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CHAPTER 1. INTRODUCTION 
 

We live in what scientists dub “the information age” [27], an era marked by easy 

and cheap access to abundant information, such as via public libraries and internet. 

While such abundant and easy-to-access information has made information-centric 

tasks, such as research and news broadcasting, easier for people in some ways, it also 

brings with it a fair share of difficulties, perhaps the most important one being tedious 

information seeking.  

The presence of too much information (or “information overload” [28]), the 

intermingling of valuable information with potentially irrelevant and redundant 

information (or “information pollution” [29]) and the fact that related information can 

be scattered across different sources [67], make information seeking difficult, costing 

both time and cognitive effort [8, 85]. 

As if these difficulties were not enough, information seeking can become even 

harder in some scenarios, such as when the information is in an unfamiliar language, 

or for visually-impaired people, or when there are multiple copies or variants of the 

same information. The latter is the subject of this dissertation.  

In computer-supported creative tasks such as writing, graphic design or 

programming, people often work in an exploratory and incremental manner—trying 

out various options, copying and modifying a previous solution to create a new 

solution, and comparing alternatives. Along the way, they keep track of the solutions 

they explore, along with some intermediate steps, resulting in multiple variants of the 

same artifact (e.g., several draft manuscripts of an essay, different possible visual 

designs for a flyer, different UI options for a website). They then revisit those variants 

to reuse bits and pieces, to compare solutions or to backtrack when things go wrong [6, 

7, 93, 99]. However, there can be too many variants and the variants can be very, very 

similar, thereby demanding additional cognitive efforts to discern the differences 

between them.  

Researchers have recognized such potential difficulties in the presence of variants 

and have attempted to address them. Some researchers have conducted empirical 

investigations into the needs of people in various domains involving variants [6, 23, 
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48, 93], while others have, based on these empirical investigations, gone on to build 

variant-support tools, such as Pipes Plumber for Yahoo! Pipes [40], D.note for  web 

designs [23], ParallelPies and SideViews for images [94, 95] and Yestercode for 

LabVIEW visual programs [24]. However, these prior studies and tool evaluations are 

a-theoretic. 

The lack of good theories presents major limitations for us as tool builders. First, 

without the theoretical explanations for why a phenomenon occurs (and occurs the way 

it does), we as tool builders risk addressing the symptoms of a specific problem as they 

manifest in a specific situation, instead of addressing the underlying causes of the 

problem. Second, without the abstractions of a theory and its explanations for why a 

solution will work, our ability to systematically generalize and reuse solutions from 

one domain to other domains is limited.  Finally, theories are valuable for tool design 

and evaluation: because a theory can explain why a phenomenon happens, it can also 

reason in the opposite direction to predict what will happen in a given situation; this 

predictive power can inform the design and evaluation of tools (e.g., how will a person 

use a tool in a given situation? will a tool solve a problem in a given situation or not, 

and why?) even before the tool is actually implemented. [35]. 

Therefore, in this dissertation, we seek the theoretical foundations for how people 

seek information among variants. Specifically, we evaluate the applicability of an 

existing theory, namely Information Foraging Theory, to people’s information seeking 

among variants.  

 Information Foraging Theory (IFT) is a theory of people’s information-seeking 

behavior: it posits that people seek information similar to how wild animals forage for 

their prey in the wild [69]. In the past, IFT has explained people’s information seeking 

behaviors in document collections, web, software engineering and information 

visualizations. It has also informed the practical design and evaluation of various tools 

in these domains [76], including generic design principles (e.g., for web design), thus 

exemplifying the explanatory, predictive and the generalization capabilities of a good 

theory described in the previous paragraphs. Encouraged by these prior successes, in 

this dissertation, we explore the applicability of IFT in variations situations. 
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Thus, the central thesis of this dissertation is:  

IFT can explain and predict people’s information seeking in the presence of 

variants. 

 

In investigating this thesis statement, our work contributes: 1) a theory of variations 

foraging, 2) empirically-evaluated IFT computational models that accounts for 

variants, 3) an empirically-evaluated IFT computational models that accounts for 

hierarchically-organized information and 4) an empirically-evaluated IFT 

computational model that accounts for non-textual information.  

  



 

 

4 

CHAPTER 2. BACKGROUND AND RELATED WORK 
 

Related literature for variations foraging is in two areas, namely variations and 

information foraging theory. 

2.1 Variations 
We use the term variations to refer to the phenomenon when, for the same artifact, 

multiple related copies exist together; each individual copy is a variant. Prior work has 

recognized two kinds of variants in digital artifacts: 1) serial versions capture the state 

of an artifact at various points during its incremental development and 2) parallel 

alternatives capture various alternative solutions or implementations for a problem 

[93]. 

Prior studies (e.g., [32, 93]) have revealed that, across domains, people keep track 

of both serial revisions and parallel alternatives by manually saving copies of their files. 

However, such file-based provides limited affordances for comparing variants or for 

editing multiple variants at once. To address these limitations, researchers have 

proposed various solutions to support managing and working with both serial and 

parallel variants. 

 
2.1.1 Supporting serial revisions 

A long history of versioning digital artifacts is in the domain of software 

engineering, where developers incrementally develop software—adding new features, 

fixing bugs and enhancing its UI to be released as part of a newer version. In such 

incremental development, developers keep track their software release versions; this is 

commonly accomplished via a numbering scheme (e.g., Mac OSX 10.10) or a 

model/year combinations (Windows 2000) for naming the versions [88]. 

To enable such incremental development (e.g., to fix a bug in a particular release), 

developers also keep track of revisions to their source code. For this, they use a class 

of tools called version control systems (e.g., Git, SVN).   

In a version control system, each individual developer can save or “commit” the 

latest changes to the project’s code; thus, the version control system captures the entire 

development history of the project. Developers can access the version control 
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repository to retrieve and integrate each other’s latest code, compare revisions or even 

revert back to a previous version. 

Over the years, researchers and tool builders have built different paradigms of 

version control tools. The first version control system, namely Source Code Control 

System (SCCS), was primarily command-line based [81] and captured the changes to 

text in the source-code files. Over the years, other text-based version control tools (e.g., 

RVS [96], Git [17], Subversion [91], CVS [13], Mercurial [49]) have introduced GUI 

tools for viewing and committing changes (e.g., offer graphical interfaces). Other tools, 

such as Smart Differencer [86], capture differences in terms of abstract and concrete 

syntax trees, instead of plain text. Most of these modern version control tools also 

integrate with other software development tools, such as the developers’ IDE and the 

project’s bug repository. 

However, all of these VCS tools suffer a major limitation, namely that developers 

have to manually decide when and what changes to commit. Such manual control is 

useful in some situations, such as when a programmer might not want to commit 

incomplete or buggy code. However, in other situations, manual commits mean that 

developers might forget to save their changes and might end up with no way of getting 

back to an earlier state of their program (e.g., to backtrack when things go wrong). 

To address this gap, state-of-the-art programming environments (e.g., JetBrains 

IDEs, Eclipse) automatically keep track of the code revisions an individual programmer 

makes in the IDE, even before the programmer has committed the changes to version 

control. In particular, the IDE creates a new revision of the program at specific save 

points, namely every time a programmer saves, compiles or runs the program or the 

test suite. A programmer can access these local revisions and compare and revert to an 

earlier revision, just as with version control revisions. However, unlike version control 

history, the local history is “local” to the developer (e.g., does not have changes by 

other developers) and is localized in time (e.g., up to one week). 

Another tool that keeps track of local history of a programmer is Azurite [100]. 

Azurite automatically records, at the keystroke level, the fine-grained edits made by a 

programmer in an IDE. The tool then presents the edit history of the programmer over 
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a timeline view. A programmer can navigate through the timeline, compare the 

program across different points on the timeline and selectively undo (or restore) 

specific code snippets. Although the primary intent of Azurite is to support 

backtracking (or selective undo), Azurite also serves as a visualization tool for the local 

history of programs. 

In non-programming domains, people keep track of revisions to their artifacts in 

several ways. Sometimes, people use different file names (e.g., suffix 1,2,3 and so on 

to file names) to keep track of revisions to artifacts. Other times, they use version 

control systems: although version control tools were developed for versioning program 

code, people use them to keep track of revisions to non-code artifacts also (e.g., text 

documents, scientific experiment notes). Some people also use special-purpose 

versioning tools. For example, tools such as Kactus [36] and Versions [97] bring 

version control tools for designers to version their graphic designs. Finally, tools in 

various domains (e.g., Google Docs [19], Microsoft Office suite [52], MacOS Time 

Machine [92]) provide features that allow people to automatically keep track of 

revisions to artifacts. 

Researchers have also built tools to keep track of the provenance of artifacts, as 

they get cloned and revised over several iterations. Kuttal et al. built Pipes Plumber, a 

versioning tool for Yahoo! Pipes mashup programming environment, that keeps track 

of the clone history as well as the post-cloning revisions of mashup programs [40]. 

Similarly, Jensen et al. built TaskTracer that keeps track of the provenance of files and 

folders created with the Microsoft Office suite [34]. Even other researchers have 

proposed that provenance information be persisted as part of file systems, to better 

support recall, search capabilities as well as to support versioning [53]. 

As mentioned earlier, most of these tools are a-theoretic and derive from empirical 

observations. Only recently, we have begun exploring the application of information 

foraging theory to the design of version control systems [79]. 

Whereas the above tools focus on keeping track of serial variants, where changes 

to one version leads to a new version in a linear manner, people sometimes end up with 

parallel alternatives when working in an exploratory (e.g., to try out different menu 
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placement options, to tune hyperparameters for a machine learning program). As we 

discuss next, several tools exist that focus on supporting such parallel alternatives also. 

2.1.2 Supporting parallel alternatives 
In the programming domain, version control tools provide a feature called 

branching, where a programmer could branch from a version in several parallel ways. 

This branching comes in handy when developers want to try out different alternative 

implementations. Similarly, software teams also use branches to manage multiple 

editions of their software such as in software product lines [12]: these include managing 

the source code for different customized versions for different clients, or for different 

editions (e.g., free community vs. paid commercial versions). 

However, branches can be heavy-weight in exploratory situations, where a 

programmer wants to explore at a “fine-grained” level (e.g., one sorting algorithm vs. 

another, one font vs. another). First, every time a person wants to explore a new option 

(e.g., try a new font size), s/he has to create a new branch and then commit the changes 

for that branch before exploring a second option. Second, since branching is manual, a 

person might forget to create a branch every time s/he wants to explore an option. Third, 

a person can work with only one branch at a time; therefore, comparing multiple 

branches or editing multiple branches of code is not easy. Finally, both versioning and 

the branches in version control systems deal with the entire program. In contrast, 

explorations can be local (e.g., only for one method) and do not warrant a new branch 

for the entire program / artifact [6, 33, 51].  

Researchers have worked to solve these gaps and proposed various tools and 

techniques over the last decade. However, these tools are mostly based on empirical 

evidence and not  based on theory. For example, in scientific programming, scientists 

conduct different experimental trials, resulting in different variants of the same 

experiment. To keep track of these variants to their experiments, scientists need to keep 

track of the changes to code (e.g., configurations and algorithms), inputs and outputs, 

intermediate results and the infrastructure (e.g., library versions). To support these 

activities, Guo et al. built IncPy and Burrito [20, 21]. IncPy is a custom python 

interpreter that keeps track of the data and code execution for each experimental 

variant; in turn, this data facilitates reuse of intermediate results when a different 
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variant of the experiment is run in the future. Burrito automatically keeps track of all 

the files (e.g., code, input, output, input results) related to each experimental variant 

and allows a scientist to annotate each trial with additional information and insights. 

The scientist can then view, via a graphical interface, the progression of their 

experiments together with the relevant copies of their input, results and annotations. 

Guo et al. also built a bundler, namely CDE, that bundles specific variants of an 

experiment (including the code, input, output and infrastructure) to be shared with other 

scientists [21]. 

Just like in scientific experiments, data scientists working on machine learning 

programs also need to keep track of the different variants, namely to the algorithm, the 

parameters and hyperparameters and to the input and output files, before deciding 

which machine learning model to use for their application.  However, studies have 

revealed that even expert programmers struggle to manage these variants [25, 32].  To 

address this problem, Kery et al. built Variolite to allow data scientists to experiment 

with their code within programming IDEs [32]. With Variolite, a programmer can 

select a code snippet (e.g., method) to create one or more variants for that specific 

snippet. (In contrast, Burrito creates a new variant for the entire program). A 

programmer can then plug in one variant instead of another, or even nest variants (i.e., 

create different variants for a smaller snippet within a variant for a larger snippet). 

Variolite also allows a program to label their variants, so that a programmer can easily 

find the variant at a later time. 

In contrast to Variolite where a programmer has to manually create a variant, 

Mikami et al. built a micro versioning tool, where a programmer can simply edit the 

code snippet without stopping to create a new variant explicitly [51]. The tool 

automatically records the edits and lists them as alternatives for that code snippet. The 

tool also groups changes made to related, but disconnected, code fragments into one 

candidate alternative. (This is achieved via hierarchical variants in Variolite). Both 

Kery’s Variolite and Mikami’s micro versioning tool also allow programmers to 

compare variants and to backtrack specific changes. 

A surprising scenario involving parallel variants is in online programming courses. 

For programming assignments, different students might turn in different solutions, or 
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different implementations of the same solution, resulting in different variants of the 

same program. In grading such submissions, a TA might want to view a stack of similar 

solutions and provide similar feedback to them at once, even when there might be some 

differences (e.g., different variable names). To support such manipulations, Glassman 

et al. built Overcode [18] that uses a combination of static analyses and program traces 

to cluster similar program variants into stacks. A grader can use OverCode to look at a 

single representative submission for each stack of similar submissions and provide the 

same grade and/or feedback for the entire (without having to grade multiple identical 

solutions). 

In non-programming domains, variants mostly occur in exploring alternatives. 

Studies in various domains, such as web design [58], UI design [54, 93], diagrams [47], 

art [93], image manipulation [93], programming [6, 84], and even writing [46], have 

revealed the need for tools to support exploration of new alternatives. Following 

empirical insights from these studies, researchers have attempted to support 

exploratory variants in several ways. 

Two researchers, Terry et al. and Lunzer et al. have independently proposed generic 

techniques for supporting variants to be instantiated in creativity support tools. Both 

Terry et al.’s ParallelPaths [95] and Lunzer et al.’s subjunctive interfaces [46] allow 

users to create variants of an artifact, embed the variants together with the main artifact, 

facilitate easy comparison of multiple variants and allow users to manipulate multiple 

variants at the same time. However, there are two key differences between the two 

approaches. First, in ParallelPaths, a user first explores an option and saves the 

exploration as a variant only when s/he is interested in the outcome of the exploration; 

in contrast, in subjunctive interfaces, the user first creates a variant before exploration 

and then deletes the variant if the outcome is not satisfactory. Second, whereas 

subjunctive interfaces list all variants allowing users to view one variant at a time, 

ParallelPies (an instantiation of ParallelPaths) groups related variants, allowing users 

to view combinations of variants. For example, in Figure 2.1, the three segments of the 

image come from three different variants shown on the right; a user can move the 

marker to compare and view different mashups of the three variants. 
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Figure 2.1. ParallelPies interface. ParallelPies groups related variants into a list 

(shown on the right). A user can create different mashups of these related variants by 

moving the marker shown at the center of the image. (Figure source: [95]). 

Unlike ParallelPaths and subjunctive interfaces that are generic techniques to be 

instantiated in specific tools, researchers have also built domain-specific tools for 

exploring alternatives. Similar to the features in ParallelPies and subjunctive interfaces, 

Hartmann et al. built Juxtapose that allows UI designers to explore and manipulate 

multiple alternatives at once [22]. Terry et al. built SideViews, a tool that allows 

graphic designers to preview and compare the effects of applying different commands 

on an image [94]. Kumar et al.’s Bricolage focuses on exploring alternatives for 

websites: a web designer can provide as input two web pages and Bricolage creates a 

new collage by extracting the layout of one webpage to be applied to the other webpage 

[38]. 

Despite this long history of work on supporting variations (enumerated above and 

in the previous subsection), there is a lack of theoretical foundations for how people 

reason about and work with variants. This lack of foundational understanding limits 

our ability to “connect the dots” among variations-support tools across domains to 

develop a general understanding of what aspects in these successful experiments are 
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actually making the difference.  See [83] for a case of how the results of such 

experiments can misattribute reasons behind a tool experiment’s successes. 

2.1.3 Choice calculus: a theoretical framework 
Fortunately, in the area of supporting variations, researchers have made some 

progress in building theoretical foundations. Choice calculus is a formal language for 

specifying variations [98]. Based on the idea that each revision or alternative can be 

encoded by embedding variation points called “choices” within the program itself, 

choice calculus provides constructs and transformations to reconstruct a program’s 

variant by making a series of selections for each choice. For example, suppose that a 

programmer creates two variants, each using a different sorting algorithm. In the choice 

calculus representation of the program, these two sorting algorithms are encoded as a 

choice in the “sorting” dimension. Choosing one of the two alternatives from that 

choice will result in one of the two variants.  

The choice calculus approach has been applied to represent both revisions and 

branches, such as for multiple possible compilations of C programs (e.g., IFDEF 

macros) [45], to build a domain-specific language for querying in a variational 

information space [14] and even to manipulate multiple variants of images at once [87]. 

In essence, choice calculus provides a framework (and a programming language) for 

tool builders to represent and manipulate variants in variations support tools (under the 

hood). 

Like choice calculus, this dissertation brings a theoretical foundation to variations. 

However, complementary to choice calculus that focuses on the internal representation 

and manipulation of variants, our theory informs tool builders about how people will 

reason about, navigate and seek information among variants, and how tools could better 

support these activities of their users. In particular, our theory can inform tool design 

in the following ways: 1) guide the design of useful and usable interfaces and 

interactions (e.g., presentation of variants, design of navigation affordances, supporting 

various information seeking strategies), 2) predict how a user will use a given 

variations-support tool in a given situation, 3) evaluate how well a tool supports its 

user’s needs and 4) explain why existing variations-support tools are actually 
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successful (or not). Towards this end, we draw from Information Foraging Theory 

(IFT) to explain and predict how people forage for information among variants.  

