Mass 

conserving 

Consolidation Molding, compacting, deposition, laminating 

Deformation 
Forging, extruding, drawing, rolling, thread 

forming, knurling, bending, forming 

Joining 

Mechanical 
Pressure welding, friction welding, ultrasonic 

welding  

Thermal 
Electric arc welding, gas welding, brazing, 

soldering, diffusion bonding 

Chemical Adhesive bonding 

Non-

shaping 

Heat treatment 

Annealing Recovery, recrystallization 

Hardening Surface hardening, through hardening 

Other 
Sintering, curing, bonding, cryogenic 

treatment 

Surface 

finishing 

Surface preparation Descaling, deburring, degreasing 

Surface coating 
Mechanical coating, thermal coating, chemical 

coating 

Surface modification Burnishing, peening, texturing 

 

Shaping processes alter the workpiece geometry, while non-shaping processes alter the 

material properties of the workpiece. Shaping processes are grouped into mass 

reducing, mass conserving, and joining processes, while non-shaping processes are 

grouped into heat treatment and surface finishing. These groups have been classified 

into fourteen families, for example, mass reducing processes form mechanical 

reduction, thermal reduction, and chemical reduction processes. These fourteen 

families are broken into sub-classes of manufacturing processes that exhibit similar 

functionality/process physics. This classification of manufacturing processes provides 

insight for defining a template model for each sub-class. Once so defined, template 

models can then be developed by domain experts for the most basic machine forms for 
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each manufacturing process sub-class, by using mechanistic (empirical), analytical 

(physics-based), and other modeling techniques. 

 

As noted above, the template model should enable expansion to accommodate 

modeling of similar machine configurations or higher complexity machine 

configurations through extension. Model extension can be achieved through the 

addition (and/or removal) of layer models representing different process capabilities, 

including auxiliary equipment and other resources. This characteristic of template 

model expansion can be explained using the example of a milling process. A UMP 

model developed for machining using a manual mill would be considered as a template 

model for milling (a class of multi-point material removal processes); a manual knee 

and column mill is understood to be the basic physical representation of most vertical 

milling machines [28]. In this form, the spindle is electrically powered, while all other 

machine motions are manually controlled (e.g., spindle speeds, feed rates, and depths 

of cut). By adopting the manual knee and column mill to create the template model for 

milling, all other milling machine variants would be extensions of the template model. 

These extensions could be envisioned as additional transformation functions (e.g., 

spindle speed control, table feed control, or lubrication systems) that can be layered 

onto the base template model. From this example, it can be recognized that layer 

models represent sub-systems or auxiliary systems of a machine tool configuration, that 

are not directly involved in the processing of the workpiece. The layers add value to a 

manufacturing process by enhancing the capabilities of the machine tool through 

integration of mechanical (e.g., motion control systems), thermal (e.g., heating 
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elements), chemical, and/or electrical sub-systems. Although definition and modeling 

of template models and layer models require subject matter expertise, once these 

models have been established for various process types and sub-systems/auxiliary 

equipment, the methodology presented herein for model reuse and extension can be 

applied by non-expert practitioners to model and analyze specific instantiations of more 

complex processes and systems. Table 3.3 identifies some of the template 

manufacturing processes for various manufacturing sub-classes.  

 

Table 3.3: Example template models and layer models for several selected 

manufacturing processes configurations 

Sub-class Process 

configuration 

Template 

model 

Layer model(s) 

Single point 

cutting 

Lathe with lubrication 

system 

Manual turning Lubrication system 

Multi-point 

cutting 

Two-and-a-half axis 

milling 

Manual milling Table/spindle control systems 

Electrical discharge 

grinding 

Surface 

grinding 

Electrical power pulse generator 

4-axis jig boring Manual jig 

boring 

Table/spindle control systems; 

rotary table control system 

Extruding Hot extrusion Cold extrusion Barrel heating system 

Friction 

welding 

Friction stir welding with 

tool heater 

Manual milling Table/spindle control system; tool 

induction heater 

 

While it is expected that template models can be applied to the majority of higher-order 

machine configurations, some complex machine/process models will require further 

development. Process information and transformation equations will require vetting 

and modification for configurations that are too complex in nature to facilitate 

extension from template models. For example, such cases could derive from machine 

configurations that are combinations of multiple manufacturing processes within a 
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single machine, e.g., five-axis milling (milling machine, turning machine, and tool 

change system) or a hybrid machine tool (e.g., milling and wire feed additive 

manufacturing). The methodology presented is generally applicable to these complex 

configurations, but will require a complete and thorough understanding of the machine 

and process to model accurately. 

 

 Represent template model in a structured format 

Next, the identified template model must be represented in a structured manner to 

enable software tool implementation. Software tools will facilitate adoption and use of 

manufacturing process and system modeling and analysis. We investigated how UMP 

models could be represented for software implementation using XML since it is 

capable of handling functional modeling of manufacturing systems [199,200]. XML 

schema can handle complex relationships and has a defined structure, which is 

beneficial for model development and is amenable to extension for software 

programming [201]. In addition, XML models are capable of handling the research-

specific needs for model reusability, extensibility, and composability due to their 

structured and compartmentalized way of representing data [202]. By representing 

models as XML documents, parsing, analyzing, and processing data is software 

platform independent and can be handled by any language that can work with XML. 

The language is relatively easy to learn for non-expert practitioners, which can help 

promote adoption of the standard, broadening its use and impact. For industry 

practitioners and researchers to perform sustainability assessments, models are 

represented as real-time operational standardized XML documents. By conforming to 
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common standards, template models can be used by other researchers and practitioners 

and expanded into application-specific process models. 

 

 Establish relationship between template model and layers 

For extending the template model to a use-specific information model, it is critical to 

establish the relationship between the template model and the information pertaining 

to the new layer model. To better represent this relationship, we use a UML (Unified 

Modeling Language) class diagram for illustration (Figure 3.3). UML class diagrams 

are the fundamental building blocks for object-oriented programming [203]. A class 

diagram shows the elements and the flow of information between elements, and 

establishes a sematic relationship between these elements; XML applications are 

commonly modeled using UML [204]. UML class diagrams can be directly used for 

structuring the XML document or they can be created to model the structure of XML 

schema [205]. In the first case, the UML class diagram does not necessarily focus on 

the structure of the schema from which the XML document was created, but rather, the 

diagram enables inclusion of additional details to the XML document itself. The UML 

class diagram can be set to match the structure of the schema, if required. In the second 

case, the UML class diagram contains the information that will guide development of 

XML schema, meaning that the schema is the output deliverable of the UML. The 

delivered XML schema conforms to the conditions and relationships represented in the 

UML class diagram. 
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Figure 3.3. UML representation of extension of a template model using layers 

 

For the purpose of extending standard information models, UML class diagrams can 

be used to add information to existing XML documents while still conforming to the 

specified schema. The UML class diagram in Figure 3.3 represents a method of 

extending an XML model of a manufacturing process by combining a template model 

for the process with information related to the auxiliary/support process(es) using layer 

models. Shaded boxes represent the template model, while unshaded boxes represent 

the information of the layer model to be added to the template model. The box at the 
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center, titled UMP, is the extended model that represents aggregated information from 

both the template model and the layer models. This structure of the UML class diagram 

continues to follow the XML schema specified by the ASTM E3012-20 standard. 

 

 Extend template model to represent a more complex process 

The next step focuses on extending a template model to represent more complex, use-

specific manufacturing processes. The capability of extending template models to 

depict a complex variation of the process being modeled is called extensibility. Since 

template models are created based on ASTM E3012-20, the model structure inherently 

enables extension. For example, let model UMP A in Figure 3.4 be the template model 

for all similar manufacturing processes, A. Let UMP A1 be a complex variation of 

UMP A. To develop a model for UMP A1, an instance of the template model of UMP 

A is generated. This model is then extended using information related to UMP A1 as a 

layer (Layer A1) of template model UMP A. We posit that extensibility can be achieved 

by building upon template models using such layer models, and by building upon 

existing instantiations of extended template models using additional layer models to 

develop higher-order UMP models. This concept is illustrated for milling in Section 

3.5. 
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Figure 3.4. Extensibility of template model of UMP A using Layer A1 to form 

extended model UMP A1 

 

An important aspect of extensibility is that layer models added to the template model 

need not only represent higher-order variants of the primary process. For example, 

auxiliary systems (e.g., exhaust gas pressure control systems, monitoring equipment, 

and electric boosting systems) that are essential to support the manufacturing process, 

but may not directly modify the workpiece, can be added as layers to model specific 

equipment in use. To be amenable for reuse, template models necessitate that certain 

information and characteristics be replicated to the extended model for expansion. 

 

 Demonstration Case: Milling Process 

To demonstrate the application of the methodology described above for extending a 

template UMP model, we develop a template model for manual milling (Appendix A1), 



80 

 

 

which we then extend to model milling using computer numerical control (CNC) of x-

axis and y-axis movements (we refer to this variation as a “two-and-a-half axis milling 

machine”). The model is used to characterize and improve milling process energy use. 

Only the spindle is powered on the representative manual milling machine. The 

development of the template model began with capturing the physical inputs and 

outputs of the process (e.g., bar stock, work in process, electrical input, and waste). 

Next, product and process information was identified, which captures product data 

(e.g., part length, width, and thickness, and material density), process data (e.g., cutting 

speeds, feeds, and depths), and sustainability metrics of interest (e.g., energy 

consumption, energy cost, and greenhouse gas emissions) and KPIs (e.g., energy 

consumption per part). The transformation equations comprise the mathematical 

functions required to quantify the metrics of interest and KPIs. The UMP model also 

captures information pertaining to process resource needs (e.g., software, tools, 

fixtures, and workers), which may not have a direct effect on either the product or 

process, but are needed to aid in the functioning of the machine. An equivalent 

information model representation for the process is developed based on ASTM E3012-

20, and reported for the manual milling case in XML format (Appendix A2). The model 

documents the five aspects of a UMP model (i.e., inputs, outputs, product/process 

information, resources, and transformation equations) as elements in the XML 

documents. Transformation equations for the milling process were drawn from the 

literature [206–209]. 
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The template model for manual milling can be extended to accommodate the addition 

of a CNC table feed system (Layer 1) and lubrication system (Layer 2), as shown in 

Appendix A3. The extension is achieved by instantiating the template model and layer 

models using encapsulation (bundling of data using methods of aggregation), which 

results in a single model that represents a two-and-a-half axis milling process with 

lubrication system. The bold blue text in the figure indicates the information pertaining 

to the aggregated layer models for the table feed system and the lubrication system. 

Development of the layer models relied on prior research [173,210–212].  

 

The XML representation of the template model for milling can be updated by editing 

individual elements of the XML instance (Appendix A2) to accommodate the table 

feed and lubrication system layer models. The updated XML instance (Appendix A4) 

captures the five UMP model aspects (i.e., inputs, outputs, product and process 

information, resources, and transformation equations) and adheres to ASTM E3012-

20. This system also can be represented using functional modeling, e.g., IDEF0 

(Integrated Computer Aided Manufacturing DEFinition for Functional Modeling), 

which is used for integrating information systems in manufacturing industry. IDEF0 

models are used to comprehensively represent manufacturing systems, and can 

illustrate details of the aggregated template model and layer models. Additionally, 

IDEF0 models enable tracking of information flows between the higher-level system 

and sub-systems, which is valuable for characterizing a manufacturing system that 

contains multiple manufacturing process flows. Further, IDEF0 models help in 

establishing relationships between UMPs and sub-systems within the manufacturing 
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facility. Appendix A5 illustrates and IDEF0 model for the two-and-a-half axis milling 

machine with lubrication system (Process A1), which is comprised of the manual 

milling process (A0) and the layer models for the table feed system (T0) and lubrication 

system (L0). These layer models are represented as sub-processes in the IDEF0 model. 

It can be noted that each sub-process has inputs, outputs, product and process 

information, resources, and transformation equations, which must be defined by the 

modeler. 

 

 Critique of UMP model Reusability, Extensibility, and Composability 

As noted in Section 3.3.1, a number of manufacturing process models have been 

developed for sustainability performance characterization. A lack of a standardization 

for model development and the resulting unstructured representations leads to limited 

model reuse. Prior modeling efforts (e.g., UPLCI and CO2PE!) have not emphasized 

the integration of models into engineering tool applications. The methodology 

presented herein provides a means for analysts to reuse and extend existing information 

models of manufacturing processes. Template models provide a basis for users to 

instantiate more complex UMP models for their particular manufacturing process 

configuration. In addition, template models can be modified in order to evaluate 

different process performance metrics of interest and KPIs. The methodology can 

enable software application development to support abstraction and aggregation of 

template models and layer models into varied extensions. Though the methodology is 

demonstrated for a bottom-up approach for representing more complex machine 

configurations from a basic machine form, it can also be used to deconstruct 
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information models developed for complex machine configurations in order to 

represent a simpler machine configuration. In this manner, layers can be removed that 

do not pertain to the simple machine form or that are not common among instantiations 

of a particular class of processes.  

 

Thus, the approach also enables selection and modification of an existing information 

model that closely represents a new machine configuration for customization, thereby 

reducing the time and effort needed for developing new UMP models. The inputs, 

product and process information, outputs, and resource elements from the template 

model are reused and extended by adding and aggregating information from the layer 

model(s). Reuse and extension of the transformation equations is also possible. 

Transformation equations related to the intermediate variables can be reused or 

extended, provided the naming conventions used in the template and layer models are 

distinct. For example, if the basic energy in the template models and the layer models 

are named in a distinguishable manner, the total basic energy for the extended model 

is simply the sum of individual values for basic energy in the template and layer models.  

 

The same concept applies for aggregating most KPIs and metrics of interest (percentage 

and relative values must be aggregated separately). The reuse of transformation 

equations is desirable to save time and effort in model construction. Reuse and 

extension of these mathematical relationships is readily achievable if the template 

model and the layer models are structured for evaluating the same set of KPIs and 

metrics of interest. The validity of extending a template model using layer models is 
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enabled through aggregation of the KPIs and metrics of interest. Information modeling 

techniques facilitate aggregation of model information, and can be realized through 

software integration when developing an engineering analysis tool. From the 

standpoint of a practitioner, extension of a template model is solely based on machine 

configuration. If the specific instance of a UMP (i.e., the machine under study) can be 

segmented into sub-systems that do not physically/chemically modify the workpiece, 

extension of the template model (i.e., through the use of layer models) is necessary to 

represent that specific machine configuration. Although the authors have demonstrated 

the method of reuse and extension using mechanistic model for a milling machine 

configuration, the method is not bound by the modeling approach. Underlying models 

can be physics-based, data-driven, or digital twins/simulations. To apply the 

methodology developed in this research, these underlying models must adhere to the 

structure defined by the standard. 

 

This flexible modeling approach aligns with a recently developed UMP builder tool, 

which supports creation and storage of process information models for sustainability 

assessment [43,197]. This approach additionally offers an illustrative pathway for 

industry to develop, share, adapt, and adopt validated UMP models in a secure, curated 

manner. The presented methodology for model reuse and extension maintains the 

standard model structure by placing new information within layer models that 

integrally link with existing template models. Such model reusability and extensibility 

is important for sustainability assessment of manufacturing systems, since it enables 
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composability of representative information models, while maintaining validated core 

relationships for the basic process. 

 

 Conclusions 

The methodology presented herein establishes a mechanism to create reusable 

abstractions (template models) of unit manufacturing processes (UMPs) for 

characterizing the sustainability performance (e.g., materials/energy use and other 

impacts) for a variety of manufacturing processes and systems. The approach facilitates 

creation of reusable and extensible UMP information models and enables practitioners 

and researchers to develop more accurate models for process and system 

characterization by tailoring existing validated models for their specific needs. This 

approach offers several advantages over current practice, including: 

(1) Straightforward development of template (base) and extended UMP models 

supported by a standard model structure;  

(2) Simplified tracking of information for evaluating UMP models and validating 

modifications made to extend the models; 

(3) Improved model reusability and extensibility through single and multi-layer 

buildup of existing validated UMP models; and 

(4) Maintained reusability, extensibility, and composability characteristics of the 

UMP model after extension. 

 

Further, the methodology presented in this research is portable (UMP models can be 

incorporated into computer-aided engineering tools) and scalable (models can be 
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developed for processes and systems of varying complexity from a variety of domains). 

To realize the vision of facilitated model creation, extension, and application to 

sustainable manufacturing characterization, future work must build an open, secure 

repository of validated template models and extension layer models for a broad set of 

manufacturing processes. This effort can be accelerated through the creation of 

software tools capable of model verification and/or validation, as well as establishing 

a community of users capable of testing model functionality and accuracy. 

Additionally, being able to link characterized UMPs to form a manufacturing system 

model will enable system-level manufacturing characterization and enhance 

sustainability assessment from a systems perspective. Finally, tools must emerge that 

are capable of aiding decision makers from various manufacturing domains in 

composing the models for system analysis and optimization. 
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Chapter  4: COMPOSITION OF UNIT MANUFACTURING 

PROCESS MODELS FOR CHARACTERIZING 

SUSTAINABILITY PERFORMANCE OF 

MANUFACTURING SYSTEMS 

 Abstract 

Recent efforts have undertaken characterization of manufacturing systems through 

information modeling. Information modeling offers the benefit of representing 

information in structured way. With an increasing emphasis on sustainable 

manufacturing, however, few efforts of modeling manufacturing systems for 

sustainability performance have been pursued using information modeling. The recent 

ASTM E3012-20 standard focuses on information modeling of unit manufacturing 

processes (UMPs) and can be applied to address this need. The research herein explores 

the concept of UMP composition for characterizing manufacturing systems to support 

sustainability assessments based on ASTM E3012-20. A review of research on process 

model composition is conducted to identify existing research gaps. A methodology for 

composing UMP models developed based upon the ASTM standard is also presented. 

Analysis of 42 different compositions of UMP models identifies patterns of 

information that is shared between UMPs. This shared information, termed linking 

variables, are classified under geometric properties and material properties; each 

variable defines key information about the workpiece required for composition. 

Linking variables are characterized by analyzing compositions of various processes 

based on manufacturing process type (mass reducing, mass conservation, heat 
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treatment, and surface finishing processes). Based on the characterizations, it is found 

that the standard linking variable definition should be modified, and two new terms are 

proposed: generic and specific linking variables. In conclusion, a standardized system 

model structure is proposed using two information modeling approaches. 

Demonstration cases for linking extrusion, machining, and heat treatment process 

models is presented to verify the proposed methodology for composing UMPs to 

represent a manufacturing system. 

