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In this dissertation we consider two application specific flow and transport models in

porous media at multiple scales: 1) methane gas transport models for hydrate formation and

dissociation in the subsurface under two-phase conditions, and 2) coupled flow and biomass-

nutrient model for biofilm growth in complex geometries with biofilm, and its impact via

upscaling from pore scale to Darcy scale on Darcy scale permeability. Both projects are

motivated by the challenges from real-life applications in the subsurface.

First we consider the simplified methane gas transport models at Darcy scale under

equilibrium and non-equilibrium conditions. The equilibrium model (EQ) is a conservation

law with a nonsmooth space-dependent flux function, similar to those that are known in

other applications including the two-phase flow in a heterogeneous porous medium, traffic

flow on roads, and nonlinear elasticity in mixed materials. There are two unknowns in

(EQ) models which are bound together by a relationship called nonlinear complementarity

constraint and represented by a multivalued graph. Our main result is the weak stability of

an upwind-implicit scheme for a regularized (EQ). To our best knowledge, this is the first

such result for the transport model. We also consider kinetic models which approximate

(EQ) and are useful when we simulate the hydrate phase change at shorter time scales, e.g.,

after a seismic event. After a rigorous analysis of three kinetic models, we focus on the

analysis of a particular model robust across the unsaturated and saturated conditions. We

also prove the weak stability of this model and confirm the rate of convergence O(
√
h) for

both equilibrium and kinetic models. We choose various equilibrium and non-equilibrium

scenarios relevant to the applications, and we provide 1d simulation results which illustrate

the theory.

Next we study the coupled biomass-nutrient-flow dynamics in a complicated pore

scale geometry. Our goal is to describe a new monolithic coupled flow and biomass-nutrient



model and to show its robustness through various numerical experiments. The biomass-

nutrient model is of variational inequality type blended with nonsingular diffusivity to ensure

the volume constraint while enhancing the biofilm growth mechanism. For the flow, we

consider the Brinkman flow with spatially varying permeability which accounts for the flow

in (somewhat) permeable domains as well as around these. We apply the flow and biofilm

growth model to the entire domain so that the model and the coupling are monolithic. Our

overall scheme follows operator splitting and time lagging: we solve advection explicitly

by upwind method and diffusion-reaction together using CCFD with time-lagged diffusion

coefficients. For flow, we use our version of the Marker-And-Cell method adapted to the

heterogeneous Brinkman model on a time-staggered grid. We also present simulation results

to show the robustness of our model. To handle the sensitivity of the biomass-nutrient model

to its initial data, we introduce a new modeling construction which “promotes” the adhesion

of biofilm to the surface. Then we perform the Monte Carlo simulations and construct

the probability distributions of upscaled permeability which represent the randomness of

complex geometry with biofilm.
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Multiphase Flow and Transport in Porous Media with Phase Transition

at Multiple Scales: Modeling, Numerical Analysis, and Simulation

1 Introduction

Scientific discovery and innovation have improved the quality of life as we seek to

advance the frontiers of knowledge and solve problems such as of natural phenomena. The

multiphase flow and transport through porous media are omnipresent in nature and in en-

vironmental, biological and medical science and engineering field [8, 11, 127]. The study

of Darcy scale models generally reply on empirical data obtained for cores extracted from

soil and rock, and the pore scale models rely primarily on imaging and micro-fluidic experi-

ments. For many instances, the experiments are not feasible due to technical and economical

challenges.

One can also study such phenomena using numerical simulations. Numerical sim-

ulation of fluid flow and transport aids in understanding the complex behavior of fluids,

and can aid in the management of resources involving processes in porous media such as

groundwater management, oil and gas productions, and many other applications including

modeling human tissue. However, developing an accurate, stable, robust and consistent

model for complex flow and transport phenomena is challenging as each model presents

challenges unique to a certain application, and to a length and time scale at which they are

applied. In this dissertation we use conservative and stable schemes and wherever possible

we provide analyses and tests of these properties.

Mathematical modeling and numerical analysis results in this dissertation. In

this dissertation we present our results for two applications involving two very specific

models of multiphase flow. These are methane hydrate and biofilm-nutrient models coupled

with the flow. These are important applications overviewed below in Sec. 1.1 and 1.2.

The research described in this dissertation comprises results published in three papers:

[106] M. Peszynska, C. Shin, “Stability of a numerical scheme for methane transport in hy-

drate zone under equilibrium and non-equilibrium conditions.” Computational Geo-

science, March 2021, accepted, in print.
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[131] C. Shin, A. Alhammali, L. Bigler, N. Vohra, M. Peszynska, “Coupled flow and biomass-

nutrient growth at pore scale with permeable biofilm, adaptive singularity and multiple

species.” Mathematical Biosciences and Engineering, 2021, 18(3): 2097 – 2149.

[115] M. Peszynska, J. Umhoefer, C. Shin, “Reduced model for properties of multiscale

porous media with changing geometry.” Computation, 2021, 9(3), 28.

These papers were written with collaborators, therefore we extract the specific contribu-

tions to which we contributed most substantially. Throughout we make clear the specific

contributions of the author of this dissertation. In particular, for the methane hydrate

model we present a rigorous analysis of the stability of a numerical scheme as well as ample

simulation results which illustrate the model and the findings from the analysis. For the

biofilm-nutrient-flow dynamics, we present the first monolithic coupled model of flow and

biofilm growth. While the analysis for this system is out of reach, we perform testing of

modeling variants as well as of upscaling including the considerations of uncertainty.

Outline of the dissertation. The dissertation starts in Ch. 2 by providing background

and notation. Next we continue to describe the results in these papers [106, 115, 131]. The

results in [106] are partitioned into Ch. 3, 4, and 5. Then we discuss the parts of [115,131]

which the author of this dissertation contributed in Ch. 6–8. In the end, we summarize our

work and provide current and future work in Ch. 9.

First we motivate and overview the results and provide a statement on our contribu-

tions.

1.1 Numerical analysis and simulations of methane transport in hydrate
zone under equilibrium and kinetic conditions

In Ch. 3–5, we describe the work presented in [106], a rigorous stability analysis

of the first-order upwind method for methane gas transport in the subsurface with phase

transition along with simulation results which illustrate the theory and show the flexibility

of the model for use in the studies, e.g., of methane transport due to the climate change.

The author’s contribution is described in detail at the end of the section.

Overview. Methane hydrate, also known as “Ice That Burns” is an ice-like crystal made

of methane molecules enclosed in a cage made by water. Methane hydrate is abundant in

deep sub-sea sediments whenever favorable conditions of high pressure, low temperature,
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and a large supply of methane holds. Methane hydrate is also found in the Arctic below

the permafrost.

To explain the presence and shape of hydrate deposits found in nature, as well as

to understand the methane flux as a response to climate change, various simulations were

carried out; see, e.g., [25,26,40,53,79,80,81,87,94,110,111,147,153,165,166]. These simula-

tions are typically carried out at the basin time scales of several kilo-years or at least years

or months. The presence of hydrate is explained with a postulate of supply of gas from

deep Earth sources or by the existence of biogenic sources of methane such as microbial

species; see [80, 110, 147]. Recent studies focus also on the dissociation of hydrate deposits

in response to environmental conditions such as an increase in average 9 temperatures and

address the impact of hydrate on the balance of greenhouse gases [10, 25, 29, 55, 137] at the

time scales of years or decades.

Hydrate has also been evaluated as a potential energy source [92,124,143]. In partic-

ular, in pilot projects in Japan and Alaska [92,141,142], the recovery of methane is enabled

by lowering the pressure in the wells which triggers hydrate dissociation and release of

a large amount of gas. A similar mechanism contributes to environmental hazards while

drilling [17,52,136], with the characteristic time scale of days.

Although there has been a lot of active research and simulations of hydrate evolution,

to our knowledge, no analysis of numerical schemes was reported. Our objective has been to

provide the first numerical analysis for a family of simplified methane gas transport models

with hydrate formation and dissociation in methane hydrate zone under equilibrium and

non-equilibrium states which we frame as a conservation law with a nonsmooth space- and

time-dependent flux function. In this dissertation we describe first the model for methane

gas transport in the gas hydrate stability zone in Ch. 3. Next we provide rigorous stability

proofs for the equilibrium model in Ch. 4 and for the kinetic model in Ch. 5 along with

simulation results for selected scenarios.

Author’s contribution. The author of this dissertation contributed in equal parts to (i)

the rigorous proof of the stability of the upwind finite volume discretization of the reduced

equilibrium model, (ii) study of regularization of flux functionals, (iii) analysis of the kinetic

batch reactor model, (iv) kinetic equation development and analysis, and (v) designed and

performed simulations as well as (vi) demonstration of the convergence of the numerical

methods at the rate O(
√
h).
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1.2 Coupled biomass-nutrient-flow model in porous media

In Ch. 6–7 and Ch. 8 we present part of the work reported in [115,131] on a coupled

model of biomass-nutrient and flow and upscaling involving uncertainty and reduced models.

In Ch. 6–7 we present the biomass-nutrient model with constraint and discuss the biofilm

growth pattern in a realistic pore scale geometry. We also introduce a pore scale flow model

that allows fluid flows through permeable biofilm phase, and explains the coupling of flow

model with the biomass-nutrient model. These materials correspond to Sec. 4-5 of [131]. In

Ch. 8, we describe the work presented in Sec. 3 and part of Sec. 6 of [115]. The author’s

contributions are described in detail at the end of the section.

Overview. Biofilms are composed of microbial cells and the extracellular polymeric

substance (EPS) that microbes produce for their own protection. As authors of [22, 31]

stated, “the overwhelming majority of bacteria live in porous environments” such as “soil-

like materials, industrial filters” and medical devices, we see that there is significant interest

in studying biofilm. Scientists and engineers use microbes to alter the flow paths in porous

media in various applications. The understanding and quantitative modeling of microbial

growth in porous media are important, e.g., in selective plugging for the needs of enhanced

oil and gas recovery, as well as in carbon sequestration [22,35,84,144].

The study of biofilm at pore scale often faces challenges in experiments and imaging

[35, 96, 114, 139, 144]. Observations of microbial growth in synthetic or real porous media

are difficult since imaging is intrusive and harmful to living organism and can alter its

reproduction behavior [14, 108, 114]. Thus, sometimes the best one can do is to study

the upscaled properties such as KΩ as in [114] with the flow confined to the pore region

without biofilm. Moreover, the typical length scale for the processes at pore scale is in

micrometers [µm] rather than [mm]; the latter are considered, e.g., in the detailed studies

in bulk fluid [19, 63, 170]. Another challenge is in detecting a clear interface between the

biofilm phase and the bulk fluid when we also need to identify the boundary between the

rock and the fluid region. In fact, the character itself of the biomass-nutrient dynamics

coupled to the flow may be distinct from that in an unconfined setting. In particular, [31]

points out the importance and influence of “streamers” (long filamentous structure) on the

clogging of pore scale in contrast to the surface attached biofilm.

The challenge of the coupled nature of flow motivated us to improve the model pre-

sented in [114] by applying a variant of the Brinkman flow model to the entire domain rather
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than a staggered-in-time treatment. Thus these extensions shall allow (a) more complex

spreading and growth mechanisms than those we proposed in [114], (b) permeable biofilm

phase, and an easy generalization to (c) multiple microbial species. For a new adaptive

model we developed, we refer readers to [131] since this dissertation only focuses on the

monolithic coupled biomass-nutrient-flow model. Our model in [131] is also available for a

multiscale study with which we upscale the flow properties affected by biofilm growth to

Darcy scale.

At Darcy scale, only the Darcy properties, such as porosity φ (average volume fraction

of the voids) and permeability KΩ (average proportionality coefficient in Darcy’s law for

momentum equation) can be found by experiment. One can also derive these quantities from

the detailed geometry of porous media at the pore scale. There are also relationships between

φ andKΩ formulated from experiments and theoretical considerations. In particular, there is

a well-known porosity-permeability correlation such as Carman-Kozeny [9] which is derived

from the pore scale the geometry of an isotropic Darcy scale porous medium. In a more

general context, the wide variety of porous media and the uncertainty of the actual values of

φ and KΩ in heterogeneous reservoirs led to research on the stochastic modeling of φ(x, ω)

and KΩ(x, ω) such as in [21, 99, 100], where ω is the random parameter which stands for

uncertainty due to experimental and modeling errors. Since KΩ depends on the multitude

of parameters, it is very difficult to quantify ω. This randomness of KΩ clearly increases

when the evolving geometry starts from random initial conditions. These facts motivate

us to study the sensitivity of the biomass-nutrient model to initial data and to introduce a

modeling parameter for the biofilm surface attraction feature.

Author’s contribution. For the work reported in Ch. 6–7, the author of this dissertation

contributed to (vii) developing the MATLAB BN_Flow simulation code [132] for coupled

biomass-nutrient-flow dynamics. We also (viii) constructed examples that demonstrate the

robustness of the monolithic biomass-nutrient-flow model.

For the work presented in Ch. 8, the author developed (ix) the biomass-nutrient model

modification which enables the rock surface detection through an additional attraction pa-

rameter on the reaction term. The author also (x) performed the Monte Carlo simulations

to generate realistic geometries with biofilm per case using the direct numerical simulation

(DNS) and (xi) reported the upscaled permeability probabilities which were compared with

the results produced by reduced models presented in [115].
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2 Background

In this chapter we provide background for our work on mathematical modeling, anal-

ysis, and simulation of flow and transport models at multiple scales. The topic is vast,

therefore we focus on the overview and the essential details only. We start by defining the

notations commonly used throughout this dissertation. Then we give mathematical pre-

liminaries on (i) ordinary differential equations (ODEs) with nonlinear relations, (ii) scalar

conservation laws, (iii) phase-field model, (iv) flow models, (v) volume averaging upscaling

method, and (vi) numerical methods for models to be described.

2.1 Notation

In this section we define the notations and special graphs that are repeatedly used in

this dissertation.

Let Ω be an open, connected, bounded region in Rd for d ∈ {1, 2, 3} with boundary of

Ω denoted by ∂Ω or Γ. The position variable is x = (xk)
d
k=1 in Ω with its Euclidean norm

|x |. Partial derivatives are denoted by ∂t, ∂k,∇ = (∂1, . . . , ∂d) for time t and x.

We use n = (n1, n2, . . . , nd)
T to denote the outward normal vector to Γ. The normal

derivative on Γ is defined as

∇u · n =
∂u

∂n
=

d∑
k=1

∂u

∂xk
nk.

Definition 2.1.1. Definition for subdifferential in [134](p. 81) Let ϕ : Ω → R be convex

and proper. The subdifferential of ϕ at u ∈ domain(ϕ) is the set of all functionals u∗ :∈ Ω′

such that

u∗(v − u) ≤ ϕ(v)− ϕ(u), v ∈ Ω,

and is denoted by ∂ϕ(u). Each such u∗ ∈ ∂ϕ(u) is also called a subdifferential of ϕ at u.

We use 1S(x) and IS(x) to denote the characteristic function and the indicator func-

tion of some set S, respectively, and they are defined as

1S(x) =


1, x ∈ S,

0, x 6∈ S,
and IS(x) =


0, x ∈ S,

∞, x 6∈ S.



7

2.1.1 Functional spaces

For functional spaces, we closely follow the notations used in [74,135].

Let Cm(Ω) denote the space of continuous functions whose derivatives up to order

m ≥ 0 are also continuous. We use the subscript 0 to indicate the space with compact

support, e.g.,

C∞0 (Ω) = {u ∈ ∩m≥1C
m(Ω) | supp(u) is compact}

which is also called as the space of test functions.

The Lebesgue space is denoted by Lp(Ω) with the usual Lp-norm ‖ · ‖p. In this

dissertation, we consider spaces for p ∈ {1, 2,∞}. We use Hk(Ω) to denote the Sobolev

space

Hk(Ω) = {u ∈ L2(Ω)|∂αu ∈ L2, |α | ≤ k}

where ∂αu represents the weak derivative of u of order |α |, equipped with the norm

‖u‖Hk(Ω) =

√ ∑
|α |≤k

‖∂αu‖22.

Hk(Ω) together with the inner product is Hilbert space.

We use L∞(0, T ;Lp(Ω)) to denote the function space of both time and space as

introduced in [73,74]

L∞(0, T ;Lp(Ω)) = {u : ‖u‖p,T <∞},

where the Lp-norm over [0, T ] is defined as

‖u‖p,T =

∫ T

0
‖u(·, t)‖p dt.

From now on, we use L∞(Lp) to denote the space L∞(0, T ;Lp(Ω)).

2.1.2 Special graphs

In this section we provide special graphs used in this dissertation.

We consider the graph

sgn(x) =


−1, x < 0,

0, x ∈ [−1, 1],

1, x > 0.
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Figure 2.1: Illustration of special graphs. Left: sgn(x). Right: H(x).

This graph sgn(x) is distinct from the single valued discontinuous function sgn0(x) which

agrees with sgn(x) for x 6= 0 but assigns 0 to x = 0. The Heaviside graph H(x) =

1
2(1 + sgn(x)) assigns 0 to x < 0, 1 to x > 0, and the set [0, 1] to x = 0. We also use

x+ = max(0, x). Fig. 2.1 illustrates these special graphs.

2.2 Notation and preliminaries on ODEs with monotone graphs

In this section we recall the evolution equations with monotone multi-valued graphs

on R. These concepts extend what is known for the initial value problem

du

dt
+A(u) = f, u(0) = u0, (2.1)

where A : R → R is a monotone increasing function. The extensions we discuss are useful

for modeling phase equilibria and kinetic schemes; we shall need the notation and basic

properties in our estimates and analysis in Sec. 3–5.

The comprehensive details on the general abstract Hilbert space setting and the mono-

tone multi-valued operators are provided, e.g., in [12, 134].

We start with an example of a system of two coupled differential equations similar

to (2.1). Consider a monotone increasing relationship v = A(u) with A : R → R. When

u = u(t) and v = −v(t), and these are in equilibrium, then v(t) = A(u(t)) at every time

instance t. It is possible however that the system starts away from an equilibrium, i.e.,

v(0) 6= A(u(0)). If A is monotone increasing, then the system (u(t), v(t)) evolves towards

the equilibrium (u∞, v∞) as t → ∞, i.e., v(t) − A(u(t)) → 0 as t → ∞. We denote this

quantity Q = v −A(u) and show a concrete example.
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Figure 2.2: Numerical solution for Ex. 2.2.1 with initial condition (u0, v0). Left: Case (a)
for A(u) = 10u

1+10u . Right: Case (b) for A(u) = u4. Blue circles represent the evolution from
(u0

(1), v
0
(1)) and red diamonds represent the evolution from (u0

(2), v
0
(2)).

Case (u0
(1), v

0
(1)) (U50

(1), V
50

(1)) (u0
(2), v

0
(2)) (U50

(2), V
50

(2))

(a) (0.1, 0.9) (0.2701, 0.7299) (0.9, 0.25) (0.3651, 0.7849)

(b) (0.1, 0.9) (0.7245, 0.2755) (0.9, 0.25) (0.7800, 0.3700)

Table 2.1: Numerical solutions to Ex. 2.2.1.

Example 2.2.1 (Evolution towards equilibrium Q = 0). In this example we show the

solution to Q = 0 as an evolution of a kinetic system:

du

dt
= Q;

dv

dt
= −Q; Q = v −A(u). (2.2)

We consider two cases: (a) concave monotone function A(u) = 10u
1+10u and (b) function

A(u) = u4 which is convex for u ≥ 0. Let the subscripts (i) and (i) indicate different

initial conditions. Starting at two different initial conditions: (u0
(1), v

0
(1)) = (0, 1, 0.9) and

(u0
(2), v

0
(2)) = (0.9, 0.25), we calculate the numerical solutions (Un(i), V

n
(i)) for i ∈ {1, 2} using

a builtin ODE solver ode45 in MATLAB.

In Fig. 2.2, we illustrate the evolution of numerical solutions (Un(1), V
n

(1)) in blue circles

and (Un(2), V
n

(2)) in red diamonds. They evolve towards an equilibrium on A(u), and the

approximate values of equilibrium for each case are shown in Tab. 2.1, i.e., (u∞(i), v
∞
(i)) ≈

(U50
(i), V

50
(i) ) for i ∈ {1, 2}. Our results shows the conservation of total quantity, i.e., u0

(i) +

v0
(i) = Un(i) +V n

(i) as expected since we have (u+ v)t = 0 from the sum of two ODEs in (2.2).

In what follows we extend this system to the case when A is a multivalued graph.
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Figure 2.3: Illustration of G and G−1 for Ex. 2.2.2.

2.2.1 Monotone operators

Let A ⊂ R× R be a multivalued operator. Its domain and range are defined as

dom(A) = {u : ∃b : (a, b) ∈ A} ⊂ R, range(A) = ∪u∈dom(A)Au ⊂ R.

We will write v ∈ A(u) to denote some selection v out of the set range(A). Since this

selection is not unique, we use the symbol “∈.” The inverse of A is defined as

A−1 = {(b, a) : (a, b) ∈ A}.

Example 2.2.2. Consider G = H(x), the heaviside graph. Then the inverse of G is

G−1 = {0} ∪ (0, 1) ∪ {1} × (−∞, 0) ∪ {0} ∪ (0,∞). Illustration of G and G−1 are shown in

Fig. 2.3. G−1 is also a subdifferential of ∂I[0,1](v).

Definition 2.2.1. Let A be a multivalued operator. A is monotone if

∀(u1, v1), (u2, v2) ∈ A, (u1 − u2, v1 − v1) ≥ 0.

A is maximal monotone if I +A is onto R.

Definition 2.2.2 (Resolvent). Let A be a monotone operator. For λ > 0, λA is also a

monotone operator, and the resolvent

RAλ = (I + λA)−1 (2.3)

is a contractive function.

The solution to u+ λA(u) 3 f is unique and given by u = RAλ (f).

Example 2.2.3. We consider the Heaviside graph H(u) as before in Ex. 2.2.2. The resolvent

RAλ (u) = (I + λA)−1(u) = (u− λ)+ is as shown on Fig. 2.4.
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Figure 2.4: Illustration of the resolvent RAλ where λ = 1 for Ex. 2.2.3.

2.2.2 Evolution ODE with a graph

Now we extend the simple ODE (2.1) to allow A to be multivalued as in the section

above.

The resolvent RAλ helps to define the solution to an evolution problem

du

dt
+A(u) 3 f ; u(0) = u0, (2.4)

where f ∈ L1(0, T ) is some given input and u0 ∈ dom(A) ⊂ R is some initial data. The

solution u(t) ∈ C0(R) to (2.4) is defined as the limit as τ → 0 of the fully implicit finite

difference step function solutions Un ≈ u(tn), with tn = nτ , to the inclusion

Un − Un−1

τ
+A(Un) 3 fn, n ≥ 1. (2.5)

In spite of the symbol 3, the step solution Un ∈ dom(A) to (2.5) is uniquely defined by

Un = RAτ (Un−1 + τfn). Once we know Un, the actual selection A(Un) = fn − Un−Un−1

τ is

given uniquely from (2.5).

In this dissertation we use various single-valued approximation Aλ ≈ A which are

maximal monotone when A is. One is the Yosida approximation Aλ = 1
λ(I − RAλ ) which

provides another way to define the solution u(t) to (2.4) as the limit as λ→ 0 of uλ(t), the

family of solutions to the ODE

duλ
dt

+Aλ(uλ) = f.

We also note that (2.4) is the gradient flow of some convex functional A of which A

is the subgradient. This feature helps to understand the solvability of the problem.
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2.2.3 Evolution ODE system with graph

Now we extend our discussion of (2.4) and consider the following system on R× R

d

dt
u = Q,

d

dt
v = −Q; u(0) = u0, v(0) = v0. (2.6)

We are now interested in the case when Q(u, v) ∈ v−A(u) is multi-valued with a monotone

operator A. Here the first and the second equations have similar properties to (2.4) but

are coupled. Adding the two equations leads to u(t) + v(t) = const = u0 + v0. With the

abstract theory from [134], it is easy to show that the system (2.6) is well-posed in R× R.

We also see that the solutions (u(t), v(t)) evolve towards some (u∞, v∞) which is at the

intersection of the graph G with the manifold u + v = u0 + v0 = c0. Moreover, since the

graph Q(v) = v − A(u) = v − A(c0 − v) is monotone in v, the evolution of v governed by
d
dtv +Q(v) 3 0 is the gradient flow of the convex functional Q, the primitive of Q.

Numerical solution to kinetic problem with monotone graph.

We can approximate the solution (u(t), v(t)) to (2.6) by the Backward Euler method.

In this section we give an explicit formula for (Un, V n) using resolvent, and illustrate with

an example.

First we use the Backward Euler method to write the kinetic system (2.6) in discrete

form:

Un − Un−1

τ
= V n −An, (2.7a)

V n − V n−1

τ
= An − V n, (2.7b)

An ∈ A(Un). (2.7c)

To write Un explicitly, we solve (2.7b) for V n in terms of An:

V n =
τ

1 + τ
V n − τ

1 + τ
An, (2.8)

and substitute (2.8) in (2.7a). Then solve for Un so that Un only depends on the data from

previous time step:

Un = RAτ
1+τ

(
Un−1 +

τ

1 + τ
V n−1

)
. (2.9)

The from the sum of (2.7a) and (2.7b), we get

V n = Un−1 + V n−1 − Un. (2.10)

We will revisit this in Sec. 5.2.
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Figure 2.5: Illustration of (left) resolvent RAτ and (right) evolution towards equilibria for
Ex. 2.2.4 when τ = 0.1. Different markers indicate (Un, Un) that evolve towards an equi-
librium on A(u).

(u0, v0) (−0.5, 1) (0.5, 0.4) (2, 0.7)

(Un, V n) (0, 0.5) (0, 0.9) (1.7, 1)

Table 2.2: Equilibria (Un, V n) at t = 10 for selected (u0, v0) for Ex. 2.2.4.

Example 2.2.4 (Evolution of a kinetic system with monotone graph). Consider a kinetic

system (2.6) with

A(u) =


(−∞, 1], u = 0,

1, u > 0.

The solution (un, vn) can be obtained exactly using (2.9) and (2.10).

In (2.9) the resolvent RAτ is defined as

RAτ (ξ) = (ξ − τ)+

where τ = τ
1+τ . The illustration of RAτ for τ = 0.1 is shown in Fig. 2.5 on the left. The

right figure shows the evolution of (Un, Un) toward an equilibria on A from an initial state

(u0, v0) with values listed in Tab. 2.2.

2.3 Notation and preliminaries on flow models

We review here flow models for an incompressible fluid in the laminar flow regime:

Darcy, Stokes, and heterogeneous Brinkman flows. These models are length scale dependent

and related using the multi-scale homogenization strategy such as volume averaging methods

by [108].
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The Darcy scale is the scale of O(1 [cm]) or above, at which the study of flow and other

properties does not recognize the space available to fluid flow and transport and the space

with solid impermeable particles, but rather relies on average properties found experimen-

tally in a laboratory using core samples. In particular, of interest is the porosity φ, the ratio

of the volume available for fluid flow and transport to the volume of entire porous medium,

and permeability KΩ, the coefficient of proportionality in Darcy flow between volumetric

flow and pressure gradient. The coefficients φ and KΩ represent the geometrical information

about rock and non-rock regions together through, e.g., the averaged representation of pore

scale processes over a representative elementary volume (REV).

Next we discuss the scale significantly below the Darcy scale. We refer to the scales

of O(1 [nm]) to O(1 [µm]) as pore scale. At this scale we recognize the fluid-rock interface

Γ. To resolve the flow and transport pattern at pore scale we must know the detail of pore

geometry. Digital imaging tools such as X-ray, µ-CT, and Scanning Electron Microscopy

provide the information of porous media [45,47]; however, the tomographic analysis for the

high-resolution image of porous media is computationally demanding [123,161]. Even if we

have the full geometry, resolving the flow in a complex domain is not always feasible as

we may encounter computational barriers [47, 126]. The pore scale processes in REVs are

qualitatively connected to computationally efficient macroscopic models through upscaling

techniques; we discuss the volume averaging upscaling method in Sec. 2.4.

In this section we start by stating the Darcy flow model. We define the additional

notation for pore scale geometry which we need for pore scale flow models. Then we

describe the Stokes flow in Sec. 2.3.2.

2.3.1 Darcy flow

In 1856, Henry Darcy, the French hydraulic engineer, discovered the empirical law of

the linear relation between the flow rate and the pressure gradient based on the experiments.

This empirical law is called Darcy’s law and is widely used to describe the laminar flow

pattern of an incompressible fluid in a porous medium Ω [45,67]. The Darcy flow model [9]

in Ω is given as  〈u〉 = −KΩ
µ (∇〈p〉 − ρg∇d), in Ω,

∇ · 〈u〉 = 0, in Ω,
(2.11a)

where KΩ ∈ Rd×d is the known permeability tensor of Ω, µ ∈ R is the dynamic viscosity of

fluid, ρ ∈ R is the density of an incompressible fluid, g is the magnitude, and d : Ω→ R is
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Figure 2.6: An illustration of Ω for Darcy flow model.

the depth function satisfying ∇d = 0 for the horizontal flow and ∇d = −1 for the vertical

flow. Here 〈u〉 : Ω → Rd and 〈p〉 : Ω → R are the averaged representation of pore scale

velocity u and pressure p, respectively, where the volume average 〈·〉 of a quantity over a

volume V ⊂ Ω is defined by

〈u〉(x) =
1

|V |

∫
ξ∈V

u(ξ) dξ.

Now we illustrate the Darcy flow.

Example 2.3.1 (Darcy flow in an isotropic porous medium). Consider a fluid flows hori-

zontally through an isotropic porous medium Ω ⊂ R2 of permeability KΩ ∈ R; see Fig. 2.6

for a schematic diagram of this example with Ω = [xo, xf ] × [yo, yf ]. The boundary Γ of Ω

is composed of inlet Γin, outlet Γout, and the walls Γwall parallel to the flow direction. In

this illustrative example we impose the no-flow boundary conditions on Γwall, the Neumann

pressure boundary condition on inlet Γin and the Dirichlet pressure boundary condition on

outlet Γout 
〈u〉 · n = 0, on Γwall

〈u〉 · n = uin on Γin,

〈p〉 = pout, on Γout

(2.11b)

where n is the normal vector. Let the pressure gradient ∂xp = −c < 0.

The direction of flow is determined by the pressure boundary conditions as 〈u〉 ∝ 〈p〉.

