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Chapter 1: General Introduction

This dissertation encompasses four self-contained papers corresponding to the relevant
phases of the presented research. The first being a state of the art or review paper
published in Nuclear Engineering and Design. As a review paper, it sets the scene to the
domain of nuclear, radiological, and automation science to give an overview of some of
the different areas where learning-based methods are being applied. It is the basis of the
rest of this thesis, as the following chapters build on each of the different subsections of
the review paper. The second paper, also published in Nuclear Engineering and Design,
looks into the application of neural networks to predict the behavior of a prototype of
a nuclear reactor system. The third paper was submitted for publication in Nuclear
Instruments and Methods in Physics Research Section A. It focuses on the application to
gamma spectra classification using convolutional neural networks in combination with an
explainability method to understand the rationale of the decision of the algorithm. All of
them also note the future work that needs to be done to develop trust among practitioners
in the field as it considers many areas where modern technologies are being applied. I,
Mario Enrique Gómez Fernández, am the principal investigator and first author of the
work that is presented herein.
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Abstract

Nuclear technology industries have increased their interest in using data-driven meth-
ods to improve safety, reliability, and availability of assets. To do so, it is important to
understand the fundamentals between the disciplines to effectively develop and deploy
such systems. This survey presents an overview of the fundamentals of artificial intel-
ligence and the state of development of learning-based methods in nuclear science and
engineering to identify the risks and opportunities of applying such methods to nuclear
applications. This paper focuses on applications related to three key subareas related to
safety and decision-making. These are reactor health and monitoring, radiation detec-
tion, and optimization. The principles of learning-based methods in these applications are
explained and recent studies are explored. Furthermore, as these methods have become
more practical during the past decade, it is foreseen that the popularity of learning-based
methods in nuclear science and technology will increase; consequently, understanding the
benefits and barriers of implementing such methodologies can help create better research
plans, and identify project risks and opportunities.

2.1 Introduction

Over the past decades, many industries have integrated information technologies to sup-
port the design and innovation of products and services. While the field of nuclear science
and engineering is not known as a highly innovative industry, there has been increasing
interest in modernizing the instrumentation in existing and new nuclear reactor tech-
nologies[1] as well as emergent technologies, such as nuclear robotics. The International
Atomic Energy Agency (IAEA) has suggested that it "is necessary to address obsoles-
cence issues, to introduce new beneficial functionality, and to improve overall performance
of the plant and staff" [2] and to "enhance and detect subtle variation that could remain
unnoticed" [3], including the use of artificial intelligence (AI)[4] to support decisions. For
instance, in nuclear power plants (NPP) there are approximately 1,200 different alarms
for a 3-loop pressurized water reactor (PWR).

In the early days, the field of AI focused on solving problems that were intellectually
difficult for humans and problems that could be easily described by simple mathematical
rules[5], such as chess. Unfortunately, for tasks in uncertain real-world environments,
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the development of a set of rules is not practical and becomes infeasible. The subfield of
AI, known as machine learning, has the particular characteristic of deriving relationships
or set of rules from data, which allows machines to solve more complex problems and
deal with uncertainty. Subsequently, its application in engineering as a fast-estimator
tool or fast optimization has become an area of research. In the nuclear industry, the
interest in developing a computer-aided system to reduce information load in operations
tasks has been at the forefront since the 1980s[6], and in radionuclide detection since
the 1990s[7]. While many applications of learning-based methods have been proposed,
understanding both the potential benefits and challenges that arise from these methods
will help individuals to better formulate the problem and collect representative data for
a robust implementation.

While the field of AI has seen remarkable achievements over the past decade, robust-
ness and ethics in AI is of increasingly concern to the scientific community because of
emerging applications of AI in high-stakes applications[8], such as surgical assistants[9],
autonomous driving[10], power grid stability[11], or autonomous weaponry[12], because
of the possible risk imposed to humans lives. Therefore, the purpose of this paper is to:
(1) provide an introduction to the fundamentals of artificial intelligence (AI), (2) explore
the evolution of different technologies and their integration and challenges within the nu-
clear science domain, and (3) provide recommendations for more robust implementation
in academia and beyond. Furthermore, due to the nature of the paper, more emphasis
is placed on concepts and scope of methods while the technical details are left to the
references. By providing the reader with this review, it will ease the researcher to better
allocate resources and investigative capabilities for future studies.

The reminder of this paper is organized as follow. Section 2.2 provides a brief overview
of the field of artificial intelligence and explores some of the concepts and historical
achievements of machine learning methods, particularly neural networks, as they are
widely applied in the nuclear domain. Section 2.3 presents an overview of different appli-
cations of machine learning in the nuclear and radiological engineering domain, focusing
on identifying the potential benefits and challenges in this specific area. Section 2.4 dis-
cusses and provides suggestions on further research, as well as some of the challenges
for a successful deployment of such methods in the nuclear industry. Finally, section 2.5
provides a summary, conclusion, and recommendations.
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2.2 Fundamentals of Artificial Intelligence

The literature on the subject of artificial intelligence (AI) is rather vast and can be
overwhelming for non-AI researchers. To better understand the advances in the field,
however, it is important to understand the fundamentals as they will guide nuclear and
radiological scientists and engineers to better define the objectives for a successful and
robust implementation. As one of the newer fields in science and engineering, the term
artificial intelligence was coined in the mid-50s at the Dartmouth Summer Research
Project on AI. Historically, four schools of thought have been followed as noted by[13]:
• Think Humanly: the philosophy of fundamentally understanding how humans think

(e.g., human reasoning)
• Act Humanly: the philosophy of making machines perform tasks than can be perceived

as performed by a human (e.g., [14])
• Think Rationally: governed by the field of logic or laws of thought, where problems

are described and solved in a logical manner (e.g., solving a problem using principles
vs practice)

• Act Rationally: the philosophy of achieving the best/expected outcome, based on the
exogenous and endogenous factors over time
These four schools of thought have formed the basis of the overall goal of AI of:

building machines that can learn and think like people. Nonetheless, early ambitions
diminished over time as the magnitude, difficulty, and lack of understanding of human
reasoning was acknowledged[15]. Thus, it is practical to use reductionism by isolating spe-
cific aspects that comprise AI. As one of the most important papers in the history of AI,
which the authors highly encourage reading, "Steps Towards Artificial Intelligence"[16]
notes five major subfields that fundamentally constitute the AI domain: planning, pat-
tern recognition, credit assignment, and inference; each focusing in solving a different type
of problem. The search problem: given a well-defined problem, a computer must have
ways to find a solution other than an exhaustive search. The planning problem: given
a complex problem where limitations exists (e.g., time, cost, constraints, and multiple
solutions are possible), a machine must have ways to select only a few for full analysis.
The pattern recognition problem: given a problem, a machine must classify it based on
extracting features that are invariant to common distortion into the problem’s different
categories. The credit assignment problem: uses the analogy of reinforcement to encour-
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age desired behavior, through which a system "learns" by stimulation via reward. The
inductive inference problem: given a specific domain; a machine must have methods that
can be used to construct a general statement based on unrecorded information.

Following the combination of these concepts, AI is focused on solving four fundamental
problems[17] to try to model human traits:
1. General problem-solver: modeling "reasoning" by modeling the human cognitive pro-

cess
2. Game-playing machine: modeling "strategy" through strategy games
3. Question and answering machines: modeling "comprehension" through natural lan-

guage and text
4. Other applications: modeling "decision making" through heuristics, combinatorial,

and searching problems
Subsequently, when a machine is able to answer all fundamental question, then it can

be considered to be "intelligent". The latter has been an ongoing debate[15] and it is
beyond the scope of this study. Nevertheless, within the last decade AI systems have been
able to play Jeopardy, recognize objects in photos, describe the photos, and recognize
your voice and commands in a “human-like” way. Before discussing implementations in
nuclear science, let us present the most popular machine learning methods that have and
continue to be used for pattern recognition problems.

2.2.1 Popular machine learning methods

There are several AI methods that can be encountered in the literature, the “old-fashioned
AI” [18], more modern AI[13], and machine learning methods [19, 20, 21], each having
its own strengths and weaknesses. Generally, most machine learning methods try to find
an empirical model f that learns from a training data matrix D ∈ Rn×d obtained from
a system, where d is the number of concerned variables and n is the number of training
data samples. Machine learning combines the pattern-recognition, credit assignment, and
inductive inference problem, where in supervised learning, the updates aim to reduce an
error and improve the algorithm’s pattern recognition capabilities by modifying parame-
ters, and for unsupervised learning, the updates work toward matching an expected value
based on the presented data[22]. There are five popular algorithms that can be found
in nuclear and radiological science applications; these are decision trees (DT), artificial
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neural networks (ANNs), nearest neighbor (NN), support vector machine (SVM), and
Naïve Bayes (NB), because of their flexibility for pattern recognition problems, see Table
2.1. Two more are also presented, evolutionary algorithms (EA) and fuzzy logic, as they
are found in nuclear- and radiological-related problems as standalone algorithms or in
combination with neural networks (i.e., neuro-fuzzy or neuro-evolutionary), in some of
the literature.
1. Decision trees are some of the simplest, yet powerful, methods in machine learning and

work by partitioning the input space into local simple models in each of the resulting
regions. While many optimal partition strategies exist, the most commonly used are
based on the GINI index (see CART[23]), entropy, or information gain (see C4.5 and
ID3[24, 25]).

2. Artificial neural networks are some of many biologically-inspired techniques that en-
ables a computer to learn from observational data. It is inspired by the biological
structure of the brain, where the artificial counterpart reproduces a similar function-
ality[26]. They work by presenting data to the network via the “input layer,” which
communicates to one or more “hidden layers” where the processing is done via a system
of weighted “connections.” The development and success of the error back-propagation
algorithms, gives the network the ability to use a loss function to find a learning rule
that decides under which circumstances the weighted connections need to be modified
such that the desired value and the actual output value are close [27]. ANNs are
the dominant learning-based algorithm used in nuclear and radiological science[28]
because of their ability to deal with nonlinear, inconsistent, and noisy data [29, 30].

3. k-Nearest Neighbor is an intuitive classification technique that classifies a data instance
according to the majority class of its k nearest neighbors. This algorithm requires a
distance metric such as Euclidean distance.

4. Support vector machine is a powerful non-parametric method whose principal idea is to
construct a decision boundary that maximizes the distance to example points, referred
to as maximum margin separator. Furthermore, SVMs have the ability to embed the
data into a higher dimensional space using the original set. By transforming the data
into a higher dimensional space, a linear separator is found. This linear separator is
nonlinear when transformed back into the original space. This is the so-called kernel
trick. For further details see [31, 32, 33]

5. Naïve Bayes is formulated based on Bayes theorem P (y|x) = P (x|y)P (y)
P (x) , where the
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prior probability (P (y)) is estimated using the training set, and the class-conditional
probability P (x|y) is estimated assuming that the input variables are conditionally

independent (i.e., P (y|x) = P (y)
∏N

i−1 P (xi|y)
P (x) ).

6. Evolutionary learning techniques are popular because of their nature-inspired concept
of simulating the evolutionary process. These holistic approaches do not guarantee a
best solution; however, they generate or approximate a good enough (local optimum)
solution to complex problems in a reasonable amount of time. Generally, the central
common feature of all evolutionary methods is that they start off with an arbitrary
initial solution, iteratively produce new solutions by a (simple) rule, evaluate the newly
generated solutions by a penalty or fitness function, and report the best solution found
during the search process. Presumably the goal of generating solutions is to create
more, and varied, solution conjectures to enhance diversity and quality. For further
details see [34, 35, 36].