 

 Introduction 

Over the past century, manufacturing has advanced tremendously due to continuous 

improvements in computing technology and architecture, sensing and control, 

materials science, tooling and equipment, understanding of physical phenomena 

underlying manufacturing processes, real-time data analytics, and many other 

synergies between facets of science, technology, engineering, and mathematics 

[213,214,1]. Though manufacturing has continued to evolve, the focus has 

fundamentally been on reducing product cost and increasing profitability and market 

presence, essentially addressing economic competitiveness of manufacturing. Over the 

past two decades, increasing emphasis has been given to sustainable manufacturing 

[6,7,156] primarily due to social responsibility goals, investor demands, government 

regulations, international standards, and, perhaps most importantly, increased customer 

consciousness [8,10,9]. Many challenges have been introduced due to the complexity 

of implementing sustainable manufacturing practices and policies within industry. A 

challenge is in striking the right balance among the three pillars of sustainability, 
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namely, consideration of environmental, economic, and social factors in decision 

making. Life cycle assessment (LCA) tools and methods have been developed for 

product-focused environmental impact analysis, and are limited in assessing 

manufacturing process and system level sustainability performance. Recent, but 

limited, LCA efforts have begun to develop and implement economic and social impact 

assessment [215]. Deficiencies in tools and methods are primarily due to the 

inconsistencies in data, approach, and generic representation of manufacturing 

processes [20,21]. These problems are exacerbated by complexities introduced when 

evaluating manufacturing performance at the system level. 

 

Information modeling has been posited as one method to overcome inconsistencies in 

representation of information related to any process, as it has a well-defined structure 

[216]. Common information modeling languages are capable of working across 

software platforms and tools. Several recent efforts for modeling product design and 

manufacturing information are explored in Section 2. The ASTM E3012-20 standard 

defines information modeling as a method for characterizing manufacturing processes 

to evaluate sustainability performance [27]. Research efforts involving this standard 

methodology have been previously reported by the authors [49]. The goal of the 

research reported herein is to demonstrate standards-based information modeling for 

characterizing manufacturing systems for sustainability performance evaluation. The 

research is based on the composition of unit manufacturing process (UMP) models to 

form a manufacturing system model, as described in the ASTM E3012-20 standard. 

After a brief review of prior work, in Section 2, we present the proposed methodology 
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for model composition and demonstrate the approach for composing an extrusion 

process with milling and annealing processes. In conclusion, we discuss the advantages 

of the proposed methodology relative to existing approaches, in addition to limitations 

of the approach and opportunities for future research. 

 

 Background 

Product development involves on two stages in the product life cycle: design and 

manufacturing. Process planning links these two stages [217], and establishes the 

sequence of manufacturing processes and operations for the specified product design 

in order to produce the product in a cost-effective and resource-efficient manner. 

Recent focus on sustainable production has compelled process planning approaches to 

consider the three pillars of sustainability, involving environment, social, and economic 

factors. Detailed product design information must be transferred to the manufacturing 

processes used to transform raw material into a physical product, for example through 

the conversion of computer-aided design (CAD) data to machine control instructions 

(G-code). This information is evaluated during process planning activities to make 

informed decisions to align design and manufacturing objectives, as well as addressing 

external demands (e.g., internal/external policies or manufacturing performance goals). 

The development of computing technology over the past four decades, including 

information modeling approaches and standards, has greatly assisted such decision 

making through enhanced design and manufacturing collaboration.   
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Information modeling is a method of defining specific data of a domain using concepts, 

relationships, constraints, rules, and operations based on its application [32]. In 

particular, information modeling provides an organized structure for data to be shared, 

reused, and processed. The most commonly used modeling languages have been 

Integrated computer-aided DEFinition (IDEF0) [218] for function modeling, and 

Unified Modeling Language (UML) [203] and eXtensible Markup Language (XML) 

[219] for object-oriented modeling. These developments have laid the foundation for 

various modeling techniques that have been used in the design and manufacturing 

domains. Perhaps the most well-known information modeling frameworks have been 

in the integration of design data specific to CAD applications, including the Initial 

Graphics Exchange Specification (IGES) and the International Organization for 

Standardization (ISO) standard ISO 10303 [220], informally known as Standard for the 

Exchange of Product Model Data (STEP). STEP is able to capture information related 

to the entire life cycle of the product, while IGES captures information related to the 

geometry of the part/product [221]. Manufacturing has greatly benefitted from STEP 

data, since it is CAD platform agnostic and easy for manufacturers to interpret design 

needs, as it follows a defined structure.  

 

Several efforts have pursued information modeling of manufacturing processes and 

systems for resource planning, cost modeling, and process planning. For instance, ISO 

16100-2 [222] focuses on defining a standard method of information exchange between 

design and manufacturing software systems. The Core Product Model (CPM) led by 

the U.S. National Institute of Standards and Technology (NIST), was specific to the 
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design phase and focused on representing product information such as function, form, 

behavior, and material, and their interrelationships [223–225]. The Open Assembly 

Model (OAM) expanded on CPM and provided a standard representation for 

assemblies [226]. In 1994, NIST initiated a program for representing the manufacturing 

phase of product development, called the Systems Integration for Manufacturing 

Application (SIMA), which focused on integrating software systems of design and 

manufacturing [227]. An effort undertaken by NIST to integrate design and process 

planning used an object-oriented manufacturing process information model through 

UML to support process planning activities [228]. The model contains classes of 

manufacturing information (workpiece, equipment, cost, time, and process sequence), 

which can be abstracted for manufacturing activities such as equipment setup, 

workpiece loading/unloading, and workpiece processing. None of these prior efforts 

emphasized sustainability performance characterization. However. Zhang et al. [216] 

demonstrated the integration of manufacturing process-oriented information related 

with sustainable manufacturing and product design information for model development 

to estimate energy consumption for sustainability evaluation using information 

modeling concepts.  

 

As noted in Section 4.2, efforts have pursued sustainability performance 

characterization during the product design and manufacturing phases. Software tools 
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such as SimaPro2 [229] and GaBi [230] emerged to assist designers and other decision 

makers to improve product environmental performance. LCA tools, however, are 

limited in their ability to customize analysis for specific manufacturing applications, 

since their process model databases contain generic manufacturing process models, and 

tailored models are time- and resource-intensive to develop. To overcome this inherent 

gap, the Unit Process Life Cycle Inventory (UPLCI)  effort focused on developing 

reusable manufacturing process models for sustainability assessment [45,167]. 

Recently, manufacturing process models developed for grinding [47], gas metal arc 

welding [48], metal injection molding [170] and additive manufacturing [169] have 

been reported using the UPLCI approach. An application of the approach was reported 

that assessed sustainability performance of a product comprised of 14 sub-assemblies 

and four different materials, requiring 67 manufacturing process steps [163]. A related 

effort was pursued under the Cooperative effort on Process Emissions (CO2PE!) 

initiative by the International Academy of Production Engineering (CIRP) [21]. The 

intent was to develop environmental impact data that would be precise and specific for 

individual manufacturing processes. The effort focused on developing a repository of 

life cycle inventory (LCI) information for manufacturing processes to facilitate the 

assessment of product environmental impacts [31]. 

 

 

2 No endorsement of any commercial product by NIST is intended.  Commercial materials are identified 

to facilitate better understanding.  Such identification does not imply endorsement by NIST nor does it 

imply the materials identified are necessarily the best for the purpose. 
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Though applications of the research efforts reviewed above have been demonstrated, 

they are not structured for the purpose of integration into software tools to analyze 

sustainability performance. To address this need NIST initiated an effort within ASTM 

International under the sub-committee E60.13 on sustainable manufacturing that 

combines information modeling and development of UMP models for sustainability 

performance evaluation [129]. ASTM has subsequently published four standards 

related to sustainable manufacturing: ASTM E2987-20 provides terminology for 

sustainable manufacturing [231]; ASTM E2986-18 provides guidelines for evaluating 

environmental performance of manufacturing processes [41]; ASTM E3096-18 

provides guidelines for choosing and organizing key performance indicators (KPIs) 

necessary for the evaluation of manufacturing processes [232]; and ASTM E3012-20 

provides guidelines for characterizing manufacturing processes for environmental 

impacts [27]. ASTM E3012-20 combines both the information modeling and 

sustainability characterization in its approach and is the basis for this research.  

 

Due to the complexity of manufacturing process information and the relationships with 

other processes in a manufacturing process flow, development of information models 

and meta-models for manufacturing are a large challenge [233]. Prior efforts based on 

ASTM sustainable manufacturing standards focused on developing 

frameworks/methodologies for evaluating sustainability performance of manufacturing 

systems. Garretson [164] explored the concept of composability (linking 

manufacturing processes in a sequence that becomes a manufacturing process flow) 

and demonstrated sustainability assessment using the approach. Smullin et al. [195] 
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built on this work by further investigating the composition of manufacturing processes 

and developing a software tool that performed process composition for evaluating 

sustainability performance of a process flow in a more automated fashion. Brodsky et 

al. [50] focused on evaluating manufacturing systems using a reusable information 

modeling repository. This approach explored manufacturing process model 

composition, optimization, and conducting trade-off analysis for 

manufacturing/contract service networks. Though these efforts focused on evaluating 

sustainability performance of manufacturing systems, they lacked a structured 

approach that could be generalized from the process to manufacturing facility level. A 

key barrier was a lack of a streamlined information tracking between individual 

manufacturing process models within the manufacturing system. This information 

exchange is desired to help industry practitioners understand the design and 

manufacturing drivers that impact key performance indicators and metrics of interest 

from a sustainability decision-making standpoint. The research herein is focused on 

addressing this inherent gap of information exchange by increasing traceability to 

enhance sustainability assessment of manufacturing systems.  

 

Since the research herein builds on this prior work and the ASTM E3012-20 standard, 

it is important to define the basic terms within the standard. The standard provides a 

graphical representation of a UMP model (Figure 4.1). UMPs have been defined as 

“the individual steps required to produce finished goods by transforming raw material 

and adding value to the workpiece as it becomes a finished product” [24], and as “the 

smallest elementary manufacturing activity required for a specific taxonomological 
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[referring to a taxonomy of manufacturing process types] transformation and composed 

of machines, devices, or equipment” [164]. A UMP representation has five key 

elements: inputs, outputs, resources, product and process information, and 

transformation equations. Inputs to a UMP are the various physical features flowing 

into the UMP (e.g., energy, materials, and consumables). Outputs of a UMP are the 

physical features that are of value or a waste at the end of the process (e.g., end 

product/work-in progress part, co-products and by-products, and wastes/emissions). 

Resources are process-related information that are intrinsic to the function of the 

manufacturing process (tooling/fixtures, equipment, software, and people). Product and 

process information contains information related to the workpiece and process (e.g., 

material, material properties, dimensional information, process parameters, control 

programs, and process feedbacks such as the condition of consumables and/or tools). 

Product and process information is essential for the transformation functions 

(equations) for establishing relationships between the physical inputs and the physical 

outputs of the UMP. Key performance indicators (KPIs) and other metrics of interest 

are also defined by the transformation functions, and support sustainability assessment. 

 

 

Figure 4.1. Graphical representation of a unit manufacturing process [27] 
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The ASTM E3012-20 standard introduces composability for characterizing the 

performance of manufacturing systems, as shown in Figure 4.2. The figure illustrates 

how multiple UMPs are defined in a sequence to represent the manufacturing process 

flow in a manufacturing system. Each UMP represents a manufacturing operation used 

to sequentially transform a workpiece(s) into the final desired product. Manufacturing 

process flows in real settings occur in series (e.g., from UMP 1 to UMP 2) and in 

parallel (e.g., UMP 3 and UMP4). The approach for composing two unique UMPs 

should not be dependent on the manufacturing flow. As per the standard, composition 

is “the act of linking individual unit manufacturing process (UMP) models together to 

create a composite of UMP models that can characterize the metrics of interest of a 

production system or product” [27]. The information that is shared between UMPs are 

called “linking variables.” The standard also states that a linking variable is defined by 

its reference to a “source UMP” and a “target UMP.” 

 

 

Figure 4.2. Graphical representation of composed unit manufacturing processes 

[27] 
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To achieve the goal of developing a manufacturing system model representation for 

sustainability characterization, the research builds upon the ASTM E3012-20 standard 

to explore the concept of composing UMP models. To enable characterization of 

information required for composition (linking variables), classification of linking 

variables, and development of a structure for composed manufacturing systems are 

needed. The methodological approach undertaken here is presented in Section 3. The 

scope of this work is restricted to performing UMP model composition for a single 

workpiece. Manufacturing processes that transform multiple workpieces, such as 

joining and assembly, are left for structural evaluation under future work. 

 

 Research Methodology 

This research supports the characterization of complete manufacturing systems for 

sustainability performance evaluation by enabling UMP model composition. The 

approach pursued in this research involves several activities, summarized as follows: 

(1) Identifying information required for composition, (2) Classification of linking 

variables, (3) Characterizing linking variables and UMP model structure for 

composition, (4) Proposing a manufacturing system structure, and (5) Performing 

composition of UMPs using a case study. These activities are described in greater detail 

below. 

 

 Identify information required for composition of two UMPs 

The ASTM E3012-20 standard mentions linking variables and that they would be used 

for composition. Accordingly, a linking variable is defined by its reference to the source 
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UMP, i.e., the preceding process step, and a target UMP, i.e., a subsequent process 

under consideration. Further, a linking variable is comprised of product and process 

information associated with the source UMP model needed to execute a model of the 

target UMP. In order to realize the concept of composability using linking variables, 

we first focused on identifying key information associated with UMP models (linking 

variables are crucial for characterizing a manufacturing system through UMP model 

composition). To accommodate the wide spectrum of manufacturing processes, we 

further examined composing UMP models by considering the full manufacturing 

process taxonomy defined by Todd et al. [30]. Their manufacturing process 

classification is divided into five categories: (1) Mass reducing, (2) Mass conserving, 

(3) Joining, (4) Heat treatment, and (5) Surface finishing. It should be noted that the 

scope of this work was limited to serial manufacturing process flows, thus joining 

processes (welding, soldering, assembly, etc.) were not evaluated. Representative 

source UMPs were selected (Table 4.1) to identify linking variables required for 

composition with a variety of target UMPs (Figure 4.4). These diverse process types 

were selected to support characterization and classification of a range of linking 

variables. 

 

In order to analyze model composition for extracting patterns of linking variables, UMP 

models needed to be created for each of the selected manufacturing process. The ASTM 

E3012-20 standard provides guidelines for characterizing UMPs, which were used to 

develop energy-based mechanistic models for each of the selected manufacturing 

processes. 
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Table 4.1: Source manufacturing processes selected for composability evaluation 

Manufacturing 

process category 

Representative manufacturing 

processes 

Selected 

source process 

Mass reduction Milling, turning, drilling, grinding, boring, 

shaping, blanking, and threading 

Milling 

Mass conservation Injection molding, extrusion, molding, 

casting, drawing, forging, and bending 

Extrusion and 

bending 

Heat treatment Tempering, annealing, hardening, and 

sintering 

Annealing 

Surface finishing Shot peening, cleaning, deburring, 

degreasing, and spray painting 

Shot peening 

 

UMP models for milling, extrusion, and annealing used for composition evaluation are 

provided in Appendices B1, B2, and B3, respectively. The development of the model 

for milling was previously discussed by the authors [49]. Energy-based models for the 

target UMPs, were created as spreadsheet models using transformation equations 

specified by Groover [28]. To identify linking variables for different types of 

manufacturing processes, composition was performed using the selected UMPs as the 

source and target UMPs as shown in Figure 4.3. 

 

 

Figure 4.3. Selected combinations of source and target UMPs for linking 

variable analysis 

Milling

Mass conservation

Mass removal

Heat treatment

Bending

Source UMP Target UMP

Surface finishing

Annealing

1. Milling

2. Drilling

3. Blanking

4. High energy beam cutting

1. Molding

2. Casting

3. Extruding

4. Bending

1. Full annealing

2. Through hardening

1. Spray coating

2. Shot peening

Extrusion

Shot

Peening
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Certain combinations of selected source and target UMPs are unlikely due to the nature 

of workpiece processing. For example, extrusion, which leads to extreme deformation, 

usually does not follow milling, which is typically used to achieve dimensional 

accuracy. Thus, of the 60 possible composition combinations, 42 were considered in 

this research. During UMP model development, multiple pieces of information from 

the source UMPs were identified that needed to be shared with the target UMPs for 

composition. 

 

 Classification of linking variables 

Based on the composition of selected source and target UMPs, it was found that linking 

variables were either related to a geometric property (e.g., length, width, diameter, 

height, surface area, or volume) or a material property (e.g., ultimate tensile strength, 

yield strength, grain structure, or Young’s modulus) of the workpiece. Potential linking 

variables were identified for geometric properties and material properties, as detailed 

in Table 4.2. 

 

From the perspective of ASTM E3012-20, several patterns for linking variables were 

identified as listed below: 

(1) Physical outputs of the source UMP feed as the inputs to target UMPs. 

Properties of these outputs always represent linking variables.  

(2) Linking variables were only identified within product and process information 

for the source UMP. 
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a. Fixed parameters and intermediate variables were found to be linking 

variables, because they contain information related to the workpiece. 

b. Control parameters and metrics of interests were not identified as 

linking variables, because they contain information related to the 

process parameters for the source UMP, and are not required by the 

target UMP. 

(3) Resource information of the source and the target UMPs were not identified as 

linking variables; the aggregate information from both the source and the target 

UMP would constitute resource information of the composed system model. 

 

Table 4.2: Potential linking variables defined by workpiece property type 

Property 

type 

Sub-classification Potential linking variables 

Geometric 

properties 

Dimension Length, width, height, thickness, diameter, radius, 

surface area, and volume  

Other geometric 

properties 

Datum features, geometric tolerances, and part 

orientation 

Material 

properties 

Mechanical Ultimate tensile strength, yield strength, density, 

hardness, viscosity, and creep 

Electrical Conductance, resistance, capacitance, and inductance 

Thermal Conductivity, resistivity, and specific heat capacity 

Chemical Corrosion resistance, pH, surface tension, and surface 

energy 

Magnetic Hysteresis, Curie temperature, and magnetic flux 

Atomic Atomic mass, atomic number, and atomic weight 

Manufacturing Castability and machinability ratings 

Environmental Embodied water and embodied energy 

Optical Refractive index, reflectivity, photosensitivity, and 

radiation index 

Radiological Neutron cross-section, specific activity, and half life 

Acoustical Absorption index and reflection capacity 
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The potential linking variables identified in Table 4.2, as well as the patterns identified 

by evaluating the selected combinations of composed processes, helped focus efforts 

on characterizing the linking variables required for UMP model composition. 

 

 Characterize linking variables 

Further evaluation of linking variables was made based on the analysis of the 

compositions reported in Section 4.4.1. For the purpose of modeling manufacturing 

system structures, it is essential to understand the flow of information in composed 

UMPs. By consolidating the information from the 42 selected compositions, an 

illustration of the information flow is depicted in Figure 4.4. 