To ensure the flow direction from inlet to outlet for the case of Fig. 2.6, we need to have

〈p〉|Γin > 〈p〉|Γout . It is easy to obtain the analytical solution (〈u〉, 〈v〉, 〈p〉) to Ex. 2.3.1

〈u〉 =
cKΩ

µ
, 〈v〉 = 0, 〈p〉 = −c(x− xf ) + pout. (2.12)
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(a) φ ≈ 0.44 (b) φ ≈ 0.157
Figure 2.7: Slices of µ-CT data of synthetic porous media (glass beads) processed in [114].
The resolution of (a) pore scale domain without biofilm and (b) pore scale domain with
biofilm is 204× 204. Ωr in white, Ωv in black, and the biofilm phase Ωb in gray.

If the Dirichlet pressure boundary condition 〈p〉 = pin is imposed at Γin instead of the

Neumann pressure boundary condition, the constant c in (2.12) is

c =
pout − pin

xf − xo
.

For Darcy flow, we must know the permeability tensor KΩ. One can obtain KΩ from

experiment or from pore scale simulations using the volume averaging upscaling method

based on pore scale data. We explain this in Sec. 2.4.

2.3.2 Stokes flow

At the pore scale, we distinguish the rock region Ωr and the non-rock region Ωn in Ω,

so that Ω = Ωr ∪ Ωn ∪ Γrn where Γrn represents the interface between Ωr and Ωn. Fig. 2.7

shows processed µ-CT slices from [114] such pore scale domains that the Stokes flow is

applicable.

In this section we describe the incompressible Newtonian fluid flow with Reynolds

number less than 1 in some rigid porous domain Ω.

Generally, the flow velocity u : Ωn → Rd and pressure p : Ωn → R of an incompress-

ible fluid are described by the Navier-Stokes equations together with a mass conservation

equation and appropriate boundary conditions:

ρ

(
∂u

∂t
+ u · ∇u

)
− µ∆u +∇p = f, in Ωn, (2.13a)

∇ · u = 0, in Ωn, (2.13b)

where f is the forcing term. The second equation (2.13b) is the continuity equation that is

derived from the mass conservation of the incompressible fluid.
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Figure 2.8: Illustration of Hagen-Poiseuille flow between two parallel plates at rest.

Under the laminar regime, the viscous effect dominates the inertial force. In turn, the

Navier-Stokes equation (2.13a) reduces to the steady-state Stokes equations. The Stokes

flow in Ωn for an incompressible fluid [37] is expressed as

−µ∆u +∇p = f, in Ωn, (2.14a)

∇ · u = 0, in Ωn. (2.14b)

We now illustrate the Stokes flow in a channel, also known as Hagen-Poiseuille flow.

Example 2.3.2 (Hagen-Poiseuille flow). We consider the 2-dimensional pressure driven

laminar flow between two parallel plates at rest; see Fig. 2.8. We impose the no-slip no-flow

boundary conditions on Γwall∪Γrn, the Dirichlet boundary condition on Γin, and the natural

outflow boundary condition on Γout as described in [37]:
u = 0, on Γwall ∪ Γrn,

u = uD, on Γin,

µ∇u · n− pn = 0, on Γout.

(2.14c)

The incompressible fluid flows through the fluid flow region Ωf ⊂ Ω = [xo, xf ]×[yo, yf ] in the

horizontal direction, neglecting gravitational forces, between the parallel walls at rest. This

flow is called the Hagen-Poiseuille flow and is the solution to the boundary value problem

(2.14).

We provide the well known analytical solution now. Recall the notations for velocity

u = (u, v) and some point x = (x, y) ∈ Ω. Since dp
dy = 0, the only non-zero velocity

component is u. The analytical solution to this Hagen-Poiseuille flow is

u(x, y) =
1

2µ
(y − yo)(y − yf )

dp

dx
, (2.15a)
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v(x, y) = 0, (2.15b)

p(x, y) = (x− xf )
dp

dx
, (2.15c)

with dp
dx < 0 to ensure the flow direction from left to right in this case. Note that u(x, y) is

the fully developed parabolic velocity profile in Ωn.

2.4 Notation and facts on upscaling via volume averaging

The heterogeneous nature of porous media makes it difficult to resolve the global

flow pattern using a pore scale flow model. An alternate way to obtain the experimentally

derived Darcy’s law is by using homogenization which effectively extracts the homogeneous

properties of complex medium with pore scale data.

The ideas of homogenization has long history. Many authors contributed to mathe-

matical theory of homogenization, and much work was devoted to numerical homogeniza-

tion; we provide first a few main representative references. The interest in the homog-

enization for flow in porous media arose in 1980s. Tartar [140] presented the rigorous

mathematical derivation of Darcy’s law as an asymptotic limit of Stokes equations. His

work applied to the periodic perforated domain. In [32], Durlofsky presented the numerical

homogenization method to generate the full permeability tensor KΩ of a domain Ω that

satisfies the Darcy’s law with volume averaged velocities and pressure gradients over the

entire Ω. More information on volume averaging is in [158].

The Durlofsky method was adapted to Stokes flow in [109] which we now follow and

describe the systematic volume averaging upscaling method.

Let LΩ be the characteristic length of a Darcy scale porous medium Ω. We consider

a REV of Ω and denote by D. The characteristic length L of D must satisfy L
LΩ

<< 1 to

ensure the separation of scales. We also suppose that the full geometry of D is known. To

calculate the upscaled permeability KΩ, we need the velocity and pressure data in D. The

flow and pressure profiles in D can be found numerically using the MAC method described

in Sec. 2.5.4 for the Stokes model (2.14) subject to the boundary conditions (2.14c). When

D has complex geometry, it is difficult to hard-code the boundary conditions. Alternately,

one can superimpose D in a large enough bulk fluid domain D∗ to avoid complications at

the boundaries while we allow fluids enter D naturally. For example in [109], the hourglass

example was handled in this way by embedding D = (−1, 1)2 in D∗(−10, 10) × (1, 1) to

simulate the horizontal flow. Authors in [46] showed the length of D∗ should be at least 5L
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Figure 2.9: Illustration of D superimposed in D∗ for horizontal flow.

Figure 2.10: (a) Discretization of D into 4 macrocells. (b) Subsets DL and DR of D for
horizontal flow, and (c) subsets DB and DT of D for vertical flow

with D in the middle of D∗ to avoid boundary effects; a sketch of D in D∗ for horizontal

flow is shown in Fig. 2.9.

Now we are ready to describe how to get the permeability tensor corresponding to

D. Let m ∈ N be the number of simulations of flows in D∗ and umh = (umh , v
m
h ), pmh denote

the numerical approximation of pore scale velocity and pressure values in D with zeros

assigned to umh , p
m
h in Dr and Do for impermeable obstructions. Consider the coarse-grid

discretization of D: 4 macrocells as illustrated in Fig. 2.10(a). We define 4 subsets of D as

in Fig. 2.10(b-c): DL = D11∪D21, DR = D12∪D22, DB = D21∪D22, and DT = D11∪D12.

Let xc denote the centroid of a subset Dc of D defined as

xc = 1
|Dc |

∫
Dc

x dx, c ∈ {L,R, T,B}.

Each component of averaged velocity Um
h = (Umh , V

m
h ) in D is calculated using

Umh = 1
|D |

∫
D u

m
h = φ

|Dn |
∫
Dn

umh ,

V m
h = 1

|D |
∫
D v

m
h = φ

|Dn |
∫
Dn

vmh ,

with (umh , v
m
h ) = 0 on Dr. Similarly, we calculate the average pressure Pmc,h in Dc ⊂ D for

c ∈ {L,R, T,B}:

Pmc,h =
1

|Dc |

∫
Dc

pmh =
φc

|Dc ∩Df |

∫
Dc∩Df

pmh ,
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where φc =
|Dc∩Df |
|Dc | . Using the averaged pressure Pmc,h, we approximate the pressure gradi-

ent:

(GmLR, G
m
TB) = −∇Pm ≈

(
PmL,h − PmR,h
xR − xL

,
PmB,h − PmT,h
xT − xB

)
.

These averaged values satisfy the Darcy’s law (2.11):

Um
h = −KΩ

µ
∇Pm. (2.16)

If D is isotropic, we only need one simulation data to calculate KΩ ∈ R. For the horizontal

flow we have V 1
h = 0 and G1

BT = 0, so we can solve for KΩ from

U1
h = −KΩ

µ
G1
LR.

For an anisotropic medium D ⊂ R2, we need at least 2 experiments to get the unique

KΩ = [Kxx,Kxy;Kyx,Kyy] ∈ R2×2. Each experiments satisfy (2.16) and yields to following

system: 
U1
h

V 1
h

U2
h

V 2
h

 =
1

µ


G1
LR G1

BT

G1
LR G1

BT

G2
LR G2

BT

G2
LR G2

BT




Kxx

Kxy

Kyx

Kyy

 ,

which allows us to reconstruct the full permeability tensor KΩ.

2.5 Numerical methods for flow and transport

We briefly review now the numerical methods used for flow and transport models

which we need to conduct research presented in this dissertation pore scale geometry.

We start with numerical methods for flow models: Darcy and Stokes flows. To solve

Darcy flow (2.11), we substitute 〈u〉 into the continuity equation ∇ · 〈u〉 = 0 to get the

pressure equation:

−∇ · (K∇p) = f. (2.17)

For simplicity, we use p for 〈p〉 and K for KΩ/µ. The right hand side of (2.17) contains the

gravity term. We use the cell-centered finite difference (CCFD) method [125] to solve for p.
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To solve the Stokes equations (2.14), we use the Marker-And-Cell (MAC) method

[51,102] and write a saddle point problem: A B

BT

 u

p

 = F,

where the block matrix is symmetric positive semi-definite.

Then in Sec. 2.5.5 we describe the conservative methods for the advection equation

ut + fx = 0.

We close this section by reviewing the operator splitting method for the transport

model:

ut +Au+Du+Ru = 0,

where A, D, and R refer to advection, diffusion, and reaction operators, respectively.

2.5.1 Discretization of space and time

We consider a mesh V on Ω ⊂ Rd, d ∈ {1, 2, 3}. Let M be the number of cells or

volumes Vi in V so that ∪Mi=1Vi = V .

For d = 1, consider Ω = [xo, xf ] ⊂ R. Let (xi−1/2)M+1
i=1 be an increasing sequence of

real numbers in Ω:

xo = x1/2 < x3/2 < · · · < xM−1/2 < xM+1/2 = xf

where xi±1/2 represent the cell edges of a cell Vi = (xi−1/2, xi+1/2). We also use ∂Vi to

denote the edges of a cell Vi. The mesh size is hi = xi+1/2 − xi−1/2, and the measure of Ω

is denoted by |Ω | =
∑M

i=1 hi. For simplicity, we present numerical methods on the uniform

mesh, i.e., h = hi for all i ∈ {1, 2, . . . ,M}.

If Ω = [xo, xf ] × [yo, yf ] ⊂ R2, we discretize Ω into M = Mx ×My rectangles Vi,j =

(xi−1/2, xi+1/2)× (yj−1/2, yj+1/2) for i ∈ {1, 2, . . . ,Mx} and j ∈ {1, 2, . . . ,My}. The values

on cell edges are defined at (xi±1/2, yj) and (xi, yj±1/2). A sketch of 2-dimensional staggered

grid is shown in Fig. 2.11. Similarly, we can discretize Ω ⊂ R3.

Let τ denote the time step size and n be the number of time steps, so that the time

after n iterations is t = nτ . We also use T to denote the final time after N iterations:

T = Nτ .



22

Figure 2.11: 2d staggered grid for CCFD and MAC methods.

2.5.2 Notation for numerical approximations

In this section we define the notation for 2-dimensional Cartesian grid V .

Every rectangular cell Vi,j is also denoted by Vk for k = i + (j − 1)Mx. We use

subscripts {n,w,s,e} to indicate the neighboring cells of Vk, i.e,

Vn = Vi,j+1, Vw = Vi−1,j , Vs = Vi,j−1, Ve = Vi+1,j .

The edges of a cell Vk is denoted by Ek,α = {En, Ew, Es, Ee} where subscripts {n,w, s, e}

indicate the edges above, left, below, and right.

The grid function at t = tn is denoted by Un and the discrete approximation of the

cell average of u(x, tn) over Vk is defined as

Unk =
1

|Vk |

∫
Vk

u(x, tn) dx, (2.18)

for all k ∈ {1, 2, . . . ,M}. In this dissertation, we use the constant approximation at the cell

centers; thus, we can write

Unk = u(xk, t
n).

Let ΓD and ΓN denote the Dirichlet and Neumann boundaries of Ω, respectively.

2.5.3 Cell-centered finite difference method

We consider the elliptic problem in Ω ⊂ Rd for d ∈ {1, 2, 3}

−∇ · (K∇p) = f, x ∈ Ω, (2.19a)

p = pD, x ∈ ΓD, (2.19b)

K∇p · n = pN , x ∈ ΓN , (2.19c)
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where K ∈ Rd×d is a symmetric positive definite matrix, f ∈ L2(Ω), and n is the unit

outward normal to ΓN . As mentioned earlier, we can derive (2.19a) from Darcy flow (2.11)

with K = KΩ/µ containing the physical property of Ω. For simplicity we assume K =

K(x) ∈ R and uniform grid, i.e., h = hx = hy.

Now we implement the cell-centered finite difference (CCFD) method for (2.19a) for

d = 2. Recall that Pk denotes the pressure at the cell center xk = (xi, yj). By applying the

5-point stencil, we get

−∇ · (K∇p) ≈
∑

α∈{n,w,s,e}

1

h
K|Ek,α

Pk − Pα
h

.

Here K|Ek,α at cell edges are calculated using harmonic average:

K|Eα =

(
2KkKα

Kk +Kα

)−1

. (2.20)

The Neumann boundary condition is straight forward. On ΓN , we have

K∇p · n ≈ K|ΓNpN .

On ΓD we use the one-sided derivative so that

K∇p · n ≈ 2K|ΓD
Pk − pD

h
.

If Γ = ΓN , the solution p is unique up to a constant. We can choose a solution p such that∫
Ω p dx = 0.

Example 2.5.1 (CCFD in 1d). Let d = 1, K = 1, and Ω = [a, b]. We can write the

discrete linear system for (2.19a) with Dirichlet boundary conditions, P (a, t) = Pa and

P (b, t) = Pb,∀t, in the matrix form AP = F where

A =
1

h2


2 −1

−1
. . . . . .
. . . . . . −1

−1 2

 , F =
1

h2



Pa

0
...

0

Pb


.

We can solve the linear systemAP = F directly or iteratively for P = [P1, P2, . . . , PM ]T .

According to the authors of [125], CCFD is equivalent to the Raviart-Thomas mixed

finite element method (MFEM) of the lowest order (RT0) on the rectangular grid using a
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special quadrature rule and eliminating fluxes. Using this relation, they showed the first

order convergence for pressure and velocity. In [155], the superconvergence for both pressure

and velocity were obtained for CCFD on rectangular grids. Arbogast et al. extended this

result to full tensor coefficients on triangular and logically rectangular grids [5, 6].

One of the advantages of using CCFD is that it eliminates the calculation of the fluxes

at the cell edges when we consider coupling of flow and transport models. In next section

we describe the MAC method which solves for the pressure at the cell centers and velocities

at the cell edges.

2.5.4 Marker-And-Cell (MAC) method for Stokes flow

The Marker and Cell (MAC) method is the finite difference method on a staggered

grids which was introduced as the first technique that successfully resolved the incompress-

ible fluid flow [51]. This method is also known as the most popular and simplest method

to approximate the pore scale flows such as the steady state Stokes equations and Navier-

Stokes equations [42,50]. Authors of [42,50] showed that the MAC method converges with

O(h) for both velocity in H1-norm and pressure in L2-norm on uniform rectangular grids.

Later in 2014, Li and Sun [76] proved the superconvergence for velocity on non-uniform

rectangular grids, i.e., the second order convergence for velocity in L2-norm. They also

showed that if the pressure error is O(h2), then we have the superconvergence for pressure

as well.

We recall the steady-state Stokes equations (2.14)

−µ∆u +∇p = f, x ∈ Dn, (2.21a)

∇ · u = 0, x ∈ Dn, (2.21b)

with boundary conditions (2.14c).

We assume the notations as introduced in Sec. 2.5.3. With u = [u, v]T and f =

[f1, f2]T , we can rewrite (2.21) as

−µ∆u+ px = f1, (2.22a)

−µ∆v + py = f2, (2.22b)

ux + uy = 0. (2.22c)

Here we have 3 unknowns (u, v, p), and they are defined at different locations on the stag-

gered grid. Recall the illustration of staggered grid in Fig. 2.11. As before, the pressure pk



25

is defined at the center of the cell Vk. The x-directional velocity component uk is defined

at the center of cell edges Ek,α, α ∈ {w, e} and the y-directional velocity component vk is

defined at the center of cell edges Ek,α, α ∈ {n, s}. We use the 5-point stencil for ∆u and

∆v, and the cell-centered difference for px and py. For simplicity, let h = hx = hy. Then

we can write (2.22a) at (xi+1/2, yj) as

µ
4Ui+1/2,j − Ui−1/2,j − Ui+3/2,j − Ui+1/2,j−1 − Ui+1/2,j+1

h2
+
Pi+1,j − Pi,j

h
= f1,i+1/2,j .

Similarly, we can write one for (2.22b).

In the case of the horizontal flow discussed in Ex. 2.3.2, we discretize the boundary

values as follows

U1/2,j = uD(yj), V0,j±1/2 = 0, (2.23a)

µ
UMx+3/2,j − UMx+1/2,j

x
− PMx+1,j = 0, VMx+1,j±1/2 = VMx,j±1/2. (2.23b)

Then the linear system for MAC method is
µAu BT

u

µAv BT
v

Bu Bv



U

V

P

 = F, (2.24)

where AuU,AvV,BT
u P,B

T
v P are approximations of −µ∆u,−µ∆v, px, py, respectively. Here

F contains the boundary information.

Example 2.5.2 (Illustration of MAC method). Recall Ex. 2.3.2. We apply the MAC method

on the staggered grids of 5× 5 voxels. Fig. 2.12 shows the sparsity pattern for the stiffness

matrix of (2.24). We verify the superconvergence of the MAC method by comparing the

numerical solution of this Poiseuille flow to the analytical solution (2.15) for L = 1.

We test the MAC method on the staggered grids of M ×M voxels for

M ∈ {20, 40, 80, 160, 320, 640}

and solve (2.24) for (uh, ph) directly. We obtain the superconvergence for velocity uh and

the usual first order convergence for pressure ph in L2-norm:

‖u− uh‖L2 = O(h2.2579) and ‖p− ph‖L2 = O(h0.9752).
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Figure 2.12: The sparsity pattern of MAC discretization for Ex. 2.5.2.

2.5.5 Conservative methods for scalar conservation law

Many continuum physics problems arise in science and engineering such as fluid dy-

namics, traffic flows, semiconductor device simulations, electromagnetics, and meteorology

involve the study of conservation laws. In this section we closely follow the description of

conservation laws and of numerical schemes as in [44,73].

We consider the initial value problem (IVP):

ut + f(u)x = 0, (x, t) ∈ R× R+, (2.25a)

u(x, 0) = u0(x), x ∈ R, (2.25b)

where u = u(x, t) is the conserved quantity such as mass, momentum and energy, and

f ∈ C1(R× R+) is associated flux.

We can approximate the solution u of (2.25) numerically. The conservative finite

volume method approximate the solution u by the sum of discrete solutions Uk over control

volumes Vk where Uk is the averaged quantity (2.18). We consider the integral form of (2.25)

over Vk = [xk−1/2, xk+1/2] with cell size h = xk+1/2 − xk−1/2 for one time step [tn, tn+1):

1

h

∫ xk+1/2

xk−1/2

u(x, tn+1) dx =
1

h

∫ xk+1/2

xk−1/2

u(x, tn) dx

− 1

h

[∫ tn+1

tn
f(u(xk+1/2, t)) dt−

∫ tn+1

tn
f(u(xk−1/2, t)) dt

]
. (2.26)

Using (2.25) and some approximation to the fluxes

Fnk±1/2 ≈
1

τ

∫ tn+1

tn
f(u(xk±1/2, t)) dt,

we can derive a conservative finite volume method.
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Definition 2.5.1 (Conservative finite volume method). We say a numerical method for

(2.25a) is conservative if it is written in the form

Un+1
j = Unj −

τ

h

[
Fnj+1/2 − F

n
j−1/2

]
, (2.27)

where the numerical fluxes may depends on the neighboring quantities

Fnj+1/2 = F (Unj−p, U
n
j−p+1, . . . , U

n
j+q); Fnj−1/2 = F (Unj−p−1, U

n
j−p, . . . , U

n
j+q−1).

In this dissertation, we consider the simplest case with p = 0 and q = 1:

Un+1
j = Unj −

τ

h

[
F (Unj , U

n
j+1)− F (Unj−1, U

n
j )
]
, (2.28)

where the numerical flux F (Uj , Uj+1) ≈ 1
τ

∫ tn+1

tn f(u(xj+1/2, t)) dt for all j ∈ {1, 2, . . . ,M}.

Definition 2.5.2 (consistency). The conservative method (2.27) is consistent with (2.25a)

if F is Lipschitz continuous, i.e.,

|F (v1, . . . , vr)− F (w1, . . . , wr) | ≤ Lmax{| v1 − w1 | , . . . , | vr − wr |}

where r = p+ q and L is a Lipchitz constant.

Definition 2.5.3 (CFL condition). The Courant-Friedrichs-Lewy (CFL) condition is a

necessary stability condition for any numerical method, so that the physical domain of de-

pendence of the PDE completely lie inside the numerical domain of dependence. The CFL

number or Courant number is defined as

ν =
τ

h
max

∣∣ f ′(u)
∣∣ ≤ 1.

Definition 2.5.4 (Upwind method). The upwind scheme is (2.28) with the numerical flux

F (Uj , Uj+1) =


f(Uj), (f(Uj)− f(Uj+1))/(Uj − Uj+1) ≥ 0,

f(Uj+1), (f(Uj)− f(Uj+1))/(Uj − Uj+1) < 0.

(2.29)

Remark 2.5.1. The upwind finite volume method can also be interpreted as the finite differ-

ence method with cell centered discretization. In this case, we can also prove the consistency

of this upwind finite volume method using the analogue of finite difference method.

Definition 2.5.5 (Monotone method [73](Sec. 15.7)). Consider (2.25a) with two sets of

initial data u0 and v0. Suppose that u0(x) ≤ v0(x) for all x. If the numerical solution U, V

evolved from u0 and v0, respectively, holds

Unj ≤ V n
j for all j =⇒ Un+1

j ≤ V n+1
j for all j,

then the conservative method that generate U, V is called a monotone method.
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Definition 2.5.6 (Godunov’s method). An example of monotone method is the Godunov’s

method. The numerical flux for Godunov’s method is

F (Uj , Uj+1) =


min

Uj≤U∗≤Uj+1

f(u∗), Uj ≤ Uj+1,

max
Uj≤U∗≤Uj+1

f(u∗), Uj > Uj+1.

Remark 2.5.2. If the flux f is a nondecreasing function, the Godunov flux F (Uj , Uj+1)

reduces to F (Uj , Uj+1) = f(Uj) which is the upwind method. Again, for a nonincreasing

function f , the Godunov flux F (Uj , Uj+1) = f(Uj+1) agrees with upwind method.

For d ≥ 2, we may compute Un by sweeping in each direction as explained in [74].

This may introduce an error unless ∂xf and ∂yf commute, but this error is generally smaller

than the errors from numerical methods. We refer readers to [74] for details.

2.5.6 Operator splitting method

To solve the transport model with reaction, we use the operator splitting method [75]

to handle advection term explicitly first by the conservative method, then the diffusion-

reaction terms implicitly by the cell centered finite difference method.

We consider an advection-diffusion-reaction equation

ut +∇ · (f(u; q))−∇ · (D∇u) = g (2.30)

with the given flow velocity q, diffusivity D, and source g. Here f(u; q) can be nonlinear,

i.e., f(u; q) = qmax{1, u}.

First we solve the advection step explicitly with some transport method

Un∗h − Un−1
h + τ∇h · (f(Un−1

h ; qh)) = 0,

where Un∗h denotes the intermediate solution after the advection. We can approximate the

Darcy flow qh by cell-centered finite difference (CCFD) method [157] and pore scale flows

(Stokes and heterogeneous Brinkman flows) by the Marker and Cell (MAC) method [51].

Here ∇h · (f(Un−1
h ; qh)) denotes the explicit upwind fluxes.

Then we solve the reaction and diffusion steps together,

(I + τADh )Unh = Un∗h + τgnh . (2.31)

Another possibility is to solve the reaction steps separately

Un∗∗h − Un∗h = τgn∗h ,
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followed by the diffusion step

(I + τADh )Unh = Un∗∗h ,

where ADh is the discrete counterpart of −∇ · (D∇).

The operator splitting approach is computationally efficient compare to unsplitting

approach, especially for complicated problems. This operator splitting method is first-order

accurate due to a “splitting error" of O(τ). For some special cases we may maintain order of

accuracy of method used, e.g., Lax-Wendroff method for advection step and the two-stage

Runge-Kutta method for diffusion and reaction; see for example [74](Ch. 17).

2.6 Newton’s method

In this section we describe the Semismooth Newton’s method that we use to find a

solution of the nonsmooth operator equation, e.g., the reaction-diffusion step (2.31).

We start by briefly recalling the Newton’s method for a nonlinear system with a

smooth nonlinearity. Then we provide some preliminary materials before we state the

semismooth Newton’s method. We closely follow the notation and method presented in

[61,119,149].

Newton’s method is one the of most powerful tool to solve systems of nonlinear equa-

tions [101]

Given f : Rn → Rm, find x∗ ∈ Rn such that f(x∗) = 0. (2.32)

The classical Newton’s method assumes that the function involved must be continuously

differentiable at least in the neighborhood of the solution. We can obtain the Newton’s

method for smooth systems by replacing the complicated nonlinear f by its linearization:

xk+1 := xk + sk; ∇f(xk)sk = −f(xk). (2.33)

If ∇f(xk) is Lipschitz continuous and nonsingular for each k, (2.33) is well-defined and

xk → x∗ q-quadratically [61].

Suppose now that f is only locally Lipschitz. We need to introduce the notion of

Newton’s method for semismooth systems as defined in [119, 149]. We first define the

Clark’s generalized gradient.
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Definition 2.6.1 (Clark’s generalized Jacobian). Let U be a open subset of Rn and f :

U → R be locally Lipschitz. Clark’s subdifferential of f at x ∈ U is defined as

∂f(x) := co{ lim
k→∞

f ′(xk) : xk → x, xk ∈ Df}

where Df is the set of all points where f is differentiable and f ′(xk) is the Jacobian of f at

xk. An element of ∂f(x) is called as the subgradient.

Next we define the notion of semismoothness of f .

Definition 2.6.2 (semismooth function). f is semismooth at x ∈ Rn if it is locally Lipchitz

and for all h ∈ Rn, the limit

lim
M∈∂f(x+th′)
h′→h, t→0+

Mh′

exists and is finite.

Definition 2.6.3 (α-order semismooth). f is α-order semismooth, 0 < α ≤ 1, at x ∈ Rn

if it is locally Lipchitz, directionally differentiable at x, and if

max
M∈∂f(x+h)

‖f(x+ h)− f(x)−Mh‖2 = O(‖h‖1+α
2 ) as h→ 0.

Now we are ready to describe the nonsmooth version of Newton’s method:

xk+1 := xk + sk; Mksk = f(xk), (2.34)

where Mk ∈ ∂f(xk).

Algorithm 1: Semismooth Newton method to solve f(x) = 0

1 Guess x0.

2 while f(xk) 6= 0 or stopping criteria not met do

3 Choose Mk ∈ ∂f(xk).

4 Solve Mksk = −f(xk) for sk.

5 Update xk+1 ← xk + sk.

6 Advance k by 1.

7 end

Theorem 2.6.1 (local convergence of (2.34) [119](Theorem 3.2)). Suppose that x∗ is a

solution of

f(x) = 0,
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where f is locally Lipschitz and semismooth at x∗, and all M ∈ ∂f(x∗) are nonsingular.

Then the iterative method (2.34) is well-defined and convergent to x∗ in a neighborhood of

x∗. If in addition f is α-order semismooth at x∗, the convergence of (2.34) is of order 1+α.

Theorem 2.6.2 (global convergence of (2.34) [119](Theorem 3.3)). Suppose that f is locally

Lipschitzian and semismooth on S = {x ∈ Rn : ‖x − x0‖ ≤ r}. Also suppose that any

M ∈ ∂F (x), x, y ∈ S, V is nonsingular,

‖M−1‖ ≤ β,

‖M(y − x)− f ′(x; y − x)‖ ≤ γ‖y − x‖,

‖f(y)− f(x)− f ′(x; y − x)‖ ≤ δ‖y − x‖,

where α = β(γ + δ) and β‖F (x0)‖ ≤ r(1 − α). Then the iterates (2.34) remain in S and

converge q-superlinearly to the unique solution x∗ in S. Moreover, the error estimate

‖xk − x∗‖ ≤ [α/(1− α)]‖xk − xk−1‖

holds for k ∈ N.

We provide few examples of subgradients.

Example 2.6.1 (Piecewise smooth nonlinear function). If f(x) = |x |, then the sign graph

sgn(x), defined in Sec. 2.1, is a subgradient of f , i.e., sgn(x) ∈ ∂f .

Example 2.6.2. If f(x) = max{0, x}, then the Heaviside graph H(·) defined in Sec. 2.1 is

a subgradient of f .
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3 Methane gas transport in hydrate stability zone

The following three chapters are from the work presented in [106] on the methane

hydrate formation and dissociation in hydrate stability zone. In this chapter we closely

follow the results published in [106](Sec. 3 and 5). We explain the model and provide

preliminary materials for our numerical analysis and simulation results which we discuss in

Ch. 4 and Ch. 5. We first explain the physical behavior of methane hydrate in nature in

Sec. 3.1, follow by the review of the methane gas transport model in the hydrate stability

zone which was introduced in [107, 110, 111] in Sec. 3.2. Then in Sec. 3.3, we describe the

phase equilibria graph which we will also discuss further in Ch. 5. This chapter is closed by

providing the temporal and spatial discretization and notations used for our analyses and

simulations in Sec.3.5.

Our objective is to analyze discrete models for hydrate formation and dissociation

which describes methane transport coupled to phase behavior under equilibrium and non-

equilibrium conditions. The equilibrium model is a simplified version of the comprehensive

model [80] presented earlier in [110,111]. Kinetic models from the literature [38,48,49,62,153]

are formulated for the general context of three-phase equilibria; our model resembles these

but covers both unsaturated as well as saturated conditions in liquid-hydrate conditions.

