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1 General Introduction 

Resilient water, food, and energy management strategies for an ever-growing population and changing 

environment depends on our understanding of water and carbon cycles from local to global scales. Fluxes 

of water and carbon are coupled by photosynthesis and plant transpiration cycles the largest fraction of 

terrestrial water from the land back to the atmosphere (Good et al., 2015).Vegetation regulates the 

terrestrial water cycle as it adapts to water availability and climatic conditions. A plant’s resilience and 

response to environmental stress is governed by a set of complex and diverse traits, which vary along a 

continuum from drought avoidant to drought tolerant and determine vegetation strategies when faced 

with the tradeoff between carbon assimilation and water conservations  (Anderegg et al., 2016; Fu & 

Meinzer, 2019; Skelton et al., 2015).  Our limited ability to characterize interactions between hydrology 

and climate, regulated by plants’ response to stress (Xu et al., 2013), contributes to one of the greatest 

source of uncertainty in climate and carbon projections (Friedlingstein et al., 2014; Trugman et al., 2018). 

Parameterized models need to represent the complexity and diversity of plant water use strategies, but 

hydrologically relevant model inputs are difficult to measure at ecosystem scales.  

Soil moisture integrates landscape fluxes and the spatial and temporal variability in soil moisture reflects 

dynamics of dominant land-surface processes (Rodríguez-Iturbe & Porporato, 2007). Diagnosing 

variability in soil moisture from point to landscape scales can thus quantify characteristics which are not 

measured directly. The central hypothesis of this dissertation is: soil moisture observations encode 

valuable ecohydrological information, and this information can be extracted to quantify plant water use 

strategies. Soil moisture observations from point- to landscape-scales are available through sensor 

networks (Baldocchi et al., 2001) and satellite missions (Entekhabi et al., 2010; Wagner et al., 2012) and 

offer new opportunities to diagnose ecohydrological processes globally. Detecting significant relations 

about processes which are spatially and temporally heterogeneous, driven by correlated variables, and 

inherently noisy is a major challenge, especially when using satellite data. Novel statistical methods, 

based on simple physical principles, are needed to relate the variability in soil moisture observations to 

plant water use strategies and derive metrics that improve hydrologic flux estimates.  

This dissertation develops: (1) an inverse modeling framework to estimate scale-specific 

ecohydrological thresholds from probability distribution functions of soil moisture observations; (2) a 

global dataset of thresholds of soil water uptake, which are consistent with satellite soil moisture 

estimates; and (3) relations between evapotranspiration and soil moisture at a range of biomes, based on 

the energy spectrum and probability distribution of soil moisture and information theory metrics. This 

work provides data driven methods that leverage new global observations and quantify ecohydrological 

relations which are critical to a variety of open climate, water, and ecosystem research questions and 

modeling endeavors.  
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2.1 Abstract 

Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale and 

site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that 

empirical probability density functions (pdfs) of relative soil moisture or soil saturation encodes 

sufficient information to determine these ecohydrological parameters.  Further, these parameters can be 

estimated through inverse modelling of the analytical equation for soil saturation pdfs, derived from the 

commonly used stochastic soil water balance framework. We developed a generalizable Bayesian 

inference framework to estimate ecohydrological parameters consistent with empirical soil saturation 

pdfs derived from observations at point, footprint, and satellite scales.  We applied the inference method 

to four sites with different land cover and climate assuming i) an annual rainfall pattern and ii) a wet 

season rainfall pattern with a dry season of negligible rainfall. The Nash-Sutcliffe efficiencies of the 

analytical model’s fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of 

posterior parameter distributions ranged from <1 to 15 %. The parameter identifiability was not 

significantly improved in the more complex seasonal model; however, small differences in parameter 

values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were 

most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted 

ecohydrological parameters of interest. In these cases, model inversion converged more slowly but 

ultimately provided better goodness of fit and lower uncertainty. Results were robust using as little few 

as 100 daily observations randomly sampled from the full records, demonstrating the advantage of 

analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse 

records.  Our work combines modelling and empirical approaches in ecohydrology and provides a simple 

framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent 

with soil moisture observations.  
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2.2 Introduction 

The movement of water from soils, through plants, and back to the atmosphere via transpiration is a 

critical component of local and global hydrologic cycles and is the largest surface-to-atmosphere water 

pathway (Good et al., 2015). A realistic analytical description of soil moisture dynamics is key to 

understanding ecohydrological processes that regulate the productivity of natural and managed 

ecosystems. (Rodriguez-Iturbe et al., 1999) introduced a simple framework using a bucket model of soil-

column hydrology forced with stochastic precipitation inputs where soil water losses are only a function 

of relative soil moisture or soil saturation. Given this ecohydrological framework, the analytical equation 

for the probability density function (pdf) of soil saturation depends on simple abiotic characteristics such 

as average climate and soil texture, and biotic characteristics including soil saturation thresholds at which 

vegetation can influence soil water losses.  However, the shapes of analytical soil saturation pdfs are 

generally not consistent with observations when literature values for model parameters are used (Miller 

et al., 2007). Some parameters such as field capacity and wilting point do not correspond to conventional 

definitions, because of simplifications made to describe soil water loss processes in the model, and need 

to be calibrated (Dralle & Thompson, 2016). To our knowledge, parameters of the analytical soil 

saturation pdfs have not been directly calibrated to empirical pdfs derived from measurements beyond 

the point scale. Observation networks provide freely available point scale, spatially integrated soil 

moisture observations, while remotely sensed soil moisture observations are available through satellite 

products. These data sources create an opportunity to: i) evaluate whether analytical soil saturation pdfs 

are consistent with observations across a range of scales, and ii) determine average ecohydrological 

parameters relevant to each scale. 

Estimates of ecohydrological parameters are used in a large range of applications for which the stochastic 

soil water balance framework has been used and adapted, including: the effects of climate, soil and 

vegetation on soil moisture dynamics (Laio et al., 2001a; Porporato et al., 2004; Rodriguez-Iturbe et al., 

2001); ecohydrological factors driving spatial and structural characteristics of vegetation (Caylor et al., 

2006; Manfreda et al., 2017); soil salinization dynamics (Suweis et al., 2010); biological soil crusts 

(Whitney et al., 2017); vegetation stress; optimum plant water use strategies and plant hydraulic failure 

(Laio, et al., 2001b; Manzoni et al., 2014; Feng et al., 2017); vertical root distributions (Laio et al., 2006);  

plant pathogen risk (Thompson et al., 2013); streamflow persistence in seasonally dry landscapes (Dralle 

et al., 2016); and soil water balance partitioning (Good et al., 2014, 2017). A survey of nearly 400 

ecohydrology publications revealed that 40% of studies relied heavily on simulation, rarely integrated 

empirical measurements, and were almost never coupled with experimental studies, suggesting a critical 

need to combine modelling and empirical approaches in ecohydrology (King & Caylor, 2011). Only a 

few studies have directly confronted the governing equations of the stochastic soil water balance model 

with observed soil moisture data, and even fewer studies have attempted to optimize model parameters 
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to best fit soil moisture observations. Miller et al. (2007) calibrated soil saturation pdfs to project 

vegetation stress in a changing climate. Dralle & Thompson (2016) developed an analytical expression 

for annually integrated soil saturation pdfs under seasonal climates and then calibrated soil saturation 

thresholds between which evapotranspiration is maximum and zero to compare the model to soil 

moisture observations at a savanna site. Chen et al. (2008) related evapotranspiration observations at the 

stand scale to soil moisture values using a Bayesian inversion approach, and Volo et al. (2014) calibrated 

the soil moisture loss curve to investigate effects of irrigation scheduling and precipitation on soil 

moisture dynamics and plant stress. The functional form of the soil moisture losses was approximated 

using conditionally averaged precipitation (Saleem & Salvucci, 2002; Salvucci, 2001) and remotely 

sensed data (Tuttle & Salvucci, 2014). The time scale of soil moisture dry-downs, derived from the soil 

moisture loss equations, were parameterized using evapotranspiration measured at micro-meteorological 

stations (Teuling et al., 2006) and space-borne near-surface soil moisture observations (McColl et al., 

2017). These studies indicate that the ecohydrological soil water balance framework is consistent with 

ground and larger scale remotely sensed measurements.  

Parameters representative of larger scale observations are necessary to characterize ecohydrological 

processes at ecosystem scales and are more relevant to ecohydrological modelling. These larger scale 

parameters integrate a range of ecohydrological interactions that are poorly understood and difficult to 

measure. Abiotic controlling factors of soil water balance including rainfall and soil texture can generally 

be assessed from readily available data, including site measurements, regionalized maps, and satellite 

observations, but vegetation controls on soil water dynamics are largely unknown and difficult to 

measure at hydrologically meaningful scales (Li et al., 2017). Vegetation water-use traits are generally 

observed at the species level and are not easily translated to the simple parameters necessary in soil-

water balance models. The rate of soil water losses from the near-surface soil layer, where soil moisture 

measurements are generally made, do not precisely correspond to evapotranspiration observed or 

calculated from meteorological stations. We thus focused on estimating parameters that are not directly 

observable, particularly the soil saturation thresholds at which vegetation controls soil water losses and 

the maximum rate of evapotranspiration from a near-surface soil layer. We use an inverse modelling 

approach and data that are commonly collected at environmental monitoring sites or measured from 

satellites. We present an inference framework that provides a means to quantify and compare the 

sensitivity of soil moisture dynamics at varying scales through estimates of simple ecohydrological 

parameters.  

A number of studies have combined inverse modelling approaches with ground and remotely sensed soil 

moisture data to extract meaningful hydrologic information(Xu et al., 2006; Miller et al., 2007; Chen et 

al., 2008; Volo et al., 2014; Wang et al., 2016; Baldwin et al., 2017). Bayesian inference methods are 

effective in relating prior pdfs of observations to posterior estimates of model parameters (Baldwin et 

al., 2017; Chen et al., 2008; Xu et al., 2006).  The soil water balance model provides a direct analytical 
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equation for soil saturation pdfs that is convenient to use with the Bayesian paradigm because it is a low 

parameter model with few data inputs. We selected a Bayesian inversion approach instead of a least-

squares or maximum likelihood approach because it quantifies the inference uncertainty and improves 

upon the work of Miller et al. (2007), which used a least-squares approach to calibrate soil saturation 

pdfs. Measures of inference uncertainty and parameter convergence diagnostics provided by the 

Bayesian approach can be used to evaluate the validity of model inversion and develop criteria to 

generalize the presented framework.  

We assume that if a sufficient range of soil moisture values are observed at a site, the shape of the 

empirical soil saturation pdf is constrained by the ecohydrological factors driving soil moisture 

dynamics. We hypothesize that key information required to determine these ecohydrological factors is 

encoded in empirical soil saturation pdfs and that this information can be extracted by calculating the 

inverse of the commonly used stochastic soil water balance. The analysis of soil saturation pdfs is a more 

robust and integrated approach to investigate ecohydrological factors of soil water dynamics than is time 

series analysis. Soil saturation pdfs are less sensitive to the many sources of uncertainty, sensor noise, 

and common gaps in soil moisture observations and do not require high-quality, co-located and 

concurrent hydrologic measurements that are often lacking. We tested three key assumptions embedded 

in the proposed method. (i) The analytical soil saturation pdfs properly describe empirical soil saturation 

pdfs observed in annual data. Annual soil moisture records can be affected by transitional dynamics 

between wet and dry seasons, and the appropriate level of model complexity must be used. We compare 

parameter identifiability using an annual and a seasonal formulation of the analytical soil saturation pdfs. 

(ii) Parameter estimates and their uncertainty at point-, footprint-, and satellite- scales are different and 

reflect variability in soil water dynamics. We determine whether the inference approach can be applied 

at point-, footprint-, and satellite-scales to provide appropriate scale-specific parameters for 

ecohydrological modelling. (iii) The range of realizable soil moistures values is captured by the selected 

time series and the soil saturation pdf determined from these observations is not truncated. We determine 

whether the inference method based on soil saturation pdfs is robust against reduced data availability by 

repeating the model inversions on subsets of the soil moisture time series and show that the method can 

be applied to sparse datasets. 

Our goal was to match empirical soil saturation pdfs derived from point-, footprint-, and satellite-scale 

observations to a commonly used analytical model. We demonstrate the use of a Bayesian inversion 

framework to calibrate the ecohydrological parameters of a simple stochastic soil water balance model 

that best fit empirical soil saturation pdfs. We first present data sources, define the analytical model for 

soil saturation pdfs including parameter assumptions, and detail the algorithm used in the Bayesian 

inversion. Then, we present a summary of the goodness of fit of optimal analytical soil saturation pdfs 

and estimated parameter uncertainty.  We evaluated results to test key method assumptions including 

model complexity and data availability. Finally, we discuss the potential of the approach to provide a 
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simple means to investigate variability in ecohydrological controlling factors at varying spatial scales. 

Our work combines modelling and empirical approaches in ecohydrology to provide more realistic 

analytical descriptions of soil moisture dynamics. Estimates of ecohydrological parameters consistent 

with observed soil saturation pdfs, from point- to ecosystem-scales, are needed to better characterize 

site-specific ecohydrological processes. 

2.3 Data and methods 

2.3.1 Data  

We used daily soil moisture observations from three data products at three spatial scales. We used point-

scale soil moisture data at a depth of 10 cm from the FLUXNET2015 data product 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/). We used footprint-scale soil moisture data from 

the Cosmic-ray Soil Moisture Observing System (COSMOS) 

(http://cosmos.hwr.arizona.edu/Probes/probelist.html). The COSMOS soil moisture footprint measures 

soil moisture at an average depth of 20 cm with a radius ranging from 130 to 240 m, depending on site 

characteristics (Köhli et al., 2015). Near-surface soil moisture observations at a spatial resolution of 0.25˚ 

were taken from the European Space Agency’s (ESA) Climate change Initiative (CCI) project. We used 

the combined soil moisture product (ECV-SM, version 0.2.2) that merges soil moisture retrievals from 

four passive (SMMR, SMM/I, TMI, and ASMR-E) and two active (AMI and ASCAT) coarse resolution 

microwave sensors (Liu et al., 2011, 2012; Wagner et al., 2012). Although the ECV-SM sensing depth 

is <5 centimetres, it has been shown to have a close relation to ground-based observations of soil 

moisture in the upper 10 centimetres (Dorigo et al., 2015). We compiled daily rainfall time series from 

the FLUXNET2015 dataset for the point- and footprint-scale analysis, and National Aeronautics and 

Space Administration’s (NASA) Tropical Rainfall Measuring Mission (TRMM) dataset (Huffman et al., 

2007) for the satellite-scale analysis.  

We selected 4 sites with soil moisture and rainfall data available for the 2012 calendar year (Figure 2.1, 

Table 2.1). Selected sites spanned a range of land cover types including crop and grasslands, oak 

savanna, deciduous forest and pine forest. We determined dominant soil texture of the upper soil layer 

from the Harmonized World Soil Database (HWSD) (version 1.2) (FAO/IIASA/ISRIC/ISS-CAS/JRC, 

2012) for each site. We used soil porosity values, derived from the HWSD available as ancillary data 

through the ESA-CCI data product, for the satellite-scale analysis. We used the maximum soil moisture 

observation during the year 2012 as a site-specific soil porosity estimate for point- and footprint-scale 

data products. We used soil porosity for each site to calculate soil saturation s (0 ≤ $ ≤ 1) from each 

observed soil moisture value. We do not expect the differences in data quality between data sources and 

sites to significantly affect empirical soil saturation pdfs and resulting parameter estimates. All sites had 
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full records of daily point- and footprint-scale observations except for US-Me2, which had 55 missing 

footprint-scale observations during winter when the ground was saturated and frozen. The number of 

daily satellite-scale observations in the 2012 records ranged from 202 to 283.  

2.3.2 Analytical model for soil saturation probability density functions 

Model definition  

Our framework is based on a standard bucket model of soil column hydrology at a point forced with 

stochastic precipitation inputs and in which soil water losses are a function of soil saturation. We 

followed the simple formulation of soil water losses in (Laio et al., 2001a). We applied two associated 

analytical formulations for the soil saturation pdf detailed below and derived under the assumption of 

steady state, wherein parameters are constant for a given period of time.  The annual model assumed an 

annual rainfall pattern and the seasonal model accounted for a wet season rainfall pattern and a dry 

season of negligible rainfall.  

