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Chapter 1: Introduction

Many database users, such as scientists, are not familiar with formal query languages

and concept of database schema [72]. Thus, it is challenging for these users to formulate

their information needs over semi-structured and structured databases. To address this

problem, researchers have proposed usable query interfaces [72, 49, 78]. A popular class

of such interfaces is keyword query interfaces (KQIs). Using a KQI, a user can express a

query as a set of keywords without the need to know any formal query language or the

schema of the database [66, 21, 31]. As an example, consider the DBLP (dblp.uni-trier.de)

database which contains information on computer science publications. A fragment of

this database is shown in Figure 1.1. Suppose that a user wants to find the papers on

cluster data processing by Sanjay Ghemawat. These are the papers with IDs 01 and 03

in Figure 1.1. To retrieve these answers, the user may submit the following keyword

query:

q1 : cluster data processing sanjay

Since keyword queries do not generally express users’ exact information needs, it is

challenging for a KQI to satisfy the true information needs behind these queries [91, 31].

Generally speaking, the KQI finds the tuples in the database that contain the input

keywords, ranks them according to some ranking function that measure how well each

tuple matches the keywords in the query, and returns the ranked list to the user. For

instance, after submitting the keyword query q1, the database may return the following

ranked results:

Graph data processing on clusters, Sanjay Rakesh (2014)

Figure 1.1: A Fragment of the DBLP Database

ID Title Author Year
01 MapReduce: data processing on large clusters Jeff Dean, Sanjay Ghemawat 2008
02 Enabling cross-platform data processing D. Agrawal, Sanjay Chawla 2011
03 MapReduce: a flexible data processing tool Jeff Dean, Sanjay Ghemawat 2010
04 Graph data processing on clusters Sanjay Rakesh 2014
05 Secure data processing in clusters Sanjay Balraj 2015

...
...

...
...
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Secure data processing in clusters, Sanjay Balraj (2015)

MapReduce: data processing on large clusters, Jeff Dean, Sanjay Ghemawat (2008)

MapReduce: a flexible data processing tool, Jeff Dean, Sanjay Ghemawat (2010)

All these records contain the keywords in q1. However, only the last two, i.e., papers

with IDs 01 and 03, are relevant answers to the input query. Current KQIs often re-

turn too many non-relevant answers and suffer from low ranking quality (aka low search

effectiveness) [4, 17, 18, 35, 91]. Therefore, users often cannot find their desired infor-

mation using these queries. Empirical evaluations of keyword query answering systems

over semi-structured data indicate that most returned answers including the top-ranked

ones are not relevant to the input query [4, 17, 18]. Similar results have been reported

in empirical evaluation of the KQIs over relational databases [35]. For example, in many

cases, only 10%-20% of the returned answers are relevant to the input query [4, 17, 35].

Moreover, as KQIs have to examine numerous possible matches and answers to the

input keyword query, it takes a long time for them to answer users’ queries [35, 14].

The query processing time is particularly time-consuming over relational databases [14].

For queries over relational databases, a KQI has to find the relevant tuples in the base

relations, score them and then compute all the possible joins of these tuples across various

base relations. Empirical studies show that it may take up to 200-400 seconds to process

a keyword query over relational databases [14]. Since keyword queries may often be

used in an interactive fashion to explore the database, users need a significantly shorter

response time [31, 2].

Another class of usable query interfaces is form-based query interfaces in which users

are provided with query forms. Each query form consists of fields that represent at-

tributes of the database schema. Users provide some values for these attributes and the

query interface uses the provided values to build a query, e.g., SQL expression. Then,

the query interface executes this query over the database and returns its results to the

users [73, 106]. If the values provided by the users does not exactly represent users’

information need, the query interface may not return accurate results and may have low

search effectiveness similar to the keyword query interfaces example explained above.

In the last decade, databases have grown in content size in an unprecedented rate

and have become more heterogeneous. Thus, fewer users are able to precisely specify

their queries using the aforementioned interfaces. Users access myriad databases mostly

in domains that they are not knowledgeable. Many databases are created by integrating
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information from multiple data sources. These databases often contain inconsistencies.

For example, they may contain multiple different names that refer to the same entity.

Even a domain expert who is aware of the content of the database, may find it difficult

to formulate queries that effectively return their desired answers. In this proposal, we

study the impact of database content size and schema complexity on search effectiveness.

We identify the problems of state-of-the-art query interfaces and propose methods to

overcome these problems.

In Chapter 2, we provide theoretical and empirical results on the impact of database

size on effectiveness of answering keyword queries [54]. We propose an approach that

uses only a relatively small subset of the database to answer most queries effectively.

Since this subset may not contain the relevant answers to many queries, we propose a

method that predicts whether a query can be answered more effectively using this subset

or the entire database. Our comprehensive empirical studies using multiple real-world

databases and query workloads indicate that our approach significantly improves both

effectiveness and efficiency of answering queries [55].

In Chapter 3, we provide a framework to study the impact of different schema de-

signs on the effectiveness of answering queries. We correspond two different schemas

of the same database using schema transformation rules. We present results that show

transformation with specific properties decrease the effectiveness of answering queries.

Using these results, one is able to compare different schemas in terms of their ability in

effectively answering queries. Our investigation rejects the intuitively appealing heuris-

tics that a schema with more relations may improve the search effectiveness more than

a schema with fewer relations.

In Chapter 4, we describe the problem of processing join queries over large databases.

We give an overview of the previous approaches that aim to improve the response time

of join queries. Then, we introduce a novel join processing algorithm that is based on

many-armed bandit algorithms and present the empirical results of using our method in

comparison to the state-of-the-art.

Finally, in Chapter 5 we conclude the dissertation and recommend future research

directions.
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Chapter 2: Answering Keyword Queries using Effective Database

Subsets

2.1 Introduction

Keyword query interfaces, despite their usability, suffer from low effectiveness in answer-

ing queries. They may return many non-relevant answers or do not return sufficiently

enough relevant answers to the input queries. As the content size of the databases grow

larger, this problem only gets worse [91].

It has been long established that in most information systems, query frequencies

and their relevant answers follow a power law distribution [104, 126]. This assumption

is the basis of our key intuition that there is a small subset of tuples in the database

that contains many relevant answers to most queries. Because this subset has far fewer

tuples than the entire database, the chance of making a mistake by KQI over this subset,

i.e., returning a non-relevant answer, is less than doing so over the entire database [91].

Thus, on average, the KQI may return fewer non-relevant answers to queries than when

it processes the queries over the entire database. Furthermore, since this subset is much

smaller than the database, answering queries over the subset will be potentially much

faster.

Consider the DBLP database from Chapter 1 This database is shown in Figure 2.1.

Assume that papers with IDs 01, 03, and 05 are more popular among users, i.e., they are

relevant answers to more queries, than the papers with IDs 02 and 04 in the database.

One may run q1 : “cluster data processing sanjay” over only these records and get a the

ranked list of papers with IDs 05, 01, and 03. This result contains more relevant answer

than the returned list of tuples over the entire database which would return papers with

IDs 04, 05, 01 and 03. As a matter of fact, our empirical results over several real-world

query workloads confirms this key intuition.

The first challenge in implementing the mentioned idea is to find such an effective

subset of the database. If the subset contains too few tuples, it will not contain the

relevant answers of majority of the queries or it may contain only a small fraction of the
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Figure 2.1: A Fragment of the DBLP Database

ID Title Author Year
01 MapReduce: data processing on large clusters Jeff Dean, Sanjay Ghemawat 2008
02 Enabling cross-platform data processing D. Agrawal, Sanjay Chawla 2011
03 MapReduce: a flexible data processing tool Jeff Dean, Sanjay Ghemawat 2010
04 Graph data processing on clusters Sanjay Rakesh 2014
05 Secure data processing in clusters Sanjay Balraj 2015

...
...

...
...

relevant answers of most queries (small recall). On the other hand, if the subset contains

too many tuples, then it will suffer from the same problems as running queries over the

entire database. Thus, we should address how to pick an effective subset that contains

many relevant answers to most queries.

Although an effective subset contains relevant answers of many queries, it will not

contain any relevant answers to a small fraction of queries. Thus, the database system

should identify these queries and use the full database to to answer these queries.

In this chapter, we open the debate on using an effective subset of a large database to

answer keyword queries over the database to increase their effectiveness and efficiency.

To the best of our knowledge, this approach has not been examined to improve the ef-

fectiveness of answering keyword queries over datasets. We show that using an effective

subset, the KQI can significantly reduce the number of non-relevant answers in its re-

sults and reduce the query response time. Moreover, we show that by carefully selecting

the tuples in the effective subset, one can also improve the recall of answering queries

in average. The improvement in recall is in fact an interesting result as one may ex-

pect otherwise. To further improve the effectiveness of answering queries, we propose a

method that predicts whether a query can be answered more effectively on the subset or

the entire database and forwards the query accordingly. One may increase the effective-

ness and efficiency of keyword search by designing new search and ranking algorithms.

Our proposed approach is orthogonal to such methods and can be used with any of the

keyword search algorithm to increase its effectiveness and efficiency. To this end, we

make the following contributions.

• We analyze the impact of using a subset of the entire database to answer keyword

queries both theoretically and empirically (Section 2.3). Our empirical study uses

several real-world datasets and query logs to evaluate the impact of using an ef-
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fective subset to answering keyword queries effectively. Our results indicate that

there are effective subsets in a dataset such that, using only those subsets to answer

queries, a KQI is able to improve the average ranking quality, average recall, or

both for submitted queries.

• We show how a KQI can utilize users’ past interactions with the data to build the

aforementioned effective subsets (Section 2.3.3).

• As we discussed, the effective subset may not have all or some of the relevant

answers to many queries. We propose a novel method to predict whether a query

can be answered more effectively over the effective subset or the entire database.

A KQI uses the result of this method to forward each input query to the effective

subset or the entire dataset (Section 2.4).

• We discuss and address the challenges of using our approach over relational data

and address them (Section 2.5).

• We provide a comprehensive empirical study of our method over multiple real-

world large databases and query logs. Our results indicate that our approach

substantially improves both ranking quality, recall, and efficiency of answering

keyword queries over large databases. They also show that our method to find

the right subset of the dataset to answer the query significantly increases ranking

quality and recall of answering queries (Section 2.6).

2.2 Related Works

2.2.1 Keyword Search

Existing approaches to keyword search over relational data-bases fall into two categories:

graph based systems and schema based systems. Graph based methods convert the

database into a data graph and perform the search on it [21, 74, 45, 63]. Schema based

approaches consider the schema as a graph and directly search the relational database

by generating and executing SQL queries [66, 67, 87, 90]. We refer the reader to [31]

for a survey of keyword search approaches. Although the mentioned methods have high

effectiveness and efficiency on small and medium size databases, most of them do not



7

scale well to larger databases [34, 35]. Our proposed approach can be coupled with these

search methods to increase the efficiency and effectiveness of search over large databases.

In [14], the authors propose a keyword search method where the system quickly

returns some answers to the user by scanning a part of the database and generates forms

to allow the user explore the rest. Our approach is different because we aim to answer

the queries in one shot without the need for further interactions.

Information retrieval and keyword search on unstructured and semi-structured datasets

suffer from low search effectiveness in certain domains [4, 61, 58]. Our proposed frame-

work can be applied to such retrieval systems as well to increase the search effectiveness

and efficiency.

2.2.2 Index Pruning

Search engines store large inverted indexes to answer users’ queries. To reduce the

inverted index size and query time, search engines prune their inverted index. The

main objective of pruning is to reduce the size of the index as much as possible without

changing the top ranked query results. Pruning techniques fall into two classes: keyword

pruning and document pruning. In the first method, each term in the inverted index

is assigned a score. The score can be computed based on IR scoring functions, access

counts and information in the query log. Then, the keywords with low scores and their

relevant postings are removed from the index. In the second approach, documents of

each keyword are assigned a score and for each keyword, the documents with low score

are pruned [101]. Our approach is different from pruning in that its objective is to

increase the search effectiveness and efficiency whereas the pruning methods only focus

on improving search efficiency while maintaining the search effectiveness. In fact, most

of the pruning techniques sacrifice search effectiveness for its efficiency [6]. Furthermore,

some IR systems use a two-tier index in which the first tier consists of a pruned index

and the second tier is the original index. When a query is submitted to the system, a

first batch of answers is computed based on the first tier of the index and the rest is

computed based on the second tier. While this approach increases the efficiency of the

search, it leads to a degradation of the effectiveness [101]. In contrast, our system only

uses one source and it does not combine the results of queries from different tiers/sources.
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2.2.3 Database Caching

Caching techniques have been used in search engines [13, 24], database managements

systems and multi-tier client-server web-based applications [38, 89, 5, 82]. Our proposed

framework has three major differences with a cache: 1) The goal of caching is solely to

improve the efficiency of the search but the main objective of our framework is to increase

the search effectiveness. 2) Size of a traditional cache is fixed and determined based on

the available resources however the size of the effective subset does not depend on the

available resources. In fact, finding the right size for the effective subset is one of the

main challenges of using such system. 3) A larger cache has a better overall performance

but a larger subset does not always perform better than a smaller one.

Database caching can be done on different granularity levels: 1) table level; 2) subset

of table; 3) intermediate query result and final query result level. Dar et al. have

proposed one of the earliest strategies for client side database caching [38]. Their system

keeps track of cached parts of tables so for each coming query it can utilize the cache

as well as the database to answer the remainder of the query. Their system exploits

temporal and spatial locality of the data in database. The downside of this work is

that it is designed to support range queries and it does not handle joins. Lou et al. has

proposed DBCache [89, 5] which addresses the earlier problems. In their work, they have

developed a table level caching mechanism that uses query logs to decide which tables

to cache. Also, their system uses a distributed query processing method where query

plans at the cache can involve the database with a certain cost. There are other works in

database caching field such as Oracle’s Times Ten [82] but to the best of our knowledge,

our method is the first method that improves the effectiveness of query answering as well

as its efficiency.

Volume and velocity of big data makes its handling and analytical processing a costly

process. To cope with these problems, a radical approach is to let database semi-

autonomously remove some of its data. Kersten et al. [77] has proposed a database

with amnesia where tuples get forgotten based on different strategies. Their goal is to

fix an upper bound for the database and yet be able to answer the submitted aggre-

gate queries. Their work is different from ours as they are focused on numerical data

and do not intend to increase the accuracy of answering the queries. They consider an

upper bound for their database size and simulate the results of applying batch updates
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and queries to the database. Their simulation uses a single table database with integer

values. In their problem, they have a fixed database size and use range and aggregate

queries to study the effect of discarding tuples from the database. However, in our case

we do not have a tight budget on database size, rather we are optimizing the effective-

ness of answering queries by changing the database size. Furthermore, our goal is to help

keyword query search as opposed to range and aggregate queries on numerical data.

Machine learning based ranking methods (a.k.a learn to rank methods) use prior

probabilities as a feature to train their ranking models [88]. These prior probabilities

are independent of any specific query and may be computed based on the previous

interactions with users or side information, e.g., PageRank scores. Our approach is

different as we ignore the items with lower prior access count when searching for relevant

answers of popular queries instead of using the access counts for ranking candidate

answers.

2.2.4 Collection Size

Hawkin et al. [62] have studied the impact of collection size on information retrieval

effectiveness. Their hypothesis states that precision@20 on a sample of a collection is less

than precision@20 on the whole collection. This is because in their experiment, number

of relevant answers over the sampled collection is less than the original collection. They

provide a theoretical framework as well as experimental results to justify this hypothesis

and examine the causes of the drop in the search effectiveness. Furthermore, they state

Document Frequency feature used in most retrieval methods varies over sample and

original collection. In their experiments, they pick the subsets randomly, however we

pick the subsets based on user interaction history. Despite these differences, their second

hypothesis about “document frequency” feature conforms to our results when the query

has a worse MRR on the full database.

Dong et al. [46] has studied the problem of picking a subset of data sources to

optimize the data fusion accuracy. Their problem is similar to ours as both of them are

trying to discard a part of the data to achieve higher effectiveness or accuracy but there

are fundamental differences between the two. In their setting, adding data sources is

costly and data sources may have common information. But in our setting, adding data

does not have a cost and the added data does not have any tuples in common with the
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existing data.

Measuring the ability of each database to satisfy a query is a well studied area in

distributed information retrieval systems. In [111], the authors use language model of

the database to assign a score to each database and combine their returned results based

on this score. They estimates the likelihood of generating a given keyword query using

the language model of a database. First, a probabilistic language model is built for the

database. This model is based on the frequency of the terms in the database. Then, the

model is used to compute the probability of generating keywords of a given query. The

final query likelihood score is an aggregate of the likelihood of generating each keyword

in the query. While this approach is successful in IR setting, it can not directly be

applied to our problem for following reason. In distributed information retrieval, each

data source has a different language model. However, in our case, one of the data sources

(subset) has a very similar language model to the other source (the full database) and

the final score of these sources become very similar. Thus, it is difficult to decide which

source is going to deliver a higher search effectiveness.

2.3 Impact of Database Size on Effectiveness of Search

In this section, we analyze the impact of database size on search effectiveness. We focus

on databases with a single relation. This can be a relational database with one table or

a collection of semi-structured documents such as XML or JSON documents. We extend

the results of this section to databases with multiple relations in Section 2.5.2.

2.3.1 Theoretical Analysis

Consider a database instance I that contains information on n number of publications.

Let Q be the set of all queries a user can submit to retrieve any paper. If relevant answer

of a query q ∈ Q is in I, then I can potentially answer the query q, otherwise it returns no

relevant results. Let us build database J by adding more papers to I. Since J contains

information on more papers, it can potentially answer more queries of Q. Hence, it is

commonly believed that, average effectiveness of J on answering queries of Q is higher

than I. While this belief is true for answering exact queries such as SQL queries, it

does not hold for keyword queries. As shown in the example of Section 2.1, keyword
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queries are not exact formulation of users’ information needs, thus, databases may make

mistakes in returning relevant answers of keyword queries. As the size of the database

gets larger, the chance of making a mistake by database and returning a non-relevant

answer increases [109].

On one side, adding more entities to the database increases the number of the queries

that can be answered by the database. On the other side, as the database gets larger,

the chance of making a mistake by the database and returning a non-relevant answer to

a query increases . Thus, it is not clear how does adding more entities to the database

impacts the overall search effectiveness. To answer this question, we present theoreti-

cal analysis of the problem. Later in this section, we verify the theoretical results by

conducting empirical studies.