The scheme combines finite volume spatial discretization with implicit-explicit time dis-

cretization, and uses the formal mathematical framework of multivalued graphs. This

framework for the equilibrium model is equivalent to variable switching as we demonstrated

in [41]. Our analysis of the kinetic model with this framework supports the understanding

of the equilibrium as the limit of kinetic model under fast reaction rates.

To our knowledge, our analysis is the first of this kind for advective transport in

either the equilibrium or kinetic setting for hydrate models. Our analysis applies only to the

simplified model with which we simulate hydrate phase change. The analysis we present does

not directly apply to the possibly strongly coupled effects like evolving hydraulic properties

which are critical for simulation of hydrate evolution and recycling. Our results are therefore

the first step towards future work on the analysis of schemes for more comprehensive models.
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3.1 Background on methane hydrate

Methane is present in sub-ocean sediments and Arctic regions due to biogenic sources

and from upward fluxes from the deeper Earth layers [80]. It is transported by diffusion

and advective fluxes, and can be present in liquid, gas or solid phases. The partition

of methane component between phases depends on the pressure, temperature, and the

amount of methane component. With small amounts of methane and at large depths (i.e.,

large pressures), methane is dissolved in the aqueous (liquid) brine phase denoted by l.

With larger amounts of methane and at low temperatures, the solid phase made of methane

and water in fixed proportions precipitates; this solid phase denoted by h is called methane

hydrate (clathrate or methane ice). At higher temperatures, the hydrate phase is not stable

and free gas phase forms. A typical distribution of phases in sub-ocean sediments is that

the solid hydrate phase is stable and present at low temperatures; specifically, this occurs

above the so-called Bottom of Hydrate Stability Zone (BHSZ). In turn, below BHSZ, only

the gas phase is stable. Phase equilibria represent the tendency of a system to maintain low

energy, and correspond to the most stable distribution of components between phases.

The phase distributions may not always follow equilibria; this is common at short time

scales, e.g., after seismic events which alter the distribution of gases and sediments, or during

production of gas from subsurface. The time scales of hydrate formation or dissociation is

on the order of hours or days [136,168]. In production scenarios [56,77,92,93,167] this time

scale is comparable to that of the transport processes. Comprehensive subsurface trans-

port simulators including STOMP, TOUGH, PFLOTRAN, GEOS, Geo-COUS implement

the complex kinetic exchange model in the applications using depressurization or thermal

stimulation to aid methane recovery from hydrate; see e.g., the recent international code

comparison studies [160,162] led by DOE/NETL.

Some other computational models use kinetics rather than equilibria to implement

or to approximate phase behavior regardless of the time scale considered [25,122,147]. For

modeling methane in the environment at large spatial scales, e.g., methane flux response to

environmental temperature variations or abrupt geological events, some authors use kinetic

models [15,48,49,147,153].

Our work addresses equilibrium models as well as certain selected scenario of non-

equilibria. We do not account for the presence of free gas such as ex-solved gas or from

buoyant gas travelling upwards above BHSZ. The analysis of a model involving gas is the



34

subject of current work.

3.2 Notation and equilibrium model

In this section we describe a model accounting for methane transport above BHSZ

in a porous reservoir Ω ⊂ Rd, over time t, under the assumption of phase equilibria. For

phase equilibria we closely follow the comprehensive model in [80] in hydrate zone which

is simplified in [110, 111] for the purposes of efficient simulations. This reduced model is

motivated by analyzing the real reservoir data and experimental observations. We refer

readers to [41,107] for the well-posedness analysis of this reduced model.

Below we recall the equilibrium model from [107]; it is the same as that in [110, 111]

under the assumption of constant salinity. We discuss the motivation and details of kinetic

models in Ch. 5.

3.2.1 Notation and assumptions for Darcy scale methane hydrate models

We use the notation introduced in Sec. 2.1 and closely follow the notation from [107].

The different symbols for equilibrium and kinetic models with typical parameter values are

listed in Tab. 3.1.

Assumptions. We make the following assumptions in the model development.

(A1) The reservoir Ω is in the hydrate stability zone, i.e., only the liquid and hydrate phases

are stable.

(A2) Free gas is not present in Ω, i.e., there is abundant water present for hydrate formation;

see [80].

In addition, the following assumptions are made for the sake of presentation and analysis,

but are not needed for the computational model or for simulations.

(A3) Liquid and hydrate phases are incompressible.

(A4) The sediment is rigid, and the porosity φ(x, t) ≈ φ(x) is fixed.

(A5) Salinity χlS(x, t) = χswlS = const. equals seawater salinity χswlS .
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Symbol Description Value/Units

ρl Liquid density 1030 [kg/m3]

ρh Hydrate density 925 [kg/m3]

χ, χMh Mass fraction of methane in liquid and hydrate phase [kg/kg]

S Hydrate saturation [−]

R ρhχMh/ρl 0.1203 [kg/kg]

χ∗ Maximum solubility of methane, χ∗ ≈ χ∗(P, T, χswlS ) [kg/kg]

maxx χ
∗ ≈ 2.4× 10−3 [kg/kg] for UBGH2-7 in [110]

φ Porosity [−]

KΩ Permeability [m2]

µl Liquid phase viscosity 8.9× 10−4 [Pa · s]

q Darcy velocity given by (3.4b) [m/s]

dm Diffusivity [m2/s]

FM Source of methane [kg/kg]

P Pressure [MPa]

T Temperature [K]

χlS salinity 0.035 [kg/kg]

E∗ Phase equilibria which relates (χ, S)

W∗ Inverse graph of E∗

E0
∗ Physically meaningful portion of E∗

Table 3.1: Notations used in Sec. 3–5
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3.2.2 Mass conservation equations

Consider (x, t) at a point x ∈ Ω and time t > 0. We denote the mass fraction of

methane in the liquid phase by χ(x, t) and the volume fraction of hydrate by S(x, t). With

(A1) and (A2), the total mass density of methane at (x, t) is

ρlu = (1− S)ρlχ+ SρhχMh

with ρl, ρh denoting mass density of brine and of hydrate, respectively, and χMh denoting

the mass fraction of methane in the hydrate phase, which is a known fixed constant. The

mass conservation equation for methane component in porous sediment of porosity φ is thus

∂t (φρlu) +∇ · (qρlχ)−∇ · (ρldm∇χ) = FM . (3.1a)

Here dm is the diffusivity of methane gas, and q is the Darcy flux defined below. Also, FM

accounts for methane sources, e.g., biogenic production of methane by microbes, or sink

terms relevant for the production scenarios. We also rewrite

u = (1− S)χ+RS = χ+ S(R− χ), (3.1b)

with R = ρhχMh
ρl

. In practice, with the values reported in [110]; R = 0.1203 [kg/kg], we have

ρl = 1030 [kg/m3], ρh = 925 [kg/m3], while maxx χ
∗(x) ≈ 2.4× 10−3 [kg/kg] for the case of

UBGH2-7 as given in [110]. From now on we will assume

0 < χ∗ < R. (3.2)

With the single equation (3.1) involving two variables u and S or χ and S, we close the

system by either assuming equilibrium conditions binding χ and S, or setting up a non-

equilibrium model which evolves towards the equilibrium.

The model (3.1) is complemented with the mass conservation equation for water

component whose concentration is 1− χ in liquid phase and 1− χMh in the hydrate phase.

The model for water mass conservation is

∂t (φ [(1− S)ρl(1− χ) + Sρh(1− χMh)]) +∇ · (qρl(1− χ)) = 0. (3.3)

3.2.3 Pressure equation

The pressure equation follows by adding (3.1a) with (3.1b) and (3.3); with Darcy’s

law we obtain

∂t (φ [(1− S)ρl + Sρh]) +∇ · (qρl)−∇ · (ρldm∇χ) = FM , (3.4a)
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q = −KΩ

µl
(∇P − ρlG∇d), (3.4b)

with Darcy flux q, pressure P (x, t), permeability KΩ of Ω, liquid phase viscosity µl, and

depth d = d(x). Here KΩ = KΩ(x;S) depends on the presence of hydrate in the pore-space,

with empirical data, e.g., in [80]. Typically KΩ(·;S) decreases with S, and the porous

matrix is plugged up with hydrate when hydrate saturation is close to 1.

At large time scales such as in basin modeling, the pressure follows distribution close

to hydrostatic with q = 0. Otherwise, there can be gas fluxes with q 6= 0, e.g., from deep in

the Earth’s crust upwards, and we must solve (3.4) under given boundary conditions. One

practical scenario is when q is given at the bottom of the reservoir, and a fixed pressure is

known at the top, e.g., from the known height of water column. Rewriting (3.4) as

∇ · q =
FM
ρl

+∇ · (dm∇χ) + ∂t

(
φS

∆ρ

ρl

)
, for ∆ρ = ρl − ρh, (3.5)

allows to study contributions to local variations of q. We see that the magnitude of the first

and second terms on the right hand side is modest in realistic settings [110]. However, the

third term may contributes to the local increase of velocity due to the density difference ∆ρ

whenever S ↑ increases rapidly.

3.3 Phase equilibria for hydrate crystal formation

The formation of a hydrate crystal out of liquid phase usually involves the processes

of nucleation, diffusion of molecules towards the existing cages, and the adsorption of new

crystals; see e.g., molecular dynamics simulations in [136,154] at time scales of 10−6 [s]. At

the reservoir time scales of transport, the hydrate formation or dissociation is modeled by

an aggregate of the microscopic processes; one assumes either an equilibrium presented here

or a kinetic model which is discussed in Ch. 5.

At equilibrium, the hydrate forms only if the methane concentration χ in water has

reached its maximum solubility denoted by χ∗. When the hydrate crystals form, we have

that S > 0 and χ = χ∗, the saturated case. When χ < χ∗, no hydrate exists, and S = 0.

This is expressed by the constraint χ ≤ χ∗, S = 0,

χ = χ∗, S ≥ 0.
(3.6)
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Figure 3.1: Illustration of graph E∗ with data from Ulleung Basin case UBGH2-7 [110],
where χ∗(x) ≈ 0.0024e−0.012x. Left: the portion of E∗ = E∗(x) for a fixed x. Right:
multivariate view of (χ, S) ∈ E∗(x).

Next we write an explicit formula for the dependence of the total amount of methane u on

(χ, S). At a given (x, t) with χ∗(x, t) known, we have

u =

 χ, u ≤ χ∗, S = 0,

(1− S)χ∗ + SR, u ≥ χ∗, S ≥ 0.
(3.7)

Conversely, given u, the equilibrium values χ and S satisfying (3.6) are given uniquely

χ = min{χ∗, u} and S =
(u− χ∗)+

R− χ∗
. (3.8)

The relationship (3.8) can be used at any (x, t) to get the unique values χ(x, t) and

S(x, t) from u(x, t). The quantity χ∗ = χ∗(P, T, χlS) depends on the pressure P and tem-

perature T , and salinity χlS . This dependence is resolved sequentially in our computational

model: over some macro time step P, T are kept constant and χ∗ depends on x only. This

is discussed in detail later in Sec. 3.5.1. We refer readers to [110] for details in calculating

χ∗ when (P, T, χlS) change.

3.3.1 Equilibrium model with multivalued graphs

The formulas (3.6)–(3.8) are simple and explicit. For the needs of the kinetic model

to be defined in Ch. 5, we write that the variables (χ, S) “live” on the graph E∗ = E−∗ ∪E+
∗

defined as

(χ, S) ∈ E∗ = (−∞, χ∗]× {0} ∪ {χ∗} × [0,∞), (3.9)

with E−∗ = (−∞, χ∗]× {0}, E+
∗ = {χ∗} × [0,∞), as illustrated in Fig. 3.1.

The inverse graph W∗ = E−1
∗ is

W∗(S) 3 χ ≡ (S, χ) ∈W∗ = {0} × (−∞, χ∗] ∪ [0,∞)× {χ∗}.
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It is easy to see that both E∗ and W∗ are maximal monotone. We then write S ∈ E∗(χ) or

χ ∈ W∗(S). These graphs are set-valued, but in evolution models, the particular selection

out of these graphs is actually unique, as discussed in Sec. 2.2.

Remark 3.3.1. Not all the points on the graph E∗ (3.9) are physically meaningful. In

particular, any reasonable calculated values of concentrations and saturations should satisfy

χ ≥ 0 and 0 ≤ S < 1. We use E0
∗ = {(χ, S) ∈ E∗ : χ ≥ 0;S < 1} to denote the physically

meaningful portion of E∗. In addition, from (3.2) and (3.7) we see that if (χ, S) ∈ E0
∗ , then

u satisfies

0 ≤ u(χ, S) < R. (3.10)

Conversely, for any u which satisfies (3.10), we have from (3.2) that (χ, S) given by (3.8)

satisfies 0 ≤ χ ≤ χ∗ and 0 ≤ S < 1.

3.4 Summary of coupled thermo-transport model under equilibrium con-
dition

We summarize now the methane transport model in a form amenable to discretization

and analyses. First we outline how the thermodynamic conditions on (P, T ) and χ∗ are

handled.

Assume known T (x, t), or solve an appropriate energy equation (3.11a)

under some initial and boundary conditions.

Assume known P (x, t), q(x, t), or find these from (3.4) (3.11b)

under some boundary conditions.

Calculate χ∗(x, t) = χ∗(P (x, t), T (x, t), χlS(x, t)). (3.11c)

For (3.11c) we use the approach described in [110] based on estimates of χ∗ generated

by CSMGem, semi-empirical model from [146], and the parametric model from [27] using

algebraic curve fitting model for equilibrium pressure, Peq, given in [86]. In examples in this

dissertation, we assume χlS = χswlS as declared in (A5).

Next, use mass conservation (3.1) which we divide by ρl upon (A3). The equilibrium

model, with u(x, t) given by (3.7) is

∂t (φu) +∇ · (qχ)−∇ · (dm∇χ) =
FM
ρl
, x ∈ Ω, t > 0, (3.12a)
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χ(x, t) = min{χ∗(x, t), u(x, t)}, x ∈ Ω, t > 0, (3.12b)

u(x, 0) = uinit(x), x ∈ Ω, (3.12c)

Assume boundary conditions for χ(x, t), x ∈ ∂Ω, t > 0. (3.12d)

We comment now on the couplings. The equilibrium model (3.12) and non-equilibrium

model (5.29) which will be discussed in Ch. 5 are strongly coupled to the thermodynamic

conditions given in (3.11c) and to the flux q found by (3.11b). For the time scales of

interest in this context, most significant are the parametrizations of (3.12b) and (5.29b) by

the quantity χ∗ = χ∗(x, t) found in (3.11b). On the other hand, χ∗(x, t) depends primarily

on the temperature and much less on P (x, t). At the same time, the conductivities in the

energy equation are less sensitive to S than the quantities in the pressure equation; see,

e.g., data in [80].

In turn, the solution to (3.11) depends on the solution to the methane transport

(3.12) or (5.29). In particular, as (3.5) indicates, the local variations in q(x, t) are due

to ∇ · q ≈ ∂t(φ[S∆ρ
ρl

]), which require re-computing q. In addition, the permeability KΩ

in (3.11b) depends on S, and the resulting local pressure variation may affect χ∗ by the

appearance of micro-cracks; see, e.g., [24, 94].

These inter–dependencies can be resolved by iteration, time-lagging, or variable freez-

ing; we discuss these next.

3.5 Approximation schemes and resolving coupled components

The choice of time-stepping and spatial discretization depends on the objectives of

simulation and on the competing demands of modeling accuracy, and efficiency and robust-

ness of the solver. In this dissertation we are interested in modeling hydrate evolution in

natural environment. The simulation scenarios we consider may involve response to chang-

ing boundary conditions for temperature or pressure such as due to the warming sea waters

or sudden change in the sediment depth. We consider that these inputs vary in time on

the scale of years or kiloyears but not as strongly as in production scenarios on the scale

of days or hours. This assumption on the time scale motivates the choice of time stepping.

The simplest way to resolve the couplings is to consider the variables P (x) and T (x) as

time-independent over the simulation time scale, i.e., “freeze them” over [0, T ], and to solve

the equilibrium model (3.12). This strategy is adopted in many hydrate models at basin
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scale where the pressure and temperature are assumed known between any large geologic

events and where P (x), T (x) follow closely the hydraulic gradient and geothermal gradient,

respectively; see, e.g., [110,111,147]. For simulation over shorter time scales, this approach

may require recomputing P (x) and T (x) over shorter time frames whenever the external

controls change. With the equilibrium model (3.12), the system is immediately brought

to equilibrium in the first transport step. To simulate a gradual return to equilibrium, we

must use the kinetic model (5.29).

The most complex and comprehensive way to resolve the couplings is to use fully

implicit coupling for the equilibrium model [80] and for the kinetic model [48, 49]; see also

general subsurface simulators described in [160]. However, a fully implicit solution for

several independent variables including phase behavior requires delicate time-stepping with

advanced strategies to ensure global convergence and robustness of the Newton solver.

As an intermediate strategy between the most complex and most simple, the cou-

pling including the evaluation of thermodynamic conditions can be handled in a sequential

manner or by time-lagging. Our analysis applies in this setting. Here (3.11) is solved at

(almost) every time step. Once (P, T, χ∗) are known, (3.12) or (5.29) follow. This is similar

to a strategy common in reservoir simulation and compositional models called IMPES or

IMPEC in which the pressure equation and thermodynamics conditions in (3.11) and the

concentration equations (3.12) are solved at separate time schedules with large pressure

time steps ∆T , and small transport steps τ = ∆T/K. See, e.g., [90, 105, 156] where K > 1

was used. The sequential and time-lagging strategies carry some modeling error compared

to the fully implicit model; the error decreases when small time steps are used. Additional

iterations to decrease this error can be carried out over the macro time step; see recent

analysis on multi-rate schemes for coupled flow and geomechanics in [3, 49]; additionally,

stabilization terms may improve convergence in [65, 120]. If needed, we can also set K = 1

and τ = ∆T .

In our computational models we follow the time lagging strategy with macro-time

steps but without iteration. Authors of [111] used this strategy for hydrate basin modeling.

For simplicity, we assume uniform time stepping below.

3.5.1 Time-stepping with macro time steps and concentration time steps.

The concentration time step τ = T
N for (3.12) or (5.29) is chosen to satisfy some

stability constraints. The macro time step ∆T = Kτ for (3.11) is chosen to be small
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enough so that χ∗(x, t), q(x, t) respond to the model inputs for pressure and temperature.

Here K ≥ 1. Now, MK = N and T = M∆T = MKτ = Nτ .

0 = t0 < t1 < . . . < tn = nτ < . . . < tN = T = Nτ, with tn = nτ, n = 0, 1, . . . , N.

0 = T 0 < T 1 < . . . < Tm = m∆T < . . . < TM = T = M∆t, with m = 0, 1, . . . ,M.

Note that Tm = m∆T = mKτ = tmK . We outline our algorithm.

Algorithm 2: Time stepping (macro-time steps) m = 1, 2, . . . ,M

1 while t ∈ [Tm−1, Tm] do

2 Assume S|Tm−1 is known.

3 Solve (3.11) for (T, P, q, χ∗)|Tm .

4 Set the values (q, χ∗), t ∈ [Tm−1, Tm] from (q, χ∗)|Tm−1 or by interpolating

between these and (q, χ∗)|Tm−1 .

5 for n = (m− 1)K + 1 : mK do

6 Assume (q, χ∗), t ∈ [Tm−1, Tm] = [t(m−1)K , tmK ] known.

7 Solve the concentration problem (3.12) or (5.29) for (S, χ)|tn

8 end

9 With n = mK, set S|Tm = S|tn . Advance to the next macro-time step with

m := m+ 1.
10 end

We devote Ex. 5.5.2 in Sec. 5.5.1 to the study of sensitivity of simulations to ∆T .

3.5.2 Spatial discretization.

We set up hexahedral grid over Ω and use finite volume type approximations. Our

schemes are first-order in time, with explicit in time upwind treatment of advection, and

implicit treatment of phase behavior and diffusion at every time step. For simplicity we

define the schemes for 1d case with x ∈ Ω = (0, Dmax) where x = 0 is set at BHSZ pointing

upwards towards the seafloor and the upward flux q(x, t) > 0. We cover Ω with uniform size

grid cells [xj−1/2, xj+1/2], each with center at xj = (j + 1/2)h where h = xj+1/2 − xj−1/2.

The cell grid values are denoted by Vj ≈ v(xj), and V n
j ≈ v(xj , t

n). The Darcy flux q

are defined at the cell edges qnj±1/2, and the fluxes qχ are approximated as is done for the

space-dependent flux in the “color equation” [74][Chapter 9].

We skip the presentation of schemes for (3.11) which are standard; see, e.g., [80,104].

However, our treatment of phase equilibria and of kinetics requires care. In Ch. 4 we define
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numerical schemes for the concentration steps (3.12) and in Ch. 5 for (5.29). They share

the mass conservation equation discretized as follows.

We approximate Unj ≈ u(xj , t
n) andXn

j ≈ χ(xj , t
n) discretizing the mass conservation

(3.12a) and (5.29a) parts of (3.12) and (5.29) by

Φj(U
n
j − Un−1

j ) +
τ

h
(qn−1
j−1/2X

n−1
j − qn−1

j−3/2X
n−1
j−1 ) +

dmτ

h2

[
2Xn

j −Xn
j−1 −Xn

j+1

]
=
τFM (xj , t

n)

ρl
. (3.13)

We approximate the initial data

U0
j =

1

h

∫ xj+1/2

xj−1/2

uinit(x) dx.

The initial data in the approximation to (5.29) is defined analogously.

The equation (3.13) is complemented with the discrete version of (3.12b) for the

equilibrium model or with discrete version of (5.29b) for the kinetic model, and with appro-

priate statement on the boundary conditions. These are stated in Ch. 4 and 5 along with

the analysis of their stabilities.

3.5.3 Notation for stability analysis

Recall the notation defined in Sec. 2.5.1–2.5.2. For some grid function Un = (Unj )j

with Unj ≈ u(xj , t
n) for (xj , t

n) ∈ [xj−1/2, xj+1/2] × [tn, tn+1), we let U∆ represent the

collection of all (Un)n. We recall ‖Un‖1 = h
∑

j

∣∣∣Unj ∣∣∣, and the total variation TV (Un) and

total variation in time TVT (U∆):

TV (Un) =
∑
j∈Z

∣∣Unj − Unj−1

∣∣ ,
TVT (U∆) =

T/τ∑
n=0

[
τTV (Un) + ‖Un − Un−1‖1

]
.

For the kinetic problem which will be discussed in Ch. 5, we work with

‖(Xn,Ψn)‖∆,1 = ‖Xn‖1 + ‖Ψn‖1,

and TV (Xn,Ψn) and TVT (X∆,Ψ∆) extended similarly to product space.
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4 Algorithm, analysis, and simulation for methane hydrate model
under equilibrium closure

In this chapter we analyze the first-order upwind discretization for (3.12) and present

the Darcy scale simulations in homogeneous and heterogeneous subsea sediments. This

chapter corresponds to the materials presented in [106](Sec. 6 and 8.1).

The outline of this chapter is as follows. We first state the assumptions for analysis

in Sec. 4.1 and describe our numerical scheme in Sec. 4.2. The literature on the rate of

convergence of numerical schemes including the Upwind method and Godunov’s method is

discussed in Sec. 2.28 for a scalar conservation law

∂tu+ ∂xf = 0 (4.1)

is explained in Sec. 4.3. We provide the first rigorous stability proof of the first-order

upwind scheme for the methane gas transport model (4.1) with f = f(x, t;u) in Sec. 4.4. In

Sec. 4.5 we present simulation results in homogeneous and heterogeneous subsea sediments

and verify the well-known rate of convergence O(
√
h). We also include a simulation result

that demonstrate the undercooling effect caused by diffusion in Remark 4.5.1.

Our study of TVT (U∆) for (3.12) helps us to predict the variability and the challenges

to the numerical solution depending on the data. We show that TVT (U∆) increases in time

depending on the variability and smoothness of data χ∗(x, t) and q(x, t). Stability along

with consistency of the discrete schemes leads to the convergence of numerical schemes. Our

analysis is also useful to understand the sensitivity of the model (3.12) on its data.

4.1 Assumptions for analysis

We analyze only the scheme (3.13) for transport model complemented by an equilib-

rium or kinetic closure to be stated, under assumptions (A1-A5) from Sec. 3.2. We assume

that the data χ∗(x, t) and q(x, t) found by (3.11) are known over each macro-time step

[Tm−1, Tm] and varies in some predictable fashion. As usual, to study the accumulation

of the discretization error in time, we set FM = 0. We also set dm = 0 to focus on the

advection dominated case. We consider the transport problem on x ∈ R (that is, j ∈ Z)

rather than x ∈ Ω, which avoids dealing with a mixture of boundary and initial conditions

in the analysis. For this we assume that initial data and the solution to the transport prob-
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lem have compact support in some ΩS ⊂ R with measure |ΩS | = ωS , hence this reduces

summing over j ∈ Z to j ∈ Z0. Clearly, realistic simulations consider a bounded domain

and boundary conditions.

Finally, we assume the sediment is homogeneous with φ(x) = φ0 = const., and we

drop φ0 while keeping the notation unchanged, but the analysis could be amended easily as

long as φ(x) is smooth and bounded away from 0. In particular, in (3.12) we could change

variables and set u = u(x, t)φ(x) with χ(x, t) = min{χ∗(x, t), u(x,t)
φ(x) }.

4.2 First-order upwind scheme for equilibrium model

The scheme we consider is the first-order upwind and explicit in time. We now restate

(3.13) under the assumptions from Sec. 4.1 amended by the discrete version of (3.12b):

1

τ
(Unj − Un−1

j ) +
τ

h
(qn−1
j−1/2X

n−1
j − qn−1

j−3/2X
n−1
j−1 ) = 0, j ∈ Z0, n = 1, 2, . . . , N, (4.2a)

Xn
j = min{χ∗(xj , tn), Unj }, j ∈ Z0, n = 1, 2, . . . , N. (4.2b)

We analyze this scheme recognizing its familiar upwind character

Unj = Un−1
j − τ

h

[
Fn−1
j − Fn−1

j−1

]
(4.3a)

with

Fn−1
j = qn−1

j−1/2X
n−1
j = f(xj , t

n−1;Un−1
j ), (4.3b)

for a conservation law with the flux function f(x, t;u) which we set from (3.1) under the

assumptions from Sec. 4.1

∂tu+ ∂xf = 0; for x ∈ R, t ∈ [0, T ), (4.4a)

f(x, t;u) = q(x, t)χ(x, t) = q(x, t) min{χ∗(x, t), u(x, t)}, (4.4b)

u(x, 0) = uinit(x). (4.4c)

The function f is illustrated in Fig. 4.1 for a typical homogeneous unconsolidated sand

reservoir with data from Ulleung Basin [110], with x pointing upwards and q(x, t) ≈ const >

0.

4.3 Literature notes on the rate of convergence

For a scalar conservation law (4.1), when f = f(u), proving TVT (U∆) is bounded is

usually the first step in analysis of convergence [73, 74]. In particular, it is well known [73]
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Figure 4.1: Illustration of χ∗(x), and of the flux function f(x;u) with data from Ulleung
Basin case UBGH2-7 [110]. Left: typical χ∗(x) in homogeneous sediment, with values
χ∗(x) highlighted at x = 20, and x = 40. Right: the flux function f(x;u) for x = 20, and
x = 40. Note that the flux function f(x, t;u) is piecewise linear in u and features a corner
at u = χ∗(x∗).

that under the Courant–Friedrichs–Lewy (CFL) condition, the first-order upwind scheme

(4.3) is stable and converges at the rate of O(
√
h) in L1 [18, 68, 69, 83, 128, 138], and the

solutions obey a maximum principle. The proof in [128] states, in fact, that O(
√
h) is

the best convergence rate for a first-order monotone scheme when there is a shock in the

solution.

However, when f = f(x;u), the solutions to (4.1) may not, in general, obey the

maximum principle. This can be explained quickly. Writing

ut + f(x;u)x = 0

in quasilinear form

ut + fu(x;u)ux = −fx(x, u),

we see that the solutions along the characteristics travelling with velocity fu may grow

or decay due to the source term −fx. If fx < 0 with | fx | ≤ Lf , the solution may grow

pointwise as O(Lf t), and its total variation of the solution need not be bounded either.

The analysis of schemes for the case f = f(x;u) depends on the properties of f . For

the linear case f ∝ q(x)u with smooth q(·), the narrative in [74][Chapter 9] shows that the

upwind scheme similar to (4.3) uses the correct solution of the Riemann problem in the

Godunov scheme. For Lax-Friedrichs scheme, the analysis in [59,60] shows the convergence

rate to be O(h) in LPloc as long as f is smooth in u. Moreover, if f is separable, i.e.

f(x, u) = a(x)b(u) for some a(·) and b(·), and f is smooth in u, the first-order Godunov

with Engquist-Osher fluxes give convergence rate of O(h) in L1 [148].
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The problem we consider in (4.4) is the closest to that analyzed in [82]. The analysis

in [82] rewrites (4.1) as a resonant 2× 2 system of conservation laws ∂tu+ ∂xf(a;u) = 0,

∂ta = 0.

When a, a′ and the initial data are of bounded variation, then TV (Un) for Un found with

Godunov scheme grows linearly with respect to time, with the rate depending on TV (a′)

[82][Eqn (75)]. Translating our problem (4.4) to this framework, we have f(a;u) which is,

at best, piecewise smooth, in homogeneous sediments.

Our interest is in the idealized methane transport model at equilibrium (4.4) which

features piecewise smooth f(x, t;u) given by (4.4b); this flux function f is neither separable

nor smooth in u. We formulate, therefore, our own auxiliary stability result for (4.3) similar

to those known, e.g., from [74]. Surprisingly, we did not find it stated in literature, thus we

provide detailed proof which also only applies to smooth f(x, t;u). We prove that TV (Un)

can grow mildly in time; we also consider bounds for TVT (U∆) which are not discussed

in [82].