 

 

Figure 4.4. Information and physical flows between source and target UMPs 

 

The dashed lines show the flow of information from the source UMP to the target UMP, 

while the solid lines show the physical workpiece flow between the two UMPs. From 

the compositions explored, it was found that there are linking variables that are target 

UMP agnostic (source UMP information that must be shared with any target UMP), as 

well as linking variables that are dependent on the target UMP (type of manufacturing 
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process). As a result, we suggest a modification to the definition for linking variables 

found in the ASTM E3012-20 standard, as detailed in Table 4.3. In addition, we define 

two new terms – generic linking variable and specific linking variable – that further 

classify product and process information as being target UMP independent or 

dependent, respectively. The classification of linking variables helps in identifying 

information that is required for composition within a complex structure of UMPs. 

Classification of linking information sets up UMP models for systemic assessment and 

further enhances the expansion and reuse of the models through foundational template 

models, described by Shankar Raman et al. [49]. In particular, it should be noted that 

template models enable information required for composition to be reused, reducing 

model development effort and improving information traceability. 

 

Table 4.3: Modifications to existing linking variable definitions 

Term Definition in the 

ASTM E3012-20 

standard 

Revised Definition 

Linking 

variable 

A linking variable is 

defined by its reference to a 

“source UMP” and a 

“target UMP” 

Product and process information from the source 

UMP(s) that defines the state of workpiece(s) and 

establishes relationships (shared context) between 

output(s) of the source UMP(s) and input(s) of the 

target UMP.  

Generic 

linking 

variable 

Does not exist. Product and process information from the source 

UMP(s) required to be shared to the target UMP(s), 

independent of the target manufacturing process 

type(s). 

Specific 

linking 

variable 

Does not exist. Product and process information from the source 

UMP(s) required to be shared to the target UMP(s), 

dependent on the target manufacturing process type(s). 

 

These linking variable definitions can be explained using an illustrative example of 

UMP model composition where extrusion is the source UMP and annealing is the target 
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UMP. The UMP model of extrusion in Appendix B indicates the generic linking 

variables for composition with any subsequent process and the specific linking 

variables for composition with heat treatment processes. Product and process 

information shown in bold indicates the generic linking variables. Product and process 

information highlighted in gray indicates the specific linking variables required by the 

target UMP (annealing) model. From this work, it was found that composition 

scenarios can exist where specific linking variables are not required by a target UMP, 

since the generic linking variables will convey sufficient information. For example, 

composition of two milling UMPs only requires generic linking variables; in this case, 

only a few dimensional properties (e.g., length, width, and height) and material 

properties (e.g., alloy and hardness) are needed. Section 4.5 details a demonstrative 

case study to evaluate a manufacturing process flow (Figure 4.7) in which an input rod 

stock is transformed into a corner bracket. 

 

 Proposed UMP structure to represent linking variables 

Characterizing linking variables for composition facilitates development of a 

manufacturing system model structure that contains the compiled information for the 

associated manufacturing processes. The manufacturing system has a set of defined 

inputs, which are transformed into desired products, co-products, and by-products by 

utilizing a set of resources and product and process information relevant to UMPs 

comprising the manufacturing process flow. A manufacturing system model structure 

was pursued under this research that would mimic the UMP model structure as defined 
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in ASTM E3012-20 to facilitate data tracking, information modeling, and model 

composability.  

 

The aggregated physical inputs of each UMP in the manufacturing flow represent the 

physical inputs of the composed system. Similarly, the aggregated physical outputs of 

the UMPs in the manufacturing flow, not including the intermediate workpieces’ states, 

represent the physical outputs of the composed system. It is understood that the 

workpiece(s) emerging from the last UMP in the manufacturing process flow is the 

output workpiece(s) for the composed system. The compiled resources for the attendant 

UMPs represent all of the resources required for the functioning of the composed 

system. The linking variables form a consolidated subset of product and process 

information from the attendant UMPs in the manufacturing process flow.  

 

Therefore, for the purposes of information modeling, the product and process 

information element of the UMP model structure can be replaced with an element 

containing the compiled linking variables for each source/target UMP composition 

within the manufacturing system (Figure 4.5). In this representation, the boxes labeled 

with PPI highlight the linking product and process information variables shared 

between respective UMPs. It is important to note that the product and process 

information element of the structured system model contains the linking variables 

relevant to the UMP composition(s), and does not contain comprehensive information 

for each UMP within the system. However, all product and process information 

pertaining to individual processes is accessible from each associated UMP model. This 
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system structure enables information exchange between UMPs if the manufacturing 

process flow is later modified. 

 

 

Figure 4.5: Manufacturing system model structure 

 

As the number of UMPs increases in a manufacturing system, it would be difficult to 

track material and information flows using such a pictorial representation. The 

challenges of tracking and handling information for establishing relationships, 

constraints, rules, and operations between systems and sub-systems can be overcome 

by using a defined formal structure, or data semantics [234]. Functional modeling 

approaches (e.g., IDEF0 and Unified Modeling Language (UML)) help in structuring 

information using a bottom-up approach to define the functions of each system/sub-

system. These approaches provide a graphical representation of the required software 

functions and modules to aid application design. To facilitate application development, 

the functions can be defined as classes and objects using object-oriented programming 
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(e.g., using C++, C#, Java), which provides a top-down software development 

approach [235]. Combining functional modeling and object-oriented programming 

approaches can facilitate representation of UMPs and their relationships within a 

manufacturing system for rapid sustainability performance evaluation. In addition, 

since the structure of a manufacturing system mimics the UMP model structure, the 

system model can be represented using functional modeling (e.g., IDEF0 or UML) or 

object-oriented programming (e.g., XML), similar to UMP model representations 

provided by existing standard guidelines. 

 

IDEF0 has been used in integrating information systems with manufacturing systems 

[236,237]. Due to a streamlined hierarchical structure that is specifically designed for 

interaction between multiple systems and sub-systems, the IDEF0 representation is 

effective in mapping information flows from upstream UMPs to downstream UMPs. 

Also, IDEF0 has a defined modeling language that includes both syntax and semantics 

along with a well-defined methodology for developing functional models [238]. 

Further, software tools are available to assist in developing and interpreting IDEF0 

diagrams.   

 

Similarly, XML offers a syntactic-based, encoded structure that can be used to 

represent a UMP or composed system model. XML Schema Definitions (XSDs) 

provide the rulesets that describe how XML files (specifications) need to be structured 

to represent a system(s) or sub-system(s) [219].  XML contains information in a 

hierarchical tree-like structure which is easy to parse for performing data handling and 
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analysis.  In addition, since XML is object-oriented, it is easy to abstract and reuse 

models for similar manufacturing processes and systems. The ASTM E3012-20 

standard defines a formal XML structure for representing UMPs, comprised of five 

elements: Input, Linking Variables, Transformations, Resources, and Output. The 

Input, Output, and Resources elements have attributes defined by the standard. As 

noted above, linking variables can be identified within individual UMP models 

comprising a manufacturing system model. Since the linking variables are part of the 

product and process information for individual UMP models, they use the same 

attributes (i.e., name, description, category, and units) when specified as product and 

process information or the composed manufacturing system model. 

 

 Demonstration of the Methodology 

The developed methodology for defining a manufacturing system model is illustrated 

here by performing a composition of energy-based UMP models comprising a 

manufacturing process flow. This section demonstrates (1) the transfer of information 

using physics-based representations of the UMPs and (2) how shared information from 

a number of composed UMPs can aid system-level sustainability assessment. An 

example is presented for a part that undergoes physical and material transformations. 

UMP models for extrusion, milling, and annealing (Appendices B1, B2, and B3) were 

selected to demonstrate the process physics-based case. For the second case, UMP 

models of extrusion, saw cutting, quenching, and annealing (Appendices B2, B7, B8, 

and B3) were selected. 
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 Information transfer across composed UMP models 

The three selected manufacturing processes (extrusion, milling, and annealing) are 

representative UMPs for three manufacturing taxonomy categories, namely, mass 

conservation, mass removal, and heat treatment, respectively. These three processes 

can be used to help illustrate how changes in the manufacturing process flow can affect 

geometric and material properties of the workpiece. The manufacturing process flow is 

comprised of extrusion, followed by milling and then annealing. Table 4.4 provides the 

literature basis for the UMP models developed. 

 

Table 4.4: Selected manufacturing processes for composition 

UMP Model Modeling Aspect Reference 

Milling Process physics [28,208] 

Energy characterization [206,207,209,239] 

Extrusion Process physics and energy characterization [28,240–244] 

Annealing Process physics and energy characterization [28,245–247] 

Circular saw cutting Process physics and energy characterization [248,249] 

Common for selected 

manufacturing processes 

Sustainability KPIs [185,250] 

 

The composition of the three processes is shown in Appendix B4, which provides a 

graphical representation of composed system with the linking variables identified 

between the respective source and target UMP(s). For example, in the composition of 

extrusion (source UMP) and milling (target UMP) the linking variables of length, 

width, height, volume, mass, and density of the workpiece form the shared context 

(linking relationships) for the processes. However, when the workpiece is subsequently 

annealed (target UMP), the linking variables are shared from both the milling and 

extrusion UMP models. One key item to note is that the outputs of each upstream 
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(source) UMP serve as inputs to the downstream (target) UMPs. For example, the 

work-in-process output of extrusion (WIPExtrusion) becomes the input for milling, while 

the WIP output of milling (WIPMilled) is an input for annealing. Thus, it can be seen that 

the linking variables are carried by the product and process information flow, and, in 

turn, are encoded by the material flow [251]. In effect, product and process information 

is carried through a process flow by the in-process material. 

 

 An application of process information modeling for energy cost and 

environmental impact assessment 

To demonstrate an application of the proposed concept and method, a distributed cloud-

based manufacturing system (DCMS) case study is presented. DCMS refers to a service 

where the consumers (small/medium companies) design, choose, and configure 

manufacturing by breaking down a product into its sub-components and/or related 

manufacturing processes. DCMS relies on an agile supply chain, robust manufacturing 

network distributed geographically, and a dynamic production planning system [252]. 

These systems offer benefits such as reduced costs, shorter production cycles, 

customized products, just-in-time manufacturing, and reduced inventory. However, as 

consumer demand grows, DCMS tends to be a less viable option than conventional 

manufacturing systems due to increased efforts required to manage the supply chain, 

manufacturing network, and production plans [253]. In spite of the potential 

disadvantages for scaling, DCMS has been on a recent upward trend, as it promotes 

sustainable manufacturing by sharing resources, reducing transportation, and 

increasing employment of the local workforce [254].  Due to their dynamic nature (in 



112 

 

 

design, material, manufacturing process, and supply chain), sustainability assessment 

tools need to be dynamic to aid in characterizing and optimizing DCMS networks 

[255]. 

 

For this example, a national company that produces a family of extruded metal parts 

utilizes a DCMS network to reach potential customers. One of their customers is using 

the DCMS order fulfillment platform to specify and select corner brackets for 

constructing a set of new ergonomic assembly stations. Here, the brackets are 

representative of high-volume production, aluminum alloy (AA 6061) parts that have 

a wide application across industry. The company offers corner brackets with leg lengths 

ranging between 0.025m–0.125m in increments of 0.02m. The part wall thickness and 

width are parametric size dimensions related to leg length. The manufacturing process 

flow for the production of brackets reported in the DCMS platform by the supplier is 

illustrated in Figure 4.6, starting with the input raw material (rod stock) through final 

part processing. In this example, sustainability performance is impacted by the 

workpiece itself as well as the transformations the workpiece undergoes from hot 

extrusion through annealing. 

 

Parts are produced in several locations by size: 0.025m-0.045m (Chicago, IL), 0.065m-

0.085m (Seattle, WA), and 0.105m-0.125m (New York City (NYC), NY). The three 

bracket options being considered by the customer’s industrial engineer are (1) fifty 

0.025m, thirty 0.065m, and twenty 0.125m brackets, (2) twenty 0.045m, thirty 0.085m, 

and fifty 0.105m brackets, and (3) thirty 0.025m, sixty 0.085m, and ten 0.125m 
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brackets (each order consists of 100 brackets). The engineer is able to conduct trade-

off analyses to evaluate the economic, environmental, and social performance of each 

option using a multi-criteria decision-making approach available through the DCMS 

platform. This approach enables the engineer to evaluate the three options under 

different sustainability perspectives using the following metrics: 

(1) Total energy is the energy consumed to transform the input workpiece into an 

output/finished part. In this case, the total energy consumption is the energy 

spent to convert the stock to an annealed corner bracket. 

(2) Total cost of manufacturing is the cost of goods sold (COGS) for the 

output/finished part. The typical cost elements of COGS include raw material, 

equipment/tool, utilities, consumables/tooling, facilities, maintenance, and 

labor costs [256,257]. 

(3) Percent non-labor cost is the ratio of all non-labor elements of COGS to the 

total cost of manufacturing the part (COGS). 

(4) Global warming potential (GWP) is defined as “a measure of how much 

energy the emissions of 1 ton of a gas will absorb over a given period of time 

[usually 100 years], relative to the emissions of 1 ton of carbon dioxide (CO2)” 

[81].  

(5) Total mass is the mass of all output/finished parts. This mass does not include 

the material removed during manufacturing, as it is an indicator of shipping-

related impacts (e.g., transportation fuel and emissions). 
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Figure 4.6: Manufacturing process flow demonstration case 

 

Product design- and manufacturing process-related information pertaining to the 

workpiece transformations to convert the raw stock into finished corner brackets are 

detailed in Table 4.5. In applying the previously described sustainability performance 

evaluation methodology (Section 4.4), several modeling assumptions and 

considerations were made to assist in quantifying cost and environmental impacts of 

production. These considerations feed into UMP models for extrusion (Appendix B2), 

annealing (Appendix B3), saw cutting (Appendix B6), and quenching (Appendix B7). 
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Table 4.5: Assumptions and considerations for cost and environmental impact 

analysis of corner bracket production 

Description Assumptions Additional 

Properties 

References 

Input workpiece  

(rod stock) 

Material: Aluminum 6061 

Diameter: 0.25 m 

Length: 1.2 m 

Chicago: $2.60/kg, 

Seattle: $2.90/kg, NYC: 

$3.10/kg 

Yield strength: 276 MPa 

Density: 2768 kg/m3 

Thermal conductivity: 152 

W/m K 

Mass: 163.11 kg 

[258–260] 

Extrusion 

process 

Barrel material: Nitriding 

steel 

Barrel diameter: 0.175 m 

Stock temperature: 400 °C 

Barrel temperature: 350 

°C 

Ram speed: 0.006 m/s 

[261,262] 

Circular saw 

cutting process  

Saw blade material: Steel 

with Carbide Tip 

Saw blade diameter: 

0.406 m (16”) 

Saw blade kerf: 3.175 

mm (0.125”)  

Saw blade hardness: > 30 

HRC 

Cutting speed: 122 m/min 

Feed: 0.20 m/min 

[263,264] 

Quenching 

process 

Quench medium: 

Distilled water 

Quenchant temperature: 

40 °C 

Cooling rate: 150 °C/s 

(300 °F/s) 

[265,266] 

Annealing 

process 

Annealing temperature: 

420 °C 

Temperature hold time: 2 

h 

Cooling rate: 40 °C/h (air-

cooled) 

[260,267] 

Input energy 

cost 

Electricity: Seattle: 

$0.056/kWh, NYC: 

$0.06/kWh, Chicago: 

$0.07/kWh  

Natural gas: $33.57/m3 

($0.95/ft3, national 

average) 

[268] 

Electrical 

energy 

emissions factor 

Seattle: 0.090 kg CO2e/kWh, Chicago: 0.368 kg 

CO2e/kWh, NYC: 0.189 kg CO2e /kWh 

[269] 

Labor cost Chicago: $20.22/h, NYC: $21.28/h, Seattle: $25.29/h  [270] 

 

The manufacturing process flow is composed of four UMPs as noted above (Figure 

4.6). Product and process information associated with an upstream (source) UMP also 

serves as linking variables to the indicated downstream (target) UMP. Key product and 
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process information (linking variables) found to have a high influence on sustainability 

performance are discussed below.  

(1) Rod stock (raw material) to hot extrusion: Aluminum 6061 rod stock is 

extruded to form the cross-sectional shape of the corner bracket. Key product 

and process information with a direct impact on extrusion process sustainability 

performance are: 

a. Extruded part cross-sectional area, which is generic linking variable that 

determines the extrusion ratio – defined as the ratio between the cross-

sectional areas of the feed material (rod stock) and the extruded part. 

Extrusion pressure and, thus, ram power, are reduced as the extrusion 

ratio is reduced for a given stock diameter. Thus, larger size brackets 

will require less extrusion energy for a specified rod stock diameter and 

length. 

b. Workpiece material microstructure, which is a specific linking variable 

that can lead to more energy use as hardness increases; some high-

strength materials may also require preheating to facilitate extrusion. In 

this case, the Al 6061 rod stock is preheated to 400 °C for the hot 

extrusion process, which increases heating energy, but reduces ram 

power. 

(2) Hot extrusion to saw cutting: Part blanks are cut to length using a saw cutting 

process. Key product and process information that drive saw cutting 

sustainability performance are: 
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a. Workpiece height, is a generic linking variable that defines the depth of 

cut, which, in turn, is taken into account when selecting the saw blade 

diameter and cutting feed rate. Depth of cut and feed rate determine 

time-related performance measures (e.g., cycle time and process energy 

use). 

b. Workpiece hardness, which is a specific linking variable used to define 

the feed rate based on the characteristics of the blade used (e.g., tooth 

material hardness, tooth pattern, and kerf width). Harder workpiece 

materials require slower feed rates and exhibit increased specific cutting 

energy, both factors that negatively impact process sustainability 

performance. 

(3) Saw cutting to quenching: The separated parts are then cooled in a quenching 

bath of distilled water. The key product and process information that influence 

quenching sustainability performance are: 

a. Workpiece thickness, which is a generic linking variable that determines 

the required quench time for a specific part. Cooling time increases with 

part thickness, thereby increasing quenching cycle time. 

b. Workpiece temperature, which is a specific linking variable of the 

incoming material that, along with the workpiece thickness and 

quenching medium, determines the workpiece cooling rate.  For the 

corner bracket, a cooling rate of 150 °C/s will result in a workpiece 

hardness similar to AL6061 T6. Higher cooling rates tends to increase 
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fatigue life, resistance to impact elongation, and strength. However, 

these conditions are not necessary for the corner brackets. 