The soil water balance model is defined at a point and a daily time step, for a soil with porosity &, and 

assuming that soil saturation is uniform in the considered soil column of depth '. Rainfall, the only input 

to the soil water balance, is treated as a Poisson distribution characterized by an average event frequency 

λ and average event intensity α. For simplicity, we assumed that the rainfall applied was equal to the 

amount that reached the ground surface and that interception by vegetation was negligible. Interception 

may be a significant component of the soil water balance at forested sites and may need to be considered 

in future extensions of this work. The daily soil water balance is the difference between the rate of rainfall 

infiltration ( and the rate of soil moisture losses	*: 

&' +,(-)

+-
= ([$(1); 1] − *[$(1)]        (1) 

([$(1); 1]	is both a stochastic process controlled by rainfall and also a state-dependent process because 

excess rainfall relative to available soil storage is converted to surface runoff. the soil moisture loss 

curve,  χ[$(1)], includes leakage losses due to gravity and evapotranspiration and is described in stages 

determined by five soil saturation thresholds (Laio et al., 2001a). These stages are: (i) the saturation point 

($ = 1), at which all pores are filled with water; (ii) the field capacity ($67), at which soil-gravity drainage 

becomes negligible compared to evaporation; (iii) the point of incipient stomata closure ($∗), at which 

plants begin to reduce transpiration from water stress; (iv) the wilting point ($9), at which plants cease 

to transpire; and (v) the hydroscopic point ($:), at which water is bound to the soil matrix. Soil water 

losses are controlled by physical soil properties for saturation states above $67. The rate of leakage due 

to gravity is assumed maximum when soil is saturated (;,) and decays exponentially to zero at $67 
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(Brooks & Corey, 1964). Soil water losses are controlled by micro-meteorological conditions for 

saturation states between $67 and $∗. The rate of evapotranspiration is assumed to occur at a maximum 

rate (<=>?), independent of the saturation state. Soil water losses are controlled primarily by vegetation 

for saturation states between $∗  and $9. Plants close their stomata in response to soil water deficits that 

drive leaf water potential gradients, as well as to atmospheric vapor pressure deficits, and 

evapotranspiration decreases linearly from <=>? to <9 at $9. Soil water losses are controlled by soil 

diffusivity for soil saturation states below $9, and soil evaporation decreases linearly from  <9 to zero 

at $:. Soil water losses are negligible for soil saturation states below $:. For this simplified theoretical 

description of the soil water loss curve and stochastic rainfall forcing, the analytical solution of the steady 

state probability distributions of soil saturation, @($) , was given by (Laio et al., 2001a):  

@($) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
0,																																																																																																																														0 < $ ≤ $:,

G

HI
J ,K,L
,IK,L

M
N(OIPOL)

QI
KR
SKT,, 																																																																															$: < $ ≤ $9,

G

HI
U1 + J H

HI
− 1MJ ,K,I

,∗K,I
MW

N(O∗POI)
QPQI

KR
SKT,, 																																																			$9 < $ ≤ $∗,

G

H
SKT,X

N
Q
(,K,∗) H

HI

N(O∗POI)
QPQI

, 																																																																																	$∗ < $ ≤ $67,

G
H
SK(YXT),XY,Z[ \ H]^O

(HK=)]^OZ[X=]^O
_

N
^(QP`)

XR
H
HI

N(O∗POI)
QPQI

]
N
QJOZ[PO

∗M

,													$67 < $ ≤ 1,

 (2) 

where 

R

T
= a

bc
, 

d9 =
eI
bc

, 

d = e`fg

bc
, 

h = iO

bc(]^JjPOZ[MKR)
, 

k = 2m–4. 

where b, is an experimentally determined parameter used in the Clapp & Hornberger (1978) soil water 

retention curve, and the constant p can be obtained numerically to ensure the integral of @($) = 1. We 

used a simplifying relation <9 = 0.05<=>? to reduce the number of parameters.  

We adopted Dralle & Thompson (2016) framework to account for transient dynamics between wet and 

dry seasons. We defined the dry season as a period of duration 1+ in which precipitation was negligible 
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and assumed to not contribute to soil moisture. During that period, we assumed soil saturation decayed 

from an initial value $s to $(1+, $s), given by Laio et al. (2001a). For simplicity, we determined 1+ using 

rainfall records at a monthly step and $s was the soil saturation value on the last day of the wet season.  

Note that we did not define $s as the soil saturation following the last significant storm of the wet season 

as was done in prior studies (Dralle & Thompson, 2016). We then calculated the annual soil saturation 

pdf (@9+(s)) as the weighted sum of the wet and dry season pdfs, @9($) and @+($),  respectively. 

@9+(s) = J1 − -u
vwx
	M @9($) +	

-u
vwx

@+($)            (3) 

The steady state solution in Eq. (2) was used for the wet season pdf and the dry season pdf is numerically 

determined by 

@+($) = 	∫ @zu|z|($, $s)@s($s)}$s
R
,|s

                    (4) 

where @s($s) is the pdf of the initial dry season soil saturation, equal to @9($), and @zu|z|($, $s) is the 

pdf of dry season soil saturation given an initial condition $s.  

@zu|z|($, $s) =
Gu
-u

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

]^(O|PO)

~HuK=�]^(O|PO)K	HuX=X=]
^JO|POZ[M

,													$67 < s ≤ 1,

R

Hu
,																																																													 			$∗ < s ≤ $67,

R

HuKHIu
\ ,∗K	,I
~HuKHIu�(,K,I)XHIu(,∗K	,I)	

_ , 								$9 < s ≤ $∗

R

HIu
J,IK,L
,K,L

M,																																																$: < s ≤ $9
0,																																																																													$s ≤ s,
0,																																																																													s ≤ $:,
0,																																																																			s ≤ $(1+, $s)

           (5)                                  

where d+ and d9+ are equivalent to d and d9 relative to <=>?
+ , the maximum evapotranspiration rate 

during the dry season, and p+ is a normalization constant.  We used the analytical expression for soil 

saturation decay, $(1, $s), in absence of rainfall given by Laio et al. (2001a) to derive  @zu|z|($, $s).  

Climate, soil and vegetation parameter characterization 

We chose readily available data for rainfall characteristics (Ä and Å), length of the dry period (1+),  and 

physical soil parameters ($67, $:, ;,, and) b needed in the analytical models of soil saturation pdfs (Eq. 

(2) and Eq. (3)). We focused on estimating the ecohydrological parameters $∗, $9, and <=>?, which 

describe vegetation control on soil water losses and are not easily observable. 
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We calculated rainfall characteristics Ä and Å for the year and wet season months for each site from 

FLUXNET2015 and TRMM rainfall records following Rodriguez-Iturbe et al., (1984) (Table 2.1).  We 

used FLUXNET2015 rainfall characteristics for point- and footprint-scale analyses, and we used TRMM 

rainfall characteristics for the satellite-scale analysis. TRMM rainfall records were generally consistent 

with ground-based measurements. For each location, we evaluated monthly FLUXNET2015 rainfall 

depth and categorized consecutive months contributing <5 % of the site’s annual rainfall as dry season 

months (Figure 2.1). We then calculated length of the dry period ( 1+ ) as the number of days in those 

dry months. We used physical soil characteristics for soil textures at each site ($:, ;,, and b) from Rawls 

et al. (1982) (Table 2.1). We estimated $67 from each soil saturation record (Table 2.1) to be consistent 

with the assumption that drainage losses are insignificant compared to evapotranspiration losses the day 

following a rain event. We identified all days in the 2012 record following an observed decrease in soil 

saturation and estimated $67 as the 95th percentile of the soil saturation value of the selected days. Daily 

soil saturation below $9 and above $67 are rare (Laio et al., 2001a), so we did not expect the average soil 

texture values for $:	and ;, to significantly affect the results. Soil depths ' are 10, 20, and 5 cm for the 

point-, footprint-, and satellite-scales, respectively. <=>? is only a fraction of the atmospheric moisture 

demand (or potential evapotranspiration) contributed by that soil depth because we used a soil depth that 

is shallower than the rooting depth. Consequently, our framework includes 4 (or 3 if seasonality is 

ignored) unknown soil water balance parameters, $∗, $9, <=>?, and <=>?
+. We estimated these 

parameters over the following intervals: 

⎩
⎨

⎧
$: ≤ $∗ ≤ $67,												
$: ≤ 	 $9 ≤ $67,												
0 ≤ <=>? ≤ 10,									
0 ≤ <=>?

+ 	≤ 10									

		         (6) 

where 10 mm day-1 is the pre-defined upper possible boundary for potential evapotranspiration.  

2.3.3 Bayesian inversion approach 

Application of the Bayes theorem  

We related @(Ç), the empirical soil saturation pdf of the É = [1,… ,h] soil saturation observations ($Ö) 

and the analytical soil saturation pdfs  in Eq. (2) or Eq. (3) derived from the simple soil water balance 

model in Eq. (1) with up to four unknown soil water balance parameters Ü = [$∗, $9, <=>?, <=>?
+] 

using the Bayes' theorem defined as: 

@(Ü|Ç) 	= á~ÇàÜ�	á(â)
á(z)

         (7) 
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where the posterior distribution, @(Ü|Ç), is the solution of the inverse problem and describes the 

probability of model parameters Ü given the set Ç = [$R, $ä, … $=] of soil saturation observations. 

Assuming uninformed prior knowledge, the prior distribution of model parameters Ü, @(Ü), were defined 

by uniform distributions over the intervals (Eq. (6)). The conditional probability of observations Ç given 

model parameters Ü, @(S|Ü), is the likelihood function of model parameters Ü.  

Parameter estimation  

We used the Metropolis-Hasting Markov chain Monte Carlo (MH-MCMC) technique to estimate the 

posterior distribution of @(Ü|Ç) by drawing random model samples Üå from @(Ü) and evaluating @(S|Üå) 

(Hastings, 1970; Metropolis et al., 1953; Xu et al., 2006). We defined the likelihood function of a model 

i, @(Ç|Üå)  as:	 

@(Ç|Üå) = ∏ @~$ÖàÜå�
=
ÖéR                  (8) 

where @~$ÖàÜå� is the probability of observation $Ö given Eq. (2) or Eq. (3) using parameters Üå.  

The MH-MCMC technique converges to a stationary distribution according to the ergodicity theorem in 

Markov chain theory. The sampling algorithm consisted of repeating two steps: (i) a proposing step, in 

which the algorithm generates a new model Üå
è using a random function that is symmetric about the 

previously accepted model Üå, and (ii) a moving step, to determine if the model should be accepted or 

rejected, in which, Üå
è is tested against the Metropolis criterion (ê) defined as: 

ê =
áJÇëÜå

è
M

á~ÇàÜå�
                (9) 

If ê > 1, Üå was accepted and  ÜåXR = Üå
è was used for the next sample. If ê < 1, a random number @∗ ∈

[0,1] was drawn from a uniform distribution and compared to ê. If @∗ < ê, Üå′ was accepted and 

ÜåXR = Üå
è was used for the next sample. If  @∗ > ê, Üå′ was rejected and ÜåXR = Üå was used for the next 

sample. If Üå′ was an inconsistent model in which soil saturation thresholds ($9, $∗) were ranked 

incorrectly or any of the soil water balance parameters ($∗, $9, <=>?, <=>?
+) were outside of their 

defined physical bounds, the model likelihood was zero and Üå′ was never accepted. The log-likelihood 

was more convenient to compute than the likelihood. The symmetric function used in the proposing step 

was a Gaussian distribution with a mean value equal to the accepted model Üå and a standard deviation 

of 1 % of interval range for which each parameter is defined in Eq. (6). We selected this value of the 

standard deviation of each model parameter after a number of test runs to generally ensure an acceptance 

rate between 20 and 50% (Roberts & Rosenthal, 1998). We obtained statistics of the estimated 

parameters in Ü  from the union of three run samples of 20,000 simulations each. The burn-in period is 
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the number of simulations after which the running mean and standard deviation are stabilized. We 

considered a burn-in period of 10,000 simulations, which were discarded for each run sample.  If the 

acceptance rate of a run sample was <1% or >90% after the burn-in period, we discarded the run and 

concluded that the algorithm was stuck in a local minimum that might be physically impossible. We 

evaluated convergence by the Gelman-Rubin (GR) diagnostic (Gelman & Rubin, 1992) on the run 

samples.  The GR diagnostic determines that the algorithm reaches convergence when the within-run 

variability (ï9) is roughly equal to the between-run variability (ïñ), that is, when ï9/ïñ approaches one. 

We verified that the GR diagnostic for each estimated parameter was <1.1. If the GR diagnostic did not 

indicate that the three run samples converged, we discarded the run with the lowest likelihood and re-

initiated a new run sample until convergence was attained. We counted the number of attempts to 

quantify how rapidly convergence occurred. We computed mean and standard deviation for each 

parameter from a total of 30,000 simulations of Ü resulting from the three converging run samples. A 

mean analytical model of soil saturation pdf was determined by applying Eq. (2) or Eq. (3) with the mean 

values of the 30,000 posterior parameter estimates 

2.3.4 Model evaluation criteria 

We did not have direct measurement to validate the parameters $∗, $9, and <=>? estimated through the 

Bayesian inversion methods. We therefore analyzed convergence and uncertainty metrics of the model 

inversion and goodness of fit between empirical and analytical soil saturation pdfs to evaluate the 

identifiability of the ecohydrological parameters. We compared the optimum analytical pdf derived from 

the mean parameter estimates and the empirical pdfs derived from observations. We evaluated the model 

inversion using the following criteria:  

(i) Convergence of the Bayesian inversion:  a GR diagnostic <1.1 for all unknown parameters is 

obtained from the union of three run samples and within ≤10 sample runs. 

(ii) Low uncertainty in parameter estimates: the posterior distributions of parameter estimates are 

physically plausible and have coefficients of variations <20%. 

(iii) Goodness of fit: a quantile-level Nash-Sutcliffe efficiency (NSE) (Müller et al., 2014) > 0.85 

and a Kolmogorov-Smirnov statistic <0.2.  

2.3.5 Method assessment  

Major assumptions and limitations embedded in the proposed inference framework were tested through 

the analysis detailed below. We assume, for each scale and location, that the shape of empirical the soil 

saturation pdfs is controlled by the physical constraints used to parameterize the analytical model of soil 
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saturation pdfs, these parameters can be determined with some certainty and reflect variability in soil 

water dynamics. We expect that estimated soil saturation thresholds have greater certainty when the 

empirical soil saturation pdf is defined around those values and greater uncertainty when fewer soil 

saturation values are observed around the thresholds. We acknowledge that pre-defined rainfall 

characteristics and physical soil parameters based on observations or literature values may not be exactly 

representative of the processes at each location or scale and could also create biases and uncertainties in 

the fitted parameters of interest. We used model evaluation criteria (Section 2.3.4) to investigate the 

applicability of the inference framework with varying model complexities, scales, locations and data 

availability. 

(i) Analytical expressions for soil saturation pdfs were derived under the assumption of steady 

state. Annual soil moisture records can be affected by transitional dynamics between wet and 

dry seasons, and the appropriate level of model complexity must be used. We applied the 

inversion framework to annual soil saturation using variations of the analytical model for soil 

saturation pdfs of increasing complexity: (i) the annual model in Eq. (2) and (ii) the seasonal 

model in Eq. (3). We determined whether the added complexity of the dry season pdf increases 

the identifiability of ecohydrological parameters or if the simpler annual model is sufficiently 

consistent with annual empirical soil saturation pdfs.    

(ii) We compared co-located parameter estimates and their uncertainty at point-, footprint-, and 

satellite- scales for each site. We determine whether the inference approach can provide 

appropriate scale-specific parameters for ecohydrological modelling at each location. 

(iii) We assumed that the whole range of realizable soil saturation values was captured within the 

selected time series at each scale and that the resulting soil saturation pdf was not truncated. If 

the range of observed values is not representative of the soil saturation pdf because it is 

truncated or affected by noise in the data, parameter estimates may be biased.  Minimum and 

maximum observed soil saturation values during 2012 (Table 2.1) indicate the range of 

observed soil saturation values we used to estimate ecohydrological parameters. We determine 

whether the inference method based on soil saturation pdfs is robust against reduced data 

availability by repeating the model inversions on subsets of the soil saturation time series and 

show that the method can be applied to sparse datasets. We performed the model inversion 

using subsets of each soil saturation record by randomly resampling fractions of the data down 

to 10 % of the annual timeseries and computed goodness of fit statistics between the resulting 

analytical models and the empirical models based on the full annual record. We determined the 

number of data points necessary to infer converging model parameters that best match 

observations and whether the proposed inference method based on soil saturation pdf can be 

reliably used to identify ecohydrological parameters from sparse datasets. 
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2.4 Results and discussion 

2.4.1 Level of model complexity 

For each of the four locations (Table2.1), we obtained optimal analytical soil saturation pdfs consistent 

with the empirical pdfs derived from soil saturation observations using the Bayesian inversion 

framework and a MH-MCMC algorithm. Model inversions for each site and scale and for both annual 

and seasonal models met the evaluation criteria (see Sec 2.2.4). Our results indicated that the framework 

of (Dralle & Thompson, 2016) can be applied to sites with low (US-MMS) and high (US-TON) 

seasonality in rainfall patterns. Posterior probability distributions of soil water balance parameters 

($9, $∗, <=>?) were well-constrained overall. The parameter estimates and their coefficient of variation 

as well as the model goodness of fit statistics are summarized in Table 2.2. Figures 2.2 through 2.5 

present a comparison between empirical as well as analytical pdfs and associated quantile-quantile plots 

for point-, footprint-, and satellite-scales at the four study sites and for both annual and seasonal models. 

