


AN ABSTRACT OF THE DISSERTATION OF

Lukman Irshad for the degree of Doctor of Philosophy inMechanical Engineering and Mechanical

Engineering presented on August 06, 2021.

Title: A Framework to Evaluate the Risk of Human- and Component-related Vulnerability

Interactions

Abstract approved:

H. Onan Demirel Irem Y. Tumer

Most accidents and malfunctions in complex engineered systems are attributed to human error.

However, a closer inspection would reveal that such mishaps often emerge as a result of poor design

and human- and component-related vulnerabilities acting together. To fully understand and mitigate

potential risks, the effects of such interactions between component and human fallibilities (in addition

to their independent effects) need to be considered early in the design process. Existing risk assessment

methods either quantify the risk of component failures or human errors in isolation or are only

applicable during later design stages. This work takes the view that the combined effects of human

errors and component failures are better understood when they are studied together. To this effect,

this research introduces an early design stage computational framework to model the system level

effects of component failures and human errors. Then, an automated fault scenario generation

technique and a severity quantification model are introduced to help designers generate a wide range

of potential fault scenarios (involving both humans and components) and prioritize them based on

severity. Next, the applicability of the framework to complex engineered systems and the accuracy

of scenario generation and severity quantification are explored. Finally, this research demonstrates

an application of the framework to promote risk-informed ergonomic assessments with the use of

digital human modeling simulations. The ultimate goal of this research is to help designers detect



the combined effects of human- and component-related vulnerabilities (in addition to their effects

in isolation) in complex engineered systems during early design stages to improve performance and

safety while minimizing the potentially costly design changes and rework later in the design stages.



©Copyright by Lukman Irshad
August 06, 2021

All Rights Reserved



A Framework to Evaluate the Risk of Human- and Component-related
Vulnerability Interactions

by

Lukman Irshad

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented August 06, 2021
Commencement June 2022



Doctor of Philosophy dissertation of Lukman Irshad presented on August 06, 2021.

APPROVED:

Co-Major Professor, representing Mechanical Engineering

Co-Major Professor, representing Mechanical Engineering

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my dissertation to any reader upon
request.

Lukman Irshad, Author



ACKNOWLEDGEMENTS

I have received a great deal of support and guidance throughout this journey. First, I would like to

express my gratitude to my advisors Dr. H. Onan Demirel and Dr. Irem Tumer. I am lucky to have

had the opportunity to work under your guidance and without your support, this would not have

been possible. Dr. Demirel, I am truly thankful for your constant supply of ideas and inspiration.

I cannot thank you enough for being constantly available and willing to discuss. Your support and

timely feedback have contributed to my growth as a researcher and professional. Dr. Tumer, you

have been an excellent mentor. You helped me keep the bigger picture and high-level goals in mind

as I progressed through my research. Your contribution to my personal and professional growth is

immeasurable.

I would like to thank my committee members Dr. Andy Dong, Dr. Chris Sanchez, and Dr. Judy

Liu, whose inputs have improved my dissertation. I am grateful for your time and feedback.

I would also like to express my sincere appreciation to my current and former colleagues at the

OSU Design Engineering Lab. Thank you, Salman, Daniel, Hannah, Nico, Katherine, Mihir, Arpan,

Kam, and Karina, for your friendship and help. Special thanks and credit to Salman and Daniel

for their contribution to my research. Salman helped with the conceptualization of the HEFFR

framework and provided expertise in digital human modeling. Daniel helped with formulating the

risk quantification model with his expertise in expected cost modeling.

Shout-out to my friends. I truly appreciate your motivation and support throughout this journey.

I love you all, and you are family.

Finally, I would like to thank my family, without whom none of this would have been possible. My

parents (Irshad and Mazahima), sister (Shimla), brother-in-law (Aslam), and brother (Arshath) have

continuously motivated and supported me throughout this journey. I am truly grateful “Momma,”

“Dedda,” “Dathi,” “Machan,” and “Arshath” for your sacrifices, unconditional love, and support.

Special mention to my nephews and nieces for lighting up my world. You are the best! I would also

like to thank my better half Nifla for being patient, supportive, a constant source of inspiration, and



a motivator. You are amazing, and your will, courage, and dedication inspired me to be focused and

work harder. I appreciate all that you have done for me. Last but not least, I am grateful to my two

precious daughters, Inara and Iqra, for being a constant source of joy and reminding me of what’s

important in life.

I sincerely thank you all for what you have done for me and your contribution to this journey.



CONTRIBUTION OF AUTHORS

All research in this dissertation was conducted with the guidance of Dr. Irem Tumer and Dr. Onan

Demirel. In addition, Dr. Guillaume Brat contributed with the conceptualization of the research

presented in sections 3.4. In section 4.5, Dr. David C. Jensen contributed with the conceptualization,

revision, and feedback. Salman Ahmed helped with the conceptualization of the fault prediction

model of the HEFFR framework in section 3.2. In section 5.5, Salman Ahmed developed the CAD

models and provided expertise in digital human modeling. In section 4.5, Daniel Hulse helped

develop the fault severity quantification model, produced several figures, and helped write some of

the results and discussions. This dissertation was largely compiled from published work, where they

were adapted to fit the dissertation structure and revised for flow. All co-authors and publications

are acknowledged in the corresponding chapters.



TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Research Objective 1: Assessing the Effects of Human Errors and Component

Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Research Objective 2: Identifying Worst-case Fault Scenarios . . . . . . . . 5
1.2.3 Research Objective 3: Evaluating the Performance of the Framework . . . . 7

1.3 Broader Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11

2.1 Human Reliability Assessment Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Component Failure Assessment Methods . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Other Risk Assessment Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Digital Human Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Assessing the Effects of Human Errors and Component Failures 20

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Functional Failure Identification and Propagation Framework . . . . . . . . 23

3.3 A Framework to Model Human Errors and Component Failures in Combination . . . 24
3.3.1 Human Error and Functional Failure Reasoning Framework . . . . . . . . . 25
3.3.2 Example: Hold-Up Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Validating the Failure Prediction Framework . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 Case Study: Air France 447 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Identifying Worst-case Fault Scenarios 56

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



TABLE OF CONTENTS (Continued)
Page

4.2.1 Automated Scenario Generation for Complex Engineered Systems Design and
Failure Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Automated Scenario Generation in Software Engineering . . . . . . . . . . . 61
4.2.3 Probability of Failure in Risk Assessment . . . . . . . . . . . . . . . . . . . 64
4.2.4 Severity in Risk Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Proof of Concept Example: Hold-Up Tank . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Automated Fault Scenario Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Quantifying Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Evaluating the Performance of the Framework 100

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.1 Modularity in Engineering Design . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Applicability to Complex Engineered Systems . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2 Case Study: Diesel-Electric Locomotive . . . . . . . . . . . . . . . . . . . . 111
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Validating the HEFFR Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 Applying the HEFFR Framework to Perform Risk-informed Ergonomic Assessments . 133
5.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.5.2 Case Study: Train Locomotive Design . . . . . . . . . . . . . . . . . . . . . 135
5.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



TABLE OF CONTENTS (Continued)
Page

6 Conclusions 142

6.1 Contributions and Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Appendices 171



LIST OF FIGURES
Figure Page

1.1 Research outcomes: a risk assessment framework to assess human errors and compo-
nent failures in combination and a risk-informed early design stage ergonomic assess-
ment approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 The architecture of Human Error and Functional Failure Reasoning (HEFFR) frame-
work (area highlighted by dotted lines indicate modules from FFIP) . . . . . . . . . 25

3.2 Generic Action Sequence Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 System model of a hold up tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Action simulation step 1 for actions Reach and Grasp . . . . . . . . . . . . . . . . . 32

3.5 Action simulation step 2 for outlet valve . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 HEFFR simulation scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Reach envelope of a 5th percentile U.S. female . . . . . . . . . . . . . . . . . . . . . 36

3.8 DHM vision analysis showing the obscuration zone (left) and reach analysis showing
that the valve is accessible (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 Partial Functional Model and Configuration Flow Graph of the subsystems that played
a critical role in the Air France 447 crash . . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 Action Sequence Graphs for the control stick and the throttle lever . . . . . . . . . . 46

3.11 Results of Human Error and Functional Failure Reasoning framework for the execution
of scenario 1 (Air France 447) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Primary Flight Display (PFD) during the stall, stabilization, and stable stages of
X-plane flight simulation for the first scenario . . . . . . . . . . . . . . . . . . . . . . 52

4.1 An example of an application of the transition function . . . . . . . . . . . . . . . . 68

4.2 A high level flowchart of the automated scenario generation approach . . . . . . . . 71

4.3 The percentage of action classification combinations with each human induced behavior 74

4.4 The percentage of total event scenarios with each type of faulty behavior mode . . . 76

4.5 Cost groups of fault scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



LIST OF FIGURES (Continued)
Figure Page

4.6 Expected cost of behavior modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7 Maximum probability reduction from human action combination elimination . . . . 92

4.8 The number of faulty action states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.9 Average sensitivity indexes for variable groups . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Generic module representation from the HEFFR system model . . . . . . . . . . . . 106

5.2 The functional model (White) and configuration flow graph (Green) of the train
locomotive subsystems with module partitioning . . . . . . . . . . . . . . . . . . . . 111

5.3 Train module behavior cumulative expected cost and average module failure expected
cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 The cumulative expected cost of behaviors of components in module 1A: integral
assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Expected cost of failures and likelihood of occurrence for the train accident scenarios
with their ranking percentiles when compared to rest of the scenarios generated by
the HEFFR framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6 The cumulative expected cost of behaviors of modules with the fault behavior modes
that were present in most train accidents highlighted in red . . . . . . . . . . . . . . 128

5.7 Workflow of Performing Risk Informed Ergonomic Assessments Using the HEFFR
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.8 The percentage of human action combinations with faulty human action states that
result in the highest ranked human induced behavior . . . . . . . . . . . . . . . . . . 137

5.9 Reach postures and vision obcuration zones (only for while reaching the throttle lever
of the 95th percentile U.S. Male when reaching the throttle lever and brake valve . . 138



LIST OF TABLES
Table Page

3.1 Action classifications for a valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Behavior modes of a valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Possible outcomes for actions performed on a valve . . . . . . . . . . . . . . . . . . . 31

3.4 Action classifications for the actions represented in the Action Sequence Graphs . . . 47

4.1 Comparison between risk assessment methods with automated scenario generation
and the proposed automated scenario generation method in this research . . . . . . . 61

4.2 Functions, corresponding generic components, and their behavior modes . . . . . . . 66

4.3 HEFFR sample result: Fault scenario input and resulting functional failures . . . . . 81

4.4 HEFFR sample result: Human action classification combinations and resulting human
induced behaviors of component 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Actions and action classifications from the action sequence graphs for the throttle
lever and brake valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Selected functions, corresponding components, and behavior modes at component-
and modular-level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Component rankings based on expected cost of component failure: integral vs. modular
assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Component rankings based on expected cost of component failure: modular vs. mod-
ular assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Train modules and module behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6 Example train accidents in the HEFFR fault scenario format . . . . . . . . . . . . . 122

5.7 HEFFR accident scenario ranking based on severity and minimum and maximum
expected costs of scenarios with the same end state as the accident scenario . . . . . 125

5.8 Comparing the capabilities and limitations of existing risk assessment methods with
the capabilities and limitations of the HEFFR framework . . . . . . . . . . . . . . . 130



In dedication to my parents, Mazahima and Irshad, who inspired me to be modest, stay focused, and

aim high



Chapter 1: Introduction

This research aims to formulate a computational framework to assess the potential risk of component

failures and human errors acting alone and in tandem during early design stages. Also, it explores the

use of digital human modeling tools with the risk assessment framework as a means to visualize human-

product interactions and inform ergonomic assessments without the necessity for detailed design

and physical prototypes. The resulting framework will enable designers to consider human factors

starting from early design stages to make better design decisions to minimize system vulnerabilities

and improve system performance and safety. In summary, the computational framework introduced

in this research can be used to design complex engineered systems that are less likely to have latent

or catastrophic failures while minimizing cost and time-to-market.

1.1 Motivation

Let us consider the Boeing 737 Max saga. A malfunction in the angle of attack sensor and the

subsequent activation of the Maneuvering Characteristics Augmentation System (MCAS), a flight

control software designed to prevent a stall, were identified as the cause of the failure [1]. However, it

took two crashes (Lion Air Flight JT610 and Ethiopian Airlines Flight ET302) with 347 fatalities [2,

3] for Boeing to stop blaming human error and admit the design flaw [1]. Subsequently, the Boeing

737 Max was grounded worldwide [4]. The grounding was expected to last a few months until Boeing

fixed the problems with the MCAS system. However, it lasted for almost two years because Boeing

and FAA kept finding more and more vulnerabilities [4]. The whole debacle is expected to cost

Boeing around USD 20 billion in direct costs and more than USD 60 billion in indirect costs [5].

Boeing updated its 737NG to create the 737 Max family [1]. The 737 Max was fixed with a larger

engine than the 737NG, causing aerodynamic issues [1]. Boeing tried to solve this hardware issue with
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a software fix, the MCAS system [1]. As Captain Sullenberger, who crashlanded an Airbus A320 in the

Hudson river put it in his congressional testimony, “...Though MCAS was intended to enhance aircraft

handling, it had the potential to have the opposite effect...it was a trap that was set inadvertently

during the aircraft design phase that would turn out to have deadly consequences...the original version

of MCAS was fatally flawed and should never have been approved [6]." He further discussed the

nature of failures by adding “...with older aircraft designs, there were mostly stand-alone devices, in

which a fault or failure was limited to a single device that could quickly be determined to be faulty

and the fault remain isolated. But with integrated cockpits and data being shared and used by many

devices, a single fault or failure can now have rapidly cascading effects through multiple systems...We

need to proactively find flaws and risks and mitigate them before they lead to harm....Each aircraft

manufacturer must have a comprehensive safety risk assessment system that can review an entire

aircraft design holistically, looking for risks, not only singly, but in combination [6],"

Captain Sullenberger’s assessment of the nature of failures in modern aircraft is applicable to any

complex engineered system. Like in the Boeing 737 Max crash, human errors are blamed as one of

the leading causes of failures in complex engineered systems [7, 8]. Over the past decades, human

error related incidents have decreased at a slower rate when compared to incidents attributed to

other failures [9]. As a result, around 60%-90% of accidents and performance losses are attributed

to human error in aviation, offshore drilling, and nuclear power industries [10–12]. As in the Boeing

737 Max crashes, when mishaps occur, they can be costly and fatal and have lasting effects on the

societies, economies, and environment. The partial nuclear meltdown in Three Mile Island, reactor

explosion in Chernobyl, and gas leak in Bhopal, India, are all evidence of the heavy toll such human

error caused mishaps can have [13]. For example, the Bhopal gas leak caused 3,800 immediate deaths,

600,000 injuries, and another 6,000 casualties since the accident [14]. The surrounding soil and water

were found to be contaminated even 20 years since the accident [14]. If one examines these human

error caused failures further, it becomes clear that complex interactions between a combination of

factors such as human errors, component malfunctions, and poor design trigger these failures [15,

16], where the last link, human (in the form of operators, maintainers, or end users), get blamed.
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Hence, to be able to effectively mitigate potential failures, it is important to assess the risk of

human and component fallibilities acting in combination during the design process. Design changes

made at late design stages are costly and time-consuming [17]. Hence, when potential risks are

identified late in the design stage designers are forced to retrofit changes or find workarounds. Often,

these changes add new vulnerabilities into the system [18]. For example, in the case of the Boeing

737 Max, the issue caused by the new engine was found later in the design. The MCAS system was

built as a workaround to this issue, which introduced new vulnerabilities into the system. Boeing

was aware of the vulnerabilities with the MCAS system, and was reluctant to heed to these warnings

because of the financial and time pressure [1]. Thus, it is important to identify potential risks early

on in the design process so that the potential for design changes later in the design stages can

be minimized. However, traditional risk assessment methods assess component failures or human

errors in isolation, are only relevant during later design stages, or are applicable to the management

of organizations than the design of product interactions. This research aims to overcome these

limitations of existing risk assessment methods by formulating an early design stage framework that

can assess the risk of electro-mechanical failures and human errors acting in isolation and tandem.

Assessing the risk of human errors and component failures will only allow designers to understand

their effects on the system. To fully mitigate risk, one needs to also minimize the ergonomic

vulnerabilities embedded within the system because they can negatively affect safety and trigger

errors. However, the human interaction and use aspects are often only partially considered or do not

receive adequate attention when compared to other product development activities (e.g., operations

research, logistics) [19–21]. Traditionally, they are considered later in the design stage with reliance on

significant system operational data, which often requires full-scale physical prototypes and extensive

human subject data collection [19, 21, 22]. This research aims to overcome this shortcoming by

exploring an application of the risk assessment framework by coupling risk assessment with digital

human modeling tools to perform ergonomic assessments early in the design process without the need

for detailed designs and physical prototypes. In summary, the goal of this research is to formulate a

computational framework that can aid designers to mitigate potential failures by allowing them to
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better understand the system-level impacts of component failures and human errors acting alone and

in combination during early design stages. This research also aims to enable designers to perform

ergonomic assessments earlier in design (during early embodiment).

1.2 Research Objectives and Contributions

To realize the above goals, this research pursues three objectives.

• Research Objective 1 aims to formulate an early design stage fault prediction framework that

can assess the combined effects of human errors and component failures acting in tandem.

• Research Objective 2 derives a fault scenario generation and prioritization approach to allow

designers to identify worst-case fault scenarios based on their perceived severity.

• Research Objective 3 validates the performance of the framework resulting from Research

Objectives 1 and 2, and explores an application of the framework to perform risk-informed

ergonomic assessments during early design stages.

The following sub sections discuss the expected outcomes, challenges, and contributions of each

objective.

1.2.1 Research Objective 1: Assessing the Effects of Human Errors and

Component Failures

Research Objective (RO) 1 aims to formulate a computational framework to predict the propagation

paths of human errors and component failures during early design stages. To predict the system-

level effects of human errors and component failures acting in combination, they both need to be

evaluated in parallel. While the parallel evaluation by itself can be a challenge, their reliance on

system representations makes the failure prediction even more challenging during early design stages.

To accurately facilitate the prediction of the combined effects of human errors and component failures,
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the system representation needs to include both product- and human-related data and also capture

the relationship between them. Creating a system model with such details can be challenging during

the early design stages. Often, detailed models of system components and parameters are not

available early in design. Instead, intended system functions are available in the form of functional

models. Hence, researchers have used functional models to represent product data during early

design stages. However, with the minimal human-product interaction data available during early

design stages, representing human-product interactions accurately enough to sustain accurate error

prediction remains a challenge.

This research introduces the human aspects of the system to an existing functional model-based

fault modeling approach, Functional Failure Identification and Propagation (FFIP) [23, 24], to

tackle the above challenges. While FFIP can model the propagation paths of component failures, it

cannot capture human error propagation with enough details. This work introduces a graph-based

representation of human actions to the overall system representation. A simulation method to model

human behaviors in parallel to the component behaviors is developed to predict the propagation

paths when fault conditions involving component failures, human errors, or both are injected into the

framework. Designers will be able to predict the system-level effects of component failures, human

errors, or both using this novel computational fault prediction framework. Since the framework is

an early design stage fault prediction tool, designers will be able to use it to understand potential

risks early on, and design systems to effectively mitigate potential risks. As a result, the number of

costly time-consuming design changes needed later in the design process will be minimized.

1.2.2 Research Objective 2: Identifying Worst-case Fault Scenarios

RO 2 introduces a method to automatically generate potential fault conditions to be assessed using

the framework in RO 1 and study how they can be prioritized based on their severity. The framework

from RO 1 requires the designers to come up with potential fault scenarios involving both components

and humans to assess their system-level effects. Engineers will have to come up with a broad range of
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fault scenarios to understand and mitigate potential risks fully. Coming up with such a variety of fault

scenarios is challenging or impossible for engineers, which motivates the second RO. Automatically

generating fault scenarios that can uncover a majority of potential faults involving humans and

components can be a challenge. It becomes even more challenging when those scenarios need to be

generated with the minimal information that is present during the early design stages. Even when

such scenarios are generated, they need to be successfully prioritized to inform designers about the

various levels of risk they can pose. The main challenge in prioritizing fault scenarios early in design

is that it needs to be accurate enough to aid informed design decisions while requiring minimal input

data. System-designs can change rapidly and multiple candidate designs can be present early in the

design process. Therefore, the scenario generation and prioritization setup should be simple enough

to allow designers to easily compare and contrast designs, and adapt new system models as potential

designs evolve.

To approach these challenges, this research adopts a tree search algorithm to automatically

generate a majority of potential critical event scenarios involving both components and humans. Then,

a cost and probability model is developed to quantify the relative impact (and thus priority) of critical

event scenarios. To calculate the likelihood of the occurrence of critical events, both component failure

and human error probabilities are considered, using traditional reliability engineering principles to

estimate component failure probabilities and the Human Error Assessment and Reduction Technique

(HEART) [25] to estimate human error probabilities. To quantify the relative importance and

priority of failures, this research adapts the expected cost of resilience metric developed by Hulse

et al. in [26]. Using this approach, designers will be able to identify worst-case scenarios and use

failure costs in design trade studies to motivate design. They can also use the resulting information

to identify critical points of human intervention and motivate the design of the physical system (e.g.,

components), electronic system (e.g., control logic and interfaces), and human system (e.g., best

practices and training materials).
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1.2.3 Research Objective 3: Evaluating the Performance of the Frame-

work

RO 3 aims to evaluate the performance of the framework resulting from RO 1 and 2 by applying it

to a complex problem and validating it against real world failures. As with any new fault modeling

framework, the framework resulting from this research needs to be validated to understand its

capabilities and limitations. Specifically, the framework needs to be analyzed to understand its

ability to predict and prioritize failures accurately. If the framework is not capable of generating

the worst case fault scenarios or predicting the severity of them with reasonable accuracy, further

studies need to be performed to explore the characteristics that make it a useful tool and the areas

that need further refinement. The main challenge in performing a comparison study is in choosing

the complex engineered system that the framework will be applied on. The system needs to have

enough complexity to be able to capture the intricacies of the framework while not being overly

complex to a point where modeling becomes infeasible. Another challenge is in identifying real world

failures to compare the results against. For the system that is chosen, the historic failure data need

to be well documented to make sure that the comparison study is accurate. In summary, a complex

engineered system that encompasses enough complexity to allow for realistic modeling while having

well documented historic failure data needs to be chosen for this study.

To approach these challenges, a railway locomotive design problem is chosen. The reason for

choosing a train locomotive is because it can be modeled in a way that is generic so most railway

accidents (regardless of the differences in the train models) can be used in the validation study. The

application of the risk assessment framework to complex engineered systems is demonstrated by

taking a modular analysis approach. Then, the modular analysis approach is validated against the

integral approach to show that the framework can yield consistent results regardless of the analysis

being performed modularly or integrally. The results from the train locomotive design is compared

against real word train accidents to understand if the framework is able to generate and prioritize

the faults that lead to the train accidents accurately. Data for all severe train accidents since the
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year 2005 are extracted from the accident investigation databases of National Transportation Safety

Board (NTSB) and European Railway Accident Investigation Links (ERAIL) for the comparison

study. In summary, this study will help define the effectiveness of the proposed work. Rather than

blindly applying the fault modeling method designers will be able to use the proposed work where it

appropriately fits and use more caution with regards to its limitations.