 
2.2 IFT: Constructs and Propositions 

Information Foraging Theory (IFT) has its roots in evolutionary psychology and 

the biological sciences. Building on Miller’s hypothesis that humans are 

“informavores” that have evolved to work with an abundance of information [50], 

Pirolli and Card turned to food foraging theories to derive a theory of human 

information seeking, eventually deriving IFT from the optimal food foraging theories 

[69, 75]. 

The optimal food foraging theories explains how predatory animals in the wild 

search for their prey [90]. Predators forage for their food in various ecological patches 

(e.g., grasslands, woods, treetops) by sniffing at various cues (e.g., hoofprints, fur) and 

following the trail of the strongest scent. By consuming the prey thus obtained, the 

predator will gain energy; but first, the predator has to expend some energy in hunting 

down and digesting that prey.  

Thus, there is both value and cost associated with foraging a prey. According to the 

optimal food foraging theory, a predator will engage in foraging behaviors (e.g., 

deciding which prey to consume, which patch to forage in or which cues to follow) that 

will yield the maximum profitability or the maximum energy gain in return for the 

expended energy.  

Information Foraging Theory (IFT), drawing on evolutionary psychology, posits 

that human information seeking has evolved in ways similar to that of their food 

foraging behaviors [75]. Thus, IFT posits that, just like predatory animals’ food 

foraging behaviors, human information foragers will also optimize in scent-following 

behaviors so as to maximize the profitability of gaining information. In other words, an 

information forager will make foraging choices that they expect will maximize the gain 

in informational value for the cost he/she expends in gaining that information.  



 

 

13 

  
Figure 2.2 Information Topology. Each square represents an information patch. 

Each directed edge represents a link through which a predator can navigate from one 

patch to another [75]. 

More formally, according to IFT, a human predator forages for information prey in 

an information environment. The information in the environment occurs in a patchy 

manner, where each information patch is a container of information features (e.g., 

paragraph contains words, page contains icons). A patch can also be linked to other 

patches and a predator can traverse an outgoing link (e.g., click on a link, scroll) from 

a patch to navigate to another patch. The patches and the links together form a network 

called the topology. Associated with outgoing links in a patch are information features 

called cues (e.g., labels on hyperlinks). Cues act as signposts for what might be at the 

other end of the link. A predator sniffs at these cues and follows the scent trail to 

eventually locate their prey. Pirolli [75] visually classified these associations visually 

via Figure 2.2 and Figure 2.3. 
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Figure 2.3. Information features and cues. Each patch (square) contains several 

information features (hexagon). Some of these information features are associated 

with outgoing links (arrows originating at circles) and serve as cues (circles) [75]. 

 According to IFT, this scent following behavior is an optimization strategy. Since 

information-rich environments can contain too many patches and links and foraging in 

each and every patch can be practically impossible, a predator will try to optimize the 

information seeking by choosing those cues, patches or links that will maximize the 

information value to be gained for unit expended cost. According to Pirolli [75], this 

optimization is characterized by equation: 

 

𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟’𝑠	𝑖𝑑𝑒𝑎𝑙	𝑐ℎ𝑜𝑖𝑐𝑒	 = 	𝑀𝑎𝑥	 2
𝑉
𝐶5,	 

 
where, for a given foraging choice, V refers to the value of information to be obtained 

and C refers to the cost (e.g., number of clicks, time taken, cognitive effort required) of 

obtaining that information. Here, the cost includes both navigation costs as well as the 

cost of processing and understanding the information.  

However, in most real-life foraging situations, the predator does not know the 

actual costs and values associated with the various patches or links; therefore, he/she 

often does not make the ideal choice. Instead, the predator makes navigation choices 

based on the values and costs that they perceive as being associated with a foraging 

choice. Pirolli [75] characterizes the actual foraging decisions of the predator as: 

 
𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟’𝑠	𝑎𝑐𝑡𝑢𝑎𝑙	𝑐ℎ𝑜𝑖𝑐𝑒	 = 	𝑀𝑎𝑥(9:;<:=>:?	>@AB:

9:;<:=>:?	<CDE
).   
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This imperfect perception of the value-to-cost ratio is called the scent, 

mathematically written as:  

𝑆𝑐𝑒𝑛𝑡	 = 	 9:;<:=>:?	>@AB:
9:;<:=>:?	<CDE

	  
 

𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟’𝑠	𝑎𝑐𝑡𝑢𝑎𝑙	𝑐ℎ𝑜𝑖𝑐𝑒	 = 		𝑀𝑎𝑥	(𝑠𝑐𝑒𝑛𝑡). 
 
2.3 IFT for Document Collections 

In the formative work on IFT, Pirolli and colleagues first applied these constructs 

and propositions to explain how users of a “scatter-gather” interface foraged for 

information in a large document collection [69]. This body of work led to the abstract 

mathematical foundations of the information foraging theory.  

To concretely understand people’s foraging behavior in an environment, Pirolli and 

Card adopted the rational analysis technique from cognitive psychology [1]. In rational 

analysis, researchers assume that an agent (here, human) is rational and has evolved to 

optimally solve the specific problem under study (here, information foraging) in the 

environment. With this assumption in place, researchers can then study an agent’s 

behavior in an environment to understand how an agent has evolved to solve that 

problem. Inspired by the success of rational analysis in psychologists’ understanding 

of human memory and learning , Pirolli and Card adopted the technique to information 

seeking [75]. 

To perform a rational analysis of human information foraging, Pirolli and Card built 

computational cognitive models. They extended the ACT-R cognitive architecture [1] 

with a scent-computation module, thereby building an ACT-Scent architecture [75]. At 

its core, the ACT-Scent (and ACT-R) architecture predict a person’s actions based a 

set of production rules that operate on a graph-based representation of the person’s 

working memory. The various nodes in the graph represent “chunks” of memory, 

including the person’s foraging goals, the information he/she knows and the what 

he/she currently perceives in the environment. For scent computation, the ACT-Scent 

architecture spreads “activation” energy to the different chunks of working memory, 

such that the activation on each chunk (patch) is a measure of the scent perceived by 

the forager from that patch.  
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Pirolli et al. instantiated an ACT-Scent model called ACT-IF to predict how a 

person will forage in a Scatter/Gather browser for document collections [70]. They also 

applied the ACT-IF model to foraging in a “Butterfly” document collection browser 

[71] and in a “hyperbolic” tree browser, to understand where users focused their visual 

attention [72, 73]. 

 
2.4 IFT for the Web 

Following the initial success of IFT in the document collections domain, Pirolli and 

colleagues applied IFT to explain how web users browse the web. Similar to foraging 

in document collections, Pirolli and Fu employed an ACT-R based cognitive model 

called SNIF-ACT (Scent-based Navigation and Information Foraging in the ACT 

architecture) to gain an understanding of the psychology of web browsing, including 

what links a user will click on and when and why a user will leave a website [74].  

Along the same lines, Chi et al. built two other predictive models, namely WUFIS 

and IUNIS, to establish the link between users’ information needs and their foraging 

behaviors [10]. While WUFIS (Web User Flow by Information Scent) predicted which 

link a user will take based on scent, IUNIS (Inferring User Needs from Information 

Scent) predicted, based on the scent a user followed, a set of keywords defining his/her 

information needs. Both WUFIS and IUNIS were similar to SNIF-ACT in that they 

employed ACT-like graph representation and spreading activation to compute scent. 

However, unlike SNIF-ACT, WUFIS and IUNIS were not production-rule models; 

they worked based on lexical similarity algorithms.  

Chi et al. also adopted WUFIS to evaluate the usability of websites and to discover 

web usability issues [9, 11]. This body of work eventually laid the foundations for 

modern web usability [89], including the recent work on mobile web usability by Ong 

et al. [59].  

 

2.5 IFT for Software Engineering 
In the domain of software engineering (SE), Ko et al. first speculated that IFT might 

provide solutions to some of the information-seeking problems in SE [37]. In the 

following year, Lawrance et al. revealed preliminary evidence that programmers’ code 
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navigations suggested a scent-following behavior [41], subsequently operationalizing 

IFT for program code in a WUFIS-like computational model called PFIS (Programmer 

Flow by Information Scent) [42]. Their empirical results showed that programmers’ 

navigations in IDEs were more scent-based than they were hypotheses-based [44]. 

(Earlier research on program debugging had revealed that programmers’ navigations 

were mostly based on forming and evaluating hypotheses about the code.) Having thus 

established IFT as a theory for programmer navigations, Lawrance et al. then refined 

PFIS to PFIS2 and IFT to reactive IFT to account for the constantly evolving nature of 

programs as well as programmers’ information goals even within the scope of a single 

task [43].  

Building on Lawrance et al.’s foundational work, Piorkowski et al. further tested 

the applicability of IFT to programmers’ foraging. They compared the accuracy of IFT-

based PFIS2 against other heuristics-based models of programmer navigations and 

concluded that PFIS2, and hence IFT, was a more accurate predictor of program 

navigations, than the other heuristics-based models [63]. Encouraged by this result, 

they built a recommendation tool that presented PFIS2’s predictions as 

recommendations to programmers [64].  

Researchers have also explored other aspects of programmers’ foraging in IDEs. 

Piorkowski et al. studied programmers’ information diets [66], the effect of production 

bias [65] on their foraging behaviors and foraging differences between desktop and 

mobile IDEs [68]. Others, such as Niu et al., have explored IFT as a theory for 

designing navigation affordances in IDEs [56]. Perez et al. proposed an IFT-based 

toolkit, namely Pangolin, to aid developers’ program comprehension [62].  

Beyond its application to code navigation in IDEs, IFT has also informed other 

aspects of software engineering. Niu et al. applied IFT’s optimality models to 

understand requirements gathering [57], thereby providing IFT-based insights for the 

design of requirements engineering tools. Kuttal et al. used an IFT’s perspective to 

understand end-user programmers’ debugging behavior [39]. Recently, IFT is also 

finding application in the design of Explainable AI: what information should an 

intelligent agent provide to its users (and how), so that the latter can understand the 

former’s working and decisions [16, 51]? 



 

 

18 

Since software engineering is a collaborative activity, researchers have also applied 

social IFT, a variant of IFT dealing with groups and collaboration [76], to inform 

collaborative software engineering. For example, Bhowmik et al. applied the concept 

of “structural holes”, a central concept in social IFT, to understand how analyst-

stakeholder social linkages affected requirements gathering [4]. They also used social 

IFT’s optimality models to guess the optimal team size for open-source projects [3].  

Beyond specific tools and environments, researchers have distilled IFT’s design 

insights into reusable principles and design patterns. Piorkowski et al. abstracted from 

various SE tools that there are fundamentally only four ways of improving SE tools 

according to IFT: improving actual costs and values and helping developers actually 

estimate those costs and values. Fleming et al. went further and distilled the elements 

of good design in several successful SE tools into a set of reusable SE tool design 

patterns [16]. Nabi et al. built on Fleming et al.’s work to build a community-based 

portal for curating IFT-based design patterns [55], to enable tool builders to leverage 

the theory’s insights in a principled manner for building tools. 

This thesis builds upon the existing theoretical foundations and computational 

models of IFT and applies them to the variations domain.  

  



 

 

19 

CHAPTER 3. DOES IFT APPLY TO VARIANTS?: FORMATIVE 
STUDY1 

The aim of this research is to provide the theoretical foundations, in IFT’s 

framework, for how people seek information among variants. But an elementary 

question arises in this pursuit: does IFT apply to variations and, if yes, is variations 

foraging any different from traditional foraging (and, therefore, requires a separate 

study)?   

Therefore, as a first step, we conducted an exploratory study in the programming 

domain: 1) to frame programmers’ information seeking among variants in terms of IFT 

and 2) to investigate whether programmers’ variations foraging is any different from 

traditional foraging, such as in terms of the cues they attended to, or the foraging 

strategies they employed.  

We chose the programming domain because: 1) IFT has been applied to 

programming in the past [41, 67, 79] and 2) variants and exploration are common in 

programming [6, 99].  

 
3.1 Study Methodology 

Our target population is people who engage in exploratory programming. A prior 

study on the subject found that novice (as well as expert) programmers 

opportunistically reuse code from various sources, including prior variants of a 

program [6]. We used the results from this prior study to guide our study design, such 

as for recruiting participants and in task design. 

 
3.1.1. Participants 

We recruited 8 novice programmers, namely undergraduate students in CS, and 

investigated their variations foraging behaviors during a reuse task. Table 3.1 

summarizes the general demographics of our participants. Most of them had some 

                                                
 
1 Srinivasa Ragavan, S., Kuttal, S. K., Hill, C., Sarma, A., Piorkowski, D., & Burnett, 
M. (2016, May). Foraging among an overabundance of similar variants. 
In Proceedings of the 2016 CHI Conference on Human Factors in Computing 
Systems(pp. 3509-3521). ACM. 
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experience with programming, but were relatively new to JavaScript, the language on 

which our study was based. The only exception was P2 who carried 6 years of 

JavaScript experience; however, he noted in his response that he had only occasionally 

programmed in JavaScript.  

 

Participant  
label Gender Level Age 

Experience(years) Prior web 
development 
experience? JavaScript Programming 

P01 Male Sophomore 20s 1 1.5 Yes 
P02 Male Freshman Teens 6* 6 Yes 
P03 Female Junior 20s 0 9 No 
P04 Male Sophomore 20s 2 1 Yes 

P05 Male Freshman Teens 0 3 No 
P06 Male Sophomore Teens 0 5 Yes 
P07 Male Junior 20s 2 2 Yes 

P08 Male Junior 20s 1 5 Yes 

Table 3.1. Study-1 participant demographics.  

(*Participant P02 reported that he only occasionally programmed in JavaScript) 

3.1.2 Tasks 
Participants were presented with the following scenario.  A small non-profit named 

Nourish Line hosted a JavaScript game called Hextris (similar to Tetris) [30] on their 

website. Since the company had very few full-time employees, several volunteer 

programmers had worked on Hextris over the years. Recently, visitors to the site had 

suggested some changes to the game and we asked participants to implement those 

changes for Nourish Line.  

Specifically, we asked participants to make the following three changes to the latest 

version of the game (shown in Figure 3.1 (a)): 

1) move the game’s score indicator from the center of the hexagon to a location 

above the hexagon “like it was before”,  

2) move the bonus score multiplier to a location above the hexagon “like it was 

before” and  
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3) change the text color of the score and multiplier to black so it could be seen 

when placed above the hexagon.  

 

 
Figure 3.1. Hextris Game. Participants were asked to change the latest variant of 

the program (a), to move the score and multiplier above the hexagon “like it was 

before” (b). The “before” variant was not shown to participants. 

Figure 3.1(b) shows how the game looked earlier: notice that the multiplier was 

displayed within parentheses next to the score. However, we did not directly provide 

this earlier version to participants. Instead, we used the phrase “like it was before” to 

suggest that useful portions of a solution might be available for reuse in earlier 

version(s) of the game. As mentioned earlier, the choice of our task, namely reuse from 

prior variants, is realistic and follows Brandt et al.’s observations in exploratory 

programming [6].  

 
3.1.3 Presentation of Variants 

To perform their reuse task, participants worked in Cloud9, a web-based IDE for 

Javascript development; Figure 3.2 shows the Cloud9 environment. As the figure 

shows, we provided participants with 700+ variants of the Hextris game.  
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Figure 3.2. The Cloud9 environment. Variants were presented in chronological 

order and labeled with commit timestamps.  

 We obtained the variants from the game’s public GitHub repository [31]. For each 

commit of the 700+ commits in the repository, we created a variant as follows: we 

extracted the entire repository tree, or the copy of the program at that version, into a 

folder; thus, each of these folders was a variant. In addition to the program code, each 

variant folder also contained a changelog.txt file that contained the corresponding 

commit’s metadata (viz., commit timestamp, author name, commit message, commit 

ID).  

These variants were then presented to participants in the Cloud9 environment. As 

Figure 3.2 shows, each commit was labeled with the commit timestamp. Only the latest 

variant was labeled “Current”. (Recall that participants had to make changes to this 

latest variant). The variants were presented in a chronological order.  

Since each program was an entire copy of the program, participants were able to 

run the entire program for each variant. For this, programmers had to run the index.html 

file within each variant, either by right clicking and choosing the run command, or by 

clicking on the run icon on the command bar (Figure 3.2). 
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3.1.4 Study procedure 
At the beginning of each study session, participants signed an informed consent 

form and filled in a general demographic questionnaire. (Table 3.1 summarizes the 

demographics). We then provided participants a short tutorial on think-aloud protocol, 

followed by a brief introduction to the study environment. For participants with no prior 

Javascript experience, we also provided a short tutorial on the basics of HTML, CSS 

and JavaScript.  

After the initial tutorials and task description, we introduced participants to the 

Nourish Line scenario and the tasks mentioned earlier (Section 3.1. 2). Each then 

participant spent 50 minutes working on their programming tasks while also thinking 

aloud. We collected the audio and video of the participant, captured their screen as well 

as logged their IDE actions. Two researchers observed the participant from another 

screen, annotating actions for in-depth data collection.  

Following the programming session and a short break, we conducted a retrospective 

interview. We played the screen-capture video for the participant and drilled down into 

the annotated actions. We stopped the video at the annotations and asked the participant 

additional questions about their foraging. The interview questions, listed in Figure 3.3, 

were inspired by IFT research on debugging [66]. We also captured the audio, video 

and the screen for the retrospective interviews.  

At the end of the study session, each participant was compensated with $20. 

 

Explain: 
 You chose to [do/go to] (Variant / location) 

Ask: 
 What did you expect to (see/find) when you went to _____? 
 What did you see as your other possible choices? 
  Why did you choose to navigate to _____ as opposed to (other choices)? 

Figure	3.3. Interview questions. During the retrospective interview, we played 

back the video of the participant’s programming task and asked these questions about 

their foraging decisions. 
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3.2 Qualitative analysis 
For our analysis, we used qualitative methods. First, we transcribed participants’ 

think-aloud verbalizations and on-screen actions and then segmented the transcripts 

into 30-second segments. We then coded the segments, allowing multiple codes per 

segment. 

To ensure rigor, two researchers independently coded 20% of the transcripts, until 

we reached at least 80% agreement on the 20% data. In our study, we obtained an inter-

rater agreement of 85% on 20% of the data. Once we reached agreement, the two 

researchers split up the coding for the remaining data. We used Jaccard coefficient as 

the measure of inter-rater agreement. 