(4) Quenching to annealing: Full annealing must be done to achieve an “O” 

temper designation for the corner brackets. This condition allows the supplier 

to reach a broader market, and customers to apply their desired heat treatment 

regimen. The annealing process has three stages: (1) heating the workpiece to 

the specified annealing temperature, (2) holding the workpiece at the annealing 

temperature for a specified time, and (3) cooling the workpiece at a specified 

rate to achieve full annealing. The key product and process information that 

have a direct impact on the sustainability performance of annealing are: 

a. Workpiece thickness, which is a generic linking variable used to 

determine the annealing temperature and hold time to achieve full 

annealing. This is the most energy intensive stage of the process, and 

lasts for a few hours. In this case, hold times of 2-3 hours at 420 °C have 

been estimated for the range of part wall thicknesses. 

b. Workpiece material microstructure is a specific linking variable that 

determines the annealing temperature. The annealing temperature is 

critical for determining the amount of energy that needs to be provided 

to the oven. Also, the cycle time for the annealing process is dependent 

on the annealing temperature. Both natural gas consumed by the oven 

and cycle time are directly proportional to the annealing temperature of 

the workpiece material. 
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These linking variables aid in the composition of UMPs to form a model of the 

manufacturing process flow. Table 4.6 details the metrics of interests that have been 

quantified for the selected corner brackets in this demonstration case using the 

assumptions and considerations for each UMP (Table 4.5). This compiled information 

for each of the brackets creates a decision-making challenge for the engineer tasked 

with purchasing the corner brackets for the assembly station tables. 

 

Table 4.6: Economic, environmental, and social impact analysis results 

Part 

Size 

Mass (kg) Energy 

(kWh/part) 

GWP (kg 

CO2e/part) 

Total Cost 

($/part) 

Labor Cost 

($/part) 

0.025 0.005 2.24 0.82 0.48 0.40 

0.045 0.028 3.58 1.32 1.05 0.61 

0.065 0.084 5.74 0.52 2.43 0.97 

0.085 0.188 12.25 1.10 4.49 1.22 

0.105 0.353 23.00 4.34 9.64 3.07 

0.125 0.597 38.94 7.36 14.32 3.22 

 

Thus, based on these quantified metrics of interest, the engineer is able to perform a 

trade-off study for the options under consideration. Figure 4.7 compares the three 

corner bracket procurement options by normalizing each metric of interest with respect 

to the worst-performing option. For example, the total mass of brackets in Option 1 is 

62% of the total mass of brackets in Option 2. It can be seen that the metrics of interest 

(i.e., total energy (kWh), total cost ($), GWP (kg CO2e), total mass (kg), and % non-

labor cost) are equally weighted. It is interesting to note that the relative total energy 

and GWP performance vary due to the different energy mixes available at the 

manufacturing locations. These results indicate that Option 1 and Option 2 have better 

overall performance than Option 3 (28% and 26%, respectively), but it is not clear if a 
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robust choice would be made based on this information, since different individuals 

would place different values on these decision-making criteria. It is important for the 

engineer to consider the choice using different perspectives – a capability available 

through the DCMS platform. 

 

 

Figure 4.7: Trade-off analysis based on industrial engineer’s weighting 

 

Multi-criteria decision-making (MCDM) is an analysis technique that helps decision-

makers distinguish among options (alternatives) based on potentially competing 

criteria. The Analytic Hierarchy Process (AHP), developed by Saaty [271] is a tool for 

MCDM that helps the decision-makers identify a solution that fits their objectives. AHP 

relies on subjective judgement from decision makers for assigning relative importance 

between the multiple criteria considered. Herein, it is assumed that the DCMS platform 

would collect information from a variety of users and generate a number of different 

decision-making perspectives (archetypes) based on the choices they make. However, 
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absent such a marketplace, two perspectives are assumed here for illustration. In 

addition, AHP allows decision makers to evaluate the consistency of judgements made, 

which is well-suited for decision problems with multiple criteria spanning competing 

technical, social, and environmental domains [272]. MCDM using AHP involves a 

four-step process: (1) Defining the hierarchical structure, (2) Defining relative 

importance for pairwise comparison, (3) Computing criteria weights, and (4) 

Evaluating consistency. The MCDM approach is explained in more detail using the 

corner bracket demonstration case 

 

The first step is to define the hierarchical structure, typically represented as a three-

level model. Level 1 defines the goal of the model; Level 2 contains the decision criteria 

considered in decision-making, and Level 3 presents the decision alternatives (Figure 

4.8). 

 

 

Figure 4.8: AHP hierarchical structure 
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Once the hierarchical structure is defined, pairwise relative importance (judgement) of 

the criteria needs to be evaluated. Typically, relative importance values range between 

1 and 9, with 1 indicating equal importance, 3 and 5 indicating moderate importance, 

and 7 and 9 indicating extreme importance. The inverse of these scales, indicate 

moderately less importance (1/3 and 1/5) and highly less importance (1/7 and 1/9). 

Table 4.7 shows the pairwise comparison matrix from the first sustainability 

perspective selected by the industrial engineer. The first perspective represents that of 

a procurement manager, who is more likely to be focused on cost relative to other 

performance metrics. Here, for example, total cost is rated as being extremely more 

important (9 times) than GWP. 

 

Table 4.7: Pairwise comparison matrix based on the procurement manager 

perspective 

Criterion 
Total Cost Total 

Energy 

GWP Total 

Mass 

% Non-

Labor Cost 

Total Cost 1 3 9 3 5 

Total Energy 1/3 1 3 1/5 3 

GWP 1/9 1/3 1 1/5 1/3 

Total Mass 1/3 5 5 1 5 

% Non-Labor 

Cost 1/5 1/3 3 1/5 1 

Total 1.98 9.67 21 4.60 14.33 

 

Based on the pairwise comparison matrix, the next step is to calculate the priority vector 

(Eigen vector) for assigning weights to the elements within the pairwise comparison 

matrix. The pairwise comparison matrix is normalized by dividing each matrix element 
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by the total of each column. Table 4.8 shows the normalized pairwise comparison 

matrix. 

 

Table 4.8: Normalized pairwise comparison matrix 

Criterion 
Total Cost Total 

Energy 

GWP Total 

Mass 

% Non-

Labor Cost 

Total Cost 0.51 0.31 0.43 0.65 0.35 

Total Energy 0.17 0.10 0.14 0.04 0.21 

GWP 0.06 0.03 0.05 0.04 0.02 

Total Mass 0.17 0.52 0.24 0.22 0.35 

% Non-Labor 

Cost 0.10 0.03 0.14 0.04 0.07 

Total 1.00 1.00 1.00 1.00 1.00 

 

The priority vector is then calculated by taking the average of each row of the 

normalized pairwise comparison matrix to estimate the weight assigned for each 

criterion in the decision-making process. For example, the weighting for total cost is 

0.45 (Eq. 4.1). 

 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 =  
1

5

[
 
 
 
 
0.51 + 0.31 + 0.43 +  0.65 + 0.35
0.17 + 0.10 + 0.14 + 0.04 + 0.21
0.06 + 0.03 + 0.05 + 0.04 + 0.02
0.17 + 0.52 + 0.24 + 0.22 + 0.35
0.10 + 0.03 + 0.14 + 0.04 + 0.07]

 
 
 
 

=  

[
 
 
 
 
0.45
0.13
0.04
0.30
0.08]

 
 
 
 

 (4.1) 

 

Next, the consistency ratio (Cr) is calculated to evaluate the acceptability of 

judgements. A consistency ratio of less than 10% is considered acceptable, whereas a 

higher ratio indicates subjective judgements need to be adjusted [271]. Consistency 

ratio is defined as the ratio of consistency index (CI) to the random index (RI). CI is 

calculated using the maximum Eigen value (λmax), as shown in Eq. 4.2, where ndc is 
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the number of decision-criteria (n=5). The random index specified for five metrics is 

1.12. 

 𝐶𝐼 =
𝜆 max− 𝑛𝑑𝑐

𝑛𝑑𝑐−1
 (4.2) 

 

To calculate the maximum Eigen value (λmax), the weighted sum for each decision 

criterion (Eq. 4.3) needs to be computed based on calculated criteria weights in the 

priority vector (Eq. 4.1) and the pairwise comparison matrix (Table 4.7). 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑠𝑢𝑚 = 0.45 

[
 
 
 
 

1
1/3
1/9
1/3
1/5]

 
 
 
 

+ 0.13 

[
 
 
 
 

3
1

1/3
5

1/3]
 
 
 
 

+ 0.04 

[
 
 
 
 
9
3
1
5
3]
 
 
 
 

+ 0.3 

[
 
 
 
 

3
1/5
1/5
1

1/5]
 
 
 
 

+ 0.08 

[
 
 
 
 

5
3

1/3
5
1 ]

 
 
 
 

=  

[
 
 
 
 
2.50
0.70
0.22
1.71
0.40]

 
 
 
 

(4.3) 

 

The maximum Eigen value (λmax) is calculated as shown in Eq. 4.4, resulting in a 

consistency index (CI) of 0.10. 

 λmax = 
2.50

0.45
 + 

0.70

0.13
 + 

0.22

0.04
+

1.71

0.30
+ 

0.40

0.08
 

5
=5.40 (4.4) 

 

For this example, the consistency ratio of the procurement manager judgements is 8.9% 

(Eq. 4.5), which is acceptable (<10%). 

 𝐶𝑟 = 
𝐶𝐼

𝑅𝐼
=

0.10

1.12
=  0.089 (4.5) 

 

Using the criteria weights from the priority vector established for the procurement 

manager perspective (Eq. 4.1), a trade-off analysis for the three purchasing options is 
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shown in Figure 4.9. Since higher importance was given to total cost and total mass 

compared to the other criteria, they have the highest influence on the performance of 

the options. From this perspective, it can be seen that the influence of energy 

consumption, GWP, and non-labor cost on sustainability performance are low relative 

to total cost and total mass. In addition, Option 1 performs slightly better (11%) than 

Option 3, while Option 2 is not preferable due to poor overall performance, as found 

without weightings applied, above. 

 

 

Figure 4.9: Trade-off analysis based on the procurement manager perspective 

 

To test the validity of these results, the industrial engineer next applies the MCDM 

approach by taking the perspective of a sustainability manager (Table 4.9). The 

consistency ratio of the pairwise judgements was estimated as 8.0% (<10%), which is 

acceptable. 
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Table 4.9: Pairwise comparison matrix based on the sustainability manager 

perspective 

Criterion 
Total Cost Total 

Energy 

GWP Total 

Mass 

% Non-

Labor Cost 

Total Cost 1 1/5 1/7 1/3 1/3 

Total Energy 5 1 1/2 5 3 

Total Mass 7 2 1 5 3 

GWP 3 1/5 1/5 1 1/5 

% Non-Labor 

Cost 3 1/3 1/3 5 1 

 

Based on the relative importance ratings from the sustainability manager perspective, 

the criteria weights were estimated and a trade-off analysis performed for the three 

purchasing options, as shown in Figure 4.10.  

 

 

Figure 4.10: Trade-off analysis based on sustainability manager’s judgement 

 

Relatively higher importance was given to GWP, energy consumption, and percent 
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cost and total mass are low relative to energy consumption, GWP, and non-labor cost 

on sustainability performance. In addition, Option 3 is found to perform only slightly 

better (3%) than Option 1, while Option 2 is not preferable due to poor overall 

performance. 

 

Based on the trade-off analysis from the procurement manager and sustainability 

manager perspectives, Option 2 is not a viable procurement option. Option 1 is suited 

using the procurement manager judgements, and has a slight advantage over Option 3, 

whereas, for the sustainability manager’s judgements, Option 3 is only slightly better 

than Option 1. From this analysis, Option 1 is the preferred choice selected by the 

industrial engineer for procurement. 

 

In this demonstration, three perspectives were analyzed using different weighting 

schemes to make a product design decision (i.e., corner bracket specification for an 

assembly table) driven by manufacturing sustainability performance. The 

demonstration illustrates how the information exchange between individual UMPs in 

the defined manufacturing process flow can be used to characterize and quantify 

manufacturing process-/system-level metrics. Also, it is seen how the manufacturing 

system model can be used for performing a trade-off and sensitivity analysis. The 

structured representation of the system-level model helps in understanding the key 

product and process information and their effects on the defined sustainability 

KPIs/MOIs. This information enables design and manufacturing engineers to specify 

product or system design requirements for sustainability performance improvement. 
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 Conclusions 

The research presented herein investigates the concept of composability of unit 

manufacturing process (UMP) models to enable characterization of manufacturing 

systems for sustainability performance evaluation. Specific and generic linking 

variables are defined as the key information contained within a UMP model that 

enables its composition, or linking, with models of other UMPs. The concept of linking 

variables, previously defined in a cursory manner by the research community, was 

explored in more depth and several key characteristics of linking variables were 

defined. In so doing, the work provides two methods of representing a manufacturing 

system model structure (using IDEF0 and XML) that align with existing standard 

guidelines for structuring UMP models. From an information modeling standpoint, the 

manufacturing system model structure proposed in this research enables the following: 

(1) Standardized representation of a manufacturing system in alignment with 

existing standards for UMP modeling developed by the ASTM sub-committee 

E60.13 on sustainable manufacturing. 

(2) Tracking of information flows between UMPs through the use of functional 

modeling (e.g., IDEF0), which captures upstream and downstream data and 

information. 

(3) Abstraction of UMP models (e.g., XML), which allows for instantiation of a 

process model developed for a particular application to be reused for related 

processes and process flow variants. 

(4) Automatic adjustments to manufacturing system models, when realized through 

a software application, that reflect real-time or near real-time changes to the 
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processes used in the system through direct modifications to the underlying 

UMP models. 

 

Though the methodology is demonstrated for a single workpiece flow, the approaches 

can be applied to manufacturing systems that handle multiple workpieces (e.g., parallel 

production flows) and utilize manufacturing processes such as joining and assembly. 

Composability of UMPs for sustainability performance evaluation enables 

manufacturers to gain a deeper understanding of the interrelationships between 

manufacturing processes, especially those that drive influencing factors for specific 

metrics of interest for engineering and business decision makers across operational, 

tactical, and strategic levels of an organization. Linking variables act as a medium in 

defining these relationships. Further, composability allows manufacturers to evaluate 

manufacturing systems to focus on desired sustainability objectives, including 

improving cost, productivity, energy efficiency, environmental performance, and social 

impacts. Since the concept of linking variables had not been previously explored in 

depth, the methodology developed provides a starting point for researchers and industry 

practitioners in implementing the ASTM sustainable manufacturing standard for 

evaluating system-level manufacturing sustainability performance. 

 

This work supports ongoing research focusing on development of open manufacturing 

process model repositories [197,197] and promoting their broader adoption toward 

evaluating sustainability performance of manufacturing processes and systems 

[8,44,273,274]. The model composition method presented in this work eases 
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development of software solutions and could be incorporated into existing computer-

aided design software tools to support manufacturing systems design decision making. 

Software development is enabled by taking advantage of both functional modeling and 

object-oriented programming architecture, and can be structured by considering their 

respective frameworks. Understanding of manufacturing processes can be a limitation 

to software development, since the model development requires domain expertise of 

process parameters and the influence of geometric and material properties on 

manufacturing processes. Linking variables, which are identified based on process 

knowledge, establish relationships between UMPs, thereby improving insight into 

representing manufacturing system models. Integration of domain expert knowledge 

into UMP model development needs more attention. For example, the application of 

ontologies for linking variables that can map, link, and define rules and relationships 

for two or more UMPs, which will further unsupervised or semi-supervised 

sustainability assessments of manufacturing systems. 
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Chapter  5: AN INFORMATION MODELING FRAMEWORK 

FOR SUPPORT OF SUSTAINABLE MANUFACTURING 

SYSTEM DESIGN DECISION MAKING 

 Abstract 

Sustainable manufacturing system design constitutes the development and application 

of manufacturing processes towards making products with minimal economic, 

environment, and social impacts. Historically, manufacturing industry has been driven 

by the motivation to reduce costs. With increasing emphasis on energy and resource 

conservation, environmental impact reduction, and social responsibility, multi-criteria 

decision-making methods and engineering analysis tools have been developed to 

support sustainable manufacturing. These methods and tools are cumbersome, 

however, since they are developed in an ad hoc manner, typically to assess an existing 

manufacturing process, line, or facility. A lack of standard methodologies for model 

development and analysis limits the sharing and reuse of existing knowledge for the 

design of sustainable manufacturing processes and systems. This paper presents a 

framework for integrating information modeling-based sustainability assessment with 

manufacturing system design methodology to facilitate the design of sustainable 

manufacturing systems. The developed information modeling approach utilizes 

standards-based methods for characterizing the sustainability performance of unit 

manufacturing processes (UMPs) and manufacturing systems. Manufacturing system 

design defines the sequence and arrangement of UMPs for the intended product based 

on the expected customer demand. This framework enables multi-criteria sustainability 
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assessment of manufacturing systems through the information modeling concepts of 

abstractions, instantiation, and composition. A demonstrative case study compares the 

sustainability performance of two manufacturing systems producing an aluminum 

wheel housing. To illustrate the framework for continuous manufacturing, the 

economics of two chemical process flows are compared for the production of a bulk 

chemical (ammonia). These case studies highlight the utility, flexibility, and 

adaptability of the framework for modeling different manufacturing systems. The 

information modeling basis of this approach lends it to realization through computer-

based applications and tools to support systems engineers and other decision makers. 

 

 Introduction 

Manufacturing system design includes the estimation, analysis, and capacity planning, 

considering material flows, production type (job shop, batch, mass, and continuous), 

operations, and plant layout [275,276]. Manufacturing system design approach have 

applied conventional methods such as the axiomatic theory of design, extended general 

design theory, Taguchi robust design, theory of inventive problem solving, and total 

quality development with an intent of improving productivity, system efficiency, yield, 

and product quality [277]. The primary focus has been on reducing product cost, 

thereby increasing margins, revenue, and market penetrance to improve economic 

competitiveness. However, with increased consumer awareness, government 

regulations, and investor demands, the importance of sustainable manufacturing has 

increased [156]. Several definitions of sustainable manufacturing have been proposed, 

but none have been widely accepted. According to the United State Environmental 
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Protection Agency (U.S. EPA), sustainable manufacturing is “[t]he creation of 

manufactured products through economically-sound processes that minimize negative 

environmental impacts while conserving energy and natural resources. Sustainable 

manufacturing also enhances employee, community and product safety [278].” Several 

challenges are attendant with executing sustainable manufacturing practices in 

industry: (1) Sustainability analysis is cumbersome at the manufacturing system design 

phase due to the complex nature of manufacturing systems (interactions between 

manufacturing processes) [279]; (2) Engineering methods/tools have limited ability to 

address all three pillars of sustainability, namely, economic, environmental, and social 

impacts, simultaneously [215]; (3) Sustainability assessment methods/tools inhibit the 

transferability of knowledge since they typically focus on product impacts and are 

constrained to modeling the specific processes used in the manufacturing system under 

study; (4) Process models that underlie existing methods/tools are not easily tunable, 

limiting the ability to evaluate sustainability performance at the manufacturing system 

level; and (5) Existing methods/tools are unable to support multi-criteria sustainability 

decision making at the manufacturing system design phase, all of which hinder 

sustainable manufacturing.  