4.4 Stability analysis for equilibrium model

Proposition 4.4.1. Consider (4.4) and suppose that f ∈ C2
b (Ω × R+ × R) and is nonde-

creasing in u. Let the time step size τ be small enough so that

max
(x,t,u)

∣∣∣ τ
h
fu(x, t;u)

∣∣∣ ≤ 1. (4.5)

Let also some initial data U0 be given, with bounded variation, U∆ be the solution to (4.3)

with compact support of measure bounded by ωS, and

L1 = max
(x,t,u)

{| fxu(x, t;u) | , | fxx(x, t;u) |}, and (4.6a)

L2 = max
(x,t,u)

{| fu(x, t;u) | , | fx(x, t;u) |}. (4.6b)

Then for all n > 0, we have

TV (Un) ≤ C1(T ) = TV (U0)eTL1 + 2ωS(eTL1 − 1), (4.7a)

‖Un+1 − Un‖1 ≤ τC2(T ) with C2(T ) = L2(C1(T ) + ωS), (4.7b)

TVT (U∆) ≤ C3(T ) = T (C1(T ) + C2(T )). (4.7c)
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To apply Proposition 4.4.1 to (4.2), we consider f(x, t;u) defined in (4.4b) depending

on the physical data q, χ∗. We see that f is continuous nondecreasing and piecewise linear

in u and differentiable except where u(x, t) = χ∗(x, t). Since f is at best piecewise smooth

in u, Proposition 4.4.1 applies only to some regularization of (4.4) ∂tu
ε + ∂xf

ε(x, t;uε) = 0,

uε(x, 0) = uinit(x),
(4.8)

in which f is approximated with some C2 smooth, positive nondecreasing function f ε. Since

we can make f ε ≈ f arbitrarily close, we trust that (4.8) closely resembles (4.4); we illustrate

this regularization in Ex. 4.5.2 in Sec. 4.5.

Next question is whether the assumptions on f ε itself are reasonable for a real hydrate

reservoir simulation. First, the problem (4.4) is only a simplification of the strongly coupled

dynamical problem (3.11)–(3.12), and our stability analysis does not explain or refer to

the strength of the couplings. Instead, we make a-priori assumptions on the data which

allow to conclude stability and predict the variability of solutions. In particular, we predict

variability of u quantified by TVT (U∆) depending on the constants L1, L2 given in (4.6);

these are small only when q, qx, the lithology and χ∗ vary smoothly. We discuss these in

detail below.

4.4.1 Assumptions required for the stability of (4.2) in a hydrate reservoir

From the form of (4.4) and properties of f , we expect its solution u(x, t) to feature

a family of right and left states travelling at different speeds due to the “corner” of f at

u = χ∗. In particular, the speed of the state for any u > χ∗ is zero; this leads to S > 0, i.e.,

the growth of immobile amount of methane trapped as solid hydrate with the appearance

of sharp bands of hydrate. We rewrite (4.8) in the quasi-linear form

uεt + f εu(x, t;uε)uεx = −f εx(x, t;uε), (4.9)

which illustrates that the solution u ≈ uε and the corresponding S ≈ Sε grow along its

characteristics with a rate bounded by the source −f εx. To quantify, we define

Lq = max
(x,t)
| q(x, t) | , (4.10a)

Lqx = max
(x,t)
| qx(x, t) | , (4.10b)

Lχ∗ = max
(x,t)
|χ∗x(x, t) | , (4.10c)

L3 = max
(x,t)
|χ∗t (x, t) | . (4.10d)
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Remark 4.4.1. Assume that χ∗ and q vary mildly so that L1, L2, Lχ∗ are finite and that

τ

h
Lq ≤ 1, (4.11)

so that (4.5) holds. Then the scheme (4.2) for the equilibrium model is weakly stable.

We comment now on the constants L1, L2, Lχ∗ in realistic reservoirs. Assume first

the quasi-static case in a homogeneous reservoir with P (x) and T (x) fixed in time t, and

with 0 < q = Lq. In this case, ‖fx‖∞ = LqLχ∗ . Consider for example χ∗(x) = a exp(−bx)

from [110] given with some a > 0 and small b > 0. Now Lχ∗ = ab, fx < 0, ‖fx‖∞ = Lqab

and L1 = ‖fxx‖∞ = Lqab
2 is small. In turn, we can check that L2 = Lq max(1, ab). These

stability constants correlate well with the predictions of hydrate band growth in nature

which are large when q is large.

Consider next heterogeneous reservoirs. Here the maximum solubility χ∗(x) depends

on the type of sediment, e.g., in grain size [24]. Consequently, close to some interfaces

between different sediment layers, hydrate can accumulate much faster than elsewhere [24,

121, 151]. The locally high hydrate accumulation can be predicted from (4.9), since at a

discontinuity of χ∗, its weak derivative ∂xχ∗ is a Dirac term which may cause a dramatic

local increase of Unj and of the saturation Snj . We illustrate this later in Ex. 4.5.3 in Sec. 4.5.

Finally, we consider the time dependent case closest to the strongly coupled hydrate

systems when q = q(x, t) and χ∗ = χ∗(x, t) and when T = T (x, t) and P = P (x, t). Now

the magnitude of fx comes from both qxχ
∗ and qχ∗x which may have opposite signs and

disparate magnitudes depending, e.g., on the solutions of (3.5). It is hard to predict these

a-priori, and we can only make assumptions that the constants in Remark 4.4.1 are bounded.

Simulation with χ∗ = χ∗(x, t) which varies in time is considered in Ex. 5.5.2 in Sec. 5.5.

4.4.2 Proof of Proposition 4.4.1 on the stability of upwind scheme (4.3)
for ut + f(x, t;u)x = 0 when f is smooth

We adapt the proof in [74][Chapter 12] to the case when f = f(x, t;u); we require

the boundedness of fxx and fxu uniformly in time. The proof is broken to thee parts. First

we bound the difference
∣∣∣∆Unj ∣∣∣ between two adjacent values depending on

∣∣∣∆Un−1
j

∣∣∣ and∣∣∣∆Un−1
j−1

∣∣∣. From this we conclude about TV (Un). Last we address TVT (U∆).

Local bounds on
∣∣∣∆Unj ∣∣∣. We first subtract (4.3) at j − 1 from that at j to get

∆Unj = ∆Un−1
j − τ

h

[
Fn−1
j − Fn−1

j−1︸ ︷︷ ︸
(a)

]
+
τ

h

[
Fn−1
j−1 − F

n−1
j−2︸ ︷︷ ︸

(b)

]
,
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where ∆Un∗j denotes Un∗j −U
n∗−1
j for n∗ = n and n− 1. Since f is smooth, we can rewrite

(a) = f(xj , t
n−1;Un−1

j )− f(xj , t
n−1;Un−1

j−1 ) + f(xj , t
n−1;Un−1

j−1 )− f(xj−1, t
n−1;Un−1

j−1 )

= fu(xj , t
n−1; Ũn−1

j )∆Un−1
j + fx(x̃j , t

n−1;Un−1
j−1 )h,

where Ũn−1
j ∈ (Un−1

j−1 , U
n−1
j ) and x̃j ∈ (xj−1, xj), and similarly

(b) = fu(xj−1, t
n−1; Ũn−1

j−1 )∆Un−1
j−1 + fx(x̃j−1, t

n−1;Un−1
j−2 )h

where Ũn−1
j−1 ∈ (Un−1

j−2 , U
n−1
j−1 ) and x̃j−1 ∈ (xj−2, xj−1). After the substitution, we get

∆Unj =
(

1− τ

h
fu(xj , t

n−1; Ũn−1
j )

)
∆Un−1

j +
τ

h
fu(xj−1, t

n−1; Ũn−1
j−1 )∆Un−1

j−1

− τ
[
fx(x̃j , t

n−1;Un−1
j−1 )− fx(x̃j−1, t

n−1;Un−1
j−2 )︸ ︷︷ ︸

(c)

]
.

Applying mean value theorem to fx terms, we rewrite (c) as

(c) = fx(x̃j , t
n−1;Un−1

j−1 )− fx(x̃j , t
n−1;Un−1

j−2 ) + fx(x̃j , t
n−1;Un−1

j−2 )− fx(x̃j−1, t
n−1;Un−1

J−2 ),

= fxu(x̃j , t
n−1;U

n−1
j−1 )∆Un−1

j−1 + fxx(xj , t
n−1;Un−1

j−2 )(x̃j − x̃j−1),

where Un−1
j−1 ∈ (Un−1

j−2 , U
n−1
j−1 ) and xj ∈ (x̃j−1, x̃j) ⊆ (xj−2, xj). Next we substitute (c) to get

∆Unj =
(

1− τ

h
fu(xj , t

n−1; Ũn−1
j )

)
∆Un−1

j +
τ

h
fu(xj−1, t

n−1; Ũn−1
j−1 )∆Un−1

j−1

− τ
[
fxu(x̃j , t

n−1;U
n−1
j−1 )∆Un−1

j−1 + fxx(xj , t
n−1;Un−1

j−2 )(x̃j − x̃j−1)
]
.

Then we take the absolute value of both sides and apply the triangle inequality. Since the

CFL condition (4.5) holds, we get

∣∣∆Unj ∣∣ ≤ (1− τ

h
fu(xj , t

n−1; Ũn−1
j )

) ∣∣∣∆Un−1
j

∣∣∣+
τ

h
fu(xj−1, t

n−1; Ũn−1
j−1 )

∣∣∣∆Un−1
j−1

∣∣∣
+ τ

∣∣∣ fxu(x̃j , t
n−1;U

n−1
j−1 )∆Un−1

j−1

∣∣∣+ 2τh
∣∣∣ fxx(xj , t

n−1;Un−1
j−2 )

∣∣∣
Estimates on TV (Un). Now we take the sum over j ∈ Z, keeping in mind the compact

support of U∆, which reduces any sums over Z to those over some finite set Z0. We obtain

TV (Un) ≤ TV (Un−1)−τ
h

∑
j∈Z0

fu(xj , t
n−1; Ũn−1

j )
∣∣∣∆Un−1

j−1

∣∣∣+τ

h

∑
j∈Z0

fu(xj−1, t
n−1; Ũn−1

j−1 )
∣∣∣∆Un−1

j−1

∣∣∣
+ τ

∑
j∈Z0

∣∣∣ fxu(x̃j , t
n−1;U

n−1
j−1 )∆Un−1

j−1

∣∣∣+ 2τ
∑
j∈Z0

∣∣∣ fxx(xj , t
n−1;Un−1

j−2 )
∣∣∣h. (4.12)
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Re-indexing the third term on the right-hand-side of (4.12), the second and the third terms

cancel each other. Using the definition of L1, we have

TV (Un) ≤ TV (Un−1) + τL1

∑
j∈Z0

∣∣∣∆Un−1
j−1

∣∣∣+ 2τL1

∑
j∈Z0

h.

Since | supp(f) | ≤ ωS , we have
∑

j∈Z0 h ≤ ωS . By re-indexing the second term, we get the

following:

TV (Un) ≤ TV (Un−1)(1 + τL1) + 2τL1ωS .

We repeat this inequality recursively to obtain

TV (Un) ≤ TV (U0)(1 + τL1)n + 2τL1ωS

n−1∑
k=0

(1 + τL1)k.

From Bernoulli inequality, 1 + τL1 ≤ eτL1 , we get (1 + τL1)n ≤ enτL1 ≤ eTL1 and we sum

up the finite series to see that (4.7a) holds with

C1(T ) = TV (U0)eTL1 + 2ωS(eTL1 − 1).

Variation in time. We rewrite (4.3) as

Unj − Un−1
j = −τ

h

[
fu(xj , t

n−1; Ũn−1
j )∆Un−1

j + fx(x̃j , t
n−1;Un−1

j−1 )h
]
,

where Ũn−1
j ∈ (Un−1

j−1 , U
n−1
j ) and x̃j ∈ (xj−1, xj). Take the absolute values of both sides

and apply the triangle inequality to get∣∣∣Unj − Un−1
j

∣∣∣ ≤ τ

h
L2

(∣∣∣∆Un−1
j

∣∣∣+ h
)
.

Next, we multiply both sides by h and sum over j ∈ Z0 to get

‖Un − Un−1‖1 ≤ τL2

[
TV (Un−1) + ωS

]
.

Since TV (Un) ≤ C1(T ) from (4.7a), now (4.7b) holds with

C2(T ) = L2(C1(T ) + ωS).

Finally, to get (4.7c), we combine (4.7a) and (4.7b), and obtain

TVT (U∆) ≤ C3(T ) =

T/τ∑
n=0

τ(C1(T ) + C2(T )) = T (C1(T ) + C2(T )).

This stability proof and the discussion in Sec. 4.4.1 complete our analysis of the

equilibrium case. Based on Proposition 4.4.1, we expect the rate of convergence O(
√
h) for

the solutions to (4.2); this is confirmed by numerical experiments in Sec. 4.5.
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4.5 Numerical results and convergence

In this section we provide examples for equilibrium model. Our goal is to confirm the

theory and in particular demonstrate convergence of the schemes for reasonably realistic

cases as well as to demonstrate the practical limitations. We set the CFL number

ν = Lq
τ

h
< 1,

and consider only 1d simulations.

For the equilibrium model we compare the numerical solution obtained by our scheme

(4.2) with an analytical solution, and we study effects of regularization; we also confirm the

rate of convergence of O(
√
h).

Example 4.5.1 (Model case for equilibrium model with analytical solution). Let Ω =

(−1, 3), R = 2, χL = 1, q = 1, and the initial condition uinit(x) = χLH(x+ 1)H(−x) for

(4.4) features a “box”-like profile. We consider χ∗(x) = e−0.5x independent of time. For

additional interest, we also consider χ∗(x) = 1− 0.26x.

The analytical solution to (4.4) with uinit(x) = χLH(−x) can be found in [107]. We

modify it for the present case of “box” shaped uinit(x), so we get

χ(x, t) = min

(
1,
χ∗(x)

χL

)
uinit(x− qt),

S(x, t) = −
max(0, t− x

q )qχ∗x(x)1G0(t)(x)

R− χ∗(x)
,

u(x, t) = χ(x, t) + (R− χ∗(x))S(x, t),

where G0(t) = {x : xL < x ≤ qt} with xL satisfying χ∗(xL) = χL, the position where first

hydrate formation is observed.

We apply scheme (4.2) to obtain (U∆, X∆, S∆) at T = 1 with M = 100 and ν = 0.9.

Illustrations are provided in Fig. 4.2. We see that (U∆, X∆, S∆) are close to the analytical

solution (u, χ, S). As U∆ propagates to the right, X∆ satisfies the constraint Xn
j ≤ χ∗(xj),

and the undissolved methane produces Snj > 0, i.e., we see the “blow-up" behavior of U∆

with Snj as expected.

Comparing the two cases of χ∗(x) = 1 − 0.26x and χ∗(x) = e−0.5x, we see that

the magnitude of χ∗x is more pronounced for the latter case. In U∆ and S∆ we see small

rarefactions at the back of the traveling wave, typical for an increasing concave flux function

such as f given by (4.4b).
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Figure 4.2: Comparison of the numerical solution (U∆, X∆, S∆) with the analytical solution
(u, χ, S) at T = 1 with M = 100 and ν = 0.9 for Ex. 4.5.1. Top: case with for χ∗(x) =
1− 0.26x. Bottom: case with χ∗(x) = e−0.5x.

In our next example we evaluate effects of regularization in order to understand the

closeness of u and uε, the solutions to (4.4) and (4.8), respectively. With f ε chosen to be

really close to f , we can make the difference between U∆ and the solution to the regularized

model U ε,∆ arbitrarily small. For comparison we use the case with the analytical solution

from [107], which we adapt to the use of realistic data from Ulleung Basin.

Example 4.5.2 (Convergence rate and regularization; homogeneous domain, basin time

scale). We consider (4.4) with uinit(x) = χLH(−x) on Ω = (0, Dmax) where Dmax and

χ∗ are computed using the reference data measured from the Ulleung basin site UBGH2-7

of [110] with constant salinity of χswlS = 3.5%. Let q = 5× 10−3 [m/y], χL = 2× 10−3, and

R = 0.1203. We examine the result at T = 10 [ky].

The flux function f(x;u) given by (4.4b) has a corner at u = χ∗(x) at every x. We

regularize with f ε which replaces f on (x, u) ∈ Ω × [χ∗(x) − ε, χ∗(x) + ε] by a smooth

polynomial. Here ε is a regularization parameter; we choose ε = αh with α = 10−4. See the

illustration of f and f ε in Fig. 4.3. In Fig. 4.4 we illustrate the analytical solution as well

as the numerical solution U ε,∆ to the regularized problem at t = 10 kyrs with M = 100 and

ν = 0.9. We do not show U∆ separately because it is virtually indistinguishable from U ε,∆.
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Figure 4.3: Illustration of flux f and its regularization f ε at some fixed x ∈ Ω.

Figure 4.4: Numerical solution (U ε,∆, Xε,∆, Sε,∆) of Ex. 4.5.2 at t = 10 [ky] with M = 100
compared with the analytical solution (u, χ, Sh).



55

We first examine the qualitative behavior. As predicted by the analytical solution, we

observe the rapid growth of total methane content U ε,∆ and the hydrate accumulation Sε,∆

because R < 1 while Sε,∆ is inversely related to R. At t = 10 [ky], the hydrate saturation

reaches about 10%.

Next we compare U∆ and U ε,∆. With ε = O(h), their difference is small. In particular,

when M = 100, we have

‖U∆ − U ε,∆‖1 = 3.52× 10−4,

‖X∆ −Xε,∆‖1 = 1.32× 10−4,

‖S∆ − Sε,∆‖1 = 2.20× 10−3.

When we increase M by a factor of 10, M → 1000, errors decrease by a factor of 10−2:

‖U∆ − U ε,∆‖1 = 9.41× 10−6,

‖X∆ −Xε,∆‖1 = 2.99× 10−6,

‖S∆ − Sε,∆‖1 = 5.46× 10−5.

We also check the rate of convergence using a fine grid solution with 100 ≤ M ≤ 6400,

plotted in Fig. 4.5.

‖u− U∆‖1 = O(h0.52),

‖χ−X∆‖1 = O(h0.5),

‖S − S∆‖1 = O(h0.55).

The order is similar for the solutions to the regularized model, with the error slightly bigger

due to the modeling error. We have

‖u− U ε,∆‖1 = O(h0.51),

‖χ−Xε,∆‖1 = O(h0.50),

‖S − Sε,∆‖1 = O(h0.51).

Our next example challenges the theory since it is set for heterogeneous sediment.

This example is inspired by [24]; see our 2d simulation in [103] which accounts also for the

flow and fracturing.
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Figure 4.5: Left: L1-error between the numerical solution (U ε,∆, Xε,∆, Sε,∆) and the analyt-
ical solution (u, χ, S) at T = 10 [ky]; from Ex. 4.5.2. Right: Convergence of the numerical
solution (U∆, X∆, S∆) to the analytical solution (u, χ, S) at T = 10 [ky].

Example 4.5.3 (Model problem in heterogeneous domain motivated by [24]). Consider

advection of methane gas through 3 layers of sediments. Let Ω = ∪3
i=1Ωi where i indicates

each layer, each with different methane solubility curves:

χ∗1(x) = −0.3x+ 1,

χ∗2(x) = e−0.2(x−1) − 0.2,

χ∗3(x) = −0.1x+ 0.75

shown in Fig. 4.6. We use R = 2, q = 1, dm = 0 and uinit(x) = 0.8H(−x).

The domain and the solutions are illustrated in Fig. 4.6 where the shaded blocks

correspond to different layers. We focus on the behavior near the interfaces at x = 1 and

x = 2. As the front of methane enters Layer 2 at x = 1, we expect to see methane hydrate

dissociation since χ∗(1+) > χ∗(1−) allows more methane gas to dissolve in the water. In

contrast, at x = 2, there is a reduction in maximum solubility; χ∗(2+) < χ∗(2−): this cause

a sudden formation of hydrate at the interface as in [24,121,151]. The simulation captures

the hydrate dissociation at x = 1 and the formation at x = 2. The sharp spike at x = 2

makes sense since the weak derivative ∂xf(x, u) at the discontinuity at x = 2 is a Dirac

source δ(x− 2).

In reality, the methane gas transport is diffusion dominated. Now we consider the

case with dm > 0.

Example 4.5.4 (Methane transport by advection and diffusion in homogeneous domain,

UBGH2-7 in [110]). We consider methane gas transport by advection and diffusion through
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Figure 4.6: Transport in heterogeneous domain from Ex. 4.5.3 at T = 2.4. Top: layers of
heterogeneous sediment with different maximum solubility curves χ∗ at x = 1 and x = 2.
Bottom: numerical solution. Of interest is behavior at the interfaces caused by the jumps
of χ∗(x).
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Ω = (0, 124) [m] which we reference the UBGH2-7 site [110]. As in previous examples,

this region Ω is free of methane initially. The only source of methane is the upward flux

from the center of Earth. In this example we use the realistic values: q = 1 [mm/y], dm =

3 × 10−2 [m2/y], and uinit(x) = 2 × 10−3H(−x). To adapt the behavior of methane gas

at the exit of Ω that they tend to fade away rapidly, we impose the homogeneous Dirichlet

boundary condition at the outlet.

When we solve the advection-diffusion model (3.12) with nonzero q and dm, we can

use the operator splitting described in Sec. 2.5.6. The advection step is treated by the

upwind scheme (4.3). After the advection step with Un∗h , we take the diffusion step. In this

case we need extra care since the diffusion term ∇· (dm∇χ) depends on χ instead of u. The

numerical scheme for the diffusion step is Unh − Un∗h + τAdmh Xn
h = 0,

Xn
h −min(χ∗h, U

n
h ) = 0,

where Admh Xn
h ≈ ∇ · (dm∇χ). We can solve this nonlinear system by using the Semismooth

Newton method described in Sec. 2.6. Fig. 4.7 shows the evolution of methane gas transport

by advection and diffusion. We see that methane gas travelled with dm > 0 and well

distributed before we see first hydrate formation. The spikes in uh and Sh are not as sharp

as in previous examples due to diffusion.

Remark 4.5.1. On the heterogeneous domain, we observed anomalies in uh and Sh near

the interface between two different regions where χ∗ is not differentiable. See Fig. 4.8 for

the reproduction of those anomalies. This behavior of hydrate spike has not been observed

in Ex. 4.5.3, so they are due to diffusion. According to [121,151], those anomalies (hydrate

spikes) near the interfaces are expected and understood as a consequence of undercooling,

i.e., the depression of hydrate melting point.

4.6 Summary

In this chapter we considered equilibrium phase behavior for hydrate in two-phase

conditions typical in sediments above the BHSZ. Our objective was to rigorously study the

stability of numerical method for transport. We provided justification why the commonly

used numerical scheme is stable and robust, and showed convergence with rate O(
√
h)

consistent with that for monotone scheme and scalar conservation law in the presence of
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Figure 4.7: Evolution of methane gas transport by advection and diffusion for Ex. 4.5.4.
(Top) t = 40 [kyr] and (bottom) t = 80 [kyr].

Figure 4.8: Reproduction of anomalies in uh and Sh on heterogeneous domain Ω = [0, 3]
with χ∗(x) = e−0.5xI[0,2)(x) + I(2,3](x).
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discontinuities. We also explained the presence of “spikes" of hydrate saturation similar

to those observed in nature. The rigorous numerical analysis results we demonstrate for

hydrate model is new. Our current work is to extend the analysis for three-phase conditions.
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5 Modeling, analysis, and simulation for methane hydrate model under
non-equilibrium conditions

In this chapter we discuss the kinetic model for hydrate formation and dissociation

presented in [106](Sec. 4, 7, 8.2, 8.3, 10). Below we discuss kinetic models for hydrate

starting with literature review in Sec. 5.1. In Sec. 5.2 we introduce and analyze three

different versions of homogeneous “batch reactor" models, which explain our choice for

coupling with the methane transport model summarized in Sec. 5.3. Then we present our

stability result for kinetic model and show the weak stability in time in Sec. 5.4 followed by

numerical examples in Sec. 5.5 and the conclusion in Sec. 5.6.

Overview. Kinetic models are common in geochemistry and chemical engineering [72,

172] and describe the evolution of a system towards thermodynamic equilibrium from some

initial conditions out of equilibrium, e.g., in the processes of adsorption, phase transitions,

and crystal precipitation and dissolution.

A general kinetic model must predict the evolution of all relevant variables towards

an equilibrium from some out-of equilibrium state. For hydrate evolution, a kinetic model

is complemented by other equations which describe the evolution of all of (T, P, χ, S) to-

wards some equilibrium (T∞, P∞, χ∞, S∞) starting from some initial (T 0, P 0, χ0, S0). The

kinetics is coupled to the transport and constitutive equations, and would account for the

presence of gas phase and capillary effects.

In the framework of our reduced model for liquid-hydrate zone discussed in Ch. 3–

4, we assume (P, T ) are fixed over some time interval (told, tnew) with tnew = told + ∆t.

In equilibrium the variables (χ(x, t), S(x, t)) ∈ E∗(x) at every t. If the (P, T ) conditions

change at tnew, and a new χ∗new = χ∗(x, tnew) is given, the variables (χ, S) are out of the

equilibrium with respect to the new graph Enew∗ . If ∆t is really large, we can assume they

immediately adjust to the new equilibrium. Otherwise, we need a kinetic model to describe

the evolution of (χ, S) towards Enew∗ .
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5.1 Kinetic models of hydrate formation: literature background

Following [16, 38, 48, 49, 62, 169], the kinetics of gas-liquid-hydrate phase system in-

volves an exchange term Q proportional to the driving force in the three phase conditions,

d

dt
S = Q = k(fg − feq), (5.1)

where k > 0 is the hydrate formation or the dissociation rate, and where fg, feq are the

local gas fugacity, and the equilibrium fugacity at the given pressure and temperature,

respectively. This expression (5.1) predicts that the hydrate forms when fg > feq, and

dissociates when fg < feq. In [48, 49], the authors propose Q ∝ (P − Peq) with Peq equal

the equilibrium pressure for a given fixed T , and this approach models a response to the

increase or decrease in pressure. A physically grounded expression for k is complex [146].

The rate k ∝ As, the surface area available for the reaction to occur which is proportional

to the effective porosity φ(1 − S). In a three phase system the hydrate formation rate k

also depends on the availability of water and methane (thus on the gas and aqueous phase

saturations Sg and Sw); but for hydrate dissociation the rate k depends on availability of

hydrate (thus on S = 1− Sg − Sw). Therefore, (5.1) is in general hysteretic; see also [168].

From mathematical point of view, the presence of S or (1− S) in k keeps the variable S in

physically meaningful domain S ∈ [0, 1]. Model (5.1) is designed to work in the saturated

case when S∞ > 0, and χ∞ = χ∗.

Our focus is on liquid-hydrate systems. For these, according to [15, 25], the driving

force fg − feq in (5.1) can be expressed by the difference of methane concentration at the

liquid-gas equilibrium and maximum methane solubility χ∗ at three-phase equilibrium state

for the given P and T . With no free gas, Q becomes

Q = k(χ− χ∗), (5.2)

similar to that for crystal formation from saturated or oversaturated mixtures in geochem-

istry [72, 172]. We extend (5.2) so it can work well across the two-phase saturated as well

as in single phase unsaturated conditions when S∞ = 0, and χ∞ < χ∗. We explain this

extension in Sec. 5.2 with further details given in Sec. 5.2.2. Our model is robust even

when coupled to the transport model. In the future we hope to extend it to the three phase

equilibria extending (5.1).
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5.2 Kinetic batch reactor model for hydrate evolution in liquid-hydrate
conditions

Consider an isolated system with P, T fixed and a fixed amount u(χ, S) = u0 of

methane, and ignore any transport contributions or sources to focus on the distribution of

methane between liquid and hydrate phases. The values (χ(t), S(t)) live on a fixed curve

u(χ, S) = χ(1− S) +RS = u0 = u(χ0, S0), (5.3)

in the (χ, S) plane. With some given χ∗, and a corresponding fixed multi-valued graph E∗,

for a given u0, the equilibrium point lies at the intersection of the curve (5.3) with the graph

E∗ which can be found from (3.8). The graph E∗ and the curves (5.3) are illustrated in

Fig. 5.1 with point (A) corresponding to an equilibrium case.

The case out of equilibrium (points (B) and (C) in Fig. 5.1) is when the pair (χ, S) on

(5.3) is away from E∗. For example we can have χ(t) > χ∗ (B), or S(t) > 0 with χ(t) < χ∗

(C). As t ↑ ∞, the points (χ(t), S(t)) evolve from some (χ0, S0) towards some (χ∞, S∞) on

E∗ along the curve (5.3) according to some kinetic model with exchange rate Q.

We postulate now some conditions on (χ0, S0) and u0 to guarantee that the kinetics

leads to physically meaningful (χ∞, S∞) on E∗. In particular, from Remark 3.3.1 we see that

u∞ = u(χ∞, S∞) should satisfy 0 ≤ u∞ < R; thus, we must have 0 ≤ u0 = u(χ0, S0) < R.

Also, non-negativity must be imposed on (χ, S). In summary, we consider the physically

meaningful region (χ, S) ∈ D0 = [0, R)× [0, 1).

Next, we aim to predict whether a given u0 = u(χ0, S0) leads to (χ∞, S∞) ∈ E−∗ or

to (χ∞, S∞) ∈ E+
∗ . In the latter saturated case we have χ∞ = χ∗ and S∞ ∈ [0, 1), and

u0 = u∞ = χ∞ + (R − χ∞)S∞ ≥ χ∗ by (3.2). In the former case we have u0 ≤ χ∗. It is

thus convenient to decompose D0 = D0
− ∪D0

+ as follows:

D0
+ = {(χ, S) ∈ D0 : u(χ, S) ≥ χ∗};

D0
− = {(χ, S) ∈ D0 : u(χ, S) ≤ χ∗}.

Fig. 5.1 provides illustration of these definitions, and motivates our subsequent analyses.

5.2.1 Three batch kinetic models

Our objective is to construct a model which works well in all ofD0. We start with (5.2)

dubbed (KIN1) which works in D0
+. We include S in k2 in a simpler model (KIN2) which

works well also in D0
+ only. Finally to allow the evolution towards a possible equilibrium on
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Figure 5.1: Illustration of typical χ(x, t), S(x, t)) at some t in hydrate reservoir (top) x ∈ Ω.
For this illustration we choose R = 2χ∗. Top: plot of χ, S) in equilibrium, with χ(x, t) ≤
χ∗(x), S(x, t) ≥ 0 and (χ(x, t), S(x, t)) ∈ E∗(x) as in (3.6). Middle: illustration of the graph
(χ, S) ∈ E∗ at the point A (equilibrium), and at the points B and C out of equilibrium (not
on E∗) but within the physically meaningful region (χ, S) ∈ D0 = [0, R) × [0, 1]. The
contours u(χ, S) = u0 of (5.3) in D0 for u0

χ∗ equal 0.4, 0.6, .., 1.8, with the curve u(χ, S) =

u0 = χ∗ separating the “saturated” region D0
+ shaded in gray from the “un-saturated” region

D0
− which is in white. The parts E+

∗ and E−∗ of E∗ are in green and magenta. Bottom:
an example of χ∗(x), χ(x), S(x) in a reservoir in out of equilibrium conditions when (B)
χ∗new < χ∗, and (C) when χ∗new > χ∗.
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E−∗ or on E+
∗ , we combine these two possible equilibria in (KIN3) using an abstract setting

with the graph E∗. Each (KINj) has some rate kj . In D0
+ and under some assumptions all

three models are equivalent to one another. Only (KIN3) is coupled later with the transport

model.