7. Fuzzy logic is a technique derived from the so-called principle of incompatibility[37]
which correlates imprecision and uncertainty to the complexity of a complex system.
Introduced in 1965[38], fuzzy set theory and fuzzy logic revolves around the idea
that given two sets, an object can belong to a set with a degree of membership. This
deviates from the classical set theory and classical logic where an object either belongs
to one set or not. Fuzzy logic approaches are efficient when applied in fields where
imprecision and uncertainty is high and are less efficient when precision is apparent[39].
For details on the evolution of fuzzy logic see[40]

2.2.2 Beyond classical ANNs

In the new millennium, multi-layered ANNs have demonstrated remarkable performance
when data is plentiful because they have outperformed other alternative machine learn-
ing methods (e.g., SVM) through improved representation learning via many hidden
layers and improved optimization algorithms that facilitate training. ANNs have been
mathematically substantiated to be universal function approximators[41, 42, 43] (i.e.,
according to the universal approximation theorem), there exists a neural network with at
least one hidden layer with a finite number of units that can approximate any function
at any desired degree of accuracy. Additionally, training speed also saw a breakthrough
with the utilization of graphical processing units (GPUs), which excel at fast matrix and
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vector multiplications required not only for image processing but can also be used for
ANN training. GPU hardware reported an increase in speed by a factor of 20[44] or
more based on the specifications, and better computational scalability[45] than central
processing units (CPUs). Deep learning (DL) models have rapidly evolved to become the
state-of-the-art technology in machine learning tasks such as object recognition, speech
recognition, adversarial games, and controls. The two most popular deep learning struc-
tures are convolutional neural networks for object detection in images and recurrent neural
networks and Long Short Term Memory for sequential information with time dependen-
cies. Although these require higher levels of understanding to appropriately tune them,
the application of these structures has been rather limited in nuclear sciences, but some
examples are detecting steel cracks underwater using video[46] or isotope detection[47]
using convolutional structures.

Convolutional Neural Networks

Convolutional neural networks, more commonly known as CNNs or ConvNets, were firstly
introduced in [48, 49, 50] by means of mimicking the vision process of mammals, and
later implemented for handwritten number recognition[51]. Currently, CNNs are the
dominant structure for object recognition tasks and it can be comparable to human-
level performance[52, 53, 54]. The novelty of the approach was the use of convolution
layers to significantly reduce the number of parameters that needed to be optimized, as
shown in Figure 2.1a, which both reduces the memory required and increases the model
efficiency. The convolution layer consist of three different stages: convolution, activation,
and pooling. First, a convolution is a mathematical operation of two functions of real
value arguments that form a new function [55]. Secondly, each entry is then transformed
by a nonlinear activation function to extract features. At the pooling stage, the pooling
function replaces the output of the network with a statistical summary of the nearby
outputs. The key concept from this stage, is to make the representation invariant to
small transformations of the inputs. Thus, after the feature extraction stage the m × n
image is divided into a m × n disjoint and take the max (or other function) feature
activation over these regions to obtain the "convolved features" that can then be used for
classification.
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(a) 2-D convolution representation, where
the blue dotted box represents the filter or
kernel that is multiplied by the red dotted
box, resulting in the new image.

(b) A typical feedforward neural network
representation or two hidden layer and one
output layer.

(c) A recurrent network structure represen-
tation with the unfolded equivalent. The
red dotted line represents the section where
more elaborated units are placed, such as
the shown in 2.1d.

(d) Conceptual visualization of gated units,
where Gi is the input gate, Go is the output
gate, and Gf is the forget gate.

Figure 2.1: Popular deep learning structures
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Recurrent Neural Networks

Recurrent neural networks (RNNs) have been the preferred choice for tackling memory
tasks with time dependencies. However, when long-time dependencies are required to
be learned, RNNs suffer from the vanishing gradient problem [56], for which memory
structures have been proposed in the form of gated units. Gated recurrent neural networks
are based on the idea of hybrid-designed gates that create pathways through time whose
derivatives neither vanish nor explode [55]. This is achieved by using three types of
control gates: the write control that determines the input to the memory state (with
linear activation), the forget gate that controls how much of the stored memory value
is transferred to the next time step, and the output gate which regulates the output of
the memory cell. The most popular gated type units used are the gated recurrent unit
(GRU)[57] and the Long Short Term Memory(LSTM)[58], and these are regarded as the
state-of-the-art for sequential data such as speech recognition and translation[59].

2.2.3 Comparison of popular algorithms

While it is unrealistic to expect that the data collection or generation is going to be
perfect, data availability is one of the major factors that determines which method is
suitable for a successful application. A selection criteria is presented in Table 2.1[60, 61]
with the following criteria explanations:
• Mixed data: the ability to handle different types of data (i.e., continuous, discrete,

etc.)
• Missing Values: sensitivity to unrecorded data
• Irrelevant inputs: sensitivity to values that do not contain relevant information to the

application
• Outlier: robust to unusual or inconsistent values
• Data dimensionality: ability to handle increasing features in data sets
• Monotonic transformations: sensitivity to monotonic transformations
• Interpretable: ability to understand the rationale behind the decision/classification of

the algorithm [62]
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Table 2.1: Sensitivity evaluation of popular machine learning methods

Criterion DT ANNs NN SVM NB
Mixed data yes no no no yes

Missing Values yes no some no yes
Outlier yes yes yes yes no

Monotone transformations yes some no yes no
Data dimensionality yes yes no no yes
Irrelevant inputs some no no yes no
Interpretable yes no no yes yes

2.3 Intelligence Augmentation: A Nuclear and Radiological Challenge

The civil uses of nuclear technology have a number of different applications with various
benefits to the general public. Medical applications include the use of nuclear materials
to diagnose, monitor, and treat many different human conditions; industrial applications
are numerous and are characterized by being non-intrusive including sterilization, radio-
graphy, smoke detectors, and food safety among others; academic applications include
the use of nuclear material for laboratory practices, and research and development; and
energy applications include to produce electricity, heat water, and work in conjunction
with other energy sources. While it is common to characterize physical systems employ-
ing first principles, which can be very accurate when the underlying laws are well known,
empirical methods can be used to develop approximate mathematical models when the
laws are not well understood [63], which, if used correctly, can be very useful.

This section presents the performance and flexibility or machine learning methods in
nuclear technologies, with a focus on nuclear reactor health monitoring, gamma spec-
troscopy and optimization, and their support to both technical and economic objectives
shown in Table 2.2; ultimately, enhancing safety, reliability, and availability of the equip-
ment. The collective problems in this section are of different types: (1) regression refers
to the prediction of continuous values, (2) classification to the prediction of a category
or class, or (3) combinatorial and exploratory. In nuclear engineering, researchers have
identified the potential use of pattern recognition in various tasks in nuclear reactors
[64, 65, 66, 67]. In radiation detection, research takes advantage not only of the pattern
recognition to analyze the reactor detectors’ signals for anomalies, but also to analyze
and categorize gamma and neutron spectrums for transportation, security, and environ-
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mental monitoring. Lastly, optimization applications use available data for the discovery
of more, and varied, solutions in a timely manner.

Table 2.2: Nuclear Science Objectives

Technical Economical

• Reduce radiation exposure to person-
nel

• Enhance equipment reliability
• Avoid actuation of safety systems
• Assist with correct and timely deci-

sion making
• Enhance safety margins

• Optimize the maintenance schedule
• Improve plant availability
• Avoid escalation of minor problems

into major event
• Support power uprate and life exten-

sion

2.3.1 Plants health and management approaches

In nuclear power plants (NPPs), there are a wide variety of tasks that have been studied
using learning-based methods, particularly the development of neural network structures
for parameters prediction and classification using sensor data to perform monitoring,
diagnosis, prognosis, controls, planning, and other tasks that can benefit from pattern
recognition. Degradation, ageing, and transients can happen over a short or long period
of time; thus, it is feasible to extract a unique set of patterns or fingerprints for the
operators to perform a root cause analysis in a timely manner. The primary goal of such
applications is to provide a quick and accurate insight such that additional time can help
derive the optimal procedure/strategy to be implemented to correct the situation via
artificial anticipators or fast first estimation tools, therefore increasing the safety of the
plant and components.

In NPPs, learning-based methods have been studied for instrument calibration mon-
itoring, equipment monitoring, reactor core monitoring, loose part monitoring, transient
identification, reactor controls, and others. The task of monitoring and diagnosis systems
consists of detecting the departure of a process from normal conditions to characterize
the new process/state based on temporal trends [68]. Conventionally, a fault thresh-
old level for each plant parameter is set and an alarm is given when the signal exceeds
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the threshold level (i.e., if-then rules derived from model-based approaches[69, 70, 71]).
However, minor abnormal conditions may not be detectable until they reach a critical
threshold[72, 73], which is where computer-aided systems can prove to be worthwhile.
Plant health and management capabilities are not unique to the nuclear industry, as other
complex engineered systems are also interested in such features [74, 75, 76, 77, 78], which
translates to better performance and help conserve the asset in optimal conditions. The
economic impact of the development of advanced systems can have a potential savings of
$48 billion USD over a 40-year life span of a typical power plant as shown in [79]; roughly
$1 billion USD per year, when optimal operation is maintained.

Research in the monitoring domain using simulators and codes has been extensive [80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 72, 90, 73] because of the potential economic impact.
Nevertheless, for the success of intelligent aided systems in the nuclear industry, the use
of real or prototypical systems is also encouraged as such systems will be subject to the
problem of verification and validation (V&V) [91]. Some examples of machine learning
studies using real plant information are: the Tennessee Valley Authority Sequoyah NPP
[92] to determine the variables that affect the heat rate and thermal performance, Watts
Bar NPP [93] for operating status recognition, High Flux Isotope Reactor operated at Oak
Ridge National Laboratory [94] for sensor calibration systems and sensor fault detection
systems, experimental Breeder Reactor [95], prototypical Small Light Water [96] for plant
wide behaviour analysis, and Narora Atomic Power Station [97] to identify eight particular
initiating events. Although there have been some real setting applications, the use of real
NPPs information for performance studies has been rather limited due to the highly
regulated industry and intellectual property protection concerns [64, 30, 98].

Other applications where machine learning methods can be encountered are: the
prediction of the behavior of systems components such as heat exchangers[99, 100, 101,
102], power peaking factor estimations[103, 102], key safety parameter estimation[104,
105, 106], aging and degradation[107, 108], uncertainty propagation[109], severe accidents
classification[110, 28, 111], functional failures of passive systems [112], research reactors
[113], and more recently crack detection in internal reactor components[46]. All of these
problems are well suited, with the advantage that more data can be generated or made
available to researchers.
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2.3.1.1 Flow regime identification

Other related areas to reactor safety is the identification of flow regimes. Several method-
ologies for flow identification seem to be subjective based on visual observations[114], with
some being more objective [115, 116]. The use of learning-based methods to predict flow
regime identification based on nonintrusive instrumentation has been explored mainly
using feed forward neural networks[117, 118, 119, 120, 121, 122, 123, 124, 125, 126], in-
cluding some deep learning approaches[127, 128]. Proper flow regime identification can
accelerate the design analysis and operation of engineering systems as correct hydrody-
namic and kinematic mechanism can be modeled. Additionally, nonintrusive techniques
can be used for the detection of wears, leakages, or unwanted events while operating.