The goodness of fit between empirical pdfs and analytical models was only slightly better for the 

seasonal model than for the annual model. However, the coefficient of variation of the posterior 

parameter distributions was smaller for the annual model and it converged more rapidly. The Bayesian 

inversion of the annual model is therefore more computationally efficient. The parameter identifiability 

was not greatly improved by the more complex seasonal model. The estimated soil saturation threshold 

$9was consistently smaller for the annual model than for the seasonal model and $∗ was often higher, 

which may indicate that $9 and $∗ in the annual model could be biased and may have absorbed dry 

season dynamics. Previous studies calibrating soil saturation pdf models found ecohydrological 

parameters values comparable to ours (Table 2.2). For example, using point-scale observations at US-

Ton, best fit values of $9 and $67 were 0.26 and 0.82, respectively (Dralle & Thompson, 2016), and best-

fit values of $∗ and <=>? were 0.3 and 1.9 mm d-1, respectively (Miller et al., 2007). We did not compare 

soil saturation thresholds $∗ and $9 with literature values of soil water potential at which stomata are 

fully open or closed because the conversion of soil saturation to soil matrix potential is non-linear (Clapp 

& Hornberger, 1978) and site and scale specific soil water retention parameters were unknown. Average 

parameters derived from soil texture (Rawls et al., 1982) were not compatible with soil moisture data 

from each scale and site.  

2.4.2 Site and scale considerations  

Parameter estimates were most constrained for scales and locations at which soil water dynamics are 

more sensitive to the fitted ecohydrological parameters of interest. In these cases, convergence of the 

model inversion was attained less rapidly but ultimately provided better goodness of fit. Soil saturation 
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states at drier sites may be more controlled by soil water loss parameters, while soil saturation states at 

wetter sites may also be controlled by rainfall characteristics.  Estimated soil saturation thresholds had 

greater certainty if the empirical soil saturation pdf were defined around those values and had greater 

uncertainty if there were fewer soil saturation values observed around the thresholds. For example, 

uncertainty of $9 was greater for the humid subtropical deciduous forest site (US-MMS) than for the 

Mediterranean savanna sites (US-Ton), and uncertainty of $∗ was greater for US-Ton than US-MMS. 

Similarly, soil saturation states representing larger spatial scales were less sensitive to specific site 

characteristics.  

Parameter uncertainty for satellite- and footprint-scales was greater than for the point-scale. Estimates 

of larger scale soil water balance parameters are more relevant to regional ecohydrological dynamics. 

Differences in parameter estimates among scales within a site may be associated with differences in soil 

texture properties, such as porosity and field capacity, that were determined separately for each record. 

Co-located and concurrent soil saturation pdfs are different at each scale (Figure 2.2-2.5) and suggest 

variability in observed soil water dynamics at each scale. Differences in driving processes among scales 

were specifically determined from the model inversion for each scale and provided robust scale-specific 

parameters for ecohydrological modelling.  

2.4.3 Data availability 

For each spatial scale and site, the annual model was inversed, using random subsamples of 100 to 10 % 

of the 2012 time series (Figure 2.6). For all sites and scales the number of observations did not 

significantly impact model inference. The NSE, Kolmogorov-Smirnov statistic and parameter estimates 

were stable down to about 100 observations. Fitted model parameter values and the variability of 

parameter estimates among the 10 repetitions in each subsample category were not sensitive to the 

number of observations used. Results indicate the identifiability of ecohydrological parameters through 

the inversion of the analytical model of soil saturation pdfs was robust because the mean and standard 

deviation of the randomly selected subsets of annual data were representative of the full record. There 

was no correlation between the small differences in the mean and standard deviations of the subsamples 

and the model goodness of fit.  The proposed inference method based on soil saturation pdfs can therefore 

reliably be used to identify ecohydrological parameters from sparse datasets. Inference methods, which 

do not require continuous data are particularly relevant to large scale soil moisture measurements, such 

as satellite products, that are not continuous. 
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2.5 Conclusions 

We document a generalizable Bayesian inversion framework to infer parameter values of the stochastic 

soil water balance model and their associated uncertainty using freely available rainfall and soil moisture 

observations at point-, footprint- and satellite-scales. Empirical pdfs derived from soil saturation 

observations provided key information to determine unknown ecohydrological parameters $∗, $9, and 

<=>?. Model assumptions were appropriately met, and optimal analytical soil saturation pdfs were 

consistent with empirical pdfs. Uncertainty in parameter estimates were small and reflected the 

sensitivity of the soil water balance model to ecohydrological parameters at varying scales and locations. 

We demonstrate that the form of the simple ecohydrological model for soil saturation pdfs was consistent 

with observations from point-, footprint-, and satellite-scales. However, optimal parameters were 

different at each scale because co-located and concurrent soil saturation pdfs are different at each scale, 

which may result from spatial heterogeneity in soil water dynamics. We demonstrate the advantage of 

analyzing soil saturation pdfs instead of time series. We obtained stable results using sparse subsets of 

the datasets, indicating that the proposed framework is robust and can be used with non-continuous data. 

Although the seasonal model was conceptually more consistent with our physical understanding of 

annual soil water dynamics, the annual model provided satisfactory results matching annual empirical 

pdf sites we analyzed. We were not able to determine if some differences in parameters estimated using 

the seasonal model are physically meaningful because wet and dry season dynamics were better 

characterized in this more complex model. Our methodology can be customized to characterize site-

specific parameters and to test consistency between observed and analytical soil saturation pdfs for any 

other adaptation of the stochastic ecohydrological framework with more or less complexity depending 

on the study objectives.  

We provide a method based on a parsimonious soil water balance model, requiring a minimum level of 

data inputs to estimate ecohydrological characteristics that are not directly observable and for which 

established estimation methods are not available. Our methods can be applied in future studies to better 

understand differences in soil water dynamics at different scales and to improve scaling of 

ecohydrological processes. Results demonstrate the value of large scale near-surface soil moisture 

observations to improve characterization of soil water dynamics at ecosystem scales. Relations between 

the soil saturation threshold values inferred from the near surface soil moisture data and dynamics in the 

full active rooting zone are unknown. The datasets we used are freely available from sensor networks 

and global satellite products, and methods can therefore be applied to a large range of sites or to global 

analyses to improve understanding of spatial patterns in ecohydrological parameters relevant for local 

and global water cycle analyses. 
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2.6 Data and code 

We downloaded all datasets from publicly available sources. Point-scale soil moisture and rainfall data 

are available through FLUXNET2015 (http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/);  footprint-

scale soil moisture data are available through COSMOS 

(http://cosmos.hwr.arizona.edu/Probes/probelist.html); remotely-sensed soil moisture data are available 

through ESA CCI (http://www.esa-soilmoisture-cci.org/node/145); remotely sensed rainfall data are 

available through NASA TRMM (https://pmm.nasa.gov/data-access/downloads/trmm); global soil 

texture data are available through FAO HWSD (http://www.fao.org/soils-portal/soil-survey/soil-maps-

and-databases/harmonized-world-soil-database-v12/en/). Custom scripts in the Python computing 

language associated with our analysis are available upon request through a private gitHub repository are 

publicly available (Bassiouni, 2018, https://doi.org/10.5281/zenodo.1283371) 
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2.9 Figures 

 

Figure 2.1 Soil saturation and rainfall time series (a) US-ARM, (b) US-MMS, (c) US-Ton, and (d) 
US-Me2.  
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Figure 2.2 Empirical versus modelled cumulative density functions (CDF) and soil saturation 
probability distribution (p(s)) for US-ARM. The mean values of the posterior parameter distributions 
were used with the analytical model in Eq (3) in the annual model and Eq (6) in the seasonal model. The 
grey shaded areas correspond to the soil saturation thresholds (sh, sw, s*, sfc) in the water balance model.  
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Figure 2.3 Empirical versus modelled cumulative density functions (CDF) and soil saturation 
probability distribution (p(s)) for US-MMS. The mean values of the posterior parameter distributions 
were used with the analytical model in Eq. (3) in the annual model and Eq. (6) in the seasonal model. 
The grey shaded areas correspond to the soil saturation thresholds (sh, sw, s*, sfc) in the water balance 
model.  
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Figure 2.4 Empirical versus modelled cumulative density functions (CDF) and soil saturation 
probability distribution (p(s)) for US-Ton. The mean values of the posterior parameter distributions 
were used with the analytical model in Eq (3) in the annual model and Eq (6) in the seasonal model. The 
grey shaded areas correspond to the soil saturation thresholds (sh, sw, s*, sfc) in the water balance model.  
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Figure 2.5 Empirical versus modelled cumulative density functions (CDF) and soil saturation 
probability distribution (p(s)) for US-Me2. The mean values of the posterior parameter distributions 
were used with the analytical model in Eq (3) in the annual model and Eq (6) in the seasonal model. The 
grey shaded areas correspond to the soil saturation thresholds (sh, sw, s*, sfc) in the water balance model.  
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Figure 2.6 Goodness of fit and ecohydrological parameters inferred with decreasing number of 
soil saturation observations (annual model). For each subsample category, the median results of 10 
repeats are plotted and results between the 90th and 10th percentiles are shaded. Colors correspond to the 
four sites in the legend. KS, Kolmogorov Smirnov statistic; NSE, quantile-level Nash Sutcliffe 
efficiency;  Emax, maximum evapotranspiration in mm d-1; s*, point of incipient stomatal closure; sw, 
wilting point. 
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2.10 Tables 

Table 2.1 Selected Study sites 

Site Name ARM Southern  
Great Plains 

Morgan Monroe  
State Forest Tonzi Ranch Metolius Mature 

Ponderosa Pine 

FLUXNET2015 ID US-ARM US-MMS US-Ton US-ME2 

COSMOS ID 15 27 32 38 

Latitude 36.6058 (36.625) 39.3232 (39.375) 38.4316 (38.375) 44.4523 (44.375) 

Longitude -97.4888 (-97.375) -86.4131 (-86.375) -120.966 (-120.87) -97.4888 (-97.375) 

Elevation [m] 314 275 177 1253 

Vegetation Crops and grassland Deciduous forest Oak savanna Ponderosa pine forest 

Soil Texture Loam Loam Loam Sandy Loam 

MAT [°C] 14.8 10.9 15.8 6.3 

MAP [mm] 843 1032 559 523 

α [mm day-1] 21.0(p, f), 24.4(s) 9.04(p, f), 11.8(s) 9.3(p, f), 16.9(s) 8.1(p, f), 11.6s) 

αw [mm day-1] 21.4(p, f), 26.8(s) 9.1(p, f), 11.9(s) 8.7(p, f), 16.7(s) 7.9(p, f), 11.6(s) 

λ [day-1] 0.05(p, f), 0.08(s) 0.24(p, f), 0.20(s) 0.22(p, f), 0.10(s) 0.24 (p, f), 0.21(s) 

λw [day-1] 0.07(p, f), 0.08(s) 0.27(p, f), 0.23(s) 0.39(p, f), 0.17(s) 0.31(p, f), 0.27(s) 

td [days] 92 61 153 92 

n [-] 0.35(p), 0.34(f), 0.46(s) 0.46(p), 0.66(f), 0.43(s) 0.53(p), 0.39(f), 0.43(s) 0.36(p), 0.59(f), 0.41(s) 

Ks [mm day-1] 317 317 317 622 

b [-] 4.55 4.55 4.55 3.11 

sh [-] 0.06 0.06 0.06 0.09 

sfc [-] 0.81(p), 0.75(f), 0.44(s) 0.93(p), 0.86(f), 0.69(s) 0.75(p), 0.83(f), 0.69(s) 0.94(p), 0.60(f), 0.72(s) 

smin [-] 0.15(p), 0.19(f), 0.19 (s) 0.28(p), 0.44(f), 0.30 (s) 0.11(p), 0.22(f), 0.17 (s) 0.27(p), 0.14(f), 0.23 (s) 

smax [-] 1.0(p), 1.0(f), 0.67 (s) 1.0 (p), 1.0 (f), 1.0 (s) 1.0(p), 1.0(f), 0.80 (s) 1.0(p), 1.0(f), 1.0(s) 

Mean s [-] 0.44(p), 0.42(f), 0.33 (s) 0.71(p), 0.68(f), 0.59 (s) 0.38(p), 0.49(f), 0.38 (s) 0.64(p), 0.35(f), 0.50 (s) 

Standard deviation s [-] 0.21(p), 0.19(f), 0.11 (s) 0.21(p), 0.11(f), 0.12 (s) 0.25(p), 0.23(f), 0.17 (s) 0.25 (p), 0.16(f), 0.18 (s) 

Latitude and longitude in parenthesis correspond the centroid of the satellite area associated with the site location; MAT, 
mean annual temperature from long-term FLUXNET2015 data; MAP, mean annual precipitation from long-term 
FLUXNET2015 data; soil texture taken from the HWSD; n, porosity; Ks, saturated soil hydraulic conductivity; b, pore 
size distribution index; sh, hydroscopic point; sfc, field capacity; α, observed average daily rainfall depth in 2012, the 
subscript w indicates that α was computed for only the wet season months; λ, observed average daily rainfall frequency 
in 2012, the subscript w indicates that λ was computed for only the wet season months;; td, number of days in the dry 
season; superscripts (p), (f), and (s) correspond to values used for the point-, footprint-, and satellite scale analysis. 
Citations for each FLUXNET2015 site: Sebastien Biraud (2002–) AmeriFlux US-ARM ARM Southern Great Plains site- 
Lamont, 10.17190/AMF/1246027; Kim Novick, Rich Phillips (1999–) AmeriFlux US-MMS Morgan Monroe State 
Forest, 10.17190/AMF/1246080; Bev Law (2002–) AmeriFlux US-Me2 Metolius mature ponderosa pine, 
10.17190/AMF/1246076; Dennis Baldocchi (2001–) AmeriFlux US-Ton Tonzi Ranch, 10.17190/AMF/1245971 
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Table 2.2 Estimated ecohydrological parameters and goodness of fit of analytical soil saturation pdfs 

Site 
name Scale  N  NSE  KS  !"#$  %∗  %' 

 p pwd  p pwd  p pwd  p pwd  p pwd  p pwd 

US-

ARM 

point  4 4  0.96 0.96  0.07 0.07  1.1 (11) 1.3 (14)  0.7 (8) 0.74 (5)  0.19 (4) 0.27 (7) 

footprint  3 3  0.94 0.94  0.08 0.06  1.7 (11) 2 (12)  0.62 (7) 0.61 (9)  0.24 (3) 0.29 (2) 

satellite  3 3  0.96 0.97  0.08 0.09  0.7 (13) 0.5 (13)  0.42 (4) 0.42 (4)  0.24 (3) 0.25 (2) 

US-

Ton 

point  3 4  0.95 0.97  0.09 0.08  2.3 (4) 1.9 (10)  0.24 (6) 0.33 (7)  0.12 (1) 0.18 (6) 

footprint  3 3  0.94 0.98  0.13 0.08  2.2 (3) 1.8 (8)  0.29 (2) 0.4 (10)  0.25 (0) 0.26 (1) 

satellite  3 9  0.99 0.99  0.06 0.07  1.2 (15) 1 (13)  0.53 (12) 0.62 (6)  0.22 (3) 0.26 (3) 

US-

MMS 

point  3 4  0.96 0.98  0.12 0.08  1.3 (3) 1.1 (6)  0.34 (3) 0.5 (8)  0.29 (0) 0.31 (2) 

footprint  3 3  0.95 0.95  0.13 0.08  2.7 (6) 4.5 (10)  0.82 (2) 0.79 (3)  0.38 (5) 0.59 (1) 

satellite  3 6  0.95 0.88  0.1 0.14  0.7 (8) 0.9 (10)  0.65 (4) 0.66 (3)  0.28 (9) 0.43 (2) 

US-

Me2 

point  3 8  0.95 0.97  0.16 0.1  1.4 (3) 1.1 (7)  0.33 (3) 0.37 (8)  0.29 (0) 0.29 (1) 

footprint  3 6  0.94 0.94  0.09 0.1  2.1 (2) 2.9 (10)  0.23 (4) 0.45 (5)  0.15 (2) 0.2 (6) 

satellite  3 4  0.89 0.89  0.12 0.1  1.6 (12) 1.4 (15)  0.64 (8) 0.66 (8)  0.25 (3) 0.31 (4) 

Values in parenthesis correspond to the coefficient of variation of the posterior parameter estimates in percentage. p, analytical model for the soil 

saturation pdf without seasons, pwd, analytical model for the soil saturation pdf including wet and dry seasons;   N, number of 20’000 simulation runs 

needed to obtain 3 converging results (see Sect. 2.3.2); NSE, quantile-level Nash Sutcliffe efficiency; KS, Kolmogorov Smirnov statistic;  !"#$, 

maximum evapotranspiration in mm d-1 (the weighted average wet and dry season !"#$ is reported for the pwd  model) ; s*, point of incipient stomatal 

closure; sw, wilting point.  
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3.1 Abstract 

Many contemporary models use empirical functions with constant soil water potentials to parameterize 

soil water stress. We infer global spatial patterns in soil water potentials at which no soil water uptake 

occurs; soil water potentials at which downregulation of uptake occurs; and maximum soil water uptake. 

We estimate thresholds, consistent with satellite surface soil moisture, through Bayesian inference using 

a stochastic water balance. Results improve global median Nash–Sutcliffe efficiency between empirical 

and theoretical soil moisture probability distributions from 0.46 using reference constants to 0.65 and 

0.90 using median inferred thresholds per biome and spatially variable inferred thresholds. Spatially 

variable thresholds capture location-specific vegetation and climate characteristic and reflect diversity 

in biome-level water uptake strategies. Results demonstrate that satellite observations encode valuable 

ecophysiological information, critical to understanding ecosystem resilience to climate variability. 