 

Life cycle assessment (LCA) methods/tools aim to address several of these challenges 

at the product design and/or manufacturing system design phases [280]. LCA provides 

a framework for assessing the environmental impacts across the product lifecycle 

[281]. While LCA studies often span from cradle to grave, product designers and 

manufacturers are focused on assessing and improving the sustainability performance 
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of the manufacturing phase of the lifecycle (gate-to-gate) [282]. Existing LCA tools 

apply process models for a particular manufacturing setting, however, these underlying 

models tend to be generic representations of an individual process or set of processes 

that are based on unique data sets [283]. Other deficiencies include inadequacies in 

assessment approach (little focus on cost and social impacts), inconsistency in data, 

and inability to perform multi-criteria decision analysis for a manufacturing system 

[284,285]. Due to these challenges, as well as the related challenges of consistent 

manufacturing process data representation, handling, and processing, adoption of LCA 

for manufacturing system design has not gained traction. These deficiencies can be 

addressed through the application of information modeling, which provides a well-

defined structure and streamlined sequential handling and control over data exchange 

[165]. Information models define relationships, rules, functions, formal structure, and 

operations of entities (processes/subsystems) within the domain space (system) [32]. 

Further, information modeling provides an approach for defining functional and 

architectural requirements to represent data/information in the development of software 

platforms. By using this approach, underlying information models (metamodels) can 

be structured to facilitate data sharing between entities, model reuse and extension, and 

tracking and processing information in a reliable manner. In addition, these information 

modeling techniques can be leveraged for improving/adjusting existing metamodels 

with relative ease compared to developing new models from scratch.  

 

Information modeling provides a foundational basis for development and modification 

of manufacturing process models to support parametric sustainability assessments. The 
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benefits of integrating information modeling with manufacturing process modeling can 

be realized through development of sustainable engineering tools that enable efficient 

and accurate process/system analysis, while ensuring data privacy and operational 

confidentiality. The goal of this research is to facilitate multi-criteria sustainable 

manufacturing analysis and decision making by integrating information modeling-

based sustainability assessment with manufacturing systems design (Figure 5.1). 

 

 

Figure 5.1. Conceptual model of the research 

 

This research is based on the ASTM E3012-20 standard that describes information 

modeling as a means to evaluate sustainability performance of manufacturing processes 

[27]. Related research has reported the application of the standard for the sustainability 

performance characterization of manufacturing processes (e.g., material removal 

[173,174,286], heat treatment [171,186], mass conservation [180,182], injection 

molding [183,287], and sheet metal forming [178,184]) and systems [288,24,172]. The 

research herein extends this work by introducing an information modeling framework 

for sustainable manufacturing system design decision making. In Section 2 a brief 

review of prior work is detailed, followed by a description of the research methodology 

in Section 3, which presents the sustainable manufacturing system design decision 
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support framework. Next, two demonstrative case studies are reported in Section 4, 

using a discrete manufacturing part and a continuous product manufacturing. Finally, 

in Section 5, the research findings, advantages/limitations of the framework, and 

recommendations are discussed. 

 

 Background 

Manufacturing system design connects product design and manufacturing by 

establishing unit operations and process flows to efficiently and effectively produce the 

intended product, while meeting a defined set of desired objectives, or customer-driven 

functional requirements. A manufacturing system as “a subset of the production system 

– is the arrangement and operation of elements (machines, tools, material, people, and 

information) to produce a value-added physical, information or service product whose 

success and cost is characterized by measurable parameters of the system design” [22]. 

Thus, the design of a manufacturing system is driven by functional requirements, which 

are translated into engineering requirements that the system must fulfill under a set of 

constraints. In sustainable manufacturing system design, focus is placed on defining 

functional requirements that simultaneously address economic, environmental, and 

social performance objectives. In addition to production volume, which drives the size, 

cost, and complexity of manufacturing systems, sustainability performance depends on 

a variety of metrics interest that span the three pillars of sustainability, including direct 

costs (e.g., labor, consumables, and operations costs), indirect costs (e.g., maintenance, 

legal, safety, and administrative costs), capital cost, working conditions, worker safety, 
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energy use, water use, solid waste, types of material handling equipment, and influence 

of geographic location [289].  

 

With the wide range of metrics (environmental, economic, and social) that must be 

considered in the design and analysis of sustainable systems, holistic evaluation is 

challenging [290]. Multi-criteria decision analysis (MCDA) approaches have been 

applied to overcome the challenge of simultaneously comparing a number of competing 

metrics [291]. These include the Analytic Hierarchy Process (AHP), weighted sum 

method, weighted product method, Elimination and Choice Translating Reality 

(ELECTRE), Preference Ranking Organization Method (PROMETHE), Multi 

Attribute Utility Theory (MAUT), and Technique for Order Preference by Similarity 

to Ideal Solutions (TOPSIS). However, existing assessment methods/tools do not 

support MCDA approaches for choosing alternatives to improve system sustainability 

performance [292,293]. In particular, for manufacturing system design, the underlying 

models for evaluating manufacturing processes are agnostic of production system 

attributes, such as production volume, labor utilization, the process plan and equipment, 

and geographic location. Several prior efforts in support of manufacturing system 

design have assessed environmental, economic, and social aspects independently in the 

decision-making process. Gao et al. [294] applied the manufacturing system design 

method along with LCA to identify key economic and environmental drivers for 

production of a microchannel device across a range of production volumes. Stoycheva 

et al. [295] presented a conceptual MCDA framework to evaluate the sustainability 

performance of various materials for the production of a set of automotive parts within 
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an existing manufacturing system. Li et al. [296] applied the Decision Making Trial 

and Evaluation Laboratory (DEMATEL) method to determine key performance 

indicators that promote the development of a sustainable manufacturing system. A 

pairwise comparison was used to identify key indicators gathered through a survey of 

experts, which supported the design of an automotive part production system. Mokhtari 

et al. [297] demonstrated fuzzy goal programming to minimize production cost, 

transportation cost, and environmental impacts (i.e., generated waste, gas emissions, 

noise, worker injuries, and energy consumption) during production planning. Their 

approach was verified using manufacturing case studies for eight home appliances. It 

should be noted that these methods have been developed for specific applications in an 

ad hoc manner, and are not generalizable for reuse in the design of manufacturing 

systems. Advancements in software technology, including information modeling 

approaches and techniques, enable the structured and streamlined handling of product 

and process data in a manner that is complementary to manufacturing system design 

by bridging design and manufacturing decision making. 

 

Since information modeling provides a hierarchical structure to the data, it has been 

applied for data exchange in a number of design and manufacturing software 

frameworks. Some of the most commonly used information modeling languages are 

Integrated computer-aided DEFinition (IDEF0) [218] for function modeling, and 

Unified Modeling Language (UML) [203] and eXtensible Markup Language (XML) 

[219] for object-oriented modeling. Several past efforts have undertaken information 

modeling of manufacturing processes and systems for production planning, design data 
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exchange schematics for manufacturing processes, and cost modeling [233,298]. The 

Systems Integration of Manufacturing Application (SIMA) developed by the National 

Institute of Standards and Technology (NIST) aimed to support the integration of 

design and manufacturing software systems using object-oriented representations of 

manufacturing process information to assist process planning. The Core Product Model 

(CPM), another effort by NIST, focused on representing design information such as 

product form, fit, function, dimensional details, and material. The Open Assembly 

Model (OAM) built upon CPM to expand the representation of design data for sub-

system/system assemblies. These efforts laid the foundation for development of 

standards that emphasized representation of design and manufacturing data in computer 

applications. Well-known information modeling-based data exchange frameworks 

include Initial Graphics Exchange (IGES), Standard for the Exchange of Product 

Model Data (STEP), ISO 10303 (Standard for representing product manufacturing 

information for computer interpretation) [220], ISO 16100-2 (Standard for information 

exchange between design and manufacturing software applications) [299]. The Open 

Platform Communications (OPC) standard is a set of specifications and software 

protocols developed for the sharing of information in a secure and reliable way between 

manufacturing tools/equipment [300]. Despite these efforts to represent product and 

process data as information models and to improve data exchange between design and 

manufacturing, none were intended to facilitate sustainable manufacturing system 

design.  
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Simultaneously with these efforts, methods for supporting sustainability performance 

characterization at the product design and manufacturing stage were independently 

under development. Noteworthy efforts led to a number of software applications, such 

as SimaPro [301] and GaBi [230], developed to support design engineers in estimating 

the environmental impacts based on product design and manufacturing information. 

These software applications enabled decision makers to choose from among several 

alternatives to reduced product environmental impacts. However, these applications 

had a few drawbacks: (1) they did not allow decision makers to evaluate metrics related 

to all three pillars of sustainability, (2) estimated impacts had high level of uncertainty 

because the underlying models and data were broad representations of the associated 

manufacturing processes, and (3) they were not developed to support manufacturing 

system design decision making. To overcome these shortcomings, the Unit Process 

Life Cycle Inventory (UPLCI) initiative emerged with a focus on developing an 

inventory of reusable manufacturing process models for LCA [45]. Subsequently, 

manufacturing process models have been developed to estimate material and energy 

consumption for various manufacturing processes, including grinding [47], gas metal 

arc welding [48], additive manufacturing [169], metal injection molding [170], and 

laser powder bed fusion [188], among others. A similar effort, the Cooperative Effort 

on Process Emissions (CO2PE!), focused on developing life cycle inventories of 

manufacturing process data to enable product environmental impact assessments [46].  

 

To support these efforts for analyzing manufacturing phase environmental impacts, 

several ISO and ASTM standards have been developed. ISO 20140 provides a five-part 



141 

 

 

standard for environmental performance evaluation (EPE) of manufacturing systems 

[302]. Part 1 presents an overview and the general principles for such evaluation of 

manufacturing processes/systems, which are applicable to discrete, batch, and 

continuous manufacturing. Part 2 describes the EPE process, which includes defining 

the objective and scope of the evaluation, assessment of specified environmental KPIs, 

and value (inputs, outputs and services) of the manufacturing process/system. Part 3 

presents a method for EPE data aggregation by defining the underlying mathematical 

relationships, data inputs, data structures, and manufacturing process functions, as well 

as the aggregation techniques (i.e., decomposition, conversion, summation, and 

allocation). Part 4 has not yet been published. Part 5 specifies the types of EPE data for 

evaluating the environmental performance of manufacturing systems. To demonstrate 

the functionality of the standard, a collaboration between researcher at the NIST and 

the National Institute of Advanced Industrial Science and Technology (AIST) of Japan 

evaluated an energy performance KPI (energy demand per unit workpiece) for 

machining a test part using two different process plans [303]. Another effort by 

researchers from Morocco proposed the application of ISO 20140 in the context of 

digital twin technology to enable real-time LCA and the environment performance 

optimization of manufacturing systems [304]. It should be noted EPE data is specific 

to the type of industry, manufacturer, and equipment/processes. Further, data types, 

quality, and availability are governed by the data acquisition method. Thus, similar to 

LCA, EPE studies are necessarily completed in an ad hoc manner. ISO 20140 suggests 

mapping EPE data into information models defined by the IEC 62264 standard. The 

IEC 62264 standard provides a protocol for defining the functions and information 
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exchanges between enterprise, manufacturing, and control systems using information 

modeling techniques (e.g., hierarchical models, functional data flow models, object 

models, and operation activity models). No efforts have been reported that integrate the 

two standards to define syntactic representations of data and accompanying 

information models for data exchange between manufacturing processes to perform 

EPEs. This lack of a common structure for data communication inhibits application of 

the standard into a software architecture for environmental performance 

characterization of a manufacturing system.  

 

In parallel with ISO standard development efforts for manufacturing environmental 

performance evaluation, recent standards released by the ASTM E60.13 sub-committee 

on sustainable manufacturing provide an information modeling-based methodology to 

analyze the environmental performance of manufacturing processes. The sub-

committee has published four related standards: (1) ASTM E2987-20 defines relevant 

terminology applicable to sustainable manufacturing [231]; (2) ASTM E2986-18 

provides procedures for evaluating the environmental performance of manufacturing 

processes [41]; (3) ASTM E3096-17 provides a process for defining, identifying, 

selecting, and managing key metrics of interest (MOIs) needed to evaluate process 

environmental performance [232]; and (4) ASTM E3012-20 presents a systematic 

approach to characterize manufacturing process environmental performance through a 

formal representation of the process (Figure 5.2), termed a unit manufacturing process 

(UMP) model [27]. ASTM E3012-20 defines a UMP as “the smallest element or 

subprocess in manufacturing that adds value through the modification or 
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transformation of shape, structure, or property of input material or workpiece.” UMPs 

have been also been defined as “the individual steps required to produce finished goods 

by transforming raw material and adding value to the workpiece as it becomes a 

finished product” [24].  

 

 

Figure 5.2. Graphical representation of a unit manufacturing process [27] 

 

The ASTM standards enable industry practitioners and researchers to better understand 

the influence of various product and process variables (e.g., part geometry, materials, 

geographic location, energy mix, and manufacturing process settings) on 

environmental performance. This standards-based information modeling approach lays 

a foundation for facilitating manufacturing process and system design decision support. 

The standard UMP structure is defined by five elements: inputs, outputs, product and 

process information, resources, and transformation equations. Inputs (I) to the UMP 

include raw materials and/or work-in-process parts, consumables (e.g., lubricants and 

welding gas/fluxes), energy (e.g., electrical, heat, and chemical), and external factors 

(e.g., humidity, pressure, and temperature). Outputs (O) from the UMP include all 

physical outputs from the processing of inputs, which constitute the product(s), 
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waste(s), and by-product(s), as well as energy losses and emissions. It is important to 

note that the outputs from a prior UMP could serve as inputs to a subsequent UMP in 

the manufacturing process flow. Product and process information (PPI) is comprised 

of all necessary information that either defines the product (e.g., design features and 

material properties) and the process. As such, PPI defines process parameters, e.g., 

fixed parameters, control parameters, intermediate variables, metrics of interest, and 

supporting information. Fixed parameters are process properties that do not change 

during the processing of inputs (e.g., oven wall thickness). Control parameters are 

process parameters that can be tuned or adjusted during the process (e.g., annealing 

temperature or temperature hold time). Intermediate variables are interim parameters 

used to calculate metrics of interest (e.g., drilling time, which can be calculated based 

on hole depth and drill feed, to estimate drilling energy). Metrics of interest are the 

desired process performance metrics evaluated using the UMP model (e.g., cost or mass 

of greenhouse gas emissions per part). Resources (R) comprise all information related 

to other resources used by the UMP, such as tooling, fixtures, equipment, software, and 

people, to convert inputs to outputs. Transformation equations are the governing 

functions (e.g., mathematical or data-driven relationships) used to model the 

conversion of inputs to outputs using the defined product/process information and 

resources, as well as quantifying the desired metrics of interest.  

 

In addition to defining a structure for representing UMPs, the ASTM E3012-20 

standard provides a theoretical definition of composition, which is “the act of linking 

individual unit manufacturing process (UMP) models together to create a composite of 
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UMP models that can characterize the metrics of interest of a production system or 

product” [27]. Figure 5.3 illustrates a manufacturing system structured using a 

sequence of UMPs that transforms inputs to desired outputs, including intermediate 

process inputs and outputs. Manufacturing systems utilize UMPs in series (e.g., UMP 

1 and UMP 2) or in parallel (e.g., UMP 3 and UMP 4). UMPs models are connected to 

each other using “linking variables,” or information exchanged/shared between UMPs, 

to represent the manufacturing system. 

 

 

Figure 5.3. Graphical representation of composed UMPs [27] 

 

Though the ASTM E3012-20 standard was developed to characterize manufacturing 

environmental performance, researchers have applied its methods to quantify a variety 

of metrics of interest to support sustainability performance evaluation of manufacturing 

processes and systems. For instance, the conceptual standard was applied in developing 

a method for assessing the sustainability performance of discrete part manufacturing 

processes [164]. The method was demonstrated to support design for manufacturing 
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decision making of a representative aircraft subassembly. The concept of composition 

through linking variables was demonstrated in this initial work. Subsequently, a proof-

of-concept software application was developed to explore the composition of 

manufacturing processes for assessing the sustainability performance of manufacturing 

flows [195]. A collaborative effort of Brodsky and NIST researchers developed an 

optimization approach to facilitate trade-off analysis of manufacturing process/service 

networks [50]. Their approach was demonstrated using a web-based software tool to 

optimize the contract manufacturing supply chain for the production of a heat sink on 

the basis of cost, throughput, and CO2 emissions. To enhance trade-off analysis in 

design for manufacturing, NIST researchers studied the feasibility of mapping the 

ASTM E3012-20 standard structure to the ecoSpold2 format (a data structure used for 

creating life cycle inventories) [165]. Due to the difficulty in applying the standard for 

consistent representation of manufacturing processes, a web-based tool was developed 

to assist analysts in creating standard-conforming UMP models [197].  

 

This prior work has been attendant with a number of limitations. The standard provides 

a structure for consistent development of UMP models for specific instantiations of a 

process, but it does not facilitate model transferability (reusability) to characterize 

variations of the process [197]. Further, while the standard defines the concept of a 

linking variable, it has been recognized during the composition of UMP models that 

the linking variables depend upon the types and sequence of operations in the 

manufacturing process flow [305]. In applying the standard to model manufacturing 

systems, investigated linking variables and their interactions are often limited to only 
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those relevant to specific demonstrative cases. Since such studies intend to characterize 

the performance of existing or proposed systems, they are not well-suited for 

supporting process planning or manufacturing system design. In particular, these 

methods were not developed with a foundational basis to support multi-criteria decision 

analysis, but rather for simultaneous quantification of selected metrics of interest [306]. 

Although structured UMP models help overcome the challenge of developing shareable 

life cycle inventories to support LCA studies, little effort has been placed in 

understanding the dynamic influences of product design or manufacturing process 

changes on the sustainability performance of manufacturing systems [134].  

 

This research aims to address the limitations of existing sustainability assessment 

approaches by integrating a systematic and structured information modeling 

framework with manufacturing system design. This integrated framework will 

facilitate sustainable manufacturing system design decision making. The research 

presented herein builds upon prior efforts of the authors that (1) developed a 

methodology for reuse and extension of UMP models through information modeling 

approaches such as instantiation, polymorphism, and aggregation [49] and (2) applied 

information modeling techniques for composing UMP models to characterize and 

evaluate the sustainability performance of manufacturing systems [307]. A resulting 

integrated framework for sustainable manufacturing system design through multi-

criteria decision making is presented and demonstrated using case studies for discrete 

and continuous production. 

