

AN ABSTRACT OF THE DISSERTATION OF

Sruti Srinivasa Ragavan for the degree of Doctor of Philosophy in Computer Science
presented on August 29, 2019.

Title: Variations Foraging.

Abstract approved:

__

Margaret Burnett

Information Foraging Theory (IFT) has successfully explained how people seek

information in various domains, in turn, informing the design of several tools and

information-intensive environments. However, prior research has not explored

foraging in the presence of several, very similar variants of the same artifact. Such

variants are commonplace in several creative, exploratory tasks such as graphic design,

writing and programming.

In this thesis, we evaluate whether and how IFT applies to variants. Using empirical

studies and computational models that predict programmers’ information foraging

among variants, this thesis provides evidence for the applicability of IFT in variations

situations and offers new insights for variations-support tools. Along the way, this

thesis also demonstrates the benefits of computationally modeling: 1) the hierarchical

organization of information environments, 2) variable costs of navigation in an

information environment and 3) accounting for non-textual (graphical) information.

.

©Copyright by Sruti Srinivasa Ragavan
August 29, 2019

All Rights Reserved.

Variations Foraging

by
Sruti Srinivasa Ragavan

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented August 29, 2019
Commencement June 2020

Doctor of Philosophy dissertation of Sruti Srinivasa Ragavan presented on August 29,
2019

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Sruti Srinivasa Ragavan, Author

ACKNOWLEDGEMENTS

First and foremost, I’d like to thank my advisor, Dr. Margaret Burnett. She was not

only a patient teacher and mentor, but is also one of the kindest bosses I’ve ever come

across (and probably ever will). Thanks for everything, Dr. B. I’ll miss you.

I’d also like to thank my committee members, Dr. Anita Sarma, Dr. Cindy Grimm, Dr.

Eric Walkingshaw and Dr. David Kling for all their feedback. I’d especially like to

thank Anita who has been actively involved in my research, and with whom

coauthoring papers has been a lot of fun. Also thanks to Dr. Prasad Tadepalli, who

kindly agreed to be an examiner for my Ph.D. preliminary examination.

Most of the research in this thesis was done in collaboration with other fellow grad

students and postdocs. Thanks to David Piorkowski, Sandeep Kuttal, Bhargav Pandya,

Souti Chattopadhyay and Charles Hill—I’ve learnt a lot from each one of them.

Thanks to my grad school buddies who made life in Corvallis a lot more fun. A special

shout out to Michael Hilton, Amin Alipour, Beatrice Mossiniac, Mihai Codoban,

Michael Slater, Behnam Saeedi, Jon Dodge and Santosh “Santy” Suresh.

Thanks to Andrew Anderson and the others in Dr. Burnett’s group for accommodating

me during the times I was away in Pittsburgh.

Thanks are also due to Nicole Thompson, Alyssa Pautsch, Calvin Hughes, Todd

Schechter and the College of Engineering IT teams for all their support.

Finally, I’d like to thank my family and friends. Thanks to mom, dad and my sister for

supporting me throughout. Thanks to the husband for making the long-distance

situation work and for all the thoughtful help on the homefront. Thanks to my mother-

in-law and grandmother-in-law for raising my feminist husband and for being very

understanding of the two-body situation. And thanks to my dear friends Kamala,

Sharmin, Lavanya, Gayathri and Harish for always being there.

CONTRIBUTION OF AUTHORS

A part of the contributions in Chapter 5 also appears in the M.S. Thesis authored by

Bhargav Chandravadan Pandya. Bhargav and I jointly developed the PFIS-H

algorithm, brainstorming together and pair programming on the implementation.

Bhargav also led the modeling of changelogs in PFIS-H. Souti Chattopadhyay and I

pair programmed on the modeling of output patches and the statistical tests reported in

Chapter 5.

TABLE OF CONTENTS

 Page

Chapter 1. Introduction .. 1

Chapter 2. Background and Related Work ... 4

2.1 Variations .. 4

2.1.1 Supporting serial revisions .. 4

2.1.2 Supporting parallel alternatives ... 7

2.1.3 Choice calculus: a theoretical framework .. 11

2.2 IFT: Constructs and Propositions ... 12

2.3 IFT for Document Collections ... 15

2.4 IFT for the Web ... 16

2.5 IFT for Software Engineering .. 16

Chapter 3. Does IFT apply to variants?: Formative study ... 19

3.1 Study Methodology ... 19

3.1.1. Participants .. 19

3.1.2 Tasks... 20

3.1.3 Presentation of Variants .. 21

3.1.4 Study procedure .. 23

3.2 Qualitative analysis .. 24

3.3 Results: Foraging activities .. 25

3.4 Results: Stage 1. Finding and evaluating the current (destination) context. 27

3.5 Results: Stage 2. Finding and evaluating usage (source) context. 28

3.5.1 Source variant: Find .. 28

3.5.2 Source variant: Evaluate .. 30

3.5.3 Source patch within source variant: Find ... 33

3.5.4 Source patch within a source variant: Evaluate .. 34

TABLE OF CONTENTS (Continued)

 Page

3.5.5. A Foraging Strategy: Story-guided foraging ... 35

3.6 Results: Stage 3. Integrating the variants .. 36

3.7 Discussion ... 37

3.7.1 Threats to validity ... 37

3.7.2 Generalization of our results .. 37

3.7.2 Open questions .. 38

3.8 Conclusion: Does IFT apply to variants? .. 40

Chapter 4: PFIS-V: Modeling programmers’ variations foraging in source code 41

4.1 The PFIS-V Computational Model ... 42

4.1.1 PFIS-V Data model: Accounting for programmers’ mental model of

variants .. 42

4.1.2 PFIS-V algorithm: Predicting programmer navigations based on their

mental models .. 47

Variations-specific extensions: ... 50

4.2 PFIS-V evaluation ... 52

4.2.1 PFIS-V vs. PFIS3 algorithms .. 53

4.2.2 Data model configurations: which one is closer to programmers’ mental

models? ... 58

4.2.3 Two groups: different between-variant foraging behaviors 59

4.3 Implications: Designing for variants... 61

4.4 Open problem: what about modeling non-code patches? 62

Chapter 5: PFIS-H: Modeling programmers’ variations foraging in non-code patches

and hierarchies .. 64

TABLE OF CONTENTS (Continued)

 Page

5.1 PFIS-H data model .. 64

5.2 PFIS-H algorithm: Modeling hierarchical foraging .. 68

5.3 PFIS-H Evaluation ... 71

5.4 Where did PFIS-H improvements come from? ... 72

5.4.1 Improvement #1: Modeling non-code patches ... 73

5.4.2 Improvement #2: Modeling hierarchical foraging 75

5.4 Does hierarchical foraging generalize beyond variants? 80

Chapter 6. Generalization: Evaluation with new data .. 82

6.1 Methodology ... 82

6.2 Research questions... 83

6.3 Results: PFIS-V generalization (RQ1).. 84

6.3.1 PFIS-V vs. PFIS3 .. 84

6.3.2 PFIS-V: Which data model is most accurate? .. 86

6.3.3 PFIS-V: Two groups and two foraging behaviors 88

6.4 Results: PFIS-H Generalization (RQ2) ... 88

6.4.1 PFIS-H vs. PFIS-V .. 88

6.4.2 Improvement #1: Foraging in non-code patches. 89

6.4.3 Improvements #2: Hierarchical foraging ... 91

6.3 Bottomline: Do our models generalize? ... 92

Chapter 7. Concluding remarks ... 93

REFERENCES .. 96

LIST OF FIGURES

Figure Page

2.1 Parallel pies interface…………………………………………………………….10

2.2 Information topology…………………………………………………………….13

2.3 Information features and cues……………………………………………………14

3.1 Hextris game…………………..…………………………………………………21

3.2 Cloud9 environment……………………………………………………………..22

3.3 Interview questions……………..……………………………………………….23

3.4 Modified reuse model..…………………………………………………………..26

3.5 Foraging timeline…..……………………………………………………………27

3.6 Between-variant navigation patterns.…………………………………………….30

4.1. The PFIS3 data model……..……………………...……………………………..43

4.2 The four PFIS-V data model configurations……..………………...….…………45

4.3 The PFIS-V algorithm……………..……………………………………………..51

4.4 PFIS-V vs. PFIS3: Unknown rates…...………………………………………….54

4.5 PFIS-V vs. PFIS3: Hit rates………………………….…………………………..56

4.6 PFIS-V improvements: two groups of participants...........………………………59

5.1 The PFIS-H data model………………………….……………………………....65
.
5.2 A variant’s hierarchy…….……………………….……………………………....68

5.3 The PFIS-H algorithm….……………………….…………………………….....70

5.4 PFIS-V vs. PFIS-V: Hit rates……..….………….…………………………….....72

5.5 P01’s Navigation predictions……..….………….…………………………….....74

5.6 Improvements from hierarchical foraging……..….………….……………….....76

LIST OF FIGURES (Continued)

Figure Page

5.7 P08’s Navigation predictions……..….………….…………………………….....77

5.8 P06’s Navigation predictions……..….………….…………………………….....78

5.9 P02’s Navigation predictions……..….………….…………………………….....79

6.1 PFIS-V generalization: Unknown rates……...….…………………………….....85

6.2 PFIS-V generalization: Hit rates……...……...….…………………………….....86

6.3 PFIS-H generalization: Hit rates………...…...….……………………………....89

LIST OF TABLES

Table Page

3.1 Study-1 participant demographics..….………….…………………………….....20

3.2 Analysis codeset…………………..….………….…………………………….....24

3.3 Source variant evaluation: cue types…………….…………………………….....31

4.1 PFIS3 vs. PFIS-V: Per participant hit rates….……...….……………….…….....57

4.2 Two groups of participants: PFIS-V data model graphs……...……………….....60

5.1 Study-1 participant navigations: different patch types……….……………….....73

6.1 Replication study: participant demographics………..……….……………….....83

6.2 PFIS-V generalization: per participant hit rates……..……….……………….....87

6.3 PFIS-H generalization: Navigations to non-code patches…….……………........90

6.4 PFIS-H generalization: Hierarchical foraging improvements….………………..91

DEDICATION

To the husband man,
whose countless thoughtful acts over these last three years

have allowed me to focus on school.

1

CHAPTER 1. INTRODUCTION

We live in what scientists dub “the information age” [27], an era marked by easy

and cheap access to abundant information, such as via public libraries and internet.

While such abundant and easy-to-access information has made information-centric

tasks, such as research and news broadcasting, easier for people in some ways, it also

brings with it a fair share of difficulties, perhaps the most important one being tedious

information seeking.

The presence of too much information (or “information overload” [28]), the

intermingling of valuable information with potentially irrelevant and redundant

information (or “information pollution” [29]) and the fact that related information can

be scattered across different sources [67], make information seeking difficult, costing

both time and cognitive effort [8, 85].

As if these difficulties were not enough, information seeking can become even

harder in some scenarios, such as when the information is in an unfamiliar language,

or for visually-impaired people, or when there are multiple copies or variants of the

same information. The latter is the subject of this dissertation.

In computer-supported creative tasks such as writing, graphic design or

programming, people often work in an exploratory and incremental manner—trying

out various options, copying and modifying a previous solution to create a new

solution, and comparing alternatives. Along the way, they keep track of the solutions

they explore, along with some intermediate steps, resulting in multiple variants of the

same artifact (e.g., several draft manuscripts of an essay, different possible visual

designs for a flyer, different UI options for a website). They then revisit those variants

to reuse bits and pieces, to compare solutions or to backtrack when things go wrong [6,

7, 93, 99]. However, there can be too many variants and the variants can be very, very

similar, thereby demanding additional cognitive efforts to discern the differences

between them.

Researchers have recognized such potential difficulties in the presence of variants

and have attempted to address them. Some researchers have conducted empirical

investigations into the needs of people in various domains involving variants [6, 23,

2

48, 93], while others have, based on these empirical investigations, gone on to build

variant-support tools, such as Pipes Plumber for Yahoo! Pipes [40], D.note for web

designs [23], ParallelPies and SideViews for images [94, 95] and Yestercode for

LabVIEW visual programs [24]. However, these prior studies and tool evaluations are

a-theoretic.

The lack of good theories presents major limitations for us as tool builders. First,

without the theoretical explanations for why a phenomenon occurs (and occurs the way

it does), we as tool builders risk addressing the symptoms of a specific problem as they

manifest in a specific situation, instead of addressing the underlying causes of the

problem. Second, without the abstractions of a theory and its explanations for why a

solution will work, our ability to systematically generalize and reuse solutions from

one domain to other domains is limited. Finally, theories are valuable for tool design

and evaluation: because a theory can explain why a phenomenon happens, it can also

reason in the opposite direction to predict what will happen in a given situation; this

predictive power can inform the design and evaluation of tools (e.g., how will a person

use a tool in a given situation? will a tool solve a problem in a given situation or not,

and why?) even before the tool is actually implemented. [35].

Therefore, in this dissertation, we seek the theoretical foundations for how people

seek information among variants. Specifically, we evaluate the applicability of an

existing theory, namely Information Foraging Theory, to people’s information seeking

among variants.

 Information Foraging Theory (IFT) is a theory of people’s information-seeking

behavior: it posits that people seek information similar to how wild animals forage for

their prey in the wild [69]. In the past, IFT has explained people’s information seeking

behaviors in document collections, web, software engineering and information

visualizations. It has also informed the practical design and evaluation of various tools

in these domains [76], including generic design principles (e.g., for web design), thus

exemplifying the explanatory, predictive and the generalization capabilities of a good

theory described in the previous paragraphs. Encouraged by these prior successes, in

this dissertation, we explore the applicability of IFT in variations situations.

3

Thus, the central thesis of this dissertation is:

IFT can explain and predict people’s information seeking in the presence of

variants.

In investigating this thesis statement, our work contributes: 1) a theory of variations

foraging, 2) empirically-evaluated IFT computational models that accounts for

variants, 3) an empirically-evaluated IFT computational models that accounts for

hierarchically-organized information and 4) an empirically-evaluated IFT

computational model that accounts for non-textual information.

4

CHAPTER 2. BACKGROUND AND RELATED WORK

Related literature for variations foraging is in two areas, namely variations and

information foraging theory.

2.1 Variations
We use the term variations to refer to the phenomenon when, for the same artifact,

multiple related copies exist together; each individual copy is a variant. Prior work has

recognized two kinds of variants in digital artifacts: 1) serial versions capture the state

of an artifact at various points during its incremental development and 2) parallel

alternatives capture various alternative solutions or implementations for a problem

[93].

Prior studies (e.g., [32, 93]) have revealed that, across domains, people keep track

of both serial revisions and parallel alternatives by manually saving copies of their files.

However, such file-based provides limited affordances for comparing variants or for

editing multiple variants at once. To address these limitations, researchers have

proposed various solutions to support managing and working with both serial and

parallel variants.

2.1.1 Supporting serial revisions

A long history of versioning digital artifacts is in the domain of software

engineering, where developers incrementally develop software—adding new features,

fixing bugs and enhancing its UI to be released as part of a newer version. In such

incremental development, developers keep track their software release versions; this is

commonly accomplished via a numbering scheme (e.g., Mac OSX 10.10) or a

model/year combinations (Windows 2000) for naming the versions [88].

To enable such incremental development (e.g., to fix a bug in a particular release),

developers also keep track of revisions to their source code. For this, they use a class

of tools called version control systems (e.g., Git, SVN).

In a version control system, each individual developer can save or “commit” the

latest changes to the project’s code; thus, the version control system captures the entire

development history of the project. Developers can access the version control

5

repository to retrieve and integrate each other’s latest code, compare revisions or even

revert back to a previous version.

Over the years, researchers and tool builders have built different paradigms of

version control tools. The first version control system, namely Source Code Control

System (SCCS), was primarily command-line based [81] and captured the changes to

text in the source-code files. Over the years, other text-based version control tools (e.g.,

RVS [96], Git [17], Subversion [91], CVS [13], Mercurial [49]) have introduced GUI

tools for viewing and committing changes (e.g., offer graphical interfaces). Other tools,

such as Smart Differencer [86], capture differences in terms of abstract and concrete

syntax trees, instead of plain text. Most of these modern version control tools also

integrate with other software development tools, such as the developers’ IDE and the

project’s bug repository.

However, all of these VCS tools suffer a major limitation, namely that developers

have to manually decide when and what changes to commit. Such manual control is

useful in some situations, such as when a programmer might not want to commit

incomplete or buggy code. However, in other situations, manual commits mean that

developers might forget to save their changes and might end up with no way of getting

back to an earlier state of their program (e.g., to backtrack when things go wrong).

To address this gap, state-of-the-art programming environments (e.g., JetBrains

IDEs, Eclipse) automatically keep track of the code revisions an individual programmer

makes in the IDE, even before the programmer has committed the changes to version

control. In particular, the IDE creates a new revision of the program at specific save

points, namely every time a programmer saves, compiles or runs the program or the

test suite. A programmer can access these local revisions and compare and revert to an

earlier revision, just as with version control revisions. However, unlike version control

history, the local history is “local” to the developer (e.g., does not have changes by

other developers) and is localized in time (e.g., up to one week).

Another tool that keeps track of local history of a programmer is Azurite [100].

Azurite automatically records, at the keystroke level, the fine-grained edits made by a

programmer in an IDE. The tool then presents the edit history of the programmer over

6

a timeline view. A programmer can navigate through the timeline, compare the

program across different points on the timeline and selectively undo (or restore)

specific code snippets. Although the primary intent of Azurite is to support

backtracking (or selective undo), Azurite also serves as a visualization tool for the local

history of programs.

In non-programming domains, people keep track of revisions to their artifacts in

several ways. Sometimes, people use different file names (e.g., suffix 1,2,3 and so on

to file names) to keep track of revisions to artifacts. Other times, they use version

control systems: although version control tools were developed for versioning program

code, people use them to keep track of revisions to non-code artifacts also (e.g., text

documents, scientific experiment notes). Some people also use special-purpose

versioning tools. For example, tools such as Kactus [36] and Versions [97] bring

version control tools for designers to version their graphic designs. Finally, tools in

various domains (e.g., Google Docs [19], Microsoft Office suite [52], MacOS Time

Machine [92]) provide features that allow people to automatically keep track of

revisions to artifacts.

Researchers have also built tools to keep track of the provenance of artifacts, as

they get cloned and revised over several iterations. Kuttal et al. built Pipes Plumber, a

versioning tool for Yahoo! Pipes mashup programming environment, that keeps track

of the clone history as well as the post-cloning revisions of mashup programs [40].

Similarly, Jensen et al. built TaskTracer that keeps track of the provenance of files and

folders created with the Microsoft Office suite [34]. Even other researchers have

proposed that provenance information be persisted as part of file systems, to better

support recall, search capabilities as well as to support versioning [53].

As mentioned earlier, most of these tools are a-theoretic and derive from empirical

observations. Only recently, we have begun exploring the application of information

foraging theory to the design of version control systems [79].

Whereas the above tools focus on keeping track of serial variants, where changes

to one version leads to a new version in a linear manner, people sometimes end up with

parallel alternatives when working in an exploratory (e.g., to try out different menu

7

placement options, to tune hyperparameters for a machine learning program). As we

discuss next, several tools exist that focus on supporting such parallel alternatives also.

2.1.2 Supporting parallel alternatives
In the programming domain, version control tools provide a feature called

branching, where a programmer could branch from a version in several parallel ways.

This branching comes in handy when developers want to try out different alternative

implementations. Similarly, software teams also use branches to manage multiple

editions of their software such as in software product lines [12]: these include managing

the source code for different customized versions for different clients, or for different

editions (e.g., free community vs. paid commercial versions).

However, branches can be heavy-weight in exploratory situations, where a

programmer wants to explore at a “fine-grained” level (e.g., one sorting algorithm vs.

another, one font vs. another). First, every time a person wants to explore a new option

(e.g., try a new font size), s/he has to create a new branch and then commit the changes

for that branch before exploring a second option. Second, since branching is manual, a

person might forget to create a branch every time s/he wants to explore an option. Third,

a person can work with only one branch at a time; therefore, comparing multiple

branches or editing multiple branches of code is not easy. Finally, both versioning and

the branches in version control systems deal with the entire program. In contrast,

explorations can be local (e.g., only for one method) and do not warrant a new branch

for the entire program / artifact [6, 33, 51].

Researchers have worked to solve these gaps and proposed various tools and

techniques over the last decade. However, these tools are mostly based on empirical

evidence and not based on theory. For example, in scientific programming, scientists

conduct different experimental trials, resulting in different variants of the same

experiment. To keep track of these variants to their experiments, scientists need to keep

track of the changes to code (e.g., configurations and algorithms), inputs and outputs,

intermediate results and the infrastructure (e.g., library versions). To support these

activities, Guo et al. built IncPy and Burrito [20, 21]. IncPy is a custom python

interpreter that keeps track of the data and code execution for each experimental

variant; in turn, this data facilitates reuse of intermediate results when a different

8

variant of the experiment is run in the future. Burrito automatically keeps track of all

the files (e.g., code, input, output, input results) related to each experimental variant

and allows a scientist to annotate each trial with additional information and insights.

The scientist can then view, via a graphical interface, the progression of their

experiments together with the relevant copies of their input, results and annotations.

Guo et al. also built a bundler, namely CDE, that bundles specific variants of an

experiment (including the code, input, output and infrastructure) to be shared with other

scientists [21].