Consider database instance I and random query q over I. Let Q be the domain of q,

p(q) be its probability distribution, q(I) be the returned results of q over I and rel(q) be

the set of its relevant answers. One of the metrics used to measure the search effectiveness

of a top-k retrieval system is Precision-at-k (p@k). Precision-at-k of a random query q

over I and its expected value is defined as:

p@k(q(I)) =
|q(I) ∩ rel(q)|

k
,

E[p@k(q(I))] =
∑
q∈Q

p(q)p@k(q(I))

Access counts of tuple t is the number of times that tuple has been accessed by users

through queries or any other interactions. Given tuple t ∈ I, we define the popularity

of t, denoted by w(t), as the probability of t being a relevant answer to some query

q. More precisely, given a random query q and the set of its relevant answers rel(q),

w(t) = Pr(t ∈ rel(q)). w(t) of a tuple in a database can be computed as the access

counts of tuple t. We compute w(t) as the access count of t divided by the sum of access

counts of all tuples. In the example of Figure 1.1, each paper is a tuple and its popularity

is computed as the number of the times the paper has been accessed divided by sum of

all access counts. We define I(m) as a subset of the database I that contains m most

popular tuples of I.

In most database systems, access counts to tuples follow a power low distribution

[126]. The following theorem states that, if w(t) has a power law distribution then
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increasing the size of I(m) beyond a certain point decreases the upper bound of search

effectiveness over I(m).

Theorem 2.3.1.1. Consider database I such that for t ∈ I, w(t) has a power law

distribution. There is m0 such that if |I| > m0, for m > m0, E[p@k(q, I(m))] is bounded

above by a decreasing function of m.

Proof. Given a tuple t, let Qt be a subset of Q such that Qt = {q|q ∈ Q ∧ t ∈ rel(q)}.
Also, let 1 be the indicator function such that 1q(I)(t) is one if t ∈ q(I) and is zero

otherwise.

E[p@k(q(I(m)))] =
∑
q

p(q)
|q(I) ∩ rel(q)|

k

=
∑
q

1

|Q|
1

k

∑
t:t∈rel(q)

1q(I)(t)

Given random query q, t ∈ q(I) is a Bernoulli random variable where Pr(t ∈ q(I)) =∑
t:t∈rel(q) 1q(I)(t)/|Qt|.

E[p@k(q(I(m)))] =
1

k

∑
t

|Qt|
|Q|

Pr(t ∈ q(I))

=
1

k

∑
t

w(t)Pr(t ∈ q(I))

Database system finds the relevant tuples to a query by assigning them relevance scores.

Let us show the score of tuple t for query q as score(t, q). The probability of tuple t being

retrieved for query q shown by Pr(t ∈ q(I)) is equal to the probability that score(t, q) is

greater than at least |I| − k non relevant tuples in I. Let t̄ be a non-relevant tuple to q.

We define εt = Pr(score(t) > score(t̄)). Then the probability that score(t, q) is greater

than at least |I| − k non relevant tuples is equal to ε
(|I|−k)
t .

E[p@k(q(I(m)))] =
1

k

∑
t

w(t)Pr(t ∈ q(I))

=
1

k

∑
t

w(t)εm−kt ≤ max
t
{ε(m−k)
t }1

k

∑
t

w(t)

Let rt be the rank of tuple t based on its popularity. Given that the popularities follow
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a power law distribution, the distribution function of the popularities will have the

following general form:

w(t) =
1

Hα

1

rαt

where α is a real number greater than 1 and Hα is the |I|th generalized harmonic number

that is used for normalization of the probabilities. We can compute an upper bound for∑
tw(t) by integrating over values of rt as follows:

m∑
rt=1

1

rαt
≤ 1 +

∫ m−1

1

1

xα
dx

=
2(m− 1)α−1 − 1

(m− 1)α−1

Using the above simplification we have:

E[p@k(q(I))] ≤ max
t
{ε(m−k)
t }1

k

1

Hα

2(m− 1)α−1 − 1

(m− 1)α−1

Let ε = maxt{εt}. We compute the derivative of the above formula and factor out the

constants:

∂ E
∂m

=
εm−k ln (ε)m

m+ 1
+

εm−k

m+ 1
− εm−km

(m+ 1)2

This derivative has a positive root at:

m0 =

√
ln2 (ε)− 4 ln (ε)− ln (ε)

2 ln (ε)

For m > m0, the derivative has a negative value which entails that for m > m0 the

function is strictly decreasing. Thus, if |I| > m0, then for m > m0, E[p@k(q(I(m)))] is

bounded by a decreasing function of m.

This result shows that, if a database is sufficiently large, there is a subset of the

database such that the highest achievable expected P@K over this subset is larger than

the full database. This is because the mentioned subset is able to deliver a higher

effectiveness for tuples that are queried very often in the price of sacrificing the tuples
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that are not frequently queried.

Next, we investigate the impact of database size on recall. Recall of query q over

database I, denoted by rec(q(I)), is the fraction of relevant answers returned by the

database system:

rec(q(I)) =
|q(I) ∩ rel(q)|
|rel(q)|

E[rec(q(I))] =
∑
q

p(q)rec(q(I))

Following theorem extends the results of Theorem 2.3.1.1 to the recall of answering

queries over a database.

Theorem 2.3.1.2. Consider database I such that for t ∈ I, w(t) has a power law

distribution. There is threshold m1 such that if |I| > m1, for m > m1, E[rec(q, I(m))]

is bounded above by a decreasing function of m.

Proof. Similar to the previous proof:

E[rec(q(I))] =
1

|Q|
∑
q

|q(I) ∩ rel(q)|
|rel(q)|

=
1

|Q|
∑
q

1

|rel(q)|
∑

t∈rel(q)

1q(I)(t)

Assuming that each tuple in the database gets at least one query and at most k′ queries

then 1
k′ ≤

1
|rel(q)| ≤ 1. Thus, we have:

E[rec(q(I))] ≤ 1

|Q|
∑
q

∑
t∈rel(q)

1q(I)(t)

≤
∑
t

|Qt|
|Q|

E[t ∈ q(I)] ≤
∑
t

w(t)Pr(t ∈ q(I))

The rest of the proof is similar to the proof of Theorem 2.3.1.1.

This result shows that, if a database is sufficiently large, there is a subset of the

database such that the highest achievable E[rec(q(I))] over this subset is larger than the

full database. Note that the threshold m1, that is used in this theorem, can be different
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than the threshold m0 of Theorem 2.3.1.1. In fact, in most cases, m1 is expected to have

a larger value than m0. We will discuss this in more details in Section 2.3.2.

The last metric we examine is the reciprocal-rank. Reciprocal rank (R-Rank) of

query q over I is calculated as 1
r where r refers to the rank position of the first relevant

answer in q(I). Mean reciprocal rank (MRR) of queries Q over a database I is defined as

the average of the reciprocal ranks of the queries in Q. Since the queries in our problem

have different probabilities, we use the expected value of the R-Ranks of the queries to

compute MRR:

MRR =
∑
q∈Q

p(q)R-Rank(q, I)

This metric is useful when the queries have a single relevant answer. Using a similar

approach to Theorem 2.3.1.1 and 2.3.1.2, it is easy to show similar results for MRR. The

general idea here is to expand the R-Rank using the probabilistic approach presented in

the proof of Theorem 2.3.1.1. For top-k results, the R-Rank can be expanded as:

R−Rank(q) =

k∑
i=1

εm−k+i 1

i

≤ kεm−k

Using this expansion, one can show that, if a database is sufficiently large, there is a

subset of the database such that the highest achievable MRR over this subset is larger

than the full database.

One of the factors that impacts the value ofm0 of Theorem 2.3.1.1 andm1 of Theorem

2.3.1.2 is the similarity of the tuples in the database. If the tuples in a database are not

similar, then the probability of making a mistake by retrieval system (i.e. returning a

non-relevant tuple as an answer) decreases. In its extreme case, if the similarity between

tuples is minimum, then the database system returns the correct answers with probability

of one and value of ε will be very close to 1. In this case m0 = |I| and there is no subset

with strictly better effectiveness than the database. In contrast to this scenario, if tuples

of a database are highly similar, ε becomes small and value of m0 becomes very small

which means a small subset of the database will deliver a higher search effectiveness than

the full database.
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2.3.2 Empirical Study

The presented theoretical results in previous section, establish an upper bound for the

search effectiveness based on the database size. However, it remains an open question

whether the provided bounds are tight enough to be used in practice. In this section,

we answer this question by conducting extensive experiments on real world dataset and

query logs.

2.3.2.1 Datasets and Query Workloads

We conduct the empirical study using three datasets from Wikipedia, StackOverflow

and MSLR. The Wikipedia dataset contains the information on 11.2 million Wiki-pedia

articles1. Each article has a title and a body field. This dataset also contains users’

access counts for each article. The access counts are collected over a period of 3 months2

and we use them to compute data item popularities. For this dataset, we carry out

the experiments on two query workloads with different characteristics. The first query

workload is obtained from INEX Adhoc Track [18]. It is formed of 150 keyword queries

and their relevant answers over Wikipedia. For each query, number of relevant answers

varies between 1 and 134. The second query workload is a sample of queries submitted

to the Bing search engine. It contains more than 6000 keyword queries, most of which

have a single relevant answer in Wikipedia. Note that these two query workloads and

the access counts of Wikipedia articles are collected independently. This is important

because otherwise the data items that are relevant to a query in our query log will have

a high popularity which will introduce a bias into the final results.

The StackOverflow dataset contains the information of StackOverflow questions and

answers3. Each post in StackOverflow website has a question and may have zero or

one accepted answer. Using the questions and their accepted answer, we build a query

workload for StackOverflow dataset. We pick the questions that have accepted answers

in the dataset and use the title of the question as a keyword query. The final query

workload contains one million queries and one million relevant answers. Furthermore,

each post in StackOverflow has a view count that is the number of times a post has been

1Available at: http://inex.mmci.uni-saarland.de/tracks/lod/2013/index.html
2Available at http://dumps.wikimedia.org/other/analytics
3Available at: https://archive.org/download/stackexchange
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viewed. We use this number to compute data item popularities and query frequencies.

More precisely, if a question (or an accepted answer) has been visited a certain amount

of time, we set the frequency of the query (or the popularity of the accepted answer) to

this number. We divide the view counts into two independent sets, one for queries and

the other for the answers.

The MSLR dataset contains 30000 queries sampled from Bing search engine and 3.7

million distinct URLs. Rows of this dataset are query-URL pairs. Each pair consists

of query ID, URL ID and a 136 dimensional feature vector including query-URL click

count. We use URL click counts to compute access counts of each URL. Furthermore,

for each query, we use the maximum query-URL click count as the frequency of that

query. More details on this dataset can be found in [105].

2.3.2.2 Implementation

We have implemented the experiments using Apache Lucene 6.54 with BM25 scoring

method [91]. For Wikipedia dataset where each article has a title and a body, we compute

the relevance score of the document as a weighted sum of scores of its attributes. We

find the optimal values of the weights using grid search. For each query, we retrieve

the top k relevant tuples. We set the k = 20 for p@20 and MRR and k = 100 for

recall. Some search engines use the access counts of a web page as a feature in their

scoring function to increase the effectiveness of the retrieval. This approach is called

score boosting. We have tried boosting the retrieval system in our experiments and it

did not have a significant improvement. Thus, we report the results of retrieval without

any boosting techniques[91]. For the MSLR dataset, we use the LambdaMart algorithm

of pyltr library5 to train a learn to rank model over the MSLR dataset. The dataset

is partitioned to 5 folds. We use one fold to train the ranking model and use the rest of

the dataset as test queries. For each test query, we obtain the ranking by applying the

learned model and measure the effectiveness metrics on it.

4https://lucene.apache.org/
5https://github.com/jma127/pyltr
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2.3.2.3 Experimental Environment

We run the experiments on a Linux server with 30 Intel(R) Xeon(R) 2.30GHz cores,

500GB of memory, 100 TB of disk space and CentOS 7 operating system. We have im-

plemented the experiments using Java 1.8 and Python 3.6.4. For efficiency experiments,

we do not use any multi-threading feature of the mentioned languages.

2.3.2.4 Building The Subset of The Database

We evaluate the effectiveness of query answering over subsets with different sizes. We

build subsets of different sizes and compute the effectiveness using each subset. Given

database I, let Ik be the subset of I that contains the top k% of the most popular tuples

in the database. We build a sequence of subsets of I as {I1 . . . I100}. Given tuple t ∈ I,

we denote the popularity of t as w(t). The sequence of the subsets has the following

characteristics:

1. Ii ⊂ Ii+1

2. ∀t ∈ Ii,∀t′ ∈ Ii+1 : w(t) ≥ w(t′)

We submit queries of the different query workloads to each subset and report the results

of each dataset.

2.3.2.5 Results of Wikipedia Experiment

Figure 2.2 shows the effectiveness of answering INEX queries over subsets I1 . . . I100 of

Wiki-pedia. The x axis shows the size of the subset as a fraction of the whole database

and the y axis shows the average p@20 and recall of the queries. For very small subsets,

the system has a low p@20 because these subsets does not contain enough relevant

answers. As the size of the subset gets larger, p@20 increases until a certain point. After

this point, even though increasing the size, adds more relevant answers to the subset, it

increases the chance of making mistakes by the database, and we see a decrease in the

p@20. The same analysis holds for recall.

Figure 2.3 shows a similar experiment on Wikipedia using Bing queries. Most of

these queries have a single relevant answer. Thus, we use the mean reciprocal rank of



19

0 20 40 60 80 100

0.25

0.3

0.35

0.4

Database subset size percentage

E
ff

ec
ti

ve
n

es
s

P@20
Recall

Figure 2.2: Effectiveness of answering INEX queries
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the results to measure the effectiveness of search. For this query workload, I2 has the

highest MRR and for subsets larger than I2, MRR has a decreasing trend.

2.3.2.6 Results of StackOverflow Experiment

Figure 2.3 shows the effectiveness of query answering over different subsets of StackOver-

flow dataset. The subset with 18% of the data has the highest effectiveness. For larger

subsets, the effectiveness gradually decreases. In this experiment, there is a one-to-one

mapping between the queries and their answers. Thus, excluding one answer from a

subset will result in zero relevant answers for its corresponding query. More precisely,

the effective subset with 18% of the data only contains the relevant answers of 18% of

the queries. However, these queries are submitted so frequently that on average, the

subset achieves higher effectiveness than the full collection.

2.3.2.7 MSLR

The MSLR dataset includes the BM25 score of each query-url pair. We use this score

to simulate the retrieval process for subsets with different sizes. Figure 2.3 shows the

effectiveness of answering the queries over different subsets of this dataset. In this ex-

periment, MRR has a similar trend to previous experiments. Since results have different

relevancy scores, we also measure the NDCG of answering queries which is shown in

the figure. As it is shown, NDCG has a more significant drop compared to MRR. This

shows that tuples with higher popularity have higher relevance score. Thus, for retrieval

systems with non-binary relevance scoring, the impact of subset size is more important.

In this experiment, we don’t measure the recall because each query in MSLR dataset

has 100 URLs on average and thus it has less than 100 relevant answer and a system

that returns more than 100 results will have perfect recall.

These experiments show that the theoretical results presented in Section 2.3.1 holds

true in practice. More precisely, the results show that, given a database, if the size of the

database grows larger than a threshold, the effectiveness of query answering will drop.

As the database gets larger, the decrease in the effectiveness becomes more significant.

In next section, we use these results to build a subset of the database that delivers a

significantly higher effectiveness in answering queries.
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Figure 2.4: Impact of subset size on MSLR queries

2.3.3 The Effective Subset of A Database

In the previous section, we showed that under certain conditions, there are subsets of

a database that, on average, deliver higher search effectiveness than the full database.

We call such a subset the effective subset. Exhaustive search of subset space to find the

subset with the highest effectiveness requires exponential time computations. However,

based on the results of section 2.3.2, one can find an approximation of the subset with

the highest effectiveness using a greedy search technique. The algorithm to build the

effective subset starts with an empty set and iteratively adds batches of tuples to it. The

algorithm scans the tuples from most popular to list popular. After every iteration it

checks the effectiveness of answering sample queries and stops as soon as the effectiveness

starts decreasing.

The effectiveness can be measured using Precision@K, recall, MRR or any other user

defined metric. By setting the effectiveness to any of these metrics, the algorithm tries

to build a subset that maximizes the given metric over Q. The specified metric impacts

the final size of the effective subset. For example, an effective subset for precision-at-k

might not deliver a higher recall compared to the full database. As an example, for

INEX experiment, the subset with 10% of the popular tuples has the best p@20 and the

one with 22% has the best recall. Beside optimizing a subset for a single metric, it is
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possible to pick the subset that maximizes a metric and guarantees a minimum value

for a second metric. For example, one may want to pick a subset that has the highest

p@20 and also does not have a worse recall than the full database. The dashed line

in Figure 2.2 specifies all the subsets that have a better recall than the full database.

One may pick the best subset among these subsets to reach the highest p@20 while

preserving the recall of the full database with similar technique explained above.

Since the size of the effective subset is usually much smaller than the full database,

using this subset potentially delivers the results in a shorter time and it should be more

efficient than using the full database. We will investigate the efficiency of using the

effective subset in Section 2.6.

As mentioned in the Introduction, the effective subset may return zero relevant results

for queries with unpopular relevant answers. Assume database I and a set of queries Q

such that the average precision-at-k of the queries in Q over I is µ. Consider an effective

subset that increases the p@k of 80% of the queries by δ and decreases the p@k of the

rest by the same amount. Overall, the average p@k will be 0.8(µ + δ) + 0.2(µ − δ) =

µ + 0.6δ, which is larger than its original value and is considered an improvement in

the search effectiveness. However, using the subset increases the search effectiveness by

sacrificing the p@k of a small fraction of them. These are the queries that their relevant

answers are not popular and are excluded from the subset. We name these as infrequent

queries. Although infrequent queries form a smaller ratio of the whole query workload

(20% in this example), a robust retrieval system should be able to handle them properly.

In the next section, we present a method to addresses the issue of infrequent queries.