We coded the data according to the cue types participants used, the type of 

operations they performed, and their navigation behavior. We drew the base code set 

from previous IFT research [40, 66] and added new codes to capture the new 

phenomena that we observed in variations foraging. Table 3.2 lists the entire code set; 

the shaded rows indicated newly added codes. 

 

CODE DESCRIPTION 
CUE TYPES 

Create Time,  
Update Time 

Timestamp cues marking latest, first or intermediate variants, 
and navigation to corresponding variants. 

Previous File,  
Previous Method 

Reuse of information features (file and method names) from 
one variant as cues in another variant. 

Output Cues based on how output looks or running a preview 

Domain Game-related words, e.g., “score”, “block” 

Source Source code-based cues, e.g., function / variable name. 

Error, Correct Cues based on error/correctness of patch/prey 

File Name, File Type Filename-based and file type cues 

Document Documentation cues: change logs, readme files, tooltips, etc. 

Comment Source code comments 

Search Search inside IDE or the internet 

Debug, Inspect Debugger or “element inspect” feature in browser 
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OPERATIONS 

Edit Edits made to source code, to verify the prey using output-
based cues, or to implement the task. 

Reuse Explicit reuse of source code , i.e., copy and paste 
Compare Compare two variants 

NAVIGATIONS 

Between Variant Navigation Between-variant navigation was coded along with the cues 
that guided these navigations. 

Table 3.2. Analysis codeset . We derived our codeset based on prior work [40, 

66]. The new codes we added are highlighted. 

3.3 Results: Foraging activities  
We frame our results on participants’ variations foraging behaviors around a 

modified version of Rosson and Carroll’s reuse model [82]. According to Rosson and 

Carroll, programmers reuse code from a “usage context” to accomplish a task in their 

“current context” in three stages: 

1. finding a usage context,  

2. evaluating the usage context and  

3. debugging the usage context.  

This model assumes that: 1) the current context is known to the programmer and 2) that 

the current and the usage contexts are within the same variant of the program. 

However, in our study, the current and the usage contexts were in different variants 

and participants had to find both these contexts as part of their task. Therefore, we 

extended Rosson and Carroll’s model to comprise the following three stages:  

1. finding and evaluating a current context, 

2. finding and reusing a usage context, and  

3. integrating the current and usage contexts.  

Note that this modified reuse model, visually illustrated in Figure 3.4, is essentially a 

more generic version of the original Rosson and Carroll’s model.  

From an IFT’s standpoint, the term context, in both the original and the modified 

reuse models, refers to information patches: a programmer reuses code from one or 
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more “source” patches (usage context) in one or more “destination” patches (current 

context).  

Also, in our study, the specific source and destination patches—namely, the exact 

locations where the relevant source and destination code is located—is in turn present 

inside of variants2. Therefore, as Figure 3.4 shows,  in order to forage for a 

usage/current context, participants had to find and evaluate the appropriate 

source/destination variant, and then forage for the smaller source/destination patches 

(i.e., method or lines) within that variant.  

 

 
Figure 3.4. Modified reuse model. Participants were provided with the destination 

variant (greyed out).  They interleaved finding and evaluating the prey in both 

between-variant (blue) and within-variant (green) foraging. 

Note that we do not intend, with our modified reuse model, to suggest that 

programmers followed any particular order in foraging for their source and destination 

contexts. In fact, Figure 3.5 shows that Participant P06 foraged for the source variant 

                                                
 
2 Technically, in IFT, variants are also information “patches”: however, for the 
purposes of disambiguation, we use the term variant to refer to the variant and the term 
patch to refer to smaller patches (e.g., methods, files) within the variant. 
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and the source patches (usage context) before he foraged for the destination patches 

(current context). Thus our results describe sets—not sequences—of behaviors. In the 

rest of this chapter, we will describe the foraging behaviors of participants in each of 

the reuse stages. 

 

 
Figure 3.5. Foraging timeline. Participants foraged the Source Variant (SV), 

Source Patches (SP) and Destination Patches (DP) in different orders. They used 

information features (shown as triangles) from one variant to forage in other variants 

and performed comparison during both source-patch foraging and destination-patch 

foraging. 

3.4 Results: Stage 1. Finding and evaluating the current (destination) context. 
While foraging for the destination context, namely where the fix needed to be made, 

participants’ foraging behaviors were unsurprising.  

1. Destination variant: find & evaluate. Since participants in our study were asked 

to make changes to the latest variant labeled “Current”, the source variant was 

already provided to them. Thus, participants did not have to find and evaluate 

the destination variant in our study. (These activities are therefore greyed out in 

Figure 3.4).   

2. Destination patches: find.  In order to find the task-relevant “destination” 

patches within the Current variant, participants engaged in reading code, 

searching and navigating links. These behaviors are well-described in prior IFT 

literature on debugging and maintenance in a single program variant  [42, 66].  
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3. Destination patches: evaluate. Finally, once participants found the destination 

patches, they wanted to ensure whether the code they had found actually did 

what they thought it did. For this, participants edited the code and confirmed 

whether the output matched their expectations. For example, as the dots in 

yellow segments show in Figure 3.5, all participants altered the x and y 

parameters in the renderText() method in order to evaluate whether it really 

altered the score position. These behaviors conform with prior findings on IFT 

and hypotheses testing in debugging [44]. 

 
3.5 Results: Stage 2. Finding and evaluating usage (source) context. 

Once participants foraged for their destination context, they then moved on to 

forage for their source context. However, unlike the destination context foraging that 

was largely unsurprising, participants’ foraging for the source context revealed new 

nuances for variations foraging. 

3.5.1 Source variant: Find 
Participants began their source context foraging by looking for a suitable source 

variant—one that contained the source and multiplier above the hexagon as in Figure 

3.1(b)—among the several available variants.  

In IFT, when a predator forages to find a suitable patch among several available 

patches, it is called between-patch foraging [69]; analogously, when participants had 

to find a variant among several available variants, we call it between-variant foraging. 

However, unlike in traditional between-patch foraging where the patches (and hence 

the cues and scent) are mostly unique, the variants in between-variant foraging (and 

hence the cues and the scent) can all be very, very similar. 

As part of their between-variant foraging, participants had to decide which variant 

to navigate to next; for this, our study environment provided only one kind of cues, 

namely the timestamps that were specified as the variants’ folder names. Participants 

leveraged these timestamp cues to in the following ways.  

1. Sometimes they used the timestamps to directly navigate to a variant they had 

already seen. For example, P01 said, “So I'll just remember that on 2014-05-

20, [it] had the right interface” and later navigated directly to that variant.  
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2. Other times, participants navigated to a variant based on its position in the 

chronological list of variants; for example, 5 out of 8 participants scrolled to the 

top and navigated to the first variant to see how the game looked at the 

beginning. 

3. Participants also used the distance between chronological variants as a measure 

of how similar (or different) variants might be. Since consecutive variants were 

very similar, participants often skipped ahead, using the used the distance 

between variants to guess how many variants to skip (or, equivalently, how far 

to scroll). This way, participants were able to avoid potentially irrelevant 

variants and to quickly land in a potentially valuable variant. As Figure 3.6 

shows, such skip-ahead between-variant navigations followed one of three 

patterns:  

1. Unidirectional: Four out of eight participants (P01, P02, P03, P04) foraged in 

a single direction. They either foraged from the oldest to the most recent variant 

or vice-versa (see Figure 9 (a)). P03 explained: “… jumping down more … like 

a sorting algorithm, checking further and further until there was a change.” 

2. Bidirectional: Four out of eight participants (P03, P06, P07, P08) changed 

directions while foraging between candidate source variants. Initially, they 

started from either the oldest or the most recent variant and foraged along one 

direction. However, when they found that they had gone too far in one direction, 

they reversed course and continued in the other direction(Figure 9 (b)). 

3. Systematic narrowing: Two of the eight participants (P02, P05) started from a 

variant in the middle and systematically narrowed down the search space using 

an approach similar to a binary search. Participant P02 said: “… just split the 

list in half and then … do a binary search on it.” 
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Figure 3.6. Between-variant navigation patterns. (a) Participant P01 was a 

unidirectional forager. (b) Participant P06 was a bidirectional forager. (c) Participant 

P05 was a systematic narrowing forager. Note that they all skipped several variants at 

a time, as they navigated.  

Finally, in addition to the timestamp cues that were available in the environment, 

participants also left cues for themselves during their foraging. As participants 

navigated across variants, they left potentially valuable variant folders expanded to be 

able to revisit them later (or, equivalently, they closed off low-value variant folders). 

Later, when they had to navigate to a previously-visited variant, they directly navigated 

to the expanded folder(s), instead of searching for the it from scratch. 

 
3.5.2 Source variant: Evaluate  

Once participants navigated to a variant, they evaluated whether it was appropriate 

for reuse. Specifically, they evaluated whether the variant contained the score and 

multiplier above the hexagon. For this, participants used different types of cues that 

were present within the variant. (In contrast, the timestamp cues were present as the 

label for a variant).  
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Participant 
Cue Types 

Output-based Changelog-based Source code-based Filename-based 

P01 29 12   

P02 15 8   

P03 44  3  

P04 6 15 2  

P05 9  2  

P06 22  1  

P07 12  22 3 

P08 14  2  

Total  

occurrences 

151 

(68.3%) 

35 

(15.8%) 

32 

(14.5%) 

3 

(1.4%) 

Table 3.3. Source variant evaluation: cue types. Participants used some cue types 

more frequently than others to evaluate variants.  

 
1. Output-based: When foraging in output patches, participants attended to 

information features, such as the position of score or whether the output runs or not. 

These information features functioned as cues (signposts to—or away from—the prey) 

because, depending on what they saw, participants decided whether to navigate into the 

variant's source code, or to navigate away from that variant. These output-based cues 

were the most popular of all cue types; as Table 3.3 shows, 68.3% of all cue-type codes 

in our coded transcripts were related to output.  

We attribute the popularity of this cue type to its low cost. First, the cost of bringing 

up these patches was low: participants had to right click on the index.html file and 

choose “Run” or selecting the index.html file and click on the “Run” button in the 

command bar. Second, the cost of processing these patches appeared to be low: just a 

quick visual inspection of the output revealed whether or not the score and multiple 

appeared above the hexagon, or whether the game was broken.  
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2. Changelog-based: Another kind of low-cost cues were the words in the variants’ 

changelogs, present in the changes.txt file within each variant. Participants frequently 

used these cue types to identify whether the variant contained the required information 

features; for example,  

P1: “I expected to see something along the lines of ‘changing the position 
of score’” . 

However, change logs were often unhelpful because: 1) they were non-descriptive 

(e.g. one log contained only the text “asdf”) and 2) they contained information only 

about what had changed—and not what was present—in a variant. As a result, 

participants abandoned changelogs and fell back to other cue types; 

P3: “their document isn't that good for people changing things.” 

3. Source code-based: Most participants (5 out of 7) also evaluated a variant based 

on the source code in the variant. Sometimes, participants read the code in variants to 

understand what the code did. At other times, participants used the similarities or 

differences across variants to judge what a variant contained. 

P07: “this still looks like the center to me” (emphasis added). 

Some participants also perceived errors in source code (e.g., squiggly red lines 

indicating compilation errors) as a negative scent and steered away from that variant to 

other variants.  

4. Filename-based: Finally, one participant (P07) also used file names as cues for 

evaluating variants: if a variant did not contain certain file names, he immediately 

rejected the variant.  

P07: “… at some point, [filename] did not even exist”  

Based on the different types of cues described above, participants made one of the 

following three foraging decisions: 

1. they concluded that the variant was inappropriate for reuse (e.g., the game was 

broken, did not contain score) and went on to find another variant, or 

2. they found that the variant contained the score above the hexagon, but continued 

to find another variant that contains easier-to-integrate code, or 
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3. they concluded that the variant was appropriate for reuse, proceeding to find 

and reuse code from that source variant. 

3.5.3 Source patch within source variant: Find 
Once participants found a source variant, they then foraged for the task-relevant 

(source) patches within that variant. Thus, participants looked for the code displayed 

the score and the multiplier. Although this foraging goal, namely finding the score and 

multiplier-related code, is similar to that in destination-patch foraging (Section 3.5.1), 

participants adopted very different strategies in both these activities. 

Earlier, when participants foraged within the destination variant, they did not know 

where the task-relevant patches might be. They had to rely solely on cues in the 

environment to hunt down the destination patches. In contrast, while foraging in the 

source variant which was similar to destination variant, participants had already formed 

expectations about where the source patches might be located. These expectations 

provided a starting point for participants’ foraging within the source variant. 

More specifically, because the variants were similar to each other, participants 

expected that the source and the destination patches will contain (at least some) 

common information features, and that the information features found in the destination 

patches in the destination variant will also lead them to the source patches in the source 

variant. For example, P03 found calls to renderText (in the view.js file) in the destination 

patches within the destination variant. Later, when she foraged in the source variant, 

she searched for exactly the same features, hoping that the task-relevant patches in the 

source variant also will contain the same information features (and will hence lead her 

to the source patches): “renderText is still something I can look for”. As the triangles 

above the rows in Figure 3.5, of the seven participants who foraged for source patches 

(green segments), six participants used such similarity-based strategies for their 

foraging.  

However, participants did not always succeed with such a similarity-based strategy. 

Sometimes, the program had changed over time between the source and the destination 

variant. As a result, participants did not find the same patches or information features 

that they had found earlier in the destination variant. In such cases, participants 

proceeded in one of the following two ways. 



 

 

34 

Sometimes, participants continued to forage based on similarities, hoping to find 

other information features that might still be similar among the variants and therefore 

lead them to the source patches. For example, when Participant P03 did not find the 

renderText() method in the source variant, she said:  

“what are some other key phrases I can look for... I guess go back 
and check for score.”  

In Figure 3.5, row P03, the two consecutive triangles denote how she looked for 

renderText and then immediately looked for score. 

Other times, participants abandoned the similarity-based approach and began 

foraging within the source variant, just like they had foraged in their destination variant 

(e.g., by reading source code words and following scent). For example, when P03 tried 

and failed to forage for her prey using similarities for two consecutive times (as 

indicated by two consecutive triangles in Figure 3.5, row P03), she started reading the 

source code within that variant, as the subsequent absence of the triangles in the figure 

shows. 

 
3.5.4 Source patch within a source variant: Evaluate  

After finding their source patches, participants also evaluated them, based on the 

following two criteria.  

First, participants evaluated whether the code did what they thought it did (e.g., if 

a line of code actually altered the score position). For this, they edited the code and saw 

whether the resulting output met their expectations, just like they did when they 

evaluated the destination patches. Two participants (P04, P05) performed this kind of 

evaluation as Figure 3.5 shows: in rows P04 and P05, the dots in the green bars 

represent edits made during source patch foraging. If participants concluded that they 

were not on the appropriate source patches, they undid their changes and continued 

foraging for the correct ones within the same variant.  

The second kind of evaluation relates to integrating the source and destination 

patches: how easy can these source patches be integrated with the destination patches?  

If the source and destination patches were similar, participants expected that the code 

integration would be easy; otherwise, if the source and destination patches were 
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different, the integration might be hard and so participants went on to forage for another 

variant where the code might be easier to integrate. All seven participants who foraged 

for source patches within a source variant engaged in this evaluation activity. (The 

exception, P08, could not successfully find the source patches and hence did not 

evaluate them. Instead, he re-implemented, instead of reused, the code to complete the 

task.) 

Although in finding and evaluating the source context, participants mostly used a 

drill-down approach—they first found and evaluate the source variant using non-code 

cues and then drilled down to find and evaluate the source code patches—two 

participants (P04 and P07) foraged for the source patches as part of finding and 

evaluating the source variant.  These participants relied on cues in source-code patches, 

comparing them with destination patches, for evaluating their source variant. Thus, 

they interleaved their source-patch foraging with their destination patch foraging. The 

triangles above the orange segments in Figure 3.5: rows P04 and P07 indicate these 

instances.  

3.5.5. A Foraging Strategy: Story-guided foraging  
Crosscutting the foraging activities described above, participants engaged in what 

we call story-guided foraging. As participants went about foraging between and within 

variants, they built stories of how the game had evolved. Specifically, based on the 

information features they had collected from the various variants (and patches) they 

had foraged in, participants built two kinds of stories.  

Some participants, such as P08, built stories of how the game evolved:  “seems that 

the game had the zero in the middle and then before that never worked. That could've 

gotten broken at some point though” (P08). Other participants, such as P07, built stories 

about how the code –instead of just the game– evolved: “At some point, this [method] 

was [re]factored into its own function, then it was [re]factored back out of its own 

function.” 

Indeed, participants used both the kinds of stories to guide their foraging. However, 

neither of these kinds of stories were necessarily complete, or even correct. Participants 

started off by creating an incomplete outline of the story and then refined them as they 

visited more variants and gathered more information features. As an illustration of how 
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these stories were built and refined, let us look at the verbalizations of P07 in the 

retrospective interviews. Initially, he built the following story, based on information 

features in a few variants:  

“…early in development there's no score label. At some point the 
original score label is introduced. And then, after that, the 2nd 

score label's introduced”.  

As he processed more information features from the output of more variants, he 

refined his story:  

“… after dealing with this for a while, there might have been like 
no score label, then the original score label, then no score label, 

and then the second score label for a while”. 

He then used his story to guide his foraging:  

“... that's basically why, when I hit this version that had no score 
label, I just decided to start searching in a more recent direction”.  

 
3.6 Results: Stage 3. Integrating the variants 

Once participants found and evaluated the current and usage context, they 

proceeded to the third stage of reuse, namely integrating the variants, to complete their 

task. They integrated the code in one of two ways.  

1. Copy and paste: When two variants were similar, participants attempted to 

copy and paste the code from the source variant into the destination variant, 

and made minimal modifications to match the task requirement. Only one 

participant (P06) was able to find such a similar patch for reuse, and only 

for one of the tasks. In other cases, when the two variants were dissimilar, 

participants copied and pasted code from the source patches into destination 

patches, and then fixed all the dependencies and errors. Three out of eight 

participants (P01, P07, P06) followed this strategy. 