Just like in scientific experiments, data scientists working on machine learning

programs also need to keep track of the different variants, namely to the algorithm, the

parameters and hyperparameters and to the input and output files, before deciding

which machine learning model to use for their application. However, studies have

revealed that even expert programmers struggle to manage these variants [25, 32]. To

address this problem, Kery et al. built Variolite to allow data scientists to experiment

with their code within programming IDEs [32]. With Variolite, a programmer can

select a code snippet (e.g., method) to create one or more variants for that specific

snippet. (In contrast, Burrito creates a new variant for the entire program). A

programmer can then plug in one variant instead of another, or even nest variants (i.e.,

create different variants for a smaller snippet within a variant for a larger snippet).

Variolite also allows a program to label their variants, so that a programmer can easily

find the variant at a later time.

In contrast to Variolite where a programmer has to manually create a variant,

Mikami et al. built a micro versioning tool, where a programmer can simply edit the

code snippet without stopping to create a new variant explicitly [51]. The tool

automatically records the edits and lists them as alternatives for that code snippet. The

tool also groups changes made to related, but disconnected, code fragments into one

candidate alternative. (This is achieved via hierarchical variants in Variolite). Both

Kery’s Variolite and Mikami’s micro versioning tool also allow programmers to

compare variants and to backtrack specific changes.

A surprising scenario involving parallel variants is in online programming courses.

For programming assignments, different students might turn in different solutions, or

9

different implementations of the same solution, resulting in different variants of the

same program. In grading such submissions, a TA might want to view a stack of similar

solutions and provide similar feedback to them at once, even when there might be some

differences (e.g., different variable names). To support such manipulations, Glassman

et al. built Overcode [18] that uses a combination of static analyses and program traces

to cluster similar program variants into stacks. A grader can use OverCode to look at a

single representative submission for each stack of similar submissions and provide the

same grade and/or feedback for the entire (without having to grade multiple identical

solutions).

In non-programming domains, variants mostly occur in exploring alternatives.

Studies in various domains, such as web design [58], UI design [54, 93], diagrams [47],

art [93], image manipulation [93], programming [6, 84], and even writing [46], have

revealed the need for tools to support exploration of new alternatives. Following

empirical insights from these studies, researchers have attempted to support

exploratory variants in several ways.

Two researchers, Terry et al. and Lunzer et al. have independently proposed generic

techniques for supporting variants to be instantiated in creativity support tools. Both

Terry et al.’s ParallelPaths [95] and Lunzer et al.’s subjunctive interfaces [46] allow

users to create variants of an artifact, embed the variants together with the main artifact,

facilitate easy comparison of multiple variants and allow users to manipulate multiple

variants at the same time. However, there are two key differences between the two

approaches. First, in ParallelPaths, a user first explores an option and saves the

exploration as a variant only when s/he is interested in the outcome of the exploration;

in contrast, in subjunctive interfaces, the user first creates a variant before exploration

and then deletes the variant if the outcome is not satisfactory. Second, whereas

subjunctive interfaces list all variants allowing users to view one variant at a time,

ParallelPies (an instantiation of ParallelPaths) groups related variants, allowing users

to view combinations of variants. For example, in Figure 2.1, the three segments of the

image come from three different variants shown on the right; a user can move the

marker to compare and view different mashups of the three variants.

10

Figure 2.1. ParallelPies interface. ParallelPies groups related variants into a list

(shown on the right). A user can create different mashups of these related variants by

moving the marker shown at the center of the image. (Figure source: [95]).

Unlike ParallelPaths and subjunctive interfaces that are generic techniques to be

instantiated in specific tools, researchers have also built domain-specific tools for

exploring alternatives. Similar to the features in ParallelPies and subjunctive interfaces,

Hartmann et al. built Juxtapose that allows UI designers to explore and manipulate

multiple alternatives at once [22]. Terry et al. built SideViews, a tool that allows

graphic designers to preview and compare the effects of applying different commands

on an image [94]. Kumar et al.’s Bricolage focuses on exploring alternatives for

websites: a web designer can provide as input two web pages and Bricolage creates a

new collage by extracting the layout of one webpage to be applied to the other webpage

[38].

Despite this long history of work on supporting variations (enumerated above and

in the previous subsection), there is a lack of theoretical foundations for how people

reason about and work with variants. This lack of foundational understanding limits

our ability to “connect the dots” among variations-support tools across domains to

develop a general understanding of what aspects in these successful experiments are

11

actually making the difference. See [83] for a case of how the results of such

experiments can misattribute reasons behind a tool experiment’s successes.

2.1.3 Choice calculus: a theoretical framework
Fortunately, in the area of supporting variations, researchers have made some

progress in building theoretical foundations. Choice calculus is a formal language for

specifying variations [98]. Based on the idea that each revision or alternative can be

encoded by embedding variation points called “choices” within the program itself,

choice calculus provides constructs and transformations to reconstruct a program’s

variant by making a series of selections for each choice. For example, suppose that a

programmer creates two variants, each using a different sorting algorithm. In the choice

calculus representation of the program, these two sorting algorithms are encoded as a

choice in the “sorting” dimension. Choosing one of the two alternatives from that

choice will result in one of the two variants.

The choice calculus approach has been applied to represent both revisions and

branches, such as for multiple possible compilations of C programs (e.g., IFDEF

macros) [45], to build a domain-specific language for querying in a variational

information space [14] and even to manipulate multiple variants of images at once [87].

In essence, choice calculus provides a framework (and a programming language) for

tool builders to represent and manipulate variants in variations support tools (under the

hood).

Like choice calculus, this dissertation brings a theoretical foundation to variations.

However, complementary to choice calculus that focuses on the internal representation

and manipulation of variants, our theory informs tool builders about how people will

reason about, navigate and seek information among variants, and how tools could better

support these activities of their users. In particular, our theory can inform tool design

in the following ways: 1) guide the design of useful and usable interfaces and

interactions (e.g., presentation of variants, design of navigation affordances, supporting

various information seeking strategies), 2) predict how a user will use a given

variations-support tool in a given situation, 3) evaluate how well a tool supports its

user’s needs and 4) explain why existing variations-support tools are actually

12

successful (or not). Towards this end, we draw from Information Foraging Theory

(IFT) to explain and predict how people forage for information among variants.

2.2 IFT: Constructs and Propositions

Information Foraging Theory (IFT) has its roots in evolutionary psychology and

the biological sciences. Building on Miller’s hypothesis that humans are

“informavores” that have evolved to work with an abundance of information [50],

Pirolli and Card turned to food foraging theories to derive a theory of human

information seeking, eventually deriving IFT from the optimal food foraging theories

[69, 75].

The optimal food foraging theories explains how predatory animals in the wild

search for their prey [90]. Predators forage for their food in various ecological patches

(e.g., grasslands, woods, treetops) by sniffing at various cues (e.g., hoofprints, fur) and

following the trail of the strongest scent. By consuming the prey thus obtained, the

predator will gain energy; but first, the predator has to expend some energy in hunting

down and digesting that prey.

Thus, there is both value and cost associated with foraging a prey. According to the

optimal food foraging theory, a predator will engage in foraging behaviors (e.g.,

deciding which prey to consume, which patch to forage in or which cues to follow) that

will yield the maximum profitability or the maximum energy gain in return for the

expended energy.

Information Foraging Theory (IFT), drawing on evolutionary psychology, posits

that human information seeking has evolved in ways similar to that of their food

foraging behaviors [75]. Thus, IFT posits that, just like predatory animals’ food

foraging behaviors, human information foragers will also optimize in scent-following

behaviors so as to maximize the profitability of gaining information. In other words, an

information forager will make foraging choices that they expect will maximize the gain

in informational value for the cost he/she expends in gaining that information.

13

Figure 2.2 Information Topology. Each square represents an information patch.

Each directed edge represents a link through which a predator can navigate from one

patch to another [75].

More formally, according to IFT, a human predator forages for information prey in

an information environment. The information in the environment occurs in a patchy

manner, where each information patch is a container of information features (e.g.,

paragraph contains words, page contains icons). A patch can also be linked to other

patches and a predator can traverse an outgoing link (e.g., click on a link, scroll) from

a patch to navigate to another patch. The patches and the links together form a network

called the topology. Associated with outgoing links in a patch are information features

called cues (e.g., labels on hyperlinks). Cues act as signposts for what might be at the

other end of the link. A predator sniffs at these cues and follows the scent trail to

eventually locate their prey. Pirolli [75] visually classified these associations visually

via Figure 2.2 and Figure 2.3.

14

Figure 2.3. Information features and cues. Each patch (square) contains several

information features (hexagon). Some of these information features are associated

with outgoing links (arrows originating at circles) and serve as cues (circles) [75].

 According to IFT, this scent following behavior is an optimization strategy. Since

information-rich environments can contain too many patches and links and foraging in

each and every patch can be practically impossible, a predator will try to optimize the

information seeking by choosing those cues, patches or links that will maximize the

information value to be gained for unit expended cost. According to Pirolli [75], this

optimization is characterized by equation:

𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟’𝑠	𝑖𝑑𝑒𝑎𝑙	𝑐ℎ𝑜𝑖𝑐𝑒	 = 	𝑀𝑎𝑥	 2
𝑉
𝐶5,	

where, for a given foraging choice, V refers to the value of information to be obtained

and C refers to the cost (e.g., number of clicks, time taken, cognitive effort required) of

obtaining that information. Here, the cost includes both navigation costs as well as the

cost of processing and understanding the information.

However, in most real-life foraging situations, the predator does not know the

actual costs and values associated with the various patches or links; therefore, he/she

often does not make the ideal choice. Instead, the predator makes navigation choices

based on the values and costs that they perceive as being associated with a foraging

choice. Pirolli [75] characterizes the actual foraging decisions of the predator as:

𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟’𝑠	𝑎𝑐𝑡𝑢𝑎𝑙	𝑐ℎ𝑜𝑖𝑐𝑒	 = 	𝑀𝑎𝑥(9:;<:=>:?	>@AB:

9:;<:=>:?	<CDE
).

15

This imperfect perception of the value-to-cost ratio is called the scent,

mathematically written as:

𝑆𝑐𝑒𝑛𝑡	 = 	 9:;<:=>:?	>@AB:
9:;<:=>:?	<CDE

	

𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟’𝑠	𝑎𝑐𝑡𝑢𝑎𝑙	𝑐ℎ𝑜𝑖𝑐𝑒	 = 		𝑀𝑎𝑥	(𝑠𝑐𝑒𝑛𝑡).

2.3 IFT for Document Collections

In the formative work on IFT, Pirolli and colleagues first applied these constructs

and propositions to explain how users of a “scatter-gather” interface foraged for

information in a large document collection [69]. This body of work led to the abstract

mathematical foundations of the information foraging theory.

To concretely understand people’s foraging behavior in an environment, Pirolli and

Card adopted the rational analysis technique from cognitive psychology [1]. In rational

analysis, researchers assume that an agent (here, human) is rational and has evolved to

optimally solve the specific problem under study (here, information foraging) in the

environment. With this assumption in place, researchers can then study an agent’s

behavior in an environment to understand how an agent has evolved to solve that

problem. Inspired by the success of rational analysis in psychologists’ understanding

of human memory and learning , Pirolli and Card adopted the technique to information

seeking [75].

To perform a rational analysis of human information foraging, Pirolli and Card built

computational cognitive models. They extended the ACT-R cognitive architecture [1]

with a scent-computation module, thereby building an ACT-Scent architecture [75]. At

its core, the ACT-Scent (and ACT-R) architecture predict a person’s actions based a

set of production rules that operate on a graph-based representation of the person’s

working memory. The various nodes in the graph represent “chunks” of memory,

including the person’s foraging goals, the information he/she knows and the what

he/she currently perceives in the environment. For scent computation, the ACT-Scent

architecture spreads “activation” energy to the different chunks of working memory,

such that the activation on each chunk (patch) is a measure of the scent perceived by

the forager from that patch.

16

Pirolli et al. instantiated an ACT-Scent model called ACT-IF to predict how a

person will forage in a Scatter/Gather browser for document collections [70]. They also

applied the ACT-IF model to foraging in a “Butterfly” document collection browser

[71] and in a “hyperbolic” tree browser, to understand where users focused their visual

attention [72, 73].

2.4 IFT for the Web

Following the initial success of IFT in the document collections domain, Pirolli and

colleagues applied IFT to explain how web users browse the web. Similar to foraging

in document collections, Pirolli and Fu employed an ACT-R based cognitive model

called SNIF-ACT (Scent-based Navigation and Information Foraging in the ACT

architecture) to gain an understanding of the psychology of web browsing, including

what links a user will click on and when and why a user will leave a website [74].

Along the same lines, Chi et al. built two other predictive models, namely WUFIS

and IUNIS, to establish the link between users’ information needs and their foraging

behaviors [10]. While WUFIS (Web User Flow by Information Scent) predicted which

link a user will take based on scent, IUNIS (Inferring User Needs from Information

Scent) predicted, based on the scent a user followed, a set of keywords defining his/her

information needs. Both WUFIS and IUNIS were similar to SNIF-ACT in that they

employed ACT-like graph representation and spreading activation to compute scent.

However, unlike SNIF-ACT, WUFIS and IUNIS were not production-rule models;

they worked based on lexical similarity algorithms.

Chi et al. also adopted WUFIS to evaluate the usability of websites and to discover

web usability issues [9, 11]. This body of work eventually laid the foundations for

modern web usability [89], including the recent work on mobile web usability by Ong

et al. [59].

2.5 IFT for Software Engineering
In the domain of software engineering (SE), Ko et al. first speculated that IFT might

provide solutions to some of the information-seeking problems in SE [37]. In the

following year, Lawrance et al. revealed preliminary evidence that programmers’ code

17

navigations suggested a scent-following behavior [41], subsequently operationalizing

IFT for program code in a WUFIS-like computational model called PFIS (Programmer

Flow by Information Scent) [42]. Their empirical results showed that programmers’

navigations in IDEs were more scent-based than they were hypotheses-based [44].

(Earlier research on program debugging had revealed that programmers’ navigations

were mostly based on forming and evaluating hypotheses about the code.) Having thus

established IFT as a theory for programmer navigations, Lawrance et al. then refined

PFIS to PFIS2 and IFT to reactive IFT to account for the constantly evolving nature of

programs as well as programmers’ information goals even within the scope of a single

task [43].

Building on Lawrance et al.’s foundational work, Piorkowski et al. further tested

the applicability of IFT to programmers’ foraging. They compared the accuracy of IFT-

based PFIS2 against other heuristics-based models of programmer navigations and

concluded that PFIS2, and hence IFT, was a more accurate predictor of program

navigations, than the other heuristics-based models [63]. Encouraged by this result,

they built a recommendation tool that presented PFIS2’s predictions as

recommendations to programmers [64].

Researchers have also explored other aspects of programmers’ foraging in IDEs.

Piorkowski et al. studied programmers’ information diets [66], the effect of production

bias [65] on their foraging behaviors and foraging differences between desktop and

mobile IDEs [68]. Others, such as Niu et al., have explored IFT as a theory for

designing navigation affordances in IDEs [56]. Perez et al. proposed an IFT-based

toolkit, namely Pangolin, to aid developers’ program comprehension [62].

Beyond its application to code navigation in IDEs, IFT has also informed other

aspects of software engineering. Niu et al. applied IFT’s optimality models to

understand requirements gathering [57], thereby providing IFT-based insights for the

design of requirements engineering tools. Kuttal et al. used an IFT’s perspective to

understand end-user programmers’ debugging behavior [39]. Recently, IFT is also

finding application in the design of Explainable AI: what information should an

intelligent agent provide to its users (and how), so that the latter can understand the

former’s working and decisions [16, 51]?

18

Since software engineering is a collaborative activity, researchers have also applied

social IFT, a variant of IFT dealing with groups and collaboration [76], to inform

collaborative software engineering. For example, Bhowmik et al. applied the concept

of “structural holes”, a central concept in social IFT, to understand how analyst-

stakeholder social linkages affected requirements gathering [4]. They also used social

IFT’s optimality models to guess the optimal team size for open-source projects [3].

Beyond specific tools and environments, researchers have distilled IFT’s design

insights into reusable principles and design patterns. Piorkowski et al. abstracted from

various SE tools that there are fundamentally only four ways of improving SE tools

according to IFT: improving actual costs and values and helping developers actually

estimate those costs and values. Fleming et al. went further and distilled the elements

of good design in several successful SE tools into a set of reusable SE tool design

patterns [16]. Nabi et al. built on Fleming et al.’s work to build a community-based

portal for curating IFT-based design patterns [55], to enable tool builders to leverage

the theory’s insights in a principled manner for building tools.

This thesis builds upon the existing theoretical foundations and computational

models of IFT and applies them to the variations domain.

19

CHAPTER 3. DOES IFT APPLY TO VARIANTS?: FORMATIVE
STUDY1

The aim of this research is to provide the theoretical foundations, in IFT’s

framework, for how people seek information among variants. But an elementary

question arises in this pursuit: does IFT apply to variations and, if yes, is variations

foraging any different from traditional foraging (and, therefore, requires a separate

study)?

Therefore, as a first step, we conducted an exploratory study in the programming

domain: 1) to frame programmers’ information seeking among variants in terms of IFT

and 2) to investigate whether programmers’ variations foraging is any different from

traditional foraging, such as in terms of the cues they attended to, or the foraging

strategies they employed.

We chose the programming domain because: 1) IFT has been applied to

programming in the past [41, 67, 79] and 2) variants and exploration are common in

programming [6, 99].

3.1 Study Methodology

Our target population is people who engage in exploratory programming. A prior

study on the subject found that novice (as well as expert) programmers

opportunistically reuse code from various sources, including prior variants of a

program [6]. We used the results from this prior study to guide our study design, such

as for recruiting participants and in task design.

3.1.1. Participants

We recruited 8 novice programmers, namely undergraduate students in CS, and

investigated their variations foraging behaviors during a reuse task. Table 3.1

summarizes the general demographics of our participants. Most of them had some

1 Srinivasa Ragavan, S., Kuttal, S. K., Hill, C., Sarma, A., Piorkowski, D., & Burnett,
M. (2016, May). Foraging among an overabundance of similar variants.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing
Systems(pp. 3509-3521). ACM.

20

experience with programming, but were relatively new to JavaScript, the language on

which our study was based. The only exception was P2 who carried 6 years of

JavaScript experience; however, he noted in his response that he had only occasionally

programmed in JavaScript.

Participant
label Gender Level Age

Experience(years) Prior web
development
experience? JavaScript Programming

P01 Male Sophomore 20s 1 1.5 Yes
P02 Male Freshman Teens 6* 6 Yes
P03 Female Junior 20s 0 9 No
P04 Male Sophomore 20s 2 1 Yes

P05 Male Freshman Teens 0 3 No
P06 Male Sophomore Teens 0 5 Yes
P07 Male Junior 20s 2 2 Yes

P08 Male Junior 20s 1 5 Yes

Table 3.1. Study-1 participant demographics.

(*Participant P02 reported that he only occasionally programmed in JavaScript)

3.1.2 Tasks
Participants were presented with the following scenario. A small non-profit named

Nourish Line hosted a JavaScript game called Hextris (similar to Tetris) [30] on their

website. Since the company had very few full-time employees, several volunteer

programmers had worked on Hextris over the years. Recently, visitors to the site had

suggested some changes to the game and we asked participants to implement those

changes for Nourish Line.

Specifically, we asked participants to make the following three changes to the latest

version of the game (shown in Figure 3.1 (a)):

1) move the game’s score indicator from the center of the hexagon to a location

above the hexagon “like it was before”,

2) move the bonus score multiplier to a location above the hexagon “like it was

before” and

21

3) change the text color of the score and multiplier to black so it could be seen

when placed above the hexagon.

Figure 3.1. Hextris Game. Participants were asked to change the latest variant of

the program (a), to move the score and multiplier above the hexagon “like it was

before” (b). The “before” variant was not shown to participants.

Figure 3.1(b) shows how the game looked earlier: notice that the multiplier was

displayed within parentheses next to the score. However, we did not directly provide

this earlier version to participants. Instead, we used the phrase “like it was before” to

suggest that useful portions of a solution might be available for reuse in earlier

version(s) of the game. As mentioned earlier, the choice of our task, namely reuse from

prior variants, is realistic and follows Brandt et al.’s observations in exploratory

programming [6].

3.1.3 Presentation of Variants

To perform their reuse task, participants worked in Cloud9, a web-based IDE for

Javascript development; Figure 3.2 shows the Cloud9 environment. As the figure

shows, we provided participants with 700+ variants of the Hextris game.

22

Figure 3.2. The Cloud9 environment. Variants were presented in chronological

order and labeled with commit timestamps.

 We obtained the variants from the game’s public GitHub repository [31]. For each

commit of the 700+ commits in the repository, we created a variant as follows: we

extracted the entire repository tree, or the copy of the program at that version, into a

folder; thus, each of these folders was a variant. In addition to the program code, each

variant folder also contained a changelog.txt file that contained the corresponding

commit’s metadata (viz., commit timestamp, author name, commit message, commit

ID).

These variants were then presented to participants in the Cloud9 environment. As

Figure 3.2 shows, each commit was labeled with the commit timestamp. Only the latest

variant was labeled “Current”. (Recall that participants had to make changes to this

latest variant). The variants were presented in a chronological order.