(KIN1). The model (5.2) from [72, 172] splits u(t) as a sum of the methane amount in

the h phase and of the amount in the l phase, and prescribes the evolution

(KIN1)



d
dt((1− S)χ) = −Q,

R d
dt(S) = Q,

Q = k1(χ− χ∗),

(χ(0), S(0)) = (χ0, S0).

(5.4)

This model is very intuitive: in particular, we see that S ↑ when χ > χ∗. However, (KIN1)

works well only in D0
+ when u0 ≥ χ∗, i.e., when the equilibrium point S∞ ≥ 0. When

u0 < χ∗ since k1 does not involve S, the model leads to an equilibrium outside D0 with

S∞ < 0. Moreover, the corresponding numerical scheme requires solution of a nonlinear

algebraic equation which must be done with some care; see Sec. 5.2.2.

(KIN2). Next we aim to improve (KIN1). We split

u = χ+ S(R− χ) = χ+ ψ,

with S = ψ
R−χ . The variable ψ interpreted as the “amount of methane stored in the hydrate

phase over the saturated amount in liquid”. Given initial data (χ0, S0), we calculate ψ0 =

S0(R− χ0), and postulate the evolution

(KIN2)



d
dt(χ) = −Q,
d
dt(ψ) = Q,

Q = k2(χ− χ∗),

(χ(0), ψ(0)) = (χ0, ψ0).

(5.5)

Now (KIN2) model is linear in χ and ψ, and Q is monotone in χ: the curves χ + ψ = u0

are simply the lines in the (χ, ψ) plane. These properties simplify the implementation and

analysis. However, similarly as in (KIN1), Q involves properly only the equilibria on E+
∗ ,

and thus (KIN2) works well only in D0
+.

(KIN3). We modify (KIN2) so that when u0 < χ∗, Q leads to some equilibrium on

E−∗ , but when u0 ≥ χ∗, the model works identically to (KIN2) and leads correctly to some

equilibrium on E+
∗ . An elegant way to do it is to replace χ∗ in the definition of Q in (KIN2)
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by a selection w ∈ w∗(ψ) which defaults to χ∗ on E+
∗ . Here w∗ = e−1

∗ , and e∗ = r∗E∗ is a

rescaled version of E∗, with a fixed r∗ = R − χ∗. When ψ > 0, we have w = χ∗, but when

ψ = 0, w ∈ [0, χ∗]. Also, S ∈ E∗(χ) is equivalent to ψ ∈ e∗(χ) and χ ∈ w∗(ψ). The (KIN3)

model we implement and analyze reads

(KIN3)



d
dt(χ) = −Q,
d
dt(ψ) = Q,

Q = k3(χ− w),

w ∈ w∗(ψ),

(χ(0), ψ(0)) = (χ0, ψ0).

(5.6)

The solution (χ, ψ) and the selection w are unique. The exchange term Q is monotone in

χ while −Q is monotone in ψ, which make the analysis and implementation easy. As in

(KIN2), at any point of time one can calculate S from ψ and χ.

We provide details on (KIN1), (KIN2) and (KIN3) in Sec. 5.2.2. These inform our

analysis of methane transport coupled to (KIN3).

5.2.2 Properties for the kinetic model

In this Section we provide details of fully implicit schemes for models batch reactor

models (KINj), j = 1, 2, 3, respectively (5.4), (5.5), and (5.6). Our analysis motivates

and supports the construction of the model (KIN3) which works across unsaturated and

saturated conditions. Furthermore, our analysis helps to identify physically meaningful

variables (χ, S) when working in non-isolated system, and to guide time stepping control.

We define the discrete schemes in Sec. 5.2.3, and analyze their solvability and properties of

solutions in Sec. 5.2.4. We illustrate the schemes and their properties in Sec. 5.2.5.

Let each model (KINj) have its own rate kj > 0. We define kj = τkj , and k̃j =
kj

1+kj
.

We denote by (X∞, S∞) the equilibrium values on graph E.

We consider a uniform time step τ > 0, and tn = nτ , and we seek the approximations

Xn ≈ χ(tn), Sn ≈ S(tn) in one step [tn−1, tn) using the initial conditions Xn−1, Sn−1.

Other variables including Ψn ≈ ψ(tn) and quantities such as Qn, are denoted analogously.

The total methane content Un = Xn + (R−Xn)Sn. The solutions corresponding to model

(KINj) are denoted with subscripts (KINj) e.g., we use notationXn
KINj. When more compact

notation is desired, and there is no need to indicate the time step, we use simpler notation,

e.g., Xj . When no distinction between models is needed, we drop subscript j, and denote

the new time step value sought X = Xn
KINj while we set the previous time step values equal
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X = Xn−1
KINj. With this notation, each scheme advances (X,S) to the new time step value

(X,S).

5.2.3 Discrete schemes for batch kinetic models and their properties

The schemes are fully implicit: for (KIN2) and (KIN3) the solutions can be calcu-

lated with a closed formula, but (KIN1) requires an additional solvers. We prove various

properties, and compare the models.

Discrete scheme for (KIN1). Given (X,S) = (Xn−1
KIN1, S

n−1
KIN1), find (X,S) for which

(1− S)X − (1− S)X = k1(χ∗ −X), (5.7a)

RS −RS = k1(X − χ∗). (5.7b)

Solver for (5.7): the calculation of (X,S) from (5.7) is coupled and not explicit. To

get a useful formula, we first calculate formally from (5.7b)

S =
k1(X − χ∗)

R
+ S. (5.8)

Then we substitute (5.8) in (5.7a), and rearrange to get a quadratic equation for X

X =
k1

R
(R−X)(χ∗ −X) + SX + (1− S)X. (5.9)

The solvability of (5.9) is addressed in Property (B) proven below; we also suggest a practical

solver.

(KIN1) summary: Given (X,S) = (Xn−1
KIN1, S

n−1
KIN1):

Solve (5.9) for X.

Calculate S from (5.8).

Set (Xn
KIN1, S

n
KIN1) = (X,S).

Discrete scheme for (KIN2). Given (X,S) = (Xn−1
KIN2, S

n−1
KIN2), calculate Ψ = S(R−X),

and find (X,Ψ) for which

X −X = k2(χ∗ −X), (5.10a)

Ψ−Ψ = k2(X − χ∗). (5.10b)

Solver for (5.10): since (5.10a) is linear, we rearrange to get

X = k̃2χ
∗ + (1− k̃2)X. (5.11)



68

Substituting to (5.10b) we get

Ψ = Ψ + k̃2(X − χ∗). (5.12)

After some algebra, we obtain also an explicit formula

S =
k2(X − χ∗) + (1 + k2)(R−X)S

(R−X) + k2(R− χ∗)
. (5.13)

(KIN2) summary: Given (X,S) = (Xn−1
KIN2, S

n−1
KIN2):

Calculate Ψ = S(R−X).

Calculate X from (5.11), Ψ from (5.12), and S from (5.13).

Set (Xn
KIN2, S

n
KIN2) = (X,S).

Discrete scheme for (KIN3). Given (X,S) = (Xn−1
KIN3, S

n−1
KIN3), calculate Ψ = S(R−X),

and find (X,Ψ,W ) for which

X −X = k3(W −X), (5.14a)

Ψ−Ψ = k3(X −W ), (5.14b)

W ∈ w∗(Ψ). (5.14c)

Solver for (5.14): At a first glance, the scheme is more complicated than (5.10).

However, we can exploit various properties of monotone graphs to simplify. First we calcu-

late formally

X = k̃3W + (1− k̃3)X, (5.15)

which we substitute in (5.14b) and rearrange as

Ψ + k3W = Ψ + k3(k̃3W + (1− k̃3)X), W ∈ w∗(Ψ). (5.16)

After a few steps of algebra we get

Ψ + k̃3W = Ψ + k̃3X, W ∈ w∗(Ψ). (5.17)

Now we use the resolventRw∗
k̃3

(·) of w∗ as defined in (2.3) to solve (5.17) for Ψ ∈ domain(w∗),

Ψ = Rw∗
k̃3

(
Ψ + k̃3X

)
.

Since this resolvent function has a simple form Rw∗
k̃3

(w) = (w − k̃3χ
∗)+, with a few more

substitutions we get

Ψ = (Ψ + k̃3(X − χ∗))+, (5.18)



69

an explicit formula giving Ψ in terms of X,Ψ. Once Ψ is known, we calculate the auxiliary

variable W from (5.17) by back-substituting (5.18), and we have W = Ψ−Ψ

k̃3
+ X; thus

W = χ∗ if Ψ ≥ 0, and W = X + Ψ

k̃3
, otherwise. These calculations allow to calculate X

explicitly

X = k̃3χ
∗ + (1− k̃3)X, if Ψ ≥ 0, and X = X + Ψ, otherwise. (5.19)

(KIN3) summary: Given (X,S) = (Xn−1
KIN3, S

n−1
KIN3):

Calculate Ψ = S(R−X).

Calculate Ψ from (5.18).

Given Ψ, calculate X from (5.19).

Calculate auxiliary variables W = Ψ−Ψ

k̃3
, and S = Ψ

R−X .

Set (Xn−1
KIN3, S

n−1
KIN3) = (X,S).

5.2.4 Properties of schemes (KIN1), (KIN2), and (KIN3)

Suppose that

(X,S) ∈ D0. (5.20)

Also, denote Ψ = (R−X)S. Below we prove solvability of (5.7), (5.10), and (5.14) as well

as analyze qualitative properties of their solutions which we arrange in a list (A-B-C-D-E).

Since each of the schemes is a one-step scheme, it is sufficient to only consider the properties

of one step solutions (X,S) depending on (X,S).

Property (A): mass conservation.

If the solutions to any scheme j = 1, 2, 3 exist, they satisfy Un = u(Xn, Sn) = U0 where

u(X,S) is given by (3.1b). In other words, for each scheme, the solutions (Xn, Sn) stay on

the curve u(Xn, Sn) = U0, and we have

Sj =
U0 −Xj

R−Xj
=
X + (R−X)S −Xj

R−Xj
. (5.21)

The map Sj = Sj(Xj) is smooth and invertible when 0 ≤ Xj < R.

Proof. The first part follows immediately by adding the two equations defining each scheme

for one step, and following for n > 0 inductively. Analysis of (5.21) is straightforward.

Property (B): solvability of schemes.

Schemes (KIN2), (KIN3) are uniquely solvable, and (KIN1) is solvable depending on data

and if τ is small enough.
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Proof. The solutions to schemes (KIN2) and (KIN3) can be calculated from explicit alge-

braic expressions depending on the data (X,S); thus the conclusion is immediate.

However, scheme (KIN1) (5.7) requires a solution to the quadratic equation (5.9)

which we frame as p(X) = 0 with

p(X) =
k1

R
(R−X)(χ∗ −X) + SX + (1− S)X −X. (5.22)

We see that p(·) in (5.22) is a quadratic polynomial with p(0) = k1χ
∗+(1−S)X, and p(R) =

SR−R+ (1−S)X. Also, p′(X) = 2k1
R (X −XR) +S− 1, where XR = R+χ∗

2 . Now consider

the root of p(X) = 0. From (5.20) we have that p(0) > 0, and p(R) = (1− S)(X −R) < 0.

Since p(·) is continuous, we see that the root to p(X) = 0 exists in [0, R] and in fact is in

[0, R). Since, in addition, p(·) is convex with p′′(X) = 2k1
R > 0, we find that this root is

unique in [0, R), and is given from the quadratic formula

X =
R(1− S) + k1(R+ χ∗)−

√
(R(1− S) + k1(R+ χ∗))2 − 4k1R(k1χ∗ +X(1− S))

2k1

.(5.23)

On the other hand, the second root given by a modification of (5.23) always exists in (R,∞)

but is unphysical.

Lemma 5.2.1. Consider (KIN1) scheme. Suppose (5.20) holds and consider the smaller

root X = X1 ∈ [0, R) of (5.22). Then (i) S1 < 1.

(ii) If X < χ∗, then X < X < χ∗. If χ∗ < X, then χ∗ < X < X. If X = χ∗, then X = X,

and S = S.

(iii) If (X,S) ∈ D0
+, then S1 ≥ 0 for any k1.

(iv) On the other hand, suppose (X,S) ∈ D0
−. If S = 0, then S1 < 0. If S > 0, then for

large k1 it is possible that S1 ≤ 0.

Proof. To prove (i), we recall Property (A) and (5.21). Since u < R, we have S1 = U0−X1
R−X1

<

1.

To prove (ii), assume X < χ∗. First we collect the terms of (5.22) with X on the left

hand side of the equation. Then subtract (1−S)χ∗ on the both sides of the equation to get

(χ∗ −X)

[
(1− S) +

k1

R
(R−X)

]
= (1− S)(χ∗ −X).

Since S < 1, and X < R, the second term on the left hand side and the first term on the

right hand side are positive. Thus (i) the sign of χ∗ − X is the same as that of χ∗ − X.
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Further, rearrange p(X) = 0 as in the proof of Property B to read

k1

R
(R−X)(χ∗ −X) = (1− S)(X −X).

Similarly, as above, we conclude that the sign of X−X is the same as that of χ∗−X, which

completes the proof of (ii).

To prove (iii), take some (X,S) ∈ D0
+ so that u(X,S) ≥ χ∗. By property (ii), we can

have X > X > χ∗, or X < X < χ∗. (We omit the trivial case X = X). In the first case by

(5.8), we have S1 = k1(X−χ∗)
R + S ≥ S ≥ 0. In the second case by property A, (X,S1) is on

the curve u(X,S1) = u(X,S) ≥ χ∗ which is above the curve u(X,S) = χ∗. Thus, S1 ≥ 0.

To prove (iv), take (X,S) ∈ D0
−, so we must have χ < χ∗. With S = 0 we get from

(5.8) that S1 = k1(X−χ∗)
R < 0. Even if S > 0, it is possible to find k1 large enough so that

S ≤ k1(χ∗−χ)
R . For illustration, the curve u(X,S1) = u(X,S) ≤ χ∗ is in this case below the

curve u(X,S) = χ∗, thus S1 ≤ 0.

Property C: the solutions to (KINj) stay physically meaningful: (Xj , Sj) ∈ D0,

under some conditions for j = 1, 2 and unconditionally for j = 3.

(i) The solutions (Xj , Sj) satisfy 0 ≤ Xj < R and Sj < 1 for all j.

(ii) In addition, S3 ≥ 0 unconditionally.

(iii) Let j = 1, 2. If (X,S) ∈ D0
+, then Sj ≥ 0. If (X,S) ∈ D0

− and either S > 0 with kj

small enough, then Sj > 0. However, if (X,S) ∈ D0
− and either S = 0 or if kj is large, then

it is possible that Sj < 0.

Proof of Property C. (i) For (KIN1) Property B shows (i) for the correct root selected by

the solver. For (KIN2), (5.11) shows that X2 is a convex combination of X and χ∗; thus,

0 ≤ X2 < R. For (KIN3), when S + k̃3(X − χ∗) ≥ 0, X3 is a convex combination of X and

χ∗, and the same argument applies. Otherwise, X3 = X+S(R−X) < R, and 0 ≤ X3 < R.

To prove Sj < 1, we see that Xj < R and by Property A u(Xj , Sj) = u(X,S) < R; thus

from (5.21) it follows that Sj < 1.

To show (ii) consider (KIN3) first. we have Ψ3 ≥ 0 from (5.18); thus S3 ≥ 0. For

scheme (KIN1), we use Lemma 5.2.1. For scheme (KIN2), we recall (5.12). To check if

0 ≤ Ψ2 = Ψ + k̃2(X − χ∗), we first consider X ≥ χ∗ (which implies (X,S) ∈ D0
+). This

yields Ψ2 ≥ Ψ ≥ 0, thus S2 ≥ 0. With X < χ∗, however, we find that to guarantee

ψ ≥ 0, we must have k̃2 <
Ψ

(χ∗−X)
. For these, we recall Ψ

(χ∗−X)
= u−X

(χ∗−X)
, and this quantity

u−X
(χ∗−X)

≥ 1 in D0
+ while we have that for any τ , 0 < k̃2 < 1. We conclude that (KIN2) can



72

produce unphysical S2 ≤ 0 only for (X,S) ∈ D0
−. If Ψ = 0, we always have Ψ2 < 0 and

S2 < 0.

Property D: stability of each scheme in Q.

We have |Qj | <
∣∣Q ∣∣ for each scheme.

Proof of property D. We recall that Qj = kj(Xj−χ∗) for j = 1, 2, and Q3 = k3(X3−W ) for

(KIN3). We consider the bounds for j = 1 and (KIN1) first. We want to show |χ∗ −Xj | ≤∣∣χ∗ −X ∣∣. To this aim, we subtract χ∗ from both sides of (5.9), rearrange, and add −Sχ∗

to both sides, and rearrange again to get(
1− S +

k1

R
(R−X)

)
(χ∗ −X1) = (1− S)(χ∗ −X).

Next we take absolute value of both sides while we multiply them by k1. Since 1 − S > 0

and k1
R (R−X) > 0 from property C, we get, as desired

|Q1 | <
1− S

1− S + k1
R (R−X)

∣∣Q1

∣∣ < ∣∣Q1

∣∣ .
For (KIN2), we add χ∗ −X2 to both sides of (5.10a) to get

Q = (1 + k2)Q2.

By 1 + k2 > 1, it is easy to see |Q2 | <
∣∣Q ∣∣.

For (KIN3), the proof
∣∣Q3

∣∣ < |Q3 | is a special homogeneous case of a more general

proof. We first consider Yosida approximation wλ ≈ w∗, or some other regularization which

maintains the monotonicity properties of the graph w∗. Given (X,Ψ), we seek the solution

(Xλ,Ψλ) to the regularization of (5.14) with Qλ = Xλ − wλ(Ψλ), and Q = X − wλ(Ψ)

Xλ −X + k3Qλ = 0, (5.24a)

Ψλ −Ψ− k3Qλ = 0. (5.24b)

Next we multiply (5.24b) by w′λ(Ψ′) with some Ψ′ ∈ (Ψ,Ψλ) to get

wλ(Ψλ)− wλ(Ψ)− k3wλ(Ψ′)Qλ = 0. (5.25)

Subtract (5.25) from (5.24a) and take absolute value to get(
1 + k3(1 + wλ(Ψ′)

)
|Qλ | =

∣∣Q ∣∣ .
Since 1 + k3(1 +wλ(Ψ)) > 1, we get the inequality |Qλ | < 1

1+k3

∣∣Q ∣∣ as desired. Taking the

limit as λ→ 0 gives the desired result.
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Property (E): (conditional) equivalence of schemes.

(i) Let k2 = k3. The schemes (KIN2) and (KIN3) give the same numerical solutions

X2 = X3 if and only if (X,S) ∈ D0
+. (ii) Moreover, if

k1 =
Rk2(1− S)

(R−X) + k̃2(R− χ∗)
, (5.26)

then the one-step solution to (KIN2) coincides with that for (KIN1).

Proof. To prove (i), we want to check if X2 = X3 by setting the right hand sides of (5.11)

and (5.15) equal to each other. This identity holds if χ∗ = min
(
X + (1− k̃)Ψ, χ∗

)
, which

is equivalent to

S ≥ k̃(χ∗ −X)

R−X
. (5.27)

Now, if (X,S) ∈ D0
+, we have U = U ≥ χ∗, which means S ≥ χ∗−X

R−X ≥
k̃(χ∗−X)

R−X for any k

and τ . Conversely, for (5.27) to hold, we must have U ≥ χ∗ since k̃ can be made arbitrarily

close to 1.

To prove (ii), we want to calculate k2 in terms of k1 and previous time step data

(X,S). Of course this is, in principle, always possible; the difficulty is to actually find this

expression explicitly. We are able to do this and to obtain (5.26). We explain the process

below.

Recall from (5.21) that Sj is a well defined invertible function of Xj ∈ [0, R). In

addition, for each scheme j, clearly each (Xj , Sj) is a function of (X,S) and of kj . If these

were given explicitly, one could write, e.g., S1 = S2 and attempt to solve for the dependence

of k1 on k2 explicitly. Alternatively, one could do the same starting with X1 = X2 to get

k1 in terms of k2. However, the solver for (KIN1) does not give either X1 not S1 explicitly

depending on k1, X, S, and these direct strategies fail.

Instead, another possibility arises: we calculate k1 = k1(X,S;X1) with ∂k1
∂X1
6= 0 after

some analysis. Next we assume X1 = X2 and substitute X2 = X2(k2, X, S) from (5.11).

With this, we get an expression with k1 in terms of (k2, X, S), which is luckily explicit.

To get k1 = k1(X,S;X1), we recall (5.8) which binds together the constants k1, S and

the variables X1, S1. With (5.21) we eliminate S1 and get a relationship between k1, S,X

and X1, and we solve for k1

k1 =
R(X −X1)(1− S)

(R−X1)(X1 − χ∗)
. (5.28)
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Figure 5.2: Simulation results for Ex. 5.2.1 illustrating schemes (KIN1), (KIN2), and
(KIN3). Left: (X0, S0) = (0.2, 0.8). Right: (X0, S0) = (1.4, 0.4). The solutions to all
schemes lie on the curve u(Xn, Sn) = U0 and converge towards the equilibrium point
(X∞, S∞) on the portion E+

∗ of the graph E. Solutions to (KIN2) and (KIN3) are indis-
tinguishable.

Now we assume X1 = X2, recall (5.11) in which X2 is given X2 = X2(X,S, k2) explicitly

and substitute this expression into (5.28) to get

k1 =
R(X − k̃2χ

∗ − (1− k̃2)X)(1− S)

(R− k̃2χ∗ − (1− k̃2)X)(k̃2χ∗ + (1− k̃2)X − χ∗)
=

Rk2(1− S)

(R−X) + k̃2(X − χ∗)
,

which, upon some algebra, is equivalent to (5.26).

5.2.5 Illustration of (KIN1), (KIN2), (KIN3) in batch setting.

We illustrate now the three kinetic models with some numerical experiments. Our

goal is to emphasize the similarities as well as the differences between these models. We

employ the fully implicit schemes presented in Sec. 5.2.3. In the examples we use data

R = 2, χ∗ = 1, and kj = 1 for all j = 1, 2, 3.

Example 5.2.1 (Saturated case). Suppose that u0 = 1.64 > χ∗; so the equilibrium state

is (χ∞, S∞) = (1, 0.64) on the E+
∗ portion of the E graph, and this example falls in the

saturated regime. We consider two cases (I) (X0, S0) = (0.2, 0, 8) and (II) (X0, S0) =

(1.4, 0.4). Both are in saturated regime (X0, S0) ∈ D0
+. We use τ = 1.

Fig. 5.2 illustrates the properties of the schemes from Sec. 5.2.3. We notice first that

the property (A) holds: the numerical solutions (Xn
j , S

n
j ) given by (5.7), (5.10), and (5.14)

live on the curve Un = u(Xn, Sn) = U0 = u0 = 1.64, and as predicted by property (C),

they stay in D0 and are physical.
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Figure 5.3: Simulation results of unsaturated case in Ex. 5.2.2 illustrating the behavior of
kinetic models (KIN1), (KIN2), and (KIN3) with (X0, S0) = (0.25, 0.2) ∈ E−∗ . We use τ = 1
(left) and τ = 0.2 (right). The solutions to (KIN1) and (KIN2) become unphysical after a
few time steps when the curve u(χ, S) crosses the E−∗ graph; the solutions to (KIN3) remain
in D0

−. In addition, while in D0, the solutions to (KIN2) and (KIN3) are indistinguishable.

Second, according to property (D) the solutions to every scheme converge towards the

equilibrium point (X∞, S∞) on the portion E+
∗ of the graph E∗, i.e., their distance Q from

the equilibrium decreases. Third, as predicted by property (E), the solutions to (KIN2) and

(KIN3) are indistinguishable while the solutions to (KIN1) proceed at a rate different than

that for (KIN2).

Example 5.2.2 (Unsaturated case). Suppose that u0 = 0.6. Thus, the equilibrium state

(χ∞, S∞) = (0.6, 0) ∈ E−∗ . Now we choose (X0, S0) = (0.25, 0.2) ∈ D0
−. We use large τ = 1

or small τ = 0.5.

Fig. 5.3 demonstrates the results of the three models depending on the time step.

First, we see that all solutions live on curve Un = u(Xn, Sn) = u0 = 0.6. Second, for

smaller τ we see that (KIN2) and (KIN3) coincide while in D0
+.

However, only the solutions (Xn
KIN3, S

n
KIN3) to model (KIN3) converge to the equi-

librium state on E−∗ and stay physical for all time steps. In contrast, the solutions to

(KIN1) and (KIN2), (Xn
KIN1,2, S

n
KIN1,2) give unphysical solutions with negative saturations

Snj < 0, and appear to converge to X∞j = χ∗ with S∞j = −0.4 for which Qj = 0. In fact,

(Xn
KIN1,2, S

n
KIN1,2) cross the graph E−∗ , as predicted above. In particular, for τ = 1, we have

(Xn
KIN1, S

n
KIN1) ≈ (0.7536,−0.1232) for n = 2 and (Xn

KIN2, S
n
KIN2) ≈ (0.625,−0.0182) for

n = 1. For τ = 0.5 this happens for larger n.

Example 5.2.3 (Equivalence of (KIN1) and (KIN2)). In this example we illustrate property

E.ii. In each case we show that the solutions to (KIN1) are the same as those of (KIN2)
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Figure 5.4: The numerical solutions generated by (KINj) for j = 1, 2, 3 are the same with
(5.26) for (X0, S0) ∈ D0

+. For unsaturated cases, (Xn
KIN1, S

n
KIN1) = (Xn

KIN2, S
n
KIN2).

when k1 is appropriately chosen depending on k2 and previous time step values. In turn,

(KIN3) solutions are identical to (KIN2) in D0
+. See Fig. 5.4.

5.3 Summary of kinetic transport model combining (3.12a) with (KIN3)
model

The kinetic model rewrites (3.12a) in terms of χ and ψ. To achieve a convenient

symmetric form, we replace ∂t(φu) = φ∂t(χ+ψ) = φ∂t(χ)+φQ with Q = −k3(w−χ) given

as in (5.6). The model completed with appropriate initial data for χ and ψ and boundary

data for χ reads

∂t(φχ)− φk3(w − χ) +∇ · (qχ)− dm∇2χ =
FM
ρl
, x ∈ Ω, t > 0, (5.29a)

∂t(ψ(x, t)) + k3(w − χ(x, t)) = 0, w ∈ w∗(x, t;ψ), (5.29b)

χ(x, 0) = χinit(x), ψ(x, 0) = ψinit(x), x ∈ Ω. (5.29c)

Assume boundary conditions for χ(x, t), x ∈ ∂Ω, t > 0. (5.29d)
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5.4 Scheme for kinetic model and its stability

Now we consider a numerical scheme for the kinetic model (5.29). We implement

the general case with source terms and diffusion and approximate χ(xj , t
n) ≈ Xn

j and

ψ(xj , t
n) ≈ Ψn

j with Unj = Xn
j +Ψn

j . Given (Xn−1
j ,Ψn−1

j ), we find (Xn
j ,Ψ

n
j ,W

n
j ) as solutions

to the local nonlinear system at every j; in this local problem the kinetic terms Qnj are

handled implicitly. We set k = τk3. The scheme (3.13) under assumptions from Sec. 4.1 in

the form directly amenable to analysis reads

(Xn
j −Xn−1

j )− k(Wn
j −Xn

j ) +
τ

h
(qn−1
j−1/2X

n−1
j − qn−1

j−3/2X
n−1
j−1 ) = 0, (5.30a)

(Ψn
j −Ψn−1

j ) + k(Wn
j −Xn

j ) = 0, (5.30b)

Wn
j ∈ w∗(xj ; Ψn

j ).(5.30c)

In practice we solve (5.30) as follows, denoting k̃ = k
1+k . Given previous time step values

(Xn−1
j ,Ψn−1

j )j , at every j we solve for (Xn
j ,Ψ

n
j ) the local nonlinear system

Xn
j − k(Wn

j −Xn
j ) = Fnj , Fnj = Xn−1

j (1− τ

h
qn−1
j−1/2) +

τ

h
qn−1
j−3/2X

n−1
j−1 , (5.31a)

Ψn
j + k(Wn

j −Xn
j ) = Gnj , Gnj = Ψn−1

j , Wn
j = w∗(xj ; Ψn

j ). (5.31b)

This is a 2 × 2 nonlinear stationary system of equations with a maximal monotone graph

w∗. It is uniquely solvable with the following explicit formulas which follow from Sec. 2.2.

Since (5.31a) is linear in Xn
j , we can formally calculate Xn

j = 1
1+k (Fnj + kWn

j ). After we

plug this to (5.31b), we get Ψn
j + k̃w∗(Ψ

n
j ) = Gnj + k̃Fnj . Applying the resolvent R = Rw∗

k̃
=

(I+ k̃w∗)
−1 of w∗, we obtain Ψn

j = R(Gnj + k̃Fnj ). We substitute to getWn
j and Xn

j . Finally

we can calculate the saturations Snj =
ψnj

R−Xn
j
.

For stability of the scheme, we need an auxiliary result formulated for (5.31) with

indices dropped and with inputs F,G and outputs X,Ψ.

Lemma 5.4.1. Consider (5.31) with the right hand side (F,G) and solutions (X,Ψ,W ).

Consider also the right hand side (F ,G) with the corresponding solutions (X,Ψ,W ) to

(5.31). The following comparison principle and stability hold

∣∣X −X ∣∣+
∣∣Ψ−Ψ

∣∣ ≤ ∣∣F − F ∣∣+
∣∣G−G ∣∣, (5.32a)

|X |+ |Ψ | ≤ |F |+ |G | . (5.32b)

We also have W −W = 1
k (G−G) + (Ψ−Ψ)(1− 1

k ).
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Proof. The result (5.32a) is a special case in R×R of the result in [54] for a(u) + c(u−v) =

f ; b(v) − c(u − v) = g, where a(·) is maximal monotone, b(·) is strongly monotone and

continuous, and c(·) is maximal monotone single valued. The stability result (5.32b) follows

from the comparison principle (5.32a). In turn, the algebraic formula for W −W follows

directly from algebra.