3.2 Plain language summary 

Vegetation regulates a large fraction of the terrestrial water and carbon cycles, as it adapts to changing 

environmental conditions such as soil moisture availability, yet our ability to characterize diversity in 

vegetation soil water use behavior at large scales is limited. In this study, we analyze global satellite 

observations to estimate soil moisture thresholds that are commonly used to approximate when 

vegetation extracts water from the surface soil. We show that the newly found thresholds are more 

consistent with global patterns of soil moisture compared to using constant thresholds found in the 

literature. Spatially variable thresholds reflect landcover and climate characteristics and can be used to 

describe variability in biome-level water use strategies.  
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3.3 Introduction 

Transpiration is the most important pathway by which water moves from the land back to the atmosphere 

(Good et al., 2015), and vegetation regulates terrestrial water and carbon cycles as it adapts to changing 

environmental conditions such as soil moisture availability. The driving force moving water from soils, 

through plant tissue, and to the atmosphere is the gradient in potential energy state of water. Soil water 

potentials bound water transport through plants: the soil moisture state when stomata are fully open and 

soil water uptake is at its maximum, and the soil moisture state when stomata are fully closed, after 

which soil water uptake is zero. These thresholds have been incorporated into soil water-stress functions 

associated with evapotranspiration and have been used in many hydrological (Laio et al., 2001; 

Westenbroek, 2018), agricultural (Hlavinka et al., 2011; Steduto et al., 2009) and earth system (Niu et 

al., 2011; Oleson et al., 2013) models. Our goal is to use satellite observations to provide biome-scale 

constraints on these critical parameters. 

Contemporary applications routinely parameterize critical soil water potentials as constant potentials 

because spatially variable values, which account for diversity of plant responses to environmental stress, 

are generally unavailable. For example, the soil moisture threshold at which soil water uptake is zero, 

often termed wilting point, is commonly set to -1.5 MPa. This value was determined experimentally 

(Richards & Weaver, 1944) based on observations of leaf vigor; however, visible plant phenological 

changes, such as wilting, may not coincide with soil moisture thresholds that are most relevant to soil 

water balance, such as when roots stop extracting soil water. Empirical water-stress functions used in 

many biosphere models with reference constants are generally unable to realistically represent effects of 

soil moisture on stomatal conductance (Fatichi et al., 2016; Powell et al., 2013). Furthermore, soil 

moisture-limited productivity, occurring any time stomata are not fully open, represents a large and 

uncertain component of the simulated terrestrial carbon cycle (Trugman et al., 2018). Recent efforts have 

shown that soil water thresholds drive sensitivity of flux estimates in earth system models (Arsenault et 

al., 2018) and that calibrating wilting points to be consistent with observed spatial patterns in soil 

moisture improves simulations of gross primary production (Qiu et al., 2018). 

Plant resilience and response to environmental stress is governed by complex and diverse plant hydraulic 

traits (Anderegg et al., 2016; Skelton et al., 2015), which are expected to vary depending on vegetation 

type, hydroclimatic conditions, ecosystem diversity, and scale. Plant hydraulic strategies vary along a 

continuum from drought-avoidant to drought-tolerant. Drought-avoidant plants favor water conservation 

with strict stomatal closure in response to drying soil conditions. Drought-tolerant plants continue to 

assimilate carbon and maintain high stomatal conductance even as soils dry (Fu & Meinzer, 2019). The 

relation between stomatal behavior and soil moisture may also be influenced by vapor pressure deficit, 

which implies that soil water uptake is lower than potential evapotranspiration in arid climates even at 

high soil moisture states (Li et al., 2018; Novick et al., 2016). Plants also adapt to rainfall stochasticity 
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and range between extensive and intensive water use strategies. Plants with extensive water use 

strategies, are usually deep-rooted and extract soil water over a larger range of soil moisture states, 

whereas intensive water users are usually shallow-rooted and respond quickly to short soil water pulses 

(Rodriguez-Iturbe et al., 2001). Simulations show that water and carbon fluxes are sensitive to diversity 

in plant traits (Pappas et al., 2016), but ecosystem-scale hydraulic behavior, resulting from coexistence 

of diverse species, is uncertain. 

We address the need to distinguish spatial patterns of thresholds of soil water uptake using global 

satellite-based observations, which capture location-specific vegetation and climate characteristics. 

Remotely sensed observations have been used to identify broad spatial patterns of plant hydraulic 

behavior and response to water stress beyond the species level and across biogeographic regions 

(Feldman et al., 2018; Konings & Gentine, 2017); however, these efforts have been focused on 

vegetation canopy water content and do not fully capture complex processes associated with soil water 

uptake by plants. Thresholds of soil water uptake alone do not fully represent complex plant water use 

behaviors, however, large-scale estimates of thresholds of soil water uptake, consistent with soil moisture 

observations, may improve application of simple empirical soil water-stress functions still widely used 

in biosphere models. 

Global soil moisture observations are available through NASA’s Soil Moisture Active Passive (SMAP) 

mission (Entekhabi et al., 2010) and offer opportunities to diagnose satellite-scale ecohydrological 

processes (Feldman et al., 2018; McColl et al., 2017). Soil moisture observed from satellites tracks large-

scale spatial and temporal variability of soil moisture and reflects variability in dominant land surface 

processes. The shape of local soil moisture probability distributions (p(s)) are constrained by 

ecohydrological characteristics, and a parsimonious theoretical model of p(s) can be inverted to estimate 

ecohydrological thresholds (Bassiouni et al., 2018). This simple inverse modeling framework may not 

fully characterize complexity of plant hydraulic behavior; however, the framework overcomes some 

limitations of process-based models (Massoud et al., 2019) and satellite-scale data because it requires 

few parameters, does not require concurrent time series of hydroclimatic variables, is not affected by 

gaps in soil moisture observations (Bassiouni et al., 2018), and has relatively low computational cost. 

This inverse modeling approach only requires soil moisture observations, rainfall characteristics, and 

soil texture information and is consistent with the most commonly used soil water-stress frameworks. 

The model inversion results are therefore estimates of plant soil water uptake behavior and response to 

soil water stress, which are independent of vegetation data. Remote sensing-derived thresholds of soil 

water uptake may not be directly comparable to point-scale ground-level measurements because they 

reflect grid-scale processes encoded in satellite observations (Bassiouni et al., 2018), however, they may 

be more appropriate to describe vegetation processes relevant to large-scale models, or at least provide 

a new constraint on soil water-stress equations used in such models. 
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The focus of this study is to determine global values of ecohydrological thresholds that best fit empirical 

p(s) derived from satellite soil moisture observations. Our goal is to estimate thresholds that are relevant 

to soil water-stress frameworks most commonly used to model evapotranspiration. We compare 

empirical p(s) derived from satellite observations to theoretical p(s) using both reference constants found 

in hydrologic literature and inferred spatially variable thresholds. We describe global variability in 

thresholds of soil water uptake by vegetation type and climate aridity. Finally, we summarize global 

trends in inferred ecohydrological characteristics and biome-scale plant water uptake strategies. 

3.4 Data 

We conduct all analysis at a spatial resolution of 36 km2 (EASE-Grid 2.0) and over a 3-year period 

spanning April 2015 to March 2018. Surface soil moisture observations and climate variable estimates 

are available from NASA’s SMAP mission (Entekhabi et al., 2010). We use global daily 36 km SMAP 

L3 (Version 5) radiometer soil moisture at about 5 cm depth (O’Neill et al., 2016). We only analyze 

observations flagged as recommended by the data product, which are not affected by water bodies, dense 

vegetation, frozen soil, and radio frequency interference. Thus, our analysis is mainly confined to 

temperate and tropical biomes that have less than 60 % woody vegetation, are dominated by shrub or 

herbaceous vegetation, or are sparsely vegetated and represent about 50 % of total global terrestrial 

surface. We use global 3-hourly 9 km SMAP L4 (Version 4) geophysical data (Reichle et al., 2017) to 

characterize average daily rainfall depth and frequency, average daily rate of potential evaporation (Ep) 

and aridity index (AI) at each grid cell over the 3-year study period. We use global soil hydraulic 

parameters at 5 cm soil depth available at a spatial resolution of 0.25° (Montzka et al., 2017) and re-

gridded to 36 km EASE-Grid 2.0. We use the International Geosphere-Biosphere Programme (IGBP) 

land cover classification to characterize the biome of each grid cell (Kim, 2013). 

3.5 Estimation of ecohydrological thresholds 

We estimate ecohydrological thresholds for each grid cell with at least 365 daily SMAP L3 soil water 

content observations over the 3-year study period: soil saturation at the point of incipient stomatal closure 

(s*) and associated soil water potential at which downregulation of surface soil water uptake occurs (Ψ1); 

soil saturation at the wilting point (sw) and associated soil water potential at which no surface soil water 

uptake occurs (Ψ0); maximum rate surface soil water uptake or evapotranspiration (Emax); and rate of 

surface soil water uptake at the wilting point (Ew). We use the Mulalem-van Genuchten equation 

(Montzka et al., 2017) to convert between soil saturation and soil water potential and provide a more 

universal measure to compare soil water use strategies between locations. In the subsequent text, we 
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avoid terms ‘point of incipient stomatal closure’ and ‘wilting point’ because our focus is on soil moisture 

dynamics rather than canopy phenology. 

We infer ecohydrological thresholds by inverting an analytical formulation of p(s), derived from a 

commonly used stochastic soil water balance framework (Laio et al., 2001), within a Bayesian inference 

framework using SMAP data and a Metropolis-Hastings Markov chain Monte Carlo algorithm 

(Bassiouni et al., 2018). We assume that the 1-dimensional soil water balance at each grid cell can be 

modeled as a point and do not account for seasonality in stochastic rainfall characteristics. It is possible 

to perform the model inversion accounting for climate seasonality; however, the tradeoff for increased 

model complexity and thus computational time has been shown to not significantly improve goodness-

of-fit and parameter identifiability (Bassiouni et al., 2018). We define the equation for p(s) and all model 

parameters in Text S1. We determine that the model inversion converges when the Gelman-Rubin 

diagnostics (Gelman & Rubin, 1992) associated with all four unknown parameters are inferior to 1.1. 

We only analyze results, which have converged to reduce some but not all concerns of equifinality, 

where different parameter combinations emerge with high goodness-of-fit, while being less physically 

meaningful. We evaluate goodness-of-fit between empirical p(s) and theoretical p(s) using a quantile-

level Nash–Sutcliffe efficiency (NSE) (Müller et al., 2014). We calculate NSE using both best-fit 

thresholds resulting from the model inversion (mean values of posteriori parameter estimates) and 

reference constants (Ψ0 = -1.5 MPa; Ψ1 = -0.033 MPa; Emax = Ep; Ew = 0).  

3.6 Results and discussion 

3.6.1 Global estimates of ecohydrological thresholds  

Inferred thresholds Ψ0, Ψ1, and Emax/Ep (Figure 3.1a-c) are consistent with empirical p(s) derived from 

SMAP surface soil moisture observations and are highly variable globally. We thus explore whether 

these patterns may reflect diversity in biome soil water uptake strategies and how they relate to 

vegetation type and climate. 

Global median goodness-of-fit between empirical and theoretical p(s), using quantile-level NSE is 0.90. 

Only locations for which NSE >0.5 are included in subsequent analyses. The coefficient of variation of 

posteriori parameter estimates is a measure of uncertainty we derive from the Bayesian inversion 

approach and median coefficients of variation are 2-, 5-, 7-, and 9-percent for sw, s*, Emax, and Ew, 

respectively. Ecohydrological thresholds for the most humid and most arid locations either do not 

converge or provide poor goodness-of-fit with empirical p(s) (Figure 3.1d) likely because soil moisture 

observations at these locations do not span the full range of values between soil saturation and the point 

of no water uptake.  



 

 

36 

Inferred thresholds improve goodness-of-fit between observed and theoretical p(s) (Figure 3.1e), 

compared to using reference constants. Global median NSE between empirical and theoretical p(s) using 

these reference constants is 0.46. Modeled p(s) using reference constants did not characterize observed 

p(s) in many of the most arid regions of the world and characterized observed p(s) best in North 

American grasslands and European croplands. 

3.6.2 Variability in ecohydrological thresholds by vegetation type  

We summarize ecohydrological thresholds using IGBP land cover classification to explore variability in 

water uptake strategies by biome (Figure 3.2). Global median NSE between empirical and theoretical 

p(s) using median inferred thresholds for each IGBP class is 0.65. Median ecohydrological thresholds 

for each IGBP class inferred from global satellite soil moisture observations (Table 3.S1) may therefore 

be an improvement over reference constants, although variability in thresholds within each biome is 

large. 

Median Ψ0 is most negative for grasslands and open shrublands and least negative for woody savannas, 

savannas, and barren landscapes (Figure 3.2a). Grasslands and open shrublands extract water across a 

larger range of soil moisture states compared to savannas and woody savannas. This implies that 

temperate grasslands, which are usually dominated by C3 grasses, and open shrublands have the most 

extensive water uptake strategies, while savannas and woody savannas, which are dominated by C4 

grasses, have more intensive water uptake strategies. 

Median Ψ1 is similar for all IGBP classes. It is most negative for grasslands, savannas, and barren 

landscapes and least negative for croplands (Figure 3.2b). Grasslands and savannas can withdraw soil 

water at a maximum rate at drier soil moisture states than do croplands. This implies that grasslands and 

savannas, whose ground layer is dominated by herbaceous vegetation, have a risky soil water uptake 

strategy compared to croplands which are often irrigated in temperate regions. 

Median Emax/Ep is about 0.9 for grasslands and barren landscapes and about 0.5 for savannas and woody 

savannas (Figure 3.2c). Savannas and woody savannas have a more conservative water use strategy than 

grasslands and open shrublands, because the maximum rate of soil water uptake is relatively lower for 

savannas and woody savannas. Evapotranspiration is generally more coupled with atmospheric demand 

in aerodynamically smooth systems such as grasslands, whereas evapotranspiration is more coupled with 

stomatal conductance in aerodynamically rougher systems such as savannas and woody savannas, (Jarvis 

& Mcnaughton, 1986; Peng et al., 2019). In addition, C4 grasses, which are most abundant in savannas 

and woody savannas, tend to have higher water use efficiency compared to other plant functional types 

and often occur in hot and water-limited environments (Still et al., 2003). 
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While our results show that grasslands and open shrublands can extract moisture from drier soils than 

savannas and woody savannas, this does not imply that grasslands are less vulnerable to hydraulic failure 

than other biomes. Savannas and woody savannas are abundant in tropical hot environments and most 

often these are semi-arid or seasonally dry locations, whereas pure grasslands are more of a temperate 

and arctic phenomenon. Water potential in plant leaves coinciding with Ψ0, which drives stomatal 

closure, may be much more negative for plants in savannas than in grasslands because the air is hotter 

and drier than in grasslands. Leaf-to-air vapor pressure gradient may be much larger in savannas than in 

grasslands although Ψ0 is less negative. This may be a reason why grasslands are the biome for which 

inferred thresholds are closest to reference constants, which are based on observations made in temperate 

climates (Richards & Weaver, 1944).  

Whole-plant transpiration is expected to stop when all soil layers in the rooting zone have dried past the 

critical soil water potential, and at this time surface soil moisture, sensed by SMAP, is generally much 

lower than deeper layers. This could be a reason why the canonical permanent wilting point value of -

1.5 MPa, which is based on plant vigor when soil water uptake is zero in all layers, is more negative than 

our inferred Ψ0 values. However, it is unknown whether root tissues stop uptake in their respective layers 

at similar soil moisture potentials. Prior satellite estimates of soil moisture thresholds at which vegetation 

water content decreases correspond to more negative soil water potentials than those found in this study 

(Feldman et al., 2018). Soil moisture thresholds estimated here are associated with plant stomatal control 

only in so far as they influence surface soil water uptake and may not capture physiological behavior of 

the entire plant. 

3.6.3 Relation between ecohydrological thresholds and aridity 

Variability of ecohydrological thresholds within each IGBP class may reflect soil water uptake strategy 

responses or adaptations to local environmental conditions. Stomatal conductance generally decreases 

exponentially with increasing vapor pressure deficit (Oren et al., 1999) and research shows that 

atmospheric water stress affects plant stomatal control and reduces evapotranspiration even when soil 

moisture is not limited (Novick et al., 2016). Aridity index (AI), defined as the ratio of potential 

evaporation to total annual precipitation, is used in this study to investigate general spatial patterns in 

water uptake strategies with climate. 

Trends between |Ψ0| and AI are positive for woody savannas and crop and natural vegetation mosaic; 

negative for barren landscapes, crops and open shrublands; about null for savannas and grasslands; and 

overall strongest for woody savannas (Figure 3.2d, Table 3.S2). Woody savannas and crop and natural 

vegetation mosaic increase the range of soil moisture states for which they extract water from surface 

soil as climate conditions become more arid. This implies that water uptake strategies for biomes with 
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up to 60% woody vegetation (Kim, 2013) tend to be more extensive as aridity increases, which is 

consistent with deeper rooting patterns and switching uptake to deeper soil water reserves in woody 

plants (Holdo & Nippert, 2015). 

Trends between |Ψ1| and AI are negative for savannas, woody savannas, and grasslands; positive for open 

shrublands, croplands and crop and natural vegetation mosaic; and overall strongest for savannas (Figure 

3.2e, Table 3.S2). Grasslands, savannas, and woody savannas decrease the range of soil moisture states 

at which they uptake water at a maximum rate as climate conditions become more arid. This implies that 

water uptake strategies for biomes dominated by herbaceous vegetation tend to adapt and become less 

risky as aridity increases, whereas open shrublands, croplands, and crop and natural vegetation mosaic 

tend to be riskier. Such patterns are consistent with anisohydric behavior, which is more common in arid 

shrublands and croplands (Fu & Meinzer, 2019; Konings & Gentine, 2017). 