In addition to validating the risk assessment framework, this research also demonstrates an

application of the framework to inform risk-based ergonomic assessments during early design stages.

Complex engineered systems have a large number of potential human-product interactions that

require ergonomic assessments. Generally, experts use task analysis to identify the specific ergonomic

assessments that need to be performed. This is usually done during late design stages when detailed

design data are available. During the early design stages, when minimal product details are available,

it might be challenging for experts to identify and prioritize the types of ergonomic assessment needed

for a complex engineered system design because of the high uncertainties present. We demonstrate

how the risk assessment framework introduced in this research can be used to identify and prioritize

the needed ergonomic assessments based on their potential risk. We couple the risk assessment

framework with digital human modeling to visualize human product interactions and perform risk-

informed ergonomic assessments earlier in the design process without relying on detailed design data

and physical prototypes.

On the whole, as shown in fig. 1.1, this research introduces a risk assessment framework that can

generate fault scenarios involving humans and components, predict their system-level propagation,

and quantify the resulting failures. In addition, a risk-informed digital human modeling based

ergonomic assessment approach is explored as an application of the risk assessment framework

introduced in this research.
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Figure 1.1: Research outcomes: a risk assessment framework to assess human errors and component
failures in combination and a risk-informed early design stage ergonomic assessment approach

1.3 Broader Impacts

This project has introduced a framework that not only allows the identification of potential human

errors, component failures, and their propagation paths, but also allows designers to identify worse

case scenarios, visualize human product interactions, and prioritize ergonomic assessments based on

risk, all early in the design process. By making human product interactions digitally available along

with the failure data, the framework allows designers to more deeply understand the underlying

failure causes and make better-informed decisions early in design. Moreover, the automated scenario

generation and prioritization allows designers to perform comprehensive risk assessments that take

into account a majority of fault conditions, resulting in systems that are less prone to failures. Also,
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by combining the risk assessment relating to humans and components, this framework can act as a

merger between two domains (human factors and reliability engineering) within design teams, which

will minimize the chances of making trade-offs between the conflicting design decisions made by

experts from the different fields.

In addition to the impacts to the field of risk-based design, this research can have an impact on

the societies, industries, and environments complex engineered systems operate on. The immediate

advantage to society is in the improved performance and safety of products. For the industry, the

advantages will be reduced cost and time to market. Furthermore, product recalls due to unforeseen

faults can be minimized. In the long term, it can reduce worker injuries and fatalities, reduce the

destruction caused to the environment from accidents and performance losses, and minimize asset

loss and compensations.

The remaining chapters are organized as follows. Chapter 2 discusses the background that formed

the basis for this research. Chapters 3-5 address one research question each. Finally, Chapter 6

summarizes the conclusions of this research and explores future research avenues.
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Chapter 2: Background

Traditionally, risk assessments are performed as part of probabilistic risk assessments or safety

assessments [27, 28]. Usually, these assessments are performed to understand the human- or machine-

related vulnerabilities in isolation by experts from the respective fields. In contrast to this traditional

approach, this research takes the view that vulnerabilities in complex engineered systems are better

understood when human- and machine-related fallibilities are studied together, making the risk

analysis of human-machine interactions a combined effort (by human factors and risk and reliability

engineers) rather than an isolated effort. In this chapter, we form the background for this research

by exploring existing risk assessment methods. The risk assessment methods are categorized into

three: human reliability assessment techniques, component failure assessment techniques, and other

risk assessment techniques. The human reliability assessment method are methods that were created

to primarily assess human fallibilities. Component failure assessment methods are methods that

primarily analyze component failures. The risk assessment methods that do not fall into the human

reliability assessment methods and component failure assessment methods categories are detailed

under the other risk assessment methods category.

An application of this research demonstrates risk-based digital human modeling approach to

enable designers visualize and analyze ergonomic vulnerabilities early in the design stages. This

chapter also examines past literature on digital human modeling to study its applicability to design.

2.1 Human Reliability Assessment Methods

Human Reliability Assessment (HRA) is the application of human characteristics and behavior

information to design objects, facilities, and environments that require human interactions [29].

HRA is applied in a vast array of domains starting from high-risk industries such as aerospace and
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aviation, automobile, and shipping to relatively lower risk industries such as telecommunication,

software design, and manual tasks like lathe operation [29]. The goal of HRA is to assess the risk

attributed to human error so that human/system vulnerabilities can be reduced to improve safety

and reliability [30, 31]. To achieve this goal, HRA relies on identifying human errors, quantifying

how likely those errors are prone to occur, and reducing their likelihood of occurrence [30, 32]. As

Stanton and Stevenage put it [33], most HRA techniques start with a step by step task break down

(hierarchical task analysis, cognitive task analysis, etc.). Then, the potential errors at each step

and the psychological error mechanism that causes them are identified. Finally, recovery or error

reduction pathways are specified.

Early HRA methods such as Technique for Human Error Rate Prediction (THERP) [34], Human

Cognitive Reliability (HCR) [35] and Systematic Human Error Reduction and Prediction Approach

(SHERPA) [36] only consider errors of omission and commission giving minimal attention to perfor-

mance shaping factors (e.g., organizational factors, environmental factors, etc.). On the other hand,

methods like Human Error Assessment and Reduction Technique (HEART) [25], Success Likelihood

Index Method (SLIM) [37], Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-

H) [38], A Technique for Human Error Analysis (ATHEANA) [39], Cognitive Reliability and Error

Analysis Method (CREAM) [40], and MERMOS [41, 42] take performance shaping factors into con-

sideration when analyzing the risk of human errors. Among the above methods, HCR, ATHEANA,

CREAM, and MERMOS focus more on the cognitive aspects and the determining factors that lead

to an unsafe environment.

Since the inception of the above methods various upgrades and modifications have been proposed.

For instance, researches have proposed updates to the HEART method to tailor generic human error

probabilities and the performance shaping factors (or error producing conditions) to a variety of

industries such as aviation [43], nuclear power [44], railway [45], and maritime [46]. Others have

proposed modifications to minimize the subjectivity or reliance on expert judgments in HEART by

integrating fuzzy-based methods with HEART [47–49]. Similarly, researchers have also introduced

modifications to the SLIM method to minimize the subjectivity that results from the reliance on
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expert opinions. For example, Tu, Lin, and Lin [50] proposed combining the SLIM method with

Bayesian method to reduce the subjectivity in human error probability calculation [50]. Zhou

and Lei [51] integrated the SLIM method with empirical study and complex networks to take

into account the interdependence between performance shaping factors when calculating human

error probability [51]. Improvements to the CREAM method has looked into tailoring it to specific

industries (e.g., aviation [52], maritime [53], spaceflight [54]) and improving the probability calculation

model (e.g., better assignment of weights to the performance shaping factors using a Evidential

Reasoning (ER) approach [55], minimizing subjectivity using fuzzy-based methods [56]). All of the

HRA methods and the modifications that are discussed above require high fidelity task models and

detailed component models, narrowing their application to later design stages.

Past research has also introduced HRA methods to be used in early design stages. Examples of

early design stage HRA methods include the Technique for Human Error Assessment (THEA) [57],

Technique for Early Consideration of Human Reliability (TECHR) [58], and Early Model-based

HRA (eMHRA) [59]. THEA uses functional representations instead of component models and usage

scenarios instead to task models to enable the early design stage HRA. TECHR was developed

with the intention enabling the quantification of human error probability with minimal data require-

ments. The usage of empherical data, human action models, and human error taxonomies allows

this method to be applied during early design stages. The eMHRA method was developed to be

used earlier in the PRA in tandem with component failure assessments and emergency operating

procedures development. PRA usually requires detailed component models. Hence, this method is

more applicable during early late design stages than the actual early design stages.

All of the HRA methods above are static, meaning they only provide insight into a snapshot

in time. Recent research has attempted to overcome this limitation by introducing dynamic HRA

methods, allowing HRA models to be included into human performance modeling simulations. Some

researchers have used simulation and modeling as basis for dynamic HRA. For example, Angelopoulou,

Mykoniatis, and Boyapati [60] proposed a HRA method for Industry 4.0 that uses modeling and

simulation of dynamic systems to assess human errors when human performs tasks [60]. Other
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methods expand upon static HRA methods to enable the dynamic assessment. For instance, Zhang

et al. [61] introduced an approach that combined Predicted Mean Vote method and CREAM to

analyze mission reliability in dynamic environments [61]. Another CREAM-based dynamic HRA

method combines Bayesian network and fuzzy hierarchical task analysis with CREAM to model

and quantify human errors in emergency situations [62]. Person Specific Human Error Estimation

(PSPHERE) [63] combines the knowledge from existing HRA methods with continuous time Markov

chains to assess human error probability in dynamic environments. All of the above dynamic HRA

methods require detailed system models and task models, making them only applicable during late

design stages. The HRA methods discussed in this section are inadequate in terms of their ability

to assess the combined effects of human errors and component failures because they give minimum

attention to component failures. In summary, the human reliability methods assess human errors

alone. As a result, they are not capable of analyzing the risk of human errors and component failures

interacting.

2.2 Component Failure Assessment Methods

Component failure assessment methods aim to analyze the risk of component failures and help de-

signers prevent them. Traditionally, the failure assessments are performed as part of the probabilistic

risk assessment of the system under design during later design stages. However, the emergence of risk-

and resiliency-based design has resulted in designers performing component failure analysis outside

of the probabilistic risk assessment process, especially during early design stages. The ultimate goal

of performing component failure assessments is to identify the potential risk of failures early on and

design preventive measures into the system so that the potential for catastrophic failures during the

use of the system is minimized.

Failure Mode and Effects Analysis (FMEA), Fault Tree Analysis (FTA), and Event Tree Analysis

(ETA) are some of the most widely used component failure assessment methods. FMEA [64] sys-

tematically decomposes a system into subsystems and then into individual components to determine
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failure modes and their effects at a component level and system level. FTA [65], on the other hand,

uses a predetermined undesired event to build a graphical model (fault tree) of various parallel and

sequential combinations of faults to determine all possible ways that would result in the specified

event. Event Tree Analysis (ETA) [66] uses a failure event and creates paths of possible success

or failure outcomes to come up with failure propagation paths. In addition, FMEA, FTA, and

ETA are used as HRA techniques by human factors experts by switching the context to human

errors [29]. However, they are not capable of capturing the combined effects of human errors and

component failures acting in combination. Also, these methods are not optimal to be used at the

conceptual stage since they require detailed system/component models. They also heavily rely on

expert knowledge and historical data, which makes them highly subjective methods.

Researchers have proposed extensions to FMEA, FTA, and ETA with the goal of overcoming

some of their limitations. For example, extensions to FMEA aim to minimize the subjectivity

and uncertainties in the risk priority number calculations using fuzzy theory [67–69] and multi

criteria decision making [70–72]. Extensions to FTA have aimed to manage uncertainty (e.g., using

fuzzy theory [73, 74] and enable dynamic modeling (e.g., using Markov chains [75], binary decision

diagrams [76], and Petri nets [77]). Similar to FTA, researchers have proposed extensions to ETA

with the goal of considering uncertainties (e.g., using fuzzy theory [78, 79] and enabling time-based

modeling [80]. Other late design stage component failure assessment methods include bow-tie

diagrams and Reliability Block Diagrams (RBD). Bow-tie diagrams [81] combine FTA and ETA to

allow the assessment of the causes and consequences of failures. RBD [82], on the other hand, uses

a graphical representation of the system where blocks represent components. RBD calculates the

system reliability based on how the components are connected (series or parallel).

As an effort to move failure and risk assessment to early design stages, researchers have developed

methods that use function-based system models instead of component-based models. Functional

Failure Design Method (FFDM) [83], for instance, uses a matrix-based approach to link system

functions to potential failures before any component selections are made. Lough, Stone, and Tumer

[84] expanded FFDM to quantify the likelihood of failures and risk with a goal of giving designers a
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quantitative measure of potential functional failures and their effects during early design stages [84].

Conceptual Stress and Conceptual Strength Interference Theory (CSCSIT) [85] was developed with

the goal of enabling the use of Stress and Strength Interference Theory for reliability assessment

during early design stages. It uses conceptual strength coefficients, conceptual stress coefficients, and

conceptual failure analysis to come up with failure probability of function failures.

Functional Failure Identification and Propagation (FFIP), Conceptual Object-Based Risk Analy-

sis (COBRA), and the function-based failure propagation method go a step further and allow the

designers to analyze the downstream effects of failures. FFIP [23] uses a graph-based system repre-

sentation that includes a system functions, generic components, and behavior models to analyze the

functional failures and their propagation paths. COBRA [86] converts the functional representation

of the systems to a mathematical model and identifies potential failures and failure flow paths. The

function-based failure propagation method [87], on the other hand, analyzes chains of functions to

provide the likelihood of a failure propagating to a function and the possibility of any function prop-

agating a failure based on historical failure data. Recent research has explored the use of Bayesian

networks for early design stage failure assessments. For example, Goswami and Tiwari [88] proposed

a risk assessment methods for modular complex systems where both technical and commercial risk

parameters are represented through parent and root nodes in a Bayesian network. Yodo and Wang

[89] proposed a method where potential failures are considered as internal and external disruptions

and represented as root nodes in the Bayesian network.

With complex engineered systems becoming more and more software intensive, recent research has

looked into risk assessment methods that assess failures in such software driven complex engineered

systems. Researchers have used FFIP as a tool to model failures in such software driven complex

engineered systems [90–92]. Others have used Markov chains [93, 94] and environmental modeling [95–

97] based methods to assess such failures. These methods are capable of assessing hardware, software,

and hardware-software interaction failures. In brief, the component failure assessment methods either

require detailed models and hence, are only applicable during later design stages or give minimal

attention to human elements of the system.
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2.3 Other Risk Assessment Methods

There are risk assessment methods that do not fall into the category of component failure assessment

methods or human reliability assessment methods. For example, systemic risk assessment techniques

look into system-level vulnerabilities in sociotechnical systems rather than looking into human error

or component failures specifically. These techniques also consider organizational vulnerabilities and

their effects. Systems Theoretic Accident Model and Process (STAMP) [98], Functional Resonance

Analysis Method (FRAM) [99], and modified Event Analysis of Systemic Teamwork (EAST) [100]

are examples of systemic risk assessment methods. Originally, STAMP and FRAM were developed

as accident analysis techniques. Experts have used them as risk assessment tools during system

design (e.g., STAMP [101–103], FRAM [104–106]). STAMP [98] uses system and control theory

to identify potential system vulnerabilities where failures are seen as an emergent property of the

systems. Specifically, it views accidents as violations of safety constraints relating to behaviors

FRAM [99], on the other hand, is a function representation based method that uses combinations

of normal performance variability to identify potential vulnerabilities. Stanton and Harvey [100]

proposed a modification to the EAST method to enable the use of it to assess the risk of sociotechnical

systems [100]. This approach represents the system as networks of networks and assesses failures in

information commutation through broken-links. These methods are based on a high-level organiza-

tional system model; thus, are more applicable to the organizational level rather than the design of

human product interactions.

More recently, researchers have introduced methods that are meant to capture human-product

interaction related failures during early design stages. One such method combines the results from

FFDM and SHERPA to understand both component failures and human error[107]. Function Human

Error Design Method (FHEDM)[108] is inspired from FFDM. It uses a series of matrix multiplications

to identify the potential human errors for each function in the functional model. The overall goal

of these methods is to provide designers insight into potential human errors and component failures

so that mitigating actions can be taken early in design before any costly design commitments are

made. While these methods allow designers to assess component failures and human errors together,
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they do not assess their propagation. As a result, they fall short in terms of their ability to capture

the interaction effects of component and human vulnerabilities. The risk assessment framework

introduced in this research differs from the human-product interaction failure assessment methods

discussed above in its ability to predict the system level effects of human errors and component

failures acting in combination during early design stages.

In summary, the risk and reliability assessment methods discussed in this chapter either assess

component failures or human errors alone, are only applicable during late design stages, or do not

assess the propagation of human errors and component failures acting together. This research aims

to overcome these limitations by introducing a early design stage risk assessment method that can

assess and quantify how human errors and component failures affect the overall system health when

they act in combination (or alone) so that designers can consider mitigation strategies before any

significant design commitments are made.

2.4 Digital Human Modeling

This research utilizes Digital Human Modeling (DHM) simulations to visualize human-product

interactions and perform risk-informed ergonomic assessments. Formally, DHM is used to digitally

represent and control a human to visualize human-system interactions in a computer and apply

human factors principles to improve safety and performance [19, 109, 110]. DHM allows engineers

to apply human factors principles proactively to evaluate human and system performance before

any physical prototypes are made [109, 111]. This approach reduces the need for human subject

data collection in full-scale physical prototypes (which are costly and time-consuming) in empirical

human performance studies.

The application of DHM was confined to complex engineered systems and large-scale project

domains such as military and space in its early days. However, in recent times, its application

has broadened to a variety of industries including aviation, automobile, healthcare, manufacturing

planning, assembly planning, and workspace planning. For instance, in the automobile industry, DHM
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is used to assess how the steering wheel location affects the visibility of the instrument clusters [112].

Additionally, the reach volume for the primary controls and vision obscuration zones are analyzed

using DHM [112]. One application of DHM in the healthcare industry looks to understand the

influence of muscle weakness, decreased range of motion, and pain on the functional abilities of the

population that uses ambulatory aids such as wheelchairs, canes, and walkers [113]. In the assembly

and manufacturing industries, DHM is often used to evaluate workers’ posture and comfort. For

example, a study of workers who use a riveting system, aimed to avoid potential injuries caused by

lifting heavy weights, taking awkward postures, and performing repetitive motions for long periods

by assessing worker comfort and identifying ideal workspace configurations that are suitable for a

wide range of populations [112]. Another study used DHM in an aviation-related design project to

assess pilot performance during emergency procedures. The study found that DHM, coupled with a

motion capture system, can help with successfully identifying individual postural strategies without

the need for excessive physical prototyping [114]. In summary, DHM is used to assess physical

ergonomics relating to reach, vision, posture, comfort, and many more in a variety of industries.

While DHM does a satisfactory job in representing the physical aspects of a human, its ability to

capture cognitive aspects of humans is still lacking. There are a few tools that are still in research

focusing on integrating cognitive ergonomics with DHM. These cognitive models primarily focus on

the perceptual-cognitive aspects of human performance. Since cognitive elements of a human can be

abstract when compared to physical elements simulating them can be very complicated. In addition,

human perception and cognition are complex processes. These and the variations in individuals and

populations has meant that cognitive ergonomics are not as well developed as physical ergonomics in

DHM platforms [115]. However, the tools that are available within DHM platforms are still handy

when it comes to visualizing human product interactions and aiding design decision making relating

to the physical elements of a human.
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Chapter 3: Assessing the Effects of Human Errors and Component

Failures

This chapter addresses research objective one by formulating and validating a fault prediction frame-

work to assess the effects of human errors and component failures acting in combination and isolation.

In contrast to traditional approaches that either study human errors or component failures in isolation,

the framework introduced in this chapter approaches the fault prediction with a goal of identifying

the system-level propagation of component and human fallibilities interacting and acting alone. This

research was published in the ASME Journal of Computers and Information Science in Engineering

and in the Proceedings of the 2018 International Design Engineering Technical Conferences & Com-

puters and Information in Engineering Conference and was coauthored by Lukman Irshad, Salman

Ahmed, H. Onan Demirel, and Irem Y. Tumer [116, 117]. Next, the fault prediction model of

the framework is validated using the Air France 447 crash and a high-fidelity flight simulator to

confirm that the predicted faults were realistic representations of real world failures. This research

was published in the ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B:

Mechanical Engineering and was coauthored by Lukman Irshad, H. Onan Demirel, Irem Y. Tumer,

and Guillaume Brat [118].

3.1 Motivation

As discussed in Chapter 1, when failures occur in complex engineered systems, often times, they

are caused by complex interactions between poor design, component malfunctions, and human

fallibilities [16, 107]. Designers need to be able to foresee such complex interactions to be able to

effectively mitigate the risk of potential failures in complex engineered systems. However, with such

complex systems, modeling all possible failure scenarios and associated risk is beyond the grasp of
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any designer, and handling critical events, abnormal situations, and deviations safely and effectively

become almost impossible for operators without proper operational procedures and training [23].

This chapter tackles this issue by proposing ways to help designers understand potential failure

scenarios, human errors, and their effects over time to the overall system.

One way to address the above issue is to incorporate human factors into the design process.

However, the human interaction and use aspects often are only partially considered or do not receive

adequate attention when compared to other product development activities (e.g., operations research,

logistics) [19–21]. Traditionally, they are considered later in the design stage with reliance on

significant system data, which often requires full-scale physical prototypes and extensive human

subject data collection [19, 21, 22]. Design changes made during the later design stages (after the

design has been established or during prototype testing) can be very costly and time consuming

compared to design changes made during early design [17]. This forces engineers to find workarounds

or retrofit changes when system vulnerabilities are found during later design stages. Hence, the

objective of this research it to not only identify potential failures that result from interactions

between component and human vulnerabilities but also identify such potential risks early in design so

that the overall cost and time to market are reduced. Often, detailed models of system components

and parameters are not available early in design. Instead, intended system functions are available in

the form of functional models. The above limitations prompt us to explore an approach that utilizes

the functional representation of systems during early design.

Existing risk assessment methods and tools fail to cover all aspects of the question formulated

above. Depending on the method, the existing tools either require detailed models of system

components, rely mostly on expert knowledge, address human error at an abstract level, analyze

only human errors, or fail to provide insight on how the failures will propagate and affect the

system overall. This work expands Functional Failure Identification and Propagation (FFIP) [23],

a functional model-based failure prediction framework, to include human aspects of the system to

the failure prediction. During the early design stages, there are minimal details about the tasks the

users need to perform, making it hard to perform a task analysis to fully capture human-product
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interactions in a way that it promotes error prediction. Thus, this work takes a novel approach to

model human-product interactions through Action Sequence Graphs (ASG), where the focus will

be shifted from the use of traditional task analysis approaches to human action based interaction

representations. Here, human-product interactions are represented using the actions that a human

will perform to interact with a component (i.e., reach, grasp, and turn valve) rather than being

represented using the tasks (i.e., reduce flow).

The framework introduced in this research defines the human behavior within the context of the

system operation through action classifications by defining all possible nominal and faulty action

states for each action in the ASGs. An action simulation algorithm takes fault scenario inputs

involving humans to predict the resulting human-induced behaviors of components using the action

classifications and ASGs. With the added modules, the expanded framework will be able to take fault

scenario inputs relating to humans and components, perform a time-based fault modeling simulation,

and output human errors, functional failures, and their propagation paths. In the second half of

this chapter, the proposed framework is validated to evaluate if the failures it predicts are realistic

by modeling the Air France 447 crash using the framework and comparing the results with what

happened in reality. Additionally, a comparison is performed between results from randomly derived

fault scenarios modeled using the proposed framework and a high-fidelity flight simulator. Since the

capabilities of FFIP has been well studied in previous work [23, 24, 92, 119, 120], the validation

only examines the new modules introduced in this research. The results show that the proposed

framework can predict potential failures with reasonable accuracy. However, it lacks fidelity when

compared to real-world events and simulator results.