 



148 

 

 

 Research Method 

The integrated framework developed in this research is agnostic of the type of 

manufacturing system under study (e.g., continuous manufacturing, batch production, 

or cellular manufacturing). The underpinning methodology follows a sequence of steps 

(Figure 5.4): (1) For the specified product, multiple manufacturing process flow 

options can be designed for sustainability performance evaluation, (2) Equipment sizes 

and quantities need to be estimated based on the intended production volume, which 

are based on the cycle time for discrete manufacturing and flow rates for continuous 

manufacturing, (3) The manufacturing system is then designed based on these 

equipment sizes and quantities and the manufacturing process flow (sequence), 

(4) Models of UMPs (discrete production) and unit operations (continuous production) 

are instantiated (reused and extended) and composed to quantify selected metrics of 

interest for the manufacturing system design alternatives, and (5) These disparate 

metrics are then evaluated using an MCDA approach to provide insights into the 

alternatives, enabling selection of the most desirable option. 
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Figure 5.4. Integrated framework for sustainable manufacturing system design 

 

Thus, the framework provides a basis for integrating information modeling approaches 

of reusability, extensibility, and composability for sustainability assessment of 

manufacturing systems, previously reported as part of this research. Specifically, a 

method was developed to enable the reuse and extension of UMP models by 

encapsulating product- and process-specific characteristics in a template UMP model 

[49]. A template model was defined as “a model that completely characterizes the most 

simplistic instantiation of a manufacturing process that comprises varying level of 

machine configurations.” Extension of a template model into a more complex machine 

configuration is done by aggregating the template model with appropriate layer models, 



150 

 

 

which include models of auxiliary systems (e.g., monitoring equipment, exhaust gas 

systems, and pressure control systems) that do not modify the workpiece. This method 

for UMP model extension was demonstrated for a two and a half axis milling process 

model, and extended a manual milling process model with layer models representing a 

control system and cutting fluid system. Building upon this work, a method for 

composing UMP models was then developed using the information modeling technique 

of model aggregation, enabling sustainability characterization of a manufacturing 

process flow [307]. Further, linking variables (context information shared between 

UMPs) that establish relationships between UMPs in a manufacturing system were 

identified and characterized. This composition method was demonstrated to support the 

sustainable design and manufacturing of a corner bracket (discrete part manufacturing). 

 

To address the overarching objective of the research, the work presented herein builds 

upon these prior methods, as indicated by the shaded boxes in Figure 4. The previously 

presented methods (reuse, extension, and composition) are maintained to provide 

decision support for manufacturing system design based on desired metrics of interest. 

This framework lacks a structure that would facilitate its transition into software 

architecture. Appendix C1 provides a conceptual structured definition of the 

framework using a UML class diagram, which would be the cornerstone for future 

development of an engineering decision support tool. UML class diagrams are central 

to object-oriented programming, and used to represent the structure of a system by 

describing its various classes, along with their associated interrelationships, attributes, 

and operations, as conceptual diagrams [308]. Thus, the UML diagram here defines the 
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classes of the integrated framework as model repository, design information, design 

decision variables, UMP/unit operations, linking variables, metrics of interest, weights, 

and MCDA methods. Each class box specifies its associated attributes or methods. 

Relationships between classes, instantiated as objects, are shown using a connecting 

line with a diamond arrowhead. An associated phrase defines the object actions, e.g., 

the unit processes/operations class “accepts” product design information. Numbers at 

either end of the connecting lines define the instantiation constraints of the two classes, 

e.g., “1..*” at the arrow origin means a minimum of one instance (object) is required as 

output of the originating class, and “1” at the arrow terminus indicates one instance is 

required as input to the terminating class). This integrated framework and class diagram 

structure, lays a foundation for future software architecture that enables development 

of engineering decision support tools for manufacturing system design. Demonstrations 

of the integrated framework are provided in Sections 5.5 and 5.6 for discrete and 

continuous product manufacturing, respectively, and describe how the framework can 

be applied in engineering software tool development. 

 

 An Application of the Integrated Framework for Sustainable 

Manufacturing System Design for Discrete Part Manufacturing 

Manufacturing system design is driven by product design requirements, production 

requirements, and the resultant engineering requirements that satisfy various metrics of 

interest, including sustainability performance measures, as captured within the 

integrated framework for sustainable manufacturing system design developed above. 

In the development of an engineering decision support tool that follows this 
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information modeling paradigm, these system elements would define software 

functional requirements. In order to illustrate the application of the framework, a step-

by-step approach is presented below that mimics the core functions of an envisioned 

engineering software tool to be used in the sustainable design of a discrete part 

manufacturing system.  

 

For this demonstration, the premise is of a medium-sized metal product manufacturer 

exploring a new business opportunity in the industrial furniture market. The 

manufacturer has developed a design for a wheel housing that can be purchased by 

manufacturers or customers who wish to add casters to an existing workbench to 

improve workspace flexibility. From market research, customer requirements have 

been translated into product design, production, and engineering requirements (metrics 

of interest), resulting in two product designs (Figure 5.5). The company is interested in 

the following performance metrics cost, energy use, and labor wage. In addition to 

deciding from among these two product designs, company leadership is considering 

whether to implement a pilot production cell producing 1,000 parts annually or to 

launch a low-volume production line, which would manufacture 10,000 parts/year. 

Based on the product designs and expected annual production volumes, the 

manufacturing system design decision variables (i.e., equipment count and number of 

laborers) need to be estimated for the corresponding process flows.  
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(a)  (b)  

Figure 5.5. Wheel housing (a) Part design alternative 1 (b) Part design 

alternative 2 

 

Two process flow alternatives have been conceptualized for the two part designs, 

respectively, and involve (a) assembly of a bottom plate with two L brackets (Figure 

65.) and (b) production of a monolithic part (Figure 5.7). The manufacturing system 

design for Part Design 1 includes two manufacturing process flows. Manufacturing 

Line 1 produces the top plate, and Manufacturing Line 2 produces the two L-brackets 

that will be attached to the top plate. The parts will be subsequently packaged and 

shipped to the customer who will complete the assembly. Material input to 

Manufacturing Line 1 is an aluminum plate, which is first milled to create an open 

pocket and to add radii to the corners. Through holes are then drilled into the top plate. 

Material input to Manufacturing Line 2 is aluminum rod stock for extrusion into an L-

shaped cross-section. Following extrusion, the material is water quenched and saw cut 

to the desired length. The L-bracket is then annealed, milled, and drilled to achieve the 

design specifications. 
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Figure 5.6. Manufacturing system design alternative 1 (MSD 1) 

 

Using the information presented in Table 5.1, an example functional model of 

Manufacturing System Design Alternative 1 (MSD 1) is presented in Appendix C2, 

assuming an annual production capacity of 10,000 parts. The corresponding UMP 

models are instantiated to estimate the cycle time of each manufacturing process step 

in the manufacturing process flow. Based on process cycle times and annual demand, 

the equipment quantity required for each process step is estimated (Equation 1). As 

shown in Table 5.2, for Manufacturing Line 1, two mills and one drill press are required 

to meet the desired annual production. Similarly, for Manufacturing Line 2, one 

extruder, one quench tank, and two each of saw cutters, annealing oven, and drill 

presses, and three mills are estimated. These quantities correspond to the number of 

UMP model instantiations required for each process step within the manufacturing 

system model. The manufacturing system design is illustrated using an IDEF0 

functional diagram (Appendix C2). In the diagram, solid arrows indicate the physical 

flows and dashed arrows indicate the information exchanges between the UMP model 
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instantiations. The functional models define the manufacturing system design 

alternatives that can be used for evaluating the sustainability performance.  

 

Table 5.1: Assumptions and considerations for manufacturing system design 

alternatives MSD 1 and MSD 2 

Description MSD 1 MSD 2 References 

Input workpiece 

(coupon) 

Material: Aluminum 

6061 

Length: 0.178 m  

Width: 0.1016 m  

Height: 0.0254 m 

Yield strength: 276 MPa 

Density: 2768 kg/m3 

Thermal conductivity: 

152 W/m K 

Not applicable [258–260] 

Input workpiece  

(rod stock) 

Material: Aluminum 

6061 

Diameter: 0.25 m 

Length: 1.2 m 

Yield strength: 276 MPa 

Density: 2768 kg/m3 

Thermal conductivity: 

152 W/m K 

Mass: 163 kg 

Material: Aluminum 6061 

Diameter: 0.25 m 

Length: 1.2 m 

Yield strength: 276 MPa 

Density: 2768 kg/m3 

Thermal conductivity: 152 

W/m K 

Mass: 163 kg 

Extrusion 

process 

Barrel material: Nitriding 

steel 

Barrel diameter: 0.175 m 

Stock temperature: 400 

°C 

Barrel temperature: 350 

°C 

Ram speed: 0.06 m/s 

Tool cost: $12,000 

Barrel material: Nitriding 

steel 

Barrel diameter: 0.400 m 

Stock temperature: 400 °C 

Barrel temperature: 350 °C 

Ram speed: 0.005 m/s 

Tool cost: $24,000 

[261,262] 

Circular saw 

cutting process  

Saw blade material: Steel 

with carbide tip 

Saw blade diameter: 

0.406 m 

Saw blade kerf: 3.175 

mm  

Saw blade hardness: > 30 

HRC 

Cutting speed: 122 m/min 

Feed: 0.20 m/min 

Tool cost: $4,000 

Same as alternative 1 [263,264] 

Quenching 

process 

Quench medium: 

Distilled water 

Same as alternative 1 [265,266] 
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Description MSD 1 MSD 2 References 
Quenchant temperature: 

40 °C 

Cooling rate: 150 °C/s 

Tool cost: $7,500 

Annealing 

process 

Annealing temperature: 

420 °C 

Temperature hold time: 2 

h 

Cooling rate: 40 °C/h 

(air-cooled) 

Tool cost: $7,500 

Same as alternative 1 [260,267] 

Milling process Feed rate: 

0.032”/revolution 

Cutting speed: 950 SFM 

Tool diameter: 1/4” 

RPM: SFM X 3.82 X 

Tool diameter 

Tool cost: $7,000 

Feed rate: 

0.016”/revolution 

Cutting speed: 550 SFM 

Tool diameter” 1/4” 

RPM: SFM X 3.82 X Tool 

dia 

Tool cost: $15,000 

 

Drilling process Tool diameter: 1/2” 

Feed rate: 

0.01”/revolution 

Cutting speed: 300 SFM 

RPM: SFM X 3.82 X 

Tool diameter 

Tool cost: $5,500 

Tool diameter: 1/2” 

Feed rate: 

0.004”/revolution 

Cutting speed: 200 SFM 

RPM: SFM X 3.82 X Tool 

diameter 

Tool cost: $10,500 

Input energy 

cost 

Electricity: $0.061/kWh (US national average) 

Natural gas: $33.57/m3 (US national average) 

[268] 

Electrical 

energy 

emissions factor 

0.43 kg CO2e/kWh (US national average) [269] 

Annual labor 

cost 

$60,000 (US national average per worker) [270] 

 

Similarly, Part Design Alternative 2, where the wheel housing is a single workpiece, is 

produced using Manufacturing System Design Alternative 2 (MSD 2), as shown in 

Figure 5.7. Input stock is extruded using a hot extrusion process, quenched, and saw 

cut into the near net shape of the final wheel housing. This intermediate part is 

subsequently milled and drilled to achieve the design specifications. Due to the change 

in manufacturing process flow, the two alternatives have key differences in the 

manufacturing equipment employed for the extrusion, milling, and drilling processes. 
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For this demonstration case, it is assumed that there are no fundamental differences in 

the equipment used for quenching, saw cutting, and annealing 

 

 

Figure 5.7. Manufacturing system design alternative 2 (MSD 2) 

. 

The manufacturing system design for discrete part manufacturing is driven by the 

expected annual production volume (customer demand) and cycle time for each process 

step in the manufacturing process flow. Process cycle time depends on the part design 

(e.g., geometry and material), machine capability (e.g., feed rate, cooling rate, or 

heating time), and load and unload time. Process cycle time can be estimated using 

UMP modeling techniques [49]. The equipment count (n) for each manufacturing 

process step can be estimated based on annual production volume (P), tool working 

hours per year (k), yield (y), cycle time (tc), and tool utilization (u), as shown in Eq. 

5.1. Within an information modeling system, these parameters would be stored as 

product and process information.  

 

  (5.1) 
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The equipment count for each process step will determine the facility layout in 

designing a dedicated manufacturing plant. For the purposes of manufacturing systems 

sustainability performance evaluation, the requisite UMP models will be instantiated 

based on the equipment count for each process. These UMPs must then be composed 

based on the manufacturing process flow. A product design can be produced by 

following a number of manufacturing process flows. Information modeling principles 

of reuse, extension, and composition aid in evaluating these alternative manufacturing 

process flows with relative ease, compared to the conventional approach of developing 

such models from scratch.  It should be noted for products produced using contract 

manufacturers, the manufacturing system will already be in place and selected metrics 

of interest would depend on the process flow. Equipment and labor are shared across a 

mix of products based on changing customer demands. Thus, metrics of interest are 

driven by the utilization factor for each piece of equipment and associated labor, and 

calculated assuming complete utilization across a mix of products. The utilization 

factor (Uf) per part for the product under consideration is dependent on the batch size 

(Nb), batch setup time (tb), cycle time (tc), and tool availability per year (k), as shown 

in Eq. 5.2. Therefore, evaluation of sustainability performance is typically performed 

for the manufacturing process flow to identify the best alternative without consideration 

of production capacity. 

 

  (5.2) 
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Estimating the number of operators is a key aspect to sustainable manufacturing system 

design as labor influences economic and social metrics. The number of operators per 

tool (Nlabor) for discrete part manufacturing depends on the cycle time (tc), part load 

time (tload), part unload time (tunload), annual availability per laborer (Lannual), and annual 

production volume (P), as shown in Eq. 5.3. 

 

  (5.3) 

 

Based on assumptions and considerations combined with the product design details, 

the equipment count for each of the manufacturing step within the manufacturing 

system design alternatives are estimated (Table 5.2). T he UMP models are then 

instantiated for reuse or extension based on an information modeling approach reported 

as part of this research [49]. The instantiated UMPs are then composed relative to the 

process flow to quantify the metrics of interest [307]. 
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Table 5.2: Equipment count for two manufacturing system design alternatives 

for two annual production capacities 

Manufacturing 

equipment (line) 

MSD 1: Equipment 

quantity (utilization) for an 

annual production capacity 

of: 

MSD 2: Equipment 

quantity (utilization) for an 

annual production capacity 

of: 

1,000 10,000 1,000 10,000 
Milling (1) 1 (13%) 2 1 (31%) 2 

Drilling (1) 1 (14%) 1 1 (20%) 2 

Extrusion 1 (8%) 1 1 (14%) 1 

Quenching 1 (10%) 1 1 (10%) 1 

Saw cutting 1 (7%) 2 1 (9%) 1 

Annealing 1 (28%) 3 1 (28%) 2 

Milling (2) 1 (24%) 3 NA NA 

Drilling (2) 1 (9%) 2 NA NA 

 

For this demonstration case, the sustainability metrics of interest considered to compare 

the two manufacturing system design alternatives, are indicated in Table 5.3. 

 

Table 5.3: Sustainability metrics of interest for discrete part demonstrative case 

Sustainability pillar Metric of interest Unit 
Economic Capital cost/part $ 

Raw material cost/part $ 

Facility cost/part $ 

Labor cost/part $ 

Consumable cost/part $ 

Utility cost/part $ 

Maintenance cost/part $ 

Environmental Energy use kWh 

Waste kg 

% Material conversion  

Global warming potential (GWP) kg CO2 eq 

Social % labor-wage  

 

The seven economic metrics of interest indicated in Table 5.3 constitute Cost of Goods 

Sold (COGS). As indicated in Appendix C1, metrics of interests are a separate class 
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that can be instantiated for each of the UMPs in the manufacturing process flow and 

aggregated as for evaluating the sustainability metrics of the entire manufacturing 

system. This aggregation has been presented as part of the previous reported work of 

adding layers to information models of UMPs. This reduces the effort by subject matter 

experts to focus more on the developing models that can characterize UMPs for their 

specific instantiations in the manufacturing process flow rather than focus on 

developing the sustainability metrics. 

 

Based on the estimates (Table 5.2), the manufacturing system design has been 

represented using IDEF0 diagram for manufacturing system design alternative 1 

(Appendix C2) and manufacturing system design alternative 2 (Appendix C3). 

Representative UMP models instantiations for milling, extrusion, saw cutting, 

quenching, annealing, and drilling have been illustrated in Appendix C4 through 

Appendix C9. The aggregated metrics of interest for two production capacities have 

been detailed in Table 5.4 by composing the UMPs within the manufacturing system 

design alternatives. 
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Table 5.4: Economic, environmental, and social impact analysis results on a per 

part basis for two production capacities 

Sustainability 

pillar 

Description Annual production 

capacity of 1,000 

parts/year 

Annual production 

capacity of 10,000 

parts/year 

MSD 1 MSD 2 MSD 1 MSD 2 
Economic ($) Capital 

cost/part 

4.34 7.32 0.71 1.14 

Raw material 

cost/part 

1.56 1.38 1.56 1.38 

Facility 

cost/part 

2.40 2.40 0.40 0.36 

Labor cost/part 0.29 0.19 0.17 0.11 

Consumable 

cost/part 

0.80 0.60 0.80 0.60 

Utility 

cost/part 

2.05 1.55 2.05 1.55 

Maintenance 

cost/part 

2.53 3.65 0.38 0.55 

Total Cost/part 

($) 

13.97 17.09 6.07 5.69 

Environmental Energy use 

(kWh) 

33.6 25.4 33.6 25.4 

Waste (kg) 0.08 0.06 0.08 0.06 

% Material 

conversion 

91.4% 92.7% 91.4% 92.7% 

Global 

warming 

potential (kg 

CO2e) 

14.45 10.92 14.45 10.92 

Social % labor-wage 2% 1% 3% 2% 

 

Based on the sustainability metrics evaluated for each of the manufacturing system 

design alternatives, it can be seen that at a production capacity of 1,000 parts per year, 

economically and socially, MSD 1 is better compared to MSD 2. From an 

environmental perspective, MSD 2 performs better compared to MSD 1, due to lower 

energy use, reduced waste, and better material conversion. At a production capacity of 

10,000 parts per year, MSD 2 performs better compared to alternative one from an 
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economic and environmental standpoint. At the social level, the margin of difference 

is negligible. 

 

 An Application of the Integrated Framework for Sustainable 

Manufacturing System Design for Continuous Product Manufacturing 

In order to demonstrate the integrated framework to support the design of continuous 

product manufacturing systems, the Haber Bosch process is considered for the 

production of ammonia (Figure 5.8). The Haber Bosch process is typically comprised 

of nitrogen, hydrogen, and ammonia sub-systems. The economic performance of the 

Haber Bosch process is evaluated for a range of production capacities by using 

reference capacities available in the literature for the nitrogen [309], hydrogen [310], 

and ammonia [311] sub-systems.  