Trends between Emax/Ep and AI are negative for all biomes except for grasslands and strongest for open 

shrublands (Figure 3.2f, Table 3.S2). Grasslands are the only biome in which vegetation consistently 

uptakes soil water at a rate close to potential evaporation even in arid climates. When conditions are 

energy versus water limited (AI < 1) grasslands tend to increase Emax/Ep. Such patterns for grasslands 

reflect behavior of aerodynamically uncoupled land covers (Jarvis & Mcnaughton, 1986). 

3.6.4 Trends in soil water uptake and stress with aridity 

The combined effect of each of the ecohydrological thresholds adaptation to aridity may result in an 

overall expansion or reduction in vegetation capacity to uptake soil water. Plants make tradeoffs between 

carbon assimilation and water conservation (Skelton et al., 2015) and need to balance soil water uptake 

and stress. We thus combine these contrasting dynamics in a soil water uptake index that is normalized 

by precipitation and weighted by stress (ε) (Text S2) (Manfreda et al., 2017) to evaluate soil water uptake 

responses to aridity for each biome. A biome’s water uptake strategy may expand or reduce vegetation 

soil water uptake with increased stress. Trends between ε and AI represents biome resilience to water-

limited conditions. 

Soil moisture stress increases with increasing AI across all biomes. This trend is greater for humid biomes 

than dry biomes, steepest for croplands and least steep for open shrublands (Figure 3.S1a, Table 3.S2). 

Normalized soil water uptake also increases with increasing AI across all biomes, as a larger fraction of 

incoming precipitation is partitioned into evapotranspiration. This trend is steepest for woody savannas 

and savannas and least steep for croplands (Figure 3.S1b, Table 3.S2). Trends between ε and AI are 

positive for woody savannas, savannas, open shrublands, and crop and natural vegetation mosaic; 

negative for bare soils and croplands; and positive for humid grasslands but negative for dry grasslands 

(Figure 3.3a, Table 3.S2). 
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Patterns in soil water uptake are considerably different when reference constants are used instead of 

inferred thresholds (Figure 3.3a). Reference constants are unable to realistically characterize soil water 

uptake because soil water uptake exceeds available water at AI > 5 (Figure 3.S1b). Median ε is about 0.5 

for AI < 4 and increases steeply at AI > 4. This is a direct consequence of inconsistency of reference 

constants with empirical p(s) (Figure 3.1e). Empirical water-stress functions used in many biosphere 

models with reference constants are also unable to realistically represent effects of soil moisture on 

stomatal conductance (Fatichi et al., 2016; Powell et al., 2013). Many leaf-level stomatal conductance 

models, which do not adequately account for stomatal sensitivity to declining soil water potential, are 

also biased toward over predicting stomatal conductance during dry conditions (Anderegg et al., 2017). 

3.6.5 Global biome water uptake strategies 

The geographic distribution of plant species is largely driven by vegetation sensitivity to drought 

(Engelbrecht et al., 2007). Theory suggests that plants become more water efficient as water becomes 

scarce (Troch et al., 2009). Plant species with trait plasticity produce phenotypes adapted outside their 

optimal environments (Sultan, 2000), and can withstand a larger range of climates, but sometimes also 

trade off overall lower efficiency compared to specialized plants in their optimal climate. 

We quantify ecohydrological adaptation (∂X/∂AI) of a biome as the relative variation of each 

ecohydrological threshold (X) associated with a relative variation in aridity. A positive ecohydrological 

adaptation indicates that the absolute value of ecohydrological thresholds increases with aridity. This 

corresponds to an increase in vegetation capacity to uptake soil water as conditions become less 

favorable to soil water uptake. We quantify ecohydrological resilience (∂ε/∂AI) as the relative variation 

of ε, associated with a relative variation in AI. A positive ecohydrological resilience indicates that a 

greater fraction of available water, weighted by stress, is extracted from surface soil as climatic 

conditions become more arid. We relate ecohydrological adaptation with ecohydrological resilience to 

compare and interpret inferred ecosystem water uptake strategies (Figure 3.3b). 

Our results indicate that woody savannas and savannas have the most resilient water uptake strategies. 

Woody savannas and savannas may be more effective at taking up soil water in arid conditions compared 

to other biomes because the combination of individual ecohydrological threshold adaptations with AI 

results in an overall expansion of plant capacity to uptake surface soil water. In contrast, our results show 

that ecohydrological thresholds associated with grasslands dominated by C3 grasses are less variable 

with climate, and grasslands are overall less resilient to water stress. Plant species, which are specialized 

at using resources in a particular climate, can experience greater stress in climatic conditions outside 

their optimal range (Sultan, 2000). Ecohydrological resilience is negative for croplands and barren 

landscapes, suggesting water uptake strategies that do not withstand increasingly arid conditions and 
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compromise their capacity to uptake surface soil moisture. Our results indicate that water uptake 

strategies in arid locations are generally more drought resilient. This is consistent with species-level 

studies of plant isohydricity (Fu & Meinzer, 2019; Li et al., 2018), although this trend is more uncertain 

in previous global studies (Konings & Gentine, 2017). 

We compare vegetation sensitivity to water availability at the biome-level based on AI, although spatial 

distribution of species-level drought sensitivity within a biome and between ecosystems in a biome may 

vary significantly. We acknowledge that AI only captures a small portion of spatial variability in 

ecohydrological thresholds and there are many other factors that affect thresholds which are often also 

correlated with AI. The non-parametric approach we apply to calculate ecohydrological adaptation and 

resilience (Text S3) assumes that effects of such factors within a biome or cross-sectional sample is 

constant. Additional exploration of ecohydrological thresholds can be done when a longer time series of 

SMAP data is available. For example, pooling data both in space and in time with additional climate and 

land surface characteristics may provide causal inferences about vegetation drought sensitivity and 

disentangle variability both within and between each location instead of broadly by biome. 

3.7 Conclusions 

We provide ecohydrological thresholds consistent with observed probability distributions of satellite soil 

moisture and a parsimonious soil water balance model. Inferred thresholds integrate grid-scale surface 

soil water uptake dynamics from satellite soil moisture observations, capture location-specific land cover 

and climate characteristics, and reflect diversity in water uptake strategies among major global biomes. 

Critical soil water potentials derived from soil moisture states may be more applicable to water balance 

equations than those correlated with observable plant phenological change. Our results improve 

commonly used empirical relations between soil moisture stress and soil water uptake at large scales 

compared to using reference constants. Further research is needed to apply ecohydrological thresholds 

inferred from satellite observations in hydrological and earth system models and to evaluate their 

performance. Critical soil water potentials estimated in this study are associated with surface soil 

moisture dynamics, and their relation to total biome evapotranspiration or soil water uptake in the full 

rooting zone remains uncertain. Further research is necessary to determine whether critical soil water 

potentials inferred from surface soil moisture are different than those associated with deeper soil layers. 

Our approach provides a novel framework for connecting plant physiological behavior with soil-water 

dynamics that can enhance understanding of vegetation resilience under varying climatic conditions. 
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3.8 Data and code 

Results, datasets, and code are publicly available: Global maps of ecohydrological parameters 

(http://doi.org/10.5281/zenodo.3351623); SMAP (https://doi.org/10.5067/ZX7YX2Y2LHEB, 

https://doi.org/10.5067/KPJNN2GI1DQR, https://doi.org/10.5067/KGLC3UH4TMAQ); soil hydraulic 

parameters (https://doi.pangaea.de/10.1594/PANGAEA.870605); inverse modelling of soil saturation 

probability distributions (https://doi.org/10.5281/zenodo.1257718); data processing scripts 

(https://doi.org/10.5281/zenodo.3235820). 
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3.11 Figures 

  

Figure 3.1 Global ecohydrological thresholds, which best fit empirical p(s) derived from satellite 
observations. (a) |Ψ0|, soil water potential at no uptake, MPa. (b) |Ψ1| soil water potential at uptake 
downregulation, MPa. (c) Emax/Ep, normalized maximum rate of soil water uptake. (d) NSE of 
theoretical versus empirical p(s). (e) Difference in NSE between using inferred thresholds and reference 
constants. Locations with insufficient observations or non-converging results are white. 
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Figure 3.2 Ecohydrological thresholds by vegetation type and climate. (a-c) Boxes represent 
interquartile range, horizontal line represents median, and whiskers represent 10th and 90th percentiles. 
See Table 3.S1 for values and sample sizes. (d-f) Median relation between ecohydrological thresholds 
and aridity index. 
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Figure 3.3 Vegetation capacity to uptake soil moisture in water-limited conditions. (a) Median 
relation between stress-weighted normalized soil water uptake (ε) and aridity index (AI). All global 
locations are represented with the dotted black line using reference constants. (b) Ecohydrological 
adaptation (∂X/∂AI) versus ecohydrological resilience (∂ε/∂AI). See Table 3.S2 for values. Vertical and 
horizontal lines on markers represent 95% confidence intervals for each axis. 
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3.12 Supplementary material 

3.12.1 Supplementary text 

Text S1 

The theoretical probability distribution of soil saturation, p(s) (Laio et al., 2001), used in this study is 

given by  

!(#) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
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=

R
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;  

U? =
V2
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;  

U =
VQWX

ST
; 

Y =
Z9

ST(M
N3[:9JK75<)

; 

\ = 2^–4;  

Z [mm]; soil layer depth is equal to the average SMAP sensing depth of 50 mm;  

n [-], soil porosity is the maximum value between soil water content at saturation from (Montzka et al., 

2017) and the maximum observed SMAP soil water content; 

# [-], soil saturation (0 ≤ # ≤ 1) is computed by dividing SMAP soil water content observations by n; 
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a [mm day -1], average daily rainfall depth is calculated from L4 SMAP precipitation concurrent with 

the study period (Rodriguez-Iturbe et al., 1984b) ; 

b [day -1], average daily rainfall frequency is calculated from L4 SMAP precipitation concurrent with 

the study period (Rodriguez-Iturbe et al., 1984b); 

#/ [-], hygroscopic point is the minimum value between and the residual soil saturation from (Montzka 

et al., 2017) and minimum observed SMAP saturation offset by 0.01 so that p(sh) = 0 remains true; 

#? [-], wilting point is unknown and determined through inverse modelling and the reference constant 

value used is equal to soil saturation at 1.5 MPa pressure head (Rawls et al., 1982); 

#∗ [-], point of incipient stomatal closure is unknown and determined through inverse modelling and the 

reference constant value used is equal to soil saturation at 0.033 MPa pressure head (Laio et al., 2001); 

#GH [-], field capacity is calculated as soil saturation at 0.033 MPa pressure head (Rawls et al., 1982); 

cOde [mm day-1], maximum daily rate of evapotranspiration is unknown and determined through inverse 

modelling and within the range [0.1 Ep, Ep] and the reference constant value used is Ep, potential 

evaporation (Priestley & Taylor, 1972a); 

c? [mm day-1], daily rate of evaporation at the wilting point is unknown and determined through inverse 

modelling and within the range [0, 0.1 Ep] and the reference constant value used is 0; 

f4 [mm day-1], saturated soil hydraulic conductivity from (Montzka et al., 2017); 

b [-], empirical soil water retention curve parameter (Clapp & Hornberger, 1978; Montzka et al., 2017) ; 

g [-], constant obtained numerically to ensure the integral of p(s) = 1. 

Global maps of parameters values for Eq. (i) and estimates of unknown ecohydrological thresholds 

determined from inverse modelling, including convergence, uncertainty, and goodness-of-fit diagnostics 

are reported at http://doi.org/10.5281/zenodo.3351623. We define all variables available in this dataset 

in Table 3.S3. Datasets used to determine parameters are referenced above and described in the main 

text. 
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Text S2 

We calculate an average stress-weighted, normalized soil water uptake (ε) defined as (Manfreda et al., 

2017): 

ε =
ijkkkk

Rl
	(1 − m̅)         (1)  

where 
ijkkkk

Rl
, the theoretical average normalized soil water uptake for each grid cell is calculated using three 

years of daily soil saturation observations from SMAP L3 and the simplified soil moisture loss curve, 

defined as (Laio et al., 2001): 

co(#) =

⎩
⎪
⎨

⎪
⎧
0,																																																																																				0 < # ≤ #/,

3
425p

42546
7 c?,																																																																		#/ < # ≤ #?,

3
4∗5p

4∗542
7 (cOde −	c?) +	c?, 																																		#? < # ≤ #∗,

cOde,																																																																												#
∗ < # ≤ 1.

   (2)  

and m̅, the theoretical average soil moisture stress index for each grid cell,  is calculated using three years 

of daily soil saturation observations from SMAP L3 and the relation between plant water stress and soil 

saturation, defined as (Porporato et al., 2001): 

m(#) = r

1,																																																0 < # ≤ #?,

3
4∗5p

4∗542
7
s

, 																																		#? < # ≤ #∗,

0,																																															#∗ < # ≤ 1.

      (3) 

Text S3 

We calculate the sensitivity of the absolute value of each ecohydrological threshold (X = |Ψ0|, |Ψ1|, Emax/ 

Ep) to AI to quantify ecohydrological adaptation (∂X/∂AI) and the sensitivity of ε to the AI to quantify 

ecohydrological resilience (∂ε/∂AI) for each IGBP land cover class separately. We approximate these 

sensitivities with the non-parametric Thiel-Sen estimator (Theil, 1992). We first standardize each 

variable within each IGBP class by subtracting and dividing by the median value. We then calculate the 

Thiel-Sen estimator as the median of the slopes determined by all pairs of points. Ecohydrological 

adaptation represents the relative variation of an ecohydrological threshold associated with a relative 

variation in the AI, and ecohydrological resilience represents the relative variation of the fraction of 

available water uptake weighted by stress, associated with a relative variation in AI. For example, 

∂|Ψ0|/∂AI = - 0.1, corresponds to a 10% decrease from the median |Ψ0| value for a unit change from the 
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median AI. Sensitivities for each ecohydrological variable to AI are reported in Table 3.S2. These 

sensitivities represent the slopes in Figures 3.2d-f, 3.3a, and 3.S1 and the marker values in Figure 3b. 
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3.12.2 Supplementary figures 

 

Figure 3.S1 Trends in indices of soil water stress and soil water uptake with aridity by land 
cover. The moving median is visualized using 50 log spaced bins between aridity index values of 0.5 
and 10. All global locations are represented in the dotted black line using reference constants.  
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3.12.3 Supplementary tables 

Table 3.S1 Median ecohydrological thresholds inferred from satellite soil moisture by land cover  

 Open 
Shrubland Savanna Woody 

Savanna 
Crop/Natural 
Veg. Mosaic Grassland Cropland Barren 

Landscape 

|Ψ0| 1.02 0.50 0.46 0.56 1.36 0.79 0.49 

|Ψ1| 0.06 0.07 0.06 0.06 0.07 0.05 0.08 

Emax / Ep 0.71 0.51 0.52 0.60 0.91 0.80 0.92 

n 6638 5391 2094 1925 7315 5225 4015 

|Ψ0|, soil water potential at which no surface soil water uptake occurs, absolute value in MPa; |Ψ1|, soil water potential 
at which downregulation of surface soil water uptake occurs, absolute value in MPa; Emax/Ep, maximum rate of 
surface soil water uptake normalized by potential evaporation; n, sample size. 