Overall, in addition to allowing the designers to analyze functional failures and their propagation

paths at a functional level [24], the proposed method will help designers identify potential human

errors and understand how they are produced at an early design stage before any potentially costly

design decisions are made. With the resulting data, a designer may choose to apply necessary

human factors guidelines or suggest operating procedures or training to mitigate human errors.

Similarly, a designer will have the ability to choose appropriate components and functions that



23

mitigate component failures [23, 24, 92, 119, 120]. The overall capability of the proposed method

will not only prevent performance losses, failures, and accidents but also reduce cost and time to

market of complex engineered systems.

3.2 Background

In this section, the Functional Failure Identification and Propagation (FFIP) Framework is discussed

in detail as it is used as the basis for the framework developed in this research.

3.2.1 Functional Failure Identification and Propagation Framework

FFIP, introduced by Kurtoglu and Tumer [23, 24], is capable of identifying functional failures and

their propagation paths during the conceptual design stage. The FFIP framework includes a graphical

system model, a behavioral simulation, a reasoning logic called Functional Failure Logic (FFL).

Three graphical representations of the system are used: Functional Model, Configuration Flow

Graph, and Behavior Model. The functional modeling is done using the Functional Basis for En-

gineering Design (FBED) method [121], where the overall desired/actual function of the system is

decomposed into smaller sub-functions and flows using a standard taxonomy. For each function or

set of functions, generic components are then chosen. The Configuration Flow Graph (CFG) is then

built such that the nodes represent the components, and the arcs represent the flow of energy, mate-

rial, or signal between the components. The flows are named using the taxonomy from FBED, and

the components are named using a standard taxonomy for electro-mechanical components. Finally,

the behavior of the system is represented using a qualitative model where each nominal and faulty

discrete modes are derived using the input-output relations between each node in the configuration

flow diagram. For example, the component “pipe” may have three discrete behaviors depending on

the input-output relations of the liquid flow.

• Nominal: Inflow equals outflow.



24

• Failed Ruptured: Outflow equals zero.

• Failed Leak: Outflow less than inflow.

The behavior simulation uses the behavior model and the CFG to evaluate the evolution of the

overall system state for different input scenarios. Finally, FFL uses the state changes resulting from

the behavior simulation to classify each function as operating, degraded, or lost. The functional

failures and their propagation paths are then produced for each input scenario. Even though FFIP

allows the detection of potential system failures and their propagation paths using critical event

scenario and human error inputs at the conceptual design stage, it fails to capture the human actions

that contribute towards producing the human error, giving designers minimal insight into mitigating

human errors.

3.3 A Framework to Model Human Errors and Component Failures in

Combination

The purpose of this research is to establish a formal method to be used in conceptual design to

identify functional failures and possible human errors in complex engineered systems and simulate

how they propagate to affect the system. FFIP uses function, structure, and behavior modeling

to simulate failure propagation paths and resulting functional failures. We introduce the Human

Error and Functional Failure Reasoning (HEFFR) framework, which captures human errors and

their propagation paths in addition to functional failures and their propagation paths [23, 24] by

integrating Action Sequence Graphs, Action Classifications, and Action Simulation into the FFIP

framework. The architecture of HEFFR is illustrated in Fig. 3.1.
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Figure 3.1: The architecture of Human Error and Functional Failure Reasoning (HEFFR) framework
(area highlighted by dotted lines indicate modules from FFIP)

3.3.1 Human Error and Functional Failure Reasoning Framework

Note that this section does not go into the details of creating functional models, configuration flow

graphs, and behavior models. In addition, the behavior simulation process and the functional failure

logic are not explained. Since these modules are fairly well explained in the literature related to

FFIP [23, 24, 92, 119, 120], this section focuses mainly on the modules that are new to the HEFFR

framework.

3.3.1.1 Action Sequence Graphs

The accuracy of how the human errors and their propagation are determined is highly dependent on

how human-system interactions are represented. A model that is capable of capturing human-system

interactions in a way where all possible human actions are represented as a flow will facilitate both

error recognition and propagation. During conceptual design, the extent of human-system interactions
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is only known at an abstract level. Traditional task analysis methods require significant human and

system information to represent human-system interactions. Hence, using task analysis to represent

human-system interactions during early design stages will not promote accurate fault prediction.

Action Function Diagrams [122, 123], on the other hand, facilitate the determination of human-system

interaction using functional models. However, they do not capture all possible human actions as a

flow. Hence, this research introduces a novel graph-based human-product interaction representation

model called Action Sequence Graphs (ASG) to represent the human-product interactions as action

sequences.

Representing the human-product interactions through actions (i.e., reach, grasp, and turn valve)

rather than through tasks (i.e., reduce flow) comes with several advantages. First, it will allow an

easy-to-construct human-product interaction representation with the minimal data available during

early design stages. Since ASGs tie human actions to components, a direct link between human

interactions and components will be present, making the prediction of combined effects of human

errors and component failures more plausible. Finally, multiple users can be represented by creating

multiple ASGs for the same component, making the error prediction even more realistic.

Action Sequence Graphs (ASG) are created for all components that require human interaction.

ASG is a graphical representation of the action sequence that needs to be performed by the human

to interact with the component. Each action in the sequence takes outcomes from the other actions

or stimulus as inputs and produces outcomes as outputs. For example, if an operator has to turn a

valve off, first he or she needs to Look at it. Then, Reach, Grasp, and finally Turn the valve. Here,

the action Reach takes the outcome from the action Look as an input and the output produced by

it acts as an input to the action Grasp. Figure 3.2 shows a generic action sequence graph where

Stimulus (S) 1 acts as an input to Action 1 to produce Outcome (O) 1. Then, O1 and S2 become the

input for Action 2 to produce O2. Here, the outcome for Action 2 results in the direct manipulation

of the system while all other actions indirectly contributed towards it.

There are two general heuristics that need to be followed when constructing ASGs. The actions

represented in the ASG should be at the lowest possible level. In other words, the actions should
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Figure 3.2: Generic Action Sequence Graph

not have any further breakdowns. For example, the action Press (representing pressing a button)

can be broken down further into Look, Reach, and Push. Hence, Press should not be included in

the ASG. Instead Look, Reach, and Push should be included. Secondly, ASG should include all

possible actions that will contribute towards interacting with the component regardless of them being

required or not. These heuristics make sure that all possible actions are analyzed which in turn will

increase the accuracy of the human errors and their propagation paths produced by HEFFR.

3.3.1.2 Action Classification

The next step is to classify all nominal and faulty outcomes for each action in the Action Sequence

Graphs. For example, the action Reach can have four possible classifications;

• Reached - nominal: Reached the expected object.

• Reached - failed: Reached an unexpected object.

• Cannot reach: Cannot reach the expected object.

• No action: No action was taken.

Often, the action classifications for the same action are re-usable across the system, since their

nominal and faulty outcomes do not change. For instance, the action Reach in the ASG for a lever

and valve will have the same classifications because the faulty and nominal outcomes for the action

Reach is the same in both cases.
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3.3.1.3 Action Simulation

Action simulation is performed to understand how different human actions will impact the interaction

between the human and the specific component. The simulation happens in two steps. During step

1, action simulation takes the critical event scenarios as inputs and simulates the human activity

using the ASG to produce action classifications. Here, the action classifications will be a function of

stimulus, outcomes from the previous action, and the outcome of the action simulated. The outcomes

for each action will come from what the human user did, representing a discrete state such as no

action, nominal, or faulty. For instance, for the action Grasp, if the human grasps the object, the

outcome will be “grasped,” and if he or she fails to grasp, the outcome will be “not grasped.” If the

action was not attempted, the outcome will be “no action.” Depending on the type of outcome from

the previous step, the status of the stimulus, and/or the outcome of the action simulated at a given

time step, the action classification for that time step will be assigned for each action.

In step 2, the evolution of each action classification is traced by the use of ASG. The ASG provides

a graph-based formal representation of individual actions as a flow to be integrated to produce

human-component interactions. Accordingly, action classifications of each action at a given time

are analyzed to come up with the behavior state of the components that require human interaction.

Here, the human errors and how they propagate to affect the behavior of system components are

tracked. Finally, the resulting behavior state at each time step and the behavior models for the other

components in the system are fed into behavior simulation, and subsequently into FFL to identify

functional failures and their propagation paths.

The critical event scenarios are potential failure event scenarios that include both human errors

and component failures. They may represent human errors and components failures individually or

collectively. The designers are encouraged to devise critical event scenarios that could potentially

cover all potential failure conditions and use scenarios as comprehensively as possible.

In summary, HEFFR uses a functional model, configuration flow graph, component behavior

models, and action sequence graphs to represent the system and the human-system interactions. It

takes critical event scenarios as inputs to produce potential human errors, functional failures and
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the propagation paths as output. CFG and behavior models are used in the behavior simulation

to determine non-human induced behavior modes of components. ASGs and action classifications

are used in action simulation to determine human induced behavior modes of components. Action

simulation also identifies human errors and how they propagate to affect the behavior of system

components. Finally, the resulting behavior model is used in FFL to identify functional failures and

their propagation paths. Similar to FFIP, the simulation operates by solving a timed simulation

in the intervals between discrete events. When an event occurs, the simulation is stopped, and

the corresponding mode transition is executed. Stopping the simulation allows the input of critical

events/scenarios at any given time step. The simulation may run for a predetermined number of

time steps or until the system reaches a specific end state.

3.3.1.4 Validation

After implementing HEFFR, designers may choose to add redundant functions, modify design specifi-

cations, modify component choices, perform additional analysis (e.g., Finite Element Analysis (FEA)

for structural integrity), or suggest additional testing to mitigate function/component related failures.

They may also apply HFE principles to derive design specifications, suggest operational procedures,

or recommend training to mitigate human errors. We recommend coupling Digital Human Modeling

(DHM) with HEFFR as a means of applying HFE principles for non-cognitive human actions [15,

19]. DHM based human-machine simulations allow for a visual representation of the human-system

interactions at an early design stage. HEFFR does not consider ergonomics when implemented

by itself. However, when coupled with DHM, ergonomic analysis can be performed in the DHM

environment [15, 19] and the results can be used to modify the HEFFR system model. This permits

the inclusion of ergonomics-related design parameters within the HEFFR framework. The coupled

use of DHM and HEFFR not only provides a means to represent human-system interactions visually,

but also allows for non-cognitive human factors analyses such as reach, vision, and comfort [15, 19].

It also acts as a means to apply HFE principles to mitigate potential human errors starting from
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Figure 3.3: System model of a hold up tank

early design stages. The application of HFE principles early in design will reduce the necessity for

major design changes at later design stages and hence bring down cost and time to market.

3.3.2 Example: Hold-Up Tank

The capabilities of FFIP to identify functional failures and their propagation paths are fairly well

tested and documented [23, 24, 92, 119, 120]. Since HEFFR uses the same mechanism as FFIP to

identify functional failures and their propagation, we only evaluate human errors and their propagation

in this research. The evaluation of potential human errors and their propagation of a liquid tank

concept is presented. Different versions of this tank problem have been widely studied by various

researchers [23, 124–127]. This problem was chosen by Kurtoglu and Tumer to initially evaluate the

FFIP framework [23].

The problem is to design a system that is capable of regulating the amount of liquid in an open

tank. To implement HEFFR, the system model is generated by creating the functional model, CFG,

and ASG. Figure 3.3 shows a schematic of the system model. The overall system will have two pipes,

two valves, and a tank. Both inlet and outlet valves are controlled manually by an operator. Aircraft

pilots and submarine operators may face situations where they have to monitor gauges or instrument

panels, and depending on the reading, are required to apply certain controls manually [128–130].
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Table 3.1: Action classifications for a valve

Actions Nominal and Faulty Responses
Look Visible Not Visible
Detect Detected - Nominal Not Detected -Nominal Detected – Failed Not Detected - Failed
Reach Reached – Nominal Reached - Failed Cannot Reach No Action
Grasp Grasped Cannot Grasp No Action
Turn Turn to Close Turn to Open Cannot Turn No Action

Table 3.2: Behavior modes of a valve

Behavior Modes
Human Induced Nominal Off Nominal On Failed Close Failed Open
Non-Human Induced Stuck Open Stuck Closed

Table 3.3: Possible outcomes for actions performed on a valve

Actions Possible Outcomes
Look Clearly Visible Barely Visible Not Visible
Detect Detected Not Detected Not Attempted
Reach Reached Reached - False Not Reached Not Attempted
Grasp Gasped Not Grasped No Attempted
Turn Turned Clockwise Turned Counter-clockwise Not Turned Not Attempted

The manual nature of the valves was chosen as a simplified version of such scenarios. The operator is

expected to shut off the inlet valve if the water level reaches a specific overflow threshold. Similarly,

they are expected to shut off the outlet valve if the water level reaches a certain dry-out threshold.

Two assumptions are made to simplify the problem: The flow is uninterrupted and the operator

is continuously monitoring the system without any breaks. Overall, there are two components

that require human interaction, 5 actions each per component, and 17 action classifications per

component. Tables 3.1 and 3.2 show the action classification for the outlet valve and the behavior

modes of components inlet valve and outlet valve. Table 3.3 shows the possible outcomes for each

action. Here, the valve is assumed to shut off when turned counter-clockwise and turn open when

turned clockwise. In addition, Figs. 3.4 and 3.5 show the action simulation logic step 1 for actions

Detect and Reach and action simulation step 2 for the outlet valve.
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Figure 3.4: Action simulation step 1 for actions Reach and Grasp

Figure 3.5: Action simulation step 2 for outlet valve

The system is analyzed under two scenarios. Through this analysis, HEFFR will answer questions

such as “what happens if the operator cannot reach the valve?”, “what will the impact be if there

were two operators involved and a miscommunication occurred?” and “what are the effects of closing
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the wrong valve?.” Then, using the results from HEFFR, DHM is used to analyze the critical non-

cognitive actions to derive design specifications. The following section goes into details of the three

scenarios and the results of the HEFFR and DHM analyses.

3.3.3 Results

Three event scenarios involving human-system interactions are formulated and implemented as an

initial application of HEFFR. To start the simulation, the behavior modes of all components are set

to nominal. Then, the action classifications and the input state variables for each component are

initialized. The state of both CS1 and CS2 (refer Fig. 3.3) are “off” at the initial stage (time = 0).

The initialization of the action classifications is done to reflect this state. For example, for the outlet

valve, Look equals “visible,” Detect equals “not detected - nominal,” and all other actions equals “no

action.”

The first scenario includes the following events. The water level goes below minimum, the

operator detects it and turns off the wrong valve (inlet valve instead of outlet valve). It is assumed

that the operator detects the low water level and follows up with the actions in the same time step.

While delays in detection and follow up actions can be modeled and the resulting system states

can be inferred, the scenarios in this case study purposefully omit delays so that the focus can

solely be directed towards the new modules of HEFFR. Screenshots of the action responses, action

classifications and the resulting behavior modes of both inlet and outlet valve at time steps(t) 0, 5,

and 6 are shown in Fig. 3.6.

At t = 5, the events described above are fed into the simulation. The state variable for CS2 is set

to “on.” For the outlet valve, the outcome of the actions Look, Detect, and Reach is set to “clearly

visible,” “detected,” and “reached - false” respectively. Here, the outcome “reached - false” means

that the wrong object was reached. For the inlet valve, the outcome of actions Reach, Grasp, and

Turn is set to “reached,” “grasped,” and “turned counter-clockwise.” Using these inputs, the action

simulation algorithm determines the action classifications for each action in the ASGs. Then, using
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Figure 3.6: HEFFR simulation scenario 1

the action classifications, the behavior state of the inlet valve and outlet valve is determined as “failed

close” and “failed open,” respectively. This information is fed into the behavior simulation and then

into FFL to determine the failure propagation. Since the inflow is shut off and the outflow is still

on, the water will continue to flow out and result in a tank dry out. The human error of choosing
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the wrong valve propagates to the loss of function Guide Liquid immediately after the non-nominal

behavior of the components is observed. Then the function Store Liquid is lost due to the dry out.

The second scenario involves two operators, where Operator 1 performs the same actions as

scenario one but fails to communicate his or her detection and follow-up actions with Operator 2.

Later, Operator 2 (before a tank dry out) notices the low water level and closed the inlet valve, and

turns the inlet valve back on. However, thinking that he or she has done enough to prevent a dry out,

the operator fails to follow the operating procedure and turn off the outlet valve. The simulation is

initiated and conducted similar to scenario 1 for parts involving operator 1 (until t = 10). Then, at t

= 10, the events pertaining to Operator 2 is inserted into the simulation. This leads to the behavior

mode of the inlet valve to go back to “nominal on,” and the function Guide Liquid relating to the

inlet valve is restored. However, since she failed to turn off the outlet valve, it continues to operate

non-nominally. Even though the action taken by Operator 2 improved the state of the system, it

continued to operate with functional losses. The continuous presence of the failure eventually leads

to a tank dry out and the function Store Liquid is lost. The failed action by Operator 1 causes

the system to start operating at a failed state. Operator 2 may have improved the system state.

However, their failure to follow the procedure and turn off the outlet valve resulted in the system

operating non-nominally and eventually completely losing function.

The results from the scenarios analyzed above show that the actions Detect and Reach play an

important role in keeping the system failure-free. In this example, the valves should be placed within

the reach of a 5th percentile U.S. female to make sure that they can be accessed by a majority of

the U.S. population. A reach analysis is done using DHM to make sure that the valve is within

the reach of a 5th percentile U.S. female. Figure 3.7 shows the 5th percentile U.S. female manikin

from the Anthropometric Survey of U.S. Army Personnel (ANSUR) anthropometric library and the

reach envelope. Unlike Reach, the action Detect is purely cognitive. Since DHM tools do not include

cognitive tools to assess psychological parameters, designers will have to rely on human subject data

collection and subjective multidimensional data collection methods to measure cognitive performance.

Instead of relying purely on visually inspecting the tank, the designers may choose to add an alarm
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Figure 3.7: Reach envelope of a 5th percentile U.S. female

to notify the operator when the water level is too low or too high or they can suggest training to

make sure that the operators detect the water levels as expected.

Our simplified example does not include many of the actual elements of operation or control

rooms. An actual work environment might require elements such as, tables, monitors, computers, etc.

For example, with the addition of a chair and table, the action sequence of the operator is different.

Also, DHM analyses considering percent vision obscuration and reach need to be performed to make

sure that the new elements of the operation or work environment do not obstruct the vision or the

reach of the operator. DHM is also used to determine the action sequence (Look, Detect, Stand-up,
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Figure 3.8: DHM vision analysis showing the obscuration zone (left) and reach analysis showing that
the valve is accessible (right)

etc.). Figure 3.8 shows a vision and reach analysis for the modified environment with additional work

objects/elements. The thumbnails in the figure represent the head forward eye windows of the DHM

manikin. The vision analysis shows that the monitor obstructs the vision field of the user and only

a part of the tank is visible in this new environment. However, there is enough visibility to detect

low and high water levels. Then, using HEFFR, a new set of scenarios can be simulated to assess

the potential functional failures, human errors, and the propagation paths of the modified system.

A designer may choose to iterate through this process until a satisfactory design is derived.

3.3.4 Discussion

The two scenarios presented above show how the HEFFR framework can be applied to assess

functional failures, human error, and their propagation for specific events. In the first scenario, the

framework shows how an incorrect valve choice can go on to affect the system, giving the designer

insight into the importance of the operator reaching the correct valve. The next scenario shows how

a lack of communication between operators and failure to follow procedures could lead to failure.
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The results show the capability of HEFFR to assess the propagation paths and the system level

effects of potential functional failures (similar to FFIP) and human errors. HEFFR can pinpoint

what specific actions the designers need to be considering and what possible human failure they need

to try and mitigate.

Moreover, the HEFFR framework does not assume a single user, and the propagation is not

based on one human error. The framework allows the modeling of multiple human operators and

combinations of possible human errors at the same time. Also, the model allows for scenarios with

combinations of function/component failures, cognitive (for instance, failing to detect), and non-

cognitive human errors (for instance, failing to grasp). The capabilities of this framework permit

the realistic representation of complex event scenarios and the analysis of the interaction between

human errors and functional failures and their system-level impact. Overall, the HEFFR framework

provides designers/analysts a means to assess both potential functional failures and human errors

and how they propagate to affect the system in specific event scenarios at an early design stage. The

functional failures, human errors, and the propagation paths are then presented to the designers for

further design refinement. Based on the data, a designer may choose components, add functions, or

suggest testing to mitigate functional failures. In addition, using HFE principles they may create

specifications, suggest operating procedures, or recommend training to mitigate human errors.

The results also shows the advantages of coupling the HEFFR method with DHM analysis

tools for non-cognitive human action related analyses. One advantage is that it allows for a visual

representation of the human-system interaction at an early design stage. This visual representation

allows the designers to visually inspect human-system interactions and come up with human actions

to be included in the ASG. Another benefit is that it permits the inclusion of ergonomics analysis

of the tasks performed into the HEFFR system model. This ability to perform ergonomic analyses

allows the designers to consider ergonomics starting from early design stages. Additional analyses

such as reach and vision are also made available to guide designers in their decision making. Overall,

coupling DHM with HEFFR analysis acts as a means to apply HFE principles to mitigate potential

human errors before any design commitments are made.
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There are a few areas where the HEFFR framework can be improved. First, the accuracy of

the action simulation is highly dependent on the ASG and the modeling of action simulation step 2.

Unlike the action classifications, action outcomes, and action simulation step 1, action simulation

step 2 will vary system to system depending on how the system is designed. In the early design

stages, defining all possible human interactions exhaustively for each component that requires human

intervention and modeling how these actions affect the specific components in action simulation step

2 might be challenging. Second, HEFFR is not capable of capturing ergonomics-related problems

when applied alone. However, when coupled with DHM this issue can be addressed. In addition,

HEFFR does not capture potential harms that the human could experience. Also, the scenario

generation is done manually by the user. This means that the scenarios ran will depend on the user

and be highly subjective. It is highly unlikely that any one person or a group can capture all possible

scenarios that a complex system could go through in its lifecycle.

In summary, HEFFR provides a systems level modeling approach that allows designers to identify

both human-system interactions and system-system interactions that could lead to failures and guide

them towards improved system designs at early design stages. In conjunction with HEFFR, DHM

can be used as a means to interpret the human-system interaction data to visualize better and

analyze the physical aspects of human interactions starting from early design stages until a final

design is derived.

3.4 Validating the Failure Prediction Framework

In section 3.3, HEFFR was applied to a simple hold up tank case study. The hold-up tank only

consisted five components; a tank, inlet pipe, outlet pipe, inlet valve, and an outlet valve. Even

though this simple case study was sufficient to demonstrate the capabilities of HEFFR, its application

to a complex design problem is yet to be demonstrated. Also, the accuracy of the failure prediction

algorithm needs to be validated. In this section, we address these issues by applying HEFFR to an

aircraft design problem and performing a preliminary validation study. First, the subsystems that
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played a critical role in the Air France 447 crash are partially modeled. Then, the series of events

that led to the accident are fed into the HEFFR framework and the outcomes are assessed to see

if they match with what happened in reality. Next, a set of fault scenarios are injected into the

framework and into a flight simulator separately, and the results are compared to assess the accuracy

of HEFFR. In summary, the HEFFR framework is applied to an aircraft design problem and the

results are validated using an accident from the past and a flight simulator software.