2. Re-implement: Two participants (P07, P03) implemented the task from 

scratch (without reuse) when they found source and destination variants to 

be dissimilar. Further, one participant (P08) could not locate the right source 
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variant; therefore, he directly implemented the fix only based on the 

(textual) task descriptions. 

The two integration strategies described above correspond to “cut-and-stanch-the-

bleeding” and “analyze-then-act” strategies described in the reuse literature [26]. 

Participants chose their reuse strategy depending on whichever they perceived to be 

low cost.  

 
3.7 Discussion 
3.7.1 Threats to validity  

As with every study,  the results presented so far have to be interpreted keeping a 

few threats to validity in mind. First, in our study, we presented each variant as a folder 

containing the entire copy of the program. This “vanilla setup” has the disadvantage of 

not considering state-of-the-art presentation devices and navigation affordances for 

variants (e.g., in version control tools). However, this choice of presentation allows us 

to build the theory from scratch, eliminating the effects due to affordances in existing 

variations-support tools (e.g., version control tools).  

Second, our participants were not gender-balanced. Given that prior studies (e.g., 

[2]) have revealed that problem solving strategies cluster by gender, it is possible that 

some foraging behaviors relating to women’s problem-solving strategies were not 

revealed in our study. 

Third, although we chose a real program from GitHub, and designed our tasks based 

on prior studies, the program and tasks used in our study might not be representative 

of all tasks involving variants in the real world. Similarly, our results might also not 

generalize to other programmer populations who might engage in variations foraging 

with other motivations than reuse, or adopt different foraging strategies (e.g., 

programmers with prior knowledge of the codebase, expert programmers). Such 

limitations in generalizability can only be addressed through further empirical studies. 

 
3.7.2 Generalization of our results 

Fortunately for us, Martos et al. built upon our work and conducted another study 

investigating cues and strategies in variations foraging [48]. Their study also involved 
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reuse from variants. However, they conducted their study with end-user programmers. 

They also used two different programming environments, namely AppInventor and 

MATLAB, deriving their variants from crowdsourced online repositories, namely 

AppInventor Gallery and MATLAB File Exchange respectively. These differences in 

population and study environment provide some external generalization for our 

findings 

Indeed, several of our results also generalized to Martos et al.’s study. Specifically, 

participants in both studies used similar cues and strategies, such as timestamps and 

comparison-based strategies, thus lending some external validity to our findings. 

However, their participants also adopted new cues and strategies (e.g., program 

descriptions, crowd ratings) based on the affordances and cues available in their study 

environments (and not available in ours). These new cues and foraging behaviors 

expand our results on variations foraging to online, crowdsourced environments. 

 
3.7.2 Open questions 

Our study also raises new questions in information foraging, from the perspectives 

of information consumers as well as information producers. 

Starting with the consumer (forager) side, traditionally, IFT has dealt with 

information environments with largely dissimilar patches (e.g., different web pages in 

a website, different methods within a program). However, in the variations domain, the 

information environment consists of very similar and even identical patches across 

variants; consequently, the information features and hence the cues and scent might 

also be similar across variants, making it difficult for foragers to follow scent and to 

forage with the strategies described in prior studies in IFT (e.g., [44, 66]). 

Indeed, participants in our study demonstrated two new foraging strategies. First, 

they heavily relied on the comparison operation: 1) to find what was different among 

very similar variants, 2) to find a variant similar to a given variant in a certain way, 3) 

to find patches with information features identical to those seen in other variants. 

Second, they foraged across variants by generating temporal stories about how the 

program evolved over time and then using those stories to guide their foraging (5 out 



 

 

39 

of 8 participants). These foraging behaviors may be uniquely important to variations 

foraging. 

These new behaviors call for further research into variations foraging. First, there 

is no construct in IFT that can be instantiated as a story--stories are not cues, not 

patches, not prey, and so on. Thus, an open research question is whether new IFT 

construct(s) are needed to capture this phenomenon. Second, comparison is important 

in variations foraging, but current IFT computational models do not account for an 

explicit comparison operation: they mostly consider within-patch foraging, between-

patch foraging and enrichment as operations that human foragers perform. This calls 

for enhancements to IFT computational models. 

Whereas the above two open problems concern how foragers (consumers) forage 

among available variants, two additional questions arise on the producer side: 1) what 

makes a good variant? 2) what makes a good cue (e.g., changelogs, descriptions) for 

variants? These producer-side questions are important because the patches and cues 

created by the producers are eventually where and how consumers will forage later. 

Currently, the ways programmers create variants (including in our Hextris 

program) are rather arbitrary and depend on the individual programmer: if a producer 

chooses not to save a variant (e.g., broken code), the consumer might not find the prey 

at a later time [80]. On the other hand, if the producer created too many variants, 

consumers might find it harder to forage for information. This relationship between the 

producers’ information creation and the consumers’ information foraging calls for 

research into the producer side of information foraging.  

Here, two avenues are particularly ripe for research. First, IFT researchers need to 

begin looking at foraging from the perspective of the producer: how do producers of 

variants think about the scent they are leaving for the variants?, what signposts do they 

think they are leaving for the future consumers?, how do they think of the different 

potentially-conflicting needs (e.g., every change is a new variant vs. multiple related 

changes makes a variant) of future consumers?, do they think about future consumers’ 

navigations between patches, or only within patches, or not at all? Second, as tool 
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builders, we need to consider how well variations-support tools support producers’ 

creation of patches and cues so that they meet the foraging needs of future foragers. 

 
3.8 Conclusion: Does IFT apply to variants?  

Finally, revisiting the fundamental question we set out to answer in this chapter, 

does IFT apply to variants? Our results suggest yes. First, we were able to frame our 

explanations of programmers’ foraging behaviors in IFT’s constructs of patches, prey, 

cues and scent. Second, the foraging behaviors we observed are explained and 

predicted by IFT’s cost-value proposition. For example, participants adopted tactics 

such as looking for identical information features in within-variant foraging, or 

skipping variants during between-variant foraging or looking for cues that highlighted 

differences, so as to minimize the costs of their foraging. 

However, these are only preliminary evidences and are not conclusive, or even 

sufficient. First, there is the story-guided foraging strategy that participants adopted: 

since we do not know what IFT constructs these stories should be instantiated as, we 

need to investigate how important these stories are for explaining and predicting 

participants’ variations foraging. Second, our evidence favoring IFT as a theoretical 

framework for variants is based on our interpretation of participants’ foraging behavior; 

to build solid theoretical foundations, we need to validate whether these interpretations 

are correct.  

Therefore, in the next two chapters, we will concretely operationalize IFT for 

variants in computational models and then evaluate how well our interpretations of 

variations foraging, encoded in those  models, can predict variations foraging. 
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CHAPTER 4: PFIS-V: MODELING PROGRAMMERS’ 

VARIATIONS FORAGING IN SOURCE CODE3 
 

 In the previous chapter, the qualitative results from our formative study suggested 

that IFT applies to variations. In particular, we were able to describe many of 

participants’ variations foraging behaviors using IFT’s constructs and propositions 

(e.g., cues, patches, costs, values, scent). However, qualitative results mostly show the 

existence of phenomena and not their generality. To fill this gap, we built 

computational models that concretely operationalize IFT’s constructs and propositions 

for an environment containing variants, and predict how, according to IFT, a 

programmer will forage in that environment.  

IFT computational models are tools for researchers to test their hypotheses about 

how people will forage in a given situation. Researchers can operationalize IFT—the 

patches, the cues, the links—for an environment in an IFT computational model. They 

can then encode in the model their hypotheses about how a person will forage in that 

environment. If the model can accurately predict a person’s navigation in the 

environment, it adds to evidence of the validity of the researchers’ hypotheses. 

Otherwise, if the model fails to accurately predict the navigations, the researchers need 

to refine their hypotheses (and hence understanding) about people’s foraging. 

In our research, we framed our hypotheses about variations foraging based on our 

qualitative observations described in the previous chapter. We encoded these 

hypotheses in two computational models, namely PFIS-V and PFIS-H, and then 

evaluated the models, as a way of evaluating our hypotheses and to solidify our 

understanding of variations foraging. In this chapter, we will present PFIS-V and its 

                                                
 
3 Ragavan, S. S., Pandya, B., Piorkowski, D., Hill, C., Kuttal, S. K., Sarma, A., & 
Burnett, M. (2017, May). PFIS-V: modeling foraging behavior in the presence of 
variants. In Proceedings of the 2017 CHI Conference on Human Factors in Computing 
Systems (pp. 6232-6244). ACM. 
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empirical evaluations. In the next chapter, we will discuss our second model, namely 

PFIS-H, that addresses key limitations in PFIS-V.  

 
4.1 The PFIS-V Computational Model 

 PFIS-V, short for PFIS for Variants, belongs to the PFIS family of IFT 

computational models. In turn, PFIS stands Programmer Flow by Information Scent. 

As the name suggests, the PFIS models predict a programmer’s navigations based on 

the scent s/he will perceive in the programming IDE. Whereas earlier PFIS models 

predicted how a programmer will navigate within a single variant of a program, PFIS-

V predicts how a programmer will navigate among multiple program variants. 

PFIS-V builds upon PFIS3, the latest PFIS model for single variant situations [63]. 

It makes two key extensions to PFIS3 to account for variations foraging: 1) it accounts 

for multiple variants in the information environment and 2) it accounts for how the 

programmer will reason about, and navigate among, those variants. These extensions 

are encoded in the model’s data model and predictive algorithm respectively. 

 
4.1.1 PFIS-V Data model: Accounting for programmers’ mental model of variants 

The data model in PFIS-V (or any other IFT computational model) is a 

representation of the information environment--the patches, links and cues--that the 

programmer has seen (and thus knows about) so far. It represents the information 

environment as a graph G  = (VP U VW, EL U EW), where 

• VP = set of all patches (methods) the programmer knows about so far,  

• VW = set of words in the patches (excludes programming language reserved 

words such as “return” and common English language words such as “the”), 

• EW = set of “patch contains word (cue)” relationships, and  

• EL = set of links, or one-click navigation affordances, between patches (e.g., 

adjacency, method invocation links).  

As an illustration of the PFIS-V data model, consider the program snippet in Figure 

4.1 (a): the corresponding data model graph is given in  Figure 4.1 (b). Notice that for 

each patch (e.g., sum method) in the program snippet, there is a patch node (blue 
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ellipse) in the graph. Similarly, each word in the program corresponds to a word node 

(red rectangle) in the graph. 

 

 

 
Figure 4.1. PFIS3 data model (a=single variant program snippet, b=corresponding 

PFIS3 data model). Each patch and word in (a) are represented as nodes in (b). The 

links between patches and “patch contain word” relationships in (a) are represented as 

edges in (b). 

Now consider the method average (a patch) in the program snippet. It contains 

words like average (its name), numbers (parameter), sum and count (contents and calls 

to other methods). Thus, the data model contains “patch contains word” links (---) 

between the average patch node and the average, number, sum, count word nodes.   

Note that words in the program are first split (e.g., “numbersList” = “numbers” + 

“list”) and trimmed (e.g., “numbers” to “number”) and then added as word nodes to the 

graph. Thus, for each word in the program (including all its grammatical forms), the 

PFIS-V graph contains a unique word node.  

Moving on to the links between patches, again consider method average in Figure 

4.1(a). A programmer can go from this method to other methods, such as sum or count, 

by clicking on these method invocations (links). Similarly, s/he can navigate from the 

method count to the methods sum and average by scrolling. These navigation 
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affordances (or links) are modeled as links between the average method and the sum, 

count and average methods respectively (The labels “inv” and “adj” on the link edges 

represent method invocation and adjacency respectively.) 

To represent multiple variants, PFIS-V extends PFIS3’s single-variant data model 

in four different ways, resulting in four different configurations. Each of these 

configurations represent different assumptions about programmers’ mental models of 

the variational information space.  

Before we enter the discussion about these representations, let us consider an 

example. Consider a programmer, Jane, starting with Variant 1 of a program (Figure 

4.2 (a)). The first variant of program consists of four method patches A, P, Q, R. (We 

have excluded the word nodes from the graph for ease of illustration.) 

Jane modifies the method R and saves it as Variant 2. We indicate that R has 

changed between Variants 1 and 2, by naming it R' in Variant 2. In a similar way, Jane 

again changes method R (resulting in R''), adds a new method S to result in Variant 3. 

Finally, she modifies the new method S (resulting in S') and removes method A, 

resulting in Variant 4. We will now discuss how these variants are represented in PFIS-

V’s four configurations. 

Configuration #1: Variant-unaware data model  

The variant-unaware data model, illustrated in Figure 4.2(a), is the simplest of the 

four data model configurations. Here, each patch in each variant is represented as a 

unique patch node, irrespective of whether two patches have the same names (e.g., R 

and R'), or are somewhat similar, or even identical across variants (e.g., P). For each 

word in the environment (across variants), there is a single word node, irrespective of 

how many variants or methods the word occurs in. 

This configuration accurately reflects the navigation affordances in our study 

environment (Figure 3.2, page 22), as well as in most other IDEs. For example, a 

programmer could not navigate from a method in one variant to a method in another 

variant, via an IDE links; this data model contains no such navigation links going across 

variants. Therefore, we also use this configuration as a baseline for our evaluation of 

the other data model configurations.  
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Figure 4.2. Four PFIS-V data model configurations. (a) The variant-unaware 

configuration accurately reflects the navigation affordances in our programming 

environment and does not capture any similarity between variants. (b) To this, we 

introduced variant-awareness by adding “variant-of” edges (dotted lines) between 

similar patches in different variants. Further, we collapsed identical patches across 

variants, calling them equivalent; (c) text-based equivalence is based on identical text 

and (d) text-and-topology-based equivalence is based on identical text as well as same 

neighbors. 

However, contrary to what this data model captures, a programmer like Jane might 

expect methods with the same name (but in different variants) to be identical, or at least 

similar in some way. For example, if she sees that the method R computes the rate of 

interest in one variant, she might expect the method R (dubbed here as R' and R'') to do 

the same thing in other variants, even if the method body has changed. Whereas the 

variant-unaware configuration does not capture this similarity property of variants (and 

hence gets the name variant-unaware), the variant-aware configuration captures them. 
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Configuration #2: Variant-aware data model  

The variant-aware data model considers one possible mental model of similarities 

between patches. In this data model configuration, patches having the same fully 

qualified names (i.e., package, file and method names) but in different variants, are 

considered to similar and are linked via “variant-of” links. For example, in Figure 4.2 

(b), all patches with the same name (e.g., R, R' and R'' or all Ps) are variants of each 

other; therefore, they are linked by dotted lines representing “variant-of” links.  

Note that, unlike other links, such as adjacency or method invocation links, the 

“variant-of” links are not physical navigation affordances in the environment; instead, 

they are conceptual links that capture the relationship between patches that may exist 

in a programmers’ head.  

Configurations #3 & #4: Variant-and-equivalence aware data models 

The next two configurations are the variant-and-equivalence aware data models. As 

the name suggests, these data models are both variant-aware and  equivalence-aware. 

The term variant-aware is exactly the same as in the previous configuration: patches 

that have same fully qualified names are similar across variants and are connected via 

“variant-of” links. For example, see the dotted edges between R, R’ and R’’ in Figure 

4.2(c) and (d).  

In addition, these data models also add the notion of "equivalence" between certain 

patches. Equivalence means that, from the perspective of a forager, it does not matter 

which of two equivalent patches s/he forages in. For example, in Figure 4.2(b) all the 

methods named P are identical across variants: they are equivalent for foraging 

purposes because they all provide exactly the same information, cues and scent to the 

predator. To model this perspective, in the variant-and-equivalence-aware data models 

(Configurations #3 and #4), we replace multiple equivalent patches with only a single 

representative patch. The difference then, between these two configurations is in how 

equivalence is computed.  

In Configuration #3, text-based equivalence models that programmers considered 

two patches to be equivalent if they had identical textual contents. For example, in 
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Figure 4.2 (a) and (b), all the methods P have exactly the same content across variants—

there are no there are no P' and P''. Therefore, in Figure 4.2(c), all methods P are 

considered equivalent and collapsed into a single node. 

In Configuration #4, text-and-topology-based equivalence models programmers 

differentiating between patches that have exactly the same content, but different 

topologies across variants (e.g., whether the method moved across variants). For 

example, in Figure 4.2(d), P is adjacent to A in Variants 1,2 and 3, but not in Variant 

4. The intuition here is that the similarities (or differences) in topology might be 

important to variations foraging, just as the topological layout of methods in a program 

is important to programmers’ foraging within a single program variant [63].  

Later, in Section 4.2, we will empirically compare these data model configurations 

to see which of them is the most predictive of programmers’ variations foraging 

behaviors (and hence closely resembles programmers’ mental models of variants).  

 
4.1.2 PFIS-V algorithm: Predicting programmer navigations based on their mental 
models  

In a computational model like PFIS-V, the data model is only one part: it only 

models the information that the programmer knows about so far. However, when 

foraging based on that information, a programmer has several possible navigation 

options: s/he could scroll up or down from the current method to an adjacent method, 

s/he could go back to the previous method that s/he had already been to, or follow the 

link to a method called from another method or go to a method containing some words 

in the method name or the body, forage within the same variant or go to another variant. 

The predictions for which of these navigations a programmer will make is made by the 

predictive algorithm of the model.  

 The PFIS-V algorithm (drawn in part from the PFIS3 algorithm for single-variant 

foraging) takes as inputs: 1) the data model graph, representing the patches, cues and 

links the programmer knows about so far and 2) the list of navigations the programmer 

has made so far. Based on these inputs, the algorithm computes how likely it is for a 

programmer to make each of the available navigation choices based on the scent s/he 

will perceive. PFIS-V computes this scent in two stages as follows.  
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Stage #1: Activation. First, the algorithm initializes the weights for the patch nodes 

the programmer has navigated to so far (i.e., the programmers’ navigation history). 

Specifically, if the algorithm is predicting navigation HK+1, and H1, H2… HK represent 

the patches the programmer has navigated to so far, then the activation step assigns the 

initial weight:  

𝐻= = 	 K
1. 0					𝑓𝑜𝑟	𝑖 = 𝐾

													𝛼𝐻=QR		𝑓𝑜𝑟	𝑖 = 1,2. . 𝐾01 

 
Here, α is the decay factor. We used α=0.9, preserving the value from WUFIS, the 

web-foraging model [10], on which PFIS is based. Thus, the most recent patch, namely 

the patch the programmer is currently in, receives an activation 1.0, the previous patch 

gets 0.9, and the earlier patches get 0.81, 0,729 and so on. All the other patch and word 

nodes in the graph are initialized with weight 0.0. 