Since each program was an entire copy of the program, participants were able to

run the entire program for each variant. For this, programmers had to run the index.html

file within each variant, either by right clicking and choosing the run command, or by

clicking on the run icon on the command bar (Figure 3.2).

23

3.1.4 Study procedure
At the beginning of each study session, participants signed an informed consent

form and filled in a general demographic questionnaire. (Table 3.1 summarizes the

demographics). We then provided participants a short tutorial on think-aloud protocol,

followed by a brief introduction to the study environment. For participants with no prior

Javascript experience, we also provided a short tutorial on the basics of HTML, CSS

and JavaScript.

After the initial tutorials and task description, we introduced participants to the

Nourish Line scenario and the tasks mentioned earlier (Section 3.1. 2). Each then

participant spent 50 minutes working on their programming tasks while also thinking

aloud. We collected the audio and video of the participant, captured their screen as well

as logged their IDE actions. Two researchers observed the participant from another

screen, annotating actions for in-depth data collection.

Following the programming session and a short break, we conducted a retrospective

interview. We played the screen-capture video for the participant and drilled down into

the annotated actions. We stopped the video at the annotations and asked the participant

additional questions about their foraging. The interview questions, listed in Figure 3.3,

were inspired by IFT research on debugging [66]. We also captured the audio, video

and the screen for the retrospective interviews.

At the end of the study session, each participant was compensated with $20.

Explain:
 You chose to [do/go to] (Variant / location)

Ask:
 What did you expect to (see/find) when you went to _____?
 What did you see as your other possible choices?
 Why did you choose to navigate to _____ as opposed to (other choices)?

Figure	3.3. Interview questions. During the retrospective interview, we played

back the video of the participant’s programming task and asked these questions about

their foraging decisions.

24

3.2 Qualitative analysis
For our analysis, we used qualitative methods. First, we transcribed participants’

think-aloud verbalizations and on-screen actions and then segmented the transcripts

into 30-second segments. We then coded the segments, allowing multiple codes per

segment.

To ensure rigor, two researchers independently coded 20% of the transcripts, until

we reached at least 80% agreement on the 20% data. In our study, we obtained an inter-

rater agreement of 85% on 20% of the data. Once we reached agreement, the two

researchers split up the coding for the remaining data. We used Jaccard coefficient as

the measure of inter-rater agreement.

We coded the data according to the cue types participants used, the type of

operations they performed, and their navigation behavior. We drew the base code set

from previous IFT research [40, 66] and added new codes to capture the new

phenomena that we observed in variations foraging. Table 3.2 lists the entire code set;

the shaded rows indicated newly added codes.

CODE DESCRIPTION
CUE TYPES

Create Time,
Update Time

Timestamp cues marking latest, first or intermediate variants,
and navigation to corresponding variants.

Previous File,
Previous Method

Reuse of information features (file and method names) from
one variant as cues in another variant.

Output Cues based on how output looks or running a preview

Domain Game-related words, e.g., “score”, “block”

Source Source code-based cues, e.g., function / variable name.

Error, Correct Cues based on error/correctness of patch/prey

File Name, File Type Filename-based and file type cues

Document Documentation cues: change logs, readme files, tooltips, etc.

Comment Source code comments

Search Search inside IDE or the internet

Debug, Inspect Debugger or “element inspect” feature in browser

25

OPERATIONS

Edit Edits made to source code, to verify the prey using output-
based cues, or to implement the task.

Reuse Explicit reuse of source code , i.e., copy and paste
Compare Compare two variants

NAVIGATIONS

Between Variant Navigation Between-variant navigation was coded along with the cues
that guided these navigations.

Table 3.2. Analysis codeset . We derived our codeset based on prior work [40,

66]. The new codes we added are highlighted.

3.3 Results: Foraging activities
We frame our results on participants’ variations foraging behaviors around a

modified version of Rosson and Carroll’s reuse model [82]. According to Rosson and

Carroll, programmers reuse code from a “usage context” to accomplish a task in their

“current context” in three stages:

1. finding a usage context,

2. evaluating the usage context and

3. debugging the usage context.

This model assumes that: 1) the current context is known to the programmer and 2) that

the current and the usage contexts are within the same variant of the program.

However, in our study, the current and the usage contexts were in different variants

and participants had to find both these contexts as part of their task. Therefore, we

extended Rosson and Carroll’s model to comprise the following three stages:

1. finding and evaluating a current context,

2. finding and reusing a usage context, and

3. integrating the current and usage contexts.

Note that this modified reuse model, visually illustrated in Figure 3.4, is essentially a

more generic version of the original Rosson and Carroll’s model.

From an IFT’s standpoint, the term context, in both the original and the modified

reuse models, refers to information patches: a programmer reuses code from one or

26

more “source” patches (usage context) in one or more “destination” patches (current

context).

Also, in our study, the specific source and destination patches—namely, the exact

locations where the relevant source and destination code is located—is in turn present

inside of variants2. Therefore, as Figure 3.4 shows, in order to forage for a

usage/current context, participants had to find and evaluate the appropriate

source/destination variant, and then forage for the smaller source/destination patches

(i.e., method or lines) within that variant.

Figure 3.4. Modified reuse model. Participants were provided with the destination

variant (greyed out). They interleaved finding and evaluating the prey in both

between-variant (blue) and within-variant (green) foraging.

Note that we do not intend, with our modified reuse model, to suggest that

programmers followed any particular order in foraging for their source and destination

contexts. In fact, Figure 3.5 shows that Participant P06 foraged for the source variant

2 Technically, in IFT, variants are also information “patches”: however, for the
purposes of disambiguation, we use the term variant to refer to the variant and the term
patch to refer to smaller patches (e.g., methods, files) within the variant.

27

and the source patches (usage context) before he foraged for the destination patches

(current context). Thus our results describe sets—not sequences—of behaviors. In the

rest of this chapter, we will describe the foraging behaviors of participants in each of

the reuse stages.

Figure 3.5. Foraging timeline. Participants foraged the Source Variant (SV),

Source Patches (SP) and Destination Patches (DP) in different orders. They used

information features (shown as triangles) from one variant to forage in other variants

and performed comparison during both source-patch foraging and destination-patch

foraging.

3.4 Results: Stage 1. Finding and evaluating the current (destination) context.
While foraging for the destination context, namely where the fix needed to be made,

participants’ foraging behaviors were unsurprising.

1. Destination variant: find & evaluate. Since participants in our study were asked

to make changes to the latest variant labeled “Current”, the source variant was

already provided to them. Thus, participants did not have to find and evaluate

the destination variant in our study. (These activities are therefore greyed out in

Figure 3.4).

2. Destination patches: find. In order to find the task-relevant “destination”

patches within the Current variant, participants engaged in reading code,

searching and navigating links. These behaviors are well-described in prior IFT

literature on debugging and maintenance in a single program variant [42, 66].

28

3. Destination patches: evaluate. Finally, once participants found the destination

patches, they wanted to ensure whether the code they had found actually did

what they thought it did. For this, participants edited the code and confirmed

whether the output matched their expectations. For example, as the dots in

yellow segments show in Figure 3.5, all participants altered the x and y

parameters in the renderText() method in order to evaluate whether it really

altered the score position. These behaviors conform with prior findings on IFT

and hypotheses testing in debugging [44].

3.5 Results: Stage 2. Finding and evaluating usage (source) context.

Once participants foraged for their destination context, they then moved on to

forage for their source context. However, unlike the destination context foraging that

was largely unsurprising, participants’ foraging for the source context revealed new

nuances for variations foraging.

3.5.1 Source variant: Find
Participants began their source context foraging by looking for a suitable source

variant—one that contained the source and multiplier above the hexagon as in Figure

3.1(b)—among the several available variants.

In IFT, when a predator forages to find a suitable patch among several available

patches, it is called between-patch foraging [69]; analogously, when participants had

to find a variant among several available variants, we call it between-variant foraging.

However, unlike in traditional between-patch foraging where the patches (and hence

the cues and scent) are mostly unique, the variants in between-variant foraging (and

hence the cues and the scent) can all be very, very similar.

As part of their between-variant foraging, participants had to decide which variant

to navigate to next; for this, our study environment provided only one kind of cues,

namely the timestamps that were specified as the variants’ folder names. Participants

leveraged these timestamp cues to in the following ways.

1. Sometimes they used the timestamps to directly navigate to a variant they had

already seen. For example, P01 said, “So I'll just remember that on 2014-05-

20, [it] had the right interface” and later navigated directly to that variant.

29

2. Other times, participants navigated to a variant based on its position in the

chronological list of variants; for example, 5 out of 8 participants scrolled to the

top and navigated to the first variant to see how the game looked at the

beginning.

3. Participants also used the distance between chronological variants as a measure

of how similar (or different) variants might be. Since consecutive variants were

very similar, participants often skipped ahead, using the used the distance

between variants to guess how many variants to skip (or, equivalently, how far

to scroll). This way, participants were able to avoid potentially irrelevant

variants and to quickly land in a potentially valuable variant. As Figure 3.6

shows, such skip-ahead between-variant navigations followed one of three

patterns:

1. Unidirectional: Four out of eight participants (P01, P02, P03, P04) foraged in

a single direction. They either foraged from the oldest to the most recent variant

or vice-versa (see Figure 9 (a)). P03 explained: “… jumping down more … like

a sorting algorithm, checking further and further until there was a change.”

2. Bidirectional: Four out of eight participants (P03, P06, P07, P08) changed

directions while foraging between candidate source variants. Initially, they

started from either the oldest or the most recent variant and foraged along one

direction. However, when they found that they had gone too far in one direction,

they reversed course and continued in the other direction(Figure 9 (b)).

3. Systematic narrowing: Two of the eight participants (P02, P05) started from a

variant in the middle and systematically narrowed down the search space using

an approach similar to a binary search. Participant P02 said: “… just split the

list in half and then … do a binary search on it.”

30

Figure 3.6. Between-variant navigation patterns. (a) Participant P01 was a

unidirectional forager. (b) Participant P06 was a bidirectional forager. (c) Participant

P05 was a systematic narrowing forager. Note that they all skipped several variants at

a time, as they navigated.

Finally, in addition to the timestamp cues that were available in the environment,

participants also left cues for themselves during their foraging. As participants

navigated across variants, they left potentially valuable variant folders expanded to be

able to revisit them later (or, equivalently, they closed off low-value variant folders).

Later, when they had to navigate to a previously-visited variant, they directly navigated

to the expanded folder(s), instead of searching for the it from scratch.

3.5.2 Source variant: Evaluate

Once participants navigated to a variant, they evaluated whether it was appropriate

for reuse. Specifically, they evaluated whether the variant contained the score and

multiplier above the hexagon. For this, participants used different types of cues that

were present within the variant. (In contrast, the timestamp cues were present as the

label for a variant).

31

Participant
Cue Types

Output-based Changelog-based Source code-based Filename-based

P01 29 12

P02 15 8

P03 44 3

P04 6 15 2

P05 9 2

P06 22 1

P07 12 22 3

P08 14 2

Total

occurrences

151

(68.3%)

35

(15.8%)

32

(14.5%)

3

(1.4%)

Table 3.3. Source variant evaluation: cue types. Participants used some cue types

more frequently than others to evaluate variants.

1. Output-based: When foraging in output patches, participants attended to

information features, such as the position of score or whether the output runs or not.

These information features functioned as cues (signposts to—or away from—the prey)

because, depending on what they saw, participants decided whether to navigate into the

variant's source code, or to navigate away from that variant. These output-based cues

were the most popular of all cue types; as Table 3.3 shows, 68.3% of all cue-type codes

in our coded transcripts were related to output.

We attribute the popularity of this cue type to its low cost. First, the cost of bringing

up these patches was low: participants had to right click on the index.html file and

choose “Run” or selecting the index.html file and click on the “Run” button in the

command bar. Second, the cost of processing these patches appeared to be low: just a

quick visual inspection of the output revealed whether or not the score and multiple

appeared above the hexagon, or whether the game was broken.

32

2. Changelog-based: Another kind of low-cost cues were the words in the variants’

changelogs, present in the changes.txt file within each variant. Participants frequently

used these cue types to identify whether the variant contained the required information

features; for example,

P1: “I expected to see something along the lines of ‘changing the position
of score’” .

However, change logs were often unhelpful because: 1) they were non-descriptive

(e.g. one log contained only the text “asdf”) and 2) they contained information only

about what had changed—and not what was present—in a variant. As a result,

participants abandoned changelogs and fell back to other cue types;

P3: “their document isn't that good for people changing things.”

3. Source code-based: Most participants (5 out of 7) also evaluated a variant based

on the source code in the variant. Sometimes, participants read the code in variants to

understand what the code did. At other times, participants used the similarities or

differences across variants to judge what a variant contained.

P07: “this still looks like the center to me” (emphasis added).

Some participants also perceived errors in source code (e.g., squiggly red lines

indicating compilation errors) as a negative scent and steered away from that variant to

other variants.

4. Filename-based: Finally, one participant (P07) also used file names as cues for

evaluating variants: if a variant did not contain certain file names, he immediately

rejected the variant.

P07: “… at some point, [filename] did not even exist”

Based on the different types of cues described above, participants made one of the

following three foraging decisions:

1. they concluded that the variant was inappropriate for reuse (e.g., the game was

broken, did not contain score) and went on to find another variant, or

2. they found that the variant contained the score above the hexagon, but continued

to find another variant that contains easier-to-integrate code, or

33

3. they concluded that the variant was appropriate for reuse, proceeding to find

and reuse code from that source variant.

3.5.3 Source patch within source variant: Find
Once participants found a source variant, they then foraged for the task-relevant

(source) patches within that variant. Thus, participants looked for the code displayed

the score and the multiplier. Although this foraging goal, namely finding the score and

multiplier-related code, is similar to that in destination-patch foraging (Section 3.5.1),

participants adopted very different strategies in both these activities.

Earlier, when participants foraged within the destination variant, they did not know

where the task-relevant patches might be. They had to rely solely on cues in the

environment to hunt down the destination patches. In contrast, while foraging in the

source variant which was similar to destination variant, participants had already formed

expectations about where the source patches might be located. These expectations

provided a starting point for participants’ foraging within the source variant.

More specifically, because the variants were similar to each other, participants

expected that the source and the destination patches will contain (at least some)

common information features, and that the information features found in the destination

patches in the destination variant will also lead them to the source patches in the source

variant. For example, P03 found calls to renderText (in the view.js file) in the destination

patches within the destination variant. Later, when she foraged in the source variant,

she searched for exactly the same features, hoping that the task-relevant patches in the

source variant also will contain the same information features (and will hence lead her

to the source patches): “renderText is still something I can look for”. As the triangles

above the rows in Figure 3.5, of the seven participants who foraged for source patches

(green segments), six participants used such similarity-based strategies for their

foraging.

However, participants did not always succeed with such a similarity-based strategy.

Sometimes, the program had changed over time between the source and the destination

variant. As a result, participants did not find the same patches or information features

that they had found earlier in the destination variant. In such cases, participants

proceeded in one of the following two ways.

34

Sometimes, participants continued to forage based on similarities, hoping to find

other information features that might still be similar among the variants and therefore

lead them to the source patches. For example, when Participant P03 did not find the

renderText() method in the source variant, she said:

“what are some other key phrases I can look for... I guess go back
and check for score.”

In Figure 3.5, row P03, the two consecutive triangles denote how she looked for

renderText and then immediately looked for score.

Other times, participants abandoned the similarity-based approach and began

foraging within the source variant, just like they had foraged in their destination variant

(e.g., by reading source code words and following scent). For example, when P03 tried

and failed to forage for her prey using similarities for two consecutive times (as

indicated by two consecutive triangles in Figure 3.5, row P03), she started reading the

source code within that variant, as the subsequent absence of the triangles in the figure

shows.

3.5.4 Source patch within a source variant: Evaluate

After finding their source patches, participants also evaluated them, based on the

following two criteria.

First, participants evaluated whether the code did what they thought it did (e.g., if

a line of code actually altered the score position). For this, they edited the code and saw

whether the resulting output met their expectations, just like they did when they

evaluated the destination patches. Two participants (P04, P05) performed this kind of

evaluation as Figure 3.5 shows: in rows P04 and P05, the dots in the green bars

represent edits made during source patch foraging. If participants concluded that they

were not on the appropriate source patches, they undid their changes and continued

foraging for the correct ones within the same variant.

The second kind of evaluation relates to integrating the source and destination

patches: how easy can these source patches be integrated with the destination patches?

If the source and destination patches were similar, participants expected that the code

integration would be easy; otherwise, if the source and destination patches were

35

different, the integration might be hard and so participants went on to forage for another

variant where the code might be easier to integrate. All seven participants who foraged

for source patches within a source variant engaged in this evaluation activity. (The

exception, P08, could not successfully find the source patches and hence did not

evaluate them. Instead, he re-implemented, instead of reused, the code to complete the

task.)

Although in finding and evaluating the source context, participants mostly used a

drill-down approach—they first found and evaluate the source variant using non-code

cues and then drilled down to find and evaluate the source code patches—two

participants (P04 and P07) foraged for the source patches as part of finding and

evaluating the source variant. These participants relied on cues in source-code patches,

comparing them with destination patches, for evaluating their source variant. Thus,

they interleaved their source-patch foraging with their destination patch foraging. The

triangles above the orange segments in Figure 3.5: rows P04 and P07 indicate these

instances.

3.5.5. A Foraging Strategy: Story-guided foraging
Crosscutting the foraging activities described above, participants engaged in what

we call story-guided foraging. As participants went about foraging between and within

variants, they built stories of how the game had evolved. Specifically, based on the

information features they had collected from the various variants (and patches) they

had foraged in, participants built two kinds of stories.

Some participants, such as P08, built stories of how the game evolved: “seems that

the game had the zero in the middle and then before that never worked. That could've

gotten broken at some point though” (P08). Other participants, such as P07, built stories

about how the code –instead of just the game– evolved: “At some point, this [method]

was [re]factored into its own function, then it was [re]factored back out of its own

function.”

Indeed, participants used both the kinds of stories to guide their foraging. However,

neither of these kinds of stories were necessarily complete, or even correct. Participants

started off by creating an incomplete outline of the story and then refined them as they

visited more variants and gathered more information features. As an illustration of how

36

these stories were built and refined, let us look at the verbalizations of P07 in the

retrospective interviews. Initially, he built the following story, based on information

features in a few variants:

“…early in development there's no score label. At some point the
original score label is introduced. And then, after that, the 2nd

score label's introduced”.

As he processed more information features from the output of more variants, he

refined his story:

“… after dealing with this for a while, there might have been like
no score label, then the original score label, then no score label,

and then the second score label for a while”.

He then used his story to guide his foraging:

“... that's basically why, when I hit this version that had no score
label, I just decided to start searching in a more recent direction”.

3.6 Results: Stage 3. Integrating the variants

Once participants found and evaluated the current and usage context, they

proceeded to the third stage of reuse, namely integrating the variants, to complete their

task. They integrated the code in one of two ways.

1. Copy and paste: When two variants were similar, participants attempted to

copy and paste the code from the source variant into the destination variant,

and made minimal modifications to match the task requirement. Only one

participant (P06) was able to find such a similar patch for reuse, and only

for one of the tasks. In other cases, when the two variants were dissimilar,

participants copied and pasted code from the source patches into destination

patches, and then fixed all the dependencies and errors. Three out of eight

participants (P01, P07, P06) followed this strategy.

2. Re-implement: Two participants (P07, P03) implemented the task from

scratch (without reuse) when they found source and destination variants to

be dissimilar. Further, one participant (P08) could not locate the right source

37

variant; therefore, he directly implemented the fix only based on the

(textual) task descriptions.

The two integration strategies described above correspond to “cut-and-stanch-the-

bleeding” and “analyze-then-act” strategies described in the reuse literature [26].

Participants chose their reuse strategy depending on whichever they perceived to be

low cost.

3.7 Discussion
3.7.1 Threats to validity

As with every study, the results presented so far have to be interpreted keeping a

few threats to validity in mind. First, in our study, we presented each variant as a folder

containing the entire copy of the program. This “vanilla setup” has the disadvantage of

not considering state-of-the-art presentation devices and navigation affordances for

variants (e.g., in version control tools). However, this choice of presentation allows us

to build the theory from scratch, eliminating the effects due to affordances in existing

variations-support tools (e.g., version control tools).

Second, our participants were not gender-balanced. Given that prior studies (e.g.,

[2]) have revealed that problem solving strategies cluster by gender, it is possible that

some foraging behaviors relating to women’s problem-solving strategies were not

revealed in our study.

Third, although we chose a real program from GitHub, and designed our tasks based

on prior studies, the program and tasks used in our study might not be representative

of all tasks involving variants in the real world. Similarly, our results might also not

generalize to other programmer populations who might engage in variations foraging

with other motivations than reuse, or adopt different foraging strategies (e.g.,

programmers with prior knowledge of the codebase, expert programmers). Such

limitations in generalizability can only be addressed through further empirical studies.

3.7.2 Generalization of our results

Fortunately for us, Martos et al. built upon our work and conducted another study

investigating cues and strategies in variations foraging [48]. Their study also involved

38

reuse from variants. However, they conducted their study with end-user programmers.