3.4.1 Case Study: Air France 447

The Air France 447 crash was chosen as a case study for this research since it was caused primarily due

to human error and some component failures. The nature of the crash enables the exploration of the

capabilities of HEFFR surrounding human errors, component failures, and their propagation paths.

In addition, a comparison between the outcomes of the HEFFR framework and what really happened

during the crash can provide some insight into the accuracy of the failure prediction algorithm. In

addition to the Air France 447 crash, two additional critical event scenarios are executed within the

HEFFR framework and in a commercially available flight simulator separately. A comparison of the

results from these executions can further validate the accuracy of the failure prediction algorithm.

Overall, the case studies were chosen based on their potential to demonstrate the capabilities of

HEFFR surrounding a complex engineered system and the ability act as a validation testbed of the

failure prediction algorithm.

The following events are a summary of what contributed towards the Air France 447 crash[131,

132]. The aircraft, an Airbus A330 entered a tropical storm region. The crew chose to fly through

the worst of the storm while the surrounding aircraft chose to fly around it. Since the aircraft was

flying through clouds, the pilots turned on the anti-icing system to keep ice off the flight surfaces.

At this point, the captain had left to take a nap, leaving the copilots at the cockpit. Also, he had

left the less experienced of the two in-charge of the controls. The formation of ice crystals in the

pitot tubes caused the loss of airspeed measurements. This caused the autopilot system to shut off
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and switched the airplane from “normal law” to “alternate law.” It is impossible to stall an Airbus

A330 when it is in “normal law” because of how its fly by wire system works[131]. However, when

the airplane is in “alternate law,” the aircraft can go into a stall[131]. Failing to understand the

situation, the confused copilot in-charge pulled back on the flight control to put the aircraft in a

steep climb. This caused the stall warning to go off. However, the copilots failed to acknowledge

it and continued to climb causing the aircraft to lose airspeed. Eventually, the copilot who was

not in charge of the controls realized the decreasing airspeed and asked the copilot in-charge to pay

attention to the speed. At this point, the pitot tubes had started to work again and they started to

get valid airspeed information. The copilot in-charge eased on the flight control causing the aircraft

to climb at a slower rate and gain airspeed. The stall warning stopped sounding and the copilots

gained control of the aircraft.

Then, suddenly for reasons not known, the copilot in-charge pulled back on the stick again,

causing a climb and reduction in airspeed. This activated the stall warning again. By this time,

all pitot tubes were functional and the avionics of the aircraft were back to normal. The copilot

in-charge increased the throttle to TOGA level (take off and go around). This level is used at low

altitudes to effectively increase speed and gain altitude during takeoff and go-arounds[131]. Since

this was performed at a much higher altitude (37,500 feet), where the air is much thinner, the aircraft

did not climb and gain speed as expected. Instead, it started falling towards the ocean. The copilot

who was not in charge of the controls had no idea that the other pilot had the flight control pulled

back. He was expecting the aircraft nose to be down. This is because the Airbus flight control sticks

on either side of the cockpit work independently and give no feedback on how the control on the

opposite side is operated. At last, the more experienced copilot took control of the aircraft. However,

he did not grasp the stall situation and started pulling back on the control causing the nose to be

pitched up. The aircraft continued to fall towards the ocean.

By this time, the captain arrived at the cockpit but made no attempt to take control of the

aircraft. Instead, he was observing and giving instructions. The more experienced copilot pushed the

stick forward at last. But this was not sufficient to pitch the nose down since the other copilot was
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still pulling the stick back and the mode the plane was set in, took only the average of these inputs.

Unfortunately, the aircraft continued to fall and crashed. We have identified the side stick (flight

control stick), throttle system, auto-pilot system, airspeed indicators, and the stall warning system

as the most critical systems that contributed to the Air France 447 crash. In this paper, we have

modeled these systems using the HEFFR framework and applied the event sequence described above

as inputs and compared the outputs with the outcomes of the crash to first explore the applicability of

HEFFR to a complex design problem and to validate the accuracy of the failure prediction algorithm.

In addition to evaluating HEFFR using a real-world example, this research uses a commercial flight

simulator to do additional validation studies of the HEFFR framework. X-plane was chosen since

it can provide Federal Aviation Administration (FAA) certified simulation and vehicle models[133].

In addition, X-plane allows the simulation of various fault scenarios such as component failures,

adverse weather, and cockpit environmental factors that can be activated at any time during the

flight. X-plane is regularly updated to keep flight models and world models up-to-date. Also, it

has been widely used by researchers for various purposes such as unmanned aerial vehicle (UAV)

simulations[133], testing of hardware in the loop miniature-autopilot evaluation system[134], software-

in-the-loop simulations for UAVs[135], and as a rendering platform for the testing of heads-up displays

in small aircraft[136]. In this research, an Airbus A330 was chosen to perform the simulations so that

it is consistent with the other case study. The Airbus A330 used for this simulation is not certified.

However, it was still chosen for this simulation because of its affordable price and very realistic flight

models.

Two additional scenarios were executed in X-plane and HEFFR separately as supplementary

validation of the failure prediction algorithm. In the first scenario, the events that took place in

the Air France 447 crash occur. However, instead of pulling the stick back until the flight stalls

and crashes, the pilot recognizes his mistake when the stall warning goes off and pitches the nose

down. The airspeed indicators continue to malfunction. However, the pilot remembers to check other

instruments to determine airspeed. In the second scenario, the flight is cruising with auto-pilot on.

The pilot inadvertently hits and moves the side control stick. This causes the auto-pilot to shut off
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and the warning to activate. The pilot fails to recognize that the auto-pilot is shut-off and ignores

the warning. The sudden drop in altitude and increase in speed confuses the pilot, but they think

that it’s coming from unreliable sensor data. Next, they contact air traffic control for altitude and

airspeed data, and once they receive the feedback, with closer inspection, they realize their mistake

and correct it. These scenarios were chosen because they involve the same subsystems as the ones

that were modeled for the Air France 447 crash and they present enough complexity to challenge

the failure prediction algorithm. In the following section, details on how to setup the problem and

the simulation are provided.

3.4.2 Methodology

The purpose of this research is to apply the HEFFR framework to an aircraft design problem to

demonstrate its application in complex engineered systems design and to evaluate the accuracy of

the failure prediction algorithm. The accuracy of the failure prediction algorithm is validated using

two approaches. First, the events that led to the Air France 447 crash are fed into the HEFFR

framework and the outcomes are compared with the events from the actual crash. Second, critical

event scenarios surrounding pilot error are formulated and fed into the HEFFR framework and a

commercially available flight simulator separately, and the outcomes from both are compared. This

section goes into detail on how to setup the problem using the HEFFR framework. HEFFR uses

the exact same modules (Functional Model, Configuration Flow Graph (CFG), Behavior Model,

Behavior Simulation, and FFL from FFIP to track functional failures and their propagation paths.

Note that this research does not go into detail on how to create modules from FFIP since these are

fairly well documented in the past [23, 24, 92, 119, 120].
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3.4.2.1 System Representation

The first step in HEFFR is to create a system model. The system model includes a functional model,

CFG, Behavior Model, and ASGs. The subsystems that played the most critical role in the Air

France 447 crash are the side stick, the throttle system, the autopilot system, airspeed indicators,

and the stall warning system. As shown in Fig. 3.9, the functional model and the CFG only partially

represent these subsystems because creating full-scale models will not add value to this research.

Functional models and CFGs are used in the behavior simulation and FFL during the evaluation of

functional failures and their propagation paths. As mentioned earlier in this chapter, these segments

(functional models, CFG, behavior simulation, and FFL) in HEFFR come directly from FFIP and

have been fairly well tested and validated[23, 24, 92, 119, 120]. Hence, spending time on elaborating

and validating these modules will not add value. Instead, this research focuses more on the human

error related aspects of the HEFFR framework so that the new modules are tested and validated.

The parallel lines crossing over the arrows in Fig.3.9 indicate that there is a discontinuity in the

graph. For example, the flight data arc that goes into the flight computer node in the CFG has a

discontinuity because the data gathering methods are not represented in the graph. The next step

in the framework is to identify the components that interact with the humans and create ASGs for

them. For this study, the flight computer, throttle lever, and the control stick were identified as the

components that require ASGs. Even though displays and warnings are components that interact

with humans, they are not identified as components that require ASGs because these components

act as control signals for the components control stick, throttle lever, and flight computer. Hence,

the interaction between these components and the human are already represented in the ASGs.

In addition, the ASG for the flight computer is not modeled in this study because the Air France

447 crash did not have any critical events in which the flight computer and the pilot had direct

interactions. Figure 3.10 shows the ASGs for the control stick and the throttle lever.

Next, each action in the ASGs need to be classified to represent all nominal and faulty states.

For example, the action Grasp Control Stick can have the following classifications.

• Nominal: Grasped the reached object.
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Figure 3.9: Partial Functional Model and Configuration Flow Graph of the subsystems that played
a critical role in the Air France 447 crash

• Failed: Unable to grasp the reached object.

• No Action: The action was not attempted.

The action classifications for the same action regardless of what component they are applied

to can be re-used across the system. Table 3.4 shows the classifications for the actions from the

ASGs. To create the behavior model the human induced and non-human induced behaviors should

be defined for components that interact with human. The Control Stick has “nominally activated,”

“nominally inactive,” “falsely activated,” and “falsely inactive” as human induced behavior modes
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Figure 3.10: Action Sequence Graphs for the control stick and the throttle lever

where active means either Pushed Forward, Pulled Back, Pushed Left, or Pushed Right. The non-

human induced behavior modes are “stuck active” and “stuck inactive.” The throttle lever has the

exact same behavior modes as the control stick. However, active in this case means the following four

levels; Idle Level, Climb Level, Flex and Mac Continuous (FLX MCT) Level, and Takeoff and Go

Around (TOGA) Level. Similarly, the behavior modes for the components that do not interact with

human are then defined. With the Functional Model, CFG, ASG, and Behavior Models completed,

the system model is now fully developed.
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Table 3.4: Action classifications for the actions represented in the Action Sequence Graphs

Actions Nominal and Faulty Responses
Look Saw Cannot See
Hear Heard Cannot Hear
Detect Detected CSX- Nominal Not Detected CSX -Nominal Detected CSX – Failed Not Detected CSX - Failed
Reach Reached – Nominal Reached - Failed Cannot Reach No Action
Grasp Grasped Cannot Grasp No Action
Pull Pulled Cannot Pull No Action
Push Pushed Cannot Push No Action

3.4.2.2 The Simulation

To begin the simulation, the action simulation has to be set up. In the first step, the action

classification for each action is determined based on the critical event scenarios using the input-

output relationships for each action. For example, for the action Grasp Control Stick, if the input

(O3) is equal to “reached” and the output is equal to “grasped,” the action is classified as “grasped

- nominal.” If 03 equals “not reached” then it is classified as “no action” since its impossible to

grasp an object that is not reached. Similarly, the input-output relationships for each action need

to be defined so that the action simulation can determine the classifications for each action in the

ASG. In the next step, the action simulation tracks the evolution of action classifications using the

ASG to determine the human-induced behavior modes of the components. For example, for the

control stick, if the flight mode is “autopilot off - alternate law,” the stall warning is “on,” Reach

is classified as “reached - false,” and all Pull and Push actions are classified as “no action,” the

behavior mode will be set to “falsely inactive.” This is because the pilot is expected to pitch the nose

down when the stall warning is “on” and that does not happen in the scenario presented. Similarly,

all human-induced behavior modes are defined for all components so that this step of the action

simulation can accurately determine the behavior modes based on the critical event scenario inputs.

Note that the Airbus A330 can receive independent inputs from the control sticks from either side

of the cockpit. Two control stick inputs are recorded and simulated on each time step to simulate the

inputs from both pilots. However, the number of control stick inputs are reduced to one based on the

control stick mode configuration during the behavior mode determination. For example, if the flight

mode is set to take only the average of both control stick inputs, one input is “pushed forward,” and



48

the other one is “pulled backward,” the simulation will calculate the stick to be inactive. Similarly,

if the flight mode is set to take inputs only from one of the two control stick, the inputs from the

control stick that is not set as input will be ignored during the behavior mode determination step of

the action simulation.

The behavior simulation determines the non-human induced behaviors of the components by

tracking the input-output relations of each node in the CFG. For example, the flight control stick will

be determined as “stuck inactive” if there was some mechanical failure in the stick that was causing it

to not move. The FFL takes the behavior modes from both action simulation and behavior simulation

to identify the health of each function in the functional model. The functions are determined as

“lost,” “degraded,” or “operating.” Overall, the framework takes critical event scenarios as inputs; uses

the ASG, action classifications, and action simulation to determine human induced behavior modes

of the components; and uses the CFG, behavior model, and behavior simulation to determine the

non-human induced behaviors of the components. The action simulation and the behavior simulation

happen in parallel at each time step and the resulting behavior modes are fed into FFL to determine

the functional health of each function and overall system. In the following section, we discuss the

results of the executions of the 3 scenarios from section 3.4.1.

3.4.3 Results

First, the events that contributed to the Air France 447 crash was executed. To begin the simulation,

all functions, components, and actions were initialized to reflect the cruising phase the aircraft was in

before the crash. For example, flight mode, air speed, and stall warning were set to “autopilot-normal

law,” “nominal,” and “off,” respectively, and most of the human actions were set to “no action.” The

actions were set to “no action” because at this point the autopilot was on and the pilots did not

have to interact with any of the components. However, the action Detect was set to whatever the

detection state the pilot was in for each control signal. For example, for the control signal of the flight

mode, the action Detect was set to “detected - nominal” since the pilots recognized that they were
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Figure 3.11: Results of Human Error and Functional Failure Reasoning framework for the execution
of scenario 1 (Air France 447)

in autopilot and did not attempt to control the aircraft. The events that occurred before the loss

of air speed measurement cannot be modeled in HEFFR because they were either weather related

events or involved movement in the cockpit. Hence, at time step (t) = 1 behavior of the pitot tube is

set to “failed” to reflect the frozen pitot tube. This causes the function measure airspeed to be lost.
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At t = 2 the flight mode is set to “autopilot off - alternate law.” At t = 3, the pilot confusion

is recorded by setting the actions Detect, Reach Control Stick, Grasp Control Stick, and Pull Back

Control Stick as successful executions for the pilot because at this point the pilot recognized that

there was an issue with the airspeed and did not have any trouble accessing the stick to perform his

intended action. At t = 4, the stall warning is set to “on” and the action detect to “not detected

- failed CS stall warning.” This caused the action simulation to determine that the control stick is

in “falsely activated - pulled back” behavior mode. This results in function Convert HE to ME to

be lost. In the next time step, functions Convert ME to EE and Guide Solid are lost. At t = 6, the

copilot’s recognition of loss of altitude is represented by setting the action Detect for the copilot to

nominal. However, the pilot easing on the control stick cannot be represented since HEFFR only

takes discrete values and in this case it will be either pulled back or not. So the system continues to

stay the same. This is different in reality because the pilots were able to briefly gain control of the

aircraft at this point. The pitot probe starts to function again in this time step. This results in the

function Measure Airspeed being restored.

Next, the throttle is moved to TOGA level. This is represented by setting the actions Reach,

Grasp, and Push Forward to successful execution because the pilot had no issues with performing

the intended functions. However, the action simulation determined that the throttle is in “falsely

activated - TOGA level” behavior mode. At t = 8, functions Regulate Liquid and Guide Gas become

degraded because of the throttle being set to TOGA level. Then, the co-pilot takes control of the

aircraft. But he too pulls back on the flight stick. This causes no changes to the system. At t = 10,

the action Push Forward Control Stick for the copilot is set to “nominal.” Since the flight mode the

aircraft was in at this point takes the average of the two controls, the behavior of the flight stick is

determined to be “falsely inactive.” The results of this execution is shown in Fig. 3.11 where!means

nominal execution, %means non-nominal operation or loss of function, and ? means degradation of

function. The time steps in which these events occurred are also listed below each sign.

The following two scenarios were executed in HEFFR and X-plane separately. For the first

scenario, the HEFFR execution is the same as the Air France 447 scenario until t=5. However,
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at t=6, the pilot’s recognition of the mistake and his ability to determine the airspeed using other

instruments in flight is represented by setting the action Detect to “nominal.” In the same time step,

the pilot pushes the control stick forward to gain speed and recover from the stall. These results in

control sticks behavior to change to “nominally active.” The functions Convert HE to ME, Convert

ME to EE, and Guide Solid are restored in the following time step. The stall warning is shutoff in this

time step. The function Measure Airspeed continues to be lost. However, this does not propagate to

affect the system overall because of the pilots detection of this and the corrective measure taken. The

X-plane execution of this scenario started with the take off and subsequently entering the cruising

phase. Then, the pitot tube failure is induced. The initial actions of the pilot cause some flight

instability. However, when the pilot realized the mistake and took corrective measure, the pilot

was able to gain full control of the aircraft. Figure 3.12 shows the primary flight display during

the instability, during the corrective actions, and after the flight was stable. The pitch angle and

the vertical speed (highlighted using white dashed lines in the figure) indicate that the nose was up

(positive pitch angle) and still the flight was sinking (negative vertical speed) during the instability;

nose was down and still the flight was losing altitude during the corrective measure; and nose was

slightly tilted up and the flight held a steady altitude (near zero vertical speed) when stability was

gained.

For the next scenario, the simulation is initialized similar to the Air France 447 scenario at t =0.

At t=1, the inadvertent activation of the control stick turns off the autopilot. Since the pilot did not

recognize it, the action Detect is set to “failed.” In the next time step, the the behavior mode of the

control stick becomes “falsely inactive” because no action was reported in the ASG to indicate that

the pilot was taking control of the stick. In this time step, the pilot’s confusion with the air speed is

represented by setting the detection related to air speed to “not detected CS airspeed - failed.” When

the air traffic data was received, the pilots realization of the mistake is represented by setting the

action Detect to “nominal” at t =3 and actions Reach, Grasp, and Push/Pull for the control stick

is set to completed (i.e., “reached - nominal,” “grasped,” etc.). This causes the behavior mode of

the control stick to go to “nominally active.” In this case no functional losses were recorded and the
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Figure 3.12: Primary Flight Display (PFD) during the stall, stabilization, and stable stages of
X-plane flight simulation for the first scenario

system continued to act nominally after this time step. In the X-plane simulation, the events are

initialized during the cruise phase of the flight. When the stick is moved, the autopilot shuts off and

the warning sounds. The aircraft starts to loose altitude with the nose slight pointing down. This

causes an increase in airspeed. When the air traffic control provides airspeed and altitude data, the

flight is brought back to the cruise altitude and autopilot is turned on.

3.4.4 Discussion

The scenarios presented above show how HEFFR framework can be applied to a complex engineered

system to identify potential human errors, component failures, and their propagation paths. In

the first scenario, the temporary loss of airspeed indicators is represented by the temporary loss of

the function Measure Airspeed. The human error of failed detection (or confusion) propagates into

several functional losses for the overall system. In the next scenario, the same failure and errors

occur but the recognition of the events (situational awareness) and the proceeding actions helped

the system recover from the failures and human errors experienced earlier. In the final scenario, the

inadvertent activation of a control causes some confusion and results in a temporary none nominal

state. The potential for failure due to accidental activation of a control is demonstrated and the

importance of designing the control in a way that is foolproof from being activated accidentally is
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stressed. Having this amount of insight early during the conceptualization stages of design will help

designers come up with better designs that are less likely to fail due to component failures and/or

human errors. In addition, the designers may suggest testing, training, and/or operation procedures

to mitigate the potential risks.

During the execution of the Air France 447 crash, the action in which the pilot eased on how

much he was pulling on the control stick was not represented in the HEFFR framework. This was

because the framework only takes discrete inputs and for the control stick, the inputs were restricted

to either being pulled or not. However, this restriction didn’t limit the ability of the framework

to represent the overall system level failures. In addition, the events that contributed to the crash

had to be simplified in order to be represented in HEFFR. Similarly, the results from HEFFR was

simply indicating the functions that were lost or degraded. It did not directly point to a stall. But

one could infer that when the function Guide Solid was lost, the pilots lost control of the aircraft

indicating a potential stall. Additionally, the loss of airspeed data and the return of it was reflected

in HEFFR. The function Measure Airspeed was lost and then recovered as the events progressed.

Being able to accurately represent temporary failures is critical. This allows designers to assess if

any mitigating actions or recovery procedures are needed for the temporary failures. The control

stick did not have any failures associated with it. However, it was in a faulty state due to the human

actions for the majority of the execution. This ability of HEFFR, allows designers to understand

how human actions can affect components regardless of how reliable they are.

Similar to the Air France 447 scenario, the scenarios executed in the flight simulator had to be

simplified in order to be analyzed using HEFFR. While the outcomes of HEFFR lacked details when

compared to the outcomes of the flight simulator, they gave enough details for a designer to consider

re-design or mitigating actions. For example, in the first flight simulator scenario, the pilot correcting

the stall and operating the flight without airspeed measurements was represented in the HEFFR

framework with function Guide Solid becoming operational and the stall warning shutting off. Also,

the pilot’s actions turned nominal as detection of airspeed became nominal. Likewise, in the second

flight simulator scenario, even though no adverse consequences were seen in the flight simulator,
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HEFFR framework was able to identify the temporary mishap of the pilot and the propagating

consequences. The results from both of these executions can give insight into the potential corrective

actions that need to be taken to mitigate the risk when a failure or human error occurs. With such

information, designers can suggest training or operating procedures so that users are not caught off

guard when such errors/failures occur.

Overall, one could argue that HEFFR lacks fidelity when compared with events that happen in

reality or high fidelity simulations. However, this is an expected trait in a framework like HEFFR,

because it is intended to be applied at the conceptual design stage where only a limited amount

of information is available. Usually, detailed information on how exactly a system is modeled and

how the intended functions will be fulfilled only become available as the design evolves into later

stages design. Predicting component failures, human errors, and their propagation paths as it would

happen in reality becomes highly impossible if relevant data is not available. However, the ability to

identify potential component failures, human errors and their propagation paths with enough details

to give insight to the designers to mitigate the potential risk and build reliable systems is more

important than producing high fidelity models. All three scenarios presented in this research show

the capability of the HEFFR framework to achieve this. In addition, they also show that HEFFR

is capable of identifying faulty behavior states of components even when there is no failure present.

Imagine that the engineers at Airbus had a tool similar to HEFFR. Given that they would have had

an opportunity to execute the three scenarios presented in this paper, there is a probability that Air

France 447 would never have happened. They would have identified the potential for the Air France

447 crash through the first scenario. The second and third scenarios would have given them insight

into the importance of training the pilots to face such events.

3.5 Conclusion

This chapter introduced the Human Error and Functional Failure Reasoning framework to analyze

potential functional failures and human errors in complex engineered systems during early design
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stages. The ultimate goal of this research is to combine both functional failure analysis and human

error assessment and determine failure propagation paths during early system design. This way, the

design teams can comprehensively explore potential risks and failures related to both components/-

functions and human errors before any design commitments are made to design systems that are

effectively guarded against such risks and failures. The HEFFR framework was applied to a hold-up

tank problem to demonstrate how it can be applied towards designing more reliable systems. Digital

human modeling can be coupled with HEFFR as a tool to interpret non-cognitive musculoskeletal

and vision related ergonomics of the human-product interactions and to explore design alternatives

and ergonomic issues. Additionally, this research showed the application of the HEFFR framework

on a complex engineered system and performed a validation study of the failure prediction algorithm.