2.4 Improving The Effectiveness of Answering Infrequent Queries

In this section, we present two approaches to improve the search effectiveness of the

infrequent queries. We develop two methods that, given the subset and full database,

predict which one of these data sources delivers a higher search effectiveness. If the

models predict that the full database has a higher search effectiveness, then the query is

classified/labeled as infrequent. The queries that are labeled as infrequent, are submitted

to the full database rather than the subset.
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2.4.1 Detecting Infrequent Queries using Query Likelihood Model

Query likelihood model has been used in distributed IR systems [111] to select the data

source that contains more relevant answers to a given query. It measures the likelihood

of a data source given a query [91]. Consider data source I. I can be the database or

any subset of it. The language model of I is defined as the multi-set of all terms that

appear in I and is denoted by L. For a given query q, P (L|q) denotes the likelihood of L

being relevant to q. If P (L|q) has a high value, it means that data source I has a higher

chance in effectively answering query q. For a given L, P (L|q) is computed using Bayes

rule as follows:

P (L|q) =
P (q|L)P (L)

P (q)

For a given query, its probability (P (q)) is independent of L and is same for all data

sources. The prior probability of a data source P (L) can be computed based on different

criteria. We consider a uniform prior over all data sources. Using these simplifications,

one can use P (q|L) to score each data source. Let query q consist of terms q1, . . . , qn.

P (q|L) =
∏n
i=1 P (qi|L) The probability of a term given a data source, P (qi|L), can be

computed as the frequency of qi in L over size of L. If one of the terms does not appear in

L, then P (q|L) will be zero. To avoid zero probabilities, different smoothing techniques

can be applied. We use linear interpolation as discussed in [91]. The final value of P (q|L)

is used as the relevance score of data source L to query q. Given the effective subset

and full database with language models Ls and Lf , the source with a higher score has a

better chance in effectively answering q. Thus, if P (q|Ls) ≤ P (q|Lf ), then q is labeled

as infrequent and should be submitted to the database. The results of using this method

is presented in Section 2.6.

2.4.2 Detecting Infrequent Queries using Machine Learning

In this section, we present a method to train logistic regression classifier that predicts if

a query is infrequent or not. Each query is represented by a feature vector. We extract

the features over the subset and the rest of the database i.e. database excluding the

subset. We present three sets of features that are used in our system and explain why

each group is useful for building the classifier.
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2.4.2.1 Content Based Features

Content based features are based on probability distribution of words in the given

database. Query likelihood score explained in the previous section is one of the con-

tent based features. Some other examples of these features are as follows:

Covered term ratio: is the fraction of the terms in the query that appear in a data

source. If a query has a higher covered term ratio over the subset compared to the rest

of the database, answering this query over the subset will return relevant results with a

higher likelihood. For example, consider a user that is looking for Michael Stonebraker’s

paper on VoltDB and submits query stonebraker voltDB. If the subset contains the

VoltDB paper, the subset has covered term ratio = 1. Now, if the rest of the database

contains other papers of Stonebraker which are not about VoltDB, the covered term

ratio of the rest of the database for the given query will be 1
2 . In this case, subset has

a better coverage than the rest of the database which means the query is not likely to

be infrequent. However, if the VoltDB paper is included in the rest of the database, the

feature will have a higher value over the rest of the database compared to the subset and

with a higher chance, the query is infrequent.

Tuple Frequency: is the number of the tuples that a term appears in. Assume a user who

is looking for papers of Stonebraker and submits the query Stonebraker. Let’s assume

the subset contains 50 papers by Stonebraker and the rest of the database contains 5. In

this case, Tuple Frequency can be a good signal that the database should use the subset

to answer the query. For queries with more than one term, the aggregate tuple frequency

of the terms is used as the final value of the feature. We use different aggregate functions

such as average tuple frequency of terms of the query.

Most of the content based features are defined based on the terms of the query. We

extract the same features for bi-words of the query as well. For example, given query

data processing and feature Tuple Frequency, we extract the tuple frequency of the

term data, processing and also the tuple frequency of the bi-word data processing.

2.4.2.2 Popularity Based Features

One of the major distinguishing factors of the subset from the rest of the database is the

popularity of the tuples in them. More precisely, any tuple that has a higher popularity
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than a certain threshold is included in the subset. We use this characteristic of the

subset to design a second set of features which reflects the popularity of the relevant

answers of a query. Inspired by the language model approach, we design a popularity

model which is a statistical model of the popularity of the terms in a database. For each

term in the database we compute two popularity statistics: 1) The average popularity

of the tuples containing that term. 2) The minimum popularity of the tuples containing

that term. We use these two statistics to estimate popularity of terms of a query. Then

we aggregate the popularities of all query terms into a single value that estimates the

popularity of the relevant answers of that query. For aggregation, we use minimum and

average functions. Consider a user that is looking for papers on data processing using

MapReduce and submits mapreduce framework. The term framework can happen in

tuples with different popularities thus it’s popularity is 0.45 whereas the term MapReduce

happens in the tuples with high popularity and it’s popularity is 0.85. The average

popularity of these two terms is 0.65 which is an indicator that most of the relevant

answers of this query can be popular, thus query is not likely to be infrequent. Similar

to content based features, we extract popularity features for terms as well as bi-words of

the query.

2.4.2.3 Query Difficulty Based Features

IR researchers have developed query difficulty metrics to predict the quality of the search

results of a query [27]. Given a query and a data source, these methods compute a number

that indicates the hardness of a query. These metrics can be applied to our problem to

extract further features. Let us say user submits query q where its difficulty metric over

the full database is a value close to zero. This is an indicator that answering this query

over the full database is easy and will result in high search effectiveness. In this case, it

is reasonable to use the full database rather than the subset. However, if the estimated

query difficulty is high over the full database, it means the quality of the search over full

database is likely to be low and one may consider submitting it to the subset. We use

different difficulty metrics such as Clarity Score, Collection Query Similarity, etc [27].

We only include the difficulty metrics that can be computed for a query without actually

conducting the search. There are other difficulty metrics that are computed based on

the search results, however, using those metrics in our system would be inefficient as
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it doubles the search time. More precisely, to use those features, one should conduct

the search twice, once to compute the metric and classify the query and second time to

conduct the search on subset or full database based on the results of the classifier.

2.4.2.4 Training The Infrequent Query Classifier

We use logistic regression method to train our classifier. Logistic regression is a good fit

for this problem because of the following reasons. First, it has a higher interpretability

and it is easier to see which features have higher impact on the classification decision.

Second, when the signal-to-noise ratio is low, logistic regression usually outperforms other

methods. To train the classifier, we use a sample of the query workload. To build the

training data, we submit each query in the sample once to the subset and once to the full

database. If the search effectiveness over full database is larger than the subset, we label

the query as infrequent. Otherwise, it is labeled as popular query. We extract 36 features

per each field of the database. Most of the features mentioned above are extracted once

over the subset as fs and once over the rest of database as fr. A comparison of these

two features can be an indicator of the class of the query. Since logistic regression is a

linear model, it does not consider the non-linear comparison of these features. To include

non-linear comparison of these features, we add division of them defined as fs
fr

. These

extra features represent the multitude of the difference between features.

The final classifier is trained using the extracted features and their non-linear com-

binations. Using this classifier, we are able to predict the type of query prior to search

and submit the infrequent queries to the full database. We evaluate the effectiveness of

this system in Section 2.6. Furthermore, we show the overhead of using a classifier prior

to search is negligible compared to the search time. This is because the features are

extracted using the pre-built indexes on the database. Also, applying logistic regression

classifier to a feature vector is very fast. The detailed performance evaluation of this

system is presented in Section 2.6.

2.5 An Effective and Efficient Keyword Query Search System

In this section, we present a keyword query search system over relational databases

that utilizes the effective subset of Section 2.3 and infrequent query detection method
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Figure 2.5: System Architecture

introduced in Section 2.4 to improve the effectiveness and efficiency of keyword search

over large databases. Figure 2.5 depicts the architecture of the system with following

components:

The Off-line Processes (bottom layer) consists of two components. 1) Subset Builder

finds the effective subset of the database. We explained how to build an effective subset

of a single relation in Section 2.3.3. In Section 2.5.2, we present an approach to build

a subset of a database with multiple relations. The output of Subset Builder is stored

in the storage layer. 2) Logistic Regression component trains the classifier that is used

to detect infrequent queries. This module runs periodically to reflect the changes in

users’ interactions history. The trained model is stored and used by Query Classifier

component.

The Data Store (middle layer) is where the system keeps the full database and its

effective subset. Each database can have multiple tables. Each table has an inverted

index from terms to tuples. The index also contains the statistics used to compute

features for queries.

The Query Interface (top layer) is in charge of executing the query. Upon receiving

a query, it uses the Query Classifier, explained in Section 2.4, to detect if the query is

infrequent or not and submits it to the subset or full database based on this information.

Next we will explain the top-k retrieval method used in this chapter.
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2.5.1 Keyword Query Search over Relational Databases

We use the current architecture of schema-based keyword query search techniques over

relational databases to retrieve the top-k answers of a given query [31]. We provide a

brief overview of these techniques. We refer the interested reader to [67, 31] for more

detailed explanations.

Given a keyword query, a schema-based system first selects a set of tuples (a.k.a

tuple-sets) from each relation that are related to the submitted query. To find these

tuple-sets and compute tuple scores, the DBMS uses an inverted index. For instance,

consider a fragment of the DBLP database with relations papers(pid, title, aid) and

author(aid, name). Given query stonebraker voltdb, the DBMS returns a tuple-set

from papers and a tuple-set from authors that match at least one term in the query.

Then, it scores each tuple in the tuple sets using an IR relevance function. Next, the

DBMS generates candidate networks of relations that are join expressions connecting

tuple-sets via primary key foreign key relationship. Using each candidate network, the

DBMS can join tuples from different tuple-sets to produce a single candidate result for

the query. As an example, one candidate network in the mentioned example is paper ./

author. To connect the tuple-sets, a candidate network may contain base relations whose

tuples may not contain any term in the query. The candidate networks are generated

based on the schema of the database. For efficiency reasons, the DBMS limits the number

and size of generated candidate networks. After obtaining these candidate networks, the

DBMS runs many SQL queries on each of them and return its results to the user. Each

final result is a joining tree of tuples. The score of a joining tree is usually computed as

the sum of scores of its tuples divided by number of relations in the network to penalize

the long joins. One of the notable examples of schema-based keyword search methods,

called efficient IR-Style search, is introduced in [67]. According to [34], IRStyle Search

and Cover Density Search are the most effective and efficient search techniques among

schema based methods. Although Cover Density has a higher effectiveness than IRStyle,

it is designed and efficient for short keyword queries. Since we aim at improving general

keyword queries, we use a similar technique to IRStyle method [67] in our system.

Besides schema based systems, there is a second category of keyword search systems

that are based on the data graph. These graph based methods convert the database into

a data graph. Converting a database with millions of records into a graph is memory
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consuming. Furthermore, how to find a meaningful sub-graph is a challenging prob-

lem [76]. For these reasons, we do not address the graph-based methods in the current

work and leave it as a future work.

2.5.2 Building Effective Subsets over Multiple Relations

In section 2.3.3, we have presented an algorithm that builds the effective subset over

a single table. In this section, we will extend that algorithm to handle databases with

multiple tables. A naive approach is to run the algorithm on each relation R and store

the subset of the relation R′. The problem with this approach is that it scans each

relation independently, however, in a database with multiple relations, answer of most of

the queries is a joining tree of tuples rather than a single tuple. Thus, the subset building

algorithm should take this into account. More precisely, instead of iterating over single

tuples, a better approach is to iterate over joining trees of tuples. To do this, one needs

the access counts of tuples and join trees. However, database systems usually store the

access counts of individual tuples and rarely store the access counts of the join trees.

The reason for this is that number of the joins will grow exponentially as the size of the

relations increases. Thus, even for databases with a moderate size, it is not feasible to

store the join access counts. To alleviate this problem, we use the access counts of tuples

participating in a join and estimate the access count of the join based on access counts

of the participating tuples.

Consider relations R with tuple r such that access count of r is w(r). Anytime a user

accesses a join that includes r, the access count of r is increased by one. This means that,

the access counts of any join tree including tuple r will be less than or equal to w(r).

Thus, scanning the whole database ordered by access count of tuples is an approximation

of scanning the database based on access counts of join trees and tuples. Based on this

heuristic, we propose Algorithm 1 to build the effective subsets of a database with more

than one relation. This algorithm takes a set of relations, a sample of query workload

and an effectiveness metric as the input and builds the effective subset of each relation.

To build the final subset database, one can run this algorithm on tables with text

attributes (or the attributes that will be searched) and use them to build the subset

of the relation tables. As an example, consider following tables: paper(pid, title),

paper-author(pid,aid) and author(aid, name). In this case, tables paper and author
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Algorithm 1 Multi Table Subset Builder

Data: Set of relations R = R1 . . . Rn, sample queries Q with answers, effectiveness
function e

Result: Set of subset relations S = S1, . . . , Sn such that Si ⊆ Ri
P ← batch size, M ← 0
for i in (1, . . . , n) do
Si ← {}
Sort Ri by its popularity in descending order
Let iti be an iterator on Ri

m← argmaxi iti.popularity(), t← itm
while t is not null do

Scan next P tuples from itm and add them to Sm
eff ← e(Q,S)
if eff > M then

update M

else
break;

will be the input of the algorithm. Once their subsets are built, the subset of relation

table paper-author is computed as all the tuples that join tuples in the subset of paper

to their corresponding tuples in the authors table. The processes of building the subset

can be repeated periodically to reflect the changes in users’ interactions and tastes over

time. The output of this step is stored in the Effective Subset database in Figure 2.5. In

next section, we evaluate the effectiveness of the subsets built by subset estimator and

compare it with the full database.

2.6 Experiments

In this section, first we evaluate the effectiveness of the subsets that are built using

Algorithm 1 presented in Section 2.5.2. Then, we evaluate the effectiveness and efficiency

of query answering using our system. Furthermore, we evaluate the accuracy of the

infrequent query detection method presented in Section 2.4.
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Table 2.1: Dataset Information

Dataset #Tuples #Relations Size (GB)

Wikipedia 130M 5 35
StackOverflow 304M 5 2.3
MSLR 31K 1 4.1

2.6.1 Experiment Setting

We use the normalized forms of Wikipedia and StackOverflow databases introduced in

Section 2.3.2. The details of these datasets are shown in Table 2.1. The Wikipedia

database contains 5 tables: article, article-link, link, article-image and image stored in

a MySQL database. The indexed text attributes used for search are article.body, im-

age.caption and link.url. This dataset contains users’ access counts for articles, images

and links. The StackOverflow dataset contains the information of StackOverflow posts

with following tables: posts, post-comment, comments, post-tag, tags and their access

counts. The attributes used for keyword search are posts.text, tags.tag names and com-

ments.body. We store these databases in a MySQL 5.1 engine. The query workloads

used in this section are the same as Section 2.3.2.

We use IRStyle method mentioned in Section 2.5 over full database as the baseline.

To create the tuple sets with relevance score we use Apache Lucene and BM25 scoring

technique [91]. We limit the size of the generated tuple sets based on a fraction of their

max score. For example, if the highest score in a tuple set is s, we remove all the tuples

with score less than s
2 from the tuple set. This helps the IRStyle method to process

the queries a reasonable time. For experiment on p@20 and MRR, we retrieve the top

20 tuples and for recall we retrieve the top 100 tuples. The experiment environment is

similar to Section 2.3.2.

2.6.2 Evaluation of The Effective Subset

In this section we evaluate the effectiveness of our subset estimator method. Given a

database and a query workload, we randomly select 20% of the queries as train queries

and keep the rest for testing. Then, we run Algorithm 1 using training queries on

the given database and build a subset of its tables. For INEX queries, we run the
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Table 2.2: Evaluating the built subset against full database

Experiment
Effectiveness Time (s)
Subset DB Subset DB

INEX-p@20 0.33 0.22 0.7 1.2
INEX-rec 0.29 0.22 0.7 1.2
Bing 0.51 0.08 0.47 12.8
StackOverflow 0.48 0.34 0.41 6.63

experiment once to maximize the p@20 and once to maximize the recall. For Bing

and StackOverflow we run the algorithm with MRR as the effectiveness function. We

execute the test queries using IRStyle search method explained above once over the full

database as the baseline and once over the effective subsets. For INEX experiment we

report precision-at-20 (p@20) and recall as the effectiveness metrics and for Wikipedia-

Bing and StackOverflow, we report MRR (as the queries of these experiments have one

relevant answer).

The results of this experiment are shown in table 2.2. The rows are associated with

experiments and the columns are the results of that experiment. As shown in the table,

the subset deliver a higher effectiveness than the baseline in all four experiments. The

highest gain happens in the Bing experiment. This is because for Bing experiment, the

effective subset is much smaller (2%) and as discussed in Section 2.3, a smaller subset

results in much less search mistakes by the database system. Furthermore, the effective

subset for recall has the largest size as explained in Section 2.3.

The second evaluation criteria for our system is the efficiency (running time) of the

system. As it is shown in Table 2.2, the running time of the queries on subset are much

shorter than the full database. There are two major reasons for this: 1) The text index

on the subset is smaller than the database, thus, looking up the keywords and creating

the tuple sets takes less time on the subset compared to the database; 2) The size of the

tuple sets are smaller for subset. Thus, IRStyle Search spends less time querying these

sets and submits less join queries. As it is shown in Table 2.2, StackOverflow queries

take longer than the other queries because these queries contain 8.6 keywords per query

on average and are longer than the other two query workloads. For the recall experiment

(INEX-rec), we only measure the system’s response time to retrieve top 20 results as
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most systems do not show all the possible results at first run. That is why INEX-p@20

and INEX-rec experiments have the same running times.

2.6.3 Evaluating The Infrequent Query Detection

In this section, we evaluate query type prediction method. The objective of query type

prediction is to detect the infrequent queries and improve their results while maintaining

a high average effectiveness for all queries. We present the effectiveness of query answer-

ing using the two infrequent query detection methods and compare it with the cases that

we do not use this approach. Following is a list of different settings used for evaluating

the infrequent query detection method:

• Subset: Using the effective subset to answer all queries

• Database: Using the database to answer all queries

• QL: Using the query likelihood model to predict infrequent queries and reroute

them to the database

• ML: Using the logistic regression model to predict infrequent queries and reroute

them to the database

• Best: Using an Oracle that knows the exact type of the query and routes the

infrequent queries to the full database

To simulate the Oracle, we submit the query to both database and the subset and pick

the results with higher effectiveness. The result of using the Oracle shows the best

possible effectiveness that one can achieve. We carry out the evaluations on different

datasets as before.