5.4.1 TV-stability for the kinetic scheme (5.31)

Now we prove properties of (5.31). Throughout we assume that the CFL condition

(4.11) holds, and that the constants L3, Lχ∗ are finite.

First we apply the stability part of Lemma 5.4.1 directly to (5.31) to obtain

∣∣Xn
j

∣∣+
∣∣Ψn

j

∣∣ ≤ ∣∣∣Xn−1
j

∣∣∣ (1− τ

h
qn−1
j−1/2

)
+
τ

h
qn−1
j−3/2

∣∣∣Xn−1
j−1

∣∣∣+
∣∣∣Ψn−1

j

∣∣∣ . (5.33)

Multiplying by h and summing both sides over j ∈ Z0, and collapsing the first two terms on

the right hand side, we obtain the stability result. We obtain that scheme (5.31) is stable

in the product space

‖(Xn,Ψn)‖∆,1 ≤ ‖(Xn−1,Ψn−1)‖∆,1. (5.34)

Next we prove weak TV-stability which reveals the dependence of w∗ = w∗(xj ; ·) on xj .

Proposition 5.4.1. Assume χ∗(x) is smooth so that L3 and Lχ∗ given by (4.6) are finite.

Assume also (X∆,Ψ∆) have compact support with measure bounded by ωS. If CFL condition

(4.11) holds, then

TV (Xn,Ψn) ≤ TV (X0,Ψ0) + C4T, ; C4= 2k3ωSLχ∗ . (5.35)

Proof. We write the system (5.31) at (xj , t
n) and at (xj−1, t

n). We set Ψ = Ψn
j and

Ψ = Ψn
j−1 with analogous notation for other variables, and consider

X − kW + kX = F, (5.36a)

Ψ + kW − kX = G; W ∈ w∗(Ψ), (5.36b)

X − kW + kX = F , (5.36c)

Ψ + kW − kX = G; W ∈ v∗(Ψ). (5.36d)

Here for shorthand we denoted the graph w∗(xj , tn) by w∗ and a different graph w∗(xj−1, t
n)

at xj−1 by v∗(·). Since the graphs w∗ and v∗ are not the same, we cannot directly apply
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Lemma 5.4.1. Instead, we rewrite the third and fourth equations with w∗ instead of v∗,

move the difference between w∗ and v∗ to the right hand side, and examine the difference

w∗ − v∗ due to their “height”, respectively, χ∗(xj , tn) and χ∗(xj−1, t
n).

For ψ > 0 we can write

v∗(ψ) = w∗(ψ)−Ajh, ψ > 0, Aj =
d

dx
χ∗(xj , t

n), xj ∈ (xj−1, xj).

When ψ = 0 both w∗ and v∗ are set-valued, and we must work with their Yosida approxi-

mations wλ and vλ. In fact for small ψ we have wλ(ψ) = vλ(ψ) while for any ψ and λ we

have vλ(ψ) = wλ(ψ)−Aj(λ;ψ)h, with |Aj(λ;ψ) | ≤ Lχ∗ from (4.10).

Reconsidering (5.36) with vλ and wλ instead of v∗ and w∗ but keeping the notation

unchanged otherwise, we calculate kW = kvλ(Ψ) = kwλ(Ψ) − khAj , and the third and

fourth equations read now

X − kwλ(Ψ) + kX = F̃ = F − khAj(λ; Ψ),

Ψ + kwλ(Ψ)− kX = G̃ = G+ khAj(λ,Ψ).

We can now apply the comparison principle from Lemma 5.4.1 for the maximal monotone

wλ and inputs F,G, F̃ , G̃. We apply the uniform bound on Aj in (5.32a), notice
∣∣∣ F̃ − F ∣∣∣ ≤∣∣F − F ∣∣+ khLχ∗ and

∣∣∣ G̃−G ∣∣∣ ≤ ∣∣G−G ∣∣+ khLχ∗ . Taking the limit as λ→ 0, we revert

back to the original notation of (5.31) that

∣∣Xn
j −Xn

j−1

∣∣+∣∣Ψn
j −Ψn

j−1

∣∣ ≤ ∣∣∣Xn−1
j −Xn−1

j−1

∣∣∣ (1− τ

h
qn−1
j−1/2

)
+
∣∣∣ τ
h
qn−1
j−3/2

∣∣∣ ∣∣∣Xn−1
j−1 −X

n−1
j−2

∣∣∣
+
∣∣∣Ψn−1

j −Ψn−1
j−1

∣∣∣+ 2khLχ∗ . (5.37)

The term 2khLχ∗ will accumulate giving weak rather than strong stability. Summing (5.37)

over those j ∈ Z0 with
∑

j h ≤ ωS , we collapse the first two terms on the right hand side,

and with k = τk3, we get

TV (Xn,Ψn) ≤ TV (Xn−1,Ψn−1) + 2τk3ωSLχ∗ . (5.38)

Applying recursively, we obtain (5.35) with C4 = 2k3ωSLχ∗ .

Remark 5.4.1. The weak TV-stability result (5.35) in the product space for the kinetic

problem (5.29) is similar to the weak stability (4.7a) we obtained for U∆ in the equilibrium

model (4.4), with the difference in the constants depending on χ∗(x), and the absence of the

factor (1 + τL1) in (5.38) in the product space.
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5.4.2 TV stability in time

Given the known (Xn−1
j ,Ψn−1

j )j , the next goal is to bound the terms Xn
j −X

n−1
j and

Ψn
j −Ψn−1

j . For this, we need a handle on Qnj ∝Wn
j −Xn

j which quantifies the discrepancy

from the equilibrium. We estimate Qnj in terms of Qn−1
j .

Lemma 5.4.2. Under the assumption of Proposition 5.4.1 we have that

‖Qn‖1 ≤ C5(T ).

To prove the lemma, we estimate the terms in a regularized version of (5.31). Addi-

tional challenge is to allow for possible variability of w∗ in time. We consider some smooth

single valued approximations wλ of w∗|xj ,tn and vλ of w∗|xj ,tn−1 . The difference between

these wλ(ψ)− vλ(ψ) = Bn
j (ψ)τ can be estimated uniformly in ψ with

∣∣∣Bn
j

∣∣∣ ≤ L3, where L3

is given in (4.10).

Proof. We rearrange (5.31), drop j, and seek the solution (Xn
λ ,Ψ

n
λ) to the regularized prob-

lem

Xn
λ −Xn−1 − kQnλ = Fn−1, (5.39a)

Ψn
λ −Ψn−1 + kQnλ = 0, (5.39b)

where Qnλ = wλ(Ψn
λ)−Xn

λ and Fn−1 = − τ
hq

n−1
j−1/2X

n−1
j + τ

hq
n−1
j−3/2X

n−1
j−1 . To get the estimates

for Qnλ in terms of Qn−1
λ = vλ(Ψn−1)−Xn−1, we break the expression

wλ(Ψn
λ)− vλ(Ψn−1) = wλ(Ψn

λ)− wλ(Ψn−1) + wλ(Ψn−1)− vλ(Ψn−1) = b(Ψn
λ −Ψn−1) +Bτ.

Here b = w′λ(Ψ̃λ) ≥ 0 with some Ψ̃λ, and B = Bn
j discussed above, with |B | ≤ L3. Now

we multiply (5.39b) by b and subtract (5.39a) from (5.39b). Rearranging, we obtain

Qnλ(1 + k(1 + b)) = Qn−1 − Fn−1 +Bτ.

We take absolute value, note b ≥ 0, and pass to the limit with λ, to obtain the following

with index j:

(1 + k)
∣∣Qnj ∣∣ ≤ ∣∣∣Qn−1

j

∣∣∣+
∣∣∣Fn−1

j

∣∣∣+ τ
∣∣Bn

j

∣∣ .
Here, with Lq and Lqx defined in (4.10),

∣∣∣Fn−1
j

∣∣∣ is bounded above:∣∣∣Fn−1
j

∣∣∣ =
τ

h

∣∣∣ qn−1
j−1/2X

n−1
j − qn−1

j−1/2X
n−1
j−1 + qn−1

j−1/2X
n−1
j−1 − q

n−1
j−3/2X

n−1
j−1

∣∣∣
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≤ τ

h
Lq

∣∣∣Xn−1
j −Xn−1

j−1

∣∣∣+ τLqx

∣∣∣Xn−1
j−1

∣∣∣
≤ τ

h
Lq

(∣∣∣Xn−1
j −Xn−1

j−1

∣∣∣+
∣∣∣Ψn−1

j −Ψn−1
j−1

∣∣∣)+ τLqx

(∣∣∣Xn−1
j−1

∣∣∣+
∣∣∣Ψn−1

j−1

∣∣∣) .
Multiply both sides by h and sum over j ∈ Z0 with

∑
j∈Z0 h ≤ ωS . Then apply (5.34) and

(5.35) to get

(1 + k)‖Qn‖1 ≤ ‖Qn−1‖1 + τ
[
LqTV (Xn−1,Ψn−1) + Lqx‖(Xn−1,Ψn−1)‖∆,1 + L3ωS

]
≤ · · · ≤ ‖Q0‖1 + T [C6(T ) + L3ωS ] ,

where C6(T ) = Lq(TV (X0,Ψ0)+C4T )+Lqx‖(X0,Ψ0)‖∆,1. With k > 0, we have completed

the proof.

Lemma 5.4.3. Suppose (5.35) holds for (X,Ψ). Then we have

‖(Xn −Xn−1,Ψn −Ψn−1)‖∆,1 ≤ τC7(T ).

Proof. Rewrite (5.31) estimating in the form∣∣∣Xn
j −Xn−1

j

∣∣∣ ≤ k
∣∣Qnj ∣∣+

τ

h
Lq

∣∣∣Xn−1
j −Xn−1

j−1

∣∣∣+ τLqx

∣∣∣Xn−1
j−1

∣∣∣ ,∣∣∣Ψn
j −Ψn−1

j

∣∣∣ ≤ k
∣∣Qnj ∣∣ .

Next we multiply by h, take the sum over j ∈ Z0 and add these to get

‖(Xn −Xn−1,Ψn −Ψn−1)‖∆,1 ≤ τ
[
2k3‖Qn‖1 + LqTV (Xn−1,Ψn−1) + Lqx‖(Xn−1,Ψn−1)‖∆,1

]
≤ τ [2k3‖Qn‖1 + C6(T )] .

With (5.34), (5.35) and the estimates for Q from Lemma 5.4.2, we get

‖(Xn −Xn−1,Ψn −Ψn−1)‖∆,1 ≤ τC7(T ) = τ
[
2k3‖Q0‖1 + (1 + 2k3T )C6(T ) + 2k3TL3ωS

]
.

Combining Lemma 5.4.3 and (5.35), we conclude this main result.

Proposition 5.4.2. Under hypotheses of Proposition 5.4.1 we have

TVT (Xn,Ψn) ≤ C8(T ) = T [C4T + C7(T )] . (5.40)

Here C4 = 2k3ωSLχ∗, C7(T ) =
[
2k3‖Q0‖1 + (1 + 2k3T )C6(T ) + 2k3TL3ωS

]
, and C6(T ) =

Lq(TV (X0,Ψ0) + C4T ) + Lqx‖(X0,Ψ0)‖∆,1.

As in equilibrium case discussed in Sec. 4.4.1, this stability result depends on the

variability of q and χ∗ and on the initial discrepancy from the equilibrium through the

constants in (5.40).
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5.5 Simulation results

In this section we illustrate the evolution of hydrate formation and dissociation using

the kinetic model. We first compare the results of kinetic model with that of equilibrium

model, which obviously shows that the kinetic solutions get closer to and eventually indis-

tinguishable from those for the equilibrium model as the kinetic exchange rate increases. In

Sec. 5.5.1 we illustrate the sensitivity of the kinetic model to the choice of macro time steps

∆T from Sec. 3.5.1.

Example 5.5.1 (Model case: equilibrium and kinetic models). Let Ω = (0, 2), q = 1, R = 2.

We use xL = 0.35, χ∗(x) = e−0.5x, and the initial condition uinit(x) = χLH(−x) with

χL = 0.8395. We simulate the problem using both the equilibrium model and scheme (4.3),

and with the kinetic model and scheme (5.31) when k3 = 10 and k3 = 100. Here M = 100

and ν = qτ/h = 0.9. We compare with the equilibrium solution at T = 1.

Fig. 5.5 illustrates the results. We confirm that, as expected, the kinetic solution

“lives” in the vicinity of the equilibrium solution. This closeness is more pronounced with

larger k3. In turn, Fig. 5.6 shows that the numerical solutions (U∆
KIN, X

∆
KIN, S

∆
KIN) converges

to the fine grid solutions (U∆
KIN,fine, X

∆
KIN,fine, S

∆
KIN,fine) at the order roughly of O(h0.5):

‖U∆
KIN,fine − U∆

KIN‖1 = O(h0.57),

‖X∆
KIN,fine −X∆

KIN‖1 = O(h0.56),

‖S∆
KIN,fine − S∆

KIN‖1 = O(h0.62).

5.5.1 Equilibrium and kinetic schemes under varying environmental and
thermodynamic conditions and sensitivity to macro steps

We illustrate the dependence of the solutions to the equilibrium model and kinetic

models depending on the choice of macro steps Tm = m∆T at which χ∗ is recomputed. We

allow P = P (x, t) and T = T (x, t) to vary due to the changing environmental conditions

and specifically due to the warming of ocean temperature and the sea level rise as predicted

in [88] with the rate of sea level rise is 0.003 [m/y] and the rate of temperature rise at the

seafloor of 0.01 [K/y]. Then we assume that the pressure (P), and temperature (T) at the

seafloor vary linearly with respect to time t [y], with subscript ref and eq to denote the

values at the seafloor and at the BHSZ, respectively.

Pref (t) = ρlgDref (t), Dref (t) = Dref (0) + 0.003t,
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Figure 5.5: Comparison of the kinetic and equilibrium model solutions at T = 1 with
M = 100, and ν = 0.9 for Ex. 5.5.1. Top: rate k3 = 10. Bottom: rate k3 = 100.

Figure 5.6: Convergence of the numerical solutions of Ex. 5.5.1 forM = {100, 200, . . . , 1000}
to the fine grid solution M = 50000 with k3 = 100 at T = 1.
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Figure 5.7: Top: initial condition χ(x, 0) and S(x, 0) from Sec. 5.5.1. Bottom: results of
Ex. 5.5.2 with k3 = 0.01. On both figures χ∗0 indicates the original χ∗|t=0.

Tref (t) = Tref (0) + 0.01t,

where ρl ≈ 1030 [kg/m3] is the density of seawater, and g = 9.8 [m/s2]. Over 150 [y]

we see the sea level rise by 0.45 [m] and Tref increase by 1.5 [K]. Assume further that

(P (x, t), T (x, t)) vary linearly in Ω

P (x, t) = Pref (t) +GH(dsf (x)−Dref (t)),

T (x, t) = Tref (t) +GT (dsf (x)−Dref (t)),

where dsf (x) is the depth below the sea level. We then recompute the equilibrium conditions

at BHSZ using the parametric model from [110] responding to the increase in Tref , Pref .

We apply these varying conditions to simulate the dissociation in a hydrate reservoir

from the state obtained with simulation in Ex. 4.5.2 run until 100 [ky]. We consider this

state to be the initial state for this simulation at t = 0; see Fig. 5.7 with χ∗0 as shown. The

changes in P and T in time require we recompute χ∗ = χ∗(x, t) at the macro-time steps

Tm = m∆T as discussed in Sec. 3.5.1. We adopt other parameters as in Ex. 4.5.2 but use

a fixed τ = 1 [y] much smaller than that needed by CFL condition. We consider impact of

∆T = Kτ with K = 1, 10, 50, 150.

Example 5.5.2 (Hydrate dissociation due to warming waters). We start from the equi-

librium state shown in Fig. 5.7. At every macro-time step Tm = m∆T , we recompute

χ∗(x, Tm). Using the parameters as in Ex. 4.5.2 with dm = 3 × 10−2 [m2/y], we simulate
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t [y] K Pref Tref Dref Peq Teq Deq 102‖S‖∞ 102S2 ‖S‖1

0 – 21.6500 273.55 2145.00 22.8849 294.6665 2268.49 8.8732 3.3524 4.3681

150 1 21.6545 275.05 2145.45 22.7999 294.6364 2259.99 8.7212 3.2854 4.2848
Table 5.1: Simulation reference data and results generated by the equilibrium model (EQ)
with K = 1 for Ex. 5.5.2. Pressure P , temperature T , and depth D are in the units of
[MPa], [K], and [mbsl]

k3 = 0.01 k3 = 1 k3 = 100 and EQ

t [y] K 100‖S‖∞ 100S2 ‖S‖1 100‖S‖∞ 100S2 ‖S‖1 100‖S‖∞ 100S2 ‖S‖1

150 1 8.7946 3.3185 4.3295 8.7181 3.2844 4.2855 8.7212 3.2854 4.2848

150 10 8.7905 3.3168 4.3276 8.7168 3.2839 4.2848 8.7212 3.2854 4.2847

150 50 8.7736 3.3096 4.3196 8.7160 3.2836 4.2842 8.7212* 3.2854 4.2841

150 150 8.7381 3.2948 4.3044 8.7144 3.2831 4.2831 8.7213* 3.2855 4.2830
Table 5.2: Simulation results at t = 150 [y] with kinetic model for Ex.5.5.2 with ∆t = Kτ .
(*) The results in the last macro-column differ are higher for the EQ model by one digit.

hydrate dissociation using the (EQ) model at t ∈ [0, 150] [y], and plot the solutions at the

final tN = 150 [y]. We compare the results to the numerical solutions generated by the equi-

librium model (3.13) and the kinetic model (5.29), both are amended to include diffusion,

depending on different rates k3 and the choice of ∆T .

At this time scale, dissociation proceeds slowly as shown by the decrease in the overall

amount ‖S‖1 as well as the peak amount ‖S‖∞; it is also interesting to test the magnitude

S2 of the last peak before the decrease to seafloor. For all simulations the peak ‖S‖∞ is

attained at x = 23.5 [m], and the last saturation peak S2 corresponds to x = 96.8 [m].

We find the difference between taking macro-time steps with K = 1 up to K = 150

is very small for both equilibrium and kinetic models, and the difference between kinetic

model and equilibrium model is indistinguishable when k3 = 100. This rate is still about

100 times less than the rate used in [121,151].

5.6 Summary

In this chapter we investigated the robustness of a variety of kinetic models in the

two-phase liquid-hydrate conditions. Such models are needed, e.g., during sudden rearrange-
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ment of external controls on thermodynamic equilibria. Since the kinetic model popular in

literature dubbed (KIN1) and its linear variant called (KIN2) work only in saturated condi-

tions, we developed a model (KIN3) which is robust across the unsaturated and saturated

conditions while it is equivalent to (KIN2) in saturated conditions. Next we combined this

model (KIN3) with the transport model and were able to show its numerical stability. Our

stability result is the first one to our knowledge. The extension of (KIN3) model for three

phase conditions is subject to our current work.
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6 Biofilm growth model in complex geometry

In this chapter we turn our attention to the study of biofilm growth in pore scale

complex geometries which is important for a range of applications including biofouling and

bioremediation in engineering applications, and in medicine including tissue engineering,

e.g., in artificial regeneration of articular chondrocytes [129]. Mathematical models can

aid in testing hypotheses for the experimental study of biofilm properties [19]. In [131] we

presented a new model that describes biofilm-nutrient-flow dynamics in porous media at

pore scale. The new model was developed by blending the idea of cell shoving mechanism

introduced in discrete biomass models such as individual based models and cellular automata

[4, 57, 66, 116, 117, 164], singular diffusivity model [33, 39], and variational inequality type

[2, 114]. It is of continuum type and is a coupled system of partial differential equations

with which we treat the processes monolithically.

In this dissertation we focus on the robust and relatively cost effective constrained

nonsingular biomass-nutrient model coupled with a flow model that accounts for somewhat

permeable biofilm domains. This corresponds to the material presented in our recent work

[131](Sec. 4-5).

In this chapter we discuss the improved constrained nonsingular biomass-nutrient

model which corresponds to Sec. 4 of [131]. The coupled flow and biomass-nutrient dynamics

presented in [131](Sec. 5) is discussed in Ch. 7.

The outline of this chapter is as follows. We first provide the preliminary materials

about biofilm and discuss the modeling challenges in Sec. 6.1. In Sec. 6.2, we introduce

notations for the biomass-nutrient dynamics which we will also use later in Ch. 7–8. In

Sec. 6.3, we describe the improved constrained biomass-nutrient model using the idea of

singular diffusivity model. Then we discuss the numerical approximation scheme and its

convergence in Sec. 6.4. We close this chapter by giving an example of biofilm growth in a

realistic single pore in Sec. 6.5.

6.1 Background on biofilm and modeling challenges

Biofilms are complex structures made of a gel-like polymeric substance called EPS

and of microbial cells which produce EPS. Given access to sufficient nutrient resources,

the microbes multiply until their maximum density is achieved, after which the biofilm
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domain expands through the interface with the surrounding liquid. In other words, the

region occupied by the biofilm phase grows when the cells divide and are “shoved” by their

neighbors; see a cartoon in Fig. 6.1 for a basic idea. The liquid and biofilm are separated by a

sharp or diffuse interface, and together they form a fluid with very complex properties. The

hypothesized purpose of biofilms in their various aggregative, architectural and protective

types is to promote the growth and protect the cells, e.g., from environmental conditions

such as desiccation, high temperature and competing microbes [19,20,78].

The modeling of biomass-nutrient dynamics depends on the length scale. A typical

pore scale domain Ω we consider has diameter L = O(10a [mm]) with a ∈ [−2, 0], while

the microbial cells have size ranging in hc ∈ [0.5, 20] [µm] [66, 164]. However, typical pore

sizes in meso-scale or unconsolidated porous media range in O(10s) [µm] with s ∈ [0, 1] [95]

while the grain size in glass-bead packs used for observation can range from O(10s) [µm]

with s ∈ [1, 2] [14, 23, 114, 130]. Depending on the length scales, the modelling challenges

are treated differently. We focus on the continuum model and address the challenges below.

Challenges addressed. The primary challenge in modeling biomass-nutrient dynamics

is to address the volume constraint of maximum cell density while we allow some microbial

presence outside of the contiguous biofilm phase. Authors of [39] describe the biomass

redistribution mechanism, the analogy of “shoving” from the discrete model [66,164], using

the singular diffusion model which allows fast biomass distribution as the concentration of

biomass increase. One can implement a modified version of the singular diffusion model [131]

with an upper bound to ensure no mechanism when biomass concentration reaches its

maximum. However, its solutions may violate the biomass maximum constraint when the

spreading speed is not fast enough. To overcome this issue, we can use the adaptive singular

diffusion model, but this is computationally expensive because we seek for the right diffusion

parameters in every time step. Alternatively, one can enforce the volume constraint through

the parabolic variation inequality (PVI) approach as in [114]. This approach guarantees the

volume constraint, but it might exclude some reactions that could take place at the free

boundary between the biofilm and bulk fluid. We refer to review articles [19, 64, 78] for an

overview of modeling challenges, more references, and applications in human engineering

systems, e.g., in selective plugging [22,35,84,144].

The second challenge is in treating the free boundary arising at the interface between

the biofilm and the surrounding bulk fluid. The pore scale flow models range from Navier-
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Symbol Description Value/Units

ρB Dry mass density of biomass ∼ 1.1 [g/cm3]

ρ∗B Maximum mass density of biomass 24× 103 [g/cm3]

θw, θb Volume fraction of water (w) and biomass (b) [−]

B Concentration of biomass, defined by (6.2) [−]

B∗ Maximum total concentration of biomass 1 [−]

B∗ Threshold for mature biofilm 0.9B∗ [−]

N Concentration of the nutrient relative to ρ∗B [−] ∼ O(10−4) [kg/m3]/ρ∗B

kN Monod half-life [can vary by factor 10s, s ≈ 6; see [163]] same as N

κ Specific substrate uptake rate ∼ O(10s) [1/h], s ∈ [−2, 0]

κB Growth constant incorporating yield coefficient ∼ O(1) [−]

dm Molecular diffusivity 6.84 [mm2/h]

dB Diffusivity of B ∼ O(1) [mm2/h]

dN Diffusivity of N ; see (6.6d) ∼ O(1) [mm2/h]

h, τ Spatial and time discretization parameters ∼ O(1) [µm], O(1) [h]

Table 6.1: Symbols for the variables and parameters used commonly for biomass-nutrient
dynamics, with typical values adapted from [33,39,114] or as indicated.

Stokes models extended by the inclusion of additional stress tensor in [19, 171] through

Navier-Stokes models for large velocity in [114] and Stokes and Brinkman flow models

in [70,71]. As discussed in [131], the nutrient penetration in the biofilm phase influence the

biofilm growth significantly. We account for somewhat permeable biofilm and employ the

Brinkman flow with a spatially variable permeability depending on the quantity of biomass.

Thus, the fluid flow allows some advection of nutrients within the biofilm phase as well as

for the flow even when the pores are close to being plugged up.

Additional challenges arise when we couple the biofilm growth model with the ambient

flow in porous domains. We apply this heterogeneous Brinkman flow model to the entire

domain rather than a staggered-in-time treatment so that the coupling of flow and biomass-

nutrient dynamic is monolithic.
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6.2 Notation for biomass-nutrient dynamics

In this section we set up notations for the biofilm growth at pore scale which we will

discuss for the rest of this dissertation. Most of the material is fairly standard. We also

closely follow the notations from [39].

Let B be biomass concentration with its maximum possible biomass density B∗. The

region

x : B∗ ≤ B(x, t) ≤ B∗

with a threshold B∗ ∈ (0, B∗] indicates what we call a “mature" biofilm which contains

microbes as well as the biomass-produced extracellular polymer substance (EPS). Here we

choose B∗ = 0.9B∗. The precise definition and units of B,B∗, B∗ will be given later in

Sec. 6.2.2.

We also consider nutrient N which can be oxygen, carbon, glucose, ammonia, or more

generically some substrate. The diffusivity of N depends on the nutrient type.

6.2.1 Notation for pore scale geometry with microbial species

We consider an open bounded pore scale domain Ω = Ωr ∪ Ωn ∪ Γrn (rock, no-rock,

wall interface) as discussed in Sec. 2.3.2. We allow Ωr = ∅ and assume that the volume

|Ωn | > 0. We recognize a fixed rock wall boundary Γrn = ∂Ωr ∩∂Ωn, and consider the void

region Ωn for flow of water and biofilm growth.

Next, we will identify the different regions in Ωn which the flow and the reaction

processes have different properties; see Fig. 6.1 for illustration.

Ω0(t) = {x : B(x, t) = 0}, no microbes present; bulk fluid (6.1a)

Ωb(t) = {x : B(x, t) > 0}, microbes present (6.1b)

Ω∗(t) = {x : B∗ ≤ B(x, t) ≤ B∗}, mature biofilm (6.1c)

Ω∗(t) = {x : B(x, t) ≥ B∗}, B exceeds the maximum (6.1d)

Ω∗b(t) = Ω∗ ∪ Ω∗, biofilm domain. (6.1e)

The definition of regions such as Ωb varies in the literature, where it is used for convenience

of notation, or in reference to the properties observed in experiments. In particular, in [114]

we used x-ray micro-CT tomography imaging to identify the region Ω∗ as the opaque region
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x x

Figure 6.1: Schematic picture of biofilm domain x ∈ [0, 1] and the cell density B(x) plotted
with a solid blue curve. On the left we show the mechanism of cell growth schematically
and “shoving” when the cell density exceeds the maximum B∗ = 1. On the right we show
the notation from (6.1). In the region Ωb some cells can be very small, and some quite large.
Note that in a continuum model, it is likely that B > 0 everywhere and thus Ω0 = ∅. When
the maximum cell density is reached, the cells redistribute. This mechanism is modeled
differently in various models; see [131] for discussion.

Figure 6.2: Processed micro-CT images from [114] at resolution 202 × 202. Ωb is in gray,
Ω0 in white, and Ωr in black.

from which the contrast agent barium is excluded; see Fig. 6.2 for the process micro-CT

images from [114]. With some models, Ωb is assumed contiguous, i.e., simply connected,

and only its boundary is tracked, but with other models including our model not so. In

some literature the region Ω∗ is called the boundary layer in which much growth occurs and

propagates the fastest.

6.2.2 Notation for microbial species

The many different models we cited in [131] come each with a different system of

variables and units, and use different data, e.g., for rate constants in their examples. For

example, the units for the biomass concentration B range from [kg/m3], [g/cm3], [ppm],

or [g/L], or are non-dimensional, as in [36, 39]. We follow closely the non-dimensional
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notation from [39]. The different symbols we define and typical parameter values are listed

in Tab. 6.1.

Let ρw denote the water density. The water occupying Ω or, more precisely, Ωn,

has microbes and the dissolved nutrients. The mass and volume contribution of microbes

compared to that of water is significant; their presence also changes the properties of the

phase, and we address this later. The nutrients are not accounted for in mass balances.

We denote the (dry mass) density of biomass by ρB. The EPS has a different density

ρEPS ≈ 0.5ρB, but for simplicity we ignore this distinction here. At the microscopic level

at any point x of the small volume ω(x) surrounding x we have either water or microbial

species present, thus it makes sense to define the volume occupied by the water ωw and by

the microbes ωb, with ω = ωw ∪ωb. Now we set the volume fractions of water and microbes

as

θw =
|ωw |
|ω |

, θb =
|ωb |
|ω |

, with θw + θb = 1.

The microbial mass density ρBθb(x, t) vary in time and space. In some literature θw is

fixed; e.g., see θw ≈ 0.9 [71], and thus expresses the “porosity" of biofilm. Since the cell

have finite volume, there is a maximum density of cells allowed, e.g., it is given in [39] as

ρ∗B = 24× 103 [g/cm3]. As in [39], we set

B = θb
ρB
ρ∗B
, (6.2)

which are non-dimensional and is bounded above by the maximum B∗, that is

B ≤ B∗ = 1. (6.3)

6.2.3 Notation for nutrient and reactions

We consider nutrient concentrationN . We follow [39] whereN is nondimensional with

its unit involving the mass density of nutrient per ρ∗B. We recall the well known Monod

functions with the nutrient consumption m(N) given by the Monod expression

m(N) = κ
N

N + kN
. (6.4)

The constant kN is called Monod half-life (in the same units as N), and κ is the specific

substrate uptake rate with a typical value = O( [1/h]). The reaction rates used in mass

balance equations for biomass and nutrient involve the grwoth and utilization rates

rgrowthB (B,N) = κBBm(N) = κBBκ
N

N + kN
, (6.5a)
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ruseN (B,N) = −Bm(N) = −Bκ N

N + kN
, (6.5b)

with typical values κB ≈ 0.5, typically incorporating some yield coefficient and maximum

uptake rate.