As part of the validation study, we applied the HEFFR framework to an aircraft design problem

by modeling the most critical subsystems that played a role in the Air France 447 flight crash.

We then compared the results from HEFFR with what happened in reality to validate the failure

prediction algorithm. We executed two additional failure scenarios in a commercially available flight

simulator and HEFFR separately and compared the results between the two as additional validation

of the failure prediction algorithm. The results from the comparison studies show that the HEFFR

framework is capable of predicting potential failures realistically but lacks fidelity. Future work can

look into how this method can be adapted to be used in later design stages so that designers can use

it throughout the design process until a final design is approved. This can be achieved by introducing

continuous variables for the behavior modes and action outcomes. For example, the action Pull

Backward may take the distance between the new position and original position as an outcome so

that the exact pitch angle can be determined. This will allow a high fidelity computational failure

prediction simulation.
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Chapter 4: Identifying Worst-case Fault Scenarios

This Chapter addresses research objective 2 by expanding the Human Error and Functional Failure

Reasoning (HEFFR) framework introduced in Chapter 3 to enable designers assess a majority of

potential fault scenarios by formulating a scenario generation and fault quantification model. The

automated scenario generation approach utilizes techniques used in automated test case generation

in software engineering to generate a wide range of potential fault scenarios involving humans and

components. This research was published in the ASME Journal of Computers and Information

Science in Engineering and in the Proceedings of the 2019 International Design Engineering Tech-

nical Conferences & Computers and Information in Engineering Conference and was coauthored by

Lukman Irshad, H. Onan Demirel, and Irem Y. Tumer [137, 138]. Next, risk quantification model

based on expected cost, component failure rates, and human error probability is introduced to help

designers quantify the severity of failures and prioritize worst-case fault scenarios. This research

was published in the Journal of Mechanical Design and in the Proceedings of the 2020 International

Design Engineering Technical Conferences & Computers and Information in Engineering Conference

and was coauthored by Lukman Irshad, Daniel Hulse H. Onan Demirel, Irem Y. Tumer, and David

C. Jensen [139, 140].

4.1 Motivation

The HEFFR framework introduced in Chapter 3 requires fault scenario inputs, which motivates

the research discussed in this chapter. To be able to mitigate potential risks effectively, one needs

to assess a majority of potential fault scenarios to identify the worst-case fault scenarios and take

mitigating action. Hence, to perform a comprehensive analysis, the HEFFR framework requires

input scenarios that cover a majority of if not all component failures and human errors. A major
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shortcoming of the HEFFR framework is that it relies on the designer(s) to come up with such

use cases; thus, making it highly subjective. Also, it is highly unlikely that anyone or a group can

capture use cases exhaustively enough to cover a majority of the fault scenarios. While assessing a

broad spectrum of fault scenarios can give some insight into potential risk, without quantifying the

failures, there is no way to prioritize fault scenarios. Without prioritization, designers will have to

treat all scenarios equally when considering mitigating action, which is unrealistic when there is a

large number of potential fault scenarios.

This chapter addresses the above gaps by introducing an approach to automatically generate fault

scenarios and deriving a model to quantify the risk of failures resulting from interactions between

human error and component failures. The goal of the automated scenario generation approach is to

generate use cases that can cover a wide range of fault conditions involving both component failures

and human errors. The risk quantification model aims to capture the severity of failures that are

caused by human and component fallibilities acting in tandem. The overall goal of this research is to

allow designers to assess the risk of hazards emerging from human- and component-related failures

occurring in combination and identify worst-case fault scenarios.

The automated scenario generation technique uses unified modeling language based automated

test case generation techniques from software engineering as a basis to automatically generate a wide

range of potential fault scenarios involving humans and components to be used as inputs for HEFFR.

It uses a modified Depth First Search (DFS) algorithm, component behavior models, and the human

action classifications to achieve its intended purpose. This approach creates scenarios that cover all

potential behaviors of both components and humans to make sure that a majority of potential fault

scenarios are produced. In reality, failures are not limited to one failure event. At times, when a

failure event occurs, it may go unnoticed. Such failures may come to light when other failures are

detected. Hence, the scenarios generated through this approach include multiple failure events to

represent what may happen in reality, reasonably. Furthermore, when a failure occurs, they can

cause other failures. To represent the cascading effects of failures, the fault scenarios allow failures

to propagate for a user-defined number of time steps. Finally, when component failures occur, they
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do not return to a nominal state unless they are repaired. On the other hand, when human errors

occur, humans can correct their errors and return the system to a nominal state. The automated

scenario generation technique takes this phenomenon into consideration to portray what may happen

in reality. In summary, the automated scenario generation technique aims to generate a wide range

of potential fault scenarios involving human and components in a way that they are representative

of what may happen in reality.

The risk quantification approach uses a cost and probability model to quantify the relative impact

(and thus priority) of critical event scenarios. To calculate the likelihood of the occurrence of critical

events, this research considers both component failure and human error probabilities, using traditional

reliability engineering principles to estimate component failure probabilities and the Human Error

Assessment and Reduction Technique (HEART) [25] to estimate human error probabilities. To

quantify the relative importance and priority of failures, this research adapts the expected cost of

resilience metric developed in Ref. [26], which defines expected cost as the multiplication of the

modeled probability and cost of the scenario. Designers can use these metrics with the automated

scenario generation technique to identify worst-case fault scenarios, prioritize fault scenarios, quantify

the impact of human errors and component failure, and pinpoint areas (both component and human

interaction related) where improvements can yield the greatest risk mitigation. Additionally, the

risk metrics will allows the use of the HEFFR framework to perform risk-based trade-off studies,

identify points of automation, select appropriate components, and establish operating procedures,

training, and safety protocols.. However, models of risk in these systems have implications to how

best to account for risks in the design process, and may additionally be subject to model and

parameter uncertainties. Thus, designers need to account for these uncertainties when modeling

human-component faults using this model.
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4.2 Background

This section explores automated scenario generation methods in engineered systems design and soft-

ware engineering to form the ground work for the automated scenario generation method introduced

in this research. Then, the methods used to quantify the probability of failure and human error are

discussed to build the foundation for the likelihood of occurrence calculation. Finally, the theoretical

basis for using expected cost in risk quantification is explained.

4.2.1 Automated Scenario Generation for Complex Engineered Systems

Design and Failure Assessment

Previous research has attempted to automate scenario generation to conduct failure assessment

and to validate system designs. One such attempt automatically generates test cases to validate

system design and implementation against requirements using a four-part algorithm [141]. First, the

algorithm uses the requirements model and the Greedy Search algorithm to identify base scenarios

that have the potential to test all requirements. Next, incomplete base scenarios are identified and

enhanced to make them complete. Finally, the base scenarios and the enhanced base scenarios are

combined to create a comprehensive list of test cases. TestWeaver [142] is another automated test

case generation tool used for systematic testing. It works like a game of chess where TestWeaver

plays against the system under test by making a series of moves with the goal of attaining goal

states which force the system to violate requirements. This allows the testing of a wide range of

alternative paths that can contribute to requirement violations. This tool was successfully used in

the design of the crosswind stabilization function to the Active Body Control (ABC) suspension for

the Mercedez-Benz 2009 S-Class [143]. Both of the test case generation methods discussed above do

not explicitly search for failures instead they are intended towards identifying requirement violations.

There have also been attempts to automate failure assessment by automating the fault cause and

effect scenarios. Prior research has implemented automated failure cause generation in Failure Modes
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and Effects Analysis (FMEA) for diagnostics and prognosis analysis. One such method induces

various component failures to the system and compares results between nominal system behavior

and faulty system behavior to understand the effect of a failed component [144]. The algorithm

performs this analysis by exhaustively covering all possible component failures. Another diagnostic

application of FMEA automatically generates diagnostics and fault analysis [145]. Another study

looks into improving reliability by automatically generating fault trees. It uses a Finite State Machine

(FSM) based system model to generate a fault tree that consists of all possible failures[146]. Another

method aimed at mitigating risk, SimpraPlan[147], uses functional requirements and the physical

structure of the system to generate scenarios that test for system vulnerabilities. There are several

other methods that automate event tree generation. However, these event tree generation methods

either do not directly relate to system design [148, 149] or require historical data or detailed system

data [150–152], making them inapplicable during early design stages. All of the methods presented

above either do not apply in a design context, do not generate human-related fault conditions, or

require detailed system data. Hence, they are not effective when it comes to generating use cases for

HEFFR analysis.

Inherent Behavior of Functional Models (IBFM) [153] uses functional models and functional

behavior models to automatically generate fault scenarios to assess potential failures and their

system-level effects. The simulation starts with introducing one fault at a time and progresses by

incrementing the number of faults introduced by one. It also allows for pseudo-time based simulations.

Even though IBFM can be applied early in design, since it does not consider component behavior

models, the scenario generation technique cannot be applied to HEFFR. Another early design

stage failure assessment framework, Functional Failure Identification and Propagation (FFIP), has

an extension in which automated scenario generation is present [154]. It generates event trees for

triggering events that fail to activate a set of predefined safety functions. This method can only

evaluate one triggering event and the corresponding event tree at a time; thus, making the overall

analysis human resource intensive when a large number of triggering events need to be analyzed.

Both of these methods are not capable of generating human-machine interaction related use cases
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Table 4.1: Comparison between risk assessment methods with automated scenario generation and
the proposed automated scenario generation method in this research

Ref. [144] Ref. [145] Ref. [146] SimpraPlan[147] IBFM[153] [154] HEFFR
Ability to generate scenarios relating to components ! ! ! ! ! ! !

Ability to generate scenarios relating to human % % % % % !

Applicability for Risk Assessment ! % ! ! ! ! !

Applicability during early design stages % % % % ! ! !

Ability to generate a majority of fault scenarios in-
volving both human and components

% % % % % % !

with enough detail to be applied in a HEFFR analysis. As none of the techniques detailed above

provide a sufficient solution to generate use cases for HEFFR automatically, this research explores

other fields that utilized model-based system representations. A comparison between the proposed

work and the existing risk assessment methods with automated fault scenario generation is provided

in Table 4.1.

4.2.2 Automated Scenario Generation in Software Engineering

We have explored the Model Based Testing (MBT) methods used in software engineering because

they involve automated test case generations. The advantages of MBT are listed below [155].

• It can reduce design cost.

• It provides the ability to identify issues with requirements.

• It allows testing early in the software design lifecycle.

• It allows for comprehensive tests that exhaustively cover all potential use cases.

• Fault Detection is more effective and efficient when compared with other types of software

testing.

The advantages of MBT are characteristics that would be ideal in the use case generation method

of HEFFR. Hence, we explored the test case generation methods utilized in MBT further. One such

test case generation method uses environmental behavior for scenario generation [156]. It defines
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the behaviors of the system using event traces that are made of relations between precedence and

inclusion. Event grammars, which specify the possible event traces, are traversed top-down and

left-right to generate test cases and evaluate cyber-physical systems. Another test case generation

framework uses high-level Petri Nets [157] to generate functional models, access control models, and

potential threat models. Petri Nets is a systematic method to model and verify software systems [157].

The Petri Net models are then searched using Depth First Search (DFS) and Breadth First Search

(BFS) to generate test cases automatically. A type of Petri Net model (namely Coloured Petri Net

model) that can an be used to model distributed systems is used in another approach to generate

test cases for distributed system protocols [158]. This approach takes a simulation-based approach

to automatically generating test cases. In an attempt to overcome challenges relating to testing

and verifying dynamic Simulink models, Matinnejad et al. [159] proposed a meta-heuristic search

based test case generation method that covers both continuous and discrete behaviors. The test

case generation aims to increase the diversity in the output signals so that the chances of finding

unexpected output signals are maximized. Finally, the generated test cases are prioritized based on

their likelihood of identifying faults.

Unified Modified Language (UML) based automated test generation methods are commonly used

MBT types [160]. UML is a system modeling language that includes several diagrams to represent

the architectural and behavioral aspects of a system [161]. Because of its wide use, usability, and

effectiveness, test case generation methods based on UML are highly popular [160]. One such

method [162] uses state charts to create FSMs using a tool called PerformCharts. Then, the FSMs

are fed into Condado, a graph theory based test case generation tool, to automatically generate test

cases that cover all possible transitions. A similar approach converts state charts into an intermediate

graph which is then traversed based on various coverage criteria to come up with test cases [163].

Another method [164] extracts data from class diagrams, sequence diagrams, and state diagram to

automatically generate test cases. Swain, Mohapatra, and Mall [165] proposed a framework that

combines state models and activity models to create a state activity graph which is then searched

using DFS to generate test cases.
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Numerous UML based test case generation methods use activity diagrams as the basis to generate

test cases. For instance, one method uses an exhaustive search and a test queue prioritization

technique to identify critical test cases [166]. Another method combines Tabu Search with test cases

originating from activity diagrams to generate test cases [167]. Stallbaum, Metzger, and Pohl [168]

used risk-based prioritization to generate test cases. The EasyTest method coverts activity diagrams

to activity dependency tables, and then into activity dependency graphs, and traverses using a dept-

first search based algorithm to come up with test paths and subsequently test cases[169]. Another

approach to UML based test case generation is to utilize use case diagrams as the basis to generate

the test cases. For example, one technique utilizes use case simulations to build test objectives and

sequence diagrams to generate test cases from test objectives [170]. Another technique uses use case

and sequence diagrams to create a system testing graph which is then traversed to generate test

cases [171]. Raza, Nadeem, and Iqbal [172] proposed a framework that uses the Interactive Overview

Diagram and a series of matrix generations to generate test cases for a specific coverage criteria.

Prasanna and Chandran [173] came up with a framework that uses object diagrams and genetic

algorithm’s tree cross over technique to generate test cases exhaustively. Then, the DFS algorithm

is used to extract the test paths.

In summary, the UML based MBT methods either utilize a single diagram or multiple diagrams

from the system model to generate test cases. The resulting test case trees are traversed using

a search algorithm to identify the test paths. Some frameworks go a step further and prioritize

test cases so that more emphasis can be given to most critical test cases. Similar to UML, the

system representation in the HEFFR framework uses a combination of graphs to generate the system

model. The similarity in the system representation and the benefits of MBT guided us towards using

UML based test case generation as a basis for this research. However, they cannot be directly used

because the system representation in UML is different than in HEFFR. As a result, we have studied

the process the UML based approaches have taken and applied it in this research to automatically

generate fault scenarios for the HEFFR framework.
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4.2.3 Probability of Failure in Risk Assessment

Traditionally, engineers have relied on the probabilistic risk assessment to quantify the risk of

failure [28]. Probabilistic risk assessment is the quantification of the risks due to hazards in terms of

severity (how bad the hazard is) and occurrence (how likely it is to occur) [174]. Fault Tree Analysis

(FTA) and Event Tree Analysis (ETA) are traditionally used to assess the risk of component failures

during probabilistic risk assessment [175]. Both of these methods rely on principles from reliability

engineering to calculate the probability of failure [28]. When a constant failure rate is assumed, an

exponential probability distribution can be used as in Eq. 4.1 to calculate the probability of failure

(Pf ) of a component [176], where λ is the failure rate and t is the operation time.

Pf = 1− e−λt (4.1)

Human reliability assessment methods are used to quantify the human error probability in prob-

abilistic risk assessment [28]. One common human reliability assessment method, THERP [34], uses

event trees to model human errors and quantify them, giving minimal consideration for performance

shaping factors. The Standard Plant Analysis Risk (SPAR-H) [38] method classifies tasks as action,

diagnosis, or mixed based on them being physical, cognitive, or both, respectively. SPAR-H calcu-

lates human error probability using the task type, system operation status, task dependencies, and

performance shaping factors. HEART [25] uses generic human error probabilities and performance

shaping factors (called Error Producing Conditions (EPC)) to calculate human error probability.

This research uses a combination of HEART and SPAR-H to calculate HEP because these

methods are easy to use, integrate well with actions in the action sequence graphs, apply to a variety

of industries, and have the most potential to predict HEP with the minimal information available in

early design. The probability of the component behavior modes is calculated using the exponential

probability distribution described above, following processes previously outlined for early design

reliability prediction [177].
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4.2.4 Severity in Risk Assessment

In probabilistic risk assessment, it is necessary to assess the severity of failures so that risks can be

prioritized and managed in proportion to their impact. Typically, FTA and ETA do not assess this

severity of consequence(s), leaving the assessment up to the judgment of the designer. Severity is,

however, assessed in detail in FMEA to prioritize faults and give details of the failure mechanisms

and consequences [175]. In FMEA, each of these (as well as rate of detection) is rated on a 0-10 scale

and multiplied into a risk priority number (RPN = Severity ∗ Occurrence ∗Detection). However

this approach has a number of limitations [178, 179]:

1. the ordinal scale for probabilities and severities distorts the relative impact of each since fault

probabilities and costs often vary over orders of magnitude,

2. RPNs calculated by different project groups on different systems may not correspond to the

relative risks of their subsystems because each number is subjective, and

3. there is no formal method to trade RPN for other desirable design attributes (e.g., to prescribe

a risk-mitigating feature).

As a means of overcoming these limitations, expected cost has been presented as an alternative

framework to design for risk [178–180]. When quantifying risk as an expected cost, the occurrence

is quantified using the estimated number of times a failure scenario is to occur while the severity is

quantified in terms of the cost incurred if that scenario occurs, according to:

C = E
s∈S
{C(s)} ≈

∑
s∈S

n(s) ∗ C(s) (4.2)

where S is the set of fault scenarios, n(s) is the lifetime number of occurrences for a scenario, and

C(s) is the modeled cost of a fault scenario. Expected cost can be used both for risk and resilience

quantification for design optimization [181–183]. To integrate expected cost quantification with fault

modeling tools, Ref. [184] considers three main costs: cost of failure, cost of repair, and cost of

partial recovery [26]. Costs can also be added for risk using existing safety cost schedules (e.g., [185]),
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Table 4.2: Functions, corresponding generic components, and their behavior modes

Functions Generic Components Behavior Modes
Import Liquid

Valve
Nominal On, Nominal Off,
Failed Open, Failed Close,
Stuck Open, Stuck Close

Guide Liquid
Export Liquid
Transfer Liquid Pipe Leak, Ruptured, Nominal
Store Liquid Tank Nominal, LeakSupply Liquid

provided one is at liberty to do so. This work adapts this quantification of expected cost to the

HEFFR framework to enable designers to prioritize and make sense of hazards given by a large set

of fault scenarios.

4.3 Proof of Concept Example: Hold-Up Tank

The same liquid tank design problem used in Chapter 3 is used to demonstrate the automated

scenario generation approach and the risk quantification model. However, more context is added to

the problem by converting it to a coolant tank to allow for severity prediction. The problem is to

design a liquid cooling tank that can maintain its coolant level between a minimum and maximum

threshold. The cooling tank is expected to maintain the temperature of a certain industrial machine

that can explode if overheated (i.e., if the coolant level becomes too low). If the coolant level is above

a certain level, the machine will cool down too much, resulting in severe damage. The coolant is a

hazardous chemical which can cause health issues to human if exposed in large quantities. A human

operator is expected to monitor the liquid level of the tank and shut off the incoming liquid if the

water level is too high, and shut off the outgoing liquid if the water level is too low. This set-up is

a simplified archetype of nuclear reactor and industrial plant operation, where maintaining optimal

temperature is critical for both performance and safety.

The system representation of this problem, including the functional model, configuration flow

graph, and action sequence graphs, is the same as what was displayed in Chapter 3. The system

has eight functions and five components, two of which interact with the human. The operator will
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interact with the valves to shut off the flow of liquid. The functions, corresponding components, and

their behavior modes are shown in Table 4.2, where the human-induced behaviors are shown in bold.

We use the function “Store Liquid" as the critical function because of its importance in maintaining

the temperature of the equipment and its failure can impact safety.

4.4 Automated Fault Scenario Generation

The objective of this research is to develop an automated scenario generation technique that covers

a majority of the component- and human-related fault conditions so that a comprehensive failure

analysis can be conducted using HEFFR. In this section, the automated scenario generation technique

is discussed and its application to the hold-up tank case study is demonstrated.

4.4.1 Methodology

We use the behavior model and the action classifications to generate fault conditions using transition

functions and a modified Depth First Search (DFS). DFS is a tree or graph search algorithm that

searches through a branch as far as possible before moving on to the next branch[186]. Each level

of the branch is considered as a time step and each branch as an input scenario for HEFFR. A

HEFFR analysis is done at every time step to check if the predefined critical functions are lost. If the

functions are lost, the search stops and the path (branch) and the results (failures and propagation

paths) are stored and the search moves to the next branch. The search continues until all branches

are evaluated.

4.4.1.1 Transition function

The transition function is a set of rules that are used to create the child nodes for each mother node.

For our application, these rules change the behavior mode (a state the component can be in, e.g.,
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Figure 4.1: An example of an application of the transition function

for a pipe, it can be leaking, ruptured, or working as expected) of the components to induce faults.

One of the rules makes no change to the mother node, creating a child node that is exactly the

same as the mother. This is done to study the propagation of faulty behavior without introducing

any further behavior modes. However, the number of time steps or number of consecutive child

nodes that the “no change rule” is applied is limited by a user-defined number. The rest of the

rules start with changing the behavior state of one component at a time until all behavior states for

each component are applied. Then, the behavior modes are changed for two components at a time

until all component combinations are done. This process increments until the behavior modes of all

components are changed to make sure that all possible combinations are executed. For example, if

the behavior modes of components A, B, and C are A1, A2, B1, B2, and C1, C2 respectively, the

rules applied and the resulting branches for mother node A1B1C1 are shown in Fig. 4.1. In order to

avoid explosion of scenarios, once a faulty behavior mode is introduced for a component, reverting

back to a nominal state is not allowed. However, the transition rules do not stop child nodes from

going to a previously analyzed faulty behavior state (i.e., if a pipe is leaking , it is allowed to go to

clogged and back to leaking in future time steps. But it is not allowed to go back to nominal in the

future). In reality, if a failure is present, usually, it does not go away unless it is repaired. However,

one failure can propagate to another.In rare occasions, external influence can cause temporary faulty

behaviors in components. Such malfunctions go away as the influencing factors resolve. For example,

cold weather can cause fluid to freeze and clog fluid flow in a pipe until the weather improves. In such

cases, designers are encouraged model those temporary behaviors as a subgroup of nominal behaviors

to allow the algorithm to switch back and forth between the temporary and nominal behaviors.
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When there are components that interact with the human, the rules are slightly modified. The

behavior mode generation for the component still stays the same. However, the child nodes are

allowed to go back and forth between nominal and faulty behavior for human-induced behavior

modes, because these behaviors do not involve mechanical failures and they only depend on the

human actions. When a non-human induced behavior is present, child nodes are not allowed to go to

human-induced behaviors anymore. When a non-human-induced fault such as a mechanical failure

is present in a component, a human’s interaction with that component will not alter the mechanical

failure or the system unless that component is repaired. Hence, considering human actions for such

behavior modes does not add any value. Note that the action classifications (results of human actions)

are not used to generate scenarios. Instead, the resulting component behavior modes are used to

generate scenarios. The HEFFR framework assumes that the human can only interact with the

system through its components. Thus, the human-induced behavior modes of the components cover

the system-level effects of human error. Hence, we have chosen not to consider action classifications

during scenario generation because this will only increase the possible combinations and not add any

value in terms of understanding the system-level effects of human error.