They also used two different programming environments, namely AppInventor and

MATLAB, deriving their variants from crowdsourced online repositories, namely

AppInventor Gallery and MATLAB File Exchange respectively. These differences in

population and study environment provide some external generalization for our

findings

Indeed, several of our results also generalized to Martos et al.’s study. Specifically,

participants in both studies used similar cues and strategies, such as timestamps and

comparison-based strategies, thus lending some external validity to our findings.

However, their participants also adopted new cues and strategies (e.g., program

descriptions, crowd ratings) based on the affordances and cues available in their study

environments (and not available in ours). These new cues and foraging behaviors

expand our results on variations foraging to online, crowdsourced environments.

3.7.2 Open questions

Our study also raises new questions in information foraging, from the perspectives

of information consumers as well as information producers.

Starting with the consumer (forager) side, traditionally, IFT has dealt with

information environments with largely dissimilar patches (e.g., different web pages in

a website, different methods within a program). However, in the variations domain, the

information environment consists of very similar and even identical patches across

variants; consequently, the information features and hence the cues and scent might

also be similar across variants, making it difficult for foragers to follow scent and to

forage with the strategies described in prior studies in IFT (e.g., [44, 66]).

Indeed, participants in our study demonstrated two new foraging strategies. First,

they heavily relied on the comparison operation: 1) to find what was different among

very similar variants, 2) to find a variant similar to a given variant in a certain way, 3)

to find patches with information features identical to those seen in other variants.

Second, they foraged across variants by generating temporal stories about how the

program evolved over time and then using those stories to guide their foraging (5 out

39

of 8 participants). These foraging behaviors may be uniquely important to variations

foraging.

These new behaviors call for further research into variations foraging. First, there

is no construct in IFT that can be instantiated as a story--stories are not cues, not

patches, not prey, and so on. Thus, an open research question is whether new IFT

construct(s) are needed to capture this phenomenon. Second, comparison is important

in variations foraging, but current IFT computational models do not account for an

explicit comparison operation: they mostly consider within-patch foraging, between-

patch foraging and enrichment as operations that human foragers perform. This calls

for enhancements to IFT computational models.

Whereas the above two open problems concern how foragers (consumers) forage

among available variants, two additional questions arise on the producer side: 1) what

makes a good variant? 2) what makes a good cue (e.g., changelogs, descriptions) for

variants? These producer-side questions are important because the patches and cues

created by the producers are eventually where and how consumers will forage later.

Currently, the ways programmers create variants (including in our Hextris

program) are rather arbitrary and depend on the individual programmer: if a producer

chooses not to save a variant (e.g., broken code), the consumer might not find the prey

at a later time [80]. On the other hand, if the producer created too many variants,

consumers might find it harder to forage for information. This relationship between the

producers’ information creation and the consumers’ information foraging calls for

research into the producer side of information foraging.

Here, two avenues are particularly ripe for research. First, IFT researchers need to

begin looking at foraging from the perspective of the producer: how do producers of

variants think about the scent they are leaving for the variants?, what signposts do they

think they are leaving for the future consumers?, how do they think of the different

potentially-conflicting needs (e.g., every change is a new variant vs. multiple related

changes makes a variant) of future consumers?, do they think about future consumers’

navigations between patches, or only within patches, or not at all? Second, as tool

40

builders, we need to consider how well variations-support tools support producers’

creation of patches and cues so that they meet the foraging needs of future foragers.

3.8 Conclusion: Does IFT apply to variants?

Finally, revisiting the fundamental question we set out to answer in this chapter,

does IFT apply to variants? Our results suggest yes. First, we were able to frame our

explanations of programmers’ foraging behaviors in IFT’s constructs of patches, prey,

cues and scent. Second, the foraging behaviors we observed are explained and

predicted by IFT’s cost-value proposition. For example, participants adopted tactics

such as looking for identical information features in within-variant foraging, or

skipping variants during between-variant foraging or looking for cues that highlighted

differences, so as to minimize the costs of their foraging.

However, these are only preliminary evidences and are not conclusive, or even

sufficient. First, there is the story-guided foraging strategy that participants adopted:

since we do not know what IFT constructs these stories should be instantiated as, we

need to investigate how important these stories are for explaining and predicting

participants’ variations foraging. Second, our evidence favoring IFT as a theoretical

framework for variants is based on our interpretation of participants’ foraging behavior;

to build solid theoretical foundations, we need to validate whether these interpretations

are correct.

Therefore, in the next two chapters, we will concretely operationalize IFT for

variants in computational models and then evaluate how well our interpretations of

variations foraging, encoded in those models, can predict variations foraging.

41

CHAPTER 4: PFIS-V: MODELING PROGRAMMERS’

VARIATIONS FORAGING IN SOURCE CODE3

 In the previous chapter, the qualitative results from our formative study suggested

that IFT applies to variations. In particular, we were able to describe many of

participants’ variations foraging behaviors using IFT’s constructs and propositions

(e.g., cues, patches, costs, values, scent). However, qualitative results mostly show the

existence of phenomena and not their generality. To fill this gap, we built

computational models that concretely operationalize IFT’s constructs and propositions

for an environment containing variants, and predict how, according to IFT, a

programmer will forage in that environment.

IFT computational models are tools for researchers to test their hypotheses about

how people will forage in a given situation. Researchers can operationalize IFT—the

patches, the cues, the links—for an environment in an IFT computational model. They

can then encode in the model their hypotheses about how a person will forage in that

environment. If the model can accurately predict a person’s navigation in the

environment, it adds to evidence of the validity of the researchers’ hypotheses.

Otherwise, if the model fails to accurately predict the navigations, the researchers need

to refine their hypotheses (and hence understanding) about people’s foraging.

In our research, we framed our hypotheses about variations foraging based on our

qualitative observations described in the previous chapter. We encoded these

hypotheses in two computational models, namely PFIS-V and PFIS-H, and then

evaluated the models, as a way of evaluating our hypotheses and to solidify our

understanding of variations foraging. In this chapter, we will present PFIS-V and its

3 Ragavan, S. S., Pandya, B., Piorkowski, D., Hill, C., Kuttal, S. K., Sarma, A., &
Burnett, M. (2017, May). PFIS-V: modeling foraging behavior in the presence of
variants. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (pp. 6232-6244). ACM.

42

empirical evaluations. In the next chapter, we will discuss our second model, namely

PFIS-H, that addresses key limitations in PFIS-V.

4.1 The PFIS-V Computational Model

 PFIS-V, short for PFIS for Variants, belongs to the PFIS family of IFT

computational models. In turn, PFIS stands Programmer Flow by Information Scent.

As the name suggests, the PFIS models predict a programmer’s navigations based on

the scent s/he will perceive in the programming IDE. Whereas earlier PFIS models

predicted how a programmer will navigate within a single variant of a program, PFIS-

V predicts how a programmer will navigate among multiple program variants.

PFIS-V builds upon PFIS3, the latest PFIS model for single variant situations [63].

It makes two key extensions to PFIS3 to account for variations foraging: 1) it accounts

for multiple variants in the information environment and 2) it accounts for how the

programmer will reason about, and navigate among, those variants. These extensions

are encoded in the model’s data model and predictive algorithm respectively.

4.1.1 PFIS-V Data model: Accounting for programmers’ mental model of variants

The data model in PFIS-V (or any other IFT computational model) is a

representation of the information environment--the patches, links and cues--that the

programmer has seen (and thus knows about) so far. It represents the information

environment as a graph G = (VP U VW, EL U EW), where

• VP = set of all patches (methods) the programmer knows about so far,

• VW = set of words in the patches (excludes programming language reserved

words such as “return” and common English language words such as “the”),

• EW = set of “patch contains word (cue)” relationships, and

• EL = set of links, or one-click navigation affordances, between patches (e.g.,

adjacency, method invocation links).

As an illustration of the PFIS-V data model, consider the program snippet in Figure

4.1 (a): the corresponding data model graph is given in Figure 4.1 (b). Notice that for

each patch (e.g., sum method) in the program snippet, there is a patch node (blue

43

ellipse) in the graph. Similarly, each word in the program corresponds to a word node

(red rectangle) in the graph.

Figure 4.1. PFIS3 data model (a=single variant program snippet, b=corresponding

PFIS3 data model). Each patch and word in (a) are represented as nodes in (b). The

links between patches and “patch contain word” relationships in (a) are represented as

edges in (b).

Now consider the method average (a patch) in the program snippet. It contains

words like average (its name), numbers (parameter), sum and count (contents and calls

to other methods). Thus, the data model contains “patch contains word” links (---)

between the average patch node and the average, number, sum, count word nodes.

Note that words in the program are first split (e.g., “numbersList” = “numbers” +

“list”) and trimmed (e.g., “numbers” to “number”) and then added as word nodes to the

graph. Thus, for each word in the program (including all its grammatical forms), the

PFIS-V graph contains a unique word node.

Moving on to the links between patches, again consider method average in Figure

4.1(a). A programmer can go from this method to other methods, such as sum or count,

by clicking on these method invocations (links). Similarly, s/he can navigate from the

method count to the methods sum and average by scrolling. These navigation

44

affordances (or links) are modeled as links between the average method and the sum,

count and average methods respectively (The labels “inv” and “adj” on the link edges

represent method invocation and adjacency respectively.)

To represent multiple variants, PFIS-V extends PFIS3’s single-variant data model

in four different ways, resulting in four different configurations. Each of these

configurations represent different assumptions about programmers’ mental models of

the variational information space.

Before we enter the discussion about these representations, let us consider an

example. Consider a programmer, Jane, starting with Variant 1 of a program (Figure

4.2 (a)). The first variant of program consists of four method patches A, P, Q, R. (We

have excluded the word nodes from the graph for ease of illustration.)

Jane modifies the method R and saves it as Variant 2. We indicate that R has

changed between Variants 1 and 2, by naming it R' in Variant 2. In a similar way, Jane

again changes method R (resulting in R''), adds a new method S to result in Variant 3.

Finally, she modifies the new method S (resulting in S') and removes method A,

resulting in Variant 4. We will now discuss how these variants are represented in PFIS-

V’s four configurations.

Configuration #1: Variant-unaware data model

The variant-unaware data model, illustrated in Figure 4.2(a), is the simplest of the

four data model configurations. Here, each patch in each variant is represented as a

unique patch node, irrespective of whether two patches have the same names (e.g., R

and R'), or are somewhat similar, or even identical across variants (e.g., P). For each

word in the environment (across variants), there is a single word node, irrespective of

how many variants or methods the word occurs in.

This configuration accurately reflects the navigation affordances in our study

environment (Figure 3.2, page 22), as well as in most other IDEs. For example, a

programmer could not navigate from a method in one variant to a method in another

variant, via an IDE links; this data model contains no such navigation links going across

variants. Therefore, we also use this configuration as a baseline for our evaluation of

the other data model configurations.

45

Figure 4.2. Four PFIS-V data model configurations. (a) The variant-unaware

configuration accurately reflects the navigation affordances in our programming

environment and does not capture any similarity between variants. (b) To this, we

introduced variant-awareness by adding “variant-of” edges (dotted lines) between

similar patches in different variants. Further, we collapsed identical patches across

variants, calling them equivalent; (c) text-based equivalence is based on identical text

and (d) text-and-topology-based equivalence is based on identical text as well as same

neighbors.

However, contrary to what this data model captures, a programmer like Jane might

expect methods with the same name (but in different variants) to be identical, or at least

similar in some way. For example, if she sees that the method R computes the rate of

interest in one variant, she might expect the method R (dubbed here as R' and R'') to do

the same thing in other variants, even if the method body has changed. Whereas the

variant-unaware configuration does not capture this similarity property of variants (and

hence gets the name variant-unaware), the variant-aware configuration captures them.

46

Configuration #2: Variant-aware data model

The variant-aware data model considers one possible mental model of similarities

between patches. In this data model configuration, patches having the same fully

qualified names (i.e., package, file and method names) but in different variants, are

considered to similar and are linked via “variant-of” links. For example, in Figure 4.2

(b), all patches with the same name (e.g., R, R' and R'' or all Ps) are variants of each

other; therefore, they are linked by dotted lines representing “variant-of” links.

Note that, unlike other links, such as adjacency or method invocation links, the

“variant-of” links are not physical navigation affordances in the environment; instead,

they are conceptual links that capture the relationship between patches that may exist

in a programmers’ head.

Configurations #3 & #4: Variant-and-equivalence aware data models

The next two configurations are the variant-and-equivalence aware data models. As

the name suggests, these data models are both variant-aware and equivalence-aware.

The term variant-aware is exactly the same as in the previous configuration: patches

that have same fully qualified names are similar across variants and are connected via

“variant-of” links. For example, see the dotted edges between R, R’ and R’’ in Figure

4.2(c) and (d).

In addition, these data models also add the notion of "equivalence" between certain

patches. Equivalence means that, from the perspective of a forager, it does not matter

which of two equivalent patches s/he forages in. For example, in Figure 4.2(b) all the

methods named P are identical across variants: they are equivalent for foraging

purposes because they all provide exactly the same information, cues and scent to the

predator. To model this perspective, in the variant-and-equivalence-aware data models

(Configurations #3 and #4), we replace multiple equivalent patches with only a single

representative patch. The difference then, between these two configurations is in how

equivalence is computed.

In Configuration #3, text-based equivalence models that programmers considered

two patches to be equivalent if they had identical textual contents. For example, in

47

Figure 4.2 (a) and (b), all the methods P have exactly the same content across variants—

there are no there are no P' and P''. Therefore, in Figure 4.2(c), all methods P are

considered equivalent and collapsed into a single node.

In Configuration #4, text-and-topology-based equivalence models programmers

differentiating between patches that have exactly the same content, but different

topologies across variants (e.g., whether the method moved across variants). For

example, in Figure 4.2(d), P is adjacent to A in Variants 1,2 and 3, but not in Variant

4. The intuition here is that the similarities (or differences) in topology might be

important to variations foraging, just as the topological layout of methods in a program

is important to programmers’ foraging within a single program variant [63].

Later, in Section 4.2, we will empirically compare these data model configurations

to see which of them is the most predictive of programmers’ variations foraging

behaviors (and hence closely resembles programmers’ mental models of variants).

4.1.2 PFIS-V algorithm: Predicting programmer navigations based on their mental
models

In a computational model like PFIS-V, the data model is only one part: it only

models the information that the programmer knows about so far. However, when

foraging based on that information, a programmer has several possible navigation

options: s/he could scroll up or down from the current method to an adjacent method,

s/he could go back to the previous method that s/he had already been to, or follow the

link to a method called from another method or go to a method containing some words

in the method name or the body, forage within the same variant or go to another variant.

The predictions for which of these navigations a programmer will make is made by the

predictive algorithm of the model.

 The PFIS-V algorithm (drawn in part from the PFIS3 algorithm for single-variant

foraging) takes as inputs: 1) the data model graph, representing the patches, cues and

links the programmer knows about so far and 2) the list of navigations the programmer

has made so far. Based on these inputs, the algorithm computes how likely it is for a

programmer to make each of the available navigation choices based on the scent s/he

will perceive. PFIS-V computes this scent in two stages as follows.

48

Stage #1: Activation. First, the algorithm initializes the weights for the patch nodes

the programmer has navigated to so far (i.e., the programmers’ navigation history).

Specifically, if the algorithm is predicting navigation HK+1, and H1, H2… HK represent

the patches the programmer has navigated to so far, then the activation step assigns the

initial weight:

𝐻= = 	 K
1. 0					𝑓𝑜𝑟	𝑖 = 𝐾

													𝛼𝐻=QR		𝑓𝑜𝑟	𝑖 = 1,2. . 𝐾01

Here, α is the decay factor. We used α=0.9, preserving the value from WUFIS, the

web-foraging model [10], on which PFIS is based. Thus, the most recent patch, namely

the patch the programmer is currently in, receives an activation 1.0, the previous patch

gets 0.9, and the earlier patches get 0.81, 0,729 and so on. All the other patch and word

nodes in the graph are initialized with weight 0.0.

From a code navigation perspective, the activation step operationalizes “recency”,

which prior studies (e.g., [5, 60, 63]) have revealed to be an important predictor of

programmer navigations: a programmer often revisits patches that s/he has recently

foraged in.

Stage #2: Spreading the activation. In the second stage, the algorithm spreads the

initial activation weights from the activated patches to other related patches, decaying

the weight by a factor of β=0.85. (We preserved the value of β from the WUFIS model

[10].) This spreading proceeds in parallel along two distinct paths.

In the first path, the algorithm spreads the initial activation from patch nodes to

word nodes and, in turn, from word nodes to other patch nodes via “patch contains

word” edges. Thus, the algorithm spreads weights to patches that are lexically similar

to the current patch, thereby capturing the scent programmers perceive from words in

source code. Since, in one instance, a programmer will attend to only one cue, or follow

only one link, among the several available choices, the PFIS-V algorithm accounts for

the probability that a programmer will attend to a certain cue. Therefore, the spreading

from patch P to patch Q, via word W is given by:

𝑊	 = 	𝑊	 + 	𝑃	 ∗ 	0.85	 ∗
1

𝑛𝑜. 𝑜𝑓	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠	𝑜𝑓	𝑃	𝑖𝑛	𝑡ℎ𝑒	𝑔𝑟𝑎𝑝ℎ ,	

49

𝑄	 = 	𝑄	 + 	𝑊	 ∗ 	1	 ∗ 	
1

𝑛𝑜. 𝑜𝑓		𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠	𝑜𝑓	𝑊	𝑖𝑛	𝑡ℎ𝑒	𝑔𝑟𝑎𝑝ℎ	

Here, β=0.85 indicates a decay factor and is an indicator of how much weight the

PFIS-V algorithm assigns to the lexical-similarity factor while making predictions.

Note that the decay is applied only to the first step, otherwise, the algorithm would have

double decayed the weights.

Simultaneous to spreading weights along the “patch contains word” edges, the

algorithm also spreads activation from patch nodes to other patch nodes along

topological links, namely adjacency and method invocation edges. This spreading

models that a programmer could follow one of these several available links to navigate

to the next patch. PFIS-V also accounts for the probability that a programmer will

follow a link, while spreading activation along links. Thus, in spreading weight from

patch P to patch Q, the PFIS-V algorithm assigns:

𝑄	 = 𝑄	 + 	𝑃	 ∗ 	0.85	 ∗
1

𝑛𝑜. 𝑜𝑓	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠	𝑜𝑓	𝑃	𝑖𝑛	𝑡ℎ𝑒	𝑔𝑟𝑎𝑝ℎ.

Here again, β=0.85 is the decay factor; note that the weights are equal for the

topological links and word-similarity links4.

At the end of these spreading steps, the resultant weight on each patch node is a

measure of the likelihood that the programmer will navigate to that patch; in other

words, it is a measure of scent: the programmer will follow the path that provides the

strongest scent.

The algorithm then ranks the patch nodes based on the weights (highest weight gets

lowest rank and vice versa, where rank=1 is the algorithm’s top prediction). If several

patch nodes have exactly the same weight, then the algorithm resolves the tie by

4 In the version of PFIS-V presented in [77], the algorithm double decayed weights
while spreading along “patch contains word” edges, thereby biasing the model towards
navigations via topological links than via word similarity. The earlier version also did
not: 1) spread activation in parallel resulting in multiplicative effects between the two
spreading steps and 2) consider similarity or equivalence between the top-of-file
declarations across variants.

50

assigning an average rank. For example, if k patches are tied at rank r, then the

algorithm assigns a rank:

𝑅	 = 	𝑟	 +	
𝑘 + 1
2 .

The algorithm then “rates itself” by returning the rank of the patch to which the

participant actually navigated to. This rank is an indicator of the accuracy of the

prediction: if the algorithm assigned rank 1, then the actual navigation was also the

algorithm’s top prediction. On the other hand, if the algorithm returned a high rank

(lower scent), then the algorithm mispredicted the navigation. As we shall see later, we

will use this accuracy measure to evaluate the model, and hence gather evidence

towards (or against) the hypotheses encoded in the model.

The spreading activation steps and ranking mechanisms described so far are

common to both PFIS3 and PFIS-V algorithms. The difference then, between the two

algorithms, is PFIS-V implements the following variations-specific extension.

Variations-specific extensions:
Recall that programmers capitalized on the similarities between variants during

their variations foraging. The data model configurations of PFIS-V, described in

Section 4.1.1, captured what similarities programmers perceive, and formed a part of

their mental models. The PFIS-V algorithm operates on these data models and predicts

how a programmers will use those similarities (in their mental models) to make

navigation decisions, such as cost-value estimations. Specifically, it implements the

following two extensions (highlighted in blue in Figure 4.3).

First, PFIS-V accounts for the fact that programmers might navigate between

similar patches (patches with same file, folder and method names) in multiple variants,

even when a direct link between those patches is absent. For example, some participants

in our study navigated to the view.js file, drawScoreBoard() method in one variant after

the other. To model this behavior, the PFIS-V algorithm spreads activation along the

“variant-of” edges while spreading activation via topological links.

Second, as the following paragraphs detail, PFIS-V models that a programmer will

know about the existence of a patch in one variant and will be able to estimate its costs

and values, based on what s/he has seen in other variants.

51

Definitions:
1: Patch Set P: set of all patches the programmer has seen so far.
2: Word Set W: set of all words in all the patches in P
3: Graph G = (NP U NW, EP U EW), where,

o NP: set of nodes representing patches in P (a patch node can represent a single non-
collapsed patch or multiple equivalent patches when collapsed),

o NW: set of nodes representing the words in W,
o EP: set of edges between two patch nodes, when the patches are linked by an

adjacency, invocation or a “variant-of” link,
o EW: set of edges between a word node and a patch node, where the patch contains

the word.
4: Navigation history H: sequence of patches to which the programmer has navigated so far.