6.3 Constrained transport model

We now describe the constrained biomass-nutrient (BN) model presented in [131]

which is an improved PVI model from [114] with singular diffusivity for biomass:

∂tB +∇ · (uB)−∇ · (dB∇B) + ∂I(−∞,B∗](B) = rgrowthB (B,N); x ∈ Ωn, t > 0, (6.6a)

∂tN +∇ · (uN)−∇ · (dN∇N) = ruseN (B,N); x ∈ Ωn, t > 0, (6.6b)

where u is advection flow velocity which we define later in Ch. 7, dB and dN and diffusion

coefficients for biomass and nutrient, and ∂I(−∞,B∗] is the constraint operator. We explain

these terms below.

For the biomass diffusivity dB, we use the modified version of the singular diffusion

model used in [33, 34,39]. The singular character of the diffusivity model keeps the biofilm

phase together as an aggregate but also allows it to spread as B → B∗. The singular

diffusion model in [33,34,39] is defined as

dB(α, β;B) = dB,0
Bα

(B∗ −B)β

with the mobility coefficient dB,0. dB is singular as B ↑ B∗ and degenerate db ↓ 0 as B ↓ 0.

Diffusivity. While the singular diffusivity achieves its modeling goals, it is also hard to

deal with numerically as indicated in [33, 34] and confirmed by our own experiments not

shown here. We modify this model in [131] by replacing B∗ with B
∗
> B∗ to avoid the

singularity at B∗. We also a single parameter α = β since this is the choice in [33, 34, 39].

The modified dB that we use here is

dB(α;B) = dB,0

(
B

B
∗ −B

)α
. (6.6c)

Here the motility coefficient dB,0 ≈ 7 × 10−9 [m2/day], which is very small; about 10−5

smaller than the molecular diffusivity dm ≈ 2× 10−4 [m2/day]. See Fig. 6.3 for comparison

between two singular diffusion models.

Next we discuss dN for which the experimental literature indicates a much decreased

value in the very viscous Ωb. Following [39, 118, 163], we define dN,w as the diffusivity of
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Figure 6.3: Plots of singular diffusivity dB. Left: dB(α;B) from [131] with α = 2. Right:
dB(α, β;B) from [33] with α = β = 2.

N in Ωn \ Ω∗b , dN,b to be its decreased value in Ω∗b , and RN,bw = dN,b/dN,w, with values

RN,bw ≈ 0.4 in [118], or even RN,bw = 0.01 for some nutrients [118,163], with dN given

from [118]: dN (x, t) = 1Ωw(x)dN,w + 1Ω∗b
(x)dN,b, (6.6da)

from [39]: dN (x, t) = (B∗ −B(x, t))dN,w +B(x, t)dN,b. (6.6db)

Constraint operator. We also recall that the constraint operator ∂I(−∞,B∗] is the

subgradient of the indicator function I(−∞,B∗], i.e.,

∂I(−∞,B∗](B) =


0, B ≤ B∗,

[0,∞), B = B∗,

which enforces (6.3). It is a multivalued operator such as those discussed in Ch. 2. In

practice, in the computational model, ∂I(−∞,B∗](B) is replaced by a Lagrange multiplier Λ

so that the constraint is enforced pointwise with

max{B∗ −B,Λ} = 0.

This is a well-known and well-studied construction known as parabolic variational inequality

[7,43,134], and we refer, e.g., to [58] for its numerical analysis and to [1,2] for its use in the

context of biofilm models.

Initial and boundary conditions. We complete the model with initial and boundary

conditions as follows. We set Neumann no-flux conditions on Γ for B and N . For some

cases we also allow a Dirichlet boundary ΓD ⊂ Γ through which nutrient can be supplied.

dB∇Bk · n|Γ = 0, (6.6e)
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B(x, 0) = Binit(x), x ∈ Ω, (6.6f)

N |ΓD = ND, (6.6g)

dN∇N · n|Γ\ΓD = 0, (6.6h)

N(x, 0) = Ninit(x), x ∈ Ω. (6.6i)

The initial data is denoted by subscript init and the Dirichlet boundary data with sub-

script D. In general, we may allow non-smooth data, thus (6.6) is posed in the sense of

distributions rather than in the classical sense.

Finally, we make this observation regarding the use of the constraint operator.

Remark 6.3.1. The interpretation of the action of ∂I(−∞,B∗](B) in (6.6a) is similar but

not identical to the a-priori truncation of the source term such as in the model

∂tB −∇ · (dB(B)∇B) = rgrowthB (B,N)1{B≤B∗}(B), x ∈ Ωn. (6.5)

In this equation the source rgrowthB 1{B≤B∗}(B) prevents the growth above B∗, and is dis-

continuous in B. In contrast, in (6.6a) the operator ∂I(−∞,B∗](B) acts to ensure B ≤ B∗

for all x. This is a subtle but important difference. In particular, an implicit solver for

(6.5) generally struggles with the discontinuous character of the forcing, thereby requiring

additional care. In contrast, our approach (6.6a) is quite robust.

We also note the following.

Remark 6.3.2. It is well known that biofilm formation is initiated by the adhesion of

microbes to some wet surfaces. However, our model is not equipped with the surface adhesion

mechanism, thus we must situate the initial biomass near the rock surfaces.

This modeling problem is discussed in Ch. 8.

6.4 Numerical approximation

In this section we present the approximation of the coupled BN model (6.6) for d = 2

that we applied in [131]. We generally follow the established notation, e.g., from [75], which

we also briefly described in Sec. 2.5. We recall the notation and the convergence tests

reported in [131].
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6.4.1 Spatial discretization

We recall the uniform grid V = ∪Mi=1Vi with size h covering Ω ⊂ R2. Let (Bi, Ni) be

biomass and nutrient densities defined at the center of Vi for i = 1, 2, . . . ,M . The collections

of (Bi)i and (Ni)i are denoted by Bh and Nh, respectively. Similarly, we define the Lagrange

multiplier λh = (λi)i.

6.4.2 Time discretization

We use time steps

0 = t0 < t1 < t2 < . . . < tN = T,

with uniform time step size τ so that tn = nτ . For nonlinear terms we use time- or step- or

iteration lagging. In other words, our methods can be called semi-implicit, with variants as

indicated below.

We approximate the solution (Bn
h , N

n
h , λ

n
h) to (6.6) by operator splitting which we

described in Sec. 2.5.6. We first solve the advection step explicitly with known previous

time step data (Bn−1
h , Nn−1

h , λn−1
h )

B̃n
h = Bn−1

h − τ∇h · (uhBn−1
h ), (6.6a)

Ñn
h = Nn−1

h − τ∇h · (uhNn−1
h ). (6.6b)

Here ∇h ·(uhBn−1
h ) and ∇h ·(uhNn−1

h ) denote the explicit upwind fluxes which we discussed

in Sec. 2.5.5.

Next we solve the reaction and diffusion steps together:

(I + τABh (Bn−1
h ))Bn

h + τλnh = Bn−1
h + τrgrowthB (Bn

h , N
n
h ), (6.6c)

(I + τAnh(Bn−1
h ))Nn

h = Nn−1
h + τruseN (Bn

h , N
n
h ). (6.6d)

The additional equation binding Bn
h and λnh is

min(B∗ −Bn
j , λ

n
j ) = 0, ∀j. (6.6e)

Another possibility is to solve the reaction step first separately with initial conditions

(B̃n
h , Ñ

n
h ) known after the advection step

B̂n
h = B̃n

h + τrgrowthB (B̃n
h , Ñ

n
h ),

N̂n
h = Ñn

h + τruseN (B̃n
h , Ñ

n
h ),
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followed by the diffusion step with step-lagging of ABh , A
N
h

(I + τABh (B̂n
h ))Bn

h = B̂n
h ,

(I + τANh (B̂n
h ))Nn

h = N̂n
h .

Other schemes and refinements are possible; see, e.g., [75, 113].

The diffusion-reaction step of (6.6) with CCFD can be written in the residual form

and is solved using the semismooth Newton method which we described in Sec. 2.6. Due to

the only piecewise-smooth character of (6.6e), the solver is expected to converge with a less

than quadratic rate. However, with the typical time steps we use in our model, the solver

can take usually under 3 iterations. Recall that CCFD is equivalent to the mixed finite

element method in RT0 space, and we refer readers to [1, 2] for more on the finite element

analysis with simulations testing different variants of mildly and fast growth dB(B) other

than (6.6c).

We do not use explicit non-dimensionalization of PDE models. Even though such

a step provides useful insights and reduces dependence from the multitude of parameters

to fewer, it is case dependent. Rather, our simulations for the rest of this dissertation are

carried out with BN_Flow codes [132] which use an internal self-consistent unit system.

As in every numerical model, it is important to check if it converges to the true

solution. We recall the theory developed in [1,2] for the Galerkin finite element discretization

of the coupled biofilm-nutrient model similar to (6.6). We also recall some progress towards

the mixed finite element or CCFD version of that model in [1]. While we do not have

theoretical results for the full CCFD model presented above, we summarize the convergence

test presented in [131].

6.4.3 Convergence of the CCFD scheme for biomass-nutrient model

Now we discuss convergence of the numerical scheme.

Remark 6.4.1. In [1], the author discussed both theoretical and numerical convergence of

the Galerkin finite element method of the BN model and showed that the order of convergence

in ‖ · ‖2 is close to 1. Author also reported the numerical convergence of O(h3/2 + τ3/2) in

‖ · ‖H1(Ω).

Generally the CCFD schemes for linear parabolic problems with smooth solutions can
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be shown to be second order accurate in h [155]. Our problem features nonlinearities, free

boundaries, and advection terms treated by a first order upwind scheme.

Remark 6.4.2. For the coupled flow and BN model, we use the first-order operator split-

ting method and the first-order upwind method for advection term. Thus the best rate of

convergence that we can expect would be O(h+ τ).

Our BN model is nonlinear, and the physically meaningful analytical solutions are

not available. It is well known that one can test the accuracy of a scheme using a predefined

exact solution, and calculating the boundary conditions and the sources to fit the problem.

This approach is also called the “method of manufactured solutions”. However, this approach

is not easy to set-up for free boundary problems.

However, as discussed in [1], one can test the convergence of a scheme for parabolic

variational inequality with a manufactured solution, but it is likely to be physically unre-

alistic because it would a-priori predict the moving boundary as biofilms grow through the

interface.

Thus, in [131] we used the fine grid solutions with L = 1, hfine = 2 × 10−4 and

τfine = 2×10−5 as a “proxy” for the true solution when testing convergence of the numerical

results while varying τ = O(h) for h ≥ 2 × 10−3 and τ ≥ 2 × 10−4. In [131](Sec. 8.3.1),

we showed the convergence of the numerical models for the BN model (6.6) with u ≡ 0.

We showed first-order convergence for both B and N in ‖ · ‖1 norm. In ‖ · ‖2 norm, the

convergence is approximately order of 0.6 for B and 1 for N . This can be explained by

smoothness of N and sharp gradients of B.

6.4.4 Computational complexity of biomass-nutrient solver

In this section we provide estimates of overall computational cost to solve (6.6) for

(B,N, λ). The process involves a pre-processing step where we initialize the algorithm with

some initial conditions and the main BN solver. We assume that there are M grid cells

that include Ωr. However, since we consider the cells in Ωn only, we may have a lower

computational cost.

The pre-processing step involves the initialization of algorithms with some initial and

boundary conditions. This step costs O(M).

The BN solver requires the solution of two coupled nonlinear PDEs for (B,N), each

of size M . Additionally, we keep track of and update the Lagrange multiplier λ, also of size
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Figure 6.4: Illustration of realistic single-pore geometry Ω with Ωr in black, Ωb in gray, and
Ω0 in white.

M . In other words, we have 3M unknowns: (B,N, λ). The evolution takes over 100 to 1000

time-steps, depending on the case, and each requires on average about two iterations of the

semi-implicit method. For each iteration, we require about 100M operations to compute

diffusion coefficients, Jacobian, residuals, and other operations. The cost of linear system

solver for 3M unknowns is O((3M)3) at worst if we use some direct methods such as LU

or QR in MATLAB. In our 2d case we work with a non-symmetric banded linear system

which costs O(3pM) where p = 4M + 1 is the band size. Then the total cost to solve for

(B,N, λ) per time-step is O(12M2 + 104M). When we simulate until clogging, the total

cost per simulation can go up to O(104M2).

Generally, we expect M = O(104) for 2d simulations and M = O(106) in 3d. We find

that generation of 2d biofilm domain using BN solver is feasible while 3d results may be

unfeasible.

6.5 Biofilm growth in the nutrient-rich system

Now we are ready to illustrate the BN model with simulation. The example shown

below corresponds to [131](Example. 3.5).

We aim to demonstrate the growth of biofilm using our constrained BN model (6.6)

with u ≡ 0 to study the dependence of biofilm growth to length scales. These simulations

show that it is crucial to use realistic coefficients, geometry, and time and length scales.

Example 6.5.1 (Biofilm growth pattern in a nutrient-rich porous medium). Let Ω be a

realistic single-pore geometry that is shown in Fig. 6.4. We simulate the biofilm growth in

nutrient-rich pore of Ω = (0, L)2 [mm2] for L = {0.01, 0.1, 1} with other parameters as below

with dm = O(1 [mm2/h]) until Ωn is filled up.
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L = 0.01; t = 0 L = 0.01; t = 0.06 L = 0.01; t = 0.7 L = 0.01; t = 1.048

L = 0.1; t = 0 L = 0.1; t = 0.2 L = 0.1; t = 0.7 L = 0.1; t = 1.048

L = 1; t = 0 L = 1; t = 0.7 L = 1; t = 1.1 L = 1; t = 1.32

Figure 6.5: Pore–plugging with biofilm in a nutrient–rich environment for Ex. 6.5.1 using
the nonsingular constrained model (6.6) at the selected time t [h] as shown. Images on the
rightmost column are at the final time shown when the pore is plugged up. (Top) micro-
pore L = 0.01, (middle) meso-pore L = 0.1, and (bottom) macro-pore L = 1, in [mm], as
labelled on the leftmost panel. We see that in the micro-pore the biomass spreads first and
then grows, while the opposite is seen in the macro-pore case, with the meso-pore being
intermediate.

B∗ B∗ Binit Ninit = ND dB,0 dN,w RN,bw κ α

1 0.9B∗ 0.6B∗1Ωb(0) 100 10−4dm dm 0.1 2 2

The evolution of biofilm growth in Ω of three different sizes L = {0.01, 0.1, 1} [mm] are

shown in Fig. 6.5. As we can see in the left-most columns, we start with initial biomass B0 =

0.6B∗ occupying the qualitatively same Ωb(0). As expected, the relatively large diffusivity

in micro-pores (L = 0.01 [mm]) compare to in meso- or macro-pores (L = 0.1 [mm] or

L = 1 [mm], respectively) results micro-pores to be filled up faster than the other pores.

Qualitatively, the pattern of formation is independent of the length L and the time t.
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7 Monolithic multiphysics model for coupling biomass-nutrient model
with pore scale flow

We now discuss the pore scale flow model in complex geometry with (partially)

permeable biofilm phase and monolithic coupling of flow model to the constrained non-

singular biomass-nutrient (BN) model (6.6). These correspond to the material presented

in [131](Sec. 5).

Challenges addressed. It has been postulated that biofilm domain Ωb might be par-

tially permeable to the fluid flow; thus also allowing advective transport of nutrient, and

contributing to more substantial growth of biomass. We refer, e.g., to [71, 114] who used

approaches other than the one we propose. In particular, the flow models in [71] are posed

separately in Ωb and Ωn \ Ωb which creates difficulties of re-meshing or requires additional

simplifications and assumptions to succeed. Our interest is in employing a flow model which

would work well across different flow conditions in pores filled partially with biofilm and

having variable permeability. In particular, the flow model should work for an essentially

stationary flow at low Reynolds numbers as well as in complicated pore scale geometries

with biofilm such as that in Fig. 7.1 across the different length scales. This interest is moti-

vated by a plethora of work on partially permeable biofilm including in [22,70,144]. When

biofilm in Ωb is close to impermeable, the flow goes primarily around the domain Ωb. When

it is moderately permeable, some of the flow goes through Ωb. When its permeability is

very high, the flow through Ωb is similar to the Stokes flow outside Ωb.

Our approach. Our main idea is to consider the particular version called heterogeneous

Brinkman flow with a spatially variable permeability depending on the biomass amount,

which allows (some) flow through the pores filled with somewhat permeable biofilm. This

version was originally tested in [21] for the needs of a flow model with randomly dispersed

obstacles.

We start by describing the heterogeneous Brinkman flow and its numerical method in

Sec. 7.1. Then we study the dependence of the heterogeneous flow model to the length scale

and the permeability of biofilm from examples in Sec. 7.2. Finally we discuss the coupling of

the flow model and the BN model and study the coupled effects with examples in Sec. 7.3.
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(a) (b) (c) (d)
Figure 7.1: Illustration of pore scale geometries Ω considered in this chapter. Cartoons of
(a) channel with a bio-gel, (b) channel with biofilm at the walls, (c) converging channels as
in [22], and (d) many-pore geometry. In all figures, Ωr is in black, Ωb is in gray, and Ω0 is
in white.

Symbol Description Value/Units

µ Viscosity 8.9× 10−4 [Pa s]

u Velocity in the Brinkman flow model ∼ O(10−1) [mm/h]

p Pressure in the Brinkman flow model [Pa]

kb Resistance term in Brinkman flow model [mm2]

KΩ Darcy permeability ∼ O(10−7) [mm2]

Table 7.1: Notations for flow and upscaled permeability with typical values adapted from
[114].
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7.1 Heterogeneous Brinkman flow model at pore scale

Brinkman model augments the well known Stokes model with the Darcy resistance

term [13,46]. We present its heterogeneous version

−µ∆u+ µk−1
bx (x)u+∇p = f, x ∈ Ωn, (7.1a)

∇ · u = 0, x ∈ Ωn, (7.1b)

where u is the velocity, p is the pressure, and the resistance term ∼ k−1
bx related to the

inverse of permeability is locally defined and kbx(x) = kb1Ω∗b
(x). We also include notation

with values and unit in Tab. 7.1 for convenience. Of interest are the extreme cases when

kb ↓ 0, i.e., the obstacle region Ωb is impermeable, and when kb ↑ ∞ and the flow in the

entire Ωn is essentially of Stokes type. We note that this means that kbx implicitly depends

on B(x, t). The model (7.1) is stationary but with time–dependent data. One can expand

this dependence to make it vary with B or with the amount of EPS, which would make

kbx vary smoothly with x, but we have not done this. This heterogeneous Brinkman flow is

the stochastic immersed boundary Stokes model that was presented in [21] if we choose the

penalization parameter η = kbx(x)
µ . Authors of [21] showed that the flow profiles between

two parallel plates becomes similar to the Hagen-Poiseuille flow as η →∞ and the flow rate

decreases at O(η0.5). We refer readers to [21] for the stability analysis.

We complete (7.1) with appropriate boundary conditions. Here we impose the no–slip

condition on Γrn as well as the Dirichlet condition on the inflow Γin, and natural outflow

conditions on Γout, both portions of ∂Ωn, respectively

u|Γrn
= 0, u|Γin

= uD(x), and µ∇u · n− pn = 0 on Γout. (7.1c)

In the examples we also use uD to denote the average of uD(x) over Γin, and we usually set

up a parabolic inflow profile on Γin.

We acknowledge here the important analyses of the influence of shear stress between

the Stokes and Darcy domain discussed, e.g., in [30, 91, 97, 98]; these relate to the Beavers-

Joseph-Saffman interface condition imposed at fixed interfaces such as soil-surface water

interface. Instead, in our heterogeneous Brinkman flow (7.1) we allow the permeability kbx

to vary, and in which k−1
bx ↓ 0 when B ↓ 0, such as close to the interface ∂Ωb. This is

important because the “interface” between Ωb and the “bulk fluid” may not be very well

defined, and at the length scales involved we believe it is not critical to resolve the fine

details of the fluid flow normal to that interface, see, e.g., the comments in [71]. In the end,
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the heterogeneous Brinkman model we use in this paper improves on the use of Stokes flow

outside Ω∗b with the no-slip condition as in [114], and we defer a more detailed study to

future work.

7.1.1 MAC method for heterogeneous Brinkman flow

In this section we describe the numerical method for the heterogeneous Brinkman

flow model (7.1). We first recall the MAC method for Stokes model (2.14) from Sec. 2.24.

We can derive the MAC method for (7.1) by adding the diagonal entries of Darcy resistance

term ∼ k−1
bx to the matrix in (2.24). This first require us to evaluate KΩ at the interior cell

edges, i.e., (Ei,α)i \ Γ.

Recall the notation from Sec. 2.5 for uniform rectangular grid covering Ω. The har-

monic averaged values of KΩ at cell edges Ei,α of the cell Vi are denoted by K|Ei,α . We

write the collection of K|i,α for all i = 1, 2, . . . ,M as Ku for α = w, e and Kv for α = s, n.

Then the Darcy resistance term µk−1
bx u and µk−1

bx v are approximated by µK−1
u and µK−1

v .

The MAC method for (7.1) is
µ(Au +K−1

u Iu) BT
u

µ(Av +K−1
v Iv) BT

v

Bu Bv



U

V

P

 = F, (7.2)

with identity matrices Iu, Iv = IM(M+1).

7.1.2 Computational complexity for the flow solver and upscaling

Now we discuss the computational complexity to solve (7.1) for (U, V, P ) using the

MAC scheme that we described above. Here we also give the computational cost to calculate

the upscaled permeability.

Recall that we discretize Ω into M = Mx ×My grid cells. Again, the actual degrees

of freedom would be less than M since we only solve for M |Ωn | / |Ω |. Since P is defined

at the cell centers, there are M degrees of freedom. The velocity components U and V are

defined at the cell edges, so they have (Mx + 1)My and Mx(My + 1) degrees of freedom. If

Mx = My, then the total degrees of freedom for (U, V, P ) is 3M + 2
√
M .

For the flow we first write the block 2 × 2 linear system. This involves calculating

permeability at the cell edges and other operations which cost about 10(M +
√
M). Next

we solve this saddle point problem using the banded QR in MATLAB. The band size p =

4(M+
√
M)+1, and the cost of banded QR in MATLAB isO(12M2+20M3/2+11M+2

√
M).
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We calculate the scalar permeability by the volume averaging method which we de-

scribed in Sec. 2.4. The cost of this upscaling step is about 5M .

The total cost of flow solver and upscaling is about O(12M2).

7.2 Illustration of heterogeneous Brinkman flow and upscaling

The following examples are designed to study the robustness of heterogeneous Brinkman

flow (7.1).

As we know (7.1) depends on the Darcy resistance term which includes permeability of

biofilm kbx. kbx can be obtained experimentally. However, the reported values in literature

vary. In [70, 71], kb = 10−9 or kb = 10−10 [m2] were used and [28] consider kb ∈ [10−15, 5×

10−9] [m2]. Thus, we observe the impact of kbx on the flow patterns. Since our model is

equipped with the spatially varying kbx(x), we also consider the flow at different length

scales. We demonstrate the relationship between kbx and the upscaled permeability KΩ as

well.

In this section we consider three examples of flow through 1) a channel with bio-gel

Fig. 7.1(a), 2) a channel with biofilm at the walls Fig. 7.1(b), and 3) converging channels

Fig. 7.1(c).

Example 7.2.1. Consider Ω = (0, L)2 [mm2] with bio–gel in the center as in Fig. 7.1(a)

with varying kb. The fluid flows from left to right, with the average of the parabolic inflow

values uD = 36 [mm/hr]. After (u, p) is found, we compute KΩ of Ω by the volume averaging

method [109] which is also described in Sec. 2.4. We vary L and kb while fixing other

parameters; see Tab. 7.2 for values of L and kb used.

The flow results of Ex. 7.2.1 are shown in Fig. 7.2 and Tab. 7.2. The transition of

the flow from inside to the outside of Ω∗b over a large range of choices of L, kb is smooth

which suggests that the model (7.1) and our implementation are robust, but more analysis

is needed (underway).

Furthermore, the flow depends significantly on L and kb, as expected; see, e.g., the

plots of |u(L/2, y) | in Fig. 7.2. In a small pore with L = 0.01 [mm], the flow streamlines

and velocity magnitude appear as if there was no biofilm, but for larger pores the flow is

directed partially outside the biofilm, and with L = 1 [mm] the flow behaves as if the biofilm

was impermeable. In Tab. 7.2 for intermediate L = 0.1 [mm] we see that as kb increases,

the resulting KΩ → kb, but the effect for the large pore is less significant for the kb we used.
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Data Results

L [mm] kb [mm2] KΩ [mm2] |||u|||∞ [mm/hr]

(a) 0.01 0 1.75× 10−7 1.58× 102

(b) 0.01 10−5 7.8× 10−6 3.42× 10−1

(c) 0.01 10−4 5× 10−6 3.37× 10−1

(e) 0.1 0 1.75× 10−5 1.58× 102

(f) 0.1 10−5 3.17× 10−5 5.87× 10−1

(g) 0.1 10−4 1.28× 10−4 3.08× 10−1

(i) 1 0 1.75× 10−3 1.58× 102

(j) 1 10−5 1.69× 10−3 9.84× 10−1

(k) 1 10−4 1.45× 10−3 8.94× 10−1

Table 7.2: Data and results for Ex. 7.2.1. (a – c) micro-pore, (e–g) meso-pore, (i–k) macro-
pore.

kb = 0 kb = 10−5 [mm2] kb = 10−4 [mm2] |u(L/2, y) |

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 7.2: Illustration of velocity profiles for Ex. 7.2.1 for L ∈ {0.01, 0.1, 1} and kb ∈
{0, 10−5, 10−4,∞}: (Top) L = 0.01. (Middle) L = 0.1. (Bottom) L = 1. See Tab. 7.2 for
data. Figures (d), (h), and (l) show the velocity profiles at the center of biofilm obstacle
|u(L/2, y) |.
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Figure 7.3: Permeability KΩ = KΩ(kb;w/H) from Ex. 7.2.2 depending on the width w of
biofilm layer relative to the channel width H and on the biofilm phase permeability. For
reference we present the match with Thullner’s model from [145], with Thullner parameter
b = 1.81.

Another class of approaches directs their focus on the thickness of biofilm as an

independent variable rather than on B itself; this is essentially a “model reduction” which

we illustrate now.

Example 7.2.2. Consider flow in a channel Ω = (0, 1.5) × (0, 0.1) [mm2] with biofilm

growing next to the walls; see Fig. 7.1(b). This study for kb = 0 and kb ↑ ∞ can be

reduced to the Poiseuille flow example [109]. When kb > 0 there is additional flow through

the biofilm layer, and we compare the variation of Darcy permeability KΩ with different

kb ∈ {0, 10−6, 5 × 10−6, 10−5, 10−4, 10−3,∞} [mm2], where w represents the assumed width

of one side of biofilm in this channel of height H = 0.1 [mm].

Fig. 7.3 shows that, as expected, KΩ decreases with w/H ↑ for all kb < ∞. As kb ↑,

the biofilm presence affects the flow less, as expected. Our result for the impermeable case

aligns well with Thullner’s permeability–porosity correlation model [145].

Furthermore, motivated by recent work in [22] we illustrate flow pattern through

converging channels filled with biofilms of different widths.

Example 7.2.3. We consider flow from left to right through three channels that converge

together as illustrated in Fig. 7.1(e), with Ω embedded in (−L, 2L)×(0, L) [mm2]. The width

of two diagonal channels are 0.18L, the middle channel is 0.09L, and the merged channel

is 0.404L thick. Two diagonal channels are filled with biofilm next to the walls of different

widths, 0.045L and 0.043L for top and bottom channels, respectively; see Fig. 7.1(e). We

use L = 1, uD = 3.6 [mm/hr], and solve for flow without obstacles, i.e., kb = ∞. Then we



108

(a) (b) (c)
Figure 7.4: Flow through channels filled with biofilm of different width for Ex. 7.2.3 for (a)
kb = ∞, (b) kb = 10−3 [mm2], and (c) kb = 0. The width of the middle channel is about
half of that for other channels.

kb [mm2] ∞ 10−3 0

KΩ [mm2] 2.6386× 10−3 1.4765× 10−3 8.6665× 10−4

|||u|||∞ [mm/hr] 13.82 17.26 32.98

Table 7.3: Results for converging channels in Ex. 7.2.3: permeability KΩ and maximum
flow rate |||u|||∞ depending on kb.

compare calculated KΩ to the cases with biofilm of kb = 0 or kb = 10−3 [mm2].

Results for Ex. 7.2.3 are shown in Fig. 7.4 and Tab. 7.3. Fig. 7.4(a) with kb = ∞

illustrates symmetric flow behavior with highest flow rate through the wider channels. When

a partially permeable biofilm of different widths is present, we lose the symmetric behavior.

Since 83% of the lower diagonal channel is filled with biofilm while only 50% of the upper

diagonal channel is filled, we see more flow goes through the upper channel than the lower

one. Also, the upper diagonal channel permits more flow than the middle channel due to

the difference in channel widths. With kb = 0, the width of upper diagonal and middle

channels are the same 0.045L, but we see higher flow traffic in the middle than upper

diagonal channel because we set the parabolic inflow condition uD(−L, y). We also confirm

that KΩ ↓ as kb ↓.

Our flow solver is also implemented so it can solve 3d problems. In following example

we extend 2d example from Ex. 7.2.1 to 3d.

Example 7.2.4. Let Ω = (−0.5, 0.5)3 [mm3] with a rock of radius 0.125 [mm] in the mid-

dle. We also have some biofilms evenly covering the rock. The radius of both biofilm and

rock is 0.25 [mm]; see Fig. 7.5(a) for a sketch of this Ω. Let the average inflow velocity

uD = 36 [mm/h]. We simulate the flow from bottom to top around impermeable region while
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(a) (b)

(c) (d)
Figure 7.5: For Ex. 7.2.4, (a) a sketch of Ω with rock in the middle (black) and surrounding
biofilm (gray), and slices of velocity profiles with the permeability of biofilm: (b) kb = 0,
(c) kb = 10−4 [mm2], and (d) kb =∞.

the permeability of biofilm varies kb ∈ {0, 10−4,∞} [mm2]. We also calculate the upscaled

permeabilities KΩ.