Action classifications provide valuable information on how human-induced behaviors are produced.

In order to give designers more details on what specific human actions contribute to human-induced

behaviors, the algorithm does the following. When a human-induced behavior mode is present, all

possible combinations of action classifications that can result in that specific behavior mode are

generated using the action simulation and presented with the results of the overall simulation. Even

when the behavior mode is nominal, combinations of action classifications are provided to the users

to make sure that any human errors that fail to propagate to affect the component behavior do not

go unnoticed. When generating the action classification combinations, the algorithm checks to see

if the action classification combination is viable. For instance, one cannot see an invisible object.

The algorithm checks for these relationships using the ASG and if combinations that violate these

relationships are present, they are omitted. These steps make sure that the combinations presented

to the user are as realistic as possible.
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4.4.1.2 Critical Event Scenario Generation and Evaluation

Initialization: The number of consecutive time steps the “no change rule” can be applied is retrieved

from the user. The users are advised to consider the maximum number of time steps required to

enforce the loss of the critical functions when choosing the number of consecutive time steps. For

instance, let us assume that the designers have modeled a hydraulic braking system in a way where

a leak in the line will cause the fluid to empty in five time steps and the brake pad will wear down by

10% on each time step if there is a faulty behavior in the caliber. The number of time steps the “no

change rule” should be applied should be ten instead of five because it is the maximum number of

time steps it will take for the braking function to fail. Also, the maximum number of time steps that

need to be simulated or the lowest level a branch can go to is also read from the user. These inputs

make sure that the algorithm does not get stuck in a branch indefinitely. Next, the critical functions

are read from the users. The behavior modes of all components and the action classifications of all

actions are initialized to a nominal state. This will serve as the mother seed for the DFS. Also, the

time step is initialized to zero.

Goal State: The algorithm continues through a branch until a goal state is achieved. The goal

state in this case is the failure of all critical functions. When a goal state is achieved, the algorithm

stores the critical event scenario input to HEFFR and the results from the HEFFR assessment.

Execution of the Transition Function: Two markers are used to track the application of the

rules. They track the rules applied down and across a branch. When the transition rule is applied,

these markers are updated. If the transition rule is the “no change rule", the algorithm checks if it has

been applied for the maximum allowable consecutive applications. If it has, it moves on to the next

rule. When a transition rule is applied HEFFR analysis is conducted to check if the critical functions

have failed. If the critical functions have failed, the path of the behavior modes (i.e., branch) and

the time steps are stored. The corresponding HEFFR results are also saved. Then, the search moves

to the previous level and the next transition rule is applied. The above process is iterated until there

are no more rules to be applied in level 1. Every time the search moves to a new branch, the last

time step from that branch is picked up and incremented for the new child nodes.
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Figure 4.2: A high level flowchart of the automated scenario generation approach

If at least one of the critical functions has not failed, the child node becomes the new mother

node and it is stored with its corresponding time step. Then, transition rules are applied to the new

mother seed and the process above is repeated. If there are no rules to be applied at the current

level, the search moves back one level and follows the above steps. Also, if the number of time steps

reaches the maximum allowable time steps, the search returns to the previous level and the above

steps are followed. This process is shown in a high level flowchart in Fig. 4.2.
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4.4.1.3 Understanding the Results

The output of an execution will contain| the fault scenarios with corresponding time steps and the

failures, human errors, and their propagation paths. We have chosen to leave the data in its raw form

because it will give the designers the flexibility to analyze for what they are looking for specifically.

For instance, if one is using this framework to identify the behavior modes that are most vulnerable

in terms of having an effect on certain functions, they can define those functions as critical functions

and look at what behavior modes were involved in the shortest paths that caused those functions

to fail. Similarly, if one wants to compare alternative designs, they can compare the data from the

runs for the alternatives to see which designs had the longest paths to failure on average. With

the emergence of big data and advances in data science, there are a wide variety of tools to extract

information. Hence, we present as much data as possible to designers so they can use such tools to

extract information that is tailored to their needs.

Next, the results from the application of the automated scenario generation method to the hold

up tank case study are presented. By executing this case study, we intend to explore if the algorithm

is capable of creating effective use cases that cover a wide range of fault scenarios that involve

component failures and human errors. Then, we study the results to see if the use cases were useful

in identifying potential human errors, component failures, and their propagation paths by answering

questions such as what are the fault scenarios that affect the critical functions of the system the

fastest? We also intend to identify the behavior modes that have the highest chance of affecting the

critical function. We do this by calculating the percentage of scenarios (of all scenarios identified

to cause the critical function to fail) with each type of faulty behavior modes. Overall, we try to

understand if the automated scenario generation method helps overcome the previously mentioned

limitations of HEFFR.
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4.4.2 Results

For this study, we chose the number of time steps a scenario should be allowed to propagate (number

of times the “no change rule” should be applied) to two. This is because the behavior of the tank

was set such that it would take two time steps to overflow or dry out depending on the flow of the

liquid. Having more than two consecutive time steps is redundant since if the function Store Liquid

were to fail due to a specific fault, it would in two time steps. Hence, analyzing the propagation of

the same failure anymore does not add any further value. We chose the maximum number of time

steps as five. Since the simulation continuously introduces faults at each time step, no single fault

scenario can be repeated for more than two consecutive time steps, and the tank behavior drives the

failure of function Store Liquid within two time steps, ideally, having up to four time steps would

have revealed a majority of worse case fault scenario combinations. We chose five time steps so that

we analyze a step further to uncover any unforeseen fault conditions. Note that in order to analyze

five time steps (until t = 5), six time steps needs to be analyzed in total because the simulation starts

at t = 0. Analyzing any further will introduce repetition of faults from previous sets of time steps.

For instance, a scenario set that was present between time steps one and three may be repeated

from time steps five to seven. Since the simulation is time-based, the number of potential scenarios

is infinite if such repetitions are allowed. Hence, to avoid the explosion of scenarios, it is up to the

user to choose the number of total time steps and number of time steps the “no change rule” can be

applied wisely by considering critical functions and the behavior modes of the related components.

When creating faults for time steps, no temporary component failures were considered (i.e., once

a non-human induced faulty behavior mode was introduced for a component, it was not allowed to go

back to a nominal behavior mode. However, human induced behaviors were allowed to go back and

forth between nominal and faulty behaviors). When generating action classification combinations

that can result in human induced behaviors, the following rules were considered.

• The operators cannot detect a signal without being able to see it. Hence, when the action

classification of the action See Water Level is “not visible,” combinations with action Detect

not equal to “not detected - failed” were omitted.
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Figure 4.3: The percentage of action classification combinations with each human induced behavior

• One cannot grasp an object without reaching it first. So, when the action classification for the

action Reach meant that the operator did not reach the valve, combinations with action Grasp

not equal to ”no action" were omitted.

• One cannot turn a valve without grasping it. Hence, when the action classification of the action

Grasp meant that the operator did not grasp the valve, the combinations with action Turn not

equal to “no action" were omitted.

The simulation begins by taking the critical function as an input. Next, the behavior modes of all

components are set to nominal - “nominal open” for the valves and “nominal” for the pipes and tank.

The initial flow and the water level of the tank are then set to nominal. Then, the number of time

steps a new node is allowed to propagate (“no change rule” is applied) and the total number of time

steps are set. Once these inputs are read, the algorithm begins to evaluate critical event scenarios

automatically. The execution took around 28 minutes on a personal laptop (IntelCore i5, 2.9 GHz

speed, and 16 GB RAM) which is reasonable considering the amount of information that can be

extracted. In total, around 15 million event scenarios resulted in the function Store Liquid failing in

t=5. Only two scenarios were found to have purely human induced faulty behaviors whereas 163,204
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scenarios had purely non-human induced behaviors. The rest of the scenarios had a combination of

both non-human and human induced faulty behaviors.

Out of the 1,824 possible action classification combinations only 152 were generated. The rest were

omitted based on the rules listed above (because they were not realistic). Out of the generated action

classification combinations, 4 each resulted in human induced behaviors “failed open” and “failed

close.” There were seventy-two combinations each for “nominal on” and “nominal off.” Additionally,

86% of the action classification combinations that contributed towards “nominal on” and “nominal

off” had underlying human errors (actions in faulty classifications, for example “cannot turn” - when

an attempt to turn is made and cannot be physically achieved, but not due to a component failure)

for at least one action meaning that these errors did not propagate to affect the system. However,

they must be considered when making design decisions because they may affect the system as the

design evolves. Seventy-five percent of all combinations that led to “nominal off” had the human error

“failed not detected.” Similarly, detect related human errors were prevalent across all behavior modes

(50% “failed detection” in ”failed open,” “failed close,” and “nominal on”) followed by reach, grasp,

and vision-related errors. The details of this analysis are shown in Fig. 4.3, where the percentages

are calculated by considering the number of times an action classification was present in the action

classification combinations that could result in a specific human induced behavior.

The shortest path for failure was at four time steps (t=3). There were 10,459 event scenarios

that led to the failure of the Store Liquid function in four time steps. All of the event scenarios had

the failure type “leak” for the component tank at least once. This is expected because the function

Store Liquid is directly fulfilled by the tank. A leaking outlet pipe and a clogged inlet pipe were

other commonly occurring failures (79% and 83% respectively). “failed open” was most common for

the outlet valve (78%) and “failed close” was most common for the inlet valve (78%) among human

induced behavior modes. The prevalence of the behaviors “leak” tank, “clogged” inlet pipe, and

“failed open” outlet valve indicate that a majority, if not all of these event scenarios resulted in a tank

dry out. The detailed analysis of the presence of each faulty behavior mode in the event scenarios

with the shortest path to critical function failure are shown in Fig. 4.4.
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Figure 4.4: The percentage of total event scenarios with each type of faulty behavior mode

Using this data, designers may make design decisions to avoid the leak in the tank and the outlet

pipe by trying different materials, adjusting wall thickness, or recommending additional testing of

these components. Similarly, they may choose to add sensors to detect clogs in the outlet pipe or

check the quality of the liquid to make sure that there is no residue build-up. For the human induced

behaviors, detect related errors are most common followed by reach, grasp, and vision-related errors.

To prevent detect related errors, designers may chose to make changes to the system by adding

redundant signals, or making signals more salient. On the other hand, they may suggest training to

improve the operators ability to detect signals. Designers may choose to conduct DHM analyses such

as reach analysis, percent vision obscuration, etc. to identify ways to mitigate non-cognitive human

errors. Depending on the workspace design, they may also choose to perform ergonomic assessments

such as comfort, lower back compression force, and biomechanics. They may apply human factors

engineering guidelines, suggest training, or device operational procedures to mitigate all types of

human errors. In contrast, they may not resort to design decision yet and further analyze the data.

They may choose to find out how the behavior of other functions contribute to the failure of the tank

or repeat the execution with different critical functions with different input conditions. Either way,
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when design changes are made, they may update the system model and iterate through this process

until a satisfactory design is derived. The designers may set the criteria for a satisfactory design as

they see fit. Note the HEFFR framework, being an early design stage tool, can only model changes

the system functions, components, and human action sequences. It cannot represent changes to

component parameters (such as thickness, material properties, etc,) and human action parameters

(change in anthropocentric, environmental conditions, etc.), which usually come to light during later

design stages. Hence, the analysis should only be iterated when such changes are made to the design.

4.4.3 Discussion

The hold-up tank example shows how the automated scenario generation can be used with HEFFR to

identify potential functional failures, human errors, and their propagation paths early in design. The

presence of both human induced and non-human induced behaviors in the scenarios indicate that the

automatically generated scenarios included fault conditions involving both humans and components.

The results showed the importance of avoiding behavior modes such as “leak” tank and “clogged”

input valve to mitigate the potential loss of the function Store Liquid. Among human actions,

detection related human errors were most prevalent stressing the need for mitigating such errors.

Additionally, human errors were present even when the components were in nominal behavior modes.

Even though these human errors did not propagate to affect the system under the circumstances the

system was analyzed, it is important to consider them when making design decisions because they

may be exposed in different circumstances.

The above results show the ability of the algorithm to generate a broad spectrum of fault scenarios

involving both components and humans that can violate the critical function of the system. Only a

small percentage of generated scenarios had purely human induced behaviors or non-human induced

behaviors, meaning that if human errors or component failures were evaluated in isolation, a majority

of potential fault inducing conditions would have been missed. This shows the importance of assessing

the effects of both component failures and human errors acting in combination to better understand
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potential risk and promote appropriate mitigation strategies. The data analysis presented in this

paper is minimal when compared with the information that can be extracted from the data. Only

t = 3 was analyzed in this example. Further analysis can be done at t = 4 or t = 5. Such an

analysis can give important information on how the system will operate under more regular and

less severe fault conditions. The ability to identify human errors that do not propagate to affect

the system is another plus since most system failures occur through failed to detect, compounding

failures. Overall, the proposed approach allows for a more comprehensive failure reasoning through

input scenarios involving the fallibilities of both humans and components. The results can be used

to conduct various types of analyses, depending on the needs and requirements of the designers.

The performance related measures such as the execution time and the number of scenarios that

caused the critical function to fail of this case study do not necessarily reflect the overall performance

of the algorithm. Considering the amount of information that can be extracted and how useful they

can be to design a safer, more reliable system, the execution time for this problem was acceptable.

However, the execution times surrounding more complex engineered systems and if they outweigh

the benefit of the information received is yet to be seen. A large number of event sequences were

identified to violate the critical function. We may never know if these numbers mean that the

scenarios included all of the possible combinations of human errors and component failures since

there is no such data to compare the results with. However, one can be assured that a majority of

such fallibilities were covered because the algorithm evaluated all possible combinations of behavior

modes at least once and the large volume of results mean that different combinations of these behavior

modes was evaluated.

The number of total time steps and the number of time steps where the same scenario can be

executed consecutively play a significant role in the total number of scenarios evaluated. In fact, the

number of scenarios increases exponentially with each time step. Since the simulation is time-based,

there is nothing that limits the number of scenarios except for the time. While having a lot of data

is important to be able to extract a wide variety of information, repetitive data in large volumes can

make this process slow, resource intensive, and at worse impossible. Designers are encouraged to
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consider the critical functions and the component behavior modes that can induce a failure carefully

to minimize the time-related variables. For example, in the liquid tank case study, the behavior

mode of the tank dictated that it will take two time steps for the tank to dry out or overflow from a

nominal level. That determined the total number of consecutive steps as two and total time steps

as five. If the behavior mode of the valve only required one time step for a failure to occur and

a designer was evaluating the function related to the valve as the critical function, he or she may

choose one or two for consecutive time steps and two or three for total time steps.

Another major contributor to the breadth of the search tree is the behavior modes of individual

components. As the behavior modes increase, the number of combinations of potential scenarios

increases exponentially, which in turn increases the total number of available scenarios. Hence, users

are encouraged to carefully consider behavior modes and avoid any redundancy. Based on the cases

presented above, one can argue that the proposed scenario generation method is vulnerable to data

explosion (i.e., too many scenarios being created). However, these vulnerabilities encourage designers

to think about the behaviors of the components that will be part of the system they are designing

early in the design process, which can lead to well thought out designs. Additionally, the explosion

of the scenarios can be avoided if the contributing variables are handled carefully.

Another way to avoid data explosion is to take a systems-of-systems approach into the analysis.

Complex systems can be broken down to less complex subsystems. The proposed approach can be

applied to these subsystems to identify the potential vulnerabilities of them. The resulting data can

be used to construct the whole complex engineered system in which the black box functions of each

subsystem will build the functional model, the subsystems themselves will be components in the

configuration flow graph, and the subsystems that interact with human will have action sequence

graphs. Then, the proposed automated scenario generation can be applied to the new system model.

Such an approach will help designers pay attention to individual components in more detail while

making sure that the overall system vulnerabilities and human fallibilities are addressed. Overall,

the proposed automatic test case generation technique overcomes some of the shortcomings of the

HEFFR framework. The scenarios generated, cover a wide variety of failure conditions involving
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both humans and components. This approach also allows the analysis of a large number of scenarios

at the same time. The proposed automated scenario generation technique may be prone to data

explosion. However, data explosion can be avoided and the path to mitigation will help designers

come up with more thought out concepts.

4.5 Quantifying Risk

As discussed in section 4.4.3, the automated scenario generation technique can help designers to mine

important information such as the shortest event sequence to failure, the likelihood of a particular

behavior mode being present during a failure, and the possibility of specific faulty human actions

being present in human induced behaviors. However, such metrics do not quantify risk in terms of

likelihood and severity. Without risk quantification, designers will have to treat all scenarios equally

and will not be able to prioritize fault scenarios to implement design solutions. When a large number

of scenarios are present, it becomes infeasible to give equal consideration to all scenarios. This section

overcomes this limitation by introducing a probability and cost model to the HEFFR framework to

quantify the risks of human and component-induced failures.

4.5.1 Methodology

The objective of this research is to aid designers identify and prioritize high severity fault scenarios

that result from the interactions between component failures and human errors (in addition to

the scenarios that result from them acting independently) during the conceptual design stage. We

use two metrics–the likelihood of failure, and expected cost–to achieve this goal. This is done by

processing the output of HEFFR to calculate the above metrics using cost and probability models.

The following definitions will be used for the terms event and scenario for the rest of this dissertation:

• Event: the behavior state of components and the human action classification states in a timestep

• Scenario: a collection of events
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Table 4.3: HEFFR sample result: Fault scenario input and resulting functional failures

Critical Event Scenario (HEFFR Input) Functional Failure
(HEFFR Output)

t Generic Component (GC) 1 GC2 GC3 Function (F) 1 F2 F3
0 Nominal Behavior Mode (NBM) 1 NBM1 NBM1 Nominal (N) N N
1 Faulty Behavior Mode (FBM) 1 FBM1 NBM2 Degraded (D) D N
2 FBM1 FBM1 NBM2 D D D
3 Human Induced Nominal Behavior (HINB) 1 FBM1 NBM2 N D N
4 Human Induced Faulty Behavior (HIFB) 1 FBM2 FBM2 Failed/Lost (L) D L

Table 4.4: HEFFR sample result: Human action classification combinations and resulting human
induced behaviors of component 1

Human Actions Inputs Resulting Human Induced
Component BehaviorAction 1 A2 A3

Nominal Action Classification (NAC) 1 NAC1 NAC1 Human Induced Nominal Behavior (HINB) 1
Faulty Action Classification (FAC) 1 NAC1 NAC1 HINB 1
FAC2 FAC1 NAC2 Human Induced Faulty Behavior (HIFB) 1
NAC2 FAC1 FAC1 HIFB1
FAC 1 FAC2 FAC2 HIFB1

A sample output for a HEFFR assessment of one scenario is presented in Tables 4.3 and 4.4.

Table 4.3 shows the critical event input at each time step and the resulting health of functions.

Table 4.4 shows the human action classification combinations and the resulting human induced

behaviors of a component.

4.5.1.1 Calculating the Cost of a Scenario and the Expected Cost of the

System

The costs of a scenario come from disruptions to safety and performance, and required repairs [26,

184]. To quantify these costs, we use Eq. 4.3, where Cs is the cost of a scenario, Cf is the immediate

cost (e.g., due to safety impacts), Cp is the performance cost (e.g., due to lost functionality), tr is

the time to recover, Cr is the cost of repair, NF is the functions in faulty states, and FC is the

components in faulty behavior mode. For Cf and Cp, all functions that are not in a nominal state are
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considered. For Cr, all components that are in a non-human induced behavior mode is considered

because human induced modes do not constitute damage, since they can be changed back to nominal

by the operators. Depending on if the components are repaired in parallel or series, tr will be equal

to the recovery time of the behavior mode with the longest recovery time or the sum of the recovery

times of all faulty behavior modes in the scenario.

Cs =
∑
i∈NF

Cf,i + (
∑
i∈NF

Cp,i)× tr +
∑
b∈FC

Cr,b (4.3)

To adapt this cost model to the system of interest, immediate cost and the cost of lost performance

must be specified for the “lost" and “degraded" states of each function, as well as the repair cost

and recovery time for each behavior mode of each component, which may be estimates based on

historic data. Any safety costs can be incorporated using cost schedules applicable to the industry

(e.g., [185]). The cost of a scenario is calculated based on the functional status and the behavior

modes of the components in the final time step (i.e., t = 4 in Table 4.3) of a scenario. We use

Eq. 4.4 to calculate the expected cost of failure of the system CF , where T is the life-cycle time, λs

is the failure rate of the scenario, Cs is the cost of a scenario calculated in Eq. 4.3, and F is a set

of failures. Since HEFFR output scenarios are only those that cause the critical functions to fail,

this cost calculation is only tabulated for those failures, which may be an incomplete set. Since the

probability of failure is defined as in Eq. 4.1, the term Tλs in Eq. 4.4 is calculated using Eq. 4.5,

where Ps is the probability of the failure scenario.

CF =
∑
S∈F

TλsCs (4.4)

Tλs = −ln(1− Ps) (4.5)
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4.5.1.2 Calculating the Likelihood of a Scenario

In this model, the behaviors of components in a time step and the events instantiated between time

steps are considered independent. This assumption is made for simplicity and because the HEFFR

simulation accounts for failures through the functional health of the system and the cascading effects

of failures through the automated scenario generation. That is, when a new event is introduced to a

scenario, no further events are introduced for a user defined number of time steps and the simulation

allows the failures to propagate at the functional level. Hence, the interdependent failures will be

assessed through their propagation at the functional level, so each event in a scenario can be thought

of as an independent initiating event. Moreover, when an event has multiple faulty component

behaviors present, each faulty behavior is considered to be independent of the others. Since the

scenario generation considers all possible combinations of behaviors, cascading effects of every faulty

behavior occurring alone or in tandem with others will be evaluated during the simulation. This is

done mainly for simplicity; while more detailed models, such as Markov Chain Monte Carlo models

or Bayesian graphs, represent events or behaviors as probabilistically dependent [187], these methods

rely on transition probabilities which may be difficult to specify in the early design stages.

Calculating the Probability of Non-human Induced Behavior Modes: The probability

Pf of a component operating in a faulty behavior mode is calculated using Eq. 4.1, assuming a constant

failure rate (λ) and an exponential probability distribution. For t in Eq. 4.1, the expected product

lifetime should be used. The probability of a component operating in a nominal behavior mode (Pn)

is determined using Eq. 4.6. We recommend using Nonelectronic Parts Reliability Data (NPRD)

and Electronic Parts Reliability Data (EPRD) to source component failure rates. These documents

are created through a rigorous data collection process where historic failure events, maintenance

records, and published data are used to present component failure rates [188, 189]. NPRD and EPRD

consider a component to be failed when a part is repaired/replaced, and the failure symptoms were

no longer present [188, 189], meaning that human induced behavior modes are not considered during

the failure rate calculations.