 

Table 3.S2 Variability of ecohydrological parameters with aridity by land cover  

 Open 
Shrubland Savanna Woody 

Savanna 
Crop/Natural 
Veg. Mosaic Grassland Cropland Barren 

Landscape 

∂|Ψ0|/∂AI -0.11 0.02 0.37 0.18 -0.04 -0.17 -0.18 

∂|Ψ1|/∂AI 0.11 -0.19 -0.08 0.14 -0.08 0.04 -0.02 

∂ 
iQWX

Vt
/∂AI -0.2 -0.04 -0.04 -0.11 -0.0 -0.13 -0.04 

∂m/̅∂AI 0.15 0.39 0.37 1.09 0.91 1.58 0.16 

∂
ijkkkk

Rl
/∂AI 0.31 0.45 0.48 0.38 0.31 0.19 0.25 

∂ε/∂AI 0.14 0.25 0.39 0.1 0.09 -0.1 -0.02 

∂X/∂AI are approximated by the non-parametric Thiel-Sen estimator. X takes the values of |Ψ0|, soil water potential 
at which no surface soil water uptake occurs, absolute value in MPa; |Ψ1|, soil water potential at which 
downregulation of surface soil water uptake occurs, absolute value in MPa; Emax/Ep, maximum rate of surface soil 

water uptake normalized by potential evaporation; m̅, soil moistures stress index; 
ijkkkk

Rl
, normalized soil water uptake; ε 

, stress-weighted normalized soil water uptake. Numbers in bold indicate a p-value lower than 0.05. 
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Table 3.S3 Description of variables available in “Global dataset of ecohydrological parameters 
inferred from satellite observations” (http://doi.org/10.5281/zenodo.3351623) 

latitude degrees latitude of grid centroid 
longitude degrees longitude of grid centroid 
len_s_obs unitless number of soil moisture observations in L3 SMAP 04/ 2015 to 03/2018 used in 

analysis 
aridity_index unitless  ratio of average potential evapotranspiration to rainfall 
max_s unitless maximum soil saturation value in L3 SMAP 04/ 2015 to 03/2018 
min_s unitless minimum soil saturation value in L3 SMAP 04/ 2015 to 03/2018 
mean_s unitless mean soil saturation value in L3 SMAP 04/ 2015 to 03/2018 
std_s unitless standard deviation of observed soil saturation values in L3 SMAP 04/ 2015 to 

03/2018 
alpha_MvG unitless empirical parameter used in the Mulalem-van Genuchten equation 
n_MvG unitless empirical parameter used in the Mulalem-van Genuchten equation 
Z mm soil depth 
n unitless soil porosity 
b unitless empirical parameter used in the Clapp and Hornberger soil water retention curve 

equation 
Ks mm/day saturated soil hydraulic conductivity 
s_fc unitless soil saturation at field capacity 
s_h unitless soil saturation at the hygroscopic point 
s_1.5MPa unitless soil saturation at 1.5 MPa soil water potential 
s_0.033MPa unitless soil saturation at 0.033 MPa soil water potential 
rf_alpha mm/day average daily rainfall depth 
rf_lambda unitless average daily rainfall frequency 
E_p mm/day average daily potential evapotranspiration 
s_star unitless soil saturation at the point of incipient stomatal closure, mean of posterior estimates 
s_wilt unitless soil saturation at the wilting point, mean of posterior estimates 
f_max unitless ratio of maximum soil water uptake to E_p, mean of posterior estimates 
f_w unitless ratio of soil water uptake at the wilting point to E_p, mean of posterior estimates 
psi_0 MPa soil water potential at the point of no soil water uptake 
psi_1 MPa soil water potential at the point of downregulation of soil water uptake 
s_wilt_grd unitless Gelman-Rubin diagnostic for s_wilt 
s_star_grd unitless Gelman-Rubin diagnostic for s_star 
f_max_grd unitless Gelman-Rubin diagnostic for f_max 
f_w_grd unitless Gelman-Rubin diagnostic for f_w 
s_wilt_std unitless standard deviation of posterior estimates of s_wilt 
s_star_std unitless standard deviation of posterior estimates of s_star 
f_max_std unitless standard deviation of posterior estimates of f_max 
f_w_std unitless standard deviation of posterior estimates of f_w 
efficiency unitless efficiency of Metropolis-Hastings Markov chain Monte Carlo algorithm 
NSE_pdf unitless quantile level Nash Sutcliffe efficiency between theoretical and empirical soil 

saturation probability distribution using inferred thresholds 
NSE_pdf_rc unitless quantile level Nash Sutcliffe efficiency between theoretical and empirical soil 

saturation probability distribution using constant reference thresholds 
stress_index unitless soil moisture stress index estimated using inferred thresholds 
stress_index_rc unitless soil moisture stress index estimated using constant reference thresholds 
norm_wu unitless soil water use normalized by rainfall estimated using inferred thresholds 
norm_wu_rc unitless soil water use normalized by rainfall estimated using constant reference thresholds 
swnwu unitless stress weighted normalized water use estimated using inferred thresholds 
swnwu_rc unitless stress weighted normalized water use estimated using constant reference thresholds 
vegcls unitless IGBP land cover class 
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4 Disentangling Soil Moisture Limits on Evapotranspiration 

 

 

 

4.1 Abstract 

Theoretical descriptions of the variability of soil moisture such as the energy spectrum and probability 

distribution parameterize interactions between climate type, soil pedology, and vegetation physiology. 

We quantify the relation between soil moisture and evapotranspiration by calibrating these theoretical 

equations to soil moisture observations and by partitioning mutual information from soil moisture and 

vapor pressure deficit about evapotranspiration at 71 FLUXNET2015 sites. The ecohydrological metrics 

developed in this study are able to capture patterns in atmospheric versus soil moisture stress on 

transpiration at forested and non-forested sites.   
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4.2 Introduction 

The variability of evapotranspiration (ET) relative to the potential atmospheric moisture demand (Ep) 

driven by radiation and temperature is controlled by a variety of land-surface characteristics and 

estimates of empirical factors ET/Ep derived from observations and models are widely divergent (Peng 

et al., 2019). Understanding the variability in ET and in particular the relation between soil moisture and 

vegetation stress is key to quantifying feedbacks between hydrology and climate (Fisher et al., 2017). 

Numerous studies have explored empirical relations between ET, soil moisture and vegetation stress 

(Porporato et al., 2001; Katul et al., 2012; Novick et al., 2016; Peng et al., 2019; Purdy et al., 2018) yet 

these relations remain difficult to untangle because ecohydrological variables are highly correlated. 

Simple metrics for these relations, which are based on observations are necessary to evaluate earth 

systems models.  

Soil moisture integrates processes of the water cycle and the variability in soil moisture reflects 

interactions between climate type, soil pedology, and vegetation physiology (Rodriguez-Iturbe, 2000). 

Theoretical descriptions of the variability of soil moisture such as the energy spectrum (Katul et al., 

2007) and probability distribution functions (Laio et al., 2001) parameterize these dynamics and are 

simpler models to calibrate than water balance differential equations in numerical models. In particular, 

confronting theoretical and observed descriptions of soil moisture variability provides a framework to 

quantify the relation between soil moisture and ET, while overcoming some limitations of more direct 

correlation approaches. Non-linear dynamics in complex environmental systems can also be analyzed 

independently of model form using information theoretical metrics (Goodwell & Kumar, 2017b; Ruddell 

& Kumar, 2009). Diagnosis of mutual information between hydrological and meteorological variables 

can reveal controls on the variability of ET and information partitioning can disentangle information 

from correlated variables. 

The objective of this study is to quantify the relation between soil moisture and ET using observations 

from 71 sites in a range of biomes. We estimate the shape of the relation between soil moisture and ET 

based on theoretical descriptions of the energy spectrum and probability distributions of soil moisture 

and compare them to information theoretical metrics to disentangle moisture controls on ET. We define 

the theoretical models and information metrics and identify patterns in atmospheric versus soil moisture 

stress on transpiration at forested and non-forested sites captured by each approach. 

4.3 Data 

We use daily data from the FLUXNET2015 Tier one data product (http://fluxnet.fluxdata.org/ 

data/fluxnet2015-dataset/, last access: October 2016) that has standardized processing, quality control 
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and gap filling (Reichstein et al., 2005). We only analyze daily values with a quality flag > 0.5 ensuring 

that at least 50-percent of the half-hourly values in a day are observed and only good quality half-hourly 

gap-filled data are used. We select sites, which have continuous and concurrent high-quality daily values 

of volumetric water content (θ), latent heat flux (LE), sensible heat flux (H), precipitation (P), air 

temperature (T) and vapor pressure deficit (δe) during at least one growing season. We calculate daily 

values of potential evaporation (Ep) (Priestley & Taylor, 1972b) from observed available surface energy 

flux (Qn) and T. We estimate Qn as the sum of eddy-covariance measurements of LE and H instead of 

the difference between net radiation and ground heat flux because LE and H measurements are more 

consistently available at FLUXNET2015 sites. 

We only analyze growing season data, when vegetation is most active, and define the growing season 

for the northern hemisphere as June–August and for the southern hemisphere as December–February 

(Anderegg et al., 2019), although site-specific growing seasons may be variable and extend beyond the 

selected 90-day periods. We do not select any wetland sites because soil water dynamics at wetland sites 

are influenced by groundwater and do not meet our model assumptions. We also visually inspect soil 

moisture time series to exclude sites with possible ground water effects on soil moisture dynamics. We 

identify possible groundwater effects on soil moisture by persistent soil moisture values close to 

saturation during the selected growing seasons. A range of biomes are represented in 71 selected sites 

(Table 4.S1). We determine the physical soil characteristics of each site using each site’s latitude and 

longitude and a global dataset of soil hydraulic parameters (Montzka et al., 2017). We assume that all 

soil moisture measurements are at a depth Z of 10 cm. We estimate the soil porosity (n) as the maximum 

observed θ during the selected growing seasons and divide θ timeseries by porosity to obtain time series 

of soil saturation (s). 

4.4 Methods 

4.4.1 Analytical model for the energy density spectrum of soil moisture 

The energy density spectrum of soil moisture describes the relative distribution of a soil moisture time 

series with frequency. We assume that at the daily time scale and selected FLUXNET2015 sites, the soil 

water balance is dominated by precipitation forcing (P) and, ET losses, because the occurrence of daily 

soil moisture values at saturation are rare. We assume rainfall interception, runoff and soil water losses 

due to drainage are negligible. Thus, a simple analytical model of the soil moisture energy density 

spectrum (uv) is derived based on Katul et al. (2007). We define the soil water balance of a soil column 

with depth, Z and at time, t as: 

wx
y4(z)

yz
= {(|) − co(|)	         (1) 
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We assume that soil moisture losses due to ET are bound between two models. The first is moisture-

limited, denoted with subscript W and the second is energy-limited, denoted with subscript R. The 

combination of these models encompasses possible non-linear relations between ET and soil moisture 

that account for a range of soil moisture states at which ET is not moisture limited. In the moisture-

limiting model, ET(t) decreases linearly with s(t) from a maximum value and soil moisture losses are: 

[co(|)]? = cOde#(|)	          (2) 

In the energy-limited model, ET(t) is equal to Ep(t) and soil moisture losses are defined as 

[co(|)]� = cÄ(|)         (3) 

We recast Eq (1) using Eq (2) and Eq (3) separately and then convert from the temporal domain (t) to 

the frequency domain (f) using the Fourier transform (ÅÇ(É)), defined for an arbitrary timeseries x(t) as: 

ÅÇ(É) = ∫ Å(|)=ÖGzÜ|
Fá

5á
         (4) 

The two soil water balance models in frequency domain are  

−àÉ[#̂(É)]ä =
ã

ST

å
(É) − \#̂(É)        (5) 

and  

−àÉ[#̂(É)]� =
ã

ST

å
(É) −

Vt

ST

å
(É)	        (6) 

where \5< = 	
ST

VQWX
 [days] is the soil water memory or soil moisture decay time scale (Katul et al., 2007) 

and we approximate Emax as the growing season average Ep. We rearrange Eq (5) and Eq (6) as 

[#̂(É)]ä =
IFÖG

IçFGç
ã

ST

å
(É)	         (7) 

and 

[#̂(É)]� = −	
<

ÖG

ã5	Vé

ST

è
(É)         (8) 

and apply the general definition for the energy spectrum (êe(É)) of an arbitrary signal ÅÇ(É)  

êe(É) = 	 |ÅÇ(É)|
s = ÅíMdì(É)

s + ÅÖOdî(É)
s       (9) 
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where xreal and ximag are the real and imaginary parts of ÅÇ(É). We simplify [ê4(É)]ä and [ê4(É)]� and 

define the energy spectrum of soil moisture as 

[ê4(É)]ä =
<

(ST)ç
	
ïñ(G)

IçFGç
          (10) 

and  

[ê4(É)]� =
<

(ST)ç
	
ïñ:ót(G)

Gç
          (11) 

Finally, we combine the two models Eq (10) and Eq (11) with a non-dimensional coefficient, ⍺, that can 

take values between 0 and 1 and measures the degree of non-linearity of the relation between ET and 

soil moisture (Figure 4.1b). The model for u4(É) for the energy density spectrum, which corresponds to 

the fraction of the total variance contributed by each frequency, is thus defined as a function of the energy 

density spectrum of P and the energy density spectrum of (P – Ep) 

u4(É) = 	g 3a
ôñ:ót(G)

Gç
	+ (1 − 	a)

ôñ(G)

IçFGç
+7       (12) 

where C [days-2] is a coefficient that ensures that the sum of u4(É) over the range of frequencies is equal 

to 1.  

We subtract the mean from time series of s, P, P-Ep for each selected growing season. We estimate 

individual power spectrums for each normalized time series using discrete fast Fourier transform then 

divide by the power spectrum sum to obtain power spectrum densities. We average the individual 

growing season power spectrum densities to estimate u4(É),	uã(É) and,	uã5Vt(É) (Figure 4.1c). We then 

estimate ⍺ from u4(É),	uã(É) and, uã5Vt(É) as the best fit of Eq (12) (Figure 4.1c).   

We use ⍺ to describe the shape of the relation between soil moisture controls and ET. For ⍺=0, the most 

drought avoidant vegetation water use strategy, ET is moisture limited over all soil moisture states; for 

⍺ = 1, drought tolerant vegetation water use strategy, ET is independent of soil moisture; and for 0<⍺<1 

soil moisture losses are controlled by both energy and moisture limitations. 

4.4.2 Piece-wise soil moisture loss function 

Soil moisture losses are often parameterized by a piece-wise function of soil saturation (Figure 4.1b) 

(Laio et al., 2001). The rate of leakage due to gravity is maximum (Ks) when the soil is saturated (s=1), 

and decays exponentially to zero at field capacity (sfc); ET is maximum (Emax) until the point of incipient 
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stomatal closure (s*), when plants start to down-regulate transpiration; ET decreases linearly from Emax 

to 0 at the wilting point (sw). The piece-wise soil moisture function (χ(s)) is defined as 

ö(#) =

⎩
⎪
⎨

⎪
⎧f4

M
(çõúù)39:9JK75	<

M
(çõúù)3[:9JK75	<

+	cOde																#GH 	< # ≤ 1,

cOde,																																																						#
∗ < # ≤ #GH,

3
p5	42

4∗542
7 cOde, 																																							#? < # ≤ #∗,

0																																																																0 < # ≤ #?.

     (13) 

where b is a parameter of  the soil water retention curve (Clapp & Hornberger, 1978).  

A theoretical equation of the soil moisture probability distribution function can be derived by forcing the 

soil water balance with rainfall described by a stochastic process, assuming infiltration excess runoff, 

using the piece-wise soil water loss curve (Eq. 14), and integrating over steady state conditions (Laio et 

al., 2001). Given a rainfall average daily depth and frequency, the shape of soil moisture probability 

distributions is constrained by parameter of the loss function (Eq 14). We determine soil water retention 

parameters (Ks and b) using site-specific soil texture information (Montzka et al., 2017), approximate sfc 

as the 90th percentile of soil moisture peaks and sw as the minimum observed soil moisture value during 

the selected growing seasons. We estimate the two remaining unknown thresholds of the soil moisture 

loss curve (s* and Emax), which depend on vegetation type, that best fit the empirical soil moisture 

probability distribution of soil moisture observed during the selected growing seasons (Figure 4.1d) 

using a Bayesian inference framework (Bassiouni et al., 2018).  

We describe the shape of the relation between ET and soil moisture by γ, the area below the inferred 

relation between ET and soil moisture relative to the potential area, if ET is constant and equal to Ep 

û = 	
VQWX

Vt
	
<5	ü.†(4∗F	42)

<5	42
         (14) 

The shape parameter γ, is thus an index of the relative strength of soil moisture controls on ET and the 

point at which vegetation responds to stress and regulates transpiration. Vegetation is least sensitive to 

stress for γ=0, which indicates that stomata are fully open and transpiration is maximum for all soil. 

moisture states. Vegetation is most intolerant to stress for γ=0, which indicates that stomata are 

completely closed and transpiration is 0 at all soil moisture states. The linear combination of Eq (2) and 

Eq (3), which neglects soil losses from leakage due to gravity, is a simple approximation of the piece-

wise soil moisture loss function (Eq (14)). The shape parameters ⍺ and γ should co-vary and reflect 

similar controls of soil moisture on ET and vegetation water use strategies.  
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4.4.3 Partitioning information about ET 

The shape parameters (⍺	and γ) may indirectly account for vegetation stress from low atmospheric 

moisture. Thus a shape parameter for a same vegetation type can be different in an aridity versus a humid 

climate. We examine the relative controls of moisture in the soil and atmosphere on ET through the 

partitioning of multi-variate mutual information from θ and δe about ET/Ep (ETn). We focus our analysis 

on effects of moisture in the air and the soil on ET because ETn is a non-dimensional quantity that already 

accounts for variability in available energy that drives ET. We thus indirectly analyze dynamics the water 

gradient or potential between the soil, through the plant and into the atmosphere that drives ET.  

Definition of information metrics 

Uncertainty in a discrete variable X with a probability density function p(x) is quantified by information 

theory as the Shannon’s entropy (H(X)), measured in bits and defined as (Shannon, 1948) 

°(¢) = −∑ !(Å)§•¶s!(Å)e∈®         (15) 

The multi-variate case or joint entropy for discrete variables X and Y with a joint probability density 

function p(x, y) is defined as 

°(¢, ©) = −∑ ∑ !(Å, ™)§•¶s!(Å, ™)´∈¨e∈®        (16) 

Mutual information (I(θ; ETn) and I(δe; ETn)), relates shared information between two variables (Cover 

& Thomas, 2012) and quantifies the reduction in uncertainty of a variable (ETn) given knowledge of 

another variable (θ or δe). In other words, the knowledge we gain about ETn from measuring θ or δe. 