2.3.2 Radiation protection

As one of the fundamental pillars of nuclear safety, intelligence augmentation also ex-
tends to its application in radiation protection-related tasks. In spectroscopy, the goal
is to find a pattern or structure, full peaks in most cases, and differential count rates
by analyzing the distribution of counts over a spectrum. Efficient and accurate charac-
terization and identification of radionuclides is of great importance as it can help with
illicit transportation of radioactive materials, or contaminants in the field, which are tra-
ditionally determined using gamma spectroscopy. There is a wide variety of application
for spectroscopy ranging from the analysis of the instrumentation, the spectrum itself,
its meaning, and its derived features. Radionuclide identification using learning-based
methods based on gamma and neutron spectroscopy is of interest as such approaches
do not require templates or peak libraries calculated in advance[129]. Moreover, they
can help discern subtle patterns in large multivariate data sets to reduce false negatives
[130], calibration drifts [131], data uncertainties[132], and peak overlapping [133, 134].
Other applications with limiting research include nuclear stability and decay[135], SVM
for anomaly detection from thermoluminescent dosimeter (TLDs) glow curves[136], ra-
diation signals encryption[137], radiation therapy[138], among others. However, because
of the large use of spectroscopy in the field, the scope of this section will be focused on
this particular application. While the interest has been extensive, and many different
learning-based algorithms have been used, neural networks are the dominant method.
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In gamma spectroscopy, research related to the identification of isotopes for hand-
held instrumentation [47, 139] based on ANSI N42.34 standard isotope selection[140],
independent isotope classification [141, 142, 143, 144, 145], mixture of elements[7, 47,
146, 141], and specific activity of naturally occurring radioactive materials (NORMs)[147,
148] have been carried out. Similarly, neutron spectroscopy analysis has been a subject
of research using Bonner sphere systems[149, 150, 151], and neutron dose estimation[152]
using neural networks have been reported. The identification of radionuclides can also
be extended to other specific subfields such as special nuclear materials detection and
environmental monitoring where detection is more difficult. In other specific areas such
as optimization, one of the key principles of radiation protection, via machine learning
approaches can lead to the discovery of solutions that typical deterministic approaches
are not able to provide or for which the exploration can be too costly.

2.3.2.1 Special nuclear material

Illicit nuclear material trafficking is one of the applications where substantial efforts have
gone into devising strategies for inspection. The use of gamma spectroscopy is also ex-
tended to nonproliferation and nuclear security applications. However, special nuclear
material (SNM) identification presents additional challenges, such as data collection time,
background level, and attenuation or distorted shielded spectrums, where scientists have
applied machine learning methods to improve on such challenges. Clustering methods
for radioxenon classification [153], neural networks for shielded plutonium [154], ura-
nium ore compound classification[155, 156], spent fuel pool classification to ease nuclear
forensics [157], and general SNM detection using: fuzzy logic systems [158, 159, 160,
161], evolutionary algorithms [162, 163], Gaussian process[164], naïve bayes[165, 166],
are some of the different tasks for which learning-based methods have been considered.
The Gamma Detector Response and Analysis Software (GADRAS)[167, 168] has been
used as a training data generator in some of the presented work for both gamma and
neutron spectrums.
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2.3.2.2 Environmental monitoring

Environmental monitoring is achieved mainly from the detection of gamma radiation, as
it is the most penetrating radiation either natural or anthropogenic. Other situations
include the environmental application of gamma spectroscopy for geological, geochem-
ical, and environmental mapping, allowing the interpretation of regional features, such
as atmospheric radon levels; human-made contamination around nuclear facilities to de-
termine a baseline for accidental releases; mining and other industrial activities [3, 169].
However, environmental systems present a particular barrier that their dynamics are com-
plex, nonlinear, and affected by many exogenous stressors; therefore, the development of
simulation models, risk mapping, spatial predictions, representative data collection and
analysis[170] are ongoing challenges, where models obtained through empirical data are
typically better suited than those from analytical equations[171, 172]. Some noticeable
studies are, legacy site Ra-226 contamination characterization[173] and distribution[174];
and remediation monitoring[175], which can serve as a first estimation tool to provide
rapid insights of the activity, depth, and distribution of the contamination. Estimation
of an ambient dose rate risk map using various machine learning methods[176], spatial
prediction of fallout at the Chernobyl site [177], suitability of neural networks for uranium
activity ratio in environmental spectra[178], and bio-availability and bio-accumulation of
NORMs in aquatic species through produced water from the gas and oil industry [179,
180], are some of the areas that have shown promise for the potential benefit of learning
based methods. Other technologies such as the Internet of Things (IoT) are also being
explored in the field of environmental monitoring [181, 182].

2.3.3 Optimization

Designing and analyzing engineering systems can be a very complex process, of which
energy systems are an exceptional example. Optimization can be defined as the "act of
obtaining the best result under the given circumstances" [183]. The highly iterative process
in an interdisciplinary environment leads to multiple suboptimal designs or decisions until
one is determined to be the best performing one (i.e., meeting the requirements imposed as
well as being cost-effective, efficient, reliable, and durable[184]). In practical engineering,
optimization problems are expressed as an analytical function that includes decision
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variables and constraints, such that traditional optimization tools can be used (e.g., first
or second order optimization algorithms). However, in some cases analytical formulations
are not feasible or too simplistic to capture the complexity, for which nontraditional or
modern optimization methods are of particular interest.

In nuclear and radiological engineering, many processes can be optimized by using
a well-studied, and justifiable, machine learning method. Bio-inspired methods, such
as neural networks, evolutionary algorithms, and particle swarms, among others, are
very popular in the optimization domain as their working mechanism allows them to
generate more, and varied, solutions to enhance diversity and quality. Combinatorial
types of problems can easily take advantage of these methods; for instance, in fuel loading
management [185, 186, 187, 188, 189, 190, 191], optimal maintenance scheduling[192],
dry cask loading[193, 194, 195], packing and waste handling[196], or dose optimization
[197, 171].

2.3.3.1 Robotics and controls

Although the scope of this paper is on learning based methods, robotics and controls
are complementary, as optimization is at the core of control theory and machine learning
methods are also being evaluated[198]. The desire to provide autonomy (i.e., ability for
self-governance in the performance of functions[199]) to machines has been one of the
fundamentals of the field of artificial intelligence as it can eliminate or reduce human
roles from low level tasks. Optimization and controls are conceptually different, where
the goal of controls is to produce a desired output given feedback from the systems con-
trollers[184], (i.e., the output is known). Robotics in the nuclear industry can be beneficial
by substantially reducing the time that an individual has to spend in a radiation area
and remotely handling material that is considered hazardous, or when the conditions
of the environment or structural integrity are unknown. For instance, [200] identifies
three key areas where autonomous controls can be beneficial: (1) detection and progres-
sion limitation of off-normal events, (2) detection and response to degraded or failure
conditions[201], and lastly, (3) potentially unattended operation with limited human in-
teraction[202]. Others include, reactor temperature or power control[203, 204, 205, 206],
coordinated control strategies development using fuzzy logic and neural networks in a
multi-unit small modular reactor [207, 208], inspection [209], hazardous material search
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and radiation mapping using robots[210, 211, 212], and computer vision for radwaste
management[213]. Robotics and controls present some particular challenges as they re-
quire special design considerations, material selection, operational constraints, processes
knowledge, etc. With high-stake controls, it is of paramount importance that the prob-
ability of taking or advising the wrong solution path is minimal, which is part of the
robust artificial intelligence presented in recent years [8].1

2.3.4 Suitability of popular algorithms in nuclear and radiological
problems

This section presents a general analysis based on the commonly collected data for each of
the different applications and is summarized in Table 2.3. Please note that more than one
algorithm among the popular algorithms can be applied for a specific task, which is also
reported in the literature. Other factors such as training speeds/cost, accuracy, model
complexity, interpretability, etc., become part of the selection process and are beyond the
scope of this review. Table 2.1, along with literature (i.e., section 2.3), is used to provide
an overall assessment of the suitability of the algorithms that have been presented.

Moreover, it is worth noting that most, if not all, existing engineered systems of rele-
vance here consists of the human, measurement of physical phenomena, purposeful design
of small to large engineered devices and systems (D&S) and other than unanticipated
events, operation of devices and systems as designed, constructed and intended. On the
basis thereof, both phenomena and function of D&S many times have been created with
inherent complexity (i.e., with multiple variables/parameters not only interacting within
the D&S but via human-machine interaction). The current state of understanding of com-
plexity is limited and rudimentary not only because those who acknowledge complexity
are scattered across disciplines, but there is no emerging consensus on characterizing it.
The emerging application of learning-based approaches, across the sub-disciplines and
applications noted herein is an attempt to characterize the complex interactions of phe-
nomena and D&S via an algorithmic approach that relies on coded sampling of limited
channels/streams of data generated by measure or functional ’gauges’ of the D&S. What
is evident in the applications described here is that phenomena and D&S with say ap-

1For a more detailed review on nuclear robotics, see [214], and radiation effects on electronics, see
[215, 216].
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proximately 10-50 variables and parameters approximately defined complexity and that
characterization of such a problem is limited to non-existent.

Further, learning-based methods of relevance and complexity level herein implied are
largely known or recognized as substantiating the bulk of any characteristic distribution
of recurring phenomena or function. In other words, these methods do not work well for
outliers. Characterizing rare occurrences, such as "black swan" events, are not well-suited
for these methods. Thus, as noted by [tokuhiro2019, 217], learning-based methods are
able to decipher many familiar, coded “if–then–when” instances at a systematic level as
inspected and then predict the likely next occurrence. Therefore, at this time, prescriptive
and systematic approaches and methods to complexity, other than accessible cases of
applicability as cited here, do not yet exist.

Table 2.3: Algorithm selection scheme for nuclear and radiological data criteria

Plant health and management: Data collected for this application consist
mainly of NPP’s sensor data or synthetic data (simulators or codes), which mainly
represents continuous data collected over a long period of time from different sen-
sors, i.e., large datasets. Noise has to be considered when applied to NPP data
collection
DT Suitable; better suited for categorical features, larger trees are hard to inter-

pret, small changes in input data can result in low accuracy (misclassifica-
tion).

ANNs Suitable; require hyperparameter search (time consuming), data-hungry, not
interpretable.

NN Unsuitable; Very sensitive to the definition of neighborhood, does not per-
form well in high dimensions, computationally expensive for large data sets.

SVM Somewhat suitable; requires tuning hyperparameters (time consuming), not
suitable for extremely large data sets.

NB Unsuitable, conditional independence assumptions between variables are
usually not suitable for monitoring applications operating on time series
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Table 2.3 (continued)
Flow Regime Identification: Data used in flow regime identification has mainly
consisted of visual representation for both vertical and horizontal flow regimes.
This data includes variations in bubbles shapes, locations, deformations, diameters,
etc.
DT Unsuitable; it requires very large trees, sensitive to input variations.
ANNs Suitable; mainly CNNs, same requirements as above.
NN Unsuitable; does not perform well for high dimensional data.
SVM Somewhat suitable; sensitive to variations, transitions between regimes will

affect its performance (i.e., hard to know which kernel function works best).
NB Suitable; feature engineering is required, conditional independence assump-

tion may be too strong.
Spectrometry: Data collected for this application is measured information and
synthetic information. Typically the raw data is uses, i.e., all channels with no
preprocessing
DT Somewhat suitable; small changes in input data can result in misclassification

(e.g., decalibrated samples).
ANNs Suitable; RNNs should be considered for temporal spectrometry. Same chal-

lenges as above.
NN Somewhat suitable if the nuclides of interest are strong gamma emitters and

peaks do not overlap; it does not scale well, other algorithms might achieve
better classification performance.

SVM Suitable if the data set is not large (e.g., number of channels matter); irrel-
evant information can result in misclassification (e.g., background for field
work).

NB Suitable; conditional independence assumption may be unsuitable and other
algorithms might achieve better accuracy.