Activate (G, H[1..k]):
5: for each node N in G:
 set Weight (N) ß 0.0
6: for i ß k down to 1:
set Weight(H[i]) ß 1.0
7: for i ← k-1 down to 1:
8: set Weight(H[i]) = α * H[i+1]; α = 0.9

Spread (P, Q, decay, no. of neighbors)
9: Probability = 1.0 / no. of neighbors
10: Weight (Q) = Weight (Q) + Weight(p) * decay * probability

Steps to predict the (k+1)th patch in H:
11: if programmer has not seen exact patch earlier:
12: if programmer has seen a similar patch s in another variant:
13: Approximate the content of (k+1)th patch to the contents of s.
14: Else, return “unknown”
15: Activate(G, H[1..k])
16: For each patch node P in graph:
17: For each neighbor N of P:
18: Spread (P, N, 1.0, count(N))
19: For each node P in graph:
20: For each neighbor N of P (along all edges):
21: Spread (P, N, β=0.85, count(N))
22: Rank the patch nodes in the decreasing order of activation.
23: If t patch nodes are tied at rank r,
24: Assign rank = [r + (t-1)/2] to all t patch nodes.
25: Return the rank for the node representing the (k+1)th patch.

Figure 4.3 PFIS-V’s algorithm (Lines in blue are additions from the original

PFIS3 algorithm.).

52

Traditionally, IFT computational models such as PFIS-V predict navigations to

only those patches that a programmer already “knows about” and can estimate the costs

and values for. For example, if a programmer has navigated to a method average(),

then s/he knows about the exact costs and values for that patch. Also, if average() calls

sum(), then the programmer knows about sum() also. In fact, the programmer might be

able to guess the cost and value for sum() based on cues, such as words in the method

name, even though s/he might not know its exact content. Thus, PFIS-V makes a

prediction when a participant navigates to a known patch; known patch = seen the exact

patch, or its name. For all other navigations to patches that the programmer does not

already know about (e.g., by opening a file from the package explorer at random), the

model makes no prediction; we call these navigations “unknowns”.

However, this notion of known vs. unknown patches changes subtly in variations

foraging, where a programmer might know about a patch without seeing the exact patch

or its name but based on what s/he has seen in other similar variants. For example, if a

programmer has already seen the average() method in Variant 1, s/he might expect to

find average() in Variant 2 also. Similarly, if average() computes the average mileage

in Variant 1, the programmer might expect average() to compute average mileage (i.e.,

contain similar values and costs) in Variant 2 also.

Therefore, PFIS-V predicts navigations to patch when: 1) the programmer has seen

exactly the same patch or its name, OR 2) the programmer has seen a similar patch in

another variant. In the latter case, PFIS-V approximates the contents of the patch to be

the same as that in the last-seen similar patch in another variant—the idea being that

the programmer will expect the contents to be very similar to what they seen previously

in other variants.

In the next section, we will use this PFIS-V algorithm and evaluate its predictions

under each of the four data models.

4.2 PFIS-V evaluation

To evaluate PFIS-V, we used the model to predict the navigations made by 7

participants in the user study described in the previous chapter; we dropped the eighth

participant, namely P05, due to incomplete data.

53

Recall that participants in the study foraged among 700+ variants of the Hextris

game to complete a reuse task. In doing so, the 7 participants made a total of 665

navigations going from one method to another (between-method navigations). We used

PFIS-V to predict these between-method navigations, in all four data model

configurations. We used click-based navigations [63] where a navigation is defined as

a change in cursor position5.

For comparison purposes, we also predicted programmer navigations using PFIS3.

Since both PFIS3 and PFIS-V algorithms work with all four data model configurations,

we use an algorithm/data-model notation to disambiguate these combinations; for

example, PFIS3/variant-unaware refers to the PFIS3 algorithm with the variant-

unaware data model.

4.2.1 PFIS-V vs. PFIS3 algorithms

To compare the predictive ability of PFIS-V and PFIS3 algorithms, we used two

measures, namely unknown rate and hit rate.

Unknown rates: how many navigations can PFIS-V predict?

Recall from Section 4.1.2 that models such as PFIS-V only predict navigations to

patches that the programmer already knows about; they cannot predict a navigation to

a patch they do not know exists. Thus, whenever a programmer navigates to an entirely

new patch, the prediction is always a failure and we denote this as “Unknown”. For

example, an unknown rate of 60% would mean that the model failed to predict 60% of

all programmer navigations; thus, lower unknown rates are better. Note that both PFIS-

V (or PFIS3) predict exactly the same set of navigations, and hence yield the same

unknown rates, in all data model configurations.

5 Another operationalization of navigation, namely view-based navigation, also
accounts for navigations via scrolling which are not accompanied by a change in the
cursor position. [63] revealed that a model’s predictive accuracy might vary depending
on the choice of click-based vs. view-based navigation. However, we followed prior
work in programmer recommendations and used click-based navigations [42, 64].

54

Figure 4.4. PFIS-V vs. PFIS3 Unknown rates. While predicting participants’

between-method’ navigations, PFIS-V had fewer unknown patches, and hence

predicted more navigations, than PFIS3 did. (Note that lower unknown rate is better.)

 Figure 4.4 compares the unknown rates of PFIS-V (blue) and PFIS3 (yellow) while

predicting individual participants’ navigations6. We see that, for 7 out of 8 participants,

PFIS-V’s unknown rates were lower than that of PFIS3 indicating that fewer

navigations were unknown to PFIS-V than to PFIS3. The one exception is P08, where

PFIS-V and PFIS3 yielded similar unknown rates: this is because, P08 foraged in

methods in only one variant, namely the destination variant, and PFIS-V behaves very

similar to PFIS3 in single-variant situations. This ability of PFIS-V to predict the same,

or more, navigations than PFIS3 provides the first evidence towards the efficacy of

PFIS-V in predicting participants’ variations foraging.

6 In this thesis, we use the latest versions of PFIS3 and PFIS-V that implement the
following changes (since [78]). First, similarity and equivalence are also computed for
top-of-file declarations (modeled as method patches). Second, the spreading of
activation proceeds in parallel for all nodes. Third, the algorithm does not decay
weights while spreading from word to patch nodes to prevent double decay (patch-to-
word, word-to-patch) while spreading along “patch contains word” edges; this way,
lexical similarity and topology factors are assigned equal weightages for making
predictions.

55

However, unknown rates are a measure of how often a model entirely fails to make

a prediction, and do not provide any insight into how accurate those predictions were.

Our next measure, namely hit rates, evaluates the accuracy of the predictions.

Hit rates: how accurate are PFIS-V’s predictions?

As described earlier (Figure 4.3), models such as PFIS-V make multiple predictions

for each navigation, and rank them (its top choice=1, its next choice=2, …). If the

algorithm assigns a low rank to a patch where the programmer actually navigated to,

then the prediction is a “hit”; otherwise it is a “miss”. Hit rate(threshold=K) refers to

the percentage of all actual navigations that a model predicted within its top K ranks

(“hits”). For example, hit rate(threshold=10) = 90% would mean that a model

predicted 90% of participants’ navigations within its top 10 ranks. Thus, higher hit

rates, especially at lower thresholds, are better.

Following prior work (e.g., [42, 64]) on predicting and recommending programmer

navigations, we used hit rate (threshold=10) as our default measure of accuracy. In the

rest of this thesis, the terms “accuracy” and “hit rate” generally refer to hit rate

(threshold=10), unless specified otherwise.

Figure 4.5 compares the average hit rates from PFIS-V and PFIS3 for various rank

thresholds; solid lines represent PFIS-V, dotted lines represent PFIS3, and the four

colors correspond to the four data model configurations. As the graph indicates, on an

average, PFIS-V yielded higher hit rates--and therefore was more accurate--than PFIS3

in all data model configurations.

56

Figure 4.5. PFIS-V vs. PFIS3 Hit rates. On an average, PFIS-V yielded higher hit

rates than PFIS3 across all data model configurations. (Higher hit rates are better.)

Drilling down to individual participants, PFIS-V was more accurate than PFIS3

while predicting individual participants’ navigations also. As Table 4.1, columns d-g,

show, for 5 out 7 participants, PFIS-V (black) was more accurate than PFIS3 (orange);

the improvements were as high as 19.23% for P07 (columns f, g). For the remaining

two participants (P03, P08), PFIS-V matched to PFIS3’s accuracy. These

improvements in hit rates indicate that PFIS-V was a more accurate predictor of

participants’ variations foraging than PFIS3.

40%

50%

60%

70%

80%

90%

0 20 40 60 80 100

A
v
e

ra
g

e
 h

it
 r

a
te

 (
th

re
s
h

o
ld

 =
 K

)

Rank threshold (K)

Hit rates: PFIS-V vs. PFIS3

PFIS-V / variant-unaware PFIS3 / variant-unaware

PFIS-V / variant-aware PFIS3 / variant-aware

PFIS-V / variant-and-equivalence-aware(text) PFIS3 / variant-and-equivalence-aware(text)
PFIS-V / variant-and-equivalence-aware(text, topology) PFIS3 / variant-and-equivalence-aware(text, topology)

57

Table 4.1. PFIS-V vs. PFIS3: Per-participant hit rates. Black = PFIS-V;

orange=PFIS3. For all data models and participants, PFIS-V was similar or more

accurate than PFIS3. In particular, the PFIS-V/variant-and-equivalence-aware(text)

model yielded higher average accuracies, particularly benefiting Group-1 participants

(P04, P07). For all other participants, equivalence-awareness did not bring any

additional improvements over the PFIS-V/variant-aware model.

The fact that PFIS-V not only predicted more navigations than PFIS3 (lower

unknown rates) but also did so with higher accuracy (higher hit rates) provide evidence

supporting the assumptions encoded in the PFIS-V algorithm. Recall that PFIS-V made

models that, even though a programmer has never seen a patch earlier, s/he might

capitalize on the similarities between variants to infer the existence of the patch, and to

estimate its costs and values (i.e., based on what s/he has seen in other similar variants).

58

4.2.2 Data model configurations: which one is closer to programmers’ mental
models?

Another set of assumptions encoded in PFIS-V are in its four data model

configurations. They implement different assumptions about participants’ mental

models of the variational information space: 1) patches with the same name and in

different variants are somewhat similar in terms of their costs and values (variant-of

links), 2) patches containing identical content are equivalent and it does not matter

which one of those identical patches a predator forages in (collapsed patches) and 3) in

comparing variants, participants not only attended to lexical similarities and differences

but also compared the topology of patches across variants (text-based vs. text-and-

topology-based equivalence). To evaluate which of these assumptions closely represent

participants’ mental models, we compare PFIS-V’s accuracy across the four data model

configurations.

In Figure 4.5, compare the four solid lines. First, introducing the notions of variant-

awareness (i.e., variant-of links) resulted in slightly higher hit rates for the variant-

aware configuration than the variant-unaware configuration, suggesting that

participants did navigate among similar patches in different variants.

Second, comparing the variant-aware and the variant-and-equivalence-aware

models, we see that modeling equivalence between patches (i.e., collapsing identical

patches) resulted in higher hit rates. This result suggests that participants’ mental

models of variants included whether patches were identical (or not) and that they

considered identical patches equivalent.

Third, among the two variant-and-equivalence-aware models, text-based

equivalence resulted in higher predictive accuracy than the text-and-topology-based

equivalence, suggesting that participants’ comparisons of source-code patches were

generally based on textual content (e.g., do these methods contain the same text?) than

on the source topology (e.g., has the method moved?)7.

7 In the earlier version of PFIS-V [78], the variant-and-equivalence-aware(text,
topology) model yielded slightly higher hit rates than the variant-and-equivalence-
aware(text) model. This is because, in the earlier version: 1) the spreading decay was
higher for word-similarity than for topological relationships and 2) the spreading of

59

4.2.3 Two groups: different between-variant foraging behaviors

However, as Table 4.1 shows, there existed two distinct groups of participants. For

Group-1 participants (P04, P07), PFIS-V’s accuracy improved while progressing from

the variant-unaware to variant-aware to variant-and-equivalent-aware models, as the

four distinct lines in Figure 4.6(a)) show.

In contrast, for Group-2 participants (P01, P02, P03, P06, P08), the four hit rate

lines overlap in Figure 4.6(b), suggesting that the PFIS-V hit rates were very similar

across all data models. Table 4.1 (rows in black, columns d-f) also reveals these

differences between the two groups.

Figure 4.6. PFIS-V improvements: two groups of participants. For the Group-1

participants (5 out of 7), the average PFIS-V hit rates across all data models were

very similar; however, for Group-2 participants, the variant-and-equivalence-aware

models were more accurate than the other two models.

In order to reason about this dichotomy, let us revisit the assumptions the variant-

aware and the variant-and-equivalence-aware data models make: 1) programmers will

navigate to similar patches in similar locations across variants (variant-aware) and 2)

programmers will attend to similarities and differences in patches across variants

activations proceeded in a non-parallel fashion, leading to multiplicative effects
between textual and topological relationships.

60

(equivalence-aware). Ideally, the more variants a programmer forages in and the more

similar (or identical) patches s/he encounters, the more closely the variant-aware or the

variant-and-equivalence-aware models will reflect programmers’ foraging (higher

accuracy).

This is exactly what happened with Group-1 participants. In Table 4.2, graphs for

Group-1 participants had more “variant-of” edges and collapsed nodes than Group-2

participants. This is because, while foraging for an appropriate source variant (between-

variant foraging), Group-1 participants navigated to methods in several variants.

Specifically, they 1) navigated to similar locations in different variants and 2) attended

to the similarities and differences in source-code by way of processing cues, just like

the “variant-of” links and the collapsed nodes model. Therefore, the variant-and-

equivalence-aware models resulted in higher PFIS-V accuracy for Group-1

participants. (Notice that even among Group-1 participants, P07 visited way more

variants than P04 and benefiting heavily from the “variant-of” edges and collapsed

nodes).

Table 4.2. Two groups of participants: PFIS-V data model graphs. Group-1

participants foraged in source-code patches in several variants and the variant-aware

and variant-and-equivalence aware models closely resembled these navigations. In

contrast, for Group-2 participants who foraged in only two variants, the four data

model graphs (and hence accuracy) were very similar.

61

In contrast, for Group-2 participants, there were fewer “variant-of” edges and no

collapsed nodes in Table 4.2 (all four data models have the same no. of nodes). In other

words, PFIS-V did not benefit from the variant-awareness and equivalence-awareness

improvements. This is because, unlike Group-1 participants who relied on similarities

and differences in methods for their between-variant foraging, Group-2 participants

relied exclusively on words in changelogs or cues in the game’s output to lead them to

an appropriate source variant. As a result, they foraged in source-code patches in only

two variants, namely the source and the destination variant, resulting in little predictive

advantage from the variant-aware and variant-and-equivalence-aware models.

Then, how does PFIS-V model Group-2 participants’ between-variant foraging in

textual changelog and graphical output patches? Unfortunately, it does not! In fact, no

prior IFT computational model, in programming as well as non-programming domains,

has accounted for non-textual patches (e.g., graphical outputs). This reveals a gap in

the state-of-the-art IFT computational modeling.

But before we go ahead to address this gap and to model changelogs and outputs,

let us discuss the implications of our results.

4.3 Implications: Designing for variants
So far, PFIS-V’s predictions of participants’ navigations provided an apparatus for

us, as researchers and tool builders, to test our hypotheses about variations foraging in

an environment. For example, one can posit that a programmer treats a method as

different if the method got moved within a file. Such a hypothesis can be validated by

comparing the modeling accuracies of PFIS-V while using text-based versus text-and-

topology-based similarity.

However, the benefits of models such as PFIS-V are not limited to such theoretical

understanding. They can also be adopted to practical tool design, such as for tool

builders to evaluate the gaps in their existing tools. For example, common version

control tools such as Git employ equivalence in their interfaces; they highlight

differences between variants and hide away what is unchanged between them. Indeed,

in our evaluation of PFIS-V, the introduction of equivalence resulted in higher

predictive accuracy. However, as our results also suggest, tools could provide more

62

navigation affordances for variants, such as navigation between similar patches across

variants (e.g., easily forage through all versions of a method).

The higher accuracy of variant-aware data models reveals the importance of

navigation affordances between similar patches across variants (“variant-of” links).

Further, the comparison results of the four data models reveals that the variant-and-

equivalence-aware(text) model makes the closest assumptions about programmers’

foraging. Therefore, tools aiming to support variation foraging can directly import this

data model as their underlying data structure to represent variants.

However, these improvements in accuracy from the variant-aware and the variant-

and-equivalence-aware models were limited to when participants (e.g., Group-1)

foraged among source-code patches across variants. In our study, the majority of

participants fell into Group-2 and foraged exclusively in non-code patches, namely

textual changelogs and graphical outputs, for their between-variant foraging. Since

PFIS-V does not account for non-code patches, it fails to accurately model Group-2

participants’ variations foraging behaviors. In the next chapter, we will begin

addressing this gap by accounting for participants’ foraging in non-code patches.

4.4 Open problem: what about modeling non-code patches?

This limitation in PFIS-V, namely that it does not model non-code patches, is

shared by almost all IFT-based predictive models--in programming as well as non-

programming domains. They model foraging among only textual patches and do not

account for non-textual patches, such as videos, audio, interactive content, or graphical

content (e.g., graphical outputs).

Given the prevalence of information environments with heterogeneous patch

types—documents contain text and images, web contains text, images, video, audio

and interactive games—we believe that expanding to other types of information

patches, such as outputs with visual content, mixed-media patches, semantic use of

color, etc. can lead to significant new thought about foraging in variants and

information foraging in general.

However, expressing non-textual patches in IFT computational models, parsing

their information features and computing similarities and differences is a non-trivial

63

problem, let alone modeling programmers’ foraging behavior heavily involving visual

comparisons, as in our study. We consider this to be an important new research

opportunity in the area of computationally modeling variations foraging. In the next

chapter, we will begin addressing this gap.

64

CHAPTER 5: PFIS-H: MODELING PROGRAMMERS’
VARIATIONS FORAGING IN NON-CODE PATCHES AND

HIERARCHIES
During programming tasks, programmers, including our study participants, forage in

different kinds of information, such as code, outputs, changelogs, design documents and

software visualizations. Prior IFT research has predominantly focused on understanding how

programmers forage in code but leaves gaps in our understanding of the other kinds of foraging.

For example, how do we account for the way programmers connect the outputs they inspected

to the code they inspect? How do change logs figure into their foraging through variants? And

how do programmers choose which part of the IDE (e.g., code vs. changelog vs. output) to

forage in?

In this chapter, we consider “hierarchical foraging” as a potential answer to these

questions. The idea here is that some of programmers’ foraging choices—such as the

navigations to changelogs vs. outputs vs. code in our formative user study—take the

hierarchical organization of the IDE (e.g., project contains packages contain classes

contain methods) into account. Therefore, our new computational model, namely PFIS-

H (or PFIS for Hierarchies), models hierarchical foraging to predict programmers’

navigations in code and non-code patches. Further, to consider hierarchical foraging in

a way that does not restrict people’s foraging to strictly textual patches, we add

treatment of non-textual patches (that prior IFT computational models have largely

ignored).

5.1 PFIS-H data model

The data model in PFIS-H similar to that in PFIS-V: it is a graph representation of

the information environment--the patches, cues, links--that the programmer has seen

so far. Additionally, to account for hierarchical foraging and non-code patches, PFIS-

H makes the following two extensions to its data model.

65

Figure 5.1. The PFIS-H data model. (top = example program, bottom =

corresponding PFIS-H data model graph). The PFIS-H data model: 1) accounts for

non-code patches (changes.txt=changelog, index.html=output) and 2) models “patch

contains smaller patch” relationships via “contain” edges which form a hierarchy.

First, the PFIS-H data model includes the hierarchy of patches in the environment

as follows. Whenever a patch contains one or more smaller patches, the PFIS-H data

66

model graph includes a “contains” edge between the two patch nodes8. For example,

in Figure 5.1 (top), the variant contains a “js” folder. Correspondingly, the data model

graph (bottom) includes a “contain” edge between the variant and “js” nodes. Similar

“contains” edges indicate that the “js” folder contains calculate.js file, which in turn

contains the addNumbers() method. Also note that the variant contains changes.txt

(changelog) and index.html (output), as in our study environment.

Second, similar to the source-code patches that a programmer has seen, the PFIS-

H data model also includes non-code patches that a programmer has seen in the study

environment. Specifically, PFIS-H models textual changelogs and outputs, including

non-textual (graphical) ones, as follows.

Modeling changelogs: Starting with changelogs, in one way, changelogs are similar

to methods: they are both textual. Therefore, we represented changelog patches similar

to how we modeled methods. For each changelog patch, we included a node in the

graph. The words in changelogs were represented as word nodes and were linked to the

changelog nodes to indicate “patch contains word” relationships.

However, changelogs also fundamentally differ from method patches in that

changelog patches are all about what is different about a variant; in contrast, method

patches can sometimes be identical across variants (and hence could be collapsed as

equivalent). Thus, the notion of equivalence does not apply to changelog patches.

However, PFIS-H still models that all changelogs patches across variants are similar in

the sense that they all contain change information; therefore, all changelog patches are

connected to each other via “variant-of” links to indicate their similarity.