Additionally, the total multi-variate mutual information (I(θ, δe; ETn)) quantifies the total reduction in 

uncertainty of ETn given knowledge of variables θ and δe together and conditional mutual information 

(I(θ; ETn| δe)) quantifies the reduction in uncertainty of ETn given knowledge of θ beyond the reduction 

of uncertainty due to knowledge of δe. The definitions of mutual information metrics are based on 

Shannon’s entropy (Cover & Thomas, 2012) which can also be derived intuitively from Venn diagrams 

(Figure 4.2a-c): 

≠(Æ; coS) = °(Æ) + °(coS) − °(Æ, coS),       (17) 

≠(Æ, δM; coS) = °(Æ, δM) + °(coS) − °(Æ, δM, coS), and     (18) 

≠(Æ; coS|δM) = ≠(Æ, δM; coS) − ≠(	δM; coS)	

													= °(Æ, δM) + °(coS, δM) − °(δM) − °(Æ, δM, coS)	     (19) 
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We remove outliers, rescale and discretize ecohydrological variables before calculating information 

metrics (Goodwell & Kumar, 2017a). We remove outliers in ETn by setting ETn < 0 to 0 and ETn > 

ETn,max = p75 + 1.5(p75 – p25) to ETn,max where p75 and p25 are the 75-th and 25-th percentiles of ETn. We 

rescale θ, δe, and ETn between 0 and 1, by dividing each variable by its maximum value in each site’s 

record. We discretize rescaled observations of θ, δe, and ETn in 10 evenly spaced bins between 0 and 1 

to estimate 1-, 2-, 3-dimensional probability density functions necessary to calculate Shannon entropy 

and joint entropy. We apply a shuffled surrogates method (Goodwell & Kumar, 2017a; Ruddell & 

Kumar, 2009) to test statistical significance of I(θ,δe; ETn). We shuffle θ, δe, and ETn to destroy existing 

correlations between variables and recompute I(θ,δe;ETn) 1000 times. We consider I(θ,δe;ETn) 

statistically significant if it is greater than the shuffled iterations at >99% confidence level. 

Partitioning total multi-variate mutual information 

We partition total information I(θ,δe;ETn) into non-negative quantities (Barrett, 2015; Goodwell & 

Kumar, 2017a; Williams & Beer, 2010) as follows:  

≠(Æ, δM; coS) 	= 	±(coS; Æ, δM) 	+ 	≤(coS	; Æ) 	+ 	≤(coS	; δM) 	+ 	≥(coS; Æ, δM)   (20) 

The synergistic component (S) quantifies information shared only when θ and δe influence ETn together. 

The unique components (Uθ and Uδe) quantify information provided about ETn by θ and δe, respectively 

by themselves. The redundant component (R) quantifies overlapping information provided about ETn by 

θ and δe together. The relative magnitudes of Uθ and Uδe can be a measure of the relative control from 

each variable on ET. We estimate total, synergistic, unique, and redundant information about ETn from 

θ and δe for each site with the following equations, which can also be derived intuitively from Venn 

diagrams (Figure 4.2d-e). 

≠(Æ; coS) = ≤(coS; Æ) 	+ 	≥(coS; Æ, δM),        (21) 

≠(δM; coS) =	≤(coS; δM) 	+ 	≥(coS; Æ, δM), and      (22) 

≠(Æ; δM; coS) = 	≠(Æ; coS|δM) − ≠(Æ, coS) = 	≠(δM; coS|Æ) − ≠(δM, coS)	

																	= 	±(coS; Æ, δM) 	− 	≥(coS; Æ, δM)       (23) 

We estimate redundancy as the rescaled redundancy (Rs) developed by (Goodwell & Kumar, 2017a) and 

defined as 

�95	�Q¥µ

�∂∂∑	5	�Q¥µ
= 	

∏(v;π∫)

ªºΩ	[æ(v),æ(π∫)]
         (24) 

where ≥OÖS	 = max[0,−≠(Æ; δM; coS)], and ≥¬¬∏ = min	[ ≠(Æ; coS), ≠(δM; coS)]. 
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4.5 Results and discussion 

4.5.1 Shape parameters of the relation between soil moisture and ET  

The analytical model for the energy spectrum of soil moisture is applicable to observations at all 71 

selected FLUXNET2015 sites. The frequency-level Nash Sutcliffe efficiency (NSE) between observed 

and modeled energy spectrum of soil moisture ranges between 0.38 and 0.98 and the median NSE is 

0.82. The best fit ⍺	is on average greater at forested than non-forested sites (Figure 4.3a) and indicates 

that the relation between soil moisture and ET is more nonlinear, where soil water losses are close to 

potential even as soil moisture becomes limiting. The relation between soil moisture and ET is on average 

the most linear (⍺	 approaching 0) for woody savanna and closed shrubland sites and soil moisture 

controls on ET are on average stronger at non-forested sites. The aridity index, defined as the average 

annual ratio Ep/P is not correlated with ⍺, indicating that ⍺	does not generally reflect the energy versus 

moisture limitations on the soil water balance and may be more related to site-specific vegetation 

behavior. 

The analytical model for soil moisture probability distribution was consistent with 68 of the selected 

FLUXNET2015 sites and the model inversion approach did not converge for 3 sites. The quantile-level 

NSE between observed and modeled soil moisture probability distributions ranges between 0.13 and 

0.99 and the median NSE is 0.95. The best fit γ is generally higher for grassland and evergreen needle 

leaf forest sites (Figure 4.3b) indicating that soil water losses are close to potential for the largest range 

of soil moisture states. The Spearman’s correlation coefficient between γ and the aridity index is -0.59 

(p-value<0.01) for non-forested sites, indicating that as conditions become more arid, soil moisture 

controls on ET increase and ET is more down regulated from stress. There is no significant relation 

between the aridity index and γ for forested sites indicating that the relation between soil moisture and 

ET may not be sensitive to climate aridity. 

4.5.2 Soil and atmospheric moisture controls on ET inferred from 
information partitioning 

Total multi-variate mutual information from θ and δe about ETn, I(θ, δe; ETn) is statistically significant 

at 61 out of the 71 study sites and partitioning of total information reveals patterns between soil and 

atmospheric controls on ET with the aridity index (Figure 4.4). Sites for which I(θ,δe;ETn) is not 



 

 

64 

statistically significant include sites with limited periods of record (only 1 to 2 growing seasons for 8 of 

the 10 sites).  

Less than half of the uncertainty in ETn can be reduced by measurements of θ and δe. The median value 

of I(θ,δe;ETn) relative to H(ETn) is 0.3 for forested sites and 0.4 for non-forested sites. A relatively greater 

amount of uncertainty in ETn can be attributed to δe compared to θ at forested sites, while δe and θ 

contributions are about equal at non-forested sites. The median value of Uθ and Uδe relative to I(θ,δe;ETn) 

is 0.21 and 0.5 for forested sites, respectively and 0.33 and 0.34 for non-forested sites. The fraction of 

synergistic information relative to redundant information from θ and δe about ETn is generally greater 

for forested sites than non-forested sites. The median value of S and R relative to I(θ,δe;ETn) is 0.23 and 

0.09 for forested sites, respectively and 0.18 and 0.06 for non-forested sites. These results are consistent 

with our expectation that woody vegetation controls its stomatal as a result of stress from atmospheric 

moisture demand, while having access to soil moisture in a deeper rooting zone. In contrast, information 

from δe and θ are more redundant for herbaceous vegetation, which typically has access to soil moisture 

from a shallower rooting zone that is more consistent with the θ measurement depth. 

Overall the information shared between from θ, δe, and ETn increases with increasing aridity index. The 

Spearman’s correlation coefficient between I(θ,δe;ETn), I(θ;ETn), and I(δe;ETn), and the aridity index at 

each site is 0.5, 0.69, and 0.4, respectively with p-value<0.01. These results are consistent with our 

expectation that soil and atmospheric moisture controls on ET are greatest in more arid climates. As the 

aridity index of a site increases Uθ increases, while Uδe decreases and R increases while S decreases. The 

Spearman’s correlation coefficient between Uθ, Uδe, S, and R, and the aridity index at each site is 0.47, -

0.38, -0.41, and 0.62, respectively with p-value<0.01. These results are consistent with our expectation 

that vegetation stress is greater in more arid climates and controls on ET from θ and δe become more 

redundant, while in less arid climates soil moisture stress is lower and controls on ET may be more 

attributed to δe. 

4.5.3 Vegetation controls on ET captured by soil moisture metrics 

We compare shape parameters (⍺	and γ) of the relation between soil moisture and ET and relate them to 

information partitioning metrics to identify controls on ET captured by each approach (Figure 4.5).  We 

summarize forested and non-forests sites separately because aerodynamic roughness effects of canopy 

height is known to affect the ratio of actual to potential ET (Peng et al., 2019) and our focus is more on 

effects of vegetation conductance due to water stress.  

The relation between ⍺ and γ is weak but reflects some consistency between the two approaches. The 

Spearman’s correlation coefficient between ⍺ and γ is 0.26. The degree of non-linearity in the relation 

between soil moisture and ET, quantified by ⍺ is not sensitive to climate aridity. The more complex 



 

 

65 

shape of the relation between soil moisture and ET captured by γ reflects more diverse ecohydrological 

behavior. However, γ is inferred using a more complex multi-parameter calibration method and may be 

more affected by the range of soil moisture observations values and therefore the metric can be 

influenced by climate aridity.  

At non-forested sites, the Spearman’s correlation coefficient between γ and Uθ is -0.32. Unique 

information from θ about ETn reflects the magnitude of soil moisture controls on ET. Greater Uθ reflects 

greater vegetation stress from soil moisture and results in a smaller γ or smaller range of soil moisture 

state at which vegetation transpires. At forested sites the Spearman’s correlation coefficient between ⍺ 

and Uδe is -046 and the Spearman’s correlation coefficient between γ and S is -0.33. These results indicate 

that the shape of the relation between soil moisture and ET at forested sites may be more influenced by 

effects of stress from δe and θ together rather than θ alone. No other correlations between ⍺	and γ and 

information partitioning metrics are statistically significant. Our metrics ⍺ and γ capture plant water use 

strategies which are more controlled by moisture stress in the atmosphere at forested sites and soil 

moisture stress at non-forested sites.  

4.6 Conclusions 

This study develops and compares ecohydrological metrics to quantify the relation between soil moisture 

and ET based on theoretical equations for the variability of soil moisture. Detecting patterns from limited 

data is a major challenge in ecohydrology and we use information partitioning to untangle atmospheric 

versus soil moisture stress on ET at forested and non-forested sites. Proposed ecohydrological metrics 

describing the relation between soil moisture and evapotranspiration in different biomes can be used to 

diagnose the functional error of earth system models and is key to quantifying feedbacks between 

hydrology and climate.
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4.7 Data 

All datasets are available from public sources: hydrometeorological observations 

(http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/); soil hydraulic parameters 

(https://doi.pangaea.de/10.1594/PANGAEA.870605).  
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4.10 Figures 

 

Figure 4.1 Ecohydrological dynamics of the semi-desert Santa Rita experimental range grassland 
site (US-SRG) (a) Timeseries of growing season soil saturation. (b) Observed (grey markers) and 
theoretical (red line) relation between relative evapotranspiration and soil saturation. The theoretical 
relation is inferred from the probability distribution of soil moisture. (c) Energy density power 
spectrum of precipitation, potential evaporation, and observed and modelled soil moisture. (d) 
Observed (black histogram) and theoretical (red line) probability distribution of soil saturation. 
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Figure 4.2 Visual derivation of information theory metrics (a) I(θ;ETn) mutual information; (b) 
I(θ,δe;ETn) total multi-variate mutual information; (c) I( θ;ETn| δe) conditional mutual information; (d) 
I(θ;δe;ETn) interaction information; (e) total information partitioning. 
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Figure 4.3 Shape parameters of the relation between soil moisture and evapotranspiration based 
on  (a) the energy density spectrum (b) The probability distribution of soil moisture at a range of 
biomes. (CRO, cropland; GRA, grassland; SAV, savanna; WSA, woody savanna; OSH, open 
shrubland; CSH, closed shrubland; MF, mixed forest; DBF, deciduous broadleaf forest; EBF, 
evergreen broadleaf forest; ENF, evergreen needleleaf forest) 
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Figure 4.4 Partitioning of total multi-variate mutual information from soil moisture and vapor 
pressure deficit about relative evapotranspiration (I(θ,δe;ETn)) at 71 FLUXNET2015 sites ordered 
left to right from least arid to most arid. Information is partitioned into unique information from soil 
moisture (Uθ), unique information from vapor pressure deficit (Uδe), synergistic information (S) and 
redundant information (R). Sites with non-significant total information are masked in grey. 
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Figure 4.5 Correlation between information partitioning and shape parameters of the relation 
between soil moisture and evapotranspiration based on (a-b) the energy spectrum and (c-d) the 
probability distribution of soil moisture.  Bar plots represent the spearman’s correlation coefficient and 
are colored only if p-value<0.1. 
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Table 4.S1 Selected FLUXNET21015 sites 

Site ID Biome Latitude Longitude Data years Citation 

AT-Neu GRA 47.117 11.318 
2004, 2006, 
2007, 2008, 
2010, 2012 

Georg Wohlfahrt, Albin Hammerle, Lukas 
Hörtnagl, Alois Haslwanter (2002-
2012) FLUXNET2015 AT-Neu Neustift, 
10.18140/FLX/1440121 

AU-ASM ENF -22.283 133.249 
2011, 2012, 

2013 

James Cleverly, Derek Eamus (2010-
2014) FLUXNET2015 AU-ASM Alice 
Springs, 10.18140/FLX/1440194 

AU-Cpr SAV -34.002 140.589 2012, 2013 

Wayne Meyer, Peter Cale, Georgia Koerber, 
Cacilia Ewenz, Qiaoqi Sun (2010-
2014) FLUXNET2015 AU-Cpr Calperum, 
10.18140/FLX/1440195 

AU-DaP GRA -14.063 131.318 
2009, 2010, 
2012, 2013 

Jason Beringer, Lindsay Hutley (2007-
2013) FLUXNET2015 AU-DaP Daly River 
Savanna, 10.18140/FLX/1440123 

AU-DaS SAV -14.159 131.388 
2011, 2012, 

2013 

Jason Beringer, Prof. Lindsay Hutley (2008-
2014) FLUXNET2015 AU-DaS Daly River 
Cleared, 10.18140/FLX/1440122 

AU-Dry SAV -15.259 132.371 2012, 2013 
Jason Beringer, Lindsay Hutley (2008-
2014) FLUXNET2015 AU-Dry Dry River, 
10.18140/FLX/1440197 

AU-Emr GRA -23.859 148.475 2012, 2013 

Ivan Schroder, Steve Zegelin, Tehani Palu, 
Andrew Feitz (2011-
2013) FLUXNET2015 AU-Emr Emerald, 
10.18140/FLX/1440198 

AU-Gin WSA -31.376 115.714 2011, 2012 

Craig Macfarlane, Patricia Lambert, John 
Byrne, Chris Johnstone, Natalie Smart 
(2011-2014) FLUXNET2015 AU-
Gin Gingin, 10.18140/FLX/1440199 

AU-
GWW SAV -30.191 120.654 2013, 2014 

Craig Macfarlane, Suzanne Prober, Georg 
Wiehl (2013-2014) FLUXNET2015 AU-
GWW Great Western Woodlands, Western 
Australia, Australia, 10.18140/FLX/1440200 

AU-How WSA -12.494 131.152 2009, 2010, 
2011, 2012 

Jason Beringer, Lindsay Hutley (2001-
2014) FLUXNET2015 AU-How Howard 
Springs, 10.18140/FLX/1440125 

AU-Rig GRA -36.650 145.576 2012, 2013, 
2014 

Jason Beringer, Jason Beringer, Shaun 
Cunningham, Patrick Baker, Timothy 
Cavagnaro, Ralph MacNally, Ross 
Thompson, Ian McHugh (2011-
2014) FLUXNET2015 AU-Rig Riggs Creek, 
10.18140/FLX/1440202 

AU-Stp GRA -17.151 133.350 2010, 2012, 
2013 

Jason Beringer, Lindsay Hutley (2008-
2014) FLUXNET2015 AU-Stp Sturt Plains, 
10.18140/FLX/1440204 

AU-TTE OSH -22.287 133.640 2012, 2013 
James Cleverly, Derek Eamus (2012-
2014) FLUXNET2015 AU-TTE Ti Tree 
East, 10.18140/FLX/1440205 

AU-Tum EBF -35.657 148.152 

2003, 2004, 
2008, 2009, 
2010, 2013, 

2014 

William Woodgate, Eva van Gorsel, Ray 
Leuning (2001-2014) FLUXNET2015 AU-
Tum Tumbarumba, 10.18140/FLX/1440126 

AU-Wom EBF -37.422 144.094 2011, 2012 
Stefan Arndt, Nina Hinko-Najera, Anne 
Griebel (2010-2014) FLUXNET2015 AU-
Wom Wombat, 10.18140/FLX/1440207 

AU-Ync GRA -34.989 146.291 2013, 2014 
Jason Beringer, Jeffery Walker (2012-
2014) FLUXNET2015 AU-Ync Jaxa, 
10.18140/FLX/1440208 

BE-Lon CRO 50.552 4.746 2012, 2014 
Anne De Ligne, Tanguy Manise, Christine 
Moureaux, Marc Aubinet, Bernard Heinesch 
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Site ID Biome Latitude Longitude Data years Citation 
(2004-2014) FLUXNET2015 BE-
Lon Lonzee, 10.18140/FLX/1440129 