From a code navigation perspective, the activation step operationalizes “recency”, 

which prior studies (e.g., [5, 60, 63]) have revealed to be an important predictor of 

programmer navigations: a programmer often revisits patches that s/he has recently 

foraged in. 

Stage #2: Spreading the activation. In the second stage, the algorithm spreads the 

initial activation weights from the activated patches to other related patches, decaying 

the weight by a factor of β=0.85. (We preserved the value of β from the WUFIS model 

[10].) This spreading proceeds in parallel along two distinct paths. 

In the first path, the algorithm spreads the initial activation from patch nodes to 

word nodes and, in turn, from word nodes to other patch nodes via “patch contains 

word” edges. Thus, the algorithm spreads weights to patches that are lexically similar 

to the current patch, thereby capturing the scent programmers perceive from words in 

source code. Since, in one instance, a programmer will attend to only one cue, or follow 

only one link, among the several available choices, the PFIS-V algorithm accounts for 

the probability that a programmer will attend to a certain cue. Therefore, the spreading 

from patch P to patch Q, via word W is given by: 

𝑊	 = 	𝑊	 + 	𝑃	 ∗ 	0.85	 ∗
1

𝑛𝑜. 𝑜𝑓	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠	𝑜𝑓	𝑃	𝑖𝑛	𝑡ℎ𝑒	𝑔𝑟𝑎𝑝ℎ ,	
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𝑄	 = 	𝑄	 + 	𝑊	 ∗ 	1	 ∗ 	
1

𝑛𝑜. 𝑜𝑓		𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠	𝑜𝑓	𝑊	𝑖𝑛	𝑡ℎ𝑒	𝑔𝑟𝑎𝑝ℎ	

Here, β=0.85 indicates a decay factor and is an indicator of how much weight the 

PFIS-V algorithm assigns to the lexical-similarity factor while making predictions. 

Note that the decay is applied only to the first step, otherwise, the algorithm would have 

double decayed the weights. 

Simultaneous to spreading weights along the “patch contains word” edges, the 

algorithm also spreads activation from patch nodes to other patch nodes along 

topological links, namely adjacency and method invocation edges. This spreading 

models that a programmer could follow one of these several available links to navigate 

to the next patch. PFIS-V also accounts for the probability that a programmer will 

follow a link, while spreading activation along links. Thus, in spreading weight from 

patch P to patch Q, the PFIS-V algorithm assigns: 

𝑄	 = 𝑄	 + 	𝑃	 ∗ 	0.85	 ∗
1

𝑛𝑜. 𝑜𝑓	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠	𝑜𝑓	𝑃	𝑖𝑛	𝑡ℎ𝑒	𝑔𝑟𝑎𝑝ℎ. 

Here again, β=0.85 is the decay factor; note that the weights are equal for the 

topological links and word-similarity links4. 

At the end of these spreading steps, the resultant weight on each patch node is a 

measure of the likelihood that the programmer will navigate to that patch; in other 

words, it is a measure of scent: the programmer will follow the path that provides the 

strongest scent. 

The algorithm then ranks the patch nodes based on the weights (highest weight gets 

lowest rank and vice versa, where rank=1 is the algorithm’s top prediction). If several 

patch nodes have exactly the same weight, then the algorithm resolves the tie by 

                                                
 
4 In the version of PFIS-V presented in [77], the algorithm double decayed weights 
while spreading along “patch contains word” edges, thereby biasing the model towards 
navigations via topological links than via word similarity. The earlier version also did 
not: 1) spread activation in parallel resulting in multiplicative effects between the two 
spreading steps and 2) consider similarity or equivalence between the top-of-file 
declarations across variants. 
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assigning an average rank. For example, if k patches are tied at rank r, then the 

algorithm assigns a rank: 

𝑅	 = 	𝑟	 +	
𝑘 + 1
2 . 

The algorithm then “rates itself” by returning the rank of the patch to which the 

participant actually navigated to. This rank is an indicator of the accuracy of the 

prediction: if the algorithm assigned rank 1, then the actual navigation was also the 

algorithm’s top prediction. On the other hand, if the algorithm returned a high rank 

(lower scent), then the algorithm mispredicted the navigation. As we shall see later, we 

will use this accuracy measure to evaluate the model, and hence gather evidence 

towards (or against) the hypotheses encoded in the model.  

The spreading activation steps and ranking mechanisms described so far are 

common to both PFIS3 and PFIS-V algorithms. The difference then, between the two 

algorithms, is PFIS-V implements the following variations-specific extension.  

Variations-specific extensions: 
Recall that programmers capitalized on the similarities between variants during 

their variations foraging. The data model configurations of PFIS-V, described in 

Section 4.1.1, captured what similarities programmers perceive, and formed a part of 

their mental models. The PFIS-V algorithm operates on these data models and predicts 

how a programmers will use those similarities (in their mental models) to make 

navigation decisions, such as cost-value estimations. Specifically, it implements the 

following two extensions (highlighted in blue in Figure 4.3). 

First, PFIS-V accounts for the fact that programmers might navigate between 

similar patches (patches with same file, folder and method names) in multiple variants, 

even when a direct link between those patches is absent. For example, some participants 

in our study navigated to the view.js file, drawScoreBoard() method in one variant after 

the other. To model this behavior, the PFIS-V algorithm spreads activation along the 

“variant-of” edges while spreading activation via topological links.  

Second, as the following paragraphs detail, PFIS-V models that a programmer will 

know about the existence of a patch in one variant and will be able to estimate its costs 

and values, based on what s/he has seen in other variants.  
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Definitions: 
1: Patch Set P: set of all patches the programmer has seen so far.  
2: Word Set W: set of all words in all the patches in P 
3: Graph G = (NP U NW, EP U EW), where, 

o NP: set of nodes representing patches in P (a patch node can represent a single non-
collapsed patch or multiple equivalent patches when collapsed), 

o NW: set of nodes representing the words in W, 
o EP: set of edges between two patch nodes, when the patches are linked by an 

adjacency, invocation or a “variant-of” link, 
o EW: set of edges between a word node and a patch node, where the patch contains 

the word. 
4: Navigation history H: sequence of patches to which the programmer has navigated so far. 

Activate (G, H[1..k]): 
5: for each node N in G: 
 set Weight (N) ß 0.0 
6: for i ß k down to 1: 
set Weight(H[i]) ß 1.0 
7: for i ← k-1 down to 1: 
8:              set Weight(H[i]) = α * H[i+1]; α = 0.9 

Spread (P, Q, decay, no. of neighbors)   
9:  Probability = 1.0 / no. of neighbors 
10: Weight (Q) = Weight (Q) + Weight(p) * decay * probability 

Steps to predict the (k+1)th patch in H: 
11: if programmer has not seen exact patch earlier: 
12:  if programmer has seen a similar patch s in another variant:  
13:   Approximate the content of (k+1)th patch to the contents of s. 
14:  Else, return “unknown” 
15: Activate(G, H[1..k]) 
16: For each patch node P in graph: 
17:  For each neighbor N of P:   
18:   Spread (P, N, 1.0, count(N)) 
19: For each node P in graph: 
20:  For each neighbor N of P (along all edges): 
21:   Spread (P, N, β=0.85, count(N)) 
22: Rank the patch nodes in the decreasing order of activation. 
23: If t patch nodes are tied at rank r,  
24:  Assign rank = [r + (t-1)/2] to all t patch nodes. 
25: Return the rank for the node representing the (k+1)th patch. 
 

Figure 4.3 PFIS-V’s algorithm (Lines in blue are additions from the original 

PFIS3 algorithm.). 
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Traditionally, IFT computational models such as PFIS-V predict navigations to 

only those patches that a programmer already “knows about” and can estimate the costs 

and values for.  For example, if a programmer has navigated to a method average(), 

then s/he knows about the exact costs and values for that patch. Also, if average() calls 

sum(), then the programmer knows about sum() also. In fact, the programmer might be 

able to guess the cost and value for sum() based on cues, such as words in the method 

name, even though s/he might not know its exact content. Thus, PFIS-V makes a 

prediction when a participant navigates to a known patch; known patch = seen the exact 

patch, or its name. For all other navigations to patches that the programmer does not 

already know about (e.g., by opening a file from the package explorer at random), the 

model makes no prediction; we call these navigations “unknowns”. 

However, this notion of known vs. unknown patches changes subtly in variations 

foraging, where a programmer might know about a patch without seeing the exact patch 

or its name but based on what s/he has seen in other similar variants. For example, if a 

programmer has already seen the average() method in Variant 1, s/he might expect to 

find average() in Variant 2 also. Similarly, if average() computes the average mileage 

in Variant 1, the programmer might expect average() to compute average mileage (i.e., 

contain similar values and costs) in Variant 2 also.  

Therefore, PFIS-V predicts navigations to patch when: 1) the programmer has seen 

exactly the same patch or its name, OR 2) the programmer has seen a similar patch in 

another variant. In the latter case, PFIS-V approximates the contents of the patch to be 

the same as that in the last-seen similar patch in another variant—the idea being that 

the programmer will expect the contents to be very similar to what they seen previously 

in other variants. 

In the next section, we will use this PFIS-V algorithm and evaluate its predictions 

under each of the four data models. 

 
4.2 PFIS-V evaluation 

To evaluate PFIS-V, we used the model to predict the navigations made by 7 

participants in the user study described in the previous chapter; we dropped the eighth 

participant, namely P05, due to incomplete data.  
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Recall that participants in the study foraged among 700+ variants of the Hextris 

game to complete a reuse task. In doing so, the 7 participants made a total of 665 

navigations going from one method to another (between-method navigations). We used 

PFIS-V to predict these between-method navigations, in all four data model 

configurations. We used click-based navigations [63] where a navigation is defined as 

a change in cursor  position5. 

For comparison purposes, we also predicted programmer navigations using PFIS3. 

Since both PFIS3 and PFIS-V algorithms work with all four data model configurations, 

we use an algorithm/data-model notation to disambiguate these combinations; for 

example, PFIS3/variant-unaware refers to the PFIS3 algorithm with the variant-

unaware data model.  

 
4.2.1 PFIS-V vs. PFIS3 algorithms 

To compare the predictive ability of PFIS-V and PFIS3 algorithms, we used two 

measures, namely unknown rate and hit rate.  

Unknown rates: how many navigations can PFIS-V predict?  

Recall from Section 4.1.2 that models such as PFIS-V only predict navigations to 

patches that the programmer already knows about; they cannot predict a navigation to 

a patch they do not know exists. Thus, whenever a programmer navigates to an entirely 

new patch, the prediction is always a failure and we denote this as “Unknown”. For 

example, an unknown rate of 60% would mean that the model failed to predict 60% of 

all programmer navigations; thus, lower unknown rates are better. Note that both PFIS-

V (or PFIS3) predict exactly the same set of navigations, and hence yield the same 

unknown rates, in all data model configurations.  

 

                                                
 
5 Another operationalization of navigation, namely view-based navigation, also 
accounts for navigations via scrolling which are not accompanied by a change in the 
cursor position. [63] revealed that a model’s predictive accuracy might vary depending 
on the choice of click-based vs. view-based navigation. However, we followed prior 
work in programmer recommendations and used click-based navigations [42, 64].  
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Figure 4.4. PFIS-V vs. PFIS3 Unknown rates. While predicting participants’ 

between-method’ navigations, PFIS-V had fewer unknown patches, and hence 

predicted more navigations, than PFIS3 did. (Note that lower unknown rate is better.) 

 
 Figure 4.4 compares the unknown rates of PFIS-V (blue) and PFIS3 (yellow) while 

predicting individual participants’ navigations6. We see that, for 7 out of 8 participants, 

PFIS-V’s unknown rates were lower than that of PFIS3 indicating that fewer 

navigations were unknown to PFIS-V than to PFIS3.  The one exception is P08, where 

PFIS-V and PFIS3 yielded similar unknown rates: this is because, P08 foraged in 

methods in only one variant, namely the destination variant, and PFIS-V behaves very 

similar to PFIS3 in single-variant situations. This ability of PFIS-V to predict the same, 

or more, navigations than PFIS3 provides the first evidence towards the efficacy of 

PFIS-V in predicting participants’ variations foraging. 

                                                
 
6 In this thesis, we use the latest versions of PFIS3 and PFIS-V that implement the 
following changes (since [78]). First, similarity and equivalence are also computed for 
top-of-file declarations (modeled as method patches). Second, the spreading of 
activation proceeds in parallel for all nodes. Third, the algorithm does not decay 
weights while spreading from word to patch nodes to prevent double decay (patch-to-
word, word-to-patch) while spreading along “patch contains word” edges; this way, 
lexical similarity and topology factors are assigned equal weightages for making 
predictions. 
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However, unknown rates are a measure of how often a model entirely fails to make 

a prediction, and do not provide any insight into how accurate those predictions were. 

Our next measure, namely hit rates, evaluates the accuracy of the predictions. 

Hit rates: how accurate are PFIS-V’s predictions? 

As described earlier (Figure 4.3), models such as PFIS-V make multiple predictions 

for each navigation, and rank them (its top choice=1, its next choice=2, …). If the 

algorithm assigns a low rank to a patch where the programmer actually navigated to, 

then the prediction is a “hit”; otherwise it is a “miss”. Hit rate(threshold=K) refers to 

the percentage of all actual navigations that a model predicted within its top K ranks 

(“hits”). For example, hit rate(threshold=10) = 90% would mean that a model 

predicted 90% of participants’ navigations within its top 10 ranks. Thus, higher hit 

rates, especially at lower thresholds, are better. 

Following prior work (e.g., [42, 64]) on predicting and recommending programmer 

navigations, we used hit rate (threshold=10) as our default measure of accuracy. In the 

rest of this thesis, the terms “accuracy” and “hit rate” generally refer to hit rate 

(threshold=10), unless specified otherwise. 

Figure 4.5 compares the average hit rates from PFIS-V and PFIS3 for various rank 

thresholds; solid lines represent PFIS-V, dotted lines represent PFIS3, and the four 

colors correspond to the four data model configurations.  As the graph indicates, on an 

average, PFIS-V yielded higher hit rates--and therefore was more accurate--than PFIS3 

in all data model configurations.  
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Figure 4.5. PFIS-V vs. PFIS3 Hit rates. On an average, PFIS-V yielded higher hit 

rates than PFIS3 across all data model configurations. (Higher hit rates are better.) 

Drilling down to individual participants, PFIS-V was more accurate than PFIS3 

while predicting individual participants’ navigations also. As Table 4.1, columns d-g, 

show, for 5 out 7 participants, PFIS-V (black) was more accurate than PFIS3 (orange); 

the improvements were as high as 19.23% for P07 (columns f, g). For the remaining 

two participants (P03, P08), PFIS-V matched to PFIS3’s accuracy. These 

improvements in hit rates indicate that PFIS-V was a more accurate predictor of 

participants’ variations foraging than PFIS3. 
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Table 4.1. PFIS-V vs. PFIS3: Per-participant hit rates. Black = PFIS-V; 

orange=PFIS3. For all data models and participants, PFIS-V was similar or more 

accurate than PFIS3. In particular, the PFIS-V/variant-and-equivalence-aware(text) 

model yielded higher average accuracies, particularly benefiting Group-1 participants 

(P04, P07). For all other participants, equivalence-awareness did not bring any 

additional improvements over the PFIS-V/variant-aware model.  

 
The fact that PFIS-V not only predicted more navigations than PFIS3 (lower 

unknown rates) but also did so with higher accuracy (higher hit rates) provide evidence 

supporting the assumptions encoded in the PFIS-V algorithm. Recall that PFIS-V made 

models that, even though a programmer has never seen a patch earlier, s/he might 

capitalize on the similarities between variants to infer the existence of the patch, and to 

estimate its costs and values (i.e., based on what s/he has seen in other similar variants). 
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4.2.2 Data model configurations: which one is closer to programmers’ mental 
models?  

Another set of assumptions encoded in PFIS-V are in its four data model 

configurations. They implement different assumptions about participants’ mental 

models of the variational information space: 1) patches with the same name and in 

different variants are somewhat similar in terms of their costs and values (variant-of 

links), 2) patches containing identical content are equivalent and it does not matter 

which one of those identical patches a predator forages in (collapsed patches) and 3) in 

comparing variants, participants not only attended to lexical similarities and differences 

but also compared the topology of patches across variants (text-based vs. text-and-

topology-based equivalence). To evaluate which of these assumptions closely represent 

participants’ mental models, we compare PFIS-V’s accuracy across the four data model 

configurations. 

In Figure 4.5, compare the four solid lines. First, introducing the notions of variant-

awareness (i.e., variant-of links) resulted in slightly higher hit rates for the variant-

aware configuration than the variant-unaware configuration, suggesting that 

participants did navigate among similar patches in different variants.  

Second, comparing the variant-aware and the variant-and-equivalence-aware 

models, we see that modeling equivalence between patches (i.e., collapsing identical 

patches) resulted in higher hit rates. This result suggests that participants’ mental 

models of variants included whether patches were identical (or not) and that they 

considered identical patches equivalent.  

Third, among the two variant-and-equivalence-aware models, text-based 

equivalence resulted in higher predictive accuracy than the text-and-topology-based 

equivalence, suggesting that participants’ comparisons of source-code patches were 

generally based on textual content (e.g., do these methods contain the same text?) than 

on the source topology (e.g., has the method moved?)7.  

                                                
 
7 In the earlier version of PFIS-V [78], the variant-and-equivalence-aware(text, 
topology) model yielded slightly higher hit rates than the variant-and-equivalence-
aware(text) model. This is because, in the earlier version: 1) the spreading decay was 
higher for word-similarity than for topological relationships and 2) the spreading of 
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4.2.3 Two groups: different between-variant foraging behaviors 

However, as Table 4.1 shows, there existed two distinct groups of participants. For 

Group-1 participants (P04, P07), PFIS-V’s accuracy improved while progressing from 

the variant-unaware to variant-aware to variant-and-equivalent-aware models, as the 

four distinct lines in Figure 4.6(a)) show. 