Optimization, Robotics and Controls: The data collected for these applications
varies depending on the task (i.e., exploratory, vision, learning-based controls, etc.).
Large data sets, noisy, incomplete and highly uncertain data can be found in this
area. Synthetic data-based problems are presented which can remove some data
related issues. Combinations of algorithms are also common (e.g., neuro-evolution).
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Table 2.3 (continued)
DT Unsuitable; missing information, data variation affects the performance.
ANNs Suitable for most applications, especially for reinforcement learning (con-

trols).
NN Not suitable for large, uncertain, and noisy datasets.
SVM Suitable; however, keep in mind scalability and hyperparameter tuning.
NB Likely unsuitable due to conditional independence assumption; more general

Bayesian networks might be more suitable.

2.4 Discussion and suggestions

In many industries, the rapid growth of information is creating a dependence and reliance
on advanced algorithms to analyze and make decisions, or partial decisions, gradually
reducing human involvement. Unlike the nuclear industry, nonnuclear power systems
have made digital upgrades to their systems, whose lessons learned can be an advantage
for more effective modernization[2]. While automating and modernizing technology is
part of its evolution, [218] notes that underloading the mind can be just as harmful as
overloading because new issues arise not only by the levels of automation defined for the
domain, but also the result from the interface between the user and automation[219].
Failure to acknowledge the challenges can lead to the following: misuse or the over-
reliance on automation; disuse or the under-utilization of automation; and abuse or
inappropriate application of automation[220]. Thus, fostering experts’ understanding
of the benefits of developing learning-based solutions can help avoid potential issues.
Moreover, a lack of proper evaluation method has previously been identified in [221],
resulting in additional challenges and an impediment to the progress and improvement
in research and practice in the application of learning-based methods in engineering.

2.4.1 Ethics

The aspiration to apply and deploy intelligent systems to improve processes is a co-
evolution between developers, users, and technology. Unfortunately, such human-machine
symbiosis is coupled with ethical issues, which are not always anticipated by developers
or the common users. While data and algorithms are ethically neutral (i.e., they don’t
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have a built-in perspective on what is right/wrong or good/bad), the use of data and
learning-based algorithms can represent a risk (e.g. trusting black box models). [222]
provides a philosophical discussion of how developers tend to evaluate the performance of
the tools based on accomplishing what they were designed for, and after the technology
matures, these norms become of second nature (i.e., ethics derived from their human
developers). Other prominent ethical issues in the AI domain that are inherently carried
over to other domains are: undesirable uses of AI[223], loss of accountability[224, 225],
and machine ethics[226]. All of these constitute an active, and rapidly evolving, area of
research that continues as the adoption of AI methods increases.

Because AI methods have not been extensively used, and AI-based autonomy is still in
early research stage in nuclear science and engineering, ethical issues are not commonly
mentioned. Based on the state of the technology, the goal of intelligent systems in
nuclear sciences must be to inform and provide users with the appropriate inputs to
formulate, conform, and perform the most effective actions, and not the replacement
of any human input. A human counterpart has the expertise to ensure that trade-
offs are fully understood before taking proper decisions, while taking advantage of the
superior data processing from computers. Thus, learning-based systems should be a
supplement to, rather than a substitute for, traditional methods to enhance decision
making. This holistic approach should serve as a guide to the development of robust
intelligent augmentation systems through the most effective implementation of learning
algorithms toward the desired task, heeding the different objectives shown in Table 2.2,
Table 2.1 and Section 2.2. Further consideration beyond the technological advantages
and ethical issues are legal and social implications and the development of guidelines and
standards (with a recent publication being [227]).

2.4.2 Collaborative and open access research

As information technologies continue to advance, so is the way research is being conducted
and shared; particularly in the fields of AI/ML. The concept of FAIR (Findability, Ac-
cessibility, Interoperability, and Reusability) [228] is now a reality that all researchers
must consider. Open platforms, such as GitHub Inc., allow research to be shared such
that reproducing others’ work is simple, and improvements on the current state of the
research can be made. Thus, increasing FAIR and focusing on new ideas will avoid un-
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necessary time expenditure in reproducing results or duplicating research. Moving the
research process into a more collaborative and inclusive process will encourage more dis-
cussion and interaction with other peers, companies, and developers, during (and after)
the research cycle. This process, in principle, increases the quality of the contributions
made and accelerates innovation. While sharing information is one way of facilitating
research, information technologies include other research enhancers such as the Internet
of Things/IoT (see Section 2.3.2.2) and cloud computing2, which allow for users with lim-
ited resources to access services at lower costs, such as intensive multi-physics simulations
[232].

2.5 Conclusion

This study presents a review of various applications of machine learning to the field of
nuclear science and associated engineering. It is the authors’ intent that this review
helps provide researchers with a background and guidance to understand the benefits
of new technologies as applied to the nuclear science domain to enable and accelerate
the scientific and technological outcomes of learning-based approaches. Furthermore, it
is crucial that the primary goal for the development and implementation of machine
learning algorithms is to provide fast estimation for better informed decisions for the
users (human in the loop), as well as assuring interpretability and reproducibility of the
models. Lastly, to accelerate innovation the use modern research accelerators that allow
for active (virtual) discussion and collaborations is encouraged. Ultimately, the goal is a
safe and effective application of learning-based method in nuclear science.
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Abstract

Early versions of artificial neural networks’ ability to “learn” from data based on
multivariable statistics and optimization demanded high computational performance as
multiple training iterations are necessary to find an optimal local minimum. The rapid
advancements in computational performance, storage capacity, and big data management
have allowed machine-learning techniques to improve in the areas of learning speed, non-
linear data handling, and complex features identification. Machine-learning techniques
have proven successful and been used in the areas of autonomous machines, speech recog-
nition, and natural language processing. Though the application of artificial intelligence
in the nuclear engineering domain has been limited, it has accurately predicted desired
outcomes in some instances and has proven to be a worthwhile area of research. The
objectives of this study are to create neural networks topologies to use Oregon State
University’s Multi-Application Small Light Water Reactor integrated test facility’s data
and evaluate its capability of predicting the system’s behavior during various core power
inputs and a loss of flow accident. This study uses data from multiple sensors, focusing
primarily on the reactor pressure vessel and its internal components. As a result, the
artificial neural networks are able to predict the behavior of the system with good ac-
curacy in each scenario. Its ability to provide technical data can help decision makers
to take actions more rapidly, identify safety issues, or provide an intelligent system with
the potential of using pattern recognition for reactor accident identification and classifi-
cation. Overall, the development and application of neural networks can be promising in
the nuclear industry and any product processes that can benefit from utilizing a quick
data analysis tool.

3.1 Introduction

There has been significant scientific interest in understanding and imitating natural and
biological process, particularly neural biology. One of the first neural methodologies was
first achieved with the creation of the perceptron capable of reproducing some of the
Boolean operators [1]. Later in the mid 80’s there was a lot of effort “to find a powerful
synaptic modification rule that will allow an arbitrarily connected neural network to de-
velop an internal structure that is appropriate for a particular task” [2]; in other words, a
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self-organizing method that can be used in machines to learn a task without being explic-
itly programmed. The application of neural methods has been found useful in addressing
problems that usually require the recognition of complex patterns or complex classifica-
tion decisions. In the domain of computers science, there has been a rapid improvement
of self-organizing methods along with advancements in data storage, parallel computing,
and processing speeds, which have made possible for these methods to succeed in the
development of new products and technologies. In the engineering domain, particularly
in nuclear engineering, the application of machine learning methods, e.g. neural net-
works, utilizing full-scale facilities or real components’ data has been rather limited. In
early applications researchers have used neural networks to assess the heat rate varia-
tion using the thermal performance data from the Tennessee Valley Authority Sequoyah
nuclear power plant, where a small artificial neural network was used to determine the
variables that affect the heat rate and thermal performance of the plant by looking at the
partial derivative of the different input patterns [3]. Others have developed monitoring
systems based on auto-associative neural networks and their application as sensor calibra-
tion systems and sensor fault detection systems [4] using the High Flux Isotope Reactor
operated at Oak Ridge National Laboratory and an experimental Breeder Reactor [5].
During the mid-1990’s a group of scientists explored the application of neural networks
in the area of multiple-failures detection with the objective to develop an operator sup-
port system that can support operators during severe accidents in a nuclear power plant,
referred as Computerized Accident Management System [6]. In nuclear operations the
inclusion of redundant, independent and diverse systems is necessary to ensure adequate
defense-in-depth; however, the increase in systems lead to more complex human-machine
interactions. Neural networks have also been trained with data from a simulator, and the
results proved to be very satisfactory at modeling multiple sensor failures and component
failure identification [7]. Other areas outside of nuclear surveillance and diagnostics have
also shown interest in the application of neural networks; for instance, in two-phase flow
the use of neural methods as a method to predict two-phase mixture density [8] or flow
regime identification [9]. More recently, researchers have applied advanced optimization
algorithms for the prediction of the behavior of systems components such as a printed cir-
cuit heat exchanger [10, 11], power peaking factor estimations [12], key safety parameter
estimation[13] and functional failures of passive systems [14]. The reduction in computa-
tional cost and the availability of data facilitates further the use of such methods where
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predicting more complex tasks is desired. In this research the application of neural meth-
ods using two transient events from a prototypic test facility is presented, where noise
and uncertainty are present as an inherently natural phenomenon of a realistic problem.

3.2 Materials and Methods

3.2.1 Multi-Application Small Light Water Reactor

The Multi-Application Small Light Water Reactor (MASLWR) is an integral pressurized
test facility developed by Idaho National Engineering and Environmental Laboratory,
Oregon State University and NEXANT-Bechtel [15], with the conceptual design shown
in Figure 3.1. The MASLWR module includes a self-contained vessel, steam generator
and containment system that rely on natural circulation for its normal operation. The
test facility is scaled at 1:3 length scale, 1:254 volume scale and 1:1 time scale, and it is
designed for full pressure (11.4 MPa) and full temperature (590 K) prototype operation
and is constructed of all stainless steel components[15]. The purpose of this facility is
to study the behavior of a small light water reactor concept design that uses natural
circulation for both steady-state and transient operation. The MASLWR concept was
the predecessor to the NuScale small modular reactor design.

Figure 3.1: MASLWR‘s Conceptual Design

The data used in this study has been collected for the International Atomic Energy
Agency as an International Collaborative Standard Problem (ICSP). Two different data
sets were used to train two different neural networks. The first, ICSP-3, characterize
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the steady-state (S.S.) natural circulation in the primary side during various core power
inputs [16]. The test procedure was to increase the power inputs of the heaters stepwise
from 10% to 80% full power in the core by 10% increments and had a total duration
of 6,348 seconds (∼1.76 hrs). The second, ICSP-2, characterizes the activation of safety
systems of the MASLWR test facility, and the long-term cooling of the facility to de-
termine the progression of a loss-of-feedwater transient (LOFW). For this test, first, the
facility was brought to steady state at 75% core power, 8.62 MPa and the main feed wa-
ter running in the steam generator, then, the main feed water was shut off, the core was
set to decay power, and a blow-down procedure was conducted until the High Pressure
Containment (HPC) and Reactor Pressure Vessel (RPV) were at equal pressures [17].
This transient had a total duration of 16,483 seconds (∼4.58 hrs).