 

 

Figure 5.8: Subsystems of the Haber Bosch process for ammonia production 

 

For the Haber Bosch process, the chemical equilibrium is expressed in Eq. 5.7. As 

indicated in Figure 5.8, nitrogen and hydrogen are the input feedstocks at a ratio of 1:3. 

A compressor delivers the nitrogen and hydrogen mix to the reactor at a pressure of 20 
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MPa. Iron (Fe) or aluminum trioxide (Al2O3) are typically used as the catalyst within 

the reactor.  

  (5.7) 

 

The reaction is exothermic with an enthalpy (ΔH) of 92 KJ/mol, making heat a by-

product of the process. The ammonia is then separated in the separator and the residual 

nitrogen and hydrogen mix is fed back to the reactor. The reactor operates at a 

temperature of 700k. Haber Bosch process have been historically energy intensive due 

to chemical operating requirements of high pressure and high temperature. The goals 

of this demonstration case are to understand the influence of production capacity on 

system economic performance, and to highlight the adaptability of the integrated 

framework for design and analysis of continuous production systems.  

 

 

Figure 5.9: Haber Bosch process for ammonia production 
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Manufacturing system design for continuous product manufacturing (e.g., chemical 

production) is driven by customer demand (production volume). Chemical engineers 

must consider reaction kinetics to size the equipment needed for each unit operation. 

The unit operations are defined by the sets of inputs (feedstocks) that undergo 

transformations (e.g., reactions and separations) to generate outputs (products and by-

products) utilizing provided resources (e.g., equipment and labor), which can be 

documented in its product and process information. In order to size major equipment, 

typically vessels (e.g., reactors and separators) and heat transfer (e.g., exchangers and 

mixers) equipment, required flowrates and heat supplied must be determined from the 

chemical design [312]. Once major equipment sizing is finalized, the metrics of 

interest, e.g., cost, environmental impacts, and worker safety, can be estimated for the 

entire system based on historical data and reaction chemistries.  

 

Sizing of heat transfer equipment is based on the area over which heat transfer occurs 

(A), which is dependent on the heat to supplied or removed (Q), heat transfer 

coefficient of the chemical (U), and the needed temperature change (ΔT) (Eq. 5.4). 

Heat transfer coefficients for the majority of the chemical products are readily available 

[313]. To ensure process safety, a design criterion is observed by convention, where 

the rated pressure of the equipment needs to be 1.5 times the expected actual pressure 

of the chemical process. 

  (5.4) 
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Vessels are sized according to volume (V) using the flowrate (Fl) exiting the vessel, 

chemical density (ρ), and residence time of reactants in the vessel (τ), which are 

parameters determined from the chemical design, as shown in Eq. 5.5. 

  (5.5) 

 

For established chemical production technologies, equipment is sized based on a 

scaling law, which is a factor of the referenced production volume (Pref), as detailed in 

Eq. 5.6. 

  (5.6) 

 

The designed size (i.e., area or volume) of the equipment (Sdesign) is dependent on the 

size of the equipment referenced in literature (Sref), the designed production volume 

(Pdesign), the referenced production volume (Pref), and a scaling factor (sf). Scaling 

factors range between 0.4-0.8 depending on the type of the unit operation [312]. 

 

Operating labor requirements are driven by the equipment type (Table 5.5) and, for 

continuous product manufacturing, are calculated based on the number of unit 

operations in the manufacturing process flow [312]. This approach differs from discrete 

part manufacturing, where labor is calculated based on process cycle time for each step 

in the manufacturing process flow. Labor requirements scale nonlinearly with 
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equipment size; typically, a 0.20-0.25 scaling law proportional to the production 

volume is applied. 

 

Table 5.5: Labor requirements per shift for common equipment types used in 

continuous product manufacturing [312] 

Equipment Type Labor/shift 

Continuous Reactor 0.5 

Batch Reactor 1 

Evaporator 0.25 

Separator 0.5 

Crystallizer 0.16 

Dryer 0.5 

Steam plant (100,000 lb./h) 3 

Filter 0.2-0.25 

 

The Haber Bosch process for manufacturing ammonia is represented using IDEF0 in 

Appendix C10. Since Haber Bosch is a well-established process, details related to the 

capital and operating costs have been obtained from literature review. Table 5.6 details 

the operating volume and capital cost for each of these sub-systems, as identified from 

literature. Based on the underlying mass flow rates, 0.82 metric tons of nitrogen and 

2.46 metric tons of hydrogen are required to produce one metric ton of ammonia. For 

estimating the capital cost of the individual sub-systems at desired capacity of 

production, economies of scale are applied based on a 0.6 scaling law [314], as 

described in Eq. 5.8.  

 

  (5.8) 
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Table 5.6 captures reference capital costs for the sub-systems (nitrogen delivery, 

hydrogen delivery, and ammonia production) in the Haber Bosch process from the 

literature. For example, a 300 MT/day sub-system producing nitrogen requires a capital 

investment of $140M. For a design capacity of 100MT/day of ammonia production, 

~82 MT of nitrogen is required for the Haber Bosch process. By applying Eq. 5.8, for 

the designed production capacity, the capital cost of the nitrogen plant is $61M. 

Similarly, based on these reference subsystems, capital cost for the designed capacity 

of 100 MT/day for the ammonia plant is estimated using the 0.6 scaling law (Eq. 5.8).  

 

Table 5.6: Capital cost for ammonia production 

Sub-

System 

Reference 

Production 

Capacity 

(Pref) in 

MT/day 

Reference 

Capital 

Cost ($) 

Capacity 

for 1 MT of 

Ammonia 

(MT) 

Capital cost 

of Ammonia 

for 100 

MT/day 

Reference 

Nitrogen 300 $140M 0.82 $61M [309] 

Hydrogen 50 $68M 2.46 $176M [310] 

Ammonia 4.5 $4.9M 1.00 $32M [311] 

 

Figure 5.10 shows the capital cost for a range of production capacities estimated using 

the approach described above. The drop in the capital cost with increase in capacity 

results from the scaling of equipment cost. Since ammonia is a bulk chemical product, 

operating at lower production volumes is typically not suited because the economics 

are not viable at lower production volumes. 
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Figure 5.10: Capital cost over a range of production capacities 

 

Based on scaling-law estimates, capital cost can be broken into cost categories using 

the Lang factorial model [315], as described in Table 5.7. The application of the Lang 

factorial method is standard practice in the design of chemical production facilities. 

Typically, the mean of the ranges are used for preliminary estimates which account to 

an error of ±10%.  

 

Table 5.7: Capital cost factors for each cost category 

CAPEX Cost Category Factorial Range (% of 

CAPEX) 

Purchased Equipment 15-40% 

Equipment Installation 6-14% 

Instrumentation and Controls 2-8% 

Piping 3-20% 

Electrical Systems 2-10% 

Buildings (ISBL) 3-18% 

Engineering  4-21% 

Contingency 5-15% 
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Similarly, the operating costs for chemical processes were established from literature 

for the Haber Bosch process [316] as shown in Figure 5.11. Typically, the operating 

costs are comprised of raw material, energy, labor, maintenance, and overhead costs. 

Similar to capital costs, operating costs improve with increasing capacity, primarily 

since labor utilization increases with increasing capacity. Additionally, capital 

overhead costs reduce with increasing capacity, which contributes to the relative 

decrease in operating costs. 

 

 

Figure 5.11: Operating cost over a range of production capacities 

 

The application of the integrated information modeling framework to continuous 

product manufacturing is a novel approach for manufacturing system design. The 

framework enables practitioners to account for uncertainty and risk associated with 
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preliminary design to evaluate the investment risk. Additionally, it facilitates future 

integration of environmental and social aspects as part of modeling efforts, which will 

promote sustainable manufacturing. 

 

 Conclusions 

The integrated framework presented herein provides a systematic and structured 

approach that leverages information modeling techniques (e.g., abstraction, 

instantiation, and aggregation) for manufacturing sustainability performance 

assessment. The reuse, extension, and composition of unit processes is unified with a 

manufacturing system design approach to facilitate decision support during 

manufacturing system design. The framework follows a class-based structure, which 

streamlines data handling, sharing, and traceability and provides handles for a multi-

criteria decision making. This integrated approach provides a foundation for repeatable 

and reliable manufacturing system model development. Key findings of this research 

are as follows: 

1. Reuse, extension, and composition of formalized representations provides 

consistent and hierarchical structures for models of unit processes and 

manufacturing systems. The resulting models improve assessment accuracy for 

specific process configurations. Further, the composition of process models 

using linking variables streamlines the assessment of manufacturing systems, 

which addresses the challenge of post hoc performance metric aggregation.  

2. Data and information tracking is facilitated by using information modeling 

techniques that establish relationships, constraints, rules, and functions between 
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entities within the framework (e.g., unit operations, design decision variables, 

design information, sustainability assessment, and metrics of interest). This 

attribute of the framework enables data access, handling, and sharing, which 

are important functions of model-based decision support at the enterprise level. 

3. Flexible adaptability of the product, process, and system design, design 

decision variables, and decision methods is possible since the entities 

underpinning the framework are distinguished by specific functions. Further, 

interdependencies between these elements are established using information 

modeling. 

4. The framework is founded upon object-oriented programming techniques, 

which will enable realization as engineering software tools for manufacturing 

process and system design. 

 

The bottom-up approach and structure of the framework supports decision-makers in 

the early design phase in understanding the influence of design information (customer 

demand, product design requirements, and process information) on the manufacturing 

system design. Thereby, application of the framework can elucidate the drivers and 

barriers that influence the proposed manufacturing system design alternatives. Further, 

its structured approach can support integration of uncertainty quantification, risk 

assessment, and other investment analysis approaches. The framework can be 

expanded to support manufacturing systems optimization, for example by enabling 

real-time data analytics. Real-time data can be used to enhance existing models by 

integrating elements such as equipment state (tool/component wear, process drifts, and 



173 

 

 

excursion) and external factors (temperature, humidity, and other operating conditions) 

that directly impact sustainability performance. Data-driven models would enable 

closed-loop and continuous improvement of manufacturing systems for a potentially 

varying set of objectives.  
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Chapter  6: CONCLUSION 

 

Sustainable development focuses on meeting present demands, while conserving 

resources to meet the needs of future generations. Sustainable thinking has led to 

increased emphasis on sustainable manufacturing over the past few decades. A key part 

of sustainable manufacturing encompasses the design and development of 

manufacturing systems which create products that are economically, environmentally, 

and socially beneficial to society today and in the long run. Sustainable manufacturing 

methodologies are still in developmental stages of research. Existing philosophy has 

emphasized improving the economics of production, which makes it difficult to adapt 

and implement broader sustainability concepts into manufacturing practices. 

Sustainable manufacturing practices have recently gained traction in industry through 

the influence of various stakeholders. However, radical change is required to bring 

sustainable thinking into an industry-wide practice. A key aspect of industrial adoption 

is the need to educate business decision makers on the importance of environmental 

and social dimensions of sustainability, in addition to economics. Another way to 

overcome the challenge of industrial adoption is to demonstrate the long term value of 

sustainable manufacturing practices. To do so, the onus lies on manufacturing 

researchers to develop readily and easily accessible sustainable manufacturing methods 

and tools that enable engineers and other decision makers to realize the long term 

benefits of near term investments. The research reported in this dissertation helps to 

address this need by facilitating sustainable manufacturing system design decision 
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making using an integrated systematic, structured information modeling framework 

and manufacturing system design methodology. 

 

 Summary 

The integrated framework developed herein supports systematic assessment during the 

design of discrete and continuous product manufacturing systems for a variety of 

sustainability performance metrics. A lack of structured and repeatable methods/tools 

for sustainability assessment of manufacturing processes and systems was identified 

from literature review and through an academic/industry workshop, which motivated 

this research. First, a reliable and repeatable method for sustainability assessment was 

presented by using an information modeling-based approach of reuse and extension of 

manufacturing processes. The method was then extended to facilitate composition of 

UMP models in order to characterize the sustainability performance of manufacturing 

systems. The method supports multi-criteria decision making and was demonstrated 

for discrete part manufacturing. Based on this foundational work, an integrated 

framework was conceptualized for manufacturing system design decision making by 

unifying the information modeling techniques of model reuse, extension, and 

composition along with a manufacturing system design approach. This conceptual 

integrated framework was demonstrated for discrete part manufacturing and 

continuous product manufacturing to showcase the applicability of the framework to 

different manufacturing processes and systems. 
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 Conclusions 

Learnings from this research facilitate sustainable manufacturing system design 

decision making as follows: (1) The literature review and workshop guided 

understanding and identifying the current state-of-the-art in sustainable manufacturing 

assessment methods, models, and tools as well as identifying opportunities for future 

research; (2) The standards-based method developed for reuse and extension of UMP 

models provides an adaptable approach for evaluating the sustainability performance 

for instance-specific manufacturing process configurations; (3) Linking variables for a 

number of process classes under the manufacturing process taxonomy were defined 

and characterized by investigating shared context information between candidate 

UMPs for composition, which supports standards-based structural representation of 

manufacturing systems; and (4) Information modeling methods for UMP 

characterization were integrated with manufacturing system design methodology, 

leading to the development of a conceptual sustainable manufacturing decision support 

framework. Detailed findings of the research are provided below. 

 

First, the literature review and the workshop outcomes identified a need for structured 

methods and tools to support process model development and application. Such 

methods/tools should enable model reuse and extension to reduce the need for domain 

expertise and time-intensive validation and rework. This industry need provided the 

motivation for the research underpinning the development of the integrated framework 

presented herein. Additionally, the outcomes of these studies provided further insights 
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into potential future research opportunities that the advanced manufacturing 

community could pursue. 

 

Second, the method developed for reuse and extension of UMP models to represent 

complex process configurations was enabled by using the information modeling 

techniques of abstraction, instantiation, and aggregation. The concept of manufacturing 

process template models for process sub-classes defined by manufacturing process 

taxonomy, as well as the concept of layer models for process sub-systems and auxiliary 

systems, were presented. Identification and description of template models and layer 

models is imperative for reuse and extension of UMP models for a variety of 

instantiations. Information modeling also helps in differentiating the template model 

and layer models for a complex process configuration, thereby enabling layer removal. 

These concepts define a foundational basis for plug-and-play UMP model development 

and application, thereby reducing significant efforts for industrial practitioners and 

analysts. 

 

Third, the investigation of UMP model composition led to the characterization of 

linking variables that can be used for sharing information between UMPs within a 

manufacturing system. The sub-classifications of generic linking variables and specific 

linking variables guides practitioners in establishing process variable relationships for 

their specific application. The method for UMP model composition also provides a 

class-based structure for representing a manufacturing system. The flow of information 

is streamlined and traceable since UMP model composition follows an information 
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modeling-based approach. The hierarchical structure of UMPs within the modeled 

manufacturing system facilitates rapid and robust multi-criteria decision analysis, by 

allowing decision makers to evaluate different system abstractions and a variety of 

performance metrics. 

 

Fourth, the integrated framework provides a structured and systematic approach for 

evaluating manufacturing system design alternatives. The concepts of UMP model 

reuse, extension, and composition aid in evaluation of a manufacturing system design 

for selected metrics of interest. In addition, the manufacturing system design approach 

helps define the structuring of process information models (e.g., number and sequence) 

to evaluate sustainability performance of different system design alternatives. Select 

use cases demonstrate that the information modeling approach can provide a 

streamlined structure for software integration. Evaluation of manufacturing system 

design alternatives with relative ease and rapid turnaround is made possible through 

information modeling approaches that can be realized through a software architecture. 

 

 Research Contribution 

This research advances the state-of-the-art in sustainable manufacturing systems design 

decision making, providing a number of contributions to the research community, as 

detailed below. 

 

Contribution 1: The review of the current state-of-the-art in metrics/indicators, 

methods/tools, and models/algorithms for characterizing manufacturing processes for 
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evaluating sustainability performance provided insights into a number of research 

opportunities. It identified the need for structured, repeatable, verifiable, and reliable 

methods and tools to characterize sustainability performance of manufacturing 

processes and systems to support manufacturing system design decision making. In 

addition, findings from the literature review and workshop identified research 

opportunities for supporting short-, mid-, and long-term needs for smart and sustainable 

manufacturing across the advanced manufacturing domains, including advanced 

manufacturing process development, modeling, and analysis. 

 

Contribution 2: A novel information modeling-based approach was presented for the 

reuse and extension of UMP models, which leverages techniques such as abstraction, 

instantiation, and polymorphism to evaluate the sustainability performance of 

manufacturing processes. The method offers a structured, repeatable, and reliable 

approach for characterizing specific instances of manufacturing process configurations 

of varying complexity. The method provides a foundation for software architecture to 

abstract, instantiate, and extend existing UMP models for engineering analysis and 

decision-making tools for sustainability assessment. 

 

Contribution 3: A novel information modeling-based approach was presented for 

aggregating (composing) UMP models to characterize manufacturing systems for 

sustainability performance evaluation. Composability of UMP models through 

functional block aggregation enables tracking of product and process information flows 

within the modeled manufacturing system. The research explored and characterized the 



180 

 

 

information (linking variables) to be shared between the UMPs, thereby providing 

general guidelines and insights for practitioners conducting sustainability performance 

assessments. In addition, the approach enables data exchange and handling to 

streamline evaluation of the sustainability performance of manufacturing systems. The 

approach can serve as a building block for future software application development. 

 

Contribution 4: An integrated information modeling framework for the support of 

manufacturing system design decision making was conceptualized that builds upon the 

standards-based methods of reuse, extension, and composition of UMPs for 

characterizing sustainability performance of manufacturing systems. The framework 

offers a flexible and adaptable approach for manufacturing system design decision 

support by combining information modeling techniques with a manufacturing system 

design approach. The standard-based framework will help reduce informal efforts of 

sustainable manufacturing system design. The framework is agnostic of the type of 

manufacturing and has been structured for software implementation to aid 

manufacturing system design, as demonstrated for discrete part manufacturing and 

continuous production. 

 

 Opportunities for Future Research 

Several opportunities for future research arise from this work that would be of interest 

to the sustainable manufacturing community. 
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Opportunity 1: The integrated framework developed in this research provides an 

approach for sustainable manufacturing system design decision making. While the 

framework is demonstrated using multi-criteria decision analysis, its application can be 

extended for optimizing sustainability performance of manufacturing systems. Since 

the framework offers a structure for data handling that supports manufacturing system 

modeling, integration of real-time data and analytics in derivative engineering software 

tools will enable closed-loop optimization and control of system performance. This 

manufacturing system control can be achieved through software that is built upon the 

integrated framework, and takes in process data as model inputs and feeds these inputs 

to an optimization engine. Outputs of optimization would then inform the control 

system of required changes to process settings.  

 

Opportunity 2: Manufacturing system design alternatives are driven by dynamic 

changes in customer requirements, functional requirements, and engineering 

requirements (e.g., product design, customer demand, and supply chain partners). 