In the first experiment, the effective subset is built over Wikipedia using Bing train

queries, and we train the logistic regression model as explained in Section 2.4. The

accuracy of this model is 0.83. Then we use the test queries to evaluate the machine

learning based infrequent query detection method. The result of this experiment is shown

in Table 2.3. The columns of the table show the search effectiveness (MRR) of popular

queries, infrequent queries and all queries as well as the average running time of all

queries in seconds. The rows indicate different settings related to each system. For all
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Table 2.3: Results of answering Bing Queries

Experiment
MRR

Time(s)
Popular Infrequent All

Subset 0.53 0.03 0.51 0.37
Database 0.07 0.51 0.08 12.8
QL 0.48 0.22 0.47 2.23
ML 0.48 0.28 0.50 2.23
Best 0.53 0.51 0.53 6.5

Table 2.4: Results of answering StackOverflow queries

Experiment
MRR

Time(s)
Popular Infrequent All

Subset 0.63 0.01 0.55 0.41
Database 0.41 0.47 0.42 6.63
QL 0.57 0.22 0.51 1.77
ML 0.57 0.25 0.53 1.79
Best 0.63 0.48 0.60 3.81

queries, the subset outperforms all other methods. However, it has a very low MRR of

0.03 for infrequent queries. The ML methods has high effectiveness for all queries (0.50)

and it increases the MRR of infrequent queries from 0.03 on subset to 0.28.

Next we evaluate the system using StackOverflow dataset using a similar approach

as above. The results of this experiment are shown in Table 2.4. Similar to the previous

experiment, the system that only uses the subset achieves the highest MRR for all

queries. However, it suffers from low MRR on bad queries. The system that uses the full

database has an opposite performance and finally the machine learning based infrequent

query detection method is able to increase the effectiveness of infrequent queries from

0.01 to 0.25 while maintaining a high MRR for all queries.

In the last experiment, we evaluate our system against INEX queries. We carry

out the experiment once for maximizing P@20 and once for recall. The results of this

experiment are presented in Tables 2.5 and 2.6. These results follow a same trend as the

previous two experiments. INEX query workload has only 145 queries compared to 6000

Bing queries and 1000000 StackOverflow queries. Because of the low number of queries
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Table 2.5: P@20 of INEX Queries

Experiment
P@20

Time(s)
Popular Infrequent All

Subset 0.44 0.11 0.33 0.7
Database 0.17 0.31 0.22 1.2
QL 0.36 0.15 0.29 0.88
ML 0.32 0.25 0.29 0.9
Best 0.44 0.31 0.40 0.9

Table 2.6: Recall of INEX Queries

Experiment
Recall

Time(s)
Popular Infrequent All

Subset 0.30 0.21 0.29 0.7
Database 0.21 0.30 0.22 1.2
QL 0.29 0.21 0.29 0.73
ML 0.28 0.22 0.28 0.79
Best 0.30 0.30 0.30 0.85

in this case, the machine learning method can not learn a very accurate model. Thus, it

can not outperform the query likelihood method. These results show that, if a database

system originally does not have a query workload, our system can be used with only

QL infrequent query detection method and once enough queries have been logged, the

system can be switched to ML mode which will deliver even higher effectiveness than

the QL method.

2.7 Conclusion

Objective of this chapter was to demonstrate the limitations of current keyword query

systems over large databases and propose a method to improve these boundaries. Our

main idea is to enhance user interaction information to identify a hot subset of the

database, build a system based on this subset and use machine learning to utilize it in a

keyword query system. Experimental results of evaluating this approach indicate that it

is successful in increasing the effectiveness and efficiency of the keyword search systems.
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In the next chapter, future, we would like to expand our framework beyond keyword

queries and support dynamic changes in the users’ interaction history.
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Chapter 3: Schema Capacity

3.1 Introduction

Many users are able to formulate correct queries as far as the query language, and

schema of the database are concerned [96, 97, 98, 93, 28]. However, a lot of users do

not have sufficient information about the database content. Hence, they may refer to

data items using terms that are different from the ones used to represent these data

items in the database. For instance, a user who is searching for the papers written by

Hector Garcia Molina in the database fragment in Figure 3.1, may use Molina, Hector,

or Victor Molina in his query to refer to Hector Garcia Molina. This phenomenon is

generally called vocabulary gap [91]. Vocabulary gap between users and a database may

also happen when the users are not familiar with the schema of the database. For

instance, they may refer to the schema elements using different names from the ones

used in the database or use the incorrect attributes to join relations [65, 32]. In this

Chapter, we focus on vocabulary gap between the data items, i.e., domain constants,

used in users’ queries and the database. We call a query that suffers from the problem

of vocabulary gap, an imprecise query.

Because the domain constants in an imprecise query and the ones in the user’s desired

tuples in the database do not generally match, the query interface may not return any

answer or may return mostly undesired answers for the query. For example, if the user

refer to Hector Garcia Molina in his query over the database fragment in Figure 3.1 as

Victor Molina, he will not obtain any answer. To answer these queries, query interfaces

use some retrieval functions, such as traditional TF-IDF formula or query expansion,

to discover the most similar domain constants in the database to the ones used in the

query. Then, they replace the domain constants in the query with the discovered ones

and return the results of the obtained query [96, 97, 98, 99, 93, 50, 91]. The user would

like to find majority of her desired answers in the returned results, i.e., achieve high

recall, and do not see many non-relevant answers in the results, i.e., get high precision

[91].
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Publication
id title author venue type

11 Information Preserving Embedding Wenfei Fan TODS Journal
12 A web of concepts Nilesh N. Dalvi SIGMOD Conference
13 Views and Query Rewriting Alan Nash TKDE Journal
14 A survey of schema matching Erhard Rahm PVLDB Journal
15 A Semantic Search Engine for XML Sara Cohen VLDB Conference
16 Extending the relational model Edgar Frank Codd TKDE Journal
17 Answering queries using views Alon Y. Halevy PVLDB Journal

Figure 3.1: A database instance of schema DBLP1.

Users often transform their databases and represent it under a new schema for various

reasons, such as achieving interoperability, data quality, and /or performance [68, 9,

33, 16, 69, 94, 52]. Hence, a natural and important question is how transforming a

database affect the precision and recall of answering imprecise queries, given the query

interface uses the same retrieval function over both original and transformed databases.

Because user satisfaction is of paramount importance for enterprises, they may like

to avoid transformations that reduce the precision and /or recall of imprecise queries.

Further, it is notoriously challenging to improve the effectiveness of retrieval functions

[8, 7]. Therefore, the effectiveness of current retrieval functions have yet to meet users’

expectations [120, 114, 32]. Knowing the database transformations that are likely to

improve precision or recall for imprecise queries, one may simulate that transformation

by create a set of views over the database and design query form interfaces according to

this set of views.

To the best of our knowledge, there has not been any formal study on the impact

of database transformations on the precision and recall of answering imprecise queries.

Generally, finding these impacts are left to the intuition. In this Chapter, we provide a

formal framework to investigate the effects of database transformations on effectiveness

of answering queries. Using this framework, we compare different relational schemas in

terms of their abilities to answer imprecise queries effectively. In particular, our investi-

gation suggests that some intuitively appealing heuristics, such as splitting a relation to

multiple relations in the database, do not generally improve and in some cases lower the

values of precision and recall of answering imprecise queries of the transformed database.

In this chapter, we present the following contributions:

• We provide an abstract model for answering imprecise queries over relational data-
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bases. Since our model does not depend on any particular retrieval function, it can

be used to reason about the effectiveness of answering imprecise queries in general

case.

• We introduce and formally define the notions of recall and precision preserving

transformations. The value of recall (precision) of answering an imprecise query

over a source database of a recall (precision) preserving transformation is equal or

greater than the recall (precision) of answering the same query over the transformed

database. We use these notions to compare different relational schemas in terms

of precision and recall of answering the same imprecise queries.

• We present two general class of database transformations and provide the condi-

tions under which these transformations are not precision (recall) preserving.

• Since both high precision and high recall cannot be usually obtained for an impre-

cise query q, users often relax q, i.e., submit a p, where q ⊂ p in order to achieve

higher recall for their queries in the expense of possibly losing precision. We prove

that a transformation whose inverse is a union of conjunctive queries with non-

empty active domain, is still not recall preserving even after relaxing queries over

its target database.

This rest of this chapter is organized as follows. Section 3.2 describes the related

works and Section 3.3 defines some basic concepts. Section 3.4 introduces a formal frame-

work to reason about the effectiveness of answering imprecise queries. In Section 3.5, we

present our results and in Section 3.6 we evaluate our results using experimental studies.

3.2 Related Works

3.2.1 Imprecise Queries and Usable Query Interfaces:

Researchers have developed various systems and algorithms to answer imprecise queries

over databases, particularly in the last decade. We refer the readers to interesting tuto-

rials and surveys in recent database conference and journals [128, 72, 32]. We build on

this line of research by providing a formal framework to analyze the impact of database

transformations on the effectiveness of answering imprecise queries.
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3.2.2 Schema Transformation:

One has to transform schemas in various applications, such as schema normalization [33,

16, 9], data integration [94, 95], model translation [15, 43], data exchange [51], and query

optimization. Some of these applications require that the information contained in the

original schema can be reconstructed from the transformed schema and every query over

the original schema can be translated to an equivalent query over the transformed one[9,

68, 69, 52, 94, 3]. The first property, which is called invertibility [52] (or dominance [68]),

is generally enforced by restricting the schema transformations to invertible functions.

The second property, which is called query preservation [52] (or query dominance [68]),

coincides with invertibility provided that the query language is sufficiently expressive

[52]. We build on this line of research by investigating how transforming a schema

affects its ability to effectively answer vague queries. The transformations in our work

does not necessarily need to have an inverse.

Using a similar technique to data integration methods [94, 95], we describe the trans-

formed schema using a set of view definitions. There are different approaches to answer

a query over a set of views [60]. We use the inverse rule method because of its simplicity

and modularity.

3.3 Preliminaries

Let Attr be a countably infinite set of symbols that contains the names of attributes.

The domain of attribute A is a countably infinite set of values that A may contain. Most

usable query interfaces consider the domain of all attributes in a schema to be text values

[65, 36, 99, 97]. Thus, we assume that the all attributes share the same domain dom.

Each element in dom is a constant. Let relname be a countably infinite set of text values

of relation names. A relation R is defined by a name and is associated with a fixed set

of attributes denoted as sort(R). We show relation R as R[U ], where U = sort(R). A

database schema is a tuple S = 〈R,Σ〉 where R is a nonempty set of relations R and

Σ is a set of constraints [1, 9]. A constraint makes restrictions on properties of data

that might be stored in the database. A domain constraint restricts the domain of an

attribute to a nonempty subset of dom. A tuple t over relation R[U ] is a total map from

U to dom.
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The relation instance IR of relation R[U ] is a finite set of tuples with sort U . A

database instance of database schema S is a mapping IS over S that associates each

relation R ∈ S to a relation instance IR. Set of all instances of S is shown as I(S). The

active domain of a relation instance IR, shown as adom(IR), is the set of all constants in

dom that appear in IR. We define and denote the active domains for a database instance

similarly. Also, adom(A, IR) denotes the set of all constants in dom that are assigned to

attribute A in the tuples of relation instance I. We drop IR in adom(A, IS) when it is

obvious from the context.

Let var be an infinite set of variables that range over the elements in dom. Each

element in the set of var ∪ dom is called a term. A free tuple over R[U ] is a function u

from U to var ∪ dom. We use notation ~X to show tuples of attributes and ~u to show a

tuple or a free tuple. The expanded form will be: ~u = u1, . . . , um.

Given a database schema S, a conjunctive query (CQ) over S takes the form of:

Q(u) : − R1(u1), · · · , Rn(un) where n > 0, Rj ∈ S, 1 ≤ j ≤ n, uj is a free tuple, Q /∈ S,

and u is a function from sort(Q) to var. Each variable that occurs in u must also appear

at least once in a uj . We call Rj(uj) a predicate and S the head of q. A union of

conjunctive queries (UCQ) over S is a finite set of CQs, i.e. its rules, that share the

same head which is a relation. Extending UCQs with inequality operator is shown as

UCQ6=. We limit our investigations to UCQ6= because this family covers many queries

that particularly have the issue of vocabulary gap. For instance, most of the form-based

query interfaces translates user inputs to UCQs. The active domain of a query q, shown

as adom(q), is the finite set of all domain constants that occur in q. We show results of

query q over database instance IS as q(IS). Result of q over a single relation instance IR

is denoted as q(IR). Queries q and q′ over database schema S are considered equivalent,

q ≡ q′, if and only if for every instance IS of S we have q(IS) = q′(IS).

3.4 Noisy Channel Model

Throughout this chapter, we will use three schemas that are explained in the following

example.

Example 3.4.0.1. The first schema (DBLP1) is shown in Table 3.1 and has a single

relation containing publications of different authors in different venues. The second

schema (DBLP2) is shown in Table 3.2. This schema contains two relations: Article
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Article
id title author venue
11 Information Preserving Embedding Wenfei Fan TODS
13 Views and Query Rewriting Alan Nash TKDE
14 A survey of schema matching Erhard Rahm PVLDB
16 Extending the relational model E. F. Codd TKDE
17 Answering queries using views Alon Y. Halevy PVLDB

Paper
id title author venue
12 A web of concepts Nilesh N. Dalvi SIGMOD
15 A Semantic Search Engine for XML Sara Cohen VLDB

Figure 3.2: A database instance of schema DBLP2.

Journal
id title author venue
11 Information Preserving Embedding Wenfei Fan TODS
13 Views and Query Rewriting Alan Nash TKDE
16 Extending the relational model E. F. Codd TKDE

VLDB
id title author type
14 A survey of schema matching Erhard Rahm PVLDB
15 A Semantic Search Engine for XML Sara Cohen VLDB
17 Answering queries using views Alon Y. Halevy PVLDB

Conference
iid title author venue
12 A web of concepts Nilesh N. Dalvi SIGMOD

Figure 3.3: A database instance of schema DBLP3.

and Paper. Relation Article contains the publications with a journal venue and Paper

contains the publications with a conference venue. The third schema (DBLP3) has three

relations: Journal, V LDB and Conference. V LDB contains the publications that

are published in ’VLDB Conference’ or ’PVLDB Journal’. Journal contains journal

articles except those with ’PVLDB’ as venue. Conference contains conference papers

except those with ’VLDB’ as venue. There is a domain constraint over typ attribute of

relation V LDB that restricts the domain of typ to {V LDB, PV LDB}.

3.4.1 Vocabulary Gap

Users are often familiar with the schema of the database but not its content. Therefore,

they may submit queries that are correctly framed under the schema of the database but
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have only partial and /or inaccurate information about domain constants [73, 97, 98, 93].

Let query q express the true information need of a user and q′ be the query that the

user submits. In a lot of cases, user fails to formulate an exact query and consequently

q′ 6≡ q. q′ is a inaccurate/noisy version of the desired query q.

Example 3.4.1.1. Suppose a user wants to retrieve papers by “Sarah Cohen” published

in the VLDB conference. The database instance has schema DBLP2 and its fragments

are shown in Table 3.2. The user’s desired query, q, is:

A(x) : − paper(x, y, Sarah Cohen, VLDB Conference)

Nonetheless, the user may know only the last name of Sara Cohen and submit query q′1
as follows.

A(x) : − paper(z, y, Cohen, VLDB Conference)

It is also likely that she may vaguely recall the name of Sara Cohen as another author

“Sarah Kuper” and may submit the following query q′2:

A(x) : − paper(x, y, Sarah Kuper, VLDB Conference)

It is also possible that the user expands the acronym “VLDB” and submits q′3:

A(x) : − paper(x, y, Sarah Cohen, Very Large Databases)

The phenomena that users use different terms than the ones in data sources to refer

to data items is called vocabulary gap [91]. Vocabulary gap is one of the main challenges

in satisfying users’ information needs in usable query interfaces, such as keyword or

form-based query interfaces [91]. For example, due to the vocabulary gap between the

user’s queries and the database values in Example 3.4.1.1, the user is not able to submit

her desired query and query interface has to predict the desired query based on the

submitted query.

Vocabulary gap happens because of different reasons:

• Under-specified Constants: The submitted query is called under-specified when a

constant in it is a subset of the corresponding constant in the desired query. Query

q′1 in Example 3.4.1.1 is an under-specified version of the desired query which leads

to a vocabulary gap.

• Partially Noisy Constants: We say a constant in a submitted query is partially

noisy when a part of the constant is different from the corresponding constant in

the desired query. The constant Sarah Kuper in Example 3.4.1.1 is a partially

noisy representation of the constant Sarah Cohen in the desired query q.
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• Equivalent Constants: Given a desired query with constant c, user may submit a

query with constant c′ where c′ is a synonym, acronym, abbreviation or expansion

of c. q′3 in Example 3.4.1.1 is a sample of this case. The submitted query does not

have any mistakes or noise, however, this query suffers from the vocabulary gap

problem and submitting it to a traditional RDBMS with exact matching technique

will result in zero relevant answers.

• Spelling Errors: This is one of the most common errors in users’ queries. Consider

the query:

A(x) : −paper(x, treep patterns, Sarah Cohen, z)

In this query, the word treep is misspelled. The correct form of this word can be

either tree or treap 1. A modern query interface has to be able to handle spelling

errors properly.

Given submitted query q′ with a noisy constant c′, the usable query interface has to

predict its corresponding desired query. We denote this predicted query by f(q′). In a

form-based query interface, an inaccurate query q′ precisely conveys the user’s informa-

tion need as far as schema elements and their relationships are concerned and the noise

is in the constants of the query. Thus, a modern query interface uses different techniques

to predict the correct constant for c′. It may use similarity measures, lexicons, query

history data, etc., to form a set of predicted values (PV) for each noisy constant. Next,

query interface will build new queries by replacing the noisy constant with predicted

values in PV. The set of these queries will form f(q′).

Example 3.4.1.2. Consider database fragment in Table 3.2. Assume

q : A(x) : − paper(x, y, Sarah Cohen, z)

q′ : A(x) : − paper(x, y, Cohen, z)

A possible set of predicted values for constant Cohen in q′ can be

PV = {Sarah Cohen, Leo Cohen, Cohen Corwin}
1Treap is a type of binary tree data structure



45

Thus, f(q′) will be:

A(x) : −paper(x, y, w, z),

w ∈ {Sarah Cohen, Leo Cohen, Cohen Corwin}

Assumption 3.4.1.1. Given database relation R with attribute A ∈ R and relation

instances IR and JR ⊃ IR, if adom(A, JR) is sufficiently larger than adom(A, IR), then

|PV(A, JR)| > |PV(A, IR)|

Assume noisy query q′ on database instance I. Depending on the type of the vocab-

ulary gap in q′, query interface uses different approaches to build PV. It can utilize the

database instance I or rely on other available information. Based on this criteria, we

divide query interfaces into two categories.