BE-Vie MF 50.305 5.998 2000, 2011, 
2014 

Anne De Ligne, Tanguy Manise, Bernard 
Heinesch, Marc Aubinet, Caroline Vincke 
(1996-2014) FLUXNET2015 BE-Vie 
Vielsalm, 10.18140/FLX/1440130 

CA-Qfo ENF 49.693 -74.342 
2009, 2006, 

2007 

Hank A. Margolis (2003-
2010) FLUXNET2015 CA-Qfo Quebec - 
Eastern Boreal, Mature Black Spruce, 
10.18140/FLX/1440045 

CA-SF1 ENF 54.485 -105.818 2005, 2006 

Brian Amiro (2003-
2006) FLUXNET2015 CA-
SF1 Saskatchewan - Western Boreal, forest 
burned in 1977, 10.18140/FLX/1440046 

CA-SF2 ENF 54.254 -105.878 
2002, 2003, 

2004 

Brian Amiro (2001-
2005) FLUXNET2015 CA-
SF2 Saskatchewan - Western Boreal, forest 
burned in 1989, 10.18140/FLX/1440047 

CA-SF3 OSH 54.092 -106.005 2001, 2004 

Brian Amiro (2001-
2006) FLUXNET2015 CA-
SF3 Saskatchewan - Western Boreal, forest 
burned in 1998, 10.18140/FLX/1440048 

CH-Cha GRA 47.210 8.410 
2007, 2008, 
2011, 2012, 
2013, 2014 

Kathrin Fuchs, Lutz Merbold, Nina 
Buchmann, Werner Eugster, Matthias 
Zeeman, Lukas Hörtnagl (2005-
2014) FLUXNET2015 CH-Cha Chamau, 
10.18140/FLX/1440131 

CH-Dav ENF 46.815 9.856 

2007, 2008, 
2009, 2010, 
2011, 2012, 

2013 

Lukas Hörtnagl, Werner Eugster, Lutz 
Merbold, Nina Buchmann, Sophia Etzold, 
Rudolf Haesler, Matthias Haeni (1997-
2014) FLUXNET2015 CH-Dav Davos, 
10.18140/FLX/1440132 

CH-Fru GRA 47.116 8.538 

2006, 2007, 
2008, 2010, 
2011, 2012, 
2013, 2014 

Kathrin Fuchs, Lutz Merbold, Nina 
Buchmann, Werner Eugster, Matthias 
Zeeman, Lukas Hörtnagl (2005-
2014) FLUXNET2015 CH-Fru Früebüel , 
10.18140/FLX/1440133 

CN-HaM GRA 37.370 101.180 2002, 2003 

Yanhong Tang, Tomomichi Kato, Mingyuan 
Du (2002-2004) FLUXNET2015 CN-
HaM Haibei Alpine Tibet site, 
10.18140/FLX/1440190 

DE-Geb CRO 51.100 10.914 

2001, 2002, 
2004, 2005, 
2006, 2007, 
2009, 2010, 
2011, 2012, 
2013, 2014 

Christian Brümmer, Antje M. Lucas-Moffat, 
Mathias Herbst, Olaf Kolle (2001-
2014) FLUXNET2015 DE-Geb Gebesee, 
10.18140/FLX/1440146 

DE-Gri GRA 50.950 13.513 2009, 2010, 
2011, 2013 

Christian Bernhofer, Thomas Grünwald, Uta 
Moderow, Markus Hehn, Uwe Eichelmann, 
Heiko Prasse (2004-
2014) FLUXNET2015 DE-Gri Grillenburg, 
10.18140/FLX/1440147 

DE-Hai DBF 51.079 10.453 

2000, 2001, 
2002, 2004, 
2005, 2006, 
2007, 2008, 

2009 

Alexander Knohl, Frank Tiedemann, Olaf 
Kolle, Ernst-Detlef Schulze, Werner Kutsch, 
Mathias Herbst, Lukas Siebicke (2000-
2012) FLUXNET2015 DE-Hai Hainich, 
10.18140/FLX/1440148 

DE-Obe ENF 50.784 13.720 2011, 2013 
Christian Bernhofer, Thomas Grünwald, Uta 
Moderow, Markus Hehn, Uwe Eichelmann, 
Heiko Prasse (2008-
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Site ID Biome Latitude Longitude Data years Citation 
2014) FLUXNET2015 DE-
Obe Oberbärenburg, 10.18140/FLX/1440151 

DE-Seh CRO 50.871 6.450 2008, 2007 
Karl Schneider, Marius Schmidt (2007-
2010) FLUXNET2015 DE-Seh Selhausen, 
10.18140/FLX/1440217 

DE-Tha ENF 50.964 13.567 

2003, 2006, 
2007, 2008, 
2009, 2011, 
2012, 2013 

Christian Bernhofer, Thomas Grünwald, Uta 
Moderow, Markus Hehn, Uwe Eichelmann, 
Heiko Prasse (1996-
2014) FLUXNET2015 DE-Tha Tharandt, 
10.18140/FLX/1440152 

DK-Sor DBF 55.486 11.645 
2001, 2003, 
2004, 2014, 

2006 

Andreas Ibrom, Kim Pilegaard (1996-
2014) FLUXNET2015 DK-Sor Soroe, 
10.18140/FLX/1440155 

FI-Hyy ENF 61.848 24.295 

2003, 2005, 
2006, 2007, 
2008, 2010, 
2011, 2012, 

2013 

Ivan Mammarella, Petri Keronen, Pasi 
Kolari, Samuli Launiainen, Jukka Pumpanen, 
Üllar Rannik, Erkki Siivola, Janne Levula, 
Toivo Pohja, Timo Vesala (1996-
2014) FLUXNET2015 FI-Hyy Hyytiala, 
10.18140/FLX/1440158 

FI-Sod ENF 67.362 26.638 2008 

Mika Aurela, Juha-Pekka Tuovinen, Juha 
Hatakka, Annalea Lohila, Timo Mäkelä, 
Juuso Rainne, Tuomas Lauria (2001-
2014) FLUXNET2015 FI-Sod Sodankyla, 
10.18140/FLX/1440160 

FR-LBr ENF 44.717 -0.769 2005, 2007 
Paul Berbigier, Denis Loustau (1996-
2008) FLUXNET2015 FR-LBr Le Bray, 
10.18140/FLX/1440163 

IT-BCi CRO 40.524 14.957 2008 

Vincenzo Magliulo, Paul Di Tommasi, 
Daniela Famulari, Daniele Gasbarra, Luca 
Vitale, Antonio Manco (2004-
2014) FLUXNET2015 IT-BCi Borgo Cioffi, 
10.18140/FLX/1440166 

IT-CA1 DBF 42.380 12.027 2012 
Simone Sabbatini, Nicola Arriga, Dario 
Papale (2011-2014) FLUXNET2015 IT-
CA1 Castel d'Asso1, 10.18140/FLX/1440230 

IT-Col DBF 41.849 13.588 2012, 2013 
Giorgio Matteucci (1996-
2014) FLUXNET2015 IT-Col Collelongo, 
10.18140/FLX/1440167 

IT-Cpz EBF 41.705 12.376 2005, 2007 

Riccardo Valentini, Sabina Dore, Francesco 
Mazzenga, Simone Sabbatini, Paolo Stefani, 
Giampiero Tirone, Dario Papale (1997-
2009) FLUXNET2015 IT-
Cpz Castelporziano, 10.18140/FLX/1440168 

IT-Isp DBF 45.813 8.634 2013, 2014 

Carsten Gruening, Ignacio Goded, 
Alessandro Cescatti, Olga Pokorska (2013-
2014) FLUXNET2015 IT-Isp Ispra ABC-IS, 
10.18140/FLX/1440234 

IT-Lav ENF 45.956 11.281 2008, 2014 

Damiano Gianelle, Roberto Zampedri, 
Mauro Cavagna, Matteo Sottocornola (2003-
2014) FLUXNET2015 IT-Lav Lavarone, 
10.18140/FLX/1440169 

IT-MBo GRA 46.015 11.046 2005, 2006, 
2007 

Damiano Gianelle, Mauro Cavagna, Roberto 
Zampedri, Barbara Marcolla (2003-
2013) FLUXNET2015 IT-MBo Monte 
Bondone, 10.18140/FLX/1440170 

IT-Noe CSH 40.606 8.152 2004, 2005, 
2014 

Donatella Spano, Pierpaolo Duce, Serena 
Marras, Costantino Sirca, Angelo Arca, 
Pierpaolo Zara, Andrea Ventura (2004-
2014) FLUXNET2015 IT-Noe Arca di Noe - 
Le Prigionette, 10.18140/FLX/1440171 
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Site ID Biome Latitude Longitude Data years Citation 

IT-PT1 DBF 45.201 9.061 2002, 2004 
Alessandro Cescatti (2002-
2004) FLUXNET2015 IT-PT1 Parco Ticino 
forest, 10.18140/FLX/1440172 

IT-Ren ENF 46.587 11.434 2011 (1998-2013) FLUXNET2015 IT-Ren Renon, 

IT-Ro2 DBF 42.390 11.921 
2002, 2010, 
2006, 2007 

Dario Papale, Nicola Arriga, Luca Belelli, 
Claudia Consalvo, Sabina Dore, Giovanni 
Manca, Francesco Mazzenga, Simone 
Sabbatini, Paolo Stefani, Giampiero Tirone, 
Riccardo Valentini (2002-
2012) FLUXNET2015 IT-
Ro2 Roccarespampani 2, 
10.18140/FLX/1440175 

IT-SR2 ENF 43.732 10.291 2013, 2014 

Carsten Gruening, Ignacio Goded, 
Alessandro Cescatti, Olga Pokorska (2013-
2014) FLUXNET2015 IT-SR2 San Rossore 
2, 10.18140/FLX/1440236 

IT-SRo ENF 43.728 10.284 2003, 2007 

Carsten Gruening, Ignacio Goded, 
Alessandro Cescatti, Giovanni Manca, 
Guenther Seufert (1999-
2012) FLUXNET2015 IT-SRo San Rossore, 
10.18140/FLX/1440176 

IT-Tor GRA 45.844 7.578 2011, 2012 

Edoardo Cremonese, Marta Galvagno, 
Umberto Morra di Cella, Mirco Migliavacca 
(2008-2014) FLUXNET2015 IT-
Tor Torgnon, 10.18140/FLX/1440237 

NL-Loo ENF 52.167 5.744 

2003, 2004, 
2005, 2006, 
2007, 2009, 
2010, 2012 

Eddy Moors, Jan Elbers (1996-
2014) FLUXNET2015 NL-Loo Loobos, 
10.18140/FLX/1440178 

RU-Fyo ENF 56.462 32.922 2009, 2012 

Andrej Varlagin, Julia Kurbatova, Natalia 
Vygodskaya (1998-
2014) FLUXNET2015 RU-
Fyo Fyodorovskoye, 10.18140/FLX/1440183 

RU-Ha1 GRA 54.725 90.002 2003, 2004 
Luca Belelli, Dario Papale, Riccardo 
Valentini (2002-2004) FLUXNET2015 RU-
Ha1 Hakasia steppe, 10.18140/FLX/1440184 

SD-Dem SAV 13.283 30.478 2009 

Jonas Ardö, Bashir Awad El Tahir, Hatim 
Abdalla M. ElKhidir (2005-
2009) FLUXNET2015 SD-Dem Demokeya, 
10.18140/FLX/1440186 

US-AR1 GRA 36.427 -99.420 
2009, 2010, 

2011 

Dave Billesbach, James Bradford, Margaret 
Torn (2009-2012) FLUXNET2015 US-
AR1 ARM USDA UNL OSU Woodward 
Switchgrass 1, 10.18140/FLX/1440103 

US-AR2 GRA 36.636 -99.598 2010, 2011 

Dave Billesbach, James Bradford, Margaret 
Torn (2009-2012) FLUXNET2015 US-
AR2 ARM USDA UNL OSU Woodward 
Switchgrass 2, 10.18140/FLX/1440104 

US-ARb GRA 35.550 -98.040 2006 

Margaret Torn (2005-
2006) FLUXNET2015 US-ARb ARM 
Southern Great Plains burn site- Lamont, 
10.18140/FLX/1440064 

US-ARc GRA 35.547 -98.040 2005, 2006 

Margaret Torn (2005-
2006) FLUXNET2015 US-ARc ARM 
Southern Great Plains control site- Lamont, 
10.18140/FLX/1440065 

US-Blo ENF 38.895 -120.633 2000 
Allen Goldstein (1997-
2007) FLUXNET2015 US-Blo Blodgett 
Forest, 10.18140/FLX/1440068 

US-KS2 CSH 28.609 -80.672 
2004, 2005, 

2006 
Bert Drake, Ross Hinkle (2003-
2006) FLUXNET2015 US-KS2 Kennedy 
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Site ID Biome Latitude Longitude Data years Citation 
Space Center (scrub oak), 
10.18140/FLX/1440075 

US-Me2 ENF 44.452 -121.557 

2002, 2003, 
2004, 2005, 
2006, 2010, 
2011, 2012, 

2013 

Bev Law (2002-2014) FLUXNET2015 US-
Me2 Metolius mature ponderosa pine, 
10.18140/FLX/1440079 

US-MMS DBF 39.323 -86.413 
2005, 2007, 
2008, 2012, 
2013, 2014 

Kim Novick, Rich Phillips (1999-
2014) FLUXNET2015 US-MMS Morgan 
Monroe State Forest, 
10.18140/FLX/1440083 

US-NR1 ENF 40.033 -105.546 

2003, 2005, 
2006, 2007, 
2008, 2010, 
2011, 2012, 
2013, 2014 

Andrew A. Turnipseed, David R. Bowling, 
Peter D. Blanken, Russel K. Monson, Sean P. 
Burns (1998-2014) FLUXNET2015 US-
NR1 Niwot Ridge Forest (LTER NWT1), 
10.18140/FLX/1440087 

US-SRG GRA 31.789 -110.828 
2008, 2009, 
2011, 2012, 
2013, 2014 

Russell Scott (2008-
2014) FLUXNET2015 US-SRG Santa Rita 
Grassland, 10.18140/FLX/1440114 

US-SRM WSA 31.821 -110.866 

2004, 2005, 
2007, 2008, 
2009, 2010, 
2011, 2012, 

2014 

Russell Scott (2004-
2014) FLUXNET2015 US-SRM Santa Rita 
Mesquite, 10.18140/FLX/1440090 

US-Syv MF 46.242 -89.348 2002, 2003, 
2006 

Ankur Desai (2001-
2014) FLUXNET2015 US-Syv Sylvania 
Wilderness Area, 10.18140/FLX/1440091 

US-Ton WSA 38.432 -120.966 

2003, 2005, 
2006, 2009, 
2010, 2011, 

2013 

Dennis Baldocchi (2001-
2014) FLUXNET2015 US-Ton Tonzi Ranch, 
10.18140/FLX/1440092 

US-Var GRA 38.413 -120.951 2001, 2013, 
2005, 2009 

Dennis Baldocchi (2000-
2014) FLUXNET2015 US-Var Vaira Ranch- 
Ione, 10.18140/FLX/1440094 

US-WCr DBF 45.806 -90.080 

2000, 2001, 
2005, 2006, 
2011, 2012, 
2013, 2014 

Ankur Desai (1999-
2014) FLUXNET2015 US-WCr Willow 
Creek, 10.18140/FLX/1440095 

US-Whs OSH 31.744 -110.052 
2009, 2010, 
2011, 2013, 

2014 

Russ Scott (2007-2014) FLUXNET2015 US-
Whs Walnut Gulch Lucky Hills Shrub, 
10.18140/FLX/1440097 

US-Wkg GRA 31.737 -109.942 

2004, 2005, 
2006, 2007, 
2008, 2009, 
2010, 2011, 
2012, 2013, 

2014 

Russell Scott (2004-
2014) FLUXNET2015 US-Wkg Walnut 
Gulch Kendall Grasslands, 
10.18140/FLX/1440096 

CRO, cropland; GRA, grassland; OSH, open shrubland; CSH, closed shrubland; SAV, savanna; WSA, woody 
savanna; MF, mixed forest; DBF, deciduous broad leaf forest; EBF, evergreen broadleaf forest, ENF, evergreen 
need leaf forest. 
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5 General Conclusions 

Calibrating ecohydrological parameters is increasingly challenging as models become more structurally 

complex to match our understanding of earth system processes (Pitman, 2003). Satellites are now 

comparable to “flux towers in the sky” (Schimel et al., 2019) and provide opportunities to confront global 

hydrological observations to commonly used equations and parameterize them at the grid scale to reflect 

more realistic ecohydrological interactions. This dissertation developed methods to extract information 

encoded in soil moisture observations and estimate ecohydrological parameters that describe plant water 

use strategies. While it seems obvious that the variability of soil moisture reflects vegetation water use 

and patterns that were inferred in this study are not surprising, this work is important because it provides 

a framework that is simple enough to apply to satellite data and quantify ecosystem-scale variables that 

cannot be measured directly. Results are consistent with observed hydrological patterns and using 

different statistical approaches, but they are not exempt from problems of equifinality. Results have yet 

to be put to test in a more complex numerical model and evaluate if they can contribute to getting “the 

right answers for the rights reasons” (Kirchner, 2006).  
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