While a conceptual framework has been developed in this research to accommodate 

this manufacturing system design flexibility, there is a paucity of analysis tools to 

support engineers in comprehensively evaluating manufacturing system design 

decision variables. This design decision support can be realized through the 

development of a software application that leverages machine learning-based 

evaluation techniques (e.g., decision-tree, rulefit, and neural network analysis) for 

evaluating manufacturing system design alternatives and suggesting the best alternative 

for a set of desired customer, design, and engineering requirements.  



182 

 

 

 

Opportunity 3: The framework developed in this research integrates product design 

information, manufacturing design decision variables, and manufacturing process 

information using information modeling techniques. This data exists as separate 

information sources absent of common semantics, which would necessitate a variety of 

communication protocols. Future work can develop an ontology to generate common 

semantics that establish the definitions, relationships, constraints, and data exchanges 

between the interdependent aspects of the conceptual framework. These ontologies can 

be leveraged in the design of a manufacturing system to provide rules, relationships, 

and constraints that define operating limits, process conditions, and scheduling. With 

further development, these ontologies would be able to support automated process 

control. 

 

The research herein enables design decision support for sustainable manufacturing. The 

scope could be further expanded to include other important phases of the product life 

cycle, such as raw material extraction and processing, product use, and product end-of-

life management (e.g., reuse, remanufacturing, and waste management), for more 

comprehensive sustainability assessment and decision making. The engineering 

research community can leverage the learnings from this work to formulate future 

collaborative efforts that will address global sustainable development goals. 
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Appendix A1: Manual milling model based on the ASTM E3012-20 standard 
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Appendix A2: XML representation of a manual milling model 

<UMP name=“Manual Milling” type=“Material Removal” description=“Manual milling model”> 
 
//INPUT SECTION 

<Input name=“Bar stock” description= “Type of workpiece input to the process” 
category=“”type=“Workpiece” unit=“” / > 
<Input name=“Electrical Energy” description=“Input electrical energy to the process” 
category=“”type=“Energy” unit=“kWh” / > 

 
//PRODUCT AND PROCESS INFORMATION SECTION 

<ProductProcessInformation name=“Cutting force” description=“Force on the cutting tool” 
category=“Process” value=“” unit=“N” / > 
<ProductProcessInformation name=“Cutting speed” description=“Tangential speed of cut” 
category=“Process” value=“” unit=“mm/s” / > 
<ProductProcessInformation name=“Feed” description=“Input feed of tool” category=“Process” 
value=“” unit=“mm/s” / > 
<ProductProcessInformation name=“Depth of cut” description=“Axial depth of cut per pass” 
category=“Process” value=“” unit=“mm” / > 
<ProductProcessInformation name=“Cutting time” description=“Total cutting time” 
category=“Process” value=“” unit=“s” / > 
<ProductProcessInformation name=“Initial volume” description=“Volume of workpiece before 
operation” category=“Product” value=“” unit=“mm^3” / > 
<ProductProcessInformation name=“Final volume” description=“Volume of workpiece after 
operation” category=“Product” value=“” unit=“mm^3” / > 
<ProductProcessInformation name=“Efficiency of motor” description=“Efficiency of motor” 
category=“Process” value=“” unit=“” / > 
<ProductProcessInformation name=“Volume removed” description=“Total volume of material removed” 
category=“Product” value=“” unit=“mm^3” / > 
<ProductProcessInformation name=“Material removal rate” description=“Rate of material removal” 
category=“Product” value=“” unit=“mm^3/s” / > 
<ProductProcessInformation name=“Tool wear rate” description=“Rate of tool wear” 
category=“Process” value=“” unit=“ mm^3/s” / > 
<ProductProcessInformation name=“Cutting power” description=“Power required to cut material” 
category=“Process” value=“” unit=“kW” / > 
<ProductProcessInformation name=“Motor/spindle power” description=“Power measured at the 
motor/spindle” category=“Process” value=“” unit=“kW” / > 
<ProductProcessInformation name=“Generation rate of CO2” description=“Mass of CO2 produced per 
unit of energy use” category=“Process” value=“” unit=“kg CO2/kWh” / > 
<ProductProcessInformation name=“Generation rate of CH4” description=“CH4 produced in equivalent 
mass of CO2 per unit of energy use” category=“Process” value=“” unit=“kg CO2e/kWh” / > 
<ProductProcessInformation name=“Generation rate of NO2” description=“NO2 produced in equivalent 
mass of CO2 per unit of energy use” category=“Process”value=“” unit=“kg CO2e/kWh” / > 
<ProductProcessInformation name=“Cutting energy” description=“Energy required to cut the part” 
category=“Process” value=“” unit=“kJ” / > 
<ProductProcessInformation name=“Energy onsite” description=“Consumed energy generated on site” 
category=“Process” value=“” unit=“kJ” / > 
<ProductProcessInformation name=“Energy offsite” description=“Consumed energy generated on 
site” category=“Process” value=“” unit=“kJ” / > 
<ProductProcessInformation name=“Total energy consumption” description=“Total energy 
consumption” category=“Process” value=“” unit=“kJ” / > 
<ProductProcessInformation name=“Unit cost of energy” description=“Cost of 1kWh of energy” 
category=“Process” value=“” unit=“$/kWh” / > 
<ProductProcessInformation name=“Total cost of energy” description=“Total cost of energy” 
category=“Process” value=“” unit=“$” / > 
<ProductProcessInformation name=“Mass of GHG emissions” description=“Greenhouse gas emissions 
in equivalent mass of CO2” category=“Process” value=“”unit=“kg CO2e” / > 
 
//TRANSFORMATION SECTION 

<Transformation> 
  <Equation description=“Volume removed” set=“”>V_r = V_i - V_f</Equation> 
  <Equation description=“Material removal rate” set=“”>MRR = v_c * f * d</Equation> 
  <Equation description=“Cutting power” set=“”>P_cut= F_c * V_c</Equation> 
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  <Equation description=“Motor power” set=“”>P_m= P_cut / Eff</Equation> 
  <Equation description=“Cutting energy” set=“”>E_c = P_cut * T_c</Equation> 
  <Equation description=“Onsite energy” set=“”>E_on = P_m * T_c</Equation> 
  <Equation description=“Total energy consumption” set=“”>E_T = E_on + E_off</Equation> 
  <Equation description=“Total cost of energy” set=“”>C_e = E_T * c_e</Equation> 
  <Equation description=“GHG emissions” set=“”>GHG = E_T * (rCO2 + rCH4 + rNO2)</Equation> 
</Transformation> 
 
//RESOURCE SECTION 

<Resource name=“Software” description=“Software used for computer control” value=“Linux CNC” /> 
<Resource name=“Machine ID” description=“ID of the machine that is being used” value=“MM01” /> 
<Resource name=“Operator” description=“Name of operator” value=“John Doe” /> 
 
//OUTPUT SECTION 

<Output name=“Finished parts” description=“Number of workpieces produced in an hour” category=“” 
type=“workpiece” unit=“” / > 
<Output name=“Waste” description=“Total waste – Machining chips” category=“Waste” 
type=“workpiece” unit=“kg”/ > 
 
</UMP> 
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Appendix A3: Model of a two-and-a-half axis mill with lubrication system 

extended from a manual milling model (extensions in bold blue text) 
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Appendix A4: XML representation of a two-and-a-half axis mill with lubrication 

system 

<UMP name=“Two-Axis Milling with Lubrication System” type=“Material Removal” description=“Two 
and a half axis milling with lubrication system”> 
 
//INPUT SECTION  

<Input name=“Bar stock” description= “Type of workpiece input to the process” 
category=“”type=“Workpiece” unit=“” / > 
<Input name=“Electrical energy” description=“Input electrical energy to the process” 
category=“”type=“Energy” unit=“kWh” / > 
 
//PRODUCT AND PROCESS INFORMATION SECTION 
<ProductProcessInformation name=“Cutting force” description=“Force on the cutting tool” 
category=“Process” value=“” unit=“N” / > 
<ProductProcessInformation name=“Cutting speed” description=“Tangential speed of cut” 
category=“Process” value=“” unit=“mm/s” / > 
<ProductProcessInformation name=“Feed” description=“Input feed of tool” category=“Process” 
value=“” unit=“mm/s” / > 
<ProductProcessInformation name=“Depth of cut” description=“Axial depth of cut per pass” 
category=“Process” value=“” unit=“mm” / > 
<ProductProcessInformation name=“Cutting time” description=“Total cutting time” 
category=“Process” value=“” unit=“s” / > 
<ProductProcessInformation name=“Initial volume” description=“Volume of workpiece before 
operation” category=“Product” value=“” unit=“mm^3” / > 
<ProductProcessInformation name=“Final volume” description=“Volume of workpiece after 
operation” category=“Product” value=“” unit=“mm^3” / > 
<ProductProcessInformation name=“Efficiency of motor” description=“Efficiency of motor” 
category=“Process” value=“” unit=“” / > 
<ProductProcessInformation name=“Volume removed” description=“Total volume of material removed” 
category=“Product” value=“” unit=“mm^3” / > 
<ProductProcessInformation name=“Material removal rate” description=“Rate of material removal” 
category=“Product” value=“” unit=“mm^3/s” / > 
<ProductProcessInformation name=“Tool wear rate” description=“Rate of tool wear” 
category=“Process” value=“” unit=“ mm^3/s” / > 
<ProductProcessInformation name=“Cutting power” description=“Power required to cut material” 
category=“Process” value=“” unit=“kW” / > 
<ProductProcessInformation name=“Motor/spindle power” description=“Power measured at the 
motor/spindle” category=“Process” value=“” unit=“kW” / > 
<ProductProcessInformation name=“Generation rate of NO2” description=“NO2 produced in equivalent 
mass of CO2 per unit of energy use” category=“Process”value=“” unit=“kg CO2e/kWh” / > 
<ProductProcessInformation name=“Cutting energy” description=“Energy required to cut the part” 
category=“Process” value=“” unit=“kJ” / > 
<ProductProcessInformation name=“Energy onsite” description=“Consumed energy generated on site” 
category=“Process” value=“” unit=“kJ” / > 
<ProductProcessInformation name=“Energy offsite” description=“Consumed energy generated on 
site” category=“Process” value=“” unit=“kJ” / > 
<ProductProcessInformation name=“Total energy consumption” description=“Total energy 
consumption” category=“Process” value=“” unit=“kJ” / > 
<ProductProcessInformation name=“Unit cost of energy” description=“Cost of 1kWh of energy” 
category=“Process” value=“” unit=“$/kWh” / > 
<ProductProcessInformation name=“Total cost of energy” description=“Total cost of energy” 
category=“Process” value=“” unit=“$” / > 
<ProductProcessInformation name=“Mass of GHG emissions” description=“Greenhouse gas emissions 
in equivalent mass of CO2” category=“Process” value=“”unit=“kg CO2e” / > 
<ProductProcessInformation name=“Coolant flow rate” description=“Volumetric flow rate of 
coolant” category=“Process” value=“” unit=“L/s” / > 
<ProductProcessInformation name=“Volume of coolant” description=“Volume of coolant used” 
category=“Process” value=“” unit=“L” / > 
<ProductProcessInformation name=“Basic power” description=“Power to setup and idle” 
category=“Process” value=“” unit=“kW” / > 
<ProductProcessInformation name=“Basic time” description=“Time to setup and idle” 
category=“Process” value=“” unit=“s” / > 
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<ProductProcessInformation name=“Table motor power” description=“Power to table motor” 
category=“Process” value=“” unit=“kW” / > 
<ProductProcessInformation name=“Coolant motor power” description=“Coolant motor power” 
category=“Process” value=“” unit=“kW” / > 
<ProductProcessInformation name=“Basic energy” description=“Energy to setup and idle” 
category=“Process” value=“” unit=“kJ” / > 
<ProductProcessInformation name=“Ready energy” description=“Energy for cutting” 
category=“Process” value=“” unit=“kJ” / > 
 
//TRANSFORMATION SECTION 
<Transformation> 
 <Equation description=“Volume removed” set=“”>V_r = V_i - V_f</Equation> 
 <Equation description=“Material removal rate” set=“”>MRR = v_c * f * d</Equation> 
 <Equation description=“Volume of coolant” set=“”>V_cool = V_flow_rate * T_c</Equation> 
 <Equation description=“Motor power” set=“”>P_m= P_cut / Eff</Equation> 
 <Equation description=“Basic energy” set=“”>E_Basic = P_b * T_b </Equation> 
 <Equation description=“Ready energy” set=“”>E_Ready = (P_t + P_c) * T_c </Equation> 
 <Equation description=“Volume of coolant” set=“”>V_cool = V̇_c * T_c</Equation> 
 <Equation description=“Onsite energy” set=“”>E_on = E_Basic + E_Ready</Equation> 
 <Equation description=“Total energy consumption” set=“”>E_T = E_on + E_off</Equation> 
 <Equation description=“Total cost of energy” set=“”>C_e = E_T * c_e</Equation> 
 <Equation description=“GHG emissions” set=“”>GHG = E_T * (rCO2 + rCH4 + rNO2)</Equation> 
 
</Transformation> 
 
//RESOURCE SECTION from TABLE 1 
<Resource name=“Software” description=“Software used for computer control” value=“Linux CNC” /> 
<Resource name=“Machine ID” description=“ID of the machine that is being used” value=“MM01” /> 
<Resource name=“Operator” description=“Name of operator” value=“John Doe” /> 
 
//OUTPUT SECTION 
<Output name=“Finished parts” description=“Number of workpieces produced in an hour” category=“” 
type=“workpiece” unit=“” / > 
<Output name=“Waste” description=“ Total waste – Machining chips” category=“Waste” 
type=“workpiece” unit=“kg” / > 
 
</UMP> 
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Appendix A5: IDEF0 representation of two and a half axis mill with lubrication 

system 
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Appendix B1: Milling UMP model based on the ASTM E3012-20 standard 
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Appendix B2: Extrusion UMP model based on the ASTM E3012-20 standard 
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Appendix B3: Annealing UMP model based on the ASTM E3012-20 standard 
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Appendix B4: Graphical representation of a composed system (extrusion to 

milling to annealing) 
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Appendix B5: IDEF0 representation of a composed system (extrusion to milling 

to annealing) 
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Appendix B6: XML representation of a composed system (extrusion-milling-

annealing) 

<UMP name=“Composed System” type=“Composition” description=“Extrusion_Milling_Annealing”> 
 

//INPUT SECTION 

<Input name=“Raw Material” description= “Type of workpiece input to the system” 
category=“”type=“Workpiece” unit=“”/> 
<Input name=“Electrical Energy_extrusion” description=“Input electrical energy for extrusion” 
category=“”type=“Energy” unit=“kWh”/> 
<Input name=“Electrical Energy_milling” description=“Input electrical energy for milling” 
category=“”type=“Energy” unit=“kWh”/> 
<Input name=“Electrical Energy_Annealing” description=“Input electrical energy for extrusion” 
category=“”type=“Energy” unit=“kWh”/> 
<Input name=“Natural gas” description=“Natural gas” category=“”type=“Energy” unit=“kg”/> 
 

//LINKING VARIABLES SECTION 

<Extrusion to Annealing> 
<LinkingVariable name=“Density” description=“Material Density” category=“Process”value=“” 
unit=“kg.mm^3”/> 
<Linking variable name=“Yield Strength” description=“Yield Strength final” 
category=“Process”value=“” unit=“N/m^3”/> 
</Extrusion to Annealing> 
 

<Extrusion to Milling> 
<LinkingVariable name=“Density” description=“Material Density” category=“Process”value=“” 
unit=“kg.mm^3”/> 
<Linking variable name=“Extruded Length” description=“Yield Strength final” 
category=“Process”value=“” unit=“N/m^3”/> 
<Linking variable name=“Extruded Width” description=“Yield Strength final” 
category=“Process”value=“” unit=“N/m^3”/> 
<Linking variable name=“Extruded Height” description=“Yield Strength final” 
category=“Process”value=“” unit=“N/m^3”/> 
</Extrusion to Milling> 
 

<Milling to Annealing> 
<LinkingVariable name=“Density” description=“Material Density” category=“Process”value=“” 
unit=“kg.mm^3”/> 
<Linking variable name=“Milled Length” description=“Yield Strength final” 
category=“Process”value=“” unit=“m”/> 
<Linking variable name=“Milled Width” description=“Yield Strength final” 
category=“Process”value=“” unit=“m”/> 
<Linking variable name=“Milled Height” description=“Yield Strength final” 
category=“Process”value=“” unit=“m”/> 
</Milling to Annealing> 
 

//PRODUCT AND PROCESS INFORMATION SECTION 
//THIS SECTION WILL CONTAIN ALL THE PRODUCT AND PROCESS INFORMATION (PPI) OF EACH INDIVIDUAL 
UMP 
<Extrusion PPI> 
</Extrusion PPI>  
<Milling PPI> 
</Milling PPI> 
<Annealing PPI> 
</Annealing PPI> 
 

//TRANSFORMATION SECTION 

//THIS SECTION WILL CONTAIN ALL THE TRANSFORMATION OF EACH INDIVIDUAL UMP 
<Extrusion Transformation> 
</Extrusion Transformation>  
<Milling Transformation> 
</Milling Transformation> 
<Annealing Transformation> 
</Annealing Transformation> 
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//RESOURCE SECTION 

//THIS SECTION WILL CONTAIN ALL THE RESOURCE OF EACH INDIVIDUAL UMP 
<Extrusion Resource> 
</Extrusion Resource>  
<Milling Resource> 
</Milling Resource> 
<Annealing Resource> 
</Annealing Resource> 
 

//OUTPUT SECTION 

//THIS SECTION WILL CONTAIN ALL THE OUTPUT OF EACH INDIVIDUAL UMP 
<Output name=“Finished Part” description=“Number of workpieces produced in an hour” 
category=“”type=“workpiece” unit=“”/> 
<Output name=“Waste” description=“Total waste of the system” category=“Waste”type=“workpiece” 
unit=“kg”/> 
</UMP> 
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Appendix B7: Saw cutting UMP model based on the ASTM E3012-20 standard 
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Appendix B8: Quenching UMP model based on the ASTM E3012-20 standard 
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Appendix C1: Conceptual definition of the integrated framework using UML 
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Appendix C2: Functional model of manufacturing system design alternative 1  
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Appendix C3: Functional model of manufacturing system design alternative 2  
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Appendix C4: Milling UMP model based on ASTM E3012-20 standard 
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Appendix C5: Extrusion UMP model based on ASTM E3012-20 standard 
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Appendix C6: Saw Cutting UMP model based on ASTM E3012-20 standard 
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Appendix C7: Quenching UMP model based on ASTM E3012-20 standard 
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Appendix C8: Annealing UMP model based on ASTM E3012-20 standard 
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Appendix C9: Drilling UMP model based on ASTM E3012-20 standard 
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Appendix C10: Functional model of Haber Bosch Process (1 MT/day capacity) 

 