3.2.2 Data

Data recorded from 58 different sensors was used as labeled data for the supervised
learning process, with the purpose of capturing the behavior inside of prototype’s RPV.
Given that the data collected in the test facility inherently contains noise and uncertainty,
the use of a neural network along with the backpropagation algorithm is suitable as this
algorithm is robust to noise [18]. However, the main challenge of the application of
such method to this particular application is to find the suitable parameters that are to
represent the problem, also known as feature selection. The selection of the features has
been based on the sensors that are mainly controlled by the test facility’s operator. Table
3.2 and Table 3.1 show the sensors used as inputs and outputs.
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Table 3.1: MASLWR instrumentation used as output parameters

Sensor Label Description
TF-[611-615] Thermocouples Inside the Outer Coil Pipe of the Steam Gen-

erator Inlet
TF-[621-625] Thermocouples Inside the Middle Coil Pipe of the Steam

Generator Inlet
TF-[631-634] Thermocouples Inside the Inner Coil Pipe of the Steam Gen-

erator Inlet
TF-[701-706] Steam Generator Liquid Temperature
PT-602 Main Steam Pressure
FVM-602-T Main Steam Temperature
FVM-602-P Main Steam Pressure
FVM-602-M Main Steam Pressure Volumetric Flow Rate
TH-[141-146] Core Heater Rod Temperatures
TF-132 Primary Water Temperature inside Chimney below Steam

Generator Coils
DP-101 Pressure Loss in the Core
DP-102 Pressure Loss between Core Tope and Cone
DP-103 Pressure Loss in the Riser cone
DP-104 Pressure Loss in the Chimney
DP-105 Pressure Loss across the Steam Generator
DP-106 Pressure Loss in the annulus below Steam Generator

Moreover, given the different scales in the data, the entire set had to be normalized,
using Equation 3.1, to a [0, 1] range to improve learning and avoid the saturation regions
of the sigmoid function.

X ′ = (Xmax −Xmin)
X −Xmin

Xmax −Xmin
+Xmin (3.1)

The implementation of other normalizing techniques can also be used as long as it
scales within the output range of the selected activation function.
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Table 3.2: MASLWR instrumentation used as input parameters

Sensor Label Description
TF-[121-124] Core Inlet Temperatures
KW-[101-102] Power to the core heater rod bundles
TF-[101-106] Center of Core Thermocouple Rod, six thermocouples spaced

6’ apart, measuring water temperatures
TF-111 Primary Water Temperature at top of Chimney
KW-301 Power to Pressurizer
TF-501 Feed Water Temperature
FMM-501 Main Feedwater Volumetric Flow Rate
FCM-511 Feed Water Supply in the Steam Generator Outer Coil Mass

Flow Rate
FCM-521 FeedWater Supply in the Steam Generator Middle Coil Mass

Flow Rate
FCM-531 Feed Water Supply in the Steam Generator Inner Coil Mass

Flow Rate
PT-511 Feed Water Pressure in the Steam Generator Outer Coil

Mass Flow Rate
PT-521 Feed Water Pressure in the Steam Generator Middle Coil

Mass Flow Rate
PT-531 Feed Water Pressure in the Steam Generator Inner Coil Mass

Flow Rate
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3.2.3 Neural Networks 1

Firstly introduced in [21], neural networks are biologically-inspired techniques, which
enables a computer to learn from observational data. McCulloch and Pitts stated that
"The nervous system is a net of neurons, each having a soma and an axion. Their
adjunctions, or synapses, are always between the axon of the neuron and the soma of
another. At any instant, a neuron has some threshold, which excitation must exceed to
initiate an impulse. This is determined by the neuron, not by the excitation. From the
point of excitation, the impulse is propagated to all parts of the neuron" [21]. To mimic a
biological neuron, its artificial counterpart reproduces a similar functionality. As shown
in Figure 3.2, the network receives a series of data points or input vector (x1,··· , xi),
whose contribution to the ’impulse’ is determined by the synaptic weights associated
with each neuron (wi), and the activation function will use the weighted sum of input
signals (

∑
wixi) to emit an output signal, whose value will determine if its ’impulse’ is

propagated to the rest of the network. This output will then become an input of the next
layer and so on.

x1

x2

xi�1

xi

w1

w2

wi�1

wi

+1

h(
X

xiwi + w0)

w0

O

Figure 3.2: Artificial neuron representation

Neural networks are constructed using this principle to include multiple layers with
many neurons to increase their representation capabilities as shown in Figure 3.3. Con-
sequently, when building neural networks, there are a few fundamental properties that
need to be considered:

1. Activation function

2. Optimization algorithm
1If the reader is interested in further details see [19] [20].
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3. Structure or architecture of the network (known as model selection)

For the first property, the logistic or sigmoid function (Equation 3.2) is used as it is
one of the most commonly used activation functions.

a(x) =
1

1 + e−x
(3.2)

To describe what is known as the forward pass, the first the input vector is presented
to the network and is then multiplied by the synaptic weights, as described previously.
Let us defined it as:

cj = wTj x+ b (3.3)

where b represent the bias term, wj is the weight matrix of the jth layer. Then the
activation function decides whether to propagate the value by applying the activation
function

h(cj) = a(cj) (3.4)

After the activation function is applied, the result will then become the new input (x)
for Equation 3.3 and the cycle repeats for as many jth layers were chosen and the output
layer is reached. Taking the following general forward pass formula:

fp(x) = aj(w
T
j aj−1(w

T
j−1aj−2(···a1(w

T
1 x+ b)) + bj−1) + bj (3.5)
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Figure 3.3: Neural network representation

In the next couple section the selection of the structure and optimization algorithm
is explained for the optimal design of a neural network.

3.2.3.1 Backpropagation Algorithm

The novel development and success of the backpropagation algorithm is greatly attributed
to the ability to use an error function as a corrective factor for the connection strength
(synaptic strength or weight), which allows the neurons to learn many layers of non-linear
feature detection, such as recognizing handwritten zip codes [22]. Its primary objective is
to find a learning rule that decides under which circumstances the hidden units should be
active by a measure of the weights that when applied in a neural network the desired value
and the actual output value are close [2]. This is achieved by minimizing an objective
function, in this case, the mean square error (MSE) function,

En =
1

2

∑

n

(ŷj − yj)2 (3.6)

and,
ŷj = hj(w

T
j x+ bj) (3.7)



66

where ŷj is the predicted value for a particular input set and yj is the desired output
value. Then the gradient of this function with respect to the weights can be expressed
as,

∂En
∂wj

=
∂En
∂hj

∂hj
∂wj

(3.8)

Which indicates by what amount the error will increase or decrease if the value of wj
is to change by a small amount. After some mathematical manipulation, we obtain the
following general backpropagaion formula

∇E = wj−1δj ∗ h(cj−1) ∗ (1− h(cj−1)) (3.9)

where δj is the error from higher up units. Then, it can be used to form the gradient of
the error function that is used for optimization.

For this study, a regularized mean square error was used to further control over-fitting

En =
1

2

∑

i

(ŷji − yji)2 +
λ

2
w2 (3.10)

where λ is the penalization term or regularization coefficient that controls the complexity
of the model by driving some of the weights to zero, or decreasing the importance or
influence of a feature, also known as weight decay [23].

3.2.3.2 Conjugate Gradient Method

The conjugate gradient method (CG) or the Fletcher-Powell method is a state-of-the-art
algorithm for optimization problems as it is able to converge rapidly and handle large
amounts of data [24]. It has many advantages over the typical steepest descent, as it
is a more robust and mathematical intense method that will converge as long as the
function to be minimized is continuous and differentiable. The method starts similarly
to the Cauchy’s method or steepest descent in which minimization of the error gradient
is desired by moving in the negative direction of the gradient:

do = −go (3.11)
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Then new values of w are calculated using the gradient direction by an amount of αn

wn+1 = wn + αndn (3.12)

Where αn can be calculated by a line search minαF (αdn), and it is the optimal step
size in the direction dn. Once the new values of w are obtained the gradient is then
updated by evaluating the gradient with respect to the new values of w

gn+1 = g(wn+1) (3.13)

Followed by the generation of a new direction

dn+1 = −gn+1 + βzdn (3.14)

Where, βz =
gTz+1gz+1

gTz gz
in the Fletcher-Reeves algorithm; however, in this study a

slight variation of the non-linear version of CG algorithm has been used called the Polak-
Ribiere algorithm. This algorithm is similar to the Fletcher-Reeves algorithm, with the
only difference being the way βz is calculated (see [24])

βz =
gTz+1(gz+1 − gz)

gTz gz
(3.15)

Overall, the elegance of this algorithm is that in order to generate a new direction d,
only three vectors need to be stored (the previous and current gradients and the previous
direction) which makes efficient use of computer memory.

3.2.3.3 Structure

One of the principal issues regarding neural networks is the lack of an approach to de-
termine the proper size of the neural network, where the usual approach is to try and
keep the best [25]. Consequently, a K-fold cross validation (CV) technique was used to
determine the optimal size of each of the hidden layers in each of the networks, such that
each of the models’ configuration is trained and tested 10 different times (K=10), and
the model that minimizes the average cost function of the test set is selected2. Figure

2This process has been parallelized
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3.4 shows the different neural network structures used and Table 3.3 3 shows the con-
figuration ranges in each structure, totaling a number of 28 models tested. Moreover,
this ensures that the size of the neural network is optimized and computational power is
efficiently used.

(b) (c) (d)(a)

Figure 3.4: Neural Network structures

Table 3.3: Ranges of number of units in each of the different structure presented in Figure
3.4

Structure Layer 1 Layer 2 Layer 3
(a) [20:10:80] [30:10:90] [40:10:100]
(b) [40:10:100] [30:10:90] [20:10:80]
(c) [20:10:80] [10:5:40] [20:10:80]
(d) [20:10:80] [20:10:80] [20:10:80]

3.3 Results

3.3.1 Neural Network Optimization

For the supervised learning process the data has been divided in a 70 to 30 ratio, i.e.
training set (∼70%) and test set (∼30%). Each of the different networks has been opti-
mized to use the ideal size and the regularization parameter to control over-fitting. Figure
3.5 shows an interesting pattern, where both neural networks have a preference towards
structures 3.4.b and 3.4.d of medium size. Increasing the complexity also increases the

3The numbers shown in the table represent the initial number of units, number units incremented by
each model, and final number of units
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MSE of the test set, making the model less accurate. Table 3.4 summarizes the results
of the optimal size and regularization parameters for each of the networks.
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Figure 3.5: Mean MSE as a function of structure

Table 3.4: Neural network sizes and regularization parameter

Network ID Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

λ

Network 1 30 30 30 5E-3
Network 2 40 30 20 5E-4

3.3.2 Predictions

Despite the fact that neural networks are known to have a “black box” characteristic
and lack of physical representation, the results achieved in this study show the ability
of neural methods to successfully learn from the data regardless of the complexity of
the data. To illustrate the results obtained, a number of sensors and its predictions
were selected in each of the networks along with a linear correlation coefficient to show
the linearity between the data and the neural network predictions. Figures 3.6a, 3.6c,
3.6e, 3.6g, 3.6i, 3.6k, 3.6m, show the learned behavior under a LOFW event. It can be
observed that there is good agreement between the predicted data and the real data, as
the network learned the average of most of the sensors data. The temperature patterns
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in this data set are similar since the prototype is set to a decay mode and the neural
network is able to fit the behaviors very well. It is worth pointing out that Figures 3.6g
and 3.6i show quite some noise and the network seems to identify and leans towards the
greatest concentration of data (Figure 3.6g), or learns an average (Figure 3.6i) as the real
data varies substantially. Similarly, Figures 3.6b, 3.6d, 3.6f, 3.6h, 3.6j, 3.6l, 3.6n, show
the learned steady-state behavior under a various core power. Again, good agreement is
shown between the data and the prediction. In this data set, the event produces more
challenging patterns and not all the sensors have similar patterns, in fact, they are quite
different from one another. Again noise in the data is expected, but it can also affect the
network’s perdition capability. For instance, in Figure 3.6h the unnormalized differential
pressure sensor fluctuates between 501.16 Pa and 503.28 Pa and the network is not able
to fully adapt to the sensors behavior; nonetheless, the network does lean towards the
greatest concentration of data, identifying a linear pattern for this sensor.