In contrast, for Group-2 participants (P01, P02, P03, P06, P08), the four hit rate 

lines overlap in Figure 4.6(b), suggesting that the PFIS-V hit rates were very similar 

across all data models. Table 4.1 (rows in black, columns d-f) also reveals these 

differences between the two groups.   

Figure 4.6. PFIS-V improvements: two groups of participants. For the Group-1 

participants (5 out of 7), the average PFIS-V hit rates across all data models were 

very similar; however, for Group-2 participants, the variant-and-equivalence-aware 

models were more accurate than the other two models. 

In order to reason about this dichotomy, let us revisit the assumptions the variant-

aware and the variant-and-equivalence-aware data models make: 1) programmers will 

navigate to similar patches in similar locations across variants (variant-aware) and 2) 

programmers will attend to similarities and differences in patches across variants 

                                                
 
activations proceeded in a non-parallel fashion, leading to multiplicative effects 
between textual and topological relationships. 
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(equivalence-aware). Ideally, the more variants a programmer forages in and the more 

similar (or identical) patches s/he encounters, the more closely the variant-aware or the 

variant-and-equivalence-aware models will reflect programmers’ foraging (higher 

accuracy).  

This is exactly what happened with Group-1 participants. In Table 4.2, graphs for 

Group-1 participants had more “variant-of” edges and collapsed nodes than Group-2 

participants. This is because, while foraging for an appropriate source variant (between-

variant foraging), Group-1 participants navigated to methods in several variants. 

Specifically, they  1) navigated to similar locations in different variants and 2) attended 

to the similarities and differences in source-code by way of processing cues, just like 

the “variant-of” links and the collapsed nodes model. Therefore, the variant-and-

equivalence-aware models resulted in higher PFIS-V accuracy for Group-1 

participants. (Notice that even among Group-1 participants, P07 visited way more 

variants than P04 and benefiting heavily from the “variant-of” edges and collapsed 

nodes). 

 

 

Table 4.2. Two groups of participants: PFIS-V data model graphs. Group-1 

participants foraged in source-code patches in several variants and the variant-aware 

and variant-and-equivalence aware models closely resembled these navigations. In 

contrast, for Group-2 participants who foraged in only two variants, the four data 

model graphs (and hence accuracy) were very similar. 
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In contrast, for Group-2 participants, there were fewer “variant-of” edges and no 

collapsed nodes in Table 4.2 (all four data models have the same no. of nodes). In other 

words, PFIS-V did not benefit from the variant-awareness and equivalence-awareness 

improvements. This is because, unlike Group-1 participants who relied on similarities 

and differences in methods for their between-variant foraging, Group-2 participants 

relied exclusively on words in changelogs or cues in the game’s output to lead them to 

an appropriate source variant. As a result, they foraged in source-code patches in only 

two variants, namely the source and the destination variant, resulting in little predictive 

advantage from the variant-aware and variant-and-equivalence-aware models. 

Then, how does PFIS-V model Group-2 participants’ between-variant foraging in 

textual changelog and graphical output patches? Unfortunately, it does not! In fact, no 

prior IFT computational model, in programming as well as non-programming domains, 

has accounted for non-textual patches (e.g., graphical outputs). This reveals a gap in 

the state-of-the-art IFT computational modeling.  

But before we go ahead to address this gap and to model changelogs and outputs, 

let us discuss the implications of our results. 

4.3 Implications: Designing for variants 
So far, PFIS-V’s predictions of participants’ navigations provided an apparatus for 

us, as researchers and tool builders, to test our hypotheses about variations foraging in 

an environment. For example, one can posit that a programmer treats a method as 

different if the method got moved within a file. Such a hypothesis can be validated by 

comparing the modeling accuracies of PFIS-V while using text-based versus text-and-

topology-based similarity. 

However, the benefits of models such as PFIS-V are not limited to such theoretical 

understanding. They can also be adopted to practical tool design, such as for tool 

builders to evaluate the gaps in their existing tools. For example, common version 

control tools such as Git employ equivalence in their interfaces; they highlight 

differences between variants and hide away what is unchanged between them. Indeed, 

in our evaluation of PFIS-V, the introduction of equivalence resulted in higher 

predictive accuracy. However, as our results also suggest, tools could provide more 
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navigation affordances for variants, such as navigation between similar patches across 

variants (e.g., easily forage through all versions of a method).  

The higher accuracy of variant-aware data models reveals the importance of 

navigation affordances between similar patches across variants (“variant-of” links). 

Further, the comparison results of the four data models reveals that the variant-and-

equivalence-aware(text) model makes the closest assumptions about programmers’ 

foraging. Therefore, tools aiming to support variation foraging can directly import this 

data model as their underlying data structure to represent variants. 

However, these improvements in accuracy from the variant-aware and the variant-

and-equivalence-aware models were limited to when participants (e.g., Group-1) 

foraged among source-code patches across variants. In our study, the majority of 

participants fell into Group-2 and foraged exclusively in non-code patches,  namely 

textual changelogs and graphical outputs, for their between-variant foraging.  Since 

PFIS-V does not account for non-code patches, it fails to accurately model Group-2 

participants’ variations foraging behaviors. In the next chapter, we will begin 

addressing this gap by accounting for participants’ foraging in non-code patches. 

 
4.4 Open problem: what about modeling non-code patches?  

This limitation in PFIS-V, namely that it does not model non-code patches, is 

shared by almost all IFT-based predictive models--in programming as well as non-

programming domains. They model foraging among only textual patches and do not 

account for non-textual patches, such as videos, audio, interactive content, or graphical 

content (e.g., graphical outputs).          

Given the prevalence of information environments with heterogeneous patch 

types—documents contain text and images, web contains text, images, video, audio 

and interactive games—we believe that expanding to other types of information 

patches, such as outputs with visual content, mixed-media patches, semantic use of 

color, etc. can lead to significant new thought about foraging in variants and 

information foraging in general.  

However, expressing non-textual patches in IFT computational models, parsing 

their information features and computing similarities and differences is a non-trivial 
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problem, let alone modeling programmers’ foraging behavior heavily involving visual 

comparisons, as in our study. We consider this to be an important new research 

opportunity in the area of computationally modeling variations foraging. In the next 

chapter, we will begin addressing this gap. 
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CHAPTER 5: PFIS-H: MODELING PROGRAMMERS’ 
VARIATIONS FORAGING IN NON-CODE PATCHES AND 

HIERARCHIES  
During programming tasks, programmers, including our study participants, forage in 

different kinds of information, such as code, outputs, changelogs, design documents and 

software visualizations. Prior IFT research has predominantly focused on understanding how 

programmers forage in code but leaves gaps in our understanding of the other kinds of foraging. 

For example, how do we account for the way programmers connect the outputs they inspected 

to the code they inspect?  How do change logs figure into their foraging through variants? And 

how do programmers choose which part of the IDE (e.g., code vs. changelog vs. output) to 

forage in? 

In this chapter, we consider “hierarchical foraging” as a potential answer to these 

questions. The idea here is that some of programmers’ foraging choices—such as the 

navigations to changelogs vs. outputs vs. code in our formative user study—take the 

hierarchical organization of the IDE (e.g., project contains packages contain classes 

contain methods) into account. Therefore, our new computational model, namely PFIS-

H (or PFIS for Hierarchies), models hierarchical foraging to predict programmers’ 

navigations in code and non-code patches. Further, to consider hierarchical foraging in 

a way that does not restrict people’s foraging to strictly textual patches, we add 

treatment of non-textual patches (that prior IFT computational models have largely 

ignored). 

 
5.1 PFIS-H data model 

The data model in PFIS-H similar to that in PFIS-V: it is a graph representation of 

the information environment--the patches, cues, links--that the programmer has seen 

so far. Additionally, to account for hierarchical foraging and non-code patches, PFIS-

H makes the following two extensions to its data model.  
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Figure 5.1. The PFIS-H data model. (top = example program, bottom = 

corresponding PFIS-H data model graph). The PFIS-H data model: 1) accounts for 

non-code patches (changes.txt=changelog, index.html=output) and 2) models “patch 

contains smaller patch” relationships via “contain” edges which form a hierarchy.  

First, the PFIS-H data model includes the hierarchy of patches in the environment 

as follows. Whenever a patch contains one or more smaller patches, the PFIS-H data 
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model graph includes a “contains” edge between the  two patch nodes8. For example, 

in Figure 5.1 (top), the variant contains a “js” folder. Correspondingly, the data model 

graph (bottom) includes a “contain” edge between the variant and “js” nodes. Similar 

“contains” edges indicate that the “js” folder contains calculate.js file, which in turn 

contains the addNumbers() method. Also note that the variant contains changes.txt 

(changelog) and index.html (output), as in our study environment.  

Second, similar to the source-code patches that a programmer has seen, the PFIS-

H data model also includes non-code patches that a programmer has seen in the study 

environment. Specifically, PFIS-H models textual changelogs and outputs, including 

non-textual (graphical) ones, as follows.  

Modeling changelogs: Starting with changelogs, in one way, changelogs are similar 

to methods: they are both textual. Therefore, we represented changelog patches similar 

to how we modeled methods. For each changelog patch, we included a node in the 

graph. The words in changelogs were represented as word nodes and were linked to the 

changelog nodes to indicate “patch contains word” relationships.  

However, changelogs also fundamentally differ from method patches in that 

changelog patches are all about what is different about a variant; in contrast, method 

patches can sometimes be identical across variants (and hence could be collapsed as 

equivalent). Thus, the notion of equivalence does not apply to changelog patches. 

However, PFIS-H still models that all changelogs patches across variants are similar in 

the sense that they all contain change information; therefore, all changelog patches are 

connected to each other via “variant-of” links to indicate their similarity. 

Modeling outputs: Modeling a generic output patch is hard since outputs can come 

in different formats: some programs produce textual output, others might produce 

                                                
 
8 Earlier versions of PFIS including PFIS3 and PFIS-V, included “contains” edges in 
the data model graph, thereby modeling the patch hierarchy. However, they did not 
affect the scent computation in any meaningful way. For example, files did not receive 
any initial activation that it spread to other files or methods. Similarly, the algorithm 
spread activation from methods to the containing files, but the files did not, in turn, 
spread the activation back to other methods. Therefore, we did not discuss these 
containment relationships as part of the PFIS-V data model and algorithm. 
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audio, video or graphical images; even others might require user interaction to reveal 

parts of the output. As a first step towards modeling such diverse outputs we begin by 

modeling graphical outputs in PFIS-H. Note that, PFIS-H includes capabilities for 

modeling textual outputs also, just like it models textual changelogs and outputs; 

however, in this thesis, we deal only with graphical output patches that our study 

participants foraged in. 

The PFIS-H data model represents output patches as nodes in the data model graph. 

In our study environment, each variant contained an output patch (Figure 5.2), resulting 

in multiple output nodes in the data model graph. Since all output patches in our study’s 

project contained similar information (e.g., Figure 3.1 (left) and (right) contain the 

Hextris game interface), the output nodes for the project are connected to each other in 

the data model graph via “variant-of” links.  

To model programmers’ foraging in the graphical (non-textual) content in output 

patches, we explore the appropriateness of a captioning approach. The idea here is that, 

if we could replace graphical patches with equivalent textual content, then we could 

model graphical patches similar to other textual patches such as code and changelogs. 

Note that our aim here is not to explore automated captioning, but to investigate 

whether, given suitable captions, we could account for graphical patches to improve 

our computational models of programmers’ foraging.  

Therefore, we simply replaced the contents in the graphical output patches with 

descriptions of the task-relevant information features in the patch. We described only 

the task-relevant features because we hypothesized that a programmer will mostly 

attend to task-relevant features as cues while foraging in an output patch. For example, 

score was relevant to the task and so we captioned it, but social media links were not 

relevant to the task and we did not caption them. We also used the same vocabulary as 

in the game’s domain and the task description; for example, the task description 

contained the phrase “move the score above the hexagon” and so we used the phrase 

“score is above the hexagon” rather than the equivalent “score is on top of the 

hexagon”. (Also note the use of the domain-specific “score” rather than a more generic 

“number”).  
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 Using these captions, we included the output patches in the PFIS-H data model as 

follows. Each output patch translated to a patch node; each node in the caption 

translated to a word node; the output patch node and word nodes were connected via 

“patch contains word” links. Since several output patches were similar across variants, 

we also computed the equivalence of output patches, based on their textual captions: 

we considered patches with similar captions (e.g., “score is above the multiplier”) as 

equivalent in the eyes of the forager, because they contained similar information value, 

and provided similar scent about what is in the variant.  

 
5.2 PFIS-H algorithm: Modeling hierarchical foraging  

What the PFIS-H algorithm adds to the PFIS-V algorithm is accounting for 

hierarchies, which it does in the following ways.  

 

 
Figure 5.2. A variant’s hierarchy. The information environment in our study was 

organized as patches: variants contained folders, folders contained files, files 

contained methods. 

 
Extension #1: PFIS-H extends Pirolli’s interpretations of the patch construct—that it 

might be easier for a programmer to forage within a patch than to navigate outside to 

another patch—to multiple levels of patches in the patch hierarchy. Since, in IFT, 
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variants are also patches, PFIS-H assumes that a predator is more likely to engage in 

within-variant foraging rather than to forage across variants—and further, that inside 

those variants, the predator is likely to forage within the same folder, and within those 

folders, more likely to forage within the same file and so on.  

Thus, PFIS-H first activates the entire hierarchy of patches, namely the variant, the 

folder, the file and the method (or changelog or output), that the programmer is 

currently in. Then, in the spreading stage, PFIS-H spreads activation along the 

“contain” edges going top-down, level-wise. Thus, the variant spreads weights to the 

folders it contains, the folders then spread activation to the files they contain, and the 

files in turn spread to methods within it. This way, the algorithm spreads more weights 

to patches in the same hierarchy that the programmer is currently in (than to patches in 

other hierarchies). 

Extension #2: PFIS-H accounts for additional navigation costs that programmers might 

perceive when navigating downwards in the hierarchy. For example, in Figure 5.2, 

some navigations such as scrolling to an adjacent method or clicking on a method call 

(link) cost 1, a navigation from one file’s  method to another file’s method via the 

package explorer cost 2 (open file → scroll to method = 2 steps), a navigation to a 

method in another folder cost 3 (open folder → open file → scroll to method = 3 steps) 

and a navigation from one variant to another variant’s folder’s file’s method costs 4 

(expand variant → expand “js” folder → open file → scroll to method = 4 steps). PFIS-

H accounts for participants’ perceptions of such variable navigation costs and models 

participants’ perceived costs to match the number of actions it took to make a 

navigation. (In contrast, PFIS-V approximated all navigation costs to 1, and hence did 

not explicitly model them.) Both these extensions to the PFIS-H algorithm are 

summarized in Figure 5.3, marked in blue. 
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Figure 5.3. PFIS-H algorithm. The lines in blue indicate the hierarchical-foraging 

related extensions. 
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5.3 PFIS-H Evaluation 
We used PFIS-H to predict the 1040 between-patch navigations participants made 

to methods, changelogs or outputs: these patch types form the leaf nodes in the 

hierarchy in Figure 5.1 (bottom). We compared the PFIS-H predictions against those 

by PFIS-V in its variant-and-equivalence-aware(text) configuration: as we saw in the 

previous chapter, this PFIS-V configuration was the most accurate predictor of 

participant navigations. In the rest of this chapter, any mention of PFIS-V refers to the 

variant-and-equivalence-aware(text) configuration, unless specified otherwise. 

We compared the ranks of predictions PFIS-V and PFIS-H made for participants’ 

navigations. A repeated measures ANOVA (RM-ANOVA) indicated significant 

difference (p=0.0137) in the mean ranks of PFIS-H and PFIS-V, with PFIS-H 

(mean=7.04, SD=10.4) resulting in relatively lower (better) ranks than PFIS-V 

(mean=9.83, SD=15.17) [RM-ANOVA, F(1, 2990)=4.688].  

Zooming into the predictions for individual participants, Figure 5.4 compares the 

hit rates of different models for each participant. The height of the bar represents hit 

rates, i.e., the percentage of the participants’ navigations a model predicts within top 

10  ranks. As the figure shows, the hit rates from PFIS-H (blue) were better than those 

of PFIS-V (diagonal stripes) for 6 out of 7 participants (except P01), with PFIS-H’s 

improvements in accuracy as high as 18.48% (P03).  

Both these results, namely PFIS-H’s significantly lower ranks and higher hit rates 

than PFIS-V, suggest that PFIS-H was a more accurate model of participants’ foraging 

than PFIS-V.  
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Figure 5.4. PFIS-V vs. PFIS-H hit rates. PFIS-H resulted in higher hit rates than 

PFIS-V for all participants except P01. The fact that PFIS-H hit rates were higher 

than either of PFIS-VNC or PFIS-VH suggests that PFIS-H’s predictive advantages came 

from a combination of the two improvements, namely modeling non-code patches 

and hierarchical foraging. 

 
5.4 Where did PFIS-H improvements come from? 

PFIS-H makes two changes over PFIS-V: 1) modeling, and predicting navigations 

to, non-code patches and 2) modeling hierarchical foraging:  

PFIS-H = PFIS-V + non-code patches + hierarchical foraging. 

To investigate how each of these changes translated to PFIS-H’s predictive advantages, 

we isolated the two factors in two distinct extensions to PFIS-V: 

PFIS-VNC = PFIS-V + Non-code patches, and 

PFIS-VH = PFIS-V + Hierarchical foraging 

As Figure 5.4 shows, for all participants (except P01), PFIS-H was more accurate 

than either of these individual models, suggesting that PFIS-H’s improvements came 

from modeling non-code patches as well as from modeling hierarchical foraging. In the 
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rest of this section, we discuss each the individual improvements from each of these 

factors.  

5.4.1 Improvement #1: Modeling non-code patches 
Modeling non-code patches resulted in better hit rates for individual participants’ 

navigation predictions. As Figure 5.4 shows, PFIS-VNC resulted in higher hit rates than 

PFIS-V for 3 out of 7 participants (P03, P06, P08), with the improvements being as 

high as 14.39%. For the other 4 participants, in which PFIS-VNC was not higher than 

PFIS-V, the differences did not exceed 3.81% (P1). In fact, a comparison of ranks 

revealed that, on an average, PFIS-VNC (mean=9.83, SD=15.17) made significantly 

more accurate predictions than PFIS-V (mean=8.65, S.D.=14.23) [RM-ANOVA, F(1, 

2990)=4.688, p=0.0137]. 