Pn = 1− Pf (4.6)
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Failure Mode/Mechanism Distributions (FMD) publishes the probability of failure modes and

mechanisms of components, given that there is a failure [190]. The data is sourced and scrutinized

similar to NPRD and EPRD [190]. When a component is in a nominal behavior state, the probability

of the current behavior of a component Pc is equal to Pn. When a component goes to a faulty behavior

mode from a nominal state, data from FMD can be used to calculate the probability of a specific

faulty behavior mode Pfb using Eq. 4.7, where Pfm is the probability of a faulty behavior mode given

that a failure is present. In that case, Pc is equal to Pfb. When a failure mode is already present

for a component, Pc is equal to Pfm of the current behavior mode, because a component that is in

a non-human induced behavior mode needs to be repaired to go back to a nominal state, making

the probability of it returning to nominal 0. A failure mechanism is the process that caused the

failure, whereas a failure mode is the effect of the failure observed [190]. In HEFFR, the behavior

modes of components are similar to failure modes. Hence, only the failure mode probabilities need

to be sourced from FMD. Since FMD does not distinguish between the probabilities of failure modes

and mechanisms [191], failure mode probabilities need to be normalized to omit the mechanism

probability distributions. For instance, if a component has two modes and a single mechanism, each

mode has a distribution probability of 0.2 and 0.3, and the mechanism has a distribution probability

of 0.5, the normalized probabilities of the modes will be 0.4 and 0.6, respectively.

Pfb = Pf .Pfm (4.7)

Calculating the Probability of Human Induced Behavior Modes: We use a combination

of SPAR-H [38] and HEART [25] methodologies to calculate the probabilities of human induced

behaviors. In HEEFR, ASGs are used to track the human actions that need to be performed to

interact with a component. Since the tasks in HEART are at a higher level (e.g., reduce speed)

than actions (e.g., grasp object) in ASGs, a direct comparison between the generic tasks in HEART

and actions in ASGs may be confusing. Hence, we propose the partial use of SPAR-H to assign

human actions to generic tasks. As in SPAR-H, we propose that designers designate each human

action in an ASG as “action,” “diagnosis,” or “mixed” if they are physical, cognitive, or both,
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respectively. For instance, the action Reach will be designated “action” since it is physical, whereas

action Detect will be designated “diagnosis” for being cognitive. The authors of SPAR-H have

provided the HEART generic tasks that are comparable with these designations, where generic tasks

D and F are comparable with designation “action” and generic tasks A-H, and M are comparable

with designations “diagnosis" and “mixed.” Designers can use these comparisons to assign generic

tasks to human actions in the ASGs (generic task descriptions can be found in Ref. [25]). When

assigning generic tasks to human actions each action should be assigned one generic task (generic

tasks A-H and M are listed in Appendix A).

The next step is to assign Error Producing Conditions (EPC) for each ASG in the system

representation. In total, there are 38 EPCs that can be assigned. A list of the HEART generic tasks

and EPCs are provided in Appendix A. Note that the EPCs are evaluated for whole ASGs and not

for individual actions, because the EPCs in HEART are more relevant at the task level and not at

specific action levels. In practice, HEART assessment requires the assignment of generic tasks at the

task level also, but doing so will not enable one to identify the actions that contribute to a task failure.

Hence, we have proposed the application of generic tasks to specific actions in the ASGs to calculate

the probability of individual actions failing. Some of the generic actions already incorporate EPCs.

The authors of HEART recommend omitting EPCs that are already incorporated in generic tasks to

avoid overestimation. The proportion of effects of an EPC must be evaluated for each action in the

ASG because the effect of these factors on each action may vary depending on the action performed.

In summary, the probability of an action in the ASG failing can be calculated using Eq. 4.8, where

Phf is the probability of a human action failing, Pg is the generic task probability from HEART,

EPC is the error producing condition factor, and x (between 0 and 1) is the proportion of effect of

EPC. Then, the probability of a nominal human action (Phn) can be calculated using Eq. 4.9.

Phf = Pg ×
∏
i

((EPCi − 1)× xi + 1) (4.8)

Phn = 1− Phf (4.9)
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When a human does not attempt to perform an action, identifying if that action is in a nominal

or faulty state depends on the context of the overall system. For instance, if operators detect some

signal which requires them to reach a valve, grasp it, and turn it off, and they do not attempt to

do so, these actions will be classified as faulty. However, if there was no signal and they are not

expected to turn off the valve, and they make no attempt, the actions will be classified as nominal.

Hence, we consider the human induced behavior in the previous time step and the current time step

to determine if a human action is in a nominal or faulty classification when no attempt to perform

an action is made. A human action can have multiple nominal and faulty classifications. However,

the calculations only identify the probability of a nominal or faulty action classification: they do not

go into detail to calculate the probabilities of specific classifications, since there is no direct method

to calculate such probabilities like there is for component behavior modes. Hence, to identify the

influence of specific action classifications, data mining approaches (e.g., those in section 4.4) will

need to be used.

Once the probabilities of each action in the ASG is assigned, the probability of the resulting

human induced behavior can be calculated using Eq. 4.10. Multiple action classification combinations

can result in the same human induced behaviors. Hence, a union of all these action classification

combination probabilities is taken to calculate the actual probability of a human induced behavior

Ph. For instance, if a human induced behavior has two action classification combinations and their

probabilities calculated using Eq. 4.10 is equal to Ph′
1
and Ph′

2
, the actual probability of the human

induced behavior is calculated using Eq. 4.11. Since the human induced faults are not considered in

the failure rate calculations, the probability of nominal component behavior (Pn) incorporates the

human induced behaviors. Hence, when a human induced behavior is present in a component, the

probability of the current behavior Pc is calculated using Eq. 4.12.

Ph′ =
∏
i

Phf,i.
∏
j

Phn,j (4.10)

Ph = Ph′
1

+ Ph′
2
− Ph′

1
.Ph′

2
(4.11)
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Pc = Ph.Pn (4.12)

Calculating the Probability of an Event and a Scenario: The next step is to calculate the

probability of an event Pe using Eq. 4.13, where i is all components. Then, for every time step j,

where the event is not equal to the event in the previous time step, the probability of a scenario is

calculated using Eq. 4.14. When an event is allowed to propagate, no new events are introduced in

the following time step. Hence, such time steps are omitted in the probability of scenario calculation.

Note that since the simulation is time-based, each time step represents a discrete change in system

state, and the simulation runs until a critical function has failed or a maximum number of time

steps are reached, the total number of time steps need to be chosen to minimize event repetition.

More details on how to choose the total number of time steps are provided in section 4.4. If not

the simulation may become computationally expensive. In summary, the simulation takes inputs for

costs, failure rates, system life cycle time, human generic tasks, EPCs, and EPC proportion effect

factors in addition to the HEFFR automated scenario generation inputs. After the simulation, the

cost of a scenario, expected cost of failure of the system, probability of a scenario occurring, and

probabilities of action classification combinations are generated along with the outputs from the

HEFFR automated scenario generation simulation.

Pe =
∏
i

Pc,i (4.13)

Ps =
∏
j

Pe,j (4.14)

4.5.1.3 Understanding the Results

The execution of the simulation yields a list of fault scenarios that result in the critical function failing

and their probabilities, costs, and expected costs. We have not added any data synthesis as part of

this work. Instead, we provide as much data as possible so designers can extract information tailored

to the requirements and challenges of the system they are designing. The goal of this approach
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is to not give exact probabilities for action/task or component failures, but to provide estimates

that are reliable enough to study the relative impact of faults during conceptualization. Providing

detailed probabilistic models for failures requires very specific information relating to the system. To

comprehensively quantify human error probabilities, details on actual tasks, the environment where

the task is performed, and the operator need to be considered. Since this information is not readily

available early in design, estimating the corresponding probabilities during early design stages is

difficult and subject to uncertainty. Thus, we focus on providing designers with an appropriate level

of model fidelity to identify and prioritize risks early, without making the analysis too detailed.

Next, the results from applying the risk quantification model to the hold-up tank case study is

presented. In this case study, we demonstrate the use of expected cost modeling to quantify risk

in an HEFFR simulation. We then explore the results to see if the proposed method is capable of

giving insight to designers about potential worst-case fault scenarios that cause the critical function

to fail by answering the following questions. Can we prioritize fault scenarios in terms of severity and

likelihood? Are there any fault scenarios that can be discarded? What are the worst-case component

behavior modes? What is the contribution of specific human actions to failures? In summary, we

try to understand if the proposed risk metrics calculations can help designers quantify the risk of

component failures and human errors acting in combination and identify and prioritize worst-case

fault scenarios to inform risk mitigation.

4.5.2 Results

First, the actions were designated as “action,” “diagnosis,” or “mixed.” Then, the generic tasks were

chosen based on the nature of the actions and their ability to match with generic task descriptions.

For example, the action Grasp was assigned generic task D because it is a simple task requiring

minimal attention. Six EPCs were identified for each ASG based on the system model and the

expected human-system interactions. The EPCs related to the operator (e.g., operator experience)

were not considered since no such information is available in the design problem. We assigned the
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proportion of effects of each EPC for each action based on the action performed, the component

the action will be performed on, how the action will be performed, and the conditions surrounding

performing the action. For instance, for the EPC “no clear direct and time confirmation of an

intended action from the portion of the system over which control is to be exerted,” the action Detect

was assigned a proportion of effect 0.1 for both inlet and outlet valves because the system model did

not include any means of confirmation for the detection of signal. However, if the operator fails to

detect the signal, it will only affect the system if they acted upon it (through action Turn, a different

action), making the proportion of effect of the EPC for the action Detect low.

We selected the failure modes of components from NPRD-95 [192], assuming the Ground Fixed

operating environment when rates were available. If they were not, failure rates from other ground

environments were chosen depending on their applicability for this case study. The total lifecycle

time was chosen as two years, given that the system will be in constant operation. The failure mode

distributions of the components were selected from FMD-97 [193]. The repair costs of the components

were estimated based on the cost of part replacement and diagnosis. The recovery times included the

time to repair components and time to clean up any resulting spills. The performance costs of each

function considered the impact of the function being degraded or lost on overall system performance.

The immediate costs of each function were estimated considering the chemical exposure, safety, and

necessary cleanup if there was a coolant spill. Assigned values relating to human actions, components,

and costs are available in Appendix B.

The simulation begins by taking the critical function (Store Liquid failing), initial component

behavior modes (nominal for all components), initial liquid flow rate (nominal), initial tank coolant

level (nominal), the maximum number of time steps (4), and the number of time steps a failure event

is allowed to propagate (2) as inputs. Next, the inputs for likelihood of occurrence and expected

cost calculations are read (the input values are listed in Appendix B). In total, around one million

scenarios that could cause critical function failure were generated. The total expected cost of the

system was found to be around one million dollars. The highest failure cost was around 52 million

dollars, and the maximum likelihood of occurrence was around 3.5 × 10−3. The lowest-likelihood
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Figure 4.5: Cost groups of fault scenarios

scenario had a probability of around 2.8 × 10−24, and the minimum scenario cost was around 13

million dollars. A majority of the scenarios modeled had low probabilities and thus low expected

costs. One reason for the low probabilities is the independence assumption used in the probability

model, where the probability of every independent behavior or event is multiplied with the others.

Another reason for this is because adverse events are rare by definition. As a result, it may be

expedient to put the scenarios in groups so that the high-cost scenarios are given priority.

Figure 4.5 shows a set of priority groups for the scenarios by setting a cut-off for the expected

cost of scenarios. As shown, the cumulative expected cost of the scenarios in the green is below 1,000

dollars. As a result, the designer may choose to ignore them. The cumulative expected cost of all

scenarios in yellow is less than 10,000 dollars, and thus may be worth considering as a group. The

high-impact scenarios are labeled in orange and red, with the highest impact scenarios in red. Based

on these cut-offs, these scenarios should be given individual attention to mitigate hazards effectively.

For instance, one of these worst-case scenarios caused the critical function to fail in three time steps.

In the first time step, the tank is in a faulty behavior mode (“leak”). In the next time step, no

further failures are present (failure from the last time step is allowed to propagate). Finally, the
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Figure 4.6: Expected cost of behavior modes

outlet valve goes into a human induced faulty behavior (“failed open”) while the tank is still leaking.

The benefit of this cost model is it identifies high-cost, high-probability scenarios like this and gives

them priority over less likely, less costly scenarios.

The impacts of each fault mode can be assessed by calculating the respective cumulative expected

cost of scenarios for each (Fig. 4.6). The behavior modes “leak” for the tank and “ruptured” for the

inlet pipe have the highest expected cost among the non-human induced faulty behaviors. Designers

may mitigate these risks by selecting components with lower failure rates, adding redundancies,

including advanced failure detection mechanisms, performing tests to understand the failure mecha-

nisms, and minimizing the chemical exposure when a failure occurs. As shown, the human induced

faulty behaviors for inlet and outlet valves (“failed open” and “failed close”) have a high expected

cost. Hence, further assessment is needed to understand the specific human action combinations

that contribute to the faulty human induced behaviors. Figure 4.7 shows the maximum reduction of

probability by eliminating action classification combinations. For example, for the inlet valve, the

probability of faulty behaviors can be reduced by 80%, if the top 45 of the total 112 action classifi-

cation combinations are eliminated. While one cannot eliminate action classification combinations,
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Figure 4.7: Maximum probability reduction from human action combination elimination

this plot shows that the human failure probability can be reduced significantly by focusing on a

small subset of combinations. The human action failure probabilities of these combinations can be

reduced by changing the system design and operational setting.

Figure 4.8 shows the number of times faulty action classifications are present among the scenarios

that can reduce the likelihood of behavior modes “failed open” and “failed close” of both valves by

80% each. As shown, faulty action classifications were only present for actions Detect, Reach, and

Turn. Also, not all faulty action classifications of these actions were present (e.g., “cannot reach” for

action Reach). Cognitive errors (detection related and when actions are not attempted) were more

prevalent when compared with non-cognitive errors (“cannot turn”). One way to reduce the likelihood

of the faulty action classifications occurring is to reduce the effect of EPCs through the design of

the system. For instance, designers may include action feedback mechanisms to eliminate EPC-14.

For cognitive errors, the designers may suggest training or operating procedures to improve operator

situation awareness as a means of mitigating them. They may also follow human factors engineering

guidelines to improve the design to support error mitigation. For the non-cognitive human errors,

they may use Digital Human Modeling to visualize the interaction and perform further ergonomic

assessments.

One of the major limitations of using an expected cost model to prioritize fault scenarios is that

the input information (rates and costs) may be low-fidelity. In this situation, it is important to

understand how changes in the model inputs variables affect the expected cost of scenarios and

thus the results of the analysis. To consider this uncertainty, we performed a Sobol [194] sensitivity
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Figure 4.8: The number of faulty action states

analysis with 10,000 samples (using Saltelli [195] sampling 560,000 model inputs in total) for the

hold-up tank study. Performance cost, repair cost, repair time, immediate cost, the proportion of

effects for error producing conditions, and failure rates related variables (54 in total) were considered

to have uncertainty. When assigning uncertainty ranges, ±20% of the original values were used

to assign minimums and maximums for all variables except for the proportion of effects for error

producing conditions related variables. For the proportion of effects for error producing conditions

related variables ±0.2 of the original values were used to represent the uncertainty better. Since

variables considered in the expected cost calculation vary scenario-to-scenario, we randomly chose

100 scenarios to perform the sensitivity assessments. The average first order and total sensitivity

indexes were calculated to understand the sensitivity of the model for each of the input variables

with uncertainty. The first order sensitivity index indicates the effect of individual input variables,

whereas the total sensitivity index indicates the effect of individual variables and the effect of all

interactions.

Figure 4.9 shows the averages of sensitivity index values of variable groups. Failure rates and the

proportion of effects of EPC factors had the highest first order and total sensitivity indexes, followed

by repair time-related variables. The first order and total sensitivity indexes for the other variable

groups were negligible. Among the failure rates, the failure rate of the pipe had the highest first
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Figure 4.9: Average sensitivity indexes for variable groups

order and total sensitivity indexes (66% and 61%). Among the proportion of effects of EPC factor

variables, variables relating to the action Turn for inlet and outlet valves had the highest first order

and total sensitivity indexes. Because of the high uncertainty in these variables, designers may focus

on designing the system to both improve the EPC factors and lower the sensitivity in the cost model

(thus making the cost assessment more accurate and reducing project risk). As shown, sensitivity

analysis helps pinpoint variables that require attention when considering uncertainties. When used

in design, the HEFFR analysis and corresponding sensitivity analysis can be repeated iteratively as

the design changes to ensure risk-related design goals are fulfilled.

4.5.3 Discussion

The example presented above shows how using a probability and cost model in the HEFFR framework

can extend its capabilities to quantify the severity of component failures and human errors acting alone

and in combination, compare fault scenarios, and identify the worst-case scenarios in terms of overall

impact. The results show that the generated data can be assessed further to examine the impact of

faulty behavior modes, identify action combinations with the greatest potential for improvement, and

pinpoint human actions that need further refinement. In the case of the coolant tank design problem,

we were able to identify the high-cost high probability failures requiring individual attention, low-cost
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high probability failures, and scenarios too rare to require further assessment. The faulty behavior

modes relating to the inlet pipe and tank had a higher expected cost among non-human induced

faulty behaviors. The expected costs of human induced faulty behaviors were also high. We also

found that the likelihood of human induced faulty behavior modes can be reduced significantly by

only assessing a fraction of the action classification combinations. Among the action classification

combinations with the highest potential for faulty behavior likelihood reduction, cognitive errors

relating to actions Detect, Reach, and Turn were prevalent, though a few combinations also included

non-cognitive errors relating to the action Turn.

The approach presented in this research is limited by the uncertainties present in the expected

cost and likelihood calculations, including those in parameter estimates and modeled behaviors [196,

197]. This is an important limitation, because while some decisions may not need completely

accurate inputs [198], design failures are theorized to result from designer biases [199]. A sensitivity

analysis allows designers to account for some of these uncertainties (specially, uncertainty relating to

parameter input variables) by pin-pointing variables that can have the highest effect on the system

when uncertainties are present. This enables designers to account for these uncertainties and make

better-informed decisions. The sensitivity analysis performed here showed that variables that are

directly influenced by design decisions (failure rates of components and EPC-related variables) had a

high impact on the expected cost when compared to cost-related variables, showing the importance of

the designer’s role when it comes to risk mitigation. The fact that both human error- and component

failure-related variables having high total sensitivity indexes (or the effect of individual variables and

the effect of all interactions) shows the importance of assessing both human errors and component

failure in combination rather than in isolation. The results also show that performing a sensitivity

analysis will allow designers to pinpoint specific variables or areas of design that need to be focused

on to improve overall risk effectively.

The above results show how the introduction of the likelihood of scenarios and expected cost

to the HEFFR framework can aid designers to evaluate fault scenarios and take risk mitigation

action. Without these metrics, there is no way to distinguish between fault scenarios in the output
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of the HEFFR framework, which creates the necessity to consider all scenarios equally. Since these

simulations produce millions of potential fault scenarios that cause critical function failure, considering

all fault scenarios to be equal is not feasible. Using these metrics in the HEFFR framework, fault

scenarios can be prioritized based on their severity, enabling designers to prioritize the most important

scenarios when designing mitigating features. In summary, this approach helps designers understand

the impacts of component failure and human errors acting alone or in tandem in the early design phase

to make risk-informed decisions. This is important because in traditional risk assessment methods,

such vulnerabilities come to light later–when design changes are costly and time-consuming–forcing

designers to find workarounds and retrofit changes (to meet deadlines and cost targets) rather than

proactively guarding against such vulnerabilities by design. The early design application of the

proposed approach reduces the chances of making such costly and time-consuming design changes.

When failure occurs, often, the impact on the operators and the surroundings is much higher

compared to the impact of lost performance. Hence, it is important to understand how failures

affect the environment and the human to be able to minimize risk appropriately. The proposed

approach includes the immediate costs in the cost calculation model, enabling the quantification

of the detrimental effects of failures on the environment and the safety of the human. With the

proposed approach, we try to generate as much data as possible. With the advances in the field of

data science, we believe that designers should be able to leverage as much data as possible to extract

the information they need to solve a design problem. For example, the case study presented in this

research tries to identify worst-case fault scenarios and impacts of faulty behavior modes and human

actions. The data analysis presented in the results section was tailored to address these questions.

Others may want to use this framework to compare design alternatives; for this, the expected cost of

each can be used to trade design risk with other performance attributes (e.g., efficiency). For example,

if one wishes to consider automating a process, system designs with and without human-component

interactions can be assessed on the basis of expected cost. Similarly, if concept refinement and

component selection are desired, the component behavior mode costs and probability can be assessed

to identify points of potential improvement.
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On the human front, designers might want to identify safe operating procedures, training re-

quirements, or safety protocols, which all can be identified by analyzing the human actions and

human induced behaviors of components. Given the amount of data present, the potential ways

to analyze the data are not limited to what is listed here–the data can be synthesized to address

design problems as designers see fit. All the benefits listed above, especially the data assessment

requirements, encourage designers to think more deeply about the system under development early

in the design process, which can result in well-thought-out designs. As a result, the potential for

identifying vulnerabilities relating to human interactions and components later in the design stages

or even after the system is in use is minimized.

One limitation of the model used in this work is that it assumes independence in the probability

calculations, which may be an underestimate. The fact that a majority of scenarios as shown in

Fig. 4.5 were given very low probabilities was a result of the underlying probability model form, which

is subject to mathematical model uncertainty [200]. Thus, while using expected cost is shown here to

help identify the highest-priority scenarios, valuing the set of scenarios remains a challenge because of

the effect of epistemic model and parameter uncertainties [196]. However, in the early design stages,

establishing dependencies to any reasonable accuracy is difficult, especially for human interactions.

Hence, we recommend the use of the proposed metrics only to compare between scenarios and

alternative designs rather than using them to quantify exact likelihood and cost. It should be noted

that many of the later design stage probabilistic risk and safety assessment methods such as ETA,

FTA, THERP, and SPAR-H incorporate dependencies in the probability calculations. Hence, the

application of these methods later on in the design will allow engineers to understand the likelihood

and cost of failure more accurately. Nevertheless, identifying the ideal underlying cost function and

probability model to use in early design remains a challenge, and the use of different probability

model assumptions should be explored in future work to determine the sensitivity of the value of

these scenarios to model assumptions and identify the most appropriate model forms.

Also, the user defined proportion of effects of EPCs can be subjective. Previous work has

attempted to remove the subjectivity surrounding this variable by replacing it with fuzzy linguistic
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expressions [47]. A similar approach can be taken if no subjectivity is desired. In summary, with the

introduction of the risk metrics, designers can use the HEFFR framework to identify worst-case fault

scenarios, perform trade-off studies, establish operating procedures and training, identify points of

potential human product interaction, and many more early in design. However, the probabilities

calculated may be subjective or be an underestimate due to assumptions made. As a result, we

advise using this framework to complement, not replace, traditional probabilistic risk assessment

methods.