3.4 Discussion

In the study of complex systems there are a wide variety of different properties that
determine the behavior of the overall system and researchers usually pursue the use of
physical representation to explain the physical phenomena. The test facility used here
clearly shows the difficulty of analyzing a system as a whole since some of the data
show a wide variety of patterns that no model can fully adapt. Neural networks can
mimic most highly non-linear relations, making this method popular among researchers.
However, their success depends on the characteristics of the chosen model, which vary
based on trial-and-error, in addition to other limitations [26], such as the availability,
quantity and quality of data that can be obtained from test facilities or share with other
institutions. Data is the most important element in the application of machine learning,
which can represent an issue in the nuclear industry as most the data is restricted. Parallel
computing has also significantly accelerate parameter tunning, i.e. regularization and
structure, and continues to improve with the use of GPU; nonetheless, it is still a challenge
in neural networks as there is no given technique to quickly define these parameters that
best suits the problem. Overall, the expressiveness of neural networks has produced
satisfactory results, as many in the literature, for proof-of-concept in this application.
It is highly encouraged in this research to further investigate this application in the
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(a) LOFW-Core Heater Temperature (b) S.S.-Core Heater Temperature

(c) LOFW-Middle Coil Steam Generator
Temperature

(d) S.S.-Middle Coil Steam Generator Tem-
perature

(e) LOFW-Steam Generator Liquid Tem-
perature

(f) S.S.-Steam Generator Liquid Tempera-
ture
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(g) LOFW-Pressure Drop between Core
and Cone

(h) S.S.-Pressure Drop between Core and
Cone

(i) LOFW-Pressure Drop in Riser Cone (j) S.S.-Pressure Drop in Riser Cone

(k) LOFW-Pressure Drop across the Steam
Generator

(l) S.S.-Pressure Drop across the Steam
Generator
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(m) LOFW-Steam Volumetric Flow Rate (n) S.S.-Steam Volumetric Flow Rate

Figure 3.6: Neural Networks Results

test facility to validate the functionality, speed and accuracy of the predictions using
additional transients, with the ultimate goal of integrating a systems as an operational
enhancement tool to support decision-making.

3.5 Conclusion

The application of machine learning and other artificial intelligence techniques have been
considered for many day-to-day applications in different industries. The purpose this
study was to explore the application of machine learning methods, particularly neural
networks, in the nuclear engineering domain for systems behavior predictions using the
MASLWR test facility. The prototypical test facility was designed to assess the operation
of an integrated small modular nuclear reactor at full pressure and temperature, and
also, to assess the passive safety systems under different events. Despite the lack of
physical representation in neural networks, the results obtained show their capability
to use multiple sensors data to predict the behavior of the facility given various core
powers and during a loss-of-feedwater event. Good agreement has been shown between
the prediction and the raw data obtained from the facility without postprocessing of
the data. Moreover, in cases where there was a lot of variance in the data, the neural
network leaned toward greater concentration of data which it considered as the expected
value. However, there are sensors where prediction is more difficult and can be further
investigated. Though there is still a need to further explore the use of neural methods
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in the nuclear engineering domain, the neural networks have successfully captured the
behavior of most sensors inside the prototype.
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Abstract

The exceptional performance of machine learning methods has led to their adaptation
in many different domains. In the nuclear industry, it has been proposed that machine
learning methods have the potential to revolutionize nuclear safety and radiation de-
tection by leveraging that they can be used to augment human and device capabilities.
While many application focus on the accuracy of the learning algorithm’s prediction, it
has been shown in practice that these algorithms are prone to learn characteristics that
are not descriptive or relevant. Hence, this paper focuses on understanding the reasoning
behind the classification using saliency vectors. Visual representations of the network’s
learned regions of interest are used to demonstrate whether domain-specific characteris-
tics are being identified, which allows for the end-user to evaluate the performance based
on domain knowledge. The results obtained show that focusing on a human-centered ap-
proach, will ultimately, increase the transparency and trust of deep learning algorithm’s
decision.

4.1 Introduction

The utilization of radiation detection devices has had a wide range of applications, and a
successful technological evolution [1]. The task of isotope identification through gamma-
ray spectroscopy is a mature field that has been partially automated by incorporating full
spectrum identification algorithms which typically include a defined library of isotopes.
In spectroscopy, the goal is to find a pattern, full energy peaks in most cases, and dif-
ferential count rates by analyzing the distribution of counts over a spectrum. However,
it is rather challenging to perform spectroscopy outside laboratories, where the environ-
ment is not well controlled. For example, applying spectroscopy to applications such as
nuclear threat detection is very challenging because of (1) device limitations, (2) chang-
ing environmental conditions, and/or (3) variability in isotope location (e.g., sources in
motion). Additional challenges such as detection time limitations, shielding, unknown
backgrounds, calibration, maintenance, and timely decision-making are also commonly
present [2]. The use of machine learning (ML) for this task aims to reduce false positives
and false negatives in isotope identification by leveraging pattern recognition to iden-
tify characteristics or deviation in spectra information[3]. While various neural network
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models have reported good accuracy in gamma spectroscopy tasks, there is a trade-off
between accuracy and explainability that is commonly left out [4]. If accuracy is the only
metric of performance, then black-box models will be trustworthy; however, for sensitive
or high stakes applications, understanding the logic behind classifications or actions be-
comes important[5] because of the possible risk imposed to society (e.g., [6, 7, 8, 9, 10,
11]). Explainable AI (XAI) is a very active area of research that seeks to understand
the decision behind learning algorithms [12, 13, 14], and has to be considered as an op-
timization driver such that domain knowledge is used to evaluate performance. With a
prudent attitude toward research on unintended consequences, this study explores how
and why a prediction is being made in a way that is comprehensive or intuitive for a
domain expert to evaluate the quality of the model.

The remainder of this paper is organized as follows. Section 4.2 introduces the soft-
ware utilized to generate the data for this study, and the concepts of convolutional neural
networks and saliency. Section 4.3 presents the need for explainability by showing that
the creation steps of a convolutional neural network tasked to classify radionuclides pro-
vides a level of intuition, but no reason behind the classification. Section 4.4, present
the model’s classification explanation associated with the prediction (i.e, the network’s
regions of interest (ROI)) in a form of saliency vectors. Section 4.5 shows a ROI com-
parison between a shallow and convolution network and their differences between model
accuracy and its ability to show a physical characteristic associated with the classifica-
tion. Moreover, suggestions on further research and challenges are presented. Finally,
section 4.6 provides a summary and conclusions.

4.2 Materials and methodology

4.2.1 GADRAS-DRF

Gamma Detector Response and Analysis Software – Detector Response Function (GADRAS-
DRF) is a software program developed by Sandia National Laboratories (SNL) that com-
putes the response of gamma or neutron detectors to radiation. It contains a suite of
capabilities related to radiation detection, such as plotting and viewing measures and
computed spectra, spectra analysis to identify isotopes, and estimating source energy
distributions [15]. Its primary function is the simulation of gamma-ray and neutron de-
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Table 4.1: Radioactive library1

241Am 137Cs 40K 232Th
133Ba 67Ga 99mTc 235U
57Co 131I 201Tl 238U
60Co 192Ir 226Ra 239Pu

tector signals to radiation sources which derives spectrum features; such as photopeaks
and the Compton continuum, from first-principles calculations based on interaction cross-
sections. The software is used in this study to simulate the response of a common NaI(Tl)
(3"X3") detector using different activity levels to simulate different conditions. The data
generated is normalized using Equation 4.1 [16]. For the purpose of this study, the iso-
topes listed in the American National Standards Institute (ANSI) [17], and shown in
Table 4.1, are used with activities ranging from 1E-5 to 1E-3 Curies (3.7E5 to 3.7E7
Becquerels). The data, and associated identification or ID, serve as input to the deep
learning model.

X ′ = log(
X + 1

Xmax
) (4.1)

4.2.2 Convolutional Neural Networks

While Convolutional Neural Networks (CNNs) are well known nowadays, a conceptual
introduction will be presented. CNNs were firstly introduced in [19, 20] as the analog
of mimicking the vision process of mammals, and had its first success by being able
to recognize handwritten numbers[21] without feature engineering. A convolution layer
consist of three different stages: convolution, activation, and pooling. First, a convolution
is a mathematical operation on two functions of real value arguments that form a new
function [22]. The convolution operation is denoted with an ~, where the operation
O = k ~ I as applied to the data is interpreted as the feature vector O, resulting from
the convolution of the I vector and the kernel k, where k is also referred as a filter. This
layer reduces the amount of parameters needed to be optimized, as shown in figure 4.1a,
which both decreases the memory required and increases the model efficiency.

1See [18] for details on categorization and purpose of each radionuclide
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(a) 1-D Convolution representation

(b) IsotopeID structure

Figure 4.1: Convolutional Neural Network used in this study, where: 4.1a is an illustration
of the convolution operation; and 4.1b is the network structure that shows the dimensions
of the data followed by the number of filters used at each of the layers

Subsequently, each of the convolutions are then transformed by a non-linear activation
function to extract features, i.e. for each k, transform using f = σ(W ∗ k + b), where σ
is the activation function of choice. This stage is typically known as the detection stage.
Finally, the transformed data passes through a pooling function that changes the output
of the layer. At the pooling stage, the pooling function replaces the output of the network
with statistical summary of the nearby outputs. The key concept from the pooling stage,
is to help the representation to be invariant to small transformations of the inputs, i.e.
the network will be robust to small changes. The "convolved features" following the
feature extraction stage can then be used for classification by the currently known Feed-
forward Neural Network (FFNN)2. The general network structure used in this research
is shown in figure 4.1b. A softmax function is applied in the decision layer. Additionally,
the convolution layers are removed to create an FFNN for comparison purposes.

2The details of the FFNN can be found in various different textbooks such as[23, 24, 22, 25]
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4.2.3 Saliency

The concept of saliency was introduced in the computer vision to better understand
the importance of pixels of a given image. An explanation on the principle of saliency
presented in [26] and a similar example is described in this section. Given a vector V0,
a class c, and a model with the class score function Sc(I), where we want to rank the
values in V0 based on their influence on the score Sc(V0). Let us consider a linear score
model for the class c

Sc(V ) = wTc (V ) + bc

where V is vector, wc is the weight vector and bc the bias of the model. For this
simple example, the magnitude of the elements of w defines the region of interest in V
for the class c. However, because convoutional neural networks are not linear functions
with respect to V, we can approximate the score function with a linear function in the
neighbourhood of V0 by computing the first-order Taylor expansion:

Sc(V ) ≈ wTc (V ) + bc

where wc is the derivative of Sc with respect to the vector V at the point V0

w =
∂Sc(V )

∂V

This means that the magnitude of the derivative indicates which values affect the
class score the most. Saliency vectors will be referred as attentions in this work and
some examples are shown in figure 4.4 bellow their respective spectrum.

4.2.4 Sanity checks

While many different explainability methods have been proposed (e.g., [27, 28, 29]),
limitations are also known. To evaluate the robustness of an explainability method for a
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particular application, two sanity checks described in [30] have been carried out. These
include: randomly initiating all the weights, and retraining with permuted the labels
(i.e., 137Cs labeled as 241Am). The purpose is to show that the trained model is sensitive
to randomization, i.e., all explanations must be different.

4.3 An explainability problem

Different feed-forward [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46] and
convolutional neural network models[47, 48, 49] have been reported in the literature for
radionuclide identification, which have shown high accuracy for the task under different
conditions. However, as it has been shown in practice, neural networks are prone to learn
characteristics that are not descriptive or relevant of the object or task [28]. While a
promising application, their black-box nature can impede the deployment of such methods
in a highly regulated industry. Therefore, explainability methods can be used to enhance
the transparency of these algorithms by showing that domain knowledge is being reflected.
To demonstrate this, the network depicted in figure 4.1b is developed and the inner
working of the algorithm is shown and explained.