• The first type build PV independent of the database instance I. As an example,

consider the following query:

q′(x) : −paper(x, Treep Patterns, y, z)

In this query, the constant Treep is misspelled. The set of predicted values for

this constant is PV = {Tree, Treap}. The values in PV are predicted using a fixed

lexicon, and they will be the same for any database instance I.

• The second type of query interfaces make use of I to build PV. Consider following

noisy query:

q′(x) : −paper(x, y, Cohen, z)
where Cohen is a noisy constant that binds attribute Author. In this case, query in-

terface will use similarity measures such as tf-idf to find the proper set of constants

from I that match the noisy query. As an example, PV might be:

PV = {Sarah Cohen, Leo Cohen, Cohen Kuper}

The values in PV are extracted from the active domain of attribute Author in

database instance I and changing the database instance can lead to a different

PV.
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3.4.2 V-Isomorphism

Next, we formalize the relationship of predicted query f(q′) with submitted query q′.

For the sake of simplicity, we assume that none of the rules in a query is a subset of

another rule. More formally, given a query with set of rules {r1, . . . , rn}, for all ri, rj ,

1 ≤ i, j ≤ n, i 6= j, we have ri * rj . If a query does not have this property, it can be

automatically and efficiently converted to such a form [1].

Definition 3.4.2.1. Given conjunctive queries q and r over schema S, a variable iso-

morphism (v-isomorphism) θ from q to r is a bijection between the sets of variables and

a relation between the sets of constants in q and r such that θ(q) = r.

We call two queries v-isomorphic, if and only if there is a v-isomorphism between them.

For instance, q and q′ in Example 3.4.1.1 and the set of queries in Example 3.4.1.2 are v-

isomorphic. The above definition can be extended to represent the relationship between

a conjunctive query and a UCQ.

Definition 3.4.2.2. Given UCQs p and q over schema S, we say there is a v-isomorphim

from p to q iff there is a v-isomorphism between each rule in p and a rule in q.

Note that the above definition is not symmetric. There can be rules in q that doesn’t

have v-isomorphic counterparts in p. Depending on the submitted query and the content

of the database, query interface may replace a submitted rule with multiple rules. Each

new rule will be v-isomorphic to the original rule.

3.4.3 Users and Query Interface as Noisy Channels

One can think of a user as a noisy channel such that the input of this channel is user’s

information need and the output is user’s submitted query. The input and output of this

channel are v-isomorphic. In other words this channel preserves the basic schema of the

query, but may modify its constants or add or remove some rules. In a similar fashion,

query interface or QI for short can be considered as a noisy channel such that its input

is user’s submitted query q′ and its output is the predicted query f(q′). The input and

output of this noisy channel are also v-isomorphic to the output. Figure 3.4 shows the

relation between these channels and database instance I. As it is shown in Example
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Figure 3.4: Vocabulary gap noisy channel model

q user q′ QI

I

f(q′)

3.4.1.2, query interface uses the active domain of the attribute to predict queries. The

input from I to QI in the Figure 3.4 shows this fact.

Given a desired query q and a noisy version of it q′, submitted by the user, the

effectiveness of answering q′ over a database instance is generally measured in terms of

recall and precision [91].

Definition 3.4.3.1. Given database instance I and submitted query q′, let q and f(q′)

be the desired and predicted queries. The precision and recall of the result of q′(I) are

defined as follows:

pre(q′, I|q) = |f(q′)(I)∩q(I)|
|f(q′)(I)| . rec(q′, I|q) = |f(q′)(I)∩q(I)|

|q(I)|

Note that f(q′) is the predicted query by the query interface. We drop q from the

right hand side of the definition when it is obvious from the context. The precision of a

query result measures the portion of the true positive answers in the result. The recall of

the result quantifies its coverage. Ideally, one would like to get answers with both high

precision and recall. However, it is generally hard to maximize both these metrics at

the same time. Thus, depending on the type of user’s information need, one may like to

sacrifice one of them in order to maximize the other. For instance, a medical researcher

who searches the literature for genes that correlate with a certain disease would like

the query interface to cover all possible answers and may not mind checking some false

positives in return. On the other hand, a traveler who looks for nearby restaurants

may sacrifice the coverage of a query to find some reasonably close restaurants. The

aforementioned trade-off between precision and recall is an important tool for satisfying

users’ information needs [91].
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3.5 Schema Transformation And Effectiveness of Answering Queries

Database administrators transform database schemas for various reasons such as schema

normalization, data integration, and query performance improvement. Given a (source)

schema S, a schema transformation can be represented with a set of view definitions

V = {v1, . . . , vm}, where each vi, 1 ≤ i ≤ m is a query over S. For each vi we denote its

head and body as Head(vi) and Body(vi) respectively. We express each view definition in

UCQ6=. Consider DBLP1 from Table 3.1 that contains a publications table and DBLP2

from Table 3.2 that contains a table for conference papers and another table for journal

articles. One can define DBLP2 as a set of views over DBLP1 as follows:

Article(x1, x2, x3) : −Publication(x1, x2, x3, x4, Journal)

Paper(y1, y2, y3) : −Publication(y1, y2, y3, y4, Conference)

For each instance I ∈ I(S), V(I) is the database instance obtained by applying the view

definitions in V to I. Given query q over S and qv over V, qv is called an exact rewriting

of q over V if for every I ∈ I(S) and J = V(I) we have qv(J) = q(I). Continuing

our example, assume the user wants to retrieve conference papers of Sarah Cohen from

databases of Table 3.1 and 3.2. In this case, the query over DBLP1 and its exact rewriting

over V are:

q(x1) : −publications(x0, x1, Sarah Cohen, x2, Conference)

qv(x1) : −paper(x0, x1, Sarah Cohen, x2)

To obtain qv from query q and view definitions V, we use the inverse rule algorithm

introduced in [47]. The exact rewriting of a query does not always exist. We extend our

results to cover such cases as well.

Definition 3.5.0.1. Given schema S and its transformation V, we say the transforma-

tion is precision preserving iff for every query q over S, database instance I ∈ I(S)

and its transformation J = V(I), there is an exact rewriting qv over V such that

pre(q(I)) ≤ pre(qv(J)).

A recall preserving transformation is defined similarly. In the rest of this section,

we study the effectiveness of answering queries over a schema and its transformations.
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Next theorem formalizes the first case that using views reduces the effectiveness of query

answering:

Theorem 3.5.0.1. Given schema S and a set of view definitions V, V is not precision

preserving if there is a disjunctive view V ∈ V such that:

adom(Body(V )) ( adom(Head(V ))

Proof. Given relations R1(A1, B1, C1), . . . , Rn(An, Bn, Cn), assume V (A,B,C,D) has

the following general form:

V (x, y, c1, d1) :−R1(x, y, c1)

V (x, y, c2, d2) :−R2(x, y, c2)

...

V (x, y, cn, dn) :−Rn(x, y, cn)

Consider desired query q(x) : −R1(x, b, c1) and its rewriting qv(x, y) : −V (x, b, c1, d1).

Let us denote the noisy versions of these queries as q′(x) : −R1(x, b′, c′1) and q′v(x, y) :

−V (x, b′, c′1, d
′
1). Assume I ∈ J (R). We have q(I) = qv(I). Assuming that q(I) ⊆

f(q′)(I) we have:

pre(q′, I) =
f(q′)(I) ∩ q(I)

f(q′)(I)
=

q(I)

f(q′)(I)

With a similar calculation we have pre(q′v, I) = q(I)
f(q′v)(I) . We can denote f(q′) and f(q′v)

as:

f(q′)(X) : −R1(X,Y, Z), Y ∈ PV(b′, adom(B1)),

Z ∈ PV(c′1, adom(C1)

f(q′v)(X) : −V1(X,Y, Z,W ), Y ∈ PV(b′, adom(B)),

Z ∈ PV(c′1, adom(C)),W ∈ PV(d′1, adom(D))
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By adding more tuples to Ri, (i 6= 1) we build an instance I such that:

PV(b′1, adom(B1)) ⊂ PV(b′1, adom(B))

PV(c′1, adom(C1)) ⊂ PV(c′1, adom(C))

According to the retrieval model in Section 3.4, query interface uses the predicted values

set PV to retrieve the tuples. A larger PV will result in more tuples. Thus, we have

f(q′) ( f(q′v) which leads to pre(q′, I) < pre(q′v, I).

The view definition V in Theorem 3.5.0.1 contains constants in its head. Thus, the

exact rewriting of a query using V , shown by qv will introduce extra constants to the

query. Users may alter qv by dropping the extra constant to achieve a higher search

recall. This technique is called query relaxing. The following corollary shows that the

views in Theorem 3.5.0.1 is not recall preserving even after relaxing the query.

Corollary 3.5.0.1. The view definitions in Theorem 3.5.0.1 does not preserve the recall

for relaxed queries.

Disjunctive views with irreversible rule: The following theorem presents an-

other condition in which using views will decrease precision or recall.

Theorem 3.5.0.2. Given schema R and a set of views V, V is not precision preserving

if there is a disjunctive view V ∈ V with empty active domain and no constants in view

definition head.

Proof. A disjunctive view definition without constants will have the following general

form:

V (X) : −R1(X1)

V (X) : −R2(X2)

where X ⊆ X1 ∩ X2 doesn’t contain any constants. Assume x ∈ X1 and query q(X) :

−R1(X1), x = c. Although this query does not have an exact rewriting using the views,

a possible rewriting of this query is qv(X) : −V (X), x = c where c binds attribute R1.A

and V.A. With a similar proof as 3.5.0.1 it can be shown that the larger domain of V

will result in pre(q′V) < pre(q′).
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Query Optimization and Effectiveness Trade-off: Given a query, traditional op-

timizer systems push down the selection operators in q to enhance the efficiency of join

operation. This approach can effect the effectiveness of answering q in a noisy channel

environment. Applying joins can reduce the PV for an attribute which leads to a better

efficiency.

3.6 Experiments

3.6.1 Experiment Setting

Dataset: We use Freebase database that was created from June 6th, 2013 dump of

Freebase2. A topic in Freebase represents a single concept or real-world entity. A type

denotes an IS-A relationship about a Topic. For example, Shakespeare is a topic with

type Person type i.e. Shakespeare IS-A person. A property of a topic defines a HAS-

A relationship between the topic and the value of the property. As an example, Paris

topic has a population (property) of 2153600 (value)3. We extract Person, Film and TV

Program types and their properties. We pick the entities that appear at least one time in

the query workload and convert each type with a graph structure to a relational database

with star schema and store it in a MySQL database. The statistics of our database is

shown in Table 3.1.

Query Workload and Execution: We use a sample of MSN query log that is anno-

tated with Freebase topics. In this query log, a semi-automated statistical method is

used for annotating the keywords of the query with an attribute (property) from Free-

base. These queries contain between 2 to 6 keywords where each query has a related

desired answer in our database. For each experiment, we select a set of vague queries

as well as non-vague queries. Vague queries are the ones with vocabulary gap between

the query and the database. Some queries from our query log and their related answers

are shown in Table 3.2. The examples in this table show the vocabulary gap between

queries and their answers.

Each query is composed of keywords and their related attributes. We build a SQL

query based on the keywords and their annotations in a query [40]. Since we have

2https://developers.google.com/freebase/data
3http://wiki.freebase.com
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Table 3.1: Statistics of relations in the Freebase dataset

relation number of tuples size (MB)
person 2751593 1290.27
film 209816 96.55
tv program 52027 59.56

assumed the user is aware of the schema, we drop the attributes that are related to the

schema before submitting it to the database. Consider keyword query ”Movie Terminator

1995” over the following schema:

film(id, film name, film description, release year)

tv program(id, program name, program description, release year)

The attributes of this query are shown in Table 3.3. The Type attribute is an information

about the schema. We drop that attribute and build the following SQL query:

SELECT * FROM film WHERE film name = ’Terminator’ AND release year = 1995

After building this query, we submit it to the database using a retrieval system that is

explained next.

Retrieval System: We use Galago4 for creating inverted indexes for each table. In

retrieval process, we use LM ranker as the underlying retrieval algorithm. Given a

query, we determine the desired table(s) for answering the query and rank its candidate

answers using the ranker algorithm for each table. For queries over union of two or more

tables, we use a pre-built materialized view over those tables. There are some other

methods to merge the results of different tables in distributed databases such as CORI

[23]. However, we do not use these methods to avoid any external source of error in the

experiments.

Ranking Quality Metrics: We evaluate the query results using the following metrics:

1) precision-at-3 (P@3) that is fraction of relevant answers among top three retrieved

results and 2) reciprocal rank that is computed as the inverse of rank of first relevant

answer int the results list. We report the mean reciprocal rank (MRR) of queries in our

query workload. In addition, to measure the significance of the results, we report the

results of paired t-test at significance level of 5%.

Hardware Setting We run the experiments on a Linux server with 8 Intel(R) Xeon(R)

4http://lemurproject.org/galago.php
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Table 3.2: Sample MSN queries and their answers

No Query Text Answer Topic
1 Good Times TV Programs Good Times
2 batman Batman Begins
3 snakes Snakes on a Plane
4 the death of joseph stalin Stalin
5 Good Times set come movie Good Times

Table 3.3: A sample MSN query and its annotations

Keyword Attribute
Movie Type
Terminator Film Name
1995 Release Year

3.40GHz cores and 16GB of memory. We have implemented the experiment codes using

Java 1.6.

3.6.2 Horizontal Decomposition Experiment

In this section, we describe the design of each experiment, and then we analyze the

results.

The goal of this experiment is to show that the size of the active domain of an at-

tribute has inverse relation to the precision of answering queries over a database instance.

In this experiment the queries are submitted to instances of different sizes I1, I2, I3, I4, I5.

The first instance just contains the relevant answers to queries. The other instance are

selected in a way that I1 ⊂ I2 ⊂ I3 ⊂ I4 ⊂ I5. The schema used in this experiment has

a single relation that contains information on Films and TV programs:

media(id, name, description, release year, type).

The precision at 3 (P@3) and mean reciprocal rank of queries are shown in the Table

3.4. As it is shown in the results, the effectiveness of answering queries drops as the size

of the database increases. This result supports our assumptions. Consider the following

schema S:

film(id, name, description, year)

tv program(id, name, description, year)
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Table 3.4: Impact of active domain size on effectiveness of query answering

Instance Size P@3 MRR
I1 51 0.31 0.94
I2 2049 0.29 0.83
I3 20044 0.28 0.68
I4 30043 0.25 0.66
I5 261843 0.14 0.44

Table 3.5: Answering queries using views that do not preserve precision

P@3 MRR
S 0.21 0.56
V 0.14 0.36
p-value 0.003 0.001

We use the year attribute and move films and TV programs that are produced after

2005 to a new table called new release. The films produced before that date have their

own table and also the TV programs produced before 2005 have their own table. We

define the following views V over S:

film old(id, name, description, year)

: −film(id, name, description, year), year ≤ 2005

new relase(id, name, description,′ film′)

: −film(id, name, description, year), year > 2005

tv program old(id, name, description, year)

: −tv program(id, name, description, year), year ≤ 2005

new relase(id, name, description,′ tv program′)

: −tv program(id, name, description, year), year > 2005

We submit the queries to the database instance with source schema S as well as a

database instance obtained by view definitions V. The results of answering these queries

are shown in Table 3.5. As it is shown in this table, using the view definitions, the P@3

and MRR of query answering drops significantly which confirm the results of Theory

3.5.0.1. The last row of the table shows the p-value for each metric. Both p-values are

less than 0.005, which shows the statistical significance of the results.

Next, we evaluate Theorem 3.5.0.2. In this theorem, views definitions increase the ac-
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Table 3.6: Answering queries using views without exact rewriting

P@3 MRR
S 0.21 0.56
V 0.14 0.44
p-value 0.0005 0.0006

tive domain size of the attributes when there is no exact rewriting using views. Consider

schema S from the previous part and view definitions V as follows:

media(id, name, description, year) : −

film(id, name, description, year)

media(id, name, description, year) : −

tv program(id, name, description, year)

Next we run the queries over S and V. The effectiveness of answering queries are reported

in Table 3.6. The active domain size of attributes of V are greater than the active domain

size of attributes over S and answering queries over S results in a higher effectiveness

compared to V. This in turn confirms the results of Theorem 3.5.0.2.

3.7 Conclusion

In this chapter, we provided a formal model to investigate the impacts of different

schemas on the effectiveness of answering imprecise queries over databases. Our for-

mal framework does not depend on any particular answering algorithm for imprecise

queries. We proved that based on the properties of view definitions, imprecise queries

may be generally answered more or less effectively using the views.
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Chapter 4: Efficient Join Processing using Many-Armed-Bandits

4.1 Introduction

In Section 2.6 and Section 3.6, we presented the results on running time of processing

keyword queries and imprecise queries in different database systems. A major bottle-

neck in processing these queries is the join operator. The join operator is one of the

most important, costly and frequent operations over relational databases. It has been,

however, a long standing challenge to efficiently join large relations. This challenge is

more prominent in interactive systems, where the users expect real-time performance.

The inherent difficulty of processing joins queries is due to the need to inspect all

information in the participating relations and find tuples that match the condition of

the join. Traditionally, database systems improve the efficiency of join operations by

precomputing certain data structures, e.g., indexes, or sorting the relations, e.g., sort-

merge join [106]. These methods, however, are not applicable for many use cases where 1)

the precompute datastructures are not available and 2) preprocessing the data is costly.

For instance, indexes may not be available over some relations in the database or it may

take a long time to build one. Similarly, it may take a while or require too much main

memory to sort large relations. Moreover, these methods fall short of satisfying user’s

desired response time for large relations.

To overcome the afformentioned challenges, researchers have proposed join algorithms

that process subsets of input relations to provide the users with a sufficiently large subset

of answers. More specifically, as opposed to reducing the total time of the join, a group of

join algorithms aim at quickly outputting an initial subset of the joint tuples and gradu-

ally completing them [2, 64]. This approach enables users to receive and inspect a subset

of the answers in a short time, which is useful in many applications, such as interactive

data exploration and analysis [44]. A notable example of this approach is Stop[25, 26]

or Limit [123] operators in the database systems, which limit the output tuples of a join

operation in a hope to reduce the query response time [2]. These arguments take k as

an input and generate k join results in a fraction of time needed to process the whole
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join query. The time required to generate k results is defined as the response time and

the goal of these systems is to minimize the response time of the queries.