     

 
Table 5.1. Study-1 participant navigations: different patch types. Participants 

navigated to non-code patches over 30% of the time: whereas PFIS-V failed to 

account for these navigations, PFIS-H was able to predict them. 

 
These improvements in PFIS-VNC’s accuracy partly came from its ability to predict 

more navigations than PFIS-V. As Table 5.1 shows, participants navigated to 

changelogs and outputs about 30% of the time. Whereas PFIS-V only predicted 

method-to-method navigations (N=665), PFIS-VNC filled this gap and predicted 

navigations to (and from) changelogs and outputs also (N=1040). 
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Not only did PFIS-VNC predict more navigations than PFIS-V, it retained the 

accuracy of the predictions for the navigations that PFIS-V already predicted: the 

individual predictions of PFIS-VNC were also about the same as PFIS-V for navigations 

that both models predicted.  

As an example of how these improvements played out in individual participants’ 

predictions, see Figure 5.5 comparing the predictions made by PFIS-VNC and PFIS-V 

for P01’s navigations. P01 is an example of the worst case, where PFIS-VNC’s (and 

PFIS-H’s) hit rate was worse than that of PFIS-V. The x-axis in the graph indicates 

predictions and the y-axis indicates the rank of the prediction (light blue = PFIS-V, 

dark blue = PFIS-VNC). If a model fails to make a prediction, then the graph shows a 

corresponding diamond above the graph.  

As the figure demonstrates, whenever participants navigated to methods and PFIS-

V and PFIS-VNC made a prediction, the ranks were mostly similar as the overlapping 

light blue “+” and the dark blue dots show. An RM-ANOVA indicated no significant 

difference in ranks between PFIS-VNC (mean=10.28, SD=15.8) and PFIS-V 

(mean=9.83, SD=15.17), [RM-ANOVA, F(1, 1185)=0.588, p=.472]) for these 

navigations to methods. 

 
 

Figure 5.5. P01’s navigation predictions (x-axis=predictions, light blue=PFIS-V, 

dark blue = PFIS-VNC). For navigations to non-code patches, PFIS-V failed to make 

a prediction (top, light blue diamonds) whereas PFIS-VNC (bottom, dark blue dots) 

predicted them at lower ranks. For other navigations, PFIS-VNC predictions (bottom, 

dark blue dots) were mostly similar, or slightly worse than that of PFIS-V (bottom, 

light blue “+”). 



 

 

75 

For other navigations, namely to changelogs and outputs, PFIS-V failed to make 

prediction (light blue “diamond” above the navigation), whereas PFIS-VNC predicted 

them at low ranks (generally low dark blue dots).   

This accuracy of PFIS-VNC when predicting changelog and output navigations 

suggest the validity of our hypotheses about participants’ foraging in these patches, 

namely that they estimated the contents of new changelog (or output) patch based on 

what they had seen in other changelogs (or outputs) and that they mostly attended to 

task-relevant information features in output patches. 

5.4.2 Improvement #2: Modeling hierarchical foraging 
PFIS-H also made significant improvements in accuracy from its modeling of 

hierarchical foraging. We measured these improvements in two ways.  

First, we isolated the improvements from hierarchical foraging by comparing PFIS-

VNC and PFIS-H, both of which model code and non-code patches. This comparison 

resulted in PFIS-H’s ranks (mean=7.03, SD=10.4) being significantly lower than that 

of PFIS-VNC (mean=8.65, SD=14.23) [RM-ANOVA F(1, 1860)=12.25, p=0.0128]. 

Second, we compared PFIS-V and PFIS-VH both of which predict method-to-

method navigations only. In this case, PFIS-VH (mean=7.82, SD=10.52) ranks were 

significantly lower than those of PFIS-V (mean=9.82, SD=15.15) [RM-ANOVA 

F(1,1134)=10.56, p=0.0175]. Thus, in both cases, modeling hierarchical foraging led 

to significantly better predictions of participants’ navigations. 

These comparisons also held at the individual participant level. As Figure 5.4 

shows, for between-method navigations, PFIS-VH resulted in similar or higher hit rates 

than PFIS-V for 6 out of 7 participants (except P01). Similarly, with the non-code 

patches accounted for, PFIS-H was more accurate than PFIS-VNC for 6 out of 7 

participants (except P01). 

Finally, drilling down into the predictions for individual navigations, Figure 5.6 

illustrates the effects of modeling hierarchical foraging one navigation at a time. The 

x-axis indicates navigations and y-axis indicates difference between PFIS-VNC and 

PFIS-H ranks. A positive bar represents instances where modeling hierarchical 

foraging helped PFIS-H’s predictions, a negative bar indicates instances where 
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modeling hierarchical foraging hurt PFIS-H’s predictions. The height of the bars 

indicates the extent to which hierarchical foraging helped or hurt that navigation’s 

prediction. 

As the mostly taller and more frequent positive bars in Figure 5.6 indicate, 

modeling hierarchical foraging helped, more than it hurt, PFIS-H’s ability to predict 

programmer navigations. 

 

  
Figure 5.6. Improvements from hierarchical foraging. (Positive-bar = PFIS-H was 

better than PFIS-VNC, negative bar= PFIS-VNC was better than PFIS-H.) The taller 

and more frequent positive bars (pointing upwards) indicate that PFIS-H made more 

accurate predictions than PFIS-VNC. 

Interpretation: Hierarchical foraging from a variations foraging standpoint 

Modeling hierarchical foraging, namely that participants will forage within a patch 

(or file or folder or variant) rather than between them, turned out to be advantageous 

for PFIS-H when predicting within-variant navigations. Notably, PFIS-H made more 
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accurate predictions than PFIS-VNC when participants’ foraging within a variant 

stopped following prior scent and began following new scent (e.g., move from looking 

for the word “score” to looking for “multiplier”) as in the following scenarios. 

Within-variant scenario #1. Changing information goals. PFIS-H had an advantage 

when predicting participants’ within-variant navigations when their foraging goals 

changed (e.g., from looking for score, to looking for multiplier) and they followed new 

scent pertaining to their new goal. For example, consider P08’s foraging in the 

destination variant, as shown in Figure 5.7. In region 1A of the graph, P08 made several 

navigations based on the same word “score”, and both PFIS-VNC (light blue) and PFIS-

H (dark blue) were able to accurately predict such same-scent navigations (low, mostly 

overlapping dots). In contrast, 1B is an instance where P08 changed goals to look for 

multiplier code and started searching for words such as “hiding”, “text” and 

“random”.  Since these navigations were not made on what the participant had already 

seen, or the scent she was following so far, the scent computation apparatus in both 

PFIS-H and PFIS-VNC made inaccurate predictions, as the peaks (high ranks) in the 

graph show at 1B. However, PFIS-H (dark blue) resulted in a better rank than PFIS-

VNC (light blue), because it was able to guess that the participant will navigate to some 

location within the same variant. In contrast, PFIS-V made no such assumption.  

 

 
Figure 5.7. P08’s navigation predictions (light blue = PFIS-VNC, dark blue=PFIS-

H). When P08 made within-variant navigations following the trail of the word 

“score” (1A), PFIS-VNC and PFIS-H resulted in mostly similar ranks, but when he 

followed new scent, PFIS-H resulted in better ranks than PFIS-VNC (1B). 
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Within-variant scenario #2: Navigations to other patch types. Another scenario where 

modeling hierarchical foraging helped was when participants navigated to different 

patch types within the same variant (e.g., from code to changelog). Here again, PFIS-

H made better predictions than PFIS-VNC, as in the previous scenario. As an example, 

consider the case of P06: when foraging in the destination variant’s source-code 

patches, P06 realized that the variant did not work as he expected. Therefore, at 2A in 

Figure 5.8, he navigated from the variant’s code to the variant’s changelog—a different 

patch type.  Both PFIS-VNC  and PFIS-H mispredicted this navigation, since the 

changelog was not linked from the current method, nor based on recently visited 

patches, nor based on words the participant had demonstrated interest in, in the source 

code patches (light and dark blue peaks at 2A). However, as in scenario #1, the PFIS-

H rank (dark blue) was lower (better) than that of PFIS-VNC (light blue) because PFIS-

H accurately guessed that the participant will remain within the same variant, whereas 

PFIS-VNC had no such clue about where and why a programmer will navigate. We also 

observed similar instances when participants changed patch types to navigated to/from 

output patches to other patch types within the same variant.  

 

 
Figure 5.8. P06’s navigation predictions (light blue = PFIS-VNC, dark blue=PFIS-

H). PFIS-H predicted navigations to different patch types within the same variant 

better than PFIS-VNC did. At 2A, P06 navigated from the source-code patches to the 

changelog patch within the source variant.  

 
Unfortunately, participants did not always forage within the same variant; they 

made several navigations across variants, such as to find a suitable source variant or to 

integrate code from the source variant into the destination variant. In such between-
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variant cases, PFIS-H sometimes made worse predictions than PFIS-VNC and at other 

times it made similar predictions as PFIS-VNC, as the following scenarios show. 

 

 
Figure 5.9. P02’s Navigations predictions. (dark blue = PFIS-H, light blue = PFIS-

VNC). For between-variant navigations, PFIS-H made worse predictions than PFIS-

VNC when participants navigated to methods (high cost, higher PFIS-H ranks than 

PFIS-VNC at 3A, 3B) and similar predictions as PFIS-VNC for navigations to 

changelogs and outputs (low cost, overlapping light and dark blue dots in 4A and 

4B). 

 

Between-variant scenario #1. Navigations to methods. One scenario where PFIS-H 

made worse predictions than PFIS-VNC was when participants navigated from one 

variant’s source-code to another variant’s source code: these navigations contribute to 

some of the negative bars in Figure 5.6. For instance, see Figure 5.9: at 3A, P2 

navigated from 2014-05-21-15:39:02 variant’s renderText() to Current variant’s 

checkGameOver() and at 3B, he navigated from Current variant’s drawPolgyon() to 

2014-05-21-15:39:02 variant’s renderText(). For these between-variant navigations, 

PFIS-H (dark blue), that expects participants to forage within variants than across, 

resulted in worse predictions than PFIS-VNC (light blue). 

Between-variant scenario #2. Navigations to changelogs/outputs. In contrast, PFIS-

H resulted in similar ranks as PFIS-VNC, when participants navigated between variants, 

navigating from one variant’s patches (methods or changelogs or outputs) to another 

variant’s changelogs or outputs (open variant → open changes.txt or run index.html). 

For example, in Figure 5.9, P02 navigated to from one variant’s change log to another 

variant’s changelog at 4A and from one variant’s output to a new variant’s output at 
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4B: for both these navigations, PFIS-H (dark blue) and PFIS-VNC (light blue) ranks 

almost overlap.  

This is because, PFIS-H not only expected participants to forage within a variant, 

it also expected them to navigate in ways that will maximize value/cost. In this case, 

PFIS-H modeled that between-variant navigations from changelog/output to another 

changelog/output can be cheaper (expand variant folder → open changes.txt or run 

index.html: cost=2) than within-variant navigations from changelogs/outputs to 

methods (js folder → view.js → render() = 3) and that participants are likely to navigate 

to changelogs/output over methods across variants. Thus, modeling cost offset some of 

the potential disadvantages at blindly favoring within-variant navigations over 

between-variant navigations in PFIS-H.  

In summary, PFIS-H’s predictive improvements came from modeling both non-

code patches as well as from modeling hierarchical foraging—in the latter case, both 

from favoring within-patch navigations over between-patch ones, as well from 

accounting for the navigation costs.  

 
5.4 Does hierarchical foraging generalize beyond variants? 

As we described earlier, hierarchical foraging has its underpinnings in IFT’s 

notions of between-patch vs. within-patch foraging—that a forager will forage within 

a patch than across them—and the costs of those foraging navigations. Therefore, we 

have no reason to believe that hierarchical foraging, as a phenomenon, applies only to 

variations foraging. Specifically, the question arises whether hierarchical foraging also 

applies to programmers’ foraging in a single variant of a program.  

To answer this question, we obtained the navigation data from a prior study by 

Piorkowski et al. that did not involve variants [64]. Participants in the study, namely 9 

professional programmers, worked in Eclipse IDE to fix a bug in jEdit, an open-source 

Java-based project. The jEdit program was hierarchically organized into packages and 

subpackages, classes and methods.  

We predicted participants’ method-to-method navigations in jEdit using PFIS-V 

and PFIS-VH. A comparison of prediction ranks from the two models indicated 

significant differences [RM-ANOVA F(1,930)=5.919, p=.0378]—with PFIS-VH 
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(mean=24.53, S.D.= 63.7) resulting in significantly lower ranks (better predictions) 

than PFIS-V (mean=33.54, S.D.=94.42) and PFIS-VH). Further, when 

predicting  individual participant navigations, PFIS-VH resulted in up to 10% (P6) 

higher hit rates than PFIS-V.  

These results lend evidence supporting the hypothesis that led to the development 

of PFIS-H—that programmers adapt their foraging to the hierarchical organization of 

the environment and that they account for the costs of doing so. These results also 

suggest the generality of hierarchical foraging, as phenomenon, to professional 

programmers, and to non-variations situations. In the next chapter, we’ll continue along 

these lines and further evaluate the generality of our results and models.  
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CHAPTER 6. GENERALIZATION:  
EVALUATION WITH NEW DATA  

 
So far, we have been exploring the question: does IFT explain and predict 

information seeking in the presence of variants? In Chapters 3-5, we considered this 

question empirically for novice programmers, with some attempt at generalizing our 

results on hierarchical foraging to single-variant situations and to more experienced 

programmers. In this chapter, we continue in the direction of generalization, 

considering whether our results generalize to more experienced programmers, in 

variations foraging situations. 

6.1 Methodology  
Towards this end, we conducted a replication of the investigation into novice 

programmers’ variations foraging in Chapter 3-5, but with a new population, namely 

experienced programmers. 

Because our goal was to investigate whether our results generalize to another 

population, we kept all variables unchanged except the participants’ level of 

experience. Thus, we used the same programming environment9 (Cloud9), the same 

game program (Hextris), similar data collection apparatus and the same tutorials and 

tasks as in the previous study. We also replicated all other experience-related variables 

except participants’ overall years of experience: in both studies, we did not explicitly 

include or exclude participants with Javascript experience, familiarity with the Hextris 

codebase or the Cloud9 environment. This way, we attempted to eliminate as many 

sources of uncontrolled variations that might affect the results. 

We recruited 10 experienced programmers from our graduate CS program. As 

Table 6.1 shows, the experienced programmer population carried greater programming 

experience (mean=10.9 years, median=10 years) than the novice programmers that 

                                                
 
9 In our second study, we used the latest versions of the Cloud9 IDE, operating systems and web browsers 
available at the time of conducting the study. However, we did not observe any changes (e.g., navigation 
affordances, navigation costs) in the newer versions that might lead to different foraging behaviors than 
the previous study. 
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participated in our prior study (Mean= 4.06 years, median=4 years). See page 21, Table 

3.1 for the demographics of the original study participants. 

 

 
Table 6.1. Replication study: Participant demographics.  

 
6.2 Research questions 

We evaluated the generality our prior empirical results via the evaluation of our 

two computational models, by way of answering the following questions:  

• RQ1: PFIS-V generalization. Does PFIS-V model more experienced 

variations foraging behaviors as well as it modeled novice programmers’ 

variations foraging?  

Partici
pant Gender Age

Overall 
programming 

experience

Javascript 
experience

Ever built a web / 
mobile app with 

JS?

Cloud9 
experience

S01 Male 20s 4 0 No No

S02 Male 20s 6 0.5
Website similar to 
amazon as course 
project.

No

S03 Male 30s 17 0 No No

S04 Male 30s 15 3
Yes, as a demo for 
students as well as 
for research tools.

Yes, briefly 
just playing 
with it.

S05 Male 20s 6 <1 No No
S06 Male 40s 20 0 No No
S07 Male 20s 14 0 No No

S08 Male 30s >10 3

Android app using 
Java/Javascript; 
Desktop client app 
using 
Electron/Javascript.

No

S09 Female 20s 7 <1
Yes. 3 web apps 
with React and 
Nodejs.

No

S10 Female 30s 10 0
Yes, with help from 
someone, I built a 
JS web app [sic].

No
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• RQ2: PFIS-H generalization. Does PFIS-H predict the hierarchical 

foraging behaviors of more experienced programmers (including their 

navigations to non-code patches)  as well as it did for novice programmers? 

To answer these questions, we re-ran the PFIS-V and PFIS-H algorithms on the 

new participants’ navigation data.  Together, the 10 participants made over 1500 

between-patch navigations, navigating to both source-code and non-code patches.  

 
6.3 Results: PFIS-V generalization (RQ1)  

To evaluate the generality of PFIS-V, we conducted the same analyses with the new 

study’s data, as we had done with the original data: 1) comparison of PFIS-V and PFIS3 

predictive accuracies, 2) comparison of the four data models, 3) comparison of the two 

groups of participants. As we discuss these results, we also juxtapose graphs/tables with 

those from the original study, to facilitate easy comparison.  

 
6.3.1 PFIS-V vs. PFIS3 

We compared the predictiveness of PFIS-V and PFIS3 in terms of both unknown 

rates and hit rates.  

Unknown rates:  Figure 6.1 (left) compares the unknown rates from PFIS-V and 

PFIS3; the corresponding graph from the prior study is reproduced in Figure 6.1 (right).  

Recall that unknown rates refer to the percentage of navigations a model failed to make 

a prediction for, namely when the participant navigated to a location s/he (and the 

model) did not know existed.  

As Figure 6.1 (left) shows, for all participants except S02, S09, PFIS-V ended up 

with fewer unknowns than PFIS3. For S02 and S09, there was no advantage (and no 

disadvantage) of PFIS-V vs. PFIS3 because: 1) S02 foraged predominantly in a single 

variant and 2) S09 predominantly navigated based on word-similarity and method call 

relationships, navigating less frequently to newer locations. 