For Ex. 7.2.4, we want to work with fully developed inflow conditions to avoid bound-

ary effects. One can use the analytical solution to Hagen-Poiseuille flow in a rectangular

duct [159](Sec. 3.3.3). Alternatively, one can superimpose Ω in a larger domain which sup-

plies the flow entrance region. Here we embed Ω in a region with a long enough entrance

length along with the parabolic inflow condition satisfying the no-slip boundary condition:

u0(x, y) = −36uD(x+ 0.5)(x− 0.5)(y + 0.5)(y − 0.5).

The results of Ex. 7.2.4 are shown in Fig. 7.5 and they are 3d cases of Ex. 7.2.1 in
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Fig. 7.2.4 kb [mm2] KΩ [mm2] |||u|||∞ [mm/hr]

(b) 0 0.0394 75.6901

(c) 10−4 0.0180 73.9133

(d) ∞ 0.0181 67.3310
Table 7.4: Results of Ex. 7.2.4.

a macro channel L = 1 [mm]. Unlike the Ex. 7.2.1, the biofilms are in sphere shape and

attached to the rock surface. As we have seen in previous examples, we can see (some) flow

through Ω∗b for kb > 0. When kb = 0 Ω∗b is treated as Ωr. We also report the upscaled

permeability KΩ and the maximum velocity in Tab. 7.4.

After substantial further testing (not shown) we believe our flow model is robust and

ready to be coupled with the full biomass–nutrient dynamics. This will be done in Sec. 7.3.

7.3 Coupled biomass-nutrient-flow dynamics

We first discuss the coupling of the flow model (7.1) and biomass-nutrient model (6.6),

both written in the domain Ωn as is done usually in porous media. In every time step we

resolve

flow→ advection→ reaction–diffusion.

See, e.g., [112,113] for the workflow as well as Sec. 2.5.

We choose h = O(hc) to adhere to the voxel resolution of the image, and to ensure

reasonable accuracy of the biofilm layer. In particular, we also choose τ to satisfy at least

the CFL condition, as well as to obtain reasonable accuracy and resolution of the nonlinear

reaction-diffusion dynamics. A fully coupled model requires that we solve for the flow at

many time steps. Since calculating u at every time step is computationally expensive, we

update the flow u only every so many time steps. For example in a complex porous domain

Ω = (0, 1)2 [mm2] illustrated in Fig. 7.1(d) with h = 0.005 [mm] and τ = 10−3 [h] with

flow Pe ≈ 30, we observe that there is little change in the flow pattern for 0.2 [h]. Thus,

for our examples we choose τ = 10−2 [h] and compute u at every 10τ = 0.1 [h], so that

u(x, t) = u(x, tn) for t ∈ [tn, tn+10).

We solve this coupled process by using the numerical method described in Sec. 6.4 and

7.1.1. Next, we discuss the computational complexity for coupled flow and BN dynamics
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follow by two examples of coupled flow and biofilm-nutrient dynamics.

7.3.1 Computational complexity of coupled biomass-nutrient-flow solver

In this section we discuss the total cost of the BN_Flow solver [132]. As we discussed

above, the flow is resolved at some macro time-steps Kτ . Here we consider the case when

K = 10.

We recall the total computational cost for the BN solver from Sec. 6.4.4, which is

O(104M2) after about 1000 time-steps. We also recall that the cost of flow solver is about

O(12M2) from Sec. 7.1.2 per time-step. Since we resolve the flow at every 10τ , the total

computational cost of the BN_Flow solver is about O(2× 104M2) per simulation.

7.3.2 Simulation results for coupled flow and biomass-nutrient dynamics

Now we are ready to test the importance of including the flow in Ωb coupled to the

biofilm-nutrient model.

We start with an example in a micro-channel (micro–pore) in Ex. 7.3.1 and study the

coupled effects of flow and biomass–nutrient. Next we consider a many–pore example.

In a micro–pore with L = O(60 [µm]), in order to see the evolution of nutrient pene-

tration in Ω∗b , we must consider very small time scale and small τ . At high flow rates, some

microbes within x : B(x, t) < B∗ can be carried away by advection before nutrient arrives

which may result in limited biomass growth in that particular pore.

Example 7.3.1 (Coupled flow and biomass–nutrient dynamics, micro–pore geometry). We

consider the biofilm growth and nutrient consumption coupled to the flow in a micro–channel

Ω = 65× 130 [µm2]. We use the following parameters:

ρBB
∗ [kg/m3] B∗ Binit Binlet Ninit ρNNinlet [kg/m3]

10−4 0.9B∗ 0.6B∗1Ωb(0) 0 0 10−2

dB,0 [mm2/h] dN,w RN,bw kN , κ, α uD [mm/h] kb [mm2]

0.1 dm 0.1 2 0.5148 10−5

The velocity, biofilm, and nutrient profiles at selected time t ∈ {1.44, 2.88, 4.32} [s] are

shown in Fig. 7.6. We see that since the nutrient enters from the left, there is less microbial

growth near the right boundary, and biomass and biofilm grow initially faster on the left

side than on the right side. This lack of symmetry disappears later.
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Initial biomass domain

Velocity profile |u(x, t) |

Evolution of biofilm B(x, t)

Evolution of Nutrient distribution N(x, t)

t = 1.44 [s] t = 2.88 [s] t = 4.32 [s]

Figure 7.6: Illustration for Ex. 7.3.1 in a study of a micro–channel. Top: geome-
try of the domain including the initial biomass domain and the information about the
boundaries. Bottom: evolution of velocity, biofilm and nutrient profiles at selected time
t ∈ {1.44, 2.88, 4.32} [s].



113

t = 0 t = 0.1 t = 1, kb = 0 t = 1, kb = 10−4

Figure 7.7: Ex. 7.3.2 biofilm–nutrient dynamic in complex geometry. Top: B(x, t), middle:
N(x, t), and bottom: |u(x, t) |, as indicated in the leftmost panel. Two simulation cases are
shown when kb = 0 (biofilm is impermeable), and kb = 10−4 (biofilm is partially permeable).
From left to right the columns show the initial condition at t = 0, and the results at t = 0.1
(essentially identical for impermeable and permeable biofilm), and the results at t = 1
separately for impermeable and permeable biofilm. The regions indicated with ellipses at
t = 1 show the differences in biofilm growth depending on kb. The units are as usual
L [mm], t [h].

In our next example we compare biofilm–nutrient dynamics under the conditions when

Ωb is permeable and impermeable. We consider a complex “many–pore” geometry shown in

Fig. 7.1 (d).

Example 7.3.2 (Coupled flow and biomass–nutrient dynamics, many–pore geometry). As-

sume parameters as follows

B∗ B∗ Binit, Binlet Ninit, Ninlet dB,0 dN,w, RN,bw kN , κ α uD

1 0.9B∗ 0.6B∗1Ωb(0), 0 0, 1 3.6× 10−4 dm, 0.1 2 2 0.1

with Ω as in Fig. 7.1(d). Consider dynamics of biofilm growth and nutrient consumption

when the nutrient is injected from the left boundary of Ω. Assume the natural outflow

boundary conditions for B and N on the right boundary, and no–flow conditions on top and

bottom. Consider two cases when kb = 0 or when kb = 10−4 [mm2].

From the initial state shown in Fig. 7.7 (left) at t = 0, some of the microbes at low

concentrations are first transported by advection before nutrient arrives and are transported
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kb [mm2] KΩ [mm2] |||u|||∞ [mm/hr]

0 3.0059× 10−5 1.6391

10−4 5.6532× 10−5 1.2816

Table 7.5: Results for Ex. 7.3.2 at t = 1 [h].

away before reaching more mature phase with B ≈ B∗ as you can see in Fig. 7.7 (second

column) at t = 0.1 with the results almost identical to the case kb = 0 and kb = 10−4.

However, once they reach some of the pore throats with low flow rates |u |, and the nutrient

becomes available; they grow and reach mature state.

The results at t = 1 look similar at glance, but they show different biofilm formation

patterns. For example, we focus on two regions as indicated by ellipses and located in the

bottom left and top right in Fig. 7.7 for kb = 0 to kb = 10−4. At t = 1 [h], the nutrient has

reached steady state and fully penetrates the entire domain Ω.

We also show the permeability of this entire volume in Tab. 7.5. The flow rates are

lower when kb > 0, but overall, the permeability KΩ is higher for the case of partially

permeable biofilm.

7.4 Conclusions

In this chapter we formulated a model for biomass-nutrient dynamics which can be

coupled to the flow at pore scale. The model is continuum and monolithic, i.e., it is written

as a system of partial differential equations for the microbial species and nutrient (B,N)

and for fluid flow variables (u, p) over the entire domain Ω where fluid and microbes and

nutrient exist. Our model does not explicitly track any interfaces or free boundaries; track-

ing free boundaries puts an additional burden on the solver and may require regridding.

Instead, the interfaces can be found implicitly in our model by postprocessing the values of

B(x, t). For the flow we use a new approach by blending the Brinkman flow in (partially)

permeable biofilm domain with that in the bulk fluid: this is done with a Brinkman flow

model in which we adapt the biofilm permeability coefficient kbx(x) depending on the micro-

bial concentration B(x, t). Our model can demonstrate the evolution of biofilm growth but

is computationally expensive since it depends on the multitude of parameters. The compu-

tational complexity of our model is considerable for 3d. If one is interested in generating
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pore scale geometry with biofilm or other obstructions such as hydrate, we refer to [115]

for non-DNS reduced models.

Although our biomass-nutrient model does not include the biofilm surface attraction

parameter, we did not see unphysical biofilm growth behavior in our examples. As shown

in [114], our simulation results significantly depend on the original geometry and the initial

data. Since we started with enough quantity of biomass close to the grains, we were able

to avoid any issue that could arise from missing biofilm adhesion modeling parameters. In

the next section, we include this modeling component to reflect the adhesive property even

with a small quantity of initial biomass.

The study of the fine properties of the CCFD method in the context of degenerate and

singular diffusivities is subject to the current work. We also need further study of our model

in relation to other coupled models for bulk fluid-Darcy flows including the consideration of

Beavers-Joseph-Saffman conditions. The challenges remain as length scales are concerned

since we wish to apply the model from the single micro-pore size of 10 [µm] to columns of

[mm] size.
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8 Biomass-nutrient dynamics with surface attraction component

In this chapter we discuss the dependence of the BN model on the initial data, in par-

ticular, to the initial biomass amount. This corresponds to the work presented in [115](Sec. 3

and part of Sec. 6).

Challenges addressed: uncertainty. When working with the biofilm-nutrient model

or its version coupled to the flow, it is immediately clear that the pattern of the biofilm

growth depends significantly on the initial distribution of biomass. This problem is also

very hard to address using experimental data. Consider growing biofilm in a core sample.

We first need to inoculate some amount of microbes into the core sample. Unfortunately,

it is hard to guess where microbes would settle down and grow. This means that when the

same amount of microbes are injected into the identical core samples, their distributions

are hardly ever the same. We also expect the uncertainty of initial biomass distribution

to increase when the volume fraction of inoculated initial biomass Vb(0) = |Ωb(0) | / |Ωn |

decreases.

These observations stimulate our interest in biofilm growth patterns depending on

the initial data and in the uncertainty of the final biofilm pattern depending on the initial

biomass distribution.

Challenges addressed: adhesion to the grains. Moreover, our model does not

feature the biofilm surface attraction mechanism (“pore-coating” behavior). If Vb(0) is large

enough and the majority of Γrn is covered by initial biomass like in Ex. 6.5.1 in which

Vb(0) > 0.6 and over 80% of Γrn were covered by the initial biomass, we may expect

physical biofilm growth as in Fig. 6.5. However, if Vb(0) is small, microbes are likely to be

sparsely distributed which can result in violating the pore-coating behavior since dB is not

suppressed in a certain direction. This motivated us to introduce a modeling component

that “promotes” biofilm growth on the surface.

Our contributions to solving these challenges. Our idea is to introduce a biofilm

surface “attraction” parameter to (6.6) in Sec. 8.1 and compare the simulation results be-

tween the case with and without the surface attraction enforcement in Sec. 8.2. We also

consider the probability of upscaled permeabilities of Monte Carlo simulation results to

show the impact of attraction parameter on biofilm growth effectively.
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A = 0,M = 50× 50 A = 1,M = 50× 50 A = 1,M = 152× 114

Figure 8.1: Contours of the attraction coefficient a(x) defined by (8.2) (left) A = 0, (middle)
A = 1 in single-pore geometry, and (right) A = 1 in vertical lice from µ-CT column of glass
beads. pore scale geometries are illustrated in Fig. 8.2.

8.1 “Promoting” biofilm adhesion to surfaces

Recall the BN model (6.6) for u ≡ 0. The reaction term for B is

rgrowthB (B,N) = κBBm(N).

Based on the definition of rgrowthB (6.5), it does not involve the pore-coating mechanism. In

fact, the surface attraction behavior is difficult to calibrate quantitatively. Thus, we choose

to do this heuristically by decreasing the reaction rates away from Γrn.

The modified reaction term for B read as

rgrowthB (B,N, x) = κBB(x, t)m(N)a(x), (8.1)

where the attraction parameter a(x) is defined as

a(x) =


1, if A = 0,

2

1 + e10ao(x)/‖ao‖∞
, if A = 1.

(8.2)

Here ao is the solution to the Poisson equation

−∆ao = A,

with homogeneous Dirichlet boundary conditions on Γrn and homogeneous Neumann bound-

ary conditions on ∂Ω ∩ ∂Ωn = Γin ∪ Γout ∪ Γwall. We provide the plots of a(x) in Fig. 8.1.

With A = 0, we have a ≡ 1, and the rate rgrowthB (B,N, x) = κB(x, t)m(N). However, with

A = 1, we see that a ↓ 0 as the distance from the wall Γrn increases.

Next, we compare the biofilm growth pattern with attraction “off”, i.e., A = 0, to the

case with attraction “on”, i.e., A = 1.
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Figure 8.2: Illustration of (left) idealized single-pore geometry with M = 50 × 50 voxels,
and (right) vertical slice from µ-CT column of glass beads with M = 152× 114 voxels. Ωr
is in black, and Ωn in white.

8.2 Uncertainty in biofilm growth depending on initial data and upscaled
permeability

In this section we provide simulation results of biofilm growth in the idealized single-

pore geometry illustrated in Fig. 8.2 on the left. We show how the initial biomass Vb and

the attraction parameter a(x) influence the biofilm growth pattern as well as the upscaled

flow properties.

Example 8.2.1 (Biofilm growth with variant Vb and A). Consider the nutrient-rich ideal-

ized single-pore geometry Ω = (0, Lx) × (0, Ly) [mm2] illustrated in Fig. 8.2(left). We use

the parameters listed in Tab. 8.1 and simulate the biofilm growth using the numerical model

for (6.6) with u ≡ 0 which was described in Sec. 6.4. The randomly generated Ωb(0) for

cases (a–b) are shown in Fig. 8.3 at the top.

The biomass in each case evolves first, and the biofilm phase becomes mature when

B∗ ≤ B(x, t) ≤ B∗. Then this biofilm phase continues growing by interface creating new

biofilm phase Ω∗b(t). |Ω∗b(t) | increases with time. The growth pattern depends on the initial

state. Fig. 8.3(middle) and (bottom) rows show biofilm distribution evolved from the initial

states Fig. 8.3(top) row with A = 0 and A = 1, respectively.

Consider Vb = 0.0045 for A = 0. We start with the sparsely distributed initial

biomass. We see that the biofilm tends to grow spherically without strictly adhering to the

walls as expected. However, when we increase Vb, i.e., case (c–d), to cover Γrn evenly, the

biofilm sticks together but grows gradually away from walls.

On the other hand, with A = 1 the growth away from the walls is suppressed to

promote growth near the walls. We see a dramatic difference as compared to the cases

when A = 0.

Now we consider two cases (a–b) with Vb = 0.0045 and A = 1, the left bottom two fig-

ures in Fig. 8.3. These two have very different Ω∗b(t), and they have different permeabilities.
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Parameter Description Value/Units Ref.

Model parameters (fixed)

Lx × Ly Dimensions of domain Ω 1× 1 [mm] [114]

α Exponent in diffusivity, in eqn. (6.6c) 2 [39, 131]

dB,0 Motility coefficient of microbe 10−4 [mm2/h] [39, 131]

κ Utilization rate O( [1/h]) [39]

κN Specific substrate update rate 0.5 [39]

N0 Monod half-life 1.18× 10−3 [−] [39]

B∗ Maximum density of biofilm (relative) 1 [−] [114]

B∗ Threshold for B > B∗ which determines Ω∗b 0.9B∗ [114]

Model parameters (varying)

Ωb(0) Localization of initial biomass - random

Vb(0) Ratio of |Ωb(0) | to |Ωn | in initial conditions 0.0045 (a,b), 0.03 (c,d) ad-hoc

B0 Initial biomass density 0.6 (a,b), 0.8 (c,d) ad-hoc

A Attraction parameter in (8.2) {0, 1} ad-hoc

Discretization parameters

Mx ×My Spatial grid 50× 50 N/A

h Spatial discretization parameter 0.02 [mm] N/A

τ Time step 10−2 [h] N/A
Table 8.1: Parameters for the DNS model and simulations of (B,N) described in Sec. 6.3.
Simulations cases (a,b,c,d) for Ex. 8.2.1 are presented.
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(a) (b) (c) (d)

A = 0

A = 1

Figure 8.3: Generation of Ωb(0) with the biomass-nutrient for single-pore geometry on
50 × 50 grid, with simulation parameters for cases (a–d) are given in Tab. 8.1. Top row:
randomly chosen regions Ω

(i)
b used for initialization in B(x, 0) = B01Ωb(x) for each case

(a-d), with small relative volume Vb = 0.0045 in (a-b) and larger volume Vb = 0.03 in (c-d).
Middle and bottom rows: regions Ω

(i)
b obtained with the BN model at the time t(i) when the

corresponding obstruction volume Vo(t(i)) = 0.3; each region was obtained by simulation
with initial conditions shown in the top row, respectively. Smaller Vb and A = 0 corresponds
to less pronounced coating behavior.
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Figure 8.4: Realization of Ω
(i)
b : (left) Vb = 0.0045, B0 = 0.6B∗, (middle) Vb = 0.03, B0 =

0.8B∗, (right) Vb = 0.07, B0 = 0.6B∗

Let K0 be the permeability of the original geometry and K(i) be the upscaled permeability

for case (i). The flow profiles in Ωn for (a–b) with the boundary conditions used in Ex. 7.2.1

or Ex. 7.3.2 are very different since flow interferes with biofilm phase. This scenario results

K(a) < K0 < K(b). Since every case depends on the randomly generated Ωb(0), we consider

the probability of upscaled permeability.

8.2.1 Monte Carlo simulations

We now proceed to address the uncertainty of the simulation results with respect to

the initial biomass distribution. We do so by constructing Monte-Carlo simulations. We

generate a random set of initial conditions, proceed with simulations of the BN model in

each, and upscale to get the permeability.

Example 8.2.2. We follow Ex. 8.2.1, but now we perform Monte Carlo Simulations with

collection of I realizations of Ω
(i)
b (0), which lead to the biofilm evolution and formation of

Ω
∗,(i)
b (t). In this example we keep all input parameters fixed except Vb(0) and A. We consider

Vb(0) ∈ {0.0045, 0.03, 0.07} and A ∈ {0, 1}. For Vb(0) = 0.07, we use B0 = 0.6B∗. We also

use kb = 0, i.e., impermeable biofilm, and calculate the upscaled permeability at every t for

each evolution. Simulation ceases when pores get clogged.

Fig. 8.4 shows examples of Ω
(i)
b (0) for each Vb(0). Fig. 8.5 shows that the relationship

between KΩ and Vo = |Ω∗b | / |Ωn | depends on how these geometries were created, and in

particular on the choice for A. We see that KΩ(t) decays close to linearly with Vo =
|Ω∗b |
|Ωn |

with more uniform pore-coating behavior for A = 1 and large Vb(0), but we see faster decay

of KΩ with A = 0 or large Vb(0).

In the following remark we compare our permeability trends with the well-known

Carman-Kozeny correlation model.
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Vb = 0.0045, A = 0 Vb = 0.0045, A = 1

Vb = 0.03, A = 0 Vb = 0.03, A = 1

Figure 8.5: Dependence of KΩ(t) on Vo(t) with the BN model (6.6) discussed in Sec. 6.3.
Results for Ex. 8.2.1 are shown for 10 selected out of I = 100 realizations of geometries
generated with Vb and A as shown.
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A = 0, Vb(0) = 0.0045

A = 1, Vb(0) = 0.0045

Figure 8.6: Results of the BN model with Vb(0) = 0.0045 and A as shown. Left: one of the
realizations Ω

∗,(i)
b for Vo = 0.1. Middle: histogram of (K(i))i for Vo ∈ {0.1, 0.2, 0.3}. Right:

mean and standard deviation of (K(i)/K0)i for Vo ∈ {0.1, 0.2, 0.3}

Remark 8.2.1. Furthermore, we want to know whether the trends in the decrease in per-

meabilities predicted by our model and plotted in Fig. 8.5 are realistic, and how they compare

with the realistic data. For this we recall the model for the dependence of KΩ on Vo based

on Carman-Kozeny models for pore-coating scenarios [145] given from algebraic expressions

KΩ(Vo) = K0

(
1− Vo +

2(1− Vo)2

log(Vo)

)
.

In the range Vo ∈ [0, 0.5] considered here, these formulas predict a dramatic decrease (convex)

in KΩ.

In Fig. 8.6–8.8, we present the histograms and other statistical information about the

permeability distribution along with the cartoon of a sample geometry Ω
∗,(i)
b for Vb(0) ∈

{0.0045, 0.03, 0.07} and A ∈ {0, 1}. The mean and standard deviation values of the normal-

ized permeability K(i)/K0 for Vo ∈ {0.1, 0.2, 0.3} are shown in Tab. 8.2.

With these results, we are ready to comment on the sensitivity of our model (6.6) to

the input parameters based on the qualitative observation from Ex. 8.2.2 since the compa-
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A = 0, Vb(0) = 0.03

A = 1, Vb(0) = 0.03

Figure 8.7: Results of the BN model with Vb(0) = 0.03 and A as shown. Left: one of the
realizations Ω

∗,(i)
b for Vo = 0.1. Middle: histogram of (K(i))i for Vo ∈ {0.1, 0.2, 0.3}. Right:

mean and standard deviation of (K(i)/K0)i for Vo ∈ {0.1, 0.2, 0.3}
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A = 0, Vb(0) = 0.07

A = 1, Vb(0) = 0.07

Figure 8.8: Results of the BN model with Vb(0) = 0.07 and A as shown. Left: one of the
realizations Ω

∗,(i)
b for Vo = 0.1. Middle: histogram of (K(i))i for Vo ∈ {0.1, 0.2, 0.3}. Right:

mean and standard deviation of (K(i)/K0)i for Vo ∈ {0.1, 0.2, 0.3}
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Pore coating, single-pore geometry

Vb Vo A mean std. dev. A mean std. dev.

0.0045 0.1 0 0.5563 0.1998 1 0.7002 0.1855

0.0045 0.2 0 0.3564 0.1714 1 0.4842 0.1861

0.0045 0.3 0 0.1911 0.1660 1 0.2750 0.2087

0.03 0.1 0 0.6680 0.1233 1 0.7460 0.0754

0.03 0.2 0 0.4929 0.1130 1 0.5613 0.0554

0.03 0.3 0 0.3742 0.1001 1 0.4141 0.0480

0.07 0.1 0 0.7197 0.0825 1 0.7526 0.0184

0.07 0.2 0 0.5349 0.0780 1 0.5648 0.0341

0.07 0.3 0 0.3921 0.0641 1 0.4015 0.0043
Table 8.2: Sensitivity of the probability distribution ofK(i)/K0 to the simulation parameters
Vb and A for the geometries Ω∗b obtained with DNS for pore coating scenarios. The values

K presented here correspond to three selected values of the relative volume Vo =
|Ω∗b |
|Ωn | from

the set {0.1, 0.2, 0.3}.

rable quantitative data are unavailable. The input parameters we used in Ex. 8.2.2 are from

literature; see [114,131].

When Vb(0) is small, the variability of permeability is very high; see Fig. 8.6. This

means that it is hard to predict the permeability since the calculated K(i)/K0 are less

consistent. As biofilms fill up the pore, we see that the widespread unimodal permeability

distribution skew to the left except for the case with Vb(0) = 0.0045 and A = 1. For

Vb(0) = 0.0045 and A = 1, the mean permeability decrease linearly with respect to Vo, but

permeabilities are randomly distributed. For large(r) Vb(0) the variability of permeability

decrease significantly when we turn on the attraction parameter. This is expected since the

evolution is initiated from the evenly distributed biomass as we see in Fig. 8.4.

We conclude that our model (6.6) is sensitive to Vb(0) and A. Both Vb(0) and A

play a significant role in biofilm growth pattern. In particular we show that the realizations

produced from large enough Vb(0) with A = 1 can give a approximate permeability close to

the mean value.

Next we summarize the remaining contents of [115].
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8.2.2 Comparison of DNS to non-DNS approaches for biofilm domain
generation

As we showed above, DNS can demonstrate the evolution of realistic biofilm domains.

However, DNS are very complex and depend on a multitude of parameters which may or

may not be possible to calibrate. Thus, DNS would be computationally too expensive to

use if we aim to generate some realistic biofilm domains for a given V ∗b .

Alternatively, one can use non-DNS approaches as was first explored in [150] for the

generation of obstructions in pore scale domains inspired by both biofilm and hydrate crystal

applications. These approaches were compared to DNS for the biofilm application in [115].

In [115, 150] two non-DNS approaches are used. These are (1) CLPS model, a con-

strained version of Allen-Cahn model [152] for phase separation with a localization term,

and (2) LP method, the Markov Chain Monte Carlo method using a lattice Ising-type

model [89]. Both methods can produce realizations of obstructed domains by finding the lo-

cal minima of some nonconvex energy functional. We first briefly describe the CLPS model

followed by the LP method. Then we report the comparison results with our BN model.

CLPS model. The CLPS model is a reduced model that uses the ability of the Allen-

Cahn equation for phase separation with volume constraint to produce the obstructed do-

main. The rock surface Γrn is detected heuristically through a localization function rather

than introducing additional complexity from electrochemical interactions. We also use the

Lagrange multiplier to keep the volume constraint. Here we only need to solve for an order

parameter.

LP method. The LP model is motivated by the statistical mechanics of discrete lattice

models which improves the dynamics for phase transition. Given an initial domain Ω with

some V ∗b where biofilms are randomly simulated in some voxels in Ωn. Each voxel is equiva-

lent to a node of a lattice for the LP method with values {0, 1, 2} which indicate rock, void,

and biofilm phases, respectively. Using the Metropolis algorithm [85, 89, 133], we swap a

pair of nodes at each time-step and seek its stationary state by minimizing the Hamiltonian

energy functional.

Summary of BN vs CLPS vs LP for biofilm domain. The CLPS model produces

qualitatively similar biofilm domains from the BN model with A = 0. Biofilms aggregate

in distinct “colonies" while not covering the entire Γrn. When we use the LP method, we

can generate the domain with biofilm covering Γrn evenly which is similar to our case with
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A = 1. These similarities are also confirmed by comparing the histograms of upscaled

permeability and the standard deviation plots.

Computational complexity of DNS versus non-DNS approaches. Next, we com-

pare the computational complexity of BN with CLPS and LP.

We recall first the computational cost for one realization of BN solver from Sec. 6.4.4.

After N time-steps, the computational cost of BN solver for one realization is O(12NM2).

For every realization, we also solve for flow and calculate the upscaled permeability. The

computational cost of this post-process is about O(12M2) per realization.

In addition, we implemented the new biofilm surface adhesion term involving the

attraction parameter A = 1 described in Sec. 8.1. Hence, we also need to pre-compute

the value a(x) prior to simulations. This step costs about O(M3/2) from CCFD and other

operations. We know that this step is only calculated once for I Monte Carlo simulations.

To give a concrete example, consider a simulation with the BN model until clogging.

The average wall clock time for Ex. 8.2.2 with Vb = 0.07 are 30 [s] for A = 0 and 2.2 [m] for

A = 1 for one realization. We see a big difference due to a more controlled growth pattern

corresponding to A = 1; simulations take longer because the clogging occurs at a later time.

Overall, the total cost of I Monte-Carlo realizations of BN simulations will be I ×

O(12M2(N + 1)) after N time-step.

Cost of CLPS. The number of unknowns for CLPS is M , and we solve for a linear

symmetric non-degenerate system by time-lagging. Also, the localization functions are pre-

computed. The cost per time-step is about 5M operations which includes dealing with the

volume constraint plus the cost of the linear solver solver(M + 1). Each realization takes

100 to 1000 time-steps to reach the stationary solution where the average simulation time

is about 10 [s].

Cost of LP. The LP method takes up to O(105) times-steps to reach its steady state.

However, the cost per time-step is only about 10 operations regardless of how large M is

since we only require a pair of nodes swapping and recalculation of Hamiltonian update.

We find that the average wall clock time for the LP method is less than 1 [s].

In the end we see that the non-DNS approaches are computationally effective and

provide an alternative to DNS of BN. Clearly, they do not represent physical reality but

produce meaningful distributions of upscaled permeability for the biofilm domains at low

cost. For more information we refer readers to [115,150].
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9 Summary, conclusions, and outlook

In this dissertation we presented the two important models of multiphase flow and

transport in porous media at multiple scales. Both models have different challenges, and

we were able to address some of them, but more work is needed, with some work underway.

We discussed the methane gas transport phenomena in the subsurface at Darcy scale

in Ch. 3–5 and presented rigorous stability analysis as well as some simulations illustrating

why the models are interesting and important. Our current work involves gas transport in

the gas zone below the hydrate zone as well as extensions to three-phase conditions, both

in equilibrium and non-equilibrium conditions. Furthermore, we wish to extend the study

on the hydrate model to pore scale which we need to obtain the upscaled permeability for

Darcy scale simulations using the coupled thermo-transport models that we described in

Sec. 3.11 and Sec. 5.3. The results from pore scale hydrate model can also be compared to

the non-DNS results for “pore-filling” cases from [115].

In Ch. 6–8 we discussed the biofilm growth model at pore scale coupled to flow. Our

main contribution is the fact that the coupled biomass-nutrient-flow model is monolithic

which we are able to use effectively to obtain permeability of complex geometry. We also

were able to compare our work with certain non-DNS approaches. Current and future work

includes error analyses for the monolithic model which would help to identify proper time

stepping.
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