Modeling outputs: Modeling a generic output patch is hard since outputs can come

in different formats: some programs produce textual output, others might produce

8 Earlier versions of PFIS including PFIS3 and PFIS-V, included “contains” edges in
the data model graph, thereby modeling the patch hierarchy. However, they did not
affect the scent computation in any meaningful way. For example, files did not receive
any initial activation that it spread to other files or methods. Similarly, the algorithm
spread activation from methods to the containing files, but the files did not, in turn,
spread the activation back to other methods. Therefore, we did not discuss these
containment relationships as part of the PFIS-V data model and algorithm.

67

audio, video or graphical images; even others might require user interaction to reveal

parts of the output. As a first step towards modeling such diverse outputs we begin by

modeling graphical outputs in PFIS-H. Note that, PFIS-H includes capabilities for

modeling textual outputs also, just like it models textual changelogs and outputs;

however, in this thesis, we deal only with graphical output patches that our study

participants foraged in.

The PFIS-H data model represents output patches as nodes in the data model graph.

In our study environment, each variant contained an output patch (Figure 5.2), resulting

in multiple output nodes in the data model graph. Since all output patches in our study’s

project contained similar information (e.g., Figure 3.1 (left) and (right) contain the

Hextris game interface), the output nodes for the project are connected to each other in

the data model graph via “variant-of” links.

To model programmers’ foraging in the graphical (non-textual) content in output

patches, we explore the appropriateness of a captioning approach. The idea here is that,

if we could replace graphical patches with equivalent textual content, then we could

model graphical patches similar to other textual patches such as code and changelogs.

Note that our aim here is not to explore automated captioning, but to investigate

whether, given suitable captions, we could account for graphical patches to improve

our computational models of programmers’ foraging.

Therefore, we simply replaced the contents in the graphical output patches with

descriptions of the task-relevant information features in the patch. We described only

the task-relevant features because we hypothesized that a programmer will mostly

attend to task-relevant features as cues while foraging in an output patch. For example,

score was relevant to the task and so we captioned it, but social media links were not

relevant to the task and we did not caption them. We also used the same vocabulary as

in the game’s domain and the task description; for example, the task description

contained the phrase “move the score above the hexagon” and so we used the phrase

“score is above the hexagon” rather than the equivalent “score is on top of the

hexagon”. (Also note the use of the domain-specific “score” rather than a more generic

“number”).

68

 Using these captions, we included the output patches in the PFIS-H data model as

follows. Each output patch translated to a patch node; each node in the caption

translated to a word node; the output patch node and word nodes were connected via

“patch contains word” links. Since several output patches were similar across variants,

we also computed the equivalence of output patches, based on their textual captions:

we considered patches with similar captions (e.g., “score is above the multiplier”) as

equivalent in the eyes of the forager, because they contained similar information value,

and provided similar scent about what is in the variant.

5.2 PFIS-H algorithm: Modeling hierarchical foraging

What the PFIS-H algorithm adds to the PFIS-V algorithm is accounting for

hierarchies, which it does in the following ways.

Figure 5.2. A variant’s hierarchy. The information environment in our study was

organized as patches: variants contained folders, folders contained files, files

contained methods.

Extension #1: PFIS-H extends Pirolli’s interpretations of the patch construct—that it

might be easier for a programmer to forage within a patch than to navigate outside to

another patch—to multiple levels of patches in the patch hierarchy. Since, in IFT,

69

variants are also patches, PFIS-H assumes that a predator is more likely to engage in

within-variant foraging rather than to forage across variants—and further, that inside

those variants, the predator is likely to forage within the same folder, and within those

folders, more likely to forage within the same file and so on.

Thus, PFIS-H first activates the entire hierarchy of patches, namely the variant, the

folder, the file and the method (or changelog or output), that the programmer is

currently in. Then, in the spreading stage, PFIS-H spreads activation along the

“contain” edges going top-down, level-wise. Thus, the variant spreads weights to the

folders it contains, the folders then spread activation to the files they contain, and the

files in turn spread to methods within it. This way, the algorithm spreads more weights

to patches in the same hierarchy that the programmer is currently in (than to patches in

other hierarchies).

Extension #2: PFIS-H accounts for additional navigation costs that programmers might

perceive when navigating downwards in the hierarchy. For example, in Figure 5.2,

some navigations such as scrolling to an adjacent method or clicking on a method call

(link) cost 1, a navigation from one file’s method to another file’s method via the

package explorer cost 2 (open file → scroll to method = 2 steps), a navigation to a

method in another folder cost 3 (open folder → open file → scroll to method = 3 steps)

and a navigation from one variant to another variant’s folder’s file’s method costs 4

(expand variant → expand “js” folder → open file → scroll to method = 4 steps). PFIS-

H accounts for participants’ perceptions of such variable navigation costs and models

participants’ perceived costs to match the number of actions it took to make a

navigation. (In contrast, PFIS-V approximated all navigation costs to 1, and hence did

not explicitly model them.) Both these extensions to the PFIS-H algorithm are

summarized in Figure 5.3, marked in blue.

70

Figure 5.3. PFIS-H algorithm. The lines in blue indicate the hierarchical-foraging

related extensions.

71

5.3 PFIS-H Evaluation
We used PFIS-H to predict the 1040 between-patch navigations participants made

to methods, changelogs or outputs: these patch types form the leaf nodes in the

hierarchy in Figure 5.1 (bottom). We compared the PFIS-H predictions against those

by PFIS-V in its variant-and-equivalence-aware(text) configuration: as we saw in the

previous chapter, this PFIS-V configuration was the most accurate predictor of

participant navigations. In the rest of this chapter, any mention of PFIS-V refers to the

variant-and-equivalence-aware(text) configuration, unless specified otherwise.

We compared the ranks of predictions PFIS-V and PFIS-H made for participants’

navigations. A repeated measures ANOVA (RM-ANOVA) indicated significant

difference (p=0.0137) in the mean ranks of PFIS-H and PFIS-V, with PFIS-H

(mean=7.04, SD=10.4) resulting in relatively lower (better) ranks than PFIS-V

(mean=9.83, SD=15.17) [RM-ANOVA, F(1, 2990)=4.688].

Zooming into the predictions for individual participants, Figure 5.4 compares the

hit rates of different models for each participant. The height of the bar represents hit

rates, i.e., the percentage of the participants’ navigations a model predicts within top

10 ranks. As the figure shows, the hit rates from PFIS-H (blue) were better than those

of PFIS-V (diagonal stripes) for 6 out of 7 participants (except P01), with PFIS-H’s

improvements in accuracy as high as 18.48% (P03).

Both these results, namely PFIS-H’s significantly lower ranks and higher hit rates

than PFIS-V, suggest that PFIS-H was a more accurate model of participants’ foraging

than PFIS-V.

72

Figure 5.4. PFIS-V vs. PFIS-H hit rates. PFIS-H resulted in higher hit rates than

PFIS-V for all participants except P01. The fact that PFIS-H hit rates were higher

than either of PFIS-VNC or PFIS-VH suggests that PFIS-H’s predictive advantages came

from a combination of the two improvements, namely modeling non-code patches

and hierarchical foraging.

5.4 Where did PFIS-H improvements come from?

PFIS-H makes two changes over PFIS-V: 1) modeling, and predicting navigations

to, non-code patches and 2) modeling hierarchical foraging:

PFIS-H = PFIS-V + non-code patches + hierarchical foraging.

To investigate how each of these changes translated to PFIS-H’s predictive advantages,

we isolated the two factors in two distinct extensions to PFIS-V:

PFIS-VNC = PFIS-V + Non-code patches, and

PFIS-VH = PFIS-V + Hierarchical foraging

As Figure 5.4 shows, for all participants (except P01), PFIS-H was more accurate

than either of these individual models, suggesting that PFIS-H’s improvements came

from modeling non-code patches as well as from modeling hierarchical foraging. In the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P01 P02 P03 P04 P06 P07 P08

Hi
t r

at
es

 (t
hr

es
ho

ld
=1

0)
 (%

)

PFIS-V vs. PFIS-H

PFIS-V
PFIS-V + Hierarchical foraging
PFIS-V + Non-code patches
PFIS-H (=PFIS-V + Non-code patches + Hierarchical foraging)

73

rest of this section, we discuss each the individual improvements from each of these

factors.

5.4.1 Improvement #1: Modeling non-code patches
Modeling non-code patches resulted in better hit rates for individual participants’

navigation predictions. As Figure 5.4 shows, PFIS-VNC resulted in higher hit rates than

PFIS-V for 3 out of 7 participants (P03, P06, P08), with the improvements being as

high as 14.39%. For the other 4 participants, in which PFIS-VNC was not higher than

PFIS-V, the differences did not exceed 3.81% (P1). In fact, a comparison of ranks

revealed that, on an average, PFIS-VNC (mean=9.83, SD=15.17) made significantly

more accurate predictions than PFIS-V (mean=8.65, S.D.=14.23) [RM-ANOVA, F(1,

2990)=4.688, p=0.0137].

Table 5.1. Study-1 participant navigations: different patch types. Participants

navigated to non-code patches over 30% of the time: whereas PFIS-V failed to

account for these navigations, PFIS-H was able to predict them.

These improvements in PFIS-VNC’s accuracy partly came from its ability to predict

more navigations than PFIS-V. As Table 5.1 shows, participants navigated to

changelogs and outputs about 30% of the time. Whereas PFIS-V only predicted

method-to-method navigations (N=665), PFIS-VNC filled this gap and predicted

navigations to (and from) changelogs and outputs also (N=1040).

74

Not only did PFIS-VNC predict more navigations than PFIS-V, it retained the

accuracy of the predictions for the navigations that PFIS-V already predicted: the

individual predictions of PFIS-VNC were also about the same as PFIS-V for navigations

that both models predicted.

As an example of how these improvements played out in individual participants’

predictions, see Figure 5.5 comparing the predictions made by PFIS-VNC and PFIS-V

for P01’s navigations. P01 is an example of the worst case, where PFIS-VNC’s (and

PFIS-H’s) hit rate was worse than that of PFIS-V. The x-axis in the graph indicates

predictions and the y-axis indicates the rank of the prediction (light blue = PFIS-V,

dark blue = PFIS-VNC). If a model fails to make a prediction, then the graph shows a

corresponding diamond above the graph.

As the figure demonstrates, whenever participants navigated to methods and PFIS-

V and PFIS-VNC made a prediction, the ranks were mostly similar as the overlapping

light blue “+” and the dark blue dots show. An RM-ANOVA indicated no significant

difference in ranks between PFIS-VNC (mean=10.28, SD=15.8) and PFIS-V

(mean=9.83, SD=15.17), [RM-ANOVA, F(1, 1185)=0.588, p=.472]) for these

navigations to methods.

Figure 5.5. P01’s navigation predictions (x-axis=predictions, light blue=PFIS-V,

dark blue = PFIS-VNC). For navigations to non-code patches, PFIS-V failed to make

a prediction (top, light blue diamonds) whereas PFIS-VNC (bottom, dark blue dots)

predicted them at lower ranks. For other navigations, PFIS-VNC predictions (bottom,

dark blue dots) were mostly similar, or slightly worse than that of PFIS-V (bottom,

light blue “+”).

75

For other navigations, namely to changelogs and outputs, PFIS-V failed to make

prediction (light blue “diamond” above the navigation), whereas PFIS-VNC predicted

them at low ranks (generally low dark blue dots).

This accuracy of PFIS-VNC when predicting changelog and output navigations

suggest the validity of our hypotheses about participants’ foraging in these patches,

namely that they estimated the contents of new changelog (or output) patch based on

what they had seen in other changelogs (or outputs) and that they mostly attended to

task-relevant information features in output patches.

5.4.2 Improvement #2: Modeling hierarchical foraging
PFIS-H also made significant improvements in accuracy from its modeling of

hierarchical foraging. We measured these improvements in two ways.

First, we isolated the improvements from hierarchical foraging by comparing PFIS-

VNC and PFIS-H, both of which model code and non-code patches. This comparison

resulted in PFIS-H’s ranks (mean=7.03, SD=10.4) being significantly lower than that

of PFIS-VNC (mean=8.65, SD=14.23) [RM-ANOVA F(1, 1860)=12.25, p=0.0128].

Second, we compared PFIS-V and PFIS-VH both of which predict method-to-

method navigations only. In this case, PFIS-VH (mean=7.82, SD=10.52) ranks were

significantly lower than those of PFIS-V (mean=9.82, SD=15.15) [RM-ANOVA

F(1,1134)=10.56, p=0.0175]. Thus, in both cases, modeling hierarchical foraging led

to significantly better predictions of participants’ navigations.

These comparisons also held at the individual participant level. As Figure 5.4

shows, for between-method navigations, PFIS-VH resulted in similar or higher hit rates

than PFIS-V for 6 out of 7 participants (except P01). Similarly, with the non-code

patches accounted for, PFIS-H was more accurate than PFIS-VNC for 6 out of 7

participants (except P01).

Finally, drilling down into the predictions for individual navigations, Figure 5.6

illustrates the effects of modeling hierarchical foraging one navigation at a time. The

x-axis indicates navigations and y-axis indicates difference between PFIS-VNC and

PFIS-H ranks. A positive bar represents instances where modeling hierarchical

foraging helped PFIS-H’s predictions, a negative bar indicates instances where

76

modeling hierarchical foraging hurt PFIS-H’s predictions. The height of the bars

indicates the extent to which hierarchical foraging helped or hurt that navigation’s

prediction.

As the mostly taller and more frequent positive bars in Figure 5.6 indicate,

modeling hierarchical foraging helped, more than it hurt, PFIS-H’s ability to predict

programmer navigations.

Figure 5.6. Improvements from hierarchical foraging. (Positive-bar = PFIS-H was

better than PFIS-VNC, negative bar= PFIS-VNC was better than PFIS-H.) The taller

and more frequent positive bars (pointing upwards) indicate that PFIS-H made more

accurate predictions than PFIS-VNC.

Interpretation: Hierarchical foraging from a variations foraging standpoint

Modeling hierarchical foraging, namely that participants will forage within a patch

(or file or folder or variant) rather than between them, turned out to be advantageous

for PFIS-H when predicting within-variant navigations. Notably, PFIS-H made more

77

accurate predictions than PFIS-VNC when participants’ foraging within a variant

stopped following prior scent and began following new scent (e.g., move from looking

for the word “score” to looking for “multiplier”) as in the following scenarios.

Within-variant scenario #1. Changing information goals. PFIS-H had an advantage

when predicting participants’ within-variant navigations when their foraging goals

changed (e.g., from looking for score, to looking for multiplier) and they followed new

scent pertaining to their new goal. For example, consider P08’s foraging in the

destination variant, as shown in Figure 5.7. In region 1A of the graph, P08 made several

navigations based on the same word “score”, and both PFIS-VNC (light blue) and PFIS-

H (dark blue) were able to accurately predict such same-scent navigations (low, mostly

overlapping dots). In contrast, 1B is an instance where P08 changed goals to look for

multiplier code and started searching for words such as “hiding”, “text” and

“random”. Since these navigations were not made on what the participant had already

seen, or the scent she was following so far, the scent computation apparatus in both

PFIS-H and PFIS-VNC made inaccurate predictions, as the peaks (high ranks) in the

graph show at 1B. However, PFIS-H (dark blue) resulted in a better rank than PFIS-

VNC (light blue), because it was able to guess that the participant will navigate to some

location within the same variant. In contrast, PFIS-V made no such assumption.

Figure 5.7. P08’s navigation predictions (light blue = PFIS-VNC, dark blue=PFIS-

H). When P08 made within-variant navigations following the trail of the word

“score” (1A), PFIS-VNC and PFIS-H resulted in mostly similar ranks, but when he

followed new scent, PFIS-H resulted in better ranks than PFIS-VNC (1B).

78

Within-variant scenario #2: Navigations to other patch types. Another scenario where

modeling hierarchical foraging helped was when participants navigated to different

patch types within the same variant (e.g., from code to changelog). Here again, PFIS-

H made better predictions than PFIS-VNC, as in the previous scenario. As an example,

consider the case of P06: when foraging in the destination variant’s source-code

patches, P06 realized that the variant did not work as he expected. Therefore, at 2A in

Figure 5.8, he navigated from the variant’s code to the variant’s changelog—a different

patch type. Both PFIS-VNC and PFIS-H mispredicted this navigation, since the

changelog was not linked from the current method, nor based on recently visited

patches, nor based on words the participant had demonstrated interest in, in the source

code patches (light and dark blue peaks at 2A). However, as in scenario #1, the PFIS-

H rank (dark blue) was lower (better) than that of PFIS-VNC (light blue) because PFIS-

H accurately guessed that the participant will remain within the same variant, whereas

PFIS-VNC had no such clue about where and why a programmer will navigate. We also

observed similar instances when participants changed patch types to navigated to/from

output patches to other patch types within the same variant.

Figure 5.8. P06’s navigation predictions (light blue = PFIS-VNC, dark blue=PFIS-

H). PFIS-H predicted navigations to different patch types within the same variant

better than PFIS-VNC did. At 2A, P06 navigated from the source-code patches to the

changelog patch within the source variant.

Unfortunately, participants did not always forage within the same variant; they

made several navigations across variants, such as to find a suitable source variant or to

integrate code from the source variant into the destination variant. In such between-

79

variant cases, PFIS-H sometimes made worse predictions than PFIS-VNC and at other

times it made similar predictions as PFIS-VNC, as the following scenarios show.

Figure 5.9. P02’s Navigations predictions. (dark blue = PFIS-H, light blue = PFIS-

VNC). For between-variant navigations, PFIS-H made worse predictions than PFIS-

VNC when participants navigated to methods (high cost, higher PFIS-H ranks than

PFIS-VNC at 3A, 3B) and similar predictions as PFIS-VNC for navigations to

changelogs and outputs (low cost, overlapping light and dark blue dots in 4A and

4B).

Between-variant scenario #1. Navigations to methods. One scenario where PFIS-H

made worse predictions than PFIS-VNC was when participants navigated from one

variant’s source-code to another variant’s source code: these navigations contribute to

some of the negative bars in Figure 5.6. For instance, see Figure 5.9: at 3A, P2

navigated from 2014-05-21-15:39:02 variant’s renderText() to Current variant’s

checkGameOver() and at 3B, he navigated from Current variant’s drawPolgyon() to

2014-05-21-15:39:02 variant’s renderText(). For these between-variant navigations,

PFIS-H (dark blue), that expects participants to forage within variants than across,

resulted in worse predictions than PFIS-VNC (light blue).

Between-variant scenario #2. Navigations to changelogs/outputs. In contrast, PFIS-

H resulted in similar ranks as PFIS-VNC, when participants navigated between variants,

navigating from one variant’s patches (methods or changelogs or outputs) to another

variant’s changelogs or outputs (open variant → open changes.txt or run index.html).

For example, in Figure 5.9, P02 navigated to from one variant’s change log to another

variant’s changelog at 4A and from one variant’s output to a new variant’s output at

80

4B: for both these navigations, PFIS-H (dark blue) and PFIS-VNC (light blue) ranks

almost overlap.

This is because, PFIS-H not only expected participants to forage within a variant,

it also expected them to navigate in ways that will maximize value/cost. In this case,

PFIS-H modeled that between-variant navigations from changelog/output to another

changelog/output can be cheaper (expand variant folder → open changes.txt or run

index.html: cost=2) than within-variant navigations from changelogs/outputs to

methods (js folder → view.js → render() = 3) and that participants are likely to navigate

to changelogs/output over methods across variants. Thus, modeling cost offset some of

the potential disadvantages at blindly favoring within-variant navigations over

between-variant navigations in PFIS-H.

In summary, PFIS-H’s predictive improvements came from modeling both non-

code patches as well as from modeling hierarchical foraging—in the latter case, both

from favoring within-patch navigations over between-patch ones, as well from

accounting for the navigation costs.

5.4 Does hierarchical foraging generalize beyond variants?

As we described earlier, hierarchical foraging has its underpinnings in IFT’s

notions of between-patch vs. within-patch foraging—that a forager will forage within

a patch than across them—and the costs of those foraging navigations. Therefore, we

have no reason to believe that hierarchical foraging, as a phenomenon, applies only to

variations foraging. Specifically, the question arises whether hierarchical foraging also

applies to programmers’ foraging in a single variant of a program.

To answer this question, we obtained the navigation data from a prior study by

Piorkowski et al. that did not involve variants [64]. Participants in the study, namely 9

professional programmers, worked in Eclipse IDE to fix a bug in jEdit, an open-source

Java-based project. The jEdit program was hierarchically organized into packages and

subpackages, classes and methods.

We predicted participants’ method-to-method navigations in jEdit using PFIS-V

and PFIS-VH. A comparison of prediction ranks from the two models indicated

significant differences [RM-ANOVA F(1,930)=5.919, p=.0378]—with PFIS-VH

81

(mean=24.53, S.D.= 63.7) resulting in significantly lower ranks (better predictions)

than PFIS-V (mean=33.54, S.D.=94.42) and PFIS-VH). Further, when

predicting individual participant navigations, PFIS-VH resulted in up to 10% (P6)

higher hit rates than PFIS-V.

These results lend evidence supporting the hypothesis that led to the development

of PFIS-H—that programmers adapt their foraging to the hierarchical organization of

the environment and that they account for the costs of doing so. These results also

suggest the generality of hierarchical foraging, as phenomenon, to professional

programmers, and to non-variations situations. In the next chapter, we’ll continue along

these lines and further evaluate the generality of our results and models.