4.3.1 Accuracy

In principle, the learning algorithm will achieve remarkable accuracy as each of the spectra
(patterns) are different from each other. Creating a confusion matrix for the network
using all the data (see figure 4.2a) shows that the model is very accurate and is able to
distinguish most the spectra. The high accuracy obtained is aligned with the literature.
However, confusion matrices only show the classification and misclassification instances,
but do not provide any reasoning as to what is characteristic of the class being chosen. As
noted in [50], for the solution to be explainable, each element constituent of the solution
needs to be understood. Mathematically, the steps of the models are conceptually simple;
however, they might not be as intuitive as the use of visualization tools.
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(a) Convolutional neural network (b) Feedforward neural network

Figure 4.2: Radionuclide classifier confusion matrices

4.3.2 Visualization of internal layers

Visualization of the internal functions of a neural network is a method that has been
used to understand the features that are extracted from the data[51]. As stated by [52],
“gaining some insight into the function of the intermediate layers, one can find more
suitable model architectures”. The same can be done for the spectra data as shown in
figure 4.3a3, where one can be observe the convolved spectra after each of the activation
functions. At each convolution layer it searches to isolate important features. The last
four spectra are the features that were derived and used for classification process, in this
case for 137Cs. While it certainly gives an intuition of how the data is being transformed,
it does not provide the rationale to its decision. The derived features appear to be less
noisy spectra, yet no highlighted characteristic.

4.4 An explainable approach

Utilizing explanability methods, such as saliency, can help users judge their classification
by context rather by accuracy alone. These explanations are important identify poten-
tial problems in the classification and ensure that domain knowledge is reflected in the
algorithm [12]. For instance, figure 4.4a shows the spectrum and its respective attentions
and 4.3b a heat vector representation of the spectrum classification of 137Cs. In other
words, attentions are the region of interest determined by the neural network and are to

3Please refer to the supplemental material for the visualization and explanation results for each of
the different isotopes
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(a) Activation operations on the 137Cs spec-
trum (b) 137Cs heat vector

Figure 4.3: Inner layer and heat vector visualization of the 137Cs spectrum

(a) 137Cs spectrum and attentions (b) 239Pu spectrum and attentions

Figure 4.4: Regions of interest identified by the network

be compared with the characteristic peak, i.e., of 662 keV for 137Cs, which is accurate for
this class. However, this is not always the case. As shown in figure 4.4b, it’s ability to give
an explanation about which 241Am peaks are characteristic of the radionuclides3. Low
resolution devices are not suited for the detection of low energy gammas, or radionuclides
with overlapping peaks that an only identified with higher resolution devices as such in-
formation is not presented to the algorithm; consequently, it cannot be expressed that
a deep learning algorithm enhance low resolution devices without demonstrating that at
minimum a relevant characteristic is identified. The classification of complex spectra is
related to the differences in patterns as compared to the rest of the spectrum, but not
necessarily to a characteristic peak(s).
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Figure 4.5: Sanity checks results of the trained model, weights and label randomization
followed by spearman rank correlation (rs)

4.4.1 Sanity Checks

As described in section 4.2.3, the sanity checks are included for illustration and trans-
parency purposes. Shown in figure 4.5 are the attentions of the trained model, two
different weights randomization and label randomization. Spearman rank correlations
are obtained based on the trained model and are used to show that the model is indeed
sensitive to this test. The label randomization is particularly important as changing the
labels forces the model to memorize a wrong relationship between the input and the label.

4.5 Discussion

Some of the most exciting aspects of deep learning are to understand how the algorithms
work and how the decisions are made, especially if visualization tools are used to facilitate
the end user’s job. For further comparison and discussion purposes, a shallow network
is created by removing the convolution layers and visualizing their saliency vector. Both
models’ classification accuracy are shown in figure 4.2a and 4.2b. They are accurate and
potentially suitable to classify the radionuclides in table 4.1; however, the heat vectors in
figure 4.6, show that the ROIs from each model prioritize different areas in the spectrum3.
As shown in 4.6c and 4.6d, CNN’s find ROIs that are closer to characteristic peak(s).
Better agreement is shown from the convolution layers as they are intended to extract
features from the raw data and fit a function based on those features as opposed to
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(a) 40K ROI using FFNNs (b) 40K ROI using CNNs

(c) 60Co ROI using FFNNs (d) 60Co ROI using CNNs

Figure 4.6: Networks comparisons of regions of interest

simply fit a function to the spectra. The algorithm presented is only able to correlate to
some known peaks of strong gamma-emitters in table 4.1, and more research is suggested
for more complex spectra, i.e., decay chains and mixtures. Mentioned in [53, 54, 55,
56, 57], demanding the user to understand the logic of learning-based models can help
reduce the odds of negative consequences. To the best of our knowledge, this is the first
attempt at showing that saliency vectors can serve as tools to highlight and relate an
area of interest to a physical characteristic of the given information (i.e., energy peaks).
Such demonstrations have a significant impact in the nuclear industry because radiation
practitioners can justify that domain knowledge is being captured by the algorithm, and
consequently, understand it. To that extent, deep learning as applied to radiation devices
are yet to be fully explored, specifically when logic is needed. Finally, cross-discipline
research and development of benchmarks are key to design and ensure the intended use
of machine learning technologies and gain acceptance among the community.
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4.6 Conclusions

This study builds upon the literature for task of isotope classification and explainable
artificial intelligence. It is demonstrated that while different neural network models can
achieve high accuracy, their specific properties (e.g., convolution) provide some advantage
to the characterization of the spectra. The method of saliency for explanations is used to
evaluate the rationale behind the classification and to test if it is correlated to the isotope’s
characteristic peak(s), i.e., context accuracy. The results, processes, and limitations
presented in this paper show a more transparent and human-centered approach for the
identification of isotopes task, which is of particular importance in a highly regulated
industry. Lastly, it is emphasized that for the effective application of deep learning in a
nuclear and radiation related fields, cross-discipline studies must be encouraged.

4.7 Acknowledgements

The authors wish to thank the anonymous reviewers for their suggestions, which have
helped to improve the quality of the paper. This research is based on work supported
by the U. S. Department of Energy, under Cooperative Agreement Number DE-FC01-
06EW07053 entitled ‘The Consortium for Risk Evaluation with Stakeholder Participation
III.’ The opinions, findings, conclusions, or recommendations expressed herein are those
of the author(s) and do not necessarily represent the views of the Department of Energy
or Oregon State University.



90

Bibliography

[1] Paul W Frame. “A history of radiation detection instrumentation”. In: Health
physics 88.6 (2005), pp. 613–637.

[2] Robert C. Runkle, L. Eric Smith, and Anthony J. Peurrung. “The photon haystack
and emerging radiation detection technology”. In: Journal of Applied Physics 106.4
(2009), p. 041101. doi: 10.1063/1.3207769. url: https://doi.org/10.1063/
1.3207769.

[3] Deborah K. Fagan, Sean M. Robinson, and Robert C. Runkle. “Statistical methods
applied to gamma-ray spectroscopy algorithms in nuclear security missions”. In:
Applied Radiation and Isotopes 70.10 (2012), pp. 2428–2439. issn: 0969-8043. doi:
https://doi.org/10.1016/j.apradiso.2012.06.016. url: http://www.
sciencedirect.com/science/article/pii/S0969804312003818.

[4] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black
Box Models Explainable. https://christophm.github.io/interpretable-ml-
book/. Christoph Molnar, 2019.

[5] Thomas G. Dietterich. “Steps Toward Robust Artificial Intelligence”. In: AI Mag-
azine 38 (Oct. 2017), p. 3. doi: 10.1609/aimag.v38i3.2756.

[6] Azad Shademan et al. “Supervised autonomous robotic soft tissue surgery”. In:
Science Translational Medicine 8.337 (2016), 337ra64–337ra64. issn: 1946-6234.
doi: 10.1126/scitranslmed.aad9398. eprint: http://stm.sciencemag.org/
content / 8 / 337 / 337ra64 . full . pdf. url: http : / / stm . sciencemag . org /
content/8/337/337ra64.

[7] John O McGinnis and Russell G Pearce. “The great disruption: How machine
intelligence will transform the role of lawyers in the delivery of legal services”. In:
Actual Probs. Econ. & L. (2019), p. 1230.



91

[8] Mark Campbell et al. “Autonomous driving in urban environments: Approaches,
lessons and challenges”. In: Philosophical transactions. Series A, Mathematical,
physical, and engineering sciences 368 (Oct. 2010), pp. 4649–72. doi: 10.1098/
rsta.2010.0110.

[9] Pathirikkat Gopakumar, M. Jaya Bharata Reddy, and Dusmanta Kumar Mo-
hanta. “Stability Control of Smart Power Grids with Artificial Intelligence and
Wide-area Synchrophasor Measurements”. In: Electric Power Components and
Systems 42.10 (2014), pp. 1095–1106. doi: 10.1080/15325008.2014.913745.

[10] Ziad Obermeyer and Ezekiel J Emanuel. “Predicting the future—big data, machine
learning, and clinical medicine”. In: The New England journal of medicine 375.13
(2016), p. 1216.

[11] Ronald Arkin. Governing Lethal Behavior in Autonomous Robots. 1st. Chapman
& Hall/CRC, 2009. isbn: 1420085948, 9781420085945.

[12] Leilani H Gilpin et al. “Explaining explanations: An overview of interpretability
of machine learning”. In: 2018 IEEE 5th International Conference on data science
and advanced analytics (DSAA). IEEE. 2018, pp. 80–89.

[13] Adrien Bibal and Benoît Frénay. “Interpretability of machine learning models and
representations: an introduction.” In: ESANN. 2016.

[14] Finale Doshi-Velez and Been Kim. “Towards a rigorous science of interpretable
machine learning”. In: arXiv preprint arXiv:1702.08608 (2017).

[15] Steven M. Horne et al. GADRAS-DRF 18.5 User’s Manual. Tech. rep. Sandia
National Laboratory, Dec. 2014. doi: 10.2172/1166695.

[16] Bart Mertens. “Transformation, Normalization, and Batch Effect in the Analysis
of Mass Spectrometry Data for Omics Studies”. In: Springer, Cham, Dec. 2017,
pp. 1–21. isbn: 978-3-319-45807-6. doi: 10.1007/978-3-319-45809-0_1.

[17] American National Standards Institute. “American National Standard Perfor-
mance Criteria for Hand-held Instruments for the Detection and Identification
of Radionuclides”. In: ANSI N42.34-2006 (Jan. 2007), pp. 1–45. doi: 10.1109/
IEEESTD.2007.299335.



92

[18] IAEA-RS-G-1.9. Categorization of Radioactive Sources. Tech. rep. International
Atomic Energy Agency, 2005. url: https://www-pub.iaea.org/MTCD/publications/
PDF/Pub1227_web.pdf.

[19] K. Fukushima. “Neural network model for a mechanism of pattern recognition
unaffected by shift in position - Neocognitron”. In: Trans. IECE J62-A(10) (1979),
pp. 658–665.

[20] K. Fukushima. “Neocognitron: A self-organizing neural network for a mechanism
of pattern recognition unaffected by shift in position”. In: Biological Cybernetics
36.4 (1980), pp. 193–202.

[21] Y. LeCun et al. Backpropagation Applied to Handwritten Zip Code Recognition.
1989. doi: 10.1162/neco.1989.1.4.541.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://
www.deeplearningbook.org. MIT Press, 2016.

[23] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
3rd ed. Pearson Education, 2010.

[24] Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA: McGraw-
Hill, Inc., 1997. isbn: 0070428077, 9780070428072.

[25] Christopher Bishop. “Bishop - Pattern Recognition and Machine Learning”. In:
2006. Chap. 5. isbn: 9780387310732.