While the state-of-the-art approaches are succesful in lowering the response time,

they either require 1) large amounts of memory[59] or 2) require a preprocessed data

strucutre or statistics of the underlying data[29]. To overcome these challenges, we

propose bandit join that efficiently generates k join results by adapting to the underlying

data distribution. We model processing a join operator as an online learning problem

where the reward is the number of produced joined tuples and the join operator is

trying to maximize the produced join results. Unless otherwise noted, in this chapter we

focus on equi-join, i.e., joins with equality predicates and leave other types of join as an

interesting future direction.

4.2 Related Work

4.2.1 Adaptive Query Processing

Recently, there has been a significant growth in volume and variety of the data stored in

database management systems and the users’ information needs has become more com-

plex. Data statistics are becoming less available and some of these databases are stored

remotely. With these changes, the traditional query processing paradigm of optimize-

then-execute becomes insufficient[42]. Adaptive Query Processing (AQP) techniques,

address these challenges by adapting their behavior to the characteristic of the data.

These methods detect and correct optimizer errors that arises from cost metric simpli-

fication and incorrect statistics. In [12] and [42], authors give a comparison of AQP

techniques based on different criteria such as plan quality and scalability. They identify

the common problem of AQPs and explain the appropriate setting for each technique.

Eddies, a group of adaptive query processing operators, create a data flow of the

tuples, route them to the appropriate operator and intercept them when necessary [41,

11]. Eddies get a feecback on the tuple processing rate of each operator and adjust

the data flow accordingly. Eddies can choose different operator orderings per tuple

basis during the query processing to adapt to the current state. Other works such as

[113, 129] have extended this operator to distributed settings. [116] extends Eddies

using reinforcement learning techniques. The authors transform the query optimization
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problem to an unsupervised learning problem with quantitative rewards. We will cover

machien learning in database management systems in more details in this section. Our

work is orthogonal to Eddies as our operators learn to change and optimize their intrinsic

data access behavior while Eddies focus on inter-operator data flow.

4.2.2 Online Join Algorithms

The goal of traditional join algorithms is to minimize the completion time of a query.

These methods are considered blocking methods because their join operator will not

generate any results until it processes the whole query. However, in interactive decision

support systems, it is important to have non-blocking techniques to achieve real-time

performance. There has been a large body of work on non-blocking join techniques.

Symmetric hash-join [124] is one of the early non-blocking join techniques. [107] and

[118] extend the symmetric hash-join to support n-ary joins. Another extension of these

methods is ripple join. Ripple join uses a specific read order of the relations to support

approximate aggregate queries [59]. This method supports both equijoins and non-

equijoins [85]. However, it needs to keep the read tuples in the main memory which

makes it an expensive join method.

Some traditional join algorithms answer top-k join queries by sorting the relation

which is an expensive operation. It produces a total ordering on the relation whereas

the user only needs the top-k tuples. Furthermore, Sorting is a blocking operator and

can not be used in pipeline settings. To address the above issues, in [71] the authors

propose rank-join algorithm with the above desired properties and implement it based

on the ripple join. Rank Join [71] samples tuples from relations and produces the join

of the seen tuples so far. It also computes the score of joins using a score combination

function. These joins are stored in a queue. At each step, rank join computes a score

threshold based on the seen tuples and reports the joins that have a higher score than

this threshold. The sampling strategy can impact the performance of rank join. In the

paper, authors provide a heuristic to sample the tuples with higher score and show how it

improves the performance. The authors implement the rank join based on a hash ripple

join (they can also use a block ripple join too). Hash rank join uses a hash table for seen

tuples of each relation and a priority queue to store the generated joins and their scores.

After scanning a new tuple, hash rank join updates the threshold and inserts the new
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tuple into the relevant hash table and uses the other hash tables to produce the feasible

joins. Then, it stores the joins and their score in the queue and outputs the joins (from

queue) that their score is higher than the threshold. They explain how the join order can

impact the performance of hash join and present a heuristic method to pick a good join

order and generalize rank join to exploit random access capabilities. Their experimental

evaluation in shows that rank join can beat the state of the art J* algorithm.

The idea of online aggregation is an example in which the join algorithm gradually

produces and updates its output. The subsequent aggregation operator consumes the

output of the join operator and computes more accurate estimations as it receives more

tuples from the join [59, 85]. Following the same rationale, some join algorithms produce

a fixed random sample of the join by processing subsets of the input relations [29]. While

these approaches have had great success in improving the join processing time, it is

difficult to utilize them in all settings. First, they usually need indexes or pre-computed

statistics about the input relations, which are not usually available or take a significant

amount of time to compute. For instance, most join algorithms for online aggregation

and random sampling need indexes over input relations [85, 102]. Moreover, all current

random sampling algorithm over joins need to know several statistics about the input

relations [29]. If these statistics or data structures are not available, these algorithms

may take a long time to generate a sufficiently large (initial) sample of the output [85].

The goal of authors in [2] is answering aggregation queries very efficiently by building

samples of the tables in an offline step and selecting the right sample while answering

the queries. There is a spectrum of different approximation techniques based on their

efficiency and assumptions. There are approaches that are designed for very specific

groups of queries and guarantee consistent and efficient running time (such as sampling

methods) and there are methods that do not impose any assumptions on the query work-

load and suffer from inconsistent running times (such as OLA methods). Our proposed

method is an attempt to develop a flexible and consistently efficient method. Their as-

sumption is that queries use the same columns over time. They define these columns

as query column sets (QCS). The presented system has two components: 1) Sample

building 2) Sample selection. The first component uses stratified sampling technique to

build proper sets of samples and the second set uses these sets to answer queries. The

submitted queries can either specify an error tolerance rate or a time limit. Based on

these inputs, the system decides number of needed samples and uses it to answer the
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query.

4.2.3 Parallel Join Techniques

In [39], authors describe the problem of join processing over data streams where we can

only store a window of w tuples from each stream. In their paper, joins with a window

size of w are considered as ground truth although these joins may fail to produce all

the output joining results. However, the problem arises because of the constraint over a

buffer memory M which is smaller than the window size w. There are 2 settings for this

problem: 1) We have a fast CPU that can join an arriving tuple with everything in the

other relations window immediately. In this case, the loss of join is only because of the

buffer size M . An algorithm should decide which tuples to keep in the buffer with the

objective of minimizing the approximation error; 2) The CPU is slow, thus we may lose

results before processing all the tuples in the join buffer. In this case, we need to remove

some tuples from the buffer before they get processed. This is called load shedding. In

this case, the loss is due to both buffer size and slow CPU which is a more general form.

The authors introduce the MAX-subset measure to evaluate the loss of an approximate

join. Then, they propose solutions for the following cases: 1) Static Join where the goal

is to compute the equijoin of two non-streaming relations. However, k tuples need to

be dropped from each relation. They formalize this problem as a bipartite graph and

present a DP algorithm to solve it; 2) Fast CPU–Offline: This is the standard window

joining method with the strong assumption that we know the tuples that are arriving

in the future. For this case, the problem is modeled as minimum data flow over graphs

and a solution is provided; 3) Fast CPU–Online: For this case, the authors propose two

simple heuristics to evict tuples from the buffers. To do this, they assume for each tuple,

we know the probability that it will join with the other relation and use this probability

to evict tuples. They also mention finding the probabilities is a challenging problem that

has been addressed in online caching.

In [48] authors propose a distributed online join operator. The incoming data from

two relations R and S is represented as a matrix where rows are tuples of R and columns

are tuples of S and a cell is a corresponding join tuple. They partition the rows into

m and columns into n groups, such that J = m × n where J is the number of physical

machines (workers) in their system. Tuple r from R with row group index i is duplicated
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and sent to all the worker groups with row index i and any column index. Each worker

has a reshuffle task and a join task. During the reshuffle, the received tuple by the

worker is sent to the right worker which joins the received tuples if they satisfy the

joining condition. The proposed method has an adaptivity loop with three stages: 1)

collecting stats; 2) analyzing them; 3) migrating to a new schema if needed. Only one

of the workers need to run the adaptivity loop. The goal of migration is to balance

the load between workers, so they can process the joins in memory and minimize the

chance of using the disk. Migration changes the partitioning schema (m,n) to minimize

the load on each worker. The right time for re-partitioning is decided based on some

criteria discussed in their paper. Furthermore, the migration transfers the data between

workers so it should be done in a way to minimize the transfer overheads. This method

is different from ours in that it utilizes distributed data processing and replicates the

data to process them in parallel.

4.2.4 Machine Learning in Database Management Systems

Recently, there has been a myriad of approaches to utilize machine learning techniques

in designing different components of database managements systems. These approaches

take advantage of data characteristics and specific applications to provide highly special-

ized data management systems [80]. Previous approaches utilize distribution of data to

solve different problems such as database tuning [112] and index selection [117, 30]. How-

ever, the more recent approaches use machine learning to design different components

of the database management systems [80].

In [81], Kraska et al. propose learned database indexes that can adapt to the under-

lying data distribution and outperform a traditional B-Tree index in specific cases. In

their follow-up work, Kraska et al. propose SageDB [81], a database system that its core

parts are learned components. The main idea of the paper is to learn some models of

the distribution of the data and workload and then learn algorithms and data structures

for the learned distributions. This idea is beyond the current use of machine learning for

configuration customization, selecting algorithms and self-design. The authors briefly

explain how the data distribution models can be learned and then present its use cases

in: 1) Data access: single and multi-dimensional indexing; 2) Query execution: sorting,

joins and scheduling; 3) Query optimization: learning join orders. Although the main
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use case of the proposed methods is for read-heavy OLAP systems, the authors briefly

discuss how to extend their idea to update-heavy cases as well.

In [75], authors address the problem of operator selection for query optimization.

Given a high level query operator such as convolution or join, there are many physical

operators (as hash-join or sort-merge join) to execute the logical operator and based on

parameters, such as size of the data, one of the physical operators can outperform the

rest. The authors model the above problem as a multi-armed bandit problem where each

operator is an arm and the reward is the running time. Then, they use the Thomson

sampling method to solve the bandit problem.

Marcus and Papaemmanouil propose a method that models join order enumeration

as an RL problem [92]. In their method, states are matrices of relations, their joins, and

join attributes. Actions are defined as picking two relations (or two join results) to join

together. The reward is the inverse of the final cost of a generated join plan. They train

a neural network using PPO method [110] that takes a state as the input and predicts

the score of each action. They train the model on episodes generated from 100 queries

and test it on a separate set of queries.

In [115], the authors present a learning system called SkinnerDB to find the optimal

join order for a query without having previous training data. The paper uses UCT, a

tree based Monte Carlo method [79], to learn the optimal join order by bounding its

cumulative regret. In their method, the authors form a state tree where each state is a

table and a path from root to leaf represents a join order. A score is assigned to each node

which depends on the number of times the node has been visited and the average reward

of the paths that include this node. Note that only the leaf nodes produce rewards. The

generated reward of a leaf node is used to estimate the value of each internal node that

is on the path from the leaf to the root node. There are two motivations to use the

UCT approach in join order optimization problem: 1) the state space is large; 2) using

cumulative regret, one can combine planning and learning phases into a single phase.

The proposed naive method is to pick a small batch of an initial table and use UCT

to select a path in the join tree. Then, the join is executed in a limited time. If the

join terminates successfully, value of every node on the path from root to current leaf

is increased by one. If the join does not terminate in a specified timeout threshold, the

path is assigned zero reward. The authors enhance this naive method by a traditional

query planner. Also, they propose a third method that is the fastest and is based on
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the idea to use a different query execution engine that is tailored for their RL needs.

SkinnerDB is different from Marus and Papaemmanouil’s work in that it learns and

plans simultaneously. More specifically, SkinnerDB does not have a separate training

phase. Rather, for each given query, it learns as it produces the join output. In this

sense, SkinnerDB does not need to generalize anything to build a model. It acts more

like a smart tree search method.

Ortiz et al. propose a method to learn states for query optimization [103]. Their

objective is: 1) to learn a useful representation for each sub-query; 2) to use the learned

representation to find an optimal query plan using reinforcement learning. For the first

part, they train a neural network. The input of this network is a selection query and

database features such as minimum and maximum values of the attributes. The output

of the trained neural network is the predicted values of the cardinality of the input query.

Then, they use this neural network to represent any query-database pair as a vector. In

the second part of their work, they introduce the idea of using reinforcement learning

to learn a query plan and discuss the pros and cons of rewarding after each action and

rewarding in the end of an episode.

None of these methods consider the selection operator and our proposed method is

an orthogonal approach to the mentioned techniques.

4.2.5 Many-Armed Bandit Algorithms

Many armed bandits are a class of bandit problems where the number of arm pulls n

is much less than the number of the arms k. In these problems, beside exploration-

exploitation of the seen arms, one should also decide when to discover new arms. In

[20], authors assume a Bernoulli distribution on the expected rewards. Based on this

assumption, three algorithms are proposed: 1) one-failure where the current arm is

pulled until the first failure; 2) m-run strategy uses one-failure until either m continuous

rewards are received or m arms are visited. Then, it uses the best arm; 3) m-learning

uses the one-failure method during the first m runs and then picks the best arm. These

algorithms require the knowledge of the horizon (number of the arm pulls) to compute

the optimal value of m.

In [122], authors propose an anytime method that does not require the knowledge

of the horizon. They consider a stochastic distribution on the mean reward of the arms
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and present epsilon optimality results that depend on the mean reward distribution. The

authors first present the UCB-V algorithm that is a variation of the original UCB algo-

rithm. Then, they apply this approach to many armed bandit problem in two settings.

In the first setting, K, the number of arms to pull is given. They sample K arms and

apply UCB-V. Assuming they know the horizon, the optimal value of K can be found

and the results guarantee a log(n)
√
n regret bound. In the second setting, the authors

do not have the knowledge of the horizon. Thus, at time t, they try a new arm based on

some established conditions.

Bandit algorithms have been applied to other problems such as top-k retrieval. In

[84], authors present an online learning method to identify the top-k most attractive

items in retrieval problems. Their method is based on Cascade Model (CM). Cascade

Model is a user behavior model which assumes the user examines the ranked list from

top to bottom. As soon as the user finds an attractive item, it stops examining the rest

of the list. In this setting, the probability of items in position i and j being attractive

is independent of each other. Cascading Bandits is an online learning method based on

bandits that finds the top-k attractive items at time t. Each item can be considered

an arm and the reward is derived from the user feedback. In this setting, the rewards

are considered stationary. At each round, the algorithm computes the UCB value of

each item and picks the top-k items based on their UCB value. After receiving users

feedback, the algorithm updates the attraction probability of each item based on the

previous average attraction and the current reward. This probability and some other

parameters are used to compute the UCB values. Non-stationary Cascading Bandits

addresses the same problem as above in a setting where rewards are non-stationary.

They authors propose two approaches for this problem. The first one uses a discount

factor on the old attraction probability to tackle the challenge of non-stationary rewards.

The second approach uses a sliding window to address the same problem.

4.3 The Online Learning Framework

In this section, we will outline the online learning framework for processing join operators.

For the sake of simplicity, we describe the framework for binary join of two base relations.

The binary join operator is preceded by two scan operators over two relations. Each scan

operator reads blocks of tuples from its corresponding relation on the disk. After reading
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a block, the scan operator outputs tuples of this block which is consumed by the join

operator as an input. The join operator collects tuples from two relations and checks

to see if the received tuples satisfy the join condition. If so, their corresponding joint

tuple will be generated as an output, otherwise the tuples will be discarded. Ideally, the

scan operators should send tuples that have a higher chance of joining with each other

which depends on the values of their join attributes. The scan operators should also

avoid sending a tuple that all its joint tuples have already been produced by the join

operator. This way, the number of I/O and disk accesses that are the dominant overhead

of performing a join will be minimized.

If the tuples of the two relations are arranged on the disk in certain orders, e.g.,

sorted in the order of the join attributes, scan operators may coordinate their reads

easily. Nevertheless, the underlying relations are not usually arranged in such a desired

order. We propose an online learning method where the scan operator learns an effective

strategy in emitting tuples that have a higher chance of generating a joint tuple. In the

remainder of this section, we will cover the details of the proposed learning framework.

4.3.1 Agents, Actions, and Rewards

Agents: Each scan operator is an agent in our learning framework. At each iteration

of processing the join, each scan operator reads a tuple from its base table and sends it

to the join operator. We use the word iteration and round interchangabily to refer to

a single iteration of the join. For a binary join of two relations, we assume one of the

scan agents is learning to emit tuples that produce a join with higher likelihood which

in turn leads to higher efficiency in producing k join results. We assume the second scan

operator emits random tuples and does not learn any strategies to emit tuples. If a pair

of the input tuples from scan operators satisfy the join predicate and generate a new

joint tuple, the join operator outputs their corresponding joint tuple.

We note that the database systems usually read tuples of the base tables in blocks.

However, to simplify our framework, we assume that each scan operator reads the in-

formation of its underlying table tuple by tuple. We will discuss the extension of our

framework where information is read in blocks in Section 4.5. The task of the join oper-

ator in our framework is minimal and mainly consists of checking the join condition for

the tuples sent from the scan agents and producing and outputting the joint tuples.
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Assume that we like to join relations R and S denoted as R ./ S. R is defined as the

outer relation and S is defined as the inner relation. By the abuse of notation, unless

otherwise noted, we refer to the scan operators over R and S simply as agent or operator

R and S, respectively. In our framework, agent R is the learning agent and agent S acts

randomly and sends random tuples. We denote the number of tuples in relation R as

|R|. For the purpose of brevity, we refer to the tuples of relation R as R-tuples.

Actions: We assume that the scan operator is able to perform both sequential

access and random access to the tuples on disk. More specifically, each scan operator

may perform one of the following actions at each iteration of processing the join:

• next which reads the next tuple of the input relation on the disk, i.e., sequential

read.

• go that reads the tuple of the input relation at a given address. The read tuples

are sent to the join operator.

• end that sends an empty tuple to the join operator when the scan operator reaches

the end of the relation in the sequential scan.

• reuse in which the agent informs the join operator to use the last sent tuples.

Note that the latter two actions are introduced to simplify the exposition of our frame-

work. An operator may perform other types of actions if auxiliary data structures, e.g.,

indexes, have been already created on its underlying relation. We, however, assume that

such data structures are not available to the scan operators. The operators may perform

their actions in parallel or in a fixed order, e.g., one operator sends its tuple to the join

operator before the other one.

Reward: An action performed by the learning scan operator is successful if it leads

to generating a new joint tuple. The join operator will inform the learning operator of

the success or failure of its action. We set the reward of an action in each round to 1 if

the action leads to a new output tuple in that round and 0 otherwise. Other measures

of reward are also possible, e.g. assigning values between 0 and 1 for approximate joins.

But, our framework uses the simple 0-1 result.