82

CHAPTER 6. GENERALIZATION:
EVALUATION WITH NEW DATA

So far, we have been exploring the question: does IFT explain and predict

information seeking in the presence of variants? In Chapters 3-5, we considered this

question empirically for novice programmers, with some attempt at generalizing our

results on hierarchical foraging to single-variant situations and to more experienced

programmers. In this chapter, we continue in the direction of generalization,

considering whether our results generalize to more experienced programmers, in

variations foraging situations.

6.1 Methodology
Towards this end, we conducted a replication of the investigation into novice

programmers’ variations foraging in Chapter 3-5, but with a new population, namely

experienced programmers.

Because our goal was to investigate whether our results generalize to another

population, we kept all variables unchanged except the participants’ level of

experience. Thus, we used the same programming environment9 (Cloud9), the same

game program (Hextris), similar data collection apparatus and the same tutorials and

tasks as in the previous study. We also replicated all other experience-related variables

except participants’ overall years of experience: in both studies, we did not explicitly

include or exclude participants with Javascript experience, familiarity with the Hextris

codebase or the Cloud9 environment. This way, we attempted to eliminate as many

sources of uncontrolled variations that might affect the results.

We recruited 10 experienced programmers from our graduate CS program. As

Table 6.1 shows, the experienced programmer population carried greater programming

experience (mean=10.9 years, median=10 years) than the novice programmers that

9 In our second study, we used the latest versions of the Cloud9 IDE, operating systems and web browsers
available at the time of conducting the study. However, we did not observe any changes (e.g., navigation
affordances, navigation costs) in the newer versions that might lead to different foraging behaviors than
the previous study.

83

participated in our prior study (Mean= 4.06 years, median=4 years). See page 21, Table

3.1 for the demographics of the original study participants.

Table 6.1. Replication study: Participant demographics.

6.2 Research questions

We evaluated the generality our prior empirical results via the evaluation of our

two computational models, by way of answering the following questions:

• RQ1: PFIS-V generalization. Does PFIS-V model more experienced

variations foraging behaviors as well as it modeled novice programmers’

variations foraging?

Partici
pant Gender Age

Overall
programming

experience

Javascript
experience

Ever built a web /
mobile app with

JS?

Cloud9
experience

S01 Male 20s 4 0 No No

S02 Male 20s 6 0.5
Website similar to
amazon as course
project.

No

S03 Male 30s 17 0 No No

S04 Male 30s 15 3
Yes, as a demo for
students as well as
for research tools.

Yes, briefly
just playing
with it.

S05 Male 20s 6 <1 No No
S06 Male 40s 20 0 No No
S07 Male 20s 14 0 No No

S08 Male 30s >10 3

Android app using
Java/Javascript;
Desktop client app
using
Electron/Javascript.

No

S09 Female 20s 7 <1
Yes. 3 web apps
with React and
Nodejs.

No

S10 Female 30s 10 0
Yes, with help from
someone, I built a
JS web app [sic].

No

84

• RQ2: PFIS-H generalization. Does PFIS-H predict the hierarchical

foraging behaviors of more experienced programmers (including their

navigations to non-code patches) as well as it did for novice programmers?

To answer these questions, we re-ran the PFIS-V and PFIS-H algorithms on the

new participants’ navigation data. Together, the 10 participants made over 1500

between-patch navigations, navigating to both source-code and non-code patches.

6.3 Results: PFIS-V generalization (RQ1)

To evaluate the generality of PFIS-V, we conducted the same analyses with the new

study’s data, as we had done with the original data: 1) comparison of PFIS-V and PFIS3

predictive accuracies, 2) comparison of the four data models, 3) comparison of the two

groups of participants. As we discuss these results, we also juxtapose graphs/tables with

those from the original study, to facilitate easy comparison.

6.3.1 PFIS-V vs. PFIS3

We compared the predictiveness of PFIS-V and PFIS3 in terms of both unknown

rates and hit rates.

Unknown rates: Figure 6.1 (left) compares the unknown rates from PFIS-V and

PFIS3; the corresponding graph from the prior study is reproduced in Figure 6.1 (right).

Recall that unknown rates refer to the percentage of navigations a model failed to make

a prediction for, namely when the participant navigated to a location s/he (and the

model) did not know existed.

As Figure 6.1 (left) shows, for all participants except S02, S09, PFIS-V ended up

with fewer unknowns than PFIS3. For S02 and S09, there was no advantage (and no

disadvantage) of PFIS-V vs. PFIS3 because: 1) S02 foraged predominantly in a single

variant and 2) S09 predominantly navigated based on word-similarity and method call

relationships, navigating less frequently to newer locations.

85

Figure 6.1. PFIS-V generalization: unknown rates (ordered by PFIS-V unknown

rates). PFIS-V resulted in similar or lower unknown rates than PFIS3 for all

participants in the replication study (left), just as it did in the original study (right).

Hit rates: In terms of the accuracy of the predictions, as Figure 6.2 (left) shows, PFIS-

V, on an average, was more accurate than PFIS3 in all data model configurations.

Considering predictions for individual participant navigations, Table 6.2 (right) shows

that PFIS-V was more accurate than PFIS3 for all participants except S02 and S09. For

S09, PFIS-V still had a predictive advantage over PFIS3 at higher rank thresholds, but

for S02, who foraged within a single variant, PFIS-V was about the same as PFIS3.

Both the above results, namely the generally lower unknown rates and the overall

higher hit rates from PFIS-V than PFIS3, are consistent with our original study’s

findings, suggesting the generality of the assumptions encoded in the PFIS-V

algorithm.

86

Figure 6.2. PFIS-V generalization: hit rates. PFIS-V (solid lines) resulted in

higher hit rates than PFIS3 (dotted lines) in all four data model configurations in both

the studies.

6.3.2 PFIS-V: Which data model is most accurate?

In terms of the data model configurations also, the results from the original study

generalized to our new study. As Table 6.2 (Replication study) shows, the

predictiveness of the four data models followed the order: variant-unaware ≤ variant-

aware ≤ variant-and-equivalence-aware (text, topology) ≤ variant-and-equivalence-

aware(text), suggesting that our assumptions about participants’ mental models (e.g.,

similarity of patches, the notion of equivalence) generalized to experienced

programmers.

87

R
ep

lic
at

io
n

st
ud

y

O
rig

in
al

 st
ud

y

Table 6.2. PFIS-V generalization: per participant hit rates. (orange=PFIS3,

black=PFIS-V). For most participants in both studies, PFIS-V yielded higher hit rates

than PFIS3. For other participants, PFIS-V hit rate was similar to that of PFIS3.

Variant-
unaware

Variant-
aware

Variant-and-
equivalence-
aware(text)

Variant-and-
equivalence-
aware(text,
topology)

21.60% 20.00% 58.40% 53.60%
21.60% 21.60% 31.20% 26.40%
47.17% 47.17% 52.83% 52.83%
47.17% 47.17% 47.17% 47.17%
70.24% 70.24% 71.43% 71.43%
70.24% 70.24% 70.24% 70.24%
57.95% 57.95% 60.23% 60.23%
55.68% 55.68% 55.68% 55.68%
67.21% 67.21% 75.41% 75.41%
63.11% 63.11% 63.11% 63.11%
57.82% 57.82% 58.50% 58.50%
57.14% 57.14% 57.14% 57.14%

35.63% 35.63% 39.08% 39.08%
35.63% 35.63% 37.93% 37.93%
70.97% 70.97% 70.97% 70.97%
70.97% 70.97% 70.97% 70.97%
78.35% 78.35% 79.38% 79.38%
78.35% 78.35% 78.35% 78.35%
71.85% 71.85% 71.85% 71.85%
71.85% 71.85% 71.85% 71.85%

135

147

GROUP-1

GROUP-2

125

106

84

88

122

Per participant hit rate (rank threshold=10)
orange=PFIS3, black=PFIS-VNo. of

between-
method

navigations
(N=1023)

88

31

97

S08 17

S09 2

S10 3

S05 8

S06 4

S07 5

S02 1

S03 2

S04 37

Partici
pant

No. of
variants

S01 2

variant-
unaware

variant-
aware

variant-and-
equivalence-
aware(text)

variant-and-
equivalence-
aware(text,
topology)

65.17% 65.17% 69.66% 69.66%
64.04% 64.04% 64.04% 64.04%
49.04% 49.04% 73.08% 67.31%
48.08% 48.08% 53.85% 48.08%

83.64% 83.64% 83.64% 83.64%
80.00% 80.00% 80.00% 80.00%
70.69% 70.69% 70.69% 70.69%
69.83% 69.83% 69.83% 69.83%
51.52% 51.52% 51.52% 51.52%
51.52% 51.52% 51.52% 51.52%
47.52% 47.52% 47.52% 47.52%
46.53% 46.53% 46.53% 46.53%
55.88% 55.88% 55.88% 55.88%
55.88% 55.88% 55.88% 55.88%

* P01 made an additional navigation a third (potential source) variant.

2

21

2

55

116

132

101

104

68

P06

P07

P08

P01

P02

P03

Participant

GROUP-2

GROUP-1

89

Per participant hit rate (rank threshold = 10)
black = PFIS-V; orange = PFIS3

No. of
between-
method

navigations
(total=665)

P04

3*

2

2

5

No. of
variants

88

6.3.3 PFIS-V: Two groups and two foraging behaviors
But we saw a difference from the original study in terms of the predictive advantage

from modeling equivalence. Recall that participants fell into two groups based on their

between-variant foraging behaviors: whereas Group-1 participants navigated to code

and non-code patches in multiple variants, Group-2 participants navigated exclusively

to non-code patches in several variants, looking at source code only in the source and

destination variants. Since the source code in consecutive variants were very similar,

modeling equivalence of patches led to improved PFIS-V predictions for Group-1

participants in the original study (Table 6.2: prior study), but no such improvements

were observed for Group-2 participants.

However, in the replication study (Table 6.2: replication study), modeling

equivalence led to slight improvements for Group-2 participants also. As 2 out of 4

Group-2 replication participants (S01, S03) foraged in the source and destination

variants, they encountered source-code patches (e.g., game analytics-related code) that

happened to be identical between the two variants, leading to better predictions by the

equivalence-aware models.

6.4 Results: PFIS-H Generalization (RQ2)
To answer RQ2 on the generality of PFIS-H, we first compared the accuracies of

PFIS-H and PFIS-V. We then delved down into the individual improvements from

modeling non-code patches and hierarchical foraging, as we did in Chapter 5.

6.4.1 PFIS-H vs. PFIS-V
Consistent with the results from the previous study, PFIS-H was better than PFIS-

V at predicting participants’ navigations in the new study. A comparison of the

prediction ranks from the two models indicated significant differences [RM-ANOVA

F(1, 2285)=21.22, p=0.00128] with PFIS-H ranks (mean=6.08, SD=10.32) being

significantly lower and hence better than PFIS-V’s (mean=9.15, SD=13.64). In fact, as

Figure 6.3 (left) shows, PFIS-H yielded better hit rates than PFIS-V for every one of

the participants.

In the rest of this section, we tease apart the predictive gains in PFIS-H from its two

distinct improvements, namely modeling non-code patches and modeling hierarchical

89

foraging. Indeed, as Figure 6.3 (left) shows, both these changes contributed to PFIS-

H’s improvements: PFIS-H which modeled both non-code patches and hierarchical

foraging resulted in better hit rates than PFIS-VNC which modeled only non-code

patches, or PFIS-VH which modeled only hierarchical foraging. (As in the previous

study, PFIS-VNC = PFIS-V + non-code patches, PFIS-VH = PFIS-V + hierarchical

foraging; PFIS-H = PFIS-V + non-code patches + hierarchical foraging.)

Figure 6.3. PFIS-H generalization (ordered by PFIS-H hit rates). In both the

replication and the original studies, modeling hierarchical foraging (PFIS-V vs. PFIS-

VH) as well as non-code patches (PFIS-V vs. PFIS-VNC) led to higher predictive

accuracy, resulting in higher accuracy of PFIS-H than PFIS-V.

6.4.2 Improvement #1: Foraging in non-code patches.
Similar to novice programmers (in the original study), more experienced

programmers (in the replication study) also foraged among changelogs and outputs,

navigating to them ~23% of the time (Table 6.3: left). Whereas PFIS-V failed to

account for these navigations, which constituted close to one-fourth of all participant

navigations, PFIS-H (and PFIS-VNC) which accounted for non-code patches was able

to predict these navigations.

90

Further, PFIS-VNC (and PFIS-H) were able to also predict these navigation

accurately. In fact, PFIS-VNC’s ranks (mean=7.41, SD=12.57) were significantly lower

than those of PFIS-V (mean=9.15, SD=13.64) [RM-ANOVA F(1, 2285) = 12.49,

p=0.00638]. These improvements in ranks also reflected in hit rates: as Figure 6.3 (left)

shows, PFIS-VNC yielded higher hit rates than PFIS-V for all participants but one (S08).

These improvements in accuracy are similar to what we observed in the previous study,

suggesting that our earlier assumptions about how novice programmers foraged in non-

code patches (that we modeled in PFIS-VNC) also generalize to experienced

programmers.

Table 6.3. PFIS-H generalization: navigations to non-code patches.

(left=replication, right=original study). About one-fourth of all participants’

navigations were to non-code patches; however, experienced programmers (left)

made fewer navigations to changelogs than the novice programmers did (right).

However, as Table 6.3 left vs. right shows, one notable difference between the two

populations is that the experienced programmers (left) made fewer navigations

(mean=0.4, SD=1.26) to changelog patches than novice programmers (right) did

(mean=7.14, SD=8.88) [Welch’s t-test, t(6.1709)=-1.9954, p=0.09169]. One possible

reason is that experienced programmers (who were likely to be familiar with version

control) did not expect to find changelog information in our study environment that

was very different from traditional version control environments. Another possibility

is that experienced programmers were aware that changelogs were about what changed-

Method Output Changelog Total Method Output Changelog Total

S01 112 32 0 144 P01 60 40 14 114
S02 54 25 0 79 P02 119 29 10 158
S03 112 26 0 138 P03 150 69 1 220
S04 135 57 0 192 P04 96 52 23 171
S05 122 22 0 144 P06 105 29 2 136
S06 98 57 0 155 P07 109 26 0 135
S07 96 24 0 120 P08 79 27 0 106
S08 125 19 4 148
S09 156 70 0 226
S10 160 19 0 179

1170 351 4 1525 718 272 50 1040
(76.72%) (23.02%) (0.26%) (100.00%) (69.04%) (26.15%) (4.81%) (100.00%)

REPLICATION STUDY PRIOR STUDY

Participant
(N=10)

No. of navigations

Total

Participant
(N=7)

No. of navigations

Total

91

-and not what is contained--in a variant and therefore did not expect to gain any

valuable information from them (and hence either ignored them or did not look for

them). As we speculated earlier in Chapter 3, this might also be the reason that novice

programmers abandoned changelog patches in favor of the more valuable outputs.

6.4.3 Improvements #2: Hierarchical foraging

The second set of PFIS-H improvements came from modeling hierarchical

foraging, which led to significantly better predictions (in terms of ranks) when

predicting method-to-method navigations as well as when predicting navigations to

code and non-code patches (PFIS-VNC vs. PFIS-H). Table 6.4 shows the results of the

statistical tests in the two cases.

Considering only between-method

navigations, without accounting for
non-code patches

(N=1022)

With accounting for navigations to
code and non-code patches

(N=1525)

PFIS-V vs. PFIS-VH PFIS-VNC vs. PFIS-H

Significant differences between
PFIS-V and. PFIS-VH ranks:

RM-ANOVA F(1, 1794) = 20.48,

p=0.00144].

Significant differences between
PFIS-VNC and. PFIS-H ranks

[RM-ANOVA, F(1, 2776)=16.46,

p=0.00286].

PFIS-VH ranks: mean=7.09, SD=10.21
PFIS-V ranks: mean=9.15, SD=13.64

PFIS-H ranks : mean=6.08, SD=10.32
PFIS-VNC ranks : mean=7.41, SD=12.57

Table 6.4. PFIS-H generalization: Hierarchical foraging improvements.

Irrespective of whether non-code patches were included or not, modeling hierarchical

foraging led to significant improvements in predictions for experienced programmers’

navigations.

These significant differences in prediction ranks also translated to higher hit rates

when predicting individual participant navigations. In Figure 6.3s (left), for almost all

participants PFIS-VH > PFIS-V and PFIS-H > PFIS-VNC, suggesting that modeling

hierarchical foraging led to significantly better predictions of more experienced

92

programmers’ navigations, just as it led to significantly better predictions of novice

programmers’ navigations.

6.3 Bottomline: Do our models generalize?

Revisiting the research questions that we mentioned earlier in this chapter:

1. (RQ1) PFIS-V generalization. Does PFIS-V model more experienced

variations foraging behaviors as well as it modeled novice programmers’

variations foraging?

Our results in Section 6.3 suggest yes, the results from the new study being

similar to that from the old study data. This similarity suggests that PFIS-V,

which we developed and evaluated based on novice programmers’ foraging

behaviors also generalized to experienced programmers.

2. (RQ2) PFIS-H generalization. Does PFIS-H predict the hierarchical

foraging behaviors of more experienced programmers (including their

navigations to non-code patches) as well as it did for novice programmers?

Yes, as the results in Section 6.4 suggest. PFIS-H was more predictive than

PFIS-V of participants’ navigations in the new study, just as it was in the

previous study, suggesting that PFIS-H, which originally modeled novice

programmers’ hierarchical foraging also generalized to the experienced

programmer population. Further, as we discussed in the previous chapter

(Section 5.4), hierarchical foraging also generalized to experienced

programmers’ foraging in a new situation, namely in a single variant of a Java

program during a debugging task.

93

CHAPTER 7. CONCLUDING REMARKS

Discussion and contributions

Our goal in this dissertation has been to gather evidence defending (or rejecting)

the thesis: IFT can explain and predict people’s information seeking in the presence of

variants. Towards this end, we first conducted a user study: qualitative results suggest

that IFT’s constructs and propositions do help able to explain variations foraging

behaviors of programmers. We then built two computational models, namely PFIS-V

and PFIS-H, that operationalized the notions we derived from this study of how IFT

applies to variants. Quantitative evaluations of the models with data from two empirical

studies suggested that IFT’s notions of cost, value and scent are able to predict

programmers’ navigations during variations foraging. Thus, the fundamental

contribution of this dissertation is the theory of variations foraging, which is grounded

in the framework of IFT.

One intended utility of these theoretical foundations is in tool building and

evaluation. Tool builders can now leverage IFT--its propositions, computational

models and design patterns—for building and evaluating variations-support tools. For

example, one result in Chapter 4 is that modeling similarity (“variant-of” links) led to

better predictions by PFIS-V. This result suggests that providing navigation

affordances between similar patches in different variants could aid foragers foraging

among variants. Similarly, tool builders can leverage IFT computational models such

as PFIS-V and PFIS-H to evaluate their tools, such as to predict how a user will use a

tool or to compare different tool design options. For example, as we did with PFIS-V,

tool builders can compare text-based vs. text-and-topology-based equivalence to gauge

which of these two comparison schemes will better aid foragers in a given foraging

task.

Looking beyond variations foraging, this dissertation demonstrated the benefits of

modeling hierarchical foraging in IFT computational models. By accounting for the

hierarchical organization of information and the variable costs of navigations to

different locations, PFIS-H was able to make better predictions of programmer

navigations both in the presence of variants and without them. This result suggests that

94

tools supporting programmer navigations, such as programmer recommendation tools,

can benefit by taking the hierarchical and cost aspects into consideration.

This thesis also contributes the first IFT computational model—in programming as

well as non-programming domains—that accounts for non-textual patches. By

modeling graphical outputs, PFIS-H was able to make more and better navigation

predictions than its predecessors, thereby demonstrating the benefits of including non-

textual patches to understanding people’s foraging.

Open problems

One avenue for future research is to address the following challenges of modeling

non-textual patches. (1) How can we automatically caption graphical patches (which

can be highly specific as in our study) so as to model these at scale, or to include in

tools such as just-in-time recommendation systems? (2) How can we model other kinds

of non-textual patches, such as video, audio and interactive visualizations? (3) Will a

captioning approach still work for modeling these non-textual patch types (as it did for

the graphical patches in our study)?

 Another avenue for future research is about understanding and supporting the

foraging behaviors in non-textual patches. (1) How do notions of cues, links and scent

differ between textual and non-textual patches? (2) How will traditional foraging

activities such as between-patch foraging, within-patch foraging and enrichment apply

to non-textual patches? (3) What foraging strategies do foragers adopt when foraging

in non-textual patches? (4) How can tools better support foraging in non-textual

patches, or more generally environments with heterogeneous patch types, such as by

providing better links, aggregation or filtering capabilities?

This dissertation also raises the following open questions about variations foraging.

First, as we discussed in Chapter 3, our study participants constructed “stories” to guide

their foraging. It remains an open question what construct of IFT we should instantiate

these stories as (e.g., scent or cues or patches or a new construct).

Second, future research should investigate the creation of variants (producer side),

such as the following questions. (1) At what intervals should a producer (or automatic

tool) save a variant (e.g., every little change, once an hour, once a day or every time

95

the program is executed)? (2) What cues should a producer should leave for future

consumers (foragers) of the variants?