[26] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep Inside Convolu-
tional Networks: Visualising Image Classification Models and Saliency Maps.” In:
CoRR abs/1312.6034 (2013). url: http://dblp.uni-trier.de/db/journals/
corr/corr1312.html#SimonyanVZ13.

[27] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. “Methods for in-
terpreting and understanding deep neural networks”. In: Digital Signal Processing
73 (2018), pp. 1–15. issn: 1051-2004. doi: https://doi.org/10.1016/j.dsp.
2017.10.011. url: http://www.sciencedirect.com/science/article/pii/
S1051200417302385.

[28] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I Trust
You?": Explaining the Predictions of Any Classifier”. In: CoRR abs/1602.04938
(2016). arXiv: 1602.04938. url: http://arxiv.org/abs/1602.04938.



93

[29] Ramprasaath R Selvaraju et al. “Grad-cam: Visual explanations from deep net-
works via gradient-based localization”. In: Proceedings of the IEEE international
conference on computer vision. 2017, pp. 618–626.

[30] Julius Adebayo et al. “Sanity Checks for Saliency Maps”. In: CoRR abs/1810.03292
(2018). arXiv: 1810.03292. url: http://arxiv.org/abs/1810.03292.

[31] Matthew Aitkenhead, Mark Owen, and David M Chambers. “Use of artificial neu-
ral networks in measuring characteristics of shielded plutonium for arms control”.
In: Journal of Analytical Atomic Spectrometry 27 (Mar. 2012), pp. 432–439. doi:
10.1039/C2JA10230G.

[32] M.E. Medhat. “Artificial intelligence methods applied for quantitative analysis of
natural radioactive sources”. In: Annals of Nuclear Energy 45 (2012), pp. 73–79.
issn: 0306-4549. doi: https://doi.org/10.1016/j.anucene.2012.02.013. url:
http://www.sciencedirect.com/science/article/pii/S030645491200059X.

[33] Eiji Yoshida et al. “Application of neural networks for the analysis of gamma-ray
spectra measured with a Ge spectrometer”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Asso-
ciated Equipment 484.1 (2002), pp. 557–563. issn: 0168-9002.

[34] R.E Abdel-Aal and M.N Al-Haddad. “Determination of radioisotopes in gamma-
ray spectroscopy using abductive machine learning”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 391.2 (1997), pp. 275–288. issn: 0168-9002. doi: https:
//doi.org/10.1016/S0168-9002(97)00391-4. url: http://www.sciencedirect.
com/science/article/pii/S0168900297003914.

[35] Héctor René Vega-Carrillo et al. “Neutron spectrometry using artificial neural
networks”. In: Radiation Measurements 41.4 (2006), pp. 425–431. issn: 1350-4487.
doi: https://doi.org/10.1016/j.radmeas.2005.10.003. url: http://www.
sciencedirect.com/science/article/pii/S1350448705002751.

[36] Jose Manuel Ortiz-Rodriguez et al. “Robust Design of Artificial Neural Networks
Methodology in Neutron Spectrometry”. In: Artificial Neural Networks. Ed. by
Kenji Suzuki. Rijeka: IntechOpen, 2013. Chap. 4. doi: 10.5772/51274. url:
https://doi.org/10.5772/51274.



94

[37] Mohamad Kardan et al. “Neutron spectra unfolding in Bonner spheres spectrom-
etry using neural networks”. In: Radiation protection dosimetry 104 (Feb. 2003),
pp. 27–30.

[38] Hector Rene Vega-Carrillo et al. “Spectra and dose with ANN of 252Cf, 241Am-
Be, and 239Pu-Be”. In: Journal of Radioanalytical and Nuclear Chemistry 281.3
(Sept. 2009), p. 615. issn: 1588-2780. doi: 10.1007/s10967-009-0057-z. url:
https://doi.org/10.1007/s10967-009-0057-z.

[39] P. Olmos et al. “A new approach to automatic radiation spectrum analysis”. In:
IEEE Transactions on Nuclear Science 38.4 (Aug. 1991), pp. 971–975. issn: 0018-
9499. doi: 10.1109/23.83860.

[40] A. Baeza et al. “A new approach to the analysis of alpha spectra based on neural
network techniques”. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 652.1
(2011). Symposium on Radiation Measurements and Applications (SORMA) XII
2010, pp. 450–453. issn: 0168-9002. doi: https://doi.org/10.1016/j.nima.
2011.01.170. url: http://www.sciencedirect.com/science/article/pii/
S0168900211002725.

[41] Mark Kamuda and Clair J. Sullivan. “An automated isotope identification and
quantification algorithm for isotope mixtures in low-resolution gamma-ray spec-
tra”. In: Radiation Physics and Chemistry 155 (2019). IRRMA-10, pp. 281–286.
issn: 0969-806X. doi: https : / / doi . org / 10 . 1016 / j . radphyschem . 2018 .
06 . 017. url: http : / / www . sciencedirect . com / science / article / pii /

S0969806X17308320.

[42] Mati Sheinfeld, Samuel Levinson, and Itzhak Orion. “Highly accurate prediction
of specific activity using deep learning”. In: Applied Radiation and Isotopes 130
(2017), pp. 115–120. issn: 0969-8043. doi: https : / / doi . org / 10 . 1016 / j .
apradiso.2017.09.023. url: http://www.sciencedirect.com/science/
article/pii/S0969804317309156.

[43] P. E. Keller and R. T. Kouzes. “Gamma spectral analysis via neural networks”.
In: Proceedings of 1994 IEEE Nuclear Science Symposium - NSS’94. Vol. 1. Oct.
1994, 341–345 vol.1. doi: 10.1109/NSSMIC.1994.474365.



95

[44] Liang Chen and Yi-Xiang Wei. “Nuclide identification algorithm based on K-L
transform and neural networks”. In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment 598.2 (2009), pp. 450–453. issn: 0168-9002. doi: https://doi.org/10.
1016/j.nima.2008.09.035. url: http://www.sciencedirect.com/science/
article/pii/S0168900208014435.

[45] C. Bobin et al. “Real-time radionuclide identification in γ-emitter mixtures based
on spiking neural network”. In: Applied Radiation and Isotopes 109 (2016). Pro-
ceedings of the 20th International Conference on Radionuclide Metrology and
its Applications 11 June 2015, Vienna, Austria, pp. 405–409. issn: 0969-8043.
doi: https :/ /doi .org /10 .1016/ j. apradiso. 2015 .12 .029. url: http :
//www.sciencedirect.com/science/article/pii/S0969804315303651.

[46] Adam Varley et al. “Development of a neural network approach to characterise
226Ra contamination at legacy sites using gamma-ray spectra taken from bore-
holes”. In: Journal of Environmental Radioactivity 140 (2015), pp. 130–140. issn:
0265-931X. doi: https://doi.org/10.1016/j.jenvrad.2014.11.011. url:
http://www.sciencedirect.com/science/article/pii/S0265931X14003452.

[47] Mark Kamuda, Jifu Zhao, and Kathryn Huff. “A comparison of machine learning
methods for automated gamma-ray spectroscopy”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment (2018). issn: 0168-9002. doi: https://doi.org/10.
1016/j.nima.2018.10.063. url: http://www.sciencedirect.com/science/
article/pii/S0168900218313779.

[48] G Daniel et al. “Automatic and Real-time Identification of Radionuclides in Gamma-
ray Spectra: A new method based on Convolutional Neural Network trained with
synthetic data set”. In: IEEE Transactions on Nuclear Science (2020).

[49] Dajian Liang et al. “Rapid nuclide identification algorithm based on convolutional
neural network”. In: Annals of Nuclear Energy 133 (2019), pp. 483–490. issn:
0306-4549. doi: https://doi.org/10.1016/j.anucene.2019.05.051. url:
http://www.sciencedirect.com/science/article/pii/S0306454919303044.



96

[50] Zachary C Lipton. “The mythos of model interpretability”. In: Queue 16.3 (2018),
pp. 31–57.

[51] Zhuwei Qin et al. “How convolutional neural network see the world - A survey of
convolutional neural network visualization methods”. In: CoRR abs/1804.11191
(2018). arXiv: 1804.11191. url: http://arxiv.org/abs/1804.11191.

[52] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Convolutional
Networks”. In: CoRR abs/1311.2901 (2013). arXiv: 1311.2901. url: http://
arxiv.org/abs/1311.2901.

[53] Federico Cabitza, Raffaele Rasoini, and Gian Franco Gensini. “Unintended Conse-
quences of Machine Learning in Medicine”. In: JAMA 318.6 (Aug. 2017), pp. 517–
518. issn: 0098-7484. doi: 10.1001/jama.2017.7797. eprint: https://jamanetwork.
com/journals/jama/articlepdf/2645762/jama\_cabitza\_2017\_vp\_170094.

pdf. url: https://doi.org/10.1001/jama.2017.7797.

[54] Mario Gomez-Fernandez et al. “Status of research and development of learning-
based approaches in nuclear science and engineering: A review”. In: Nuclear En-
gineering and Design 359 (2020), p. 110479. issn: 0029-5493. doi: https://doi.
org/10.1016/j.nucengdes.2019.110479. url: http://www.sciencedirect.
com/science/article/pii/S0029549319305102.

[55] David Martens et al. “Performance of classification models from a user perspec-
tive”. In: Decision Support Systems 51.4 (2011). Recent Advances in Data, Text,
and Media Mining & Information Issues in Supply Chain and in Service System
Design, pp. 782–793. issn: 0167-9236. doi: https://doi.org/10.1016/j.dss.
2011.01.013. url: http://www.sciencedirect.com/science/article/pii/
S016792361100042X.

[56] Alex A Freitas. “Are We Really Discovering “Interesting” Knowledge From Data?”
In: EXPERT 9.1 (2006), p. 41.

[57] Miles Brundage et al. “Toward Trustworthy AI Development: Mechanisms for
Supporting Verifiable Claims”. In: arXiv preprint arXiv:2004.07213 (2020).



97

Chapter 5: General Summary and Conclusions

The application of machine learning and other artificial intelligence techniques have been
considered for many day-to-day applications in different industries. These changes are
taking place in the industrial world and will shape the future of the nuclear industry.
The manuscripts presented herein show the application of learning-based methods in
various applications related to nuclear science. First, it presented an overview of the
state-of-the-art application of artificial intelligence in three different subareas of nuclear
science; it shows that while there have been many advances in the technology, there are
multiple areas of improvement. Additionally, it discusses the importance of concepts such
as FAIR and MAD to the development and deployment of learning-based methods. It
highlighted that the primary goal for the development and implementation of machine
learning algorithms is to provide fast estimation for better-informed decisions for the
users (human in the loop), as well as assuring the interpretability and reproducibility of
the models. A case study on the implementation of a popular method, neural networks,
as a fast tool to predict the behavior of a nuclear reactor concept is shown. While a highly
complex task, good agreement has been shown between the prediction and the raw data
obtained from the facility without postprocessing of the data (i.e., mapping controls
to reactive sensors). A lack of physical representation is, however, acknowledged and
suggested for further research before any real deployment is considered. This is followed
by a concept that looks into using expert-knowledge to evaluate the use of neural networks
for gamma spectroscopy classification. The explanation method of saliency is used to
evaluate the decision of the classifier by correlating it to its characteristic peak(s). It is
demonstrated that while different neural network models can achieve high accuracy, their
specific properties (e.g., convolution) provide some advantage to the characterization of
the spectra. Ultimately, presenting a more transparent and human-centered approach to
the development of neural networks in isotope classification. Overall, as more research,
cross-discipline training, and information become available, the implementation of AI to
perform different tasks in the nuclear industry is certainly possible in the near future. It
is a matter of understanding the benefits of new technologies, regulatory acceptance, and
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collaboration, until more innovative approaches, are available within the domain.