The reward of an agent in round T of the learning process is uT = 1
T

∑T
t=1 r(t), where

r(t) is the reward of the action of the agent in round t. For a fixed T , the larger the

reward is, the more joint tuples the agent generate.
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The number of iterations, T , depends on the underlying application of the join. It

may be explicitly given as the input when the goal is to produce the maximum number

of joint tuples within a given time [2]. On the other hand, it might be defined implicitly,

where the users would like to stop the join after generating a certain number of tuples

[25, 26, 64]. In this case, both agents know in which round to stop performing the join

based on the success feedback from the join operator. The higher value for the reward,

u, leads to faster join response time. If the user wants to view the full join results, the

agents should figure out in what round the join operator has produced all joint tuples

to stop the join. Subsequent rounds of the join only reduces the rewards of the agents

as they do not produce any new results. We will discuss the methods for the agents to

identify the number of rounds in this case in Section 4.4. Similar to the above cases, in

this case greater value for the reward function will result in a faster response time for

the join.

Another interesting reward function is the one that puts relatively greater value on

the joint tuples produced early in the join process to encourage faster delivery of the

join result [56]. One may use exponential discounting in the reward definition u =∑T
t=1 δ

tr(t), and 0 < δ ≤ 1. Smaller values of δ encourage generating more output

tuples early in the join. On the other hand, the larger values of δ aim at generating more

total tuples in T rounds of the join. For example, δ = 1 represents the objective of the

traditional join algorithms.

4.3.2 Strategies and Adaptation

The history of an agent at round t is a sequence of pairs (ai, ri), 0 ≤ i < t where ai

and ri are the action and reward of the agent at round i of the join, respectively. The

strategy of each agent at round t is a mapping from its history to the set of actions at

time t.

An agent may follow a fixed strategy to perform the join. For example, modeling the

nested loop join algorithm from an online learning perspective, the scan operator for the

inner relations follows a fixed strategy of performing a next action in each round of the

algorithm except for the round where it exhaust all tuples in the relation. In this case,

it performs an end followed by a go to the beginning of the relation in the subsequent

round. Similarly, the scan operator for the outer relation performs a reuse action in all
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rounds of the join excepts for the ones where the other agent plays end in which the

outer agent performs next.

Nevertheless, if the underlying relations contain sufficiently many tuples, i.e., the

join has a sufficiently large number of rounds, an agent may achieve a higher reward by

modifying its strategy during the join. It may leverage its experience from the previous

rounds of the join to modify its strategy and get a potentially greater reward for the next

round(s). For example, using the history of the join, an agent may learn that tuple t1

joins with significantly more tuples in the other relation than tuple t2. Thus, if it sends

t1 to the join operator more often than t2, it may generate answers faster than the case

where t1 is sent more frequently. Similarly, if t1 is picked by the agent earlier than t2,

the join operator may be able to produce and output more tuples earlier in the joining

process.

Since the success rate of tuples are not known at the start of the join, the agent has to

learn them while performing the join. Such a learning method may first explore various

actions or sequences of actions and then exploit this knowledge to choose promising

actions in the later rounds of the join. The key element in this approach is to balance

exploration and exploitation. If an agent mostly explores possible sequence of the actions,

it may not deliver many joint tuples or it may take a long time to generate the full

answer. On the other hand, if the algorithm mostly exploits the knowledge gained from

the previous rounds of the join and performs a limited amount of exploration, it may

not find the most rewarding sequence of actions and be ineffective in the long run, which

in turn leads to an inefficient join.

Each scan may apply some selection conditions on its relation, e.g., filtering all tu-

ples with certain values in some of their attributes, or project out a subset of non-join

attributes of its input tuples. The selections and projections will be applied to all tuples

of the underlying relations. Since the existence of selection and projection operators

do not impact our analysis and results of our approach, we assume that scan operators

do not perform any selection or projection on their underlying relations to simplify the

framework.
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4.4 Learning To Join

4.4.1 Effective & Achievable Strategies

Given a fixed T , an ideal strategy is the one in which the learning operator sends a tuple

that has equal join attribute to the tuple sent by the other operator in each round such

that their resulting joint tuple has not been produced in the previous rounds and stop

the join where such a pair of tuples do not exist. This strategy is very hard to find

as the learning operator does not know which tuples other operator is going to send.

Agent R and S may deliver a performance close to the one of this strategy by reordering

the tuples of R and S on disk based on the values of their join attributes or building

index(es) over these relations. These approaches, however, are out of the reach for our

operators for the reasons explained in Section 4.1.

Since methods that require preprocessing, such as reordering, sorting, or building

indexes, are not available to our operators, the next best option is to adapt the selection

of actions to the order sent tuples from the random scan operator. In the absence of any

information about the values of join attribute of the tuples on disk, the access method

of operators is sequential-scan, i.e., heap-scan. Heap-scan usually guarantees retrieving

data in a random order based on the values of the join attribute [64]. Thus, the learning

operator may assume that the other operator is sending tuples in a random order. In

these situations, the optimal strategy for an operator is to choose always the action that

has the greatest reward between all its available actions [127, 10]. Thus, as operator S

sends tuples according to the sequential scan of its relation, operator R should choose

the tuple that joins with the most tuples in S.

Using this approach, however, the learning operators faces three challenges. First,

it does not know the optimal tuple with the greatest reward before processing the full

join, therefore, it has to learn it while processing the join. Clearly, it should deliver a

reasonably accurate estimate within relatively small number of rounds. Otherwise, this

strategy may take as much time as the strategies that examine the join of every possible

pairs of tuples, e.g., nested loop. Second, users would often like to receive some results

fast, e.g., in interactive data exploration [70, 64, 59, 2]. Since the learning phase may take

a while, it may take a considerable amount of time for the operators to generate some

results. Thus, the operators should combine learning a good strategy and producing
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output tuples in order to satisfy users’ need. Third, as soon as all the joint tuples that

can be produced using the optimal tuple are generated, this tuple will not deliver any

more rewards. Thus, operators have to detect when the possible rewards generated from

a tuple has been exhausted. Also, when this happens, they should choose the next best

tuple from the remaining tuples and continue the join and receive rewards.

In this section, we propose a learning algorithm that overcomes the mentioned chal-

lenges and prove that it is asymptotically effective. The proposed algorithm has two

stages. First operator R learns and estimates the tuple rmax ∈ R that has the maximum

reward in a relatively small number of rounds. While learning rmax, the operator lever-

ages the information it has to produce joint tuples. Then, operator R will send only the

learned tuple to the join operator until there is no hope of producing any joint tuples

using rmax. Next, R removes tuple rmax from its set of available actions and repeats the

previous steps to learn the next tuple in R with the largest reward and produces its joint

tuples. The operator R will continue this process until all joint tuples are produced or

it reaches a given maximum number of rounds T .

4.4.2 Learning the Optimal Action

4.4.2.1 Strategies of the Operators

Operator R aims at finding tuple rmax ∈ R that joins with the largest number of tuples

in S among all tuples in R. R and S may communicate to estimate such a tuple ideally

in a relatively few rounds. Let each tuple rk ∈ R, 1 ≤ k ≤ |R| have a success probability

of pk. The parameter pk is not known at the beginning of the join to the operators.

The tuple rmax has the largest success probability pmax among all tuples in R with ties

broken arbitrarily.

Since operator S reads and sends tuples in a random order, operator R may use

the algorithms for the classic multi-armed bandit (MAB) problem to the rmax [56, 10].

In MAB, an operator has a set of actions, i.e., arms, with unknown probabilities of

success. It would like to select one action in each round such that its expected reward

is maximized over sufficiently many rounds. The action with the greatest probability

of success delivers the maximum expected reward. However, it may take a long time

to estimate the probability of success for every action as the operator may have to
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try each action many times. This method also reduces the expected reward as many

actions may deliver very small rewards. On the other hand, not exploring and trying

sufficiently many actions may deliver a sub-optimal estimate of the most rewarding

action. Generally speaking, MAB algorithms in each round choose actions based on

their observed probability of success up to the current round and the number of rounds

passed from their last selections [10]. This way, the algorithm delivers some reward by

choosing the actions that are deemed successful according to the current observations

and explore other potentially promising actions to improve the cumulative reward in the

long-run. There are several MAB problems of which Upper Confidence Bound (UCB)

algorithms deliver desired asymptotic guarantees and shown to be effective in empirical

studies [10, 119, 57].

An adaptation of MAB algorithms for our operators will be as follows. Operator R

may use an MAB algorithm, such as UCB, and selects the tuple that has the highest

UCB score in each round. Operator S has a fixed strategy doing a sequential scan, which

is equivalent to randomly picking and sending a tuple without replacement in each round.

The UCB algorithm is guaranteed to learn the most rewarding action in the long run

and produces tuples while learning.

Nevertheless, this approach poses a couple of challenges for the operator R. First,

MAB algorithms, such as UCB, usually explore every action several times to learn a

reasonably accurate estimate of its reward. If relation R has many tuples, the learning

may take a long time. As a matter of fact, we have observed that it takes operator

R more than ten hours to explore its tuples using UCB for a relation R of about a

million tuples. Second, to be efficient, operator R should have immediate access to

all tuples of R in order to pick the one with the highest score according to the UCB

selection criterion. Since there is not any indices over R, operator R has to construct

and maintain a mapping from tuples’ addresses to their UCB scores in the main memory.

This mapping will be used to select and update the scores of the tuples throughout the

join. To select and send each tuple, operator R looks up this mapping, finds the tuple

with the greatest score, and performs random access to read and send the tuple from

the disk to the join operator. Thus, operator R has to perform a random access to pick

each tuple. As every tuple will be accessed multiple times, this method may significantly

slow down the join. Moreover, if R contains many tuples, the mapping may have a

considerable storage overhead.
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To overcome these challenges, operator R may leverage MAB algorithms designed

for the agents that have infinitely many available actions [19, 121, 22], a.k.a infinitely

many-armed-bandits. Roughly speaking, these algorithms assume the set of available

actions is too large to be fully explored. Thus, they aim at effectively estimating the

most rewarding action(s) using a sufficiently small random sample of the set of available

ones. There are different algotihms to solve infinitely many-armed bandit problems. We

set operator R to use an algorithm called m-run [19]. Similar to the approach explained

in the preceding paragraphs, operator S performs a sequential scan and sends a tuple of

S to the join operator in each round. Operator R does a sequential scan and sends each

read tuple to the join operator. Since R performs a heap-scan, one may assume that it

randomly selects from its available tuples. Operator R maintains a mapping from the

scanned tuples’ addresses to their total observed rewards in the main memory. As far

as the current tuple of R produces a joint tuple, operator R keeps sending this tuple to

the join operator without reading any new tuple and moving ahead in the relation R.

As soon as the current tuple of R faces its first failure in a round, i.e., not producing a

joint tuple in the round, operator R moves ahead in its sequential scan and sends the

next tuple on the disk to the join operator in the subsequent round.

If there is a tuple that has m consecutive successes, operator R stops its scan and

declares that tuple as the estimated one with the maximum reward. Otherwise, it stops

scanning and sending new tuples to the join operator as soon as it reads m distinct

tuples. In this case, it checks the total rewards of every tuple read from R so far using

the mapping maintained in the main memory and picks the one with the greatest reward

as the desired tuple where ties are broken arbitrarily. At this point, the learning phase

of the strategy finishes.

The amount of the storage needed to keep the mapping of the address and reward

of each tuple is modest for a sufficiently small m. We denote the estimated tuple with

maximum reward as r̂max. In the subsequent rounds of the join, operator R will keep

sending r̂max to the join operator and operator S will continue the sequential scan of its

remaining tuples and sending them to the join operator. The operators will maintain

these strategies until operator S exhausts all tuples in relation S. We call the sequences

of rounds starting from learning r̂max until operator S is done with all its available tuples

the super round of r̂max.
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4.4.2.2 Asymptotic Analysis

An important question regarding the strategy of the operators in the super-round of

r̂max is whether it generates a sufficiently large total reward. Equivalently, we would

like to know whether these strategies produce sufficiently small rate of failure in which

operators spend I/O access costs but do not produce any results. To simplify our analysis,

we assume that |R| < |S|. Because operators plan to follow the same strategy profile

to find other highly rewarding tuples of R and compute their joins in the subsequent

rounds of the join, the number of rounds of each super round in the join should be in

the order of |S|. Otherwise, the overall running time of the full join may become equally

or less efficient than the nested loop. In other words, we would like operator S to access

each tuple of S only once. The following proposition establishes a lower bound on the

expected failure proportion of the strategy profiles in which operator S accesses each

of its available tuples only once in a heap-scan. We make the simplifying assumption

that the probabilities of success for tuples in R denoted as pks are independent. We also

assume that pks are drawn from a uniform distribution in the interval [a, b] 0 ≤ a ≤ b ≤ 1.

Proposition 4.4.2.1. Assume an strategy profile in which operator S accesses each tuple

exactly once in a random order. The expected failure rate of this super round has a lower

bound of (1− b)+ (b− a)
√

2
|S| .

Proof. The proof directly follows from Theorem 7 in [19].

Proposition 4.4.2.1 holds for every strategy for operator R including m-run. To get

a clear understanding of the result of the Proposition 4.4.2.1, let b = 1 and a = 0.

Proposition 4.4.2.1 indicates that a lower bound on the expected failure proportion of

every strategy is
√

2
|S| . This lower bound comes from the inherent difficulty of learning

the most rewarding tuple online while processing the join and the restrictions on the

access paths of our operators to their actions, i.e., tuples.

Next, we ask whether the strategy our operators use will achieve an expected failure

proportion close to the lower bound of Proposition 4.4.2.1. Since we would like the

learning to scale for relation R with numerous tuples, it is reasonable to set m to a

sufficiently small value otherwise the learning of r̂max may take many rounds and require

significantly many I/O accesses. On the other hand, small values for m may not deliver

sufficiently precise estimate of the desired tuple. Interestingly, the following proposition
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shows that it is enough to learn from a random sample of R with a modest size in order

to learn a tuple that achieves an expected failure proportion close to the lower bound

in Proposition 4.4.2.1. As in Proposition 4.4.2.1, we assume that operator S performs a

heap-scan of its underlying relation and reads each tuple exactly once.

Proposition 4.4.2.2. If operator R uses m-run algorithm with m =
√
|S|(b− a), the

expected failure proportion of a super round of the join is less than or equal to (1− b)+
2
√

(b−a)
|S| asymptotically.

Proof. The proof directly follows from Theorem 8 in [19].

Again, to get a better understanding of the result of Proposition 4.4.2.2, let b = 1 and

a = 0. In this case, the expected failure is at most 2√
|S|

, ignoring additive and multiplier

constants, for m =
√
| S |. Since binary join is symmetric, we can assign operator R

to the larger relation of the two. In this case, operator R will read a significantly fewer

tuples than |R| in each super round. If both relations have almost equal number of

tuples, operator R will still read a small sample of all the tuples in R to learn the desired

tuple rmax. If b is considerably less than 1, operator R has to read even fewer tuples

than the case where b is close to 1.

4.4.2.3 Practical Considerations

After finding r̂max, the operators will produce the join of r̂max and S, denoted as r̂max ./

S, except for the ones whose S tuples are read by operator S before operatorR determines

r̂max. If users would like to receive the complete join of the underlying relations, each

super round must produce the full join of r̂max ./ S. Thus, after operator S reaches

the end of relation S, it starts scanning and sending the tuples from the beginning of S

up to the point where r̂max is determined so that the join operator produces the rest of

r̂max ./ S. These additional scans are not needed if the user does not need the full join

answer and for example requires a relatively small sample of the results [25, 26]. The

rounds that start immediately after the learning phase of each super round until all join

tuples of the desired R-tuple in the super round are produced constitute the join phase

of the super round.

The discussed strategies may produce some joint tuples while learning r̂max. These

tuples can be used to build a part of r̂max ./ S which in turn reduces the overall response
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time of the join and users may immediately see some results. However, including these

joint tuples from the learning phase in the final join results may cause duplicate joins.

There are two scenarios that may lead to duplicate joint tuples.

1. During the join phase of the current super round, the joint tuples will be reproduced

during the additional scan of the operator S explained in the preceding paragraph.

2. In the next super rounds of the join, the joint tuples whose R-tuples is not r̂max

but have been generated in the learning phase of the past super rounds.

To resolve these issues, the join operator may maintain the pairs of addresses for R- and

S-tuples of the joint tuples produced during the learning of r̂max and uses it to exclude

duplicate joint tuples from the final result set. The join operator will maintain and

update this table throughout the whole join process. This table has a relatively small

space overhead as it keeps only the information of the joint tuples produced during

learning of r̂max. Because only a relatively small number of tuples are accessed during

the learning phase in m-run algorithm, these joint tuples are usually a small fraction

of all the tuples generated in each super round and the join process. Moreover, r̂max

will be removed from the set of tuples that are available to operator R at the end of its

super round. Thus, the information of its produced joint tuples will be removed from

the table after its super round finishes. Similar elimination will be applied at the end of

each subsequent super round.

To use m-run algorithm, operator R should know the values of b and a before pro-

cessing the join. These values sometimes are precomputed and stored to be used for

query optimization [53]. Nevertheless, these values may not be known to the operators.

In our empirical studies reported in Section 4.5, we have set the value of b close to 1 and

a to 0. Our empirical studies in Section 4.5 show that using such a generous setting,

the proposed strategies still outperform the alternative join methods. As explained in

Section 4.4.2.2, to reduce the number of rounds and consequently the time of each su-

per round, we choose operator R to access the tuples in the larger relation. However,

in primary to foreign key joins, this approach will not be used if the relation with the

foreign key is the largest one as each tuple of that relation joins with exactly one tuple

of the other relation. Because learning the tuple(s) with larger reward is not useful for

this relation, we set operator R to be over the relation that has the primary key.
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The scan operators read tuples of an underlying relation in larger data units of blocks

[53]. In our framework, each operator may read from an underlying relation in blocks but

passes the information to the join operator tuple-by-tuple following the iterator model

of communication in database systems [53]. Nevertheless, one may choose the unit of

action to be a group of tuples or blocks. Each group will be sent from operators R and

S to the join operator similar to sending single tuples explained in this section. The

join operator perform an in-memory join, e.g., in-memory nested loop join, to join the

tuple groups. Then, the join operator outputs the joint tuples and reports the reward

to the operators. The reward of each group is the number of joint tuples normalized to

be between [0, 1]. The size of each group depends on the available main memory. Our

empirical studies in Section 4.5 indicate that using blocks or groups of tuples as the unit

of action during learning may lead to a higher success rate than those of a single tuple.