 

 

85 

 

Figure 6.1. PFIS-V generalization: unknown rates (ordered by PFIS-V unknown 

rates). PFIS-V resulted in similar or lower unknown rates than PFIS3 for all 

participants in the replication study (left), just as it did in the original study (right). 

Hit rates: In terms of the accuracy of the predictions, as Figure 6.2 (left) shows, PFIS-

V, on an average, was more accurate than PFIS3 in all data model configurations. 

Considering predictions for individual participant navigations, Table 6.2 (right) shows 

that PFIS-V was more accurate than PFIS3 for all participants except S02 and S09. For 

S09, PFIS-V still had a predictive advantage over PFIS3 at higher rank thresholds, but 

for S02, who foraged within a single variant, PFIS-V was about the same as PFIS3.  

Both the above results, namely the generally lower unknown rates and the overall 

higher hit rates from PFIS-V than PFIS3, are consistent with our original study’s 

findings, suggesting the generality of the assumptions encoded in the PFIS-V 

algorithm.  
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Figure 6.2. PFIS-V generalization: hit rates. PFIS-V (solid lines) resulted in 

higher hit rates than PFIS3 (dotted lines) in all four data model configurations in both 

the studies. 

 
6.3.2 PFIS-V: Which data model is most accurate?  

In terms of the data model configurations also, the results from the original study 

generalized to our new study. As Table 6.2 (Replication study) shows, the 

predictiveness of the four data models followed the order: variant-unaware ≤ variant-

aware ≤ variant-and-equivalence-aware (text, topology) ≤ variant-and-equivalence-

aware(text), suggesting that our assumptions about participants’ mental models (e.g., 

similarity of patches, the notion of equivalence) generalized to experienced 

programmers. 
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Table 6.2. PFIS-V generalization: per participant hit rates. (orange=PFIS3, 

black=PFIS-V). For most participants in both studies, PFIS-V yielded higher hit rates 

than PFIS3. For other participants, PFIS-V hit rate was similar to that of PFIS3.  

Variant-
unaware

Variant-
aware

Variant-and-
equivalence-
aware(text)

Variant-and-
equivalence-
aware(text, 
topology)

21.60% 20.00% 58.40% 53.60%
21.60% 21.60% 31.20% 26.40%
47.17% 47.17% 52.83% 52.83%
47.17% 47.17% 47.17% 47.17%
70.24% 70.24% 71.43% 71.43%
70.24% 70.24% 70.24% 70.24%
57.95% 57.95% 60.23% 60.23%
55.68% 55.68% 55.68% 55.68%
67.21% 67.21% 75.41% 75.41%
63.11% 63.11% 63.11% 63.11%
57.82% 57.82% 58.50% 58.50%
57.14% 57.14% 57.14% 57.14%

35.63% 35.63% 39.08% 39.08%
35.63% 35.63% 37.93% 37.93%
70.97% 70.97% 70.97% 70.97%
70.97% 70.97% 70.97% 70.97%
78.35% 78.35% 79.38% 79.38%
78.35% 78.35% 78.35% 78.35%
71.85% 71.85% 71.85% 71.85%
71.85% 71.85% 71.85% 71.85%

135

147

GROUP-1

GROUP-2

125

106

84

88

122

Per participant hit rate (rank threshold=10) 
orange=PFIS3, black=PFIS-VNo. of 

between-
method 

navigations 
(N=1023)

88

31

97

S08 17

S09 2

S10 3

S05 8

S06 4

S07 5

S02 1

S03 2

S04 37

Partici
pant

No. of 
variants

S01 2

variant-
unaware   

variant-
aware      

variant-and-
equivalence-
aware(text)    

variant-and-
equivalence-
aware(text, 
topology) 

65.17% 65.17% 69.66% 69.66%
64.04% 64.04% 64.04% 64.04%
49.04% 49.04% 73.08% 67.31%
48.08% 48.08% 53.85% 48.08%

83.64% 83.64% 83.64% 83.64%
80.00% 80.00% 80.00% 80.00%
70.69% 70.69% 70.69% 70.69%
69.83% 69.83% 69.83% 69.83%
51.52% 51.52% 51.52% 51.52%
51.52% 51.52% 51.52% 51.52%
47.52% 47.52% 47.52% 47.52%
46.53% 46.53% 46.53% 46.53%
55.88% 55.88% 55.88% 55.88%
55.88% 55.88% 55.88% 55.88%

* P01 made an additional navigation a third (potential source) variant.

2

21

2

55

116

132

101

104

68

P06

P07

P08

P01

P02

P03

Participant 

GROUP-2

GROUP-1

89

Per participant hit rate (rank threshold = 10)        
black = PFIS-V; orange = PFIS3 

No. of 
between-
method  

navigations 
(total=665) 

P04

3*

2

2

5

No. of 
variants     
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6.3.3 PFIS-V: Two groups and two foraging behaviors 
But we saw a difference from the original study in terms of the predictive advantage 

from modeling equivalence. Recall that participants fell into two groups based on their 

between-variant foraging behaviors: whereas Group-1 participants navigated to code 

and non-code patches in multiple variants, Group-2 participants navigated exclusively 

to non-code patches in several variants, looking at source code only in the source and 

destination variants. Since the source code in consecutive variants were very similar, 

modeling equivalence of patches led to improved PFIS-V predictions for Group-1 

participants in the original study (Table 6.2: prior study), but no such improvements 

were observed for Group-2 participants. 

However, in the replication study (Table 6.2: replication study), modeling 

equivalence led to slight improvements for Group-2 participants also. As 2 out of 4 

Group-2 replication participants (S01, S03) foraged in the source and destination 

variants, they encountered source-code patches (e.g., game analytics-related code) that 

happened to be identical between the two variants, leading to better predictions by the 

equivalence-aware models.  

6.4 Results: PFIS-H Generalization (RQ2)  
To answer RQ2 on the generality of PFIS-H, we first compared the accuracies of 

PFIS-H and PFIS-V. We then delved down into the individual improvements from 

modeling non-code patches and hierarchical foraging, as we did in Chapter 5.  

6.4.1 PFIS-H vs. PFIS-V 
Consistent with the results from the previous study, PFIS-H was better than PFIS-

V at predicting participants’ navigations in the new study. A comparison of the 

prediction ranks from the two models indicated significant differences [RM-ANOVA 

F(1, 2285)=21.22, p=0.00128] with PFIS-H ranks (mean=6.08, SD=10.32) being 

significantly lower and hence better than PFIS-V’s (mean=9.15, SD=13.64). In fact, as 

Figure 6.3 (left) shows, PFIS-H yielded better hit rates than PFIS-V for every one of 

the participants. 

In the rest of this section, we tease apart the predictive gains in PFIS-H from its two 

distinct improvements, namely modeling non-code patches and modeling hierarchical 
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foraging. Indeed, as Figure 6.3 (left) shows, both these changes contributed to PFIS-

H’s improvements: PFIS-H which modeled both non-code patches and hierarchical 

foraging resulted in better hit rates than PFIS-VNC which modeled only non-code 

patches, or PFIS-VH which modeled only hierarchical foraging. (As in the previous 

study, PFIS-VNC = PFIS-V + non-code patches, PFIS-VH = PFIS-V + hierarchical 

foraging; PFIS-H = PFIS-V + non-code patches + hierarchical foraging.) 

 

Figure 6.3. PFIS-H generalization (ordered by PFIS-H hit rates). In both the 

replication and the original studies, modeling hierarchical foraging (PFIS-V vs. PFIS-

VH) as well as non-code patches (PFIS-V vs. PFIS-VNC) led to higher predictive 

accuracy, resulting in higher accuracy of PFIS-H than PFIS-V. 

6.4.2 Improvement #1: Foraging in non-code patches.  
Similar to novice programmers (in the original study), more experienced 

programmers (in the replication study) also foraged among changelogs and outputs, 

navigating to them ~23% of the time (Table 6.3: left). Whereas PFIS-V failed to 

account for these navigations, which constituted close to one-fourth of all participant 

navigations, PFIS-H (and PFIS-VNC) which accounted for non-code patches was able 

to predict these navigations.  
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Further, PFIS-VNC (and PFIS-H) were able to also predict these navigation 

accurately. In fact, PFIS-VNC’s ranks (mean=7.41, SD=12.57) were significantly lower 

than those of PFIS-V (mean=9.15, SD=13.64) [RM-ANOVA F(1, 2285) = 12.49, 

p=0.00638]. These improvements in ranks also reflected in hit rates: as Figure 6.3 (left) 

shows, PFIS-VNC yielded higher hit rates than PFIS-V for all participants but one (S08). 

These improvements in accuracy are similar to what we observed in the previous study, 

suggesting that our earlier assumptions about how novice programmers foraged in non-

code patches (that we modeled in PFIS-VNC) also generalize to experienced 

programmers. 

Table 6.3. PFIS-H generalization: navigations to non-code patches. 

(left=replication, right=original study). About one-fourth of all participants’ 

navigations were to non-code patches; however, experienced programmers (left)  

made fewer navigations to changelogs than the novice programmers did (right). 

 
However, as Table 6.3 left vs. right shows, one notable difference between the two 

populations is that the experienced programmers (left) made fewer navigations 

(mean=0.4, SD=1.26) to changelog patches than novice programmers (right) did 

(mean=7.14, SD=8.88) [Welch’s t-test, t(6.1709)=-1.9954, p=0.09169]. One possible 

reason is that experienced programmers (who were likely to be familiar with version 

control) did not expect to find changelog information in our study environment that 

was very different from traditional version control environments. Another possibility 

is that experienced programmers were aware that changelogs were about what changed-

Method Output Changelog Total Method Output Changelog Total

S01 112 32 0 144 P01 60 40 14 114
S02 54 25 0 79 P02 119 29 10 158
S03 112 26 0 138 P03 150 69 1 220
S04 135 57 0 192 P04 96 52 23 171
S05 122 22 0 144 P06 105 29 2 136
S06 98 57 0 155 P07 109 26 0 135
S07 96 24 0 120 P08 79 27 0 106
S08 125 19 4 148
S09 156 70 0 226
S10 160 19 0 179

1170 351 4 1525 718 272 50 1040
(76.72%) (23.02%) (0.26%) (100.00%) (69.04%) (26.15%) (4.81%) (100.00%)

REPLICATION STUDY PRIOR STUDY

Participant 
(N=10)

No. of navigations

Total

Participant 
(N=7)

No. of navigations

Total
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-and not what is contained--in a variant and therefore did not expect to gain any 

valuable information from them (and hence either ignored them or did not look for 

them). As we speculated earlier in Chapter 3, this might also be the reason that novice 

programmers abandoned changelog patches in favor of the more valuable outputs.  

 
6.4.3 Improvements #2: Hierarchical foraging  

The second set of PFIS-H improvements came from modeling hierarchical 

foraging, which led to significantly better predictions (in terms of ranks) when 

predicting method-to-method navigations as well as when predicting navigations to 

code and non-code patches (PFIS-VNC vs. PFIS-H). Table 6.4 shows the results of the 

statistical tests in the two cases.  

 
Considering only between-method 

navigations, without accounting for 
non-code patches  

(N=1022) 

With accounting for navigations to 
code and non-code patches  

(N=1525) 

PFIS-V vs. PFIS-VH PFIS-VNC vs. PFIS-H 

Significant differences between  
PFIS-V and. PFIS-VH ranks: 

 
RM-ANOVA F(1, 1794) = 20.48, 

p=0.00144]. 

Significant differences between  
PFIS-VNC and. PFIS-H ranks 

 
[RM-ANOVA, F(1, 2776)=16.46, 

p=0.00286]. 

PFIS-VH ranks: mean=7.09, SD=10.21 
PFIS-V ranks:  mean=9.15, SD=13.64 

PFIS-H ranks   : mean=6.08, SD=10.32  
PFIS-VNC ranks : mean=7.41, SD=12.57  

Table 6.4. PFIS-H generalization: Hierarchical foraging improvements. 

Irrespective of whether non-code patches were included or not, modeling hierarchical 

foraging led to significant improvements in predictions for experienced programmers’ 

navigations. 

These significant differences in prediction ranks also translated to higher hit rates 

when predicting individual participant navigations. In Figure 6.3s (left), for almost all 

participants PFIS-VH > PFIS-V and PFIS-H > PFIS-VNC, suggesting that modeling 

hierarchical foraging led to significantly better predictions of more experienced 
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programmers’ navigations, just as it led to significantly better predictions of novice 

programmers’ navigations.  

 
6.3 Bottomline: Do our models generalize? 

Revisiting the research questions that we mentioned earlier in this chapter:  

1. (RQ1) PFIS-V generalization. Does PFIS-V model more experienced 

variations foraging behaviors as well as it modeled novice programmers’ 

variations foraging?  

Our results in Section 6.3 suggest yes, the results from the new study being 

similar to that from the old study data. This similarity suggests that PFIS-V, 

which we developed and evaluated based on novice programmers’ foraging 

behaviors also generalized to experienced programmers. 

2. (RQ2) PFIS-H generalization. Does PFIS-H predict the hierarchical 

foraging behaviors of more experienced programmers (including their 

navigations to non-code patches)  as well as it did for novice programmers? 

Yes, as the results in Section 6.4 suggest. PFIS-H was more predictive than 

PFIS-V of participants’ navigations in the new study, just as it was in the 

previous study, suggesting that PFIS-H, which originally modeled novice 

programmers’ hierarchical foraging also generalized to the experienced 

programmer population. Further, as we discussed in the previous chapter 

(Section 5.4), hierarchical foraging also generalized to experienced 

programmers’ foraging in a new situation, namely in a single variant of a Java 

program during a debugging task. 
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CHAPTER 7. CONCLUDING REMARKS  
 
Discussion and contributions 

Our goal in this dissertation has been to gather evidence defending (or rejecting) 

the thesis: IFT can explain and predict people’s information seeking in the presence of 

variants. Towards this end, we first conducted a user study: qualitative results suggest 

that IFT’s constructs and propositions do help able to explain variations foraging 

behaviors of programmers. We then built two computational models, namely PFIS-V 

and PFIS-H, that operationalized the notions we derived from this study of how IFT 

applies to variants. Quantitative evaluations of the models with data from two empirical 

studies suggested that IFT’s notions of cost, value and scent are able to predict 

programmers’ navigations during variations foraging. Thus, the fundamental 

contribution of this dissertation is the theory of variations foraging, which is grounded 

in the framework of IFT. 

One intended utility of these theoretical foundations is in tool building and 

evaluation. Tool builders can now leverage IFT--its propositions, computational 

models and design patterns—for building and evaluating variations-support tools. For 

example, one result in Chapter 4 is that modeling similarity (“variant-of” links) led to 

better predictions by PFIS-V. This result suggests that providing navigation 

affordances between similar patches in different variants could aid foragers foraging 

among variants. Similarly, tool builders can leverage IFT computational models such 

as PFIS-V and PFIS-H to evaluate their tools, such as to predict how a user will use a 

tool or to compare different tool design options. For example, as we did with PFIS-V, 

tool builders can compare text-based vs. text-and-topology-based equivalence to gauge 

which of these two comparison schemes will better aid foragers in a given foraging 

task. 

Looking beyond variations foraging, this dissertation demonstrated the benefits of 

modeling hierarchical foraging in IFT computational models. By accounting for the 

hierarchical organization of information and the variable costs of navigations to 

different locations, PFIS-H was able to make better predictions of programmer 

navigations both in the presence of variants and without them. This result suggests that 
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tools supporting programmer navigations, such as programmer recommendation tools, 

can benefit by taking the hierarchical and cost aspects into consideration. 

This thesis also contributes the first IFT computational model—in programming as 

well as non-programming domains—that accounts for non-textual patches. By 

modeling graphical outputs, PFIS-H was able to make more and better navigation 

predictions than its predecessors, thereby demonstrating the benefits of including non-

textual patches to understanding people’s foraging.  

Open problems 

One avenue for future research is to address the following challenges of modeling 

non-textual patches. (1) How can we automatically caption graphical patches (which 

can be highly specific as in our study) so as to model these at scale, or to include in 

tools such as just-in-time recommendation systems? (2) How can we model other kinds 

of non-textual patches, such as video, audio and interactive visualizations? (3) Will a 

captioning approach still work for modeling these non-textual patch types (as it did for 

the graphical patches in our study)? 

 Another avenue for future research is about understanding and supporting the 

foraging behaviors in non-textual patches. (1) How do notions of cues, links and scent 

differ between textual and non-textual patches? (2) How will traditional foraging 

activities such as between-patch foraging, within-patch foraging and enrichment apply 

to non-textual patches? (3) What foraging strategies do foragers adopt when foraging 

in non-textual patches? (4) How can tools better support foraging in non-textual 

patches, or more generally environments with heterogeneous patch types,  such as by 

providing better links, aggregation or filtering capabilities? 

This dissertation also raises the following open questions about variations foraging. 

First, as we discussed in Chapter 3, our study participants constructed “stories” to guide 

their foraging. It remains an open question what construct of IFT we should instantiate 

these stories as (e.g., scent or cues or patches or a new construct).  

Second, future research should investigate the creation of variants (producer side), 

such as the following questions. (1) At what intervals should a producer (or automatic 

tool) save a variant (e.g., every little change, once an hour, once a day or every time 
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the program is executed)? (2) What cues should a producer should leave for future 

consumers (foragers) of the variants?  

Third, variations foraging remains to be investigated for other kinds of variants, 

such as different syntactic representations (or variational representations) for the same 

information (e.g., audio and its textual transcript, flowchart and its corresponding 

program code). These variants are different from the program variants (same syntax, 

different semantics) in our study. It remains an open question whether a forager will 

adopt different foraging strategies in these variants than in our studies: will they focus 

less on difference-comparison when the different variants are not syntactically similar 

to each other? will foragers build different kinds of stories when foraging in such non-

chronological variants? 

Conclusion 

In summary, this work contributes the theoretical foundations for variations 

foraging. Grounded in IFT, this dissertation extends the scope of IFT’s validity beyond 

a single variant of textual information: it explains and predicts foraging in the presence 

of multiple variants of an artifact, accounts for non-textual patches of information and 

demonstrates the advantages of including the hierarchical organization of information 

and its associated foraging costs. We believe that these contributions will enable a 

principled approach to engineering variations-support tools as well as motivate further 

research into the fundamentals of information seeking.  
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