Third, variations foraging remains to be investigated for other kinds of variants,

such as different syntactic representations (or variational representations) for the same

information (e.g., audio and its textual transcript, flowchart and its corresponding

program code). These variants are different from the program variants (same syntax,

different semantics) in our study. It remains an open question whether a forager will

adopt different foraging strategies in these variants than in our studies: will they focus

less on difference-comparison when the different variants are not syntactically similar

to each other? will foragers build different kinds of stories when foraging in such non-

chronological variants?

Conclusion

In summary, this work contributes the theoretical foundations for variations

foraging. Grounded in IFT, this dissertation extends the scope of IFT’s validity beyond

a single variant of textual information: it explains and predicts foraging in the presence

of multiple variants of an artifact, accounts for non-textual patches of information and

demonstrates the advantages of including the hierarchical organization of information

and its associated foraging costs. We believe that these contributions will enable a

principled approach to engineering variations-support tools as well as motivate further

research into the fundamentals of information seeking.

96

REFERENCES

[1] Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American
Psychologist, 51(4), 355-365.

[2] Beckwith, Laura, and Margaret Burnett. "Gender: An important factor in end-user
programming environments?" In 2004 IEEE symposium on visual languages-human
centric computing, pp. 107-114. IEEE, 2004.

[3] Bhowmik, Tanmay, Nan Niu, Wentao Wang, Jing-Ru C. Cheng, Ling Li, and
Xiongfei Cao. "Optimal group size for software change tasks: A social information
foraging perspective." IEEE transactions on cybernetics 46, no. 8 (2015): 1784-1795.

[4] Bhowmik, Tanmay, Nan Niu, Prachi Singhania, and Wentao Wang. "On the role of
structural holes in requirements identification: an exploratory study on open-source
software development." ACM Transactions on Management Information Systems
(TMIS) 6, no. 3 (2015): 10.

[5] Bragdon, Andrew, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William
Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola
Jr. "Code bubbles: a working set-based interface for code understanding and
maintenance." In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 2503-2512. ACM, 2010.

[6] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R.
Klemmer. 2009. Two studies of opportunistic programming: interleaving web forag-
ing, learning, and writing code. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '09), 1589-1598.
http://doi.acm.org/10.1145/1518701.1518944

[7] Burnett, Margaret M., and Brad A. Myers. "Future of end-user software
engineering: beyond the silos." In Proceedings of the on Future of Software
Engineering, pp. 201-211. ACM, 2014.

[8] Bush, Vannevar. "As we may think." The Atlantic Monthly 176.1 (1945): 101-108.

[9] Chi, Ed H., Peter Pirolli, and James Pitkow. "The scent of a site: A system for
analyzing and predicting information scent, usage, and usability of a web site." In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
161-168. ACM, 2000.

[10] Chi, Ed H., Peter Pirolli, Kim Chen, and James Pitkow. "Using information scent
to model user information needs and actions and the Web." In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 490-497. ACM,
2001.

97

[11] Chi, Ed H., Adam Rosien, Gesara Supattanasiri, Amanda Williams, Christiaan
Royer, Celia Chow, Erica Robles, Brinda Dalal, Julie Chen, and Steve Cousins. "The
bloodhound project: automating discovery of web usability issues using the InfoScentπ
simulator." In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 505-512. ACM, 2003.

[12] Clements, Paul, and Linda Northrop. Software product lines: practices and
patterns. Vol. 3. Reading: Addison-Wesley, 2002.

[12] Codoban, Mihai, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey.
"Software history under the lens: A study on why and how developers examine it."
In 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 1-10. IEEE, 2015.

[13] Concurrent Versions Systems. https://www.nongnu.org/cvs/. Retrieved 5th August
2019.

[14] Kumar, Deepthi S. "A Language for Querying Source Code Repositories."
(2017). Oregon State University.
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/qn59q849h

[15] Dodge, Jonathan, Sean Penney, Andrew Anderson, and Margaret M. Burnett.
"What Should Be in an XAI Explanation? What IFT Reveals." In IUI Workshops.
2018.

[16] Fleming, Scott D., Chris Scaffidi, David Piorkowski, Margaret Burnett, Rachel
Bellamy, Joseph Lawrance, and Irwin Kwan. "An information foraging theory
perspective on tools for debugging, refactoring, and reuse tasks." ACM Transactions
on Software Engineering and Methodology (TOSEM) 22, no. 2 (2013): 14.

[17] Git Version control system. https://git-scm.com/. Retrieved 5th August, 2019.

[18] Glassman, Elena L., Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C.
Miller. "OverCode: Visualizing variation in student solutions to programming
problems at scale." ACM Transactions on Computer-Human Interaction (TOCHI) 22,
no. 2 (2015): 7.

[19] Google Docs. https://en.wikipedia.org/wiki/Google_Docs. Retrieved 5th August,
2019.

[20] Guo, Philip J., and Margo I. Seltzer. "Burrito: Wrapping your lab notebook in
computational infrastructure." (2012).

[21] Guo, P.J., 2012. Software tools to facilitate research programming (Doctoral
dissertation, Stanford University).

98

[22] Hartmann, Björn, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R. Klemmer.
"Design as exploration: creating interface alternatives through parallel authoring and
runtime tuning." In Proceedings of the 21st annual ACM symposium on User interface
software and technology, pp. 91-100. ACM, 2008.

[23] Hartmann, Björn, Sean Follmer, Antonio Ricciardi, Timothy Cardenas, and Scott
R. Klemmer. "D. note: revising user interfaces through change tracking, annotations,
and alternatives." In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 493-502. ACM, 2010.

[24] Henley, Austin Z., and Scott D. Fleming. "Yestercode: Improving code-change
support in visual dataflow programming environments." In Visual Languages and
Human-Centric Computing (VL/HCC), 2016 IEEE Symposium on, pp. 106-114. IEEE,
2016.

[25] Hill, Charles, Rachel Bellamy, Thomas Erickson, and Margaret Burnett. "Trials
and tribulations of developers of intelligent systems: A field study." In 2016 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 162-
170. IEEE, 2016.

[26] Holmes, Reid, and Robert J. Walker. "Systematizing pragmatic software reuse."
ACM Transactions on Software Engineering and Methodology (TOSEM) 21, no. 4
(2012): 20.

[27] “Information Age”. .https://en.wikipedia.org/wiki/Information_Age. Retrieved 5th
August, 2019

[28] “Information Overload”. https://en.wikipedia.org/wiki/Information_overload.
Retrieved 5th August, 2019.

[29] “Information Pollution”. https://www.wikiwand.com/en/Information_pollution.
Retrieved 5th August, 2019.

[30] Logan Engstrom, Garrett Finucane. 2015. Hextris. Retrieved September 23, 2015
from https://hextris.github.io/hextris/

[31] Logan Engstrom, Garrett Finucane, Noah Moroze, Michael Yang. 2015. Hextris.
Retrieved September 23, 2015 from https://github.com/Hextris/hextris

[32] Kery, Mary Beth, Amber Horvath, and Brad A. Myers. "Variolite: Supporting
Exploratory Programming by Data Scientists." In CHI, pp. 1265-1276. 2017.

[33] Kery, Mary Beth, and Brad A. Myers. "Exploring exploratory programming."
In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 25-29. IEEE, 2017.

99

[34] Jensen, Carlos, Heather Lonsdale, Eleanor Wynn, Jill Cao, Michael Slater, and
Thomas G. Dietterich. "The life and times of files and information: a study of desktop
provenance." In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 767-776. ACM, 2010.

[35] Johnson, Pontus, Mathias Ekstedt, and Ivar Jacobson. "Where's the theory for
software engineering?" IEEE software29, no. 5 (2012): 96-96.

[36] Kactus. https://kactus.io/. Retrieved on 5th August, 2019.

[37] Ko, Andrew J., Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. "An
exploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks." IEEE Transactions on Software Engineering 32,
no. 12 (2006): 971-987.

[38] Kumar, Ranjitha, Jerry O. Talton, Salman Ahmad, and Scott R. Klemmer.
"Bricolage: example-based retargeting for web design." In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 2197-2206. ACM, 2011.

[39] Kuttal, Sandeep Kaur, Anita Sarma, and Gregg Rothermel. "Predator behavior in
the wild web world of bugs: An information foraging theory perspective." In Visual
Languages and Human-Centric Computing (VL/HCC), 2013 IEEE Symposium on, pp.
59-66. IEEE, 2013.

[40] Kuttal, Sandeep K., Anita Sarma, and Gregg Rothermel. "On the benefits of
providing versioning support for end users: an empirical study." ACM Transactions on
Computer-Human Interaction (TOCHI) 21, no. 2 (2014): 9.

[41] Lawrance, Joseph, Rachel Bellamy, and Margaret Burnett. "Scents in programs:
Does information foraging theory apply to program maintenance?." In Visual
Languages and Human-Centric Computing, 2007. VL/HCC 2007. IEEE Symposium
on, pp. 15-22. IEEE, 2007.

[42] Lawrance, Joseph, Rachel Bellamy, Margaret Burnett, and Kyle Rector. "Using
information scent to model the dynamic foraging behavior of programmers in
maintenance tasks." In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 1323-1332. ACM, 2008.

[43]Lawrance, Joseph, Margaret Burnett, Rachel Bellamy, Christopher Bogart, and
Calvin Swart. "Reactive information foraging for evolving goals." In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pp. 25-34. ACM,
2010.

[44] Lawrance, Joseph, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle
Rector, and Scott D. Fleming. "How programmers debug, revisited: An information

100

foraging theory perspective." IEEE Transactions on Software Engineering 39, no. 2
(2013): 197-215.

[45] Le, Duc, Eric Walkingshaw, and Martin Erwig. "# ifdef confirmed harmful:
Promoting understandable software variation." In 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pp. 143-150. IEEE, 2011.

[46] Lunzer, Aran, and Kasper Hornbæk. "Subjunctive interfaces: Extending
applications to support parallel setup, viewing and control of alternative scenarios."
ACM Transactions on Computer-Human Interaction (TOCHI) 14, no. 4 (2008): 17.

[47] Maier, S., & Minas, M. (2015, October). Recording, processing, and visualizing
changes in diagrams. In Visual Languages and Human-Centric Computing (VL/HCC),
2015 IEEE Symposium on (pp. 131-135). IEEE.

[48] Martos, Carlos, Se Yeon Kim, and Sandeep Kaur Kuttal. "Reuse of variants in
online repositories: Foraging for the fittest." In Visual Languages and Human-Centric
Computing (VL/HCC), 2016 IEEE Symposium on, pp. 124-128. IEEE, 2016.

[49] Mercurial SCM. https://www.mercurial-scm.org/. Retrieved 5th August 2019.

[50] Miller, George A. "Informavores." The study of information: Interdisciplinary
messages (1983): 111-113.

[51] Mikami, Hiroaki, Daisuke Sakamoto, and Takeo Igarashi. "Micro-Versioning
Tool to Support Experimentation in Exploratory Programming." In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems, pp. 6208-6219. ACM,
2017.

[52] Microsoft Office. https://en.wikipedia.org/wiki/Microsoft_Office. Retrieved 5th
August 2019.

[53] Muniswamy-Reddy, Kiran-Kumar, David A. Holland, Uri Braun, and Margo I.
Seltzer. "Provenance-aware storage systems." In USENIX Annual Technical
Conference, General Track, pp. 43-56. 2006.

[54] Myers, Brad, Sun Young Park, Yoko Nakano, Greg Mueller, and Andrew Ko.
"How designers design and program interactive behaviors." In 2008 IEEE Symposium
on Visual Languages and Human-Centric Computing, pp. 177-184. IEEE, 2008.

[55] Nabi, Tahmid, Kyle MD Sweeney, Sam Lichlyter, David Piorkowski, Chris
Scaffidi, Margaret Burnett, and Scott D. Fleming. "Putting information foraging theory
to work: Community-based design patterns for programming tools." In Visual
Languages and Human-Centric Computing (VL/HCC), 2016 IEEE Symposium on, pp.
129-133. IEEE, 2016.

101

[56] Niu, Nan, Anas Mahmoud, and Gary Bradshaw. "Information foraging as a
foundation for code navigation (NIER track)." In Proceedings of the 33rd International
Conference on Software Engineering, pp. 816-819. ACM, 2011.

[57] Niu, Nan, Anas Mahmoud, Zhangji Chen, and Gary Bradshaw. "Departures from
optimality: understanding human analyst's information foraging in assisted
requirements tracing." In Proceedings of the 2013 International Conference on
Software Engineering, pp. 572-581. IEEE Press, 2013.

[58] Newman, Mark W., and James A. Landay. "Sitemaps, storyboards, and
specifications: a sketch of Web site design practice." In Proceedings of the 3rd
conference on Designing interactive systems: processes, practices, methods, and
techniques, pp. 263-274. ACM, 2000.

[59] Ong, Kevin. "Using information foraging theory to understand search behavior in
different environments." In Proceedings of the 2017 Conference on Conference Human
Information Interaction and Retrieval, pp. 411-413. ACM, 2017.

[60] Parnin, Chris, and Carsten Gorg. "Building usage contexts during program
comprehension." In 14th IEEE International Conference on Program Comprehension
(ICPC'06), pp. 13-22. IEEE, 2006.

[61] Penney, Sean, Jonathan Dodge, Claudia Hilderbrand, Andrew Anderson, Logan
Simpson, and Margaret Burnett. "Toward Foraging for Understanding of StarCraft
Agents: An Empirical Study." In 23rd International Conference on Intelligent User
Interfaces, pp. 225-237. ACM, 2018.

[62] Perez, Alexandre, and Rui Abreu. "A diagnosis-based approach to software
comprehension." In Proceedings of the 22nd International Conference on Program
Comprehension, pp. 37-47. ACM, 2014.

[63] Piorkowski, David, Scott D. Fleming, Christopher Scaffidi, Liza John, Christopher
Bogart, Bonnie E. John, Margaret Burnett, and Rachel Bellamy. "Modeling
programmer navigation: A head-to-head empirical evaluation of predictive models." In
Visual Languages and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium
on, pp. 109-116. IEEE, 2011.

[64] Piorkowski, David, Scott Fleming, Christopher Scaffidi, Christopher Bogart,
Margaret Burnett, Bonnie John, Rachel Bellamy, and Calvin Swart. "Reactive
information foraging: An empirical investigation of theory-based recommender
systems for programmers." In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 1471-1480. ACM, 2012.

[65] Piorkowski, David J., Scott D. Fleming, Irwin Kwan, Margaret M. Burnett,
Christopher Scaffidi, Rachel KE Bellamy, and Joshua Jordahl. "The whats and hows

102

of programmers' foraging diets." In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 3063-3072. ACM, 2013.

[66] Piorkowski, David, Scott D. Fleming, Christopher Scaffidi, Margaret Burnett,
Irwin Kwan, Austin Z. Henley, Jamie Macbeth, Charles Hill, and Amber Horvath. "To
fix or to learn? How production bias affects developers' information foraging during
debugging." In Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on, pp. 11-20. IEEE, 2015.

[67] Piorkowski, David, Austin Z. Henley, Tahmid Nabi, Scott D. Fleming,
Christopher Scaffidi, and Margaret Burnett. "Foraging and navigations, fundamentally:
developers' predictions of value and cost." In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp. 97-
108. ACM, 2016.

[68] Piorkowski, David, Sean Penney, Austin Z. Henley, Marco Pistoia, Margaret
Burnett, Omer Tripp, and Pietro Ferrara. "Foraging goes mobile: Foraging while
debugging on mobile devices." In Visual Languages and Human-Centric Computing
(VL/HCC), 2017 IEEE Symposium on, pp. 9-17. IEEE, 2017.

[69] Pirolli, Peter, and Stuart Card. "Information foraging in information access
environments." In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 51-58. ACM Press/Addison-Wesley Publishing Co., 1995.

[70] Pirolli, Peter. "Computational models of information scent-following in a very
large browsable text collection." In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 3-10. ACM, 1997.

[71] Pirolli, Peter, and Stuart K. Card. "Information foraging models of browsers for
very large document spaces." In Proceedings of the working conference on Advanced
visual interfaces, pp. 83-93. ACM, 1998.

[72] Pirolli, Peter, Stuart K. Card, and Mija M. Van Der Wege. "Visual information
foraging in a focus+ context visualization." In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems pp. 506-513. ACM, 2001.

[73] Pirolli, Peter, Stuart K. Card, and Mija M. Van Der Wege. "The effects of
information scent on visual search in the hyperbolic tree browser." ACM Transactions
on Computer-Human Interaction (TOCHI) 10, no. 1 (2003): 20-53.

[74] Pirolli, Peter, and Wai-Tat Fu. "SNIF-ACT: A model of information foraging on
the World Wide Web." In International Conference on User Modeling, pp. 45-54.
Springer, Berlin, Heidelberg, 2003.

[75] Pirolli, Peter. Information foraging theory: Adaptive interaction with information.
Oxford University Press, 2007.

103

[76] Pirolli, Peter. "An elementary social information foraging model." In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, pp. 605-614.
ACM, 2009.

[77] Srinivasa Ragavan, Sruti, Sandeep Kaur Kuttal, Charles Hill, Anita Sarma, David
Piorkowski, and Margaret Burnett. "Foraging among an overabundance of similar
variants." In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, pp. 3509-3521. ACM, 2016.

[78] Ragavan, Sruti Srinivasa, Bhargav Pandya, David Piorkowski, Charles Hill,
Sandeep Kaur Kuttal, Anita Sarma, and Margaret Burnett. "PFIS-V: modeling foraging
behavior in the presence of variants." In Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems, pp. 6232-6244. ACM, 2017.

[79] Srinivasa Ragavan, Sruti. Version Control Systems: An Information Foraging
Perspective. Oregon State University. 2018.
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/3x816s495

[80] Srinivasa Ragavan, Sruti, Mihai Codoban, David Piorkowski, Danny Dig,
Margaret Burnett. “Version Control Systems: An Information Foraging Perspective”.
Transactions of Software Engineering, IEEE, 2019. DOI:
10.1109/TSE.2019.2931296. To appear.

[81] Rochkind, Marc J. "The source code control system." IEEE transactions on
Software Engineering 4 (1975): 364-370.

[82] Rosson, Mary Beth, and John M. Carroll. "The reuse of uses in Smalltalk
programming." ACM Transactions on Computer-Human Interaction (TOCHI) 3, no. 3
(1996): 219-253.

[83] Ruthruff, Joseph R., Amit Phalgune, Laura Beckwith, Margaret Burnett, and
Curtis Cook. "Rewarding" Good" Behavior: End-User Debugging and Rewards."
In 2004 IEEE Symposium on Visual Languages-Human Centric Computing, pp. 115-
122. IEEE, 2004.

[84] Sheil, Beau. "DATAMATION®: POWER TOOLS FOR PROGRAMMERS." In
Readings in artificial intelligence and software engineering, pp. 573-580. 1986.

[85] Simon, Herbert A. "Designing organizations for an information-rich world."
(1971): 37-72.

[86] http://www.semdesigns.com/Products/SmartDifferencer/

[87] Smeltzer, K.J., 2018. Design and Application of Variational Representations.
Oregon State University.
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/08612t93m

104

[88] “Software versioning”. https://www.wikiwand.com/en/Software_versioning.
Retrieved on 5th August, 2019.

[89] Spool, Jared M., Christine Perfetti, and David Brittan. Designing for the scent of
information. User Interface Engineering, 2004.

[90] Stephens, David W., and John R. Krebs. Foraging theory. Princeton University
Press, 1986.

[91] Apache Subversion. https://subversion.apache.org/. Retrieved 5th August 2019.

[92] Time Machine. https://en.wikipedia.org/wiki/Time_Machine_(macOS). Retrieved
on 5th August, 2019.

[93] Terry, Michael, and Elizabeth D. Mynatt. "Recognizing creative needs in user
interface design." Proceedings of the 4th conference on Creativity & cognition. ACM,
2002.

[94] Terry, Michael, and Elizabeth D. Mynatt. "Side views: persistent, on-demand
previews for open-ended tasks." In Proceedings of the 15th annual ACM symposium
on User interface software and technology, pp. 71-80. ACM, 2002.

[95] Terry, Michael, Elizabeth D. Mynatt, Kumiyo Nakakoji, and Yasuhiro Yamamoto.
"Variation in element and action: supporting simultaneous development of alternative
solutions." In Proceedings of the SIGCHI conference on Human factors in computing
systems, pp. 711-718. ACM, 2004.

[96] Tichy, Walter F. "Design, implementation, and evaluation of a revision control
system." In Proceedings of the 6th international conference on Software engineering,
pp. 58-67. IEEE Computer Society Press, 1982.

[97] Versions: Git for designers. https://versions.sympli.io/. Retrieved on 5th August,
2019.

[98] Walkingshaw, Eric. "The choice calculus: A formal language of variation." (2013).
Oregon State University.
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/k643b3668

[99] Yoon, Young Seok, and Brad A. Myers. "An exploratory study of backtracking
strategies used by developers." In Cooperative and Human Aspects of Software
Engineering (CHASE), 2012 5th International Workshop on, pp. 138-144. IEEE, 2012.

[100] Yoon, YoungSeok, and Brad A. Myers. "Supporting selective undo in a code
editor." In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, vol. 1, pp. 223-233. IEEE, 2015.