This is mainly because joining groups of tuples or blocks from R and S may have a higher

chances of delivering some joint tuples, i.e., positive reward, than that of a single pair

of R- and S-tuples. Because the rewards are not binary in this setting, the bounds of

Propositions 4.4.2.1 and 4.4.2.2 may not hold. There are strategies with some theoretical

guarantees for this setting [121, 22]. For practical reasons, we do not use them for our

operators which we discuss in Section 4.4.4.

4.4.3 Strategies for the Full Join

After finishing the super round of r̂max, operators may resume the join to find the next

most rewarding R-tuple by excluding the learned tuple of the last super round from the

actions available to R. Instead of re-running the strategies in the preceding super rounds,

the operators leverage the information gained from the previous super round(s) to learn

the next most rewarding tuple with a relatively small number of I/O accesses. More

precisely, operator R eliminates tuple r̂max from its list of available tuples to expoit,

by maintaining a list of addresses of every r̂max in the preceding super rounds. It also

removes the entry of this tuple from the mapping that maintains the total reward of each

R-tuple. Operator R maintains two pieces of information of the preceding super round.

It keeps the number of R-tuples explored in the learning phase of m-run algorithm in

the last super round. We denote this value as mpre. It also maintains the address of the

last tuple accessed during the learning phase of the last super round, denoted by lpre.
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It needs this value to continue the learning phase of the last super round from where it

is left off. To perform the learning stage of the m-run algorithm in the current super

round, operator R initializes the value m in the strategy to mpre and will scan the tuple

immediately after lpre in the first round of the new super round. Operator S maintains

the position of the last tuple it has read during the learning phase of the last super

round. At the first round of the new super round, it scans the tuple immediately after

that position. Operators will follow the same steps as in the last super round for the

remaining rounds of the current one.

Since the total rewards of R-tuples during the learning phase of m-run algorithm

may be considerably less than m, the number of tuples read by the operator in the

learning phase of the current super round may be significantly fewer than m. Thus, the

learning phase in the super round following the first one may have a relatively small

time overhead. If the goal is to efficiently produce a given number of joint tuples, the

algorithm will stop as soon as the desired number of tuples are produced [25, 26]. If the

user would like to find as many joint tuples as possible in a certain number of rounds,

i.e., time limit, the algorithm will stop as soon as it reaches the given number of rounds.

Otherwise, it continues until all joint tuples are produced. Towards the end of the join,

operator R may not have enough available tuples to follow the m-run strategy as it

may have found the significantly rewarding tuples and generated their joins. As soon as

operator R detects this situation, the operators may simply follow a fixed deterministic

strategy without learning, such as nested loop, for the remaining rounds of the algorithm.

If there is enough main memory available, operators may reduce the rounds of the

join and subsequently the running time of the join by learning a list of rewarding tuples

instead of only one in a super round. In this method, operator R and S will follow the

learning phase of k consecutive super rounds without performing their subsequent join

phases. At the end of this learning stage, operators will learn the k most rewarding

tuples in R. Then, the operators perform a single join phase for all the learned k tuples

by joining them with tuples in S the same way it is explained in this section. This

methods will reduce the number of scans of S almost by a factor of k.

Due to the inherent randomness of sampling and learning, the guarantees provided

by Proposition 4.4.2.2 are correlated with the expected failure and equivalently success

proportions of the discussed strategies. One may find cases where a deterministic and

fixed strategy, such as nested loop, outperforms the aforementioned strategies. An ob-
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vious example is the one where the tuples in R are sorted based on their total reward.

Choosing R as the outer relation, the (tuple-based) nested loop method will need fewer

I/O accesses than our approach to generate the output. Our goal in this paper is to

devise methods that deliver a superior performance in average case which may not be

always the most efficient method.

4.4.4 Strategies for Non-Binary Rewards

Yizao Wang et al. have proposed MAB algorithms [121] for infinitely many-arms with

rewards between 0 and 1. They provide assymptotic bounds on the expected failure

rate of their method similar to what we have discussed in Section 4.4.2. However,

their algorithm requires an operator to keep the order of
√
| S | in the main memory,

which is not usually possible. Thomas Bonald et al. have proposed an algorithm for

MAB with infinitely many-arms and proved that it achieves the lower bound of
√

2n

for sufficiently many trials of a successful arm [22]. Although this algorithm guarantees

higher asymptotic reward for a single super-round, it has a couple of issues to be used

in our setting. First, it may need significantly more than
√
n,i.e., m

√
n
2 trials with large

values for m to find successful arms. Thus, using this technique, the operators may

need significantly more I/O accesses to find and commit on an optimal tuple in each

super-round of the join. Second, as opposed to our chosen method, operator R may

access different number of tuples in each super-round. Therefore, it is not clear how

to efficiently reuse the results of the explorations in the preceding super-rounds for the

future rounds.

4.5 Experiments

We evaluate our method against nested loop and block nested loop join [53]. We do not

compare against sort-merge and hash join as they contradict our assumptions of 1) small

memory availibility and 2) no pre-processing of data.
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Table 4.1: Tuple Counts of Tables

Table
Scale part lineitem Order

s = 1 200,000 6,000,000 1,500,000
s = 2 400,000 12,000,000 3,000,000
s = 3 600,000 18,000,000 4,500,00

4.5.1 Experiment Setting

4.5.1.1 Dataset and Queries

We use TPC-H 1 to generate the queries and databases for our experiments. TPC-

H is a benchmark for decision support systems and is widely used to evaluate query

processing and optimization techniuqes. It contains a set of business oriented queries

and their database and illustrates the systems that process large volumes of data to find

the answer of critical business oriented questions. Figure 4.1 shows the TPC-H schema.

The database generator of TPC-H takes different parameters such as scale/size of the

data and distribution of the attributes. We experiment with 3 differnt database scales.

Table 4.1 shows the number of tuples of different database scales that we use throughout

the experiments. Note that the first columns shows the scale parameter feeded into TPC-

H database generator. We use TPC-H queries with a binary join in them.These queries

are specified as Q12 and Q14 in TPC-H benchmark. Note that, we only process and

evaluate the join part of these queries and drop their aggregate function as processing

the extra operators may introduce noise to the measure running time. We evalute each

query over different databases sizes and with different result size k.

Q12: SELECT * FROM order JOIN lineitem ON o_orderkey = l_orderkey;

Q14: SELECT * FROM part JOIN lineitem ON p_partkey = l_partkey;

Besides TPC-H, we evaluate our algorithm on real world Wikipedia database. The

details of this dataset is provided in Section 2.3.2. We define a query over the article

and article-link tables as:

1available at: http://www.tpc.org/tpch/
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Figure 4.1: TPC-H Schema from [37].
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QW: SELECT * FROM article JOIN article_link

ON article.id = article_link.article_id;

4.5.1.2 Implementation, Hardware Setup, and Operating System

We implement bandit join inside PostgresSQL 11.5 database management system. We

compile and run the database servoer on a Linux server with Intel(R) Xeon(R) 2.30GHz

cores, 500GB of memory, 100 TB of disk space and CentOS 7 operating system. Multi-

threading is turned off for the database server by setting the max parallel worker

parameter to zero. PostgresSQL has two main parameters to control its memory con-

sumption. First one, work mem, is the amount of memory that is used per operator.

For example, if an operator needs to build an in memory data structure, it can not

exceed work mem. Second one, shared buffers, is the size of the cache that is used by

PostgresSQL. We set both of work mem and shared buffers to their minimum possible

values, 64KB and 128KB respectively.

Bandit join algorithm needs to have both sequential and random access to tuples of

R. More specifically, when bandit join is in exploration phase, it reads tuples sequentially.

However, in exploit phase, the algorithm needs to do one random access to the tuple (or

tuple group) with the highest reward. To implement a method that has both random

and sequential access, we define a btree index on a dummy generated attribute of R.

Using this index, we can have both sequential and random access to tuples of R without

providing the join operator benefits of having an index on join attribute.

One can use the LIMIT operator to set the value of k in the experiments. However,

this operator leads to a query plan with extra nodes beside the join operator which

impacts the run-time. Thus, to measure the accurate run-time of the join, we define a

cursor over the result-set of each query and iterate over the result set and measure the

time to obtain k results. This is implemented using Python 3.6.4 and psycopg2 library.

Unless otherwise noted, we set the group size of bandit join to 32. This number

guarantees that bandit join will not keep more than one disk block of R in the main

memory.
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4.5.2 Evaluation of Bandit Join against Block Nested Loop Join

In this section, we compare the performance of bandit join to block nested loop join.

We implemented block nested loop join as an improved version of PostgresSQL’s nested

loop. In block nested loop, instead of reading one tuple from R and joining it with S, we

read a group of tuples from R and join it with S. In other words, we change the scanning

paradigm from single tuples to groups of tuples. This reduces the IO access of the nested

loop join if tuples of R are not clustered on the disk.

One of the parameters that impact the query processing time is the probability

distribution of the attribute values and more specifically the skew in data [48, 108, 100,

125, 86, 83]. In this section, besides datasets with different sizes and values of k, we

evaluate the query run-time over datasets with different skews. More specifically, we

assume a zipfian distribution with parameter z over the data [48]. Setting z = 0 will

result in uniform distribution. As we increase the value of z, the distribution becomes

more skewed.

The skew in the value of join attributes will impact the join selectivity. If the skew is

equal to zero, (ex. when we have a uniform distribution), the join selectivity of different

tuples will be similar to each other and the range of join selectivities will be small.

However, if the skew is high, the join selectivity of different tuples will have a high

variance and a large range. In this case, the m-run algorithm will be able to efficiently

identify an optimal tuple or tuple group. This in turn will improve the asymptotic

bounds that we have discussed in Section 4.4.2.2.

Figure 4.2a shows the running time of Q14 using block nested loop and bandit join

over a dataset with zero skew (uniform distribution). As shown in the figure, for z = 0,

block nested loop outperforms bandit join for k = 10 and k = 50. The reason is that,

with uniform distribution, it is difficult for bandit join to learn which tuple group can

produce more joint results. However, as we increase k, bandit join has more time to learn

and outperforms block nested loop. Figure 4.2b shows the same results for datasets with

z = 1. This figure shows that for a slightly skewed data, the bandit join is doing much

better than block nested loop. The reason is, for this distribution, the bandit join is able

to learn a proper tuple group. On the other side, block nest loop has a high chance of

getting unlucky and facing “useless” tuple groups, until it finds a group that actually

generates sufficiently enough join results.
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Figure 4.2: Response time of bandit join compared to block nested loop join for different
values of k
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Besides the response time of the query to generate k join results, we are also interested

in measuring the average time of generating each join tuple in the result set based on

their order. More specifically, it is important to generate the first results faster than the

later ones. To measure this criteria, we use the discounted average of time to generate

each result. Consider a set of join results as J = {j1, . . . , jk} where it takes ti time

to generate result ji. Using a positive discount factor γ < 1, the discounted average is

defined as:

discounted-average(J) =
k∑
i=1

γiti

This metric, puts a higher weight on the first generated results and the weight decays

as we generate more results. As an example, if the discount factor γ is equal to 9, then

the time to generate the first result is 0.99 times more important than the time that

it takes to generate the 10th result. Since decay of 0.9i is very fast, it mostly reflects

the average of first few run-times in the list. To extend it to the whole list, we define a

step size of 10 and increase the power of discount after every 10 results (instead of each

result). This way, the discounted average will still value the first few results more but

would decay with a slower pace compared to the original metric. Figure 4.3a and 4.3b

show the discounted average time (DAT) of generating k results for datasets with z = 0

and z = 1 respectively. The results are consistent with the results of response time.

Figure4.4 shows the response time results of QW over the wikipedia database. The

response time of QW is reported for different values of k. As shown in the figure, bandit

join outperforms the baseline when k > 10.

4.5.3 Scalibility of Bandit Join

Next, we evaluate the impact of database size on the performance of bandit join and

block nested loop. The size of these databases are provided in Table 4.1. We run Q14

and Q12 on each of them and report the results. Figure 4.5 show the response time of

bandit join and nested loop join on three databases with different sizes. We see that as

the database size grows, bandit join outperforms block nested loop with a larger margin.

Note that Q12 is a primary key to primary key join. In this setting, m-run algorithm

can not learn the optimal tuple/group. However, because it will skip a tuple/group after

first failure, it still outperforms block nested loop in generating k results.



85

10 50 100
0

500

1,000

1,500

K

T
im

e
(m

il
li
-s

ec
on

d
s)

Block nested loop join
Bandit join

(a) DAT of Q14 for z = 0

10 50 100
0

1,000

2,000

3,000

4,000

K

T
im

e
(m

il
li
-s

ec
o
n
d
s)

Block nested loop join
Bandit join

(b) DAT of Q14 for z = 1

10 50 100
0

2,000

4,000

6,000

8,000

10,000

12,000

K

T
im

e
(m

il
li
-s

ec
o
n
d
s)

Block nested loop join
Bandit join

(c) DAT of Q12 for z = 0

10 50 100
0

5,000

10,000

K

T
im

e
(m

il
li
-s

ec
o
n
d
s)

Block nested loop join
Bandit join

(d) DAT of Q12 for z = 1

Figure 4.3: Discounted average time (DAT) of bandit join compared to block nested loop
join for different values of k
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Figure 4.4: Reponse time of bandit join compared to block nested loop join for QW

Figure 4.6 shows the discounted average time of processing Q12 and Q14 using bandit

and block nested loop joins. These results are consistent with the results of response

time discussed in the previous paragraph.

4.5.4 Skew Resilience

Generally, as the skew in data increases, the performance of bandit join becomes much

better than block nested loop. However, there is an optimal point for for performance of

bandit join based on data skew. More specifically, if the z is too small or too large, may

have slighly worse performance than a medium value for z. This characteristic is more

obvious in resopnse time of Q14 shown in Figure 4.7a and 4.7b. We can see for Q14 the

optimal z is 2. This value can change based on the dataset size and other parametrs.

4.5.5 Evaluation of Bandit Join against Nested Loop Join

In this section, we evaluate bandit join against nested loop join. We run Q14 on TPC-H

generated database. Figure 4.8a compares the run-time of bandit join to nested loop join

using k as the independent variable (over x-axis) for z = 0. Figure 4.8b shows the same

results for z = 1. For all databases sizes, we see that bandit join out performs nested

loop for different values of k. Figure 4.9a and 4.9b shows the discounted average time of
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Figure 4.5: Impact of database size on the response time of bandit join and block nested
loop join
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Figure 4.6: Impact of database size on discounted average time of bandit join and block
nested loop join
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Figure 4.7: Impact of data skew on the response time of bandit join and block nested
loop join (k = 100)
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Figure 4.8: Response time of bandit join compared to nested loop join for different values
of k
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Figure 4.9: Discounted average time (DAT) of bandit join compared to nested loop join
for different values of k

Q14 using bandit join and nested loop join. We can see bandit join outperforms nested

loop join in both cases. The reason for these results is that for one tuple group of R,

nested loop scans all of S and then proceeds to the next tuple group. If the first tuple

group in R does not produce many join results, then nested loop wastes a lot of time on

this tuple group. However, bandit join gives a limited change to each block. If it does

not produce any joins, it proceeds to the next block leading to better run-time results.

4.6 Conclusion

In this chapter, we have proposed bandit join, an online learning method for join pro-

cessing and execution with low reponse time in certain settings. More specifically, we

were interested in the domains where the database system cannot afford to build extra

data-structures or perform preprocessing prior to the query execution. The objective of

the learned operator is to minimize the response time of the join, i.e. the time it takes

for the operator to generate a subset of the final results. The response time is one of the

main evaluation metrics for realtime performance of many systems such as interactive

systems. We have reviewed the current join processing approaches in the mentioned do-

main and described their similarities to and differences from our proposed method and

finally evaluated our technique against a widely used baseline. Our empirical studies
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shows the scenarios where the proposed bandit join method outperforms the baseline.

Furthermore, the results show the scalibility and skew resilience of the proposed method.

There are many interesting future directions to follow this line of work. In our

proposed method, relation R is the learning agent and relation S is a random agent.

Extending this framework such that both relations can learn, in a coordinated game

setting, can futher improve the efficiencly of the bandit join. With this extension, the

operators will have two different criteria in picking the optimal tuples: 1) Which tuple

can generate more results; 2) Which tuple can transfer more information to the other

operator to help them carry out their learning process. In this sense, the framework will

transform into a collaborative learning setting.

Furthermore, it would be nice to extend the work to support top-k queries. In this

setting, the input tuples of the join have scores and the join operator is given an aggregate

function to compute the score of a joint tuple. The goal of such an operator is to produce

joint tuples that have the higher score than the rest. This operator is useful in ranked

retrieval settings such as the one introduced in Chapter 2.
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Chapter 5: Conclusion and Recommendation for Future Research

5.1 Summary

The objective of this dissertation is to show it is possible to redesign traditional and

highly trusted components of a database system with the goal of providing effective and

efficient query processing. The structure, size and distribution of the underlying data

in a DBMS can be utilized to redesign data access and query processing methods to

increase the effectiveness and efficiency of these methods.

In Chapter 2, theoretical and empirical results on impact of database size on the

effectiveness of keyword processing are presented. We provided the conditions under

which database size negatively impacts the keyword search effectiveness and how one

can overcome this issue. Next, we presented a system that uses these results to provide

effective and efficient keyword query search over relational databases.

Chapter 3 introduced the idea of modeling imprecise query search as a noisy com-

munication channel. We described how the complexity of a database schema can impact

the effectiveness of answering imprecise queries. We presented theoretical results that

can be used to asses if one schema may deliver a higher search effectiveness than the

other. Finally, we verified these results using empirical studies on real world data and

queries.

Finally, in Chapter 4, we described the problem of processing join queries efficiently in

the absence of pre-built data structures and pre-processing steps. Then, we presented an

online learning method to improve the response time of join query processing compared

to the state-of-the-art.

5.2 Recommendations for Future Research

This work can initiate some exciting future research directions that we briefly present

here. The provided system in Chapter 2 is designed based on the stationary distribu-

tion of access to a database items. However, there are many scenarios that the access



93

frequencies posses a non-stationary distribution. We propose an extension to current

presented system that models and utilizes the non-stationary access frequencies.

In Chapter 4, we presented an online learning method to improve the efficiency of

scan and join operators. In the presented framework, each operator tries to learn an

optimal strategy without collaborating with other operators. One interesting future

direction for this line of work is to investigate the frameworks where the operators learn

optimal strategies by collaborating with each other. The collaboration of operators can

further increase the efficiency of the query processing over very large databases that can

not be queries in real-time using the current techniques.
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