4.6 Conclusion

This chapter introduced an automated scenario generation approach and a risk quantification model

to the HEFFR framework. The goal of this work is to allow designers to generate a wide range of

potential fault scenarios involving human and components, and identify and prioritize worst-case

fault scenarios. The majority of the scenarios generated had both human- and component-related

vulnerabilities. Similarly, the application of the risk model showed that the interaction effects

of component and human vulnerabilities had the highest sensitivity indexes. These result prove

the importance of assessing the combined effects of human errors and component failures. With

automated scenario generation and risk quantification, designers can use the HEFFR framework to

identify worst-case fault scenarios, prioritize fault scenarios, quantify the impact of human errors

and component failure, and pinpoint areas (both component and human interaction related) where

improvements can yield the greatest risk mitigation. Additionally, the framework can be used for

risk-based trade-off studies, to establish operating procedures and training, and to come up with

safety protocols.

For the automated scenario generation, the study presented in this chapter only checks if one

critical function is failing in a simple problem. Hence, the reported execution time and the failure

scenarios do not particularly shed light on the overall performance of the algorithm. As future work,

this approach should be applied to a more complex system with multiple executions and the results
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should be used to improve performance metrics such as execution time and the number of scenarios

executed. Another area of future work should explore results from multiple executions to look

into ways to streamline the transition rules so that the number of scenarios executed is minimized

while optimizing scenario coverage to include a majority of component failures and human errors.

Streamlining the transition rules will help with improving the overall performance of the automated

scenario generation approach introduced in this chapter. One limitation of the risk quantification

model is that it does not consider the uncertainties when calculating expected cost and likelihood.

While performing a sensitivity analysis (as presented here) can help designers to account for some of

the uncertainties, it does not give designers a full picture of the effects of the uncertainties present

within the model. Future work should study how to understand the effect of uncertainties on the

model to enable designers to best account for it in hazard modeling and risk-based decision making.
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Chapter 5: Evaluating the Performance of the Framework

This Chapter addresses research objective 3 by evaluating the performance of the Human Error and

Functional Failure Reasoning (HEFFR) framework introduced in Chapters 3 and 4. The evaluation

studies the framework’s applicability to complex engineered systems and the validity in terms of

its ability to predict and prioritize failures realistically. To study the applicability of the HEFFR

framework to complex engineered systems, a modular risk assessment approach is introduced as means

of managing complexity. Then, the modular risk assessment approach is validated for consistency

to make sure that it can produce similar design insights to integral assessments and be consistent

regardless of how the system is partitioned. This research has been accepted for publication in the

Proceedings of the 2021 International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference and was coauthored by Lukman Irshad, H. Onan Demirel,

and Irem Y. Tumer [201]. This research will also be submitted for publication in ASME Journal

of Computers and Information Science in Engineering. The validation study aims to validate the

HEFFR framework in two fronts. First, the pros and cons of the HEFFR framework is explored

in terms of its comparability with existing risk assessment methods. Next, the results from the

application of the HEFFR framework to a train locomotive design study is compared with past

train accidents to study if the HEFFR framework is capable of predicting those real-world failures

and assigning appropriate severities. This research will be submitted for publication in the Journal

of Mechanical Design and will be coauthored by Lukman Irshad, H. Onan Demirel, and Irem Y.

Tumer.

In this chapter, we also demonstrate an application of the HEFFR framework to perform risk-

based ergonomic assessments during early design stages using digital human modeling. The risk-based

digital human modeling approach brings together the Human Error and Functional Failure Reasoning

framework and digital human modeling platforms to prioritize ergonomic vulnerabilities and perform
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ergonomic assessments. The approach is demonstrated using a train locomotive design case study

and the digital human modeling platform Siemens Jack. Salman Ahmed, H. Onan Demirel, and

Irem Y. Tumer contributed to this research.

5.1 Motivation

As with any new fault modeling framework, the HEFFR framework needs to be validated to un-

derstand if it can achieve its intended functions. The HEFFR framework was developed to enable

designers to predict and prioritize failures (especially failures that result from component and human

vulnerabilities interacting) early in the design stages. While the hold-up tank example presented

in Chapters 3 and 4 does a good job in terms of demonstrating the ability of the HEFFR frame-

work to generate fault scenarios involving components and humans, model the combined effects of

component failures and human errors, and prioritize worst-case faults, it does not prove the scala-

bility and the accuracy of the HEFFR framework. Since the automated scenario generation uses an

exhaustive search, HEFFR simulations run the risk of becoming computationally expensive when

applied to more complex problems. Also, since the HEFFR framework assigns probabilities and costs

for failures based on the minimal information available during early design stages, the results are

subject to high uncertainties. Hence, it is important to understand if the scenario generation and

prioritization are accurate given the uncertainties present. This chapter aims to understand these

paradigms by studying the application of the HEFFR framework to a complex engineered system and

by comparing the results from the HEFFR framework with historic failures for accuracy. Then, the

HEFFR framework is compared against existing risk assessment methods to establish its capabilities

and limitation. Finally, an application of the HEFFR framework to perform risk-based ergonomic

assessments during early design stages is demonstrated to show an example of how designers may

use the HEFFR framework for design.

This research explores the applicability of the HEFFR framework to more complex problems

by applying it to a train locomotive design case study. We explore a modular analysis approach
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to manage complexity. First, the HEFFR framework is adapted to allow modular risk assessments.

Then, we study the validity of the adaptations by exploring the following questions. Is it better to

take an integral approach or a modular approach to analyze the design? Can the HEFFR framework

give consistent results regardless of the mode of assessment? What are some risk-related insights

designers can gain about the locomotive design? The results show that the modular assessments can

significantly reduce the number of function evaluations and, as a result, computational costs while

producing consistent results. The train locomotive study shows that the modular assessments can

produce similar risk insights to integral assessments, and such insights need to be viewed through a

modular context.

To validate the HEFFR framework, this research compares real-world train crashes that involved

injuries or fatalities with the results from the HEFFR assessment of a train locomotive design study.

Specifically, we explore the following questions. Is the framework able to automatically generate the

scenarios that led to real-world accidents? If it was generated, what is the assigned severity when

compared to the rest of the scenarios generated? Is the assigned severity appropriate when compared

to the real-world outcome? If the designers of the system were to use this framework during the

design of the system, would they have been able to catch and mitigate the potential accident? In

addition to validating against real-world accident data, we also compare the HEFFR framework

with existing risk assessment methods to understand its capabilities and limitations and the HEFFR

framework’s usage.

To demonstrate an example of how the HEFFR framework can be used to inform design, it is

coupled with digital human modeling to perform risk-informed ergonomic assessments. Traditionally,

task analyses are used to identify ergonomic vulnerabilities and identify the needed ergonomic studies.

Usually, experts perform a task analysis and decide the ergonomic studies that need to be performed.

Complex engineered systems may have a large number of potential human-machine interactions,

meaning a large number of ergonomic studies may need to be performed. Additionally, designers may

have to make trade-offs between different design features that may enhance some ergonomic features

while negatively affecting others. During the early design stages, when minimal product details
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are available, it might be challenging for experts to identify and prioritize the types of ergonomic

assessment needed for a complex engineered system design because of the high uncertainties present.

Additionally, when trade-offs are needed between ergonomic features, it may be hard for experts to

make an informed decision when there are minimal data and a large number of ergonomic needs.

This research demonstrates an application of the HEFFR framework to overcome these limitations.

This HEFFR framework will be used to define and prioritize the needed ergonomics assessments

based on the potential risk of faulty human-machine interactions. If the prioritized human ergonomic

vulnerabilities are non-cognitive, digital human modeling is used to visualize the human product

interactions and perform ergonomic assessments. The proposed application of the HEFFR framework

is demonstrated using a locomotive design case study and Siemens Jack (a DHM tool), and the

results are explored to understand the design insights that can be learned.

5.2 Background

This section forms the basis for using modular HEFFR assessments as a means of tackling complexity

in complex engineered systems design.

5.2.1 Modularity in Engineering Design

We have proposed modular risk assessments as a means of managing system complexity in this

research. A module is defined as a unit with strong internal connections and relatively weak external

connections [202–204]. In other words, elements within a module have strong connections among

them while having a weak interface with other modules [202, 205]. Modules work together to achieve

the functions of a system while maintaining a certain degree of independence [202]. Modularity

in design can help designers manage complexity by breaking down tasks into more manageable

chunks [204]. Modular designs can reduce cost and design time by allowing parallel work [204, 206].

When modules are properly defined, modularity can promote innovation [207]. Modularity also
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enables the mass customization and reuse of components [205]. It also allows faulty components to

be replaced rather than replacing the system [206]. While these advantages show the promise of

modularity in design, there are some disadvantages. Over modularization can increase testing and

system integration time while hampering innovation [207]. Also, modularity can lead to trade-offs

with performance [208] and robustness [206, 209, 210]. In summary, to fully reap the benefits of

modularity, designers should avoid over modularizing.

In this research, we do not pursue modular or integral designs. Instead, explore modular analysis

as a means of managing the complexity of performing risk assessments of complex engineered systems

using the HEFFR framework. The use of modular analysis is agnostic to whether the designers

are pursuing modular or integral designs. For modular risk assessments to be accurate, the overall

system model needs to be partitioned into modules in a way that each module satisfies the definition

of modules. There are several methods to partition modules. For instance, the Design Structure

Matrix (DSM) method [211] is a matrix-based approach that uses a clustering algorithm to generate

candidate modules. The Modular Function Deployment (MFD) method [212] uses 12 modularity

drivers (e.g., technology evolution, planned product changes, etc.) and functionality to form modules.

Other methods use network theory [213], fuzzy logic [214], genetic algorithm [215], and atomic

theory-based clustering algorithm [216] to generate modules.

We recommend using the function structure heuristic method [217] to form modules when per-

forming risk assessments using the HEFFR framework because the functional decomposition in this

method is the same as the functional model in the HEFFR framework. This method uses three

heuristics (dominant flow, branching flow, and transition modules) to devise modules from the func-

tional decomposition of a product. When a flow enters the system or initiates, all subfunctions it

passes through until it converts to a different flow or exits the system constitute a module according

to the dominant flow heuristic. The branching flow heuristic defines all parallel function groups as

modules. When a flow is converted and transmitted, the subfunctions involved in the process are

defined as a module according to the transition modules heuristic. While this research encourages the

use of the function structure heuristic method to generate modules, in circumstances where its use is
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not appropriate, any other method that suits the situation can be employed to derive modules. For

example, if a large system with thousands of subfunctions is to be analyzed, applying the heuristics

manually can become cumbersome. In such a case, designers may use a method with automated

module finding capabilities (e.g., DSM).

5.3 Applicability to Complex Engineered Systems

This study aims to present the applicability of the HEFFR framework to complex engineered sys-

tems. To achieve this, modular risk assessments are proposed to manage complexity and minimize

computational expense. First, the approach to using the HEFFR framework for modular risk as-

sessments is defined. Then, the proposed approach is validated by exploring whether the HEFFR

framework can generate consistent results regardless of the mode of assessment (modular or integral)

and the manner of partitioning. Further studies explore if the modular risk assessment approach can

generate similar design insights to integral assessments. Note that details on the HEFFR framework,

automated scenario generation, and risk quantification are not discussed in this section because they

are discussed in detail in previous chapters. Instead, this section will focus on detailing how to adapt

the HEFFR framework for modular risk assessments.

5.3.1 Methodology

5.3.1.1 Modular Risk Assessments Using the HEFFR Framework

The first step to performing modular risk assessments using the HEFFR framework is to partition

the system into modules. We propose using the function structure heuristic method (discussed in

section 5.2) to partition the functional model into modules. The overarching function is then defined

for each module based on the specific function they perform. For example, for a module that converts

and transports an energy flow, the overarching function is to convert energy. As shown in Fig. 5.1, a
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Figure 5.1: Generic module representation from the HEFFR system model

functional model of modules is created using the overarching functions. Next, the components in the

configuration flow graph are clustered based on the function modules. For instance, if components

A,B, and C in the configuration flow graph fulfill all functions in a function module, they are clustered

into one module (refer Fig. 5.1). The component clusters act as individual configuration flow graphs

for each module. As shown in Fig. 5.1, these component clusters are then combined into assemblies

to create the configuration flow graph of modules.

The next step is to define the behavior model and the functional flow logic of the system. The

behavior model and the functional flow logic are defined at both component and module levels. Each

module is treated as a separate system when deriving the behavior model and function failure logic

at the component level. Similar to component behavior models, the input-output relationships of the

flows that pass through modules define the behavior model of component modules. For example, for

an engine assembly, if the behavior mode is nominal, the mechanical energy output is proportional

to the fuel input flow rate (e.g., if the input flow rate is nominal mechanical energy output is

nominal). The functional failure logic classifies each overarching function as “operating,” “degraded,”

and “lost” based on the input-output flow states of each overarching function. For modules with

human interactions, the actions sequence graphs and action classifications are generated only at the

component level. Human interactions with components may vary from component to component.

Besides, humans may interact with multiple components in a module. Hence, if a module has

multiple components with human interactions, they have to be modeled at the component level to be

fully represented. Also, the ways humans interact with the system do not change if the components

are clustered into a module. They still need to interact through the components. Hence, it is not

necessary to derive action sequence graphs and action classifications for modules.
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Fault Simulation and Results.We propose performing the fault simulation at both component

and modular levels to quantify the severity of failures. In the HEFFR framework, an event is a

combination of component behavior modes that occur at a time step. A scenario is a combination

of events. At the component level, the HEFFR simulation is performed for each module separately.

For each module, a HEFFR assessment of all possible combinations of component behavior modes

(events) is performed to identify the events that can contribute to each output flow state of the

module based on the inputs. The inputs may include the input flow of the module, control signals,

or the behavior modes of components with dependencies with prior events. Some events may have

dependencies with previous events. For example, if the behavior mode of a valve is “stuck” in the

current event, its position in the current event is equal to its position in the previous event–if the

valve is closed in the last event, it stays closed in the current event. Hence, we use behaviors from

the last event as inputs for components that have such dependencies. At this level, the outcomes of

individual events are evaluated with no time dependence.

The HEFFR simulation defines the control signals based on the system state. Since the component

level assessments are performed for individual modules separately, and control signals that act as

inputs to modules may not always be produced in the same module, it is not possible to define

control signal states when the HEFFR assessment is performed at the component level. Hence, when

the component level assessments are performed for modules, the events are evaluated separately for

all combinations of the inputs. For example, if a module takes a control signal (e.g., True, False),

the behavior state of a component in the last time step (e.g., State 1, State 2, and State 3), and

an energy flow (None, Low, Nominal, High) as inputs, all events are analyzed for all combinations

of the inputs (i.e., [True, State1, None], [True, State1, Low],....., [False, State1, High]). The total

number of outcomes will be equal to the Number of Events × Number of Input Combinations.

The probabilities and expected cost of failures of module outputs are calculated using the probabil-

ity and cost calculation model of the HEFFR framework. The event probabilities are calculated using

failure rates, failure mode distributions, and human error probabilities (for details, refer section 4.5).

Each module output can result from multiple individual events. Hence, to compute the likelihood of
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a module output occurring for a given input, the probability of at least one event resulting in that

specific outcome given the input is calculated (i.e., if events A,B, and C result in outcome1 if inputs

C and D are present, P(outcome1, given C & D) = P(AUBUC)). The expected cost of an event is

calculated using immediate cost, lost performance cost, recovery time, and repair cost (for details,

refer section 4.5). The expected cost of a module output for a given model input is then calculated

by taking the average of the expected costs of all events that result in that specific output for the

given input.

With the probabilities and expected costs of module outputs, an event-time-based HEFFR

simulation with automated scenario generation is performed at the modular level by treating modules

as components and overarching functions as the functional model. For each module behavior mode,

the probability and the expected cost of the current behavior mode is equal to the probability and the

expected cost of the output, given the current inputs calculated at the component level simulation.

At this level, the likelihood of an event occurring is calculated using the module behavior mode

probabilities. Then, the scenario probabilities are derived based on the event probabilities. The

expected cost of a scenario is calculated by considering component and module level failures. The

contribution of components is calculated based on the event in the last time step, where the expected

costs of each module output for the given inputs are summed. Modules may have functions different

than the functions of their components. For example, a brake assembly slows down or stops the

vehicle, which is a function that the components of the assembly do not fulfill individually. Hence,

these modules can have additional immediate costs and performance costs. On the other hand, repair

cost only exist at the component level because repairs are only performed on components and not

on modules. To consider these module level failure costs, the expected cost of the module level

function failures is calculated (using scenario probability and immediate and performance cost of

lost module level functions). Then the expected cost of failure of a scenario is calculated by adding

the component and module level expected costs. The module level expected cost and probabilities

are calculated using the probability and cost model of the HEFFR framework using the underlying

principles described above.
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5.3.1.2 Validation Study

For the HEFFR assessments to be reliable, the results should be consistent regardless of the analyses

being modular or integral. Also, the way the modules are divided (as long as they are well-defined

and consistent) should not affect the results. We study the consistency of the results by performing

two types of analyses: integral versus modular and modular versus modular. We do not expect

the absolute values of the risk matrices to match between modes of assessment because of how the

analysis is performed between different modes. Instead, we study if the results can shed consistent

insights. For example, the components with the highest cost should be the same regardless of the

mode of assessment, even though the actual costs may vary.

For the integral versus modular analysis, we assess a system integrally and modularly and compare

the risk insights for consistency. Regardless of the mode of assessment, engineers should be able to

gain insight into the most vulnerable components and behavior modes. In an integral assessment, this

can be understood by calculating the cumulative expected cost of each behavior mode (if one desires

to learn the most vulnerable component behavior modes) or each component failure (if component

level information is sufficient). When performing a modular level analysis, such cumulative costs will

only shed light into the vulnerabilities of module behavior modes and module failures. To understand

the component level vulnerabilities, the contribution of each component behavior mode to the module

behavior costs need to be calculated. One can achieve this by first calculating the average expected

cost of each component behavior mode for every behavior mode. Then, these average expected costs

of component behaviors of each module behavior modes can be summed according to Eq. 5.1 to

calculate the average contribution of each component behavior mode to the system level failure costs.

In Eq. 5.1, ACb is average contribution of a component behavior mode to the system level failure

costs, MB is module behavior mode, E is events, Cb is expected cost of the event with the behavior

mode, and N is number of events.

ACb =
∑
i∈MB

[∑
j∈E Cb,i

Nj

]
(5.1)
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When an integral assessment is performed, some behavior modes of components are more likely

to appear in events than others. For example, if a pipe is leaking, the system may continue to operate

in a degraded state, with the leak continuing in the following time steps. On the other hand, if the

pipe is ruptured, the system will fail, and the simulation will move on to the next scenario. Hence,

the behavior mode leak will be present in more scenarios than the behavior mode rupture. In a

modular assessment, since the time-based simulation is only performed at a modular level, the above

phenomenon is not captured at the component level. Also, the effects of some of the failure costs

(that result from module function failures) are only captured at the modular level, while in integral

assessments, they are captured at the component level. Because of these differences in the cost model,

component behavior mode costs calculated from the integral assessment and modular assessment

cannot be directly compared. Instead, we compare the expected failure cost of a component failing

because behavior mode dependencies between components are represented in both integral and

modular assessments. Hence, in both assessments, we calculate the expected cost of a component

failing by taking the average of all faulty behavior mode expected costs of a component–cumulative

expected cost of behavior modes for the integral assessment and average contribution of a component

behavior mode to the system level failure costs for the modular assessment.

Since the modular assessments capture some of the failure costs at the module level, when

comparing component failure costs, we compare them independent of other module components. For

example, if a module has components A, B, and C, and another module has components D, E, and

F, we compare the failure costs of A, B, and C and D, E, and F separately with the results from

the integral assessment. We rank A, B, and C from the modular and integral assessments based on

their failure cost, and the rank of D, E, and F are compared independently. For the modular versus

modular assessment, we repeat the above study but with models with different module partitioning.

We also compare the number of function evaluations to understand the computational costs of

different modes of assessments. Finally, we explore the results of the modular risk assessment of

the system to understand if the same insights gained from an integral assessment can be extracted

through this mode of assessment.
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Figure 5.2: The functional model (White) and configuration flow graph (Green) of the train locomotive
subsystems with module partitioning

5.3.2 Case Study: Diesel-Electric Locomotive

This research uses a train locomotive case study to demonstrate the applicability and validity of the

HEFFR framework when assessing the risk of complex engineered systems. Specifically, we have

conceptualized the air brake system and the throttle and dynamic brake system of a diesel-electric

locomotive. The air brake can be operated by the train driver using a valve. The operator can

interact with the tractive motor through a lever in the cab. Pushing the lever to the forward position

activates the throttle (tractive force) while pushing it backward activates the dynamic brake. Leaving

the lever at the center position does not generate any tractive force or dynamic braking force, which

is equivalent to idling in “neutral” gear in automobiles. The control signals to apply the air brake,
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dynamic brake, or throttle are triggered by the current locomotive speed and external stimuli. The

external stimuli are fed into the system simulation requiring the train to stop, slowdown, or move.

Each event is simulated for all three stimuli. Note that the locomotive operation has been simplified

to replicate an early design stage conceptual design. Since the HEFFR framework is an early design

stage risk assessment tool, without such simplifications, we cannot fully explore its ability to predict

failures in complex engineered systems with the minimal information available during the early design

stages.

The functional model (white), configuration flow graph (green), and the module partitioning of

the system are shown in Fig. 5.2. In total, the system has 28 functions and 21 components, out

of which two (throttle lever from the tractive and dynamic brake system and valve from air brake

system) interact with the human. The actions and action classifications of the components that

interact with the human are listed in Table 5.1. The components have 75 behavior modes in total, out

of which ten are human induced. The system is partitioned into three main modules: Tractive and

Dynamic Brake System, Wheel Assembly System, and Air Brake System. The Tractive and Dynamic

Brake System is partitioned into two modules (Module 1A and Module1B, according to Fig. 5.2).

Module 1A is further divided into two modules (Module 1A1 and Module 1A2). The integral versus

modular study treats Module 1A as a whole system and Modules 1A1 and 1A2 as modules of that

system. The Air Brake System is divided into two modules (Module 1A and Module 1B, according to

Fig. 5.2). Module 1B is partitioned into two more submodules (Module 2B1 and Module 2B2). The

modular versus modular analysis considers the Air Brake System with two modules (Modules 2A and

2B) and three modules (Modules 2A, 2B1, and 2B2) to perform the comparative study of different

modularizations. Examples of functions, corresponding components, and their behavior modes at

both component and modular levels are presented in Table 5.2. The human induced behaviors of

components and assemblies are highlighted with bold text.

We used the three high-level subsystems (Modules 1, 2, and 3) as modules to assess the risk

of the overall train locomotive design. We sourced the component failure rates and the failure

distributions of behavior modes from Non-electronic Parts Reliability Data-95 (NPRD-95) [192] and
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Table 5.1: Actions and action classifications from the action sequence graphs for the throttle lever
and brake valve

Component (T: Throttle
Lever and B: Brake Valve)

Actions Action Classifications

T, B See Visible, Not Visible
T, B Detect Detected-Nominal, Detected-False, NotDetected-Nominal, NotDetected-False
T, B Reach Reached - Nominal, Reached - False, Cannot Reach, No Action
T, B Grasp Grasped, Cannot Grasp, No Action
T Move Move to Throttle On, Move to Dynamic Brake On, Move to Off, Cannot Move, No Action
B Turn Turn to Open, Turn to Close, Cannot Turn, No Action

Table 5.2: Selected functions, corresponding components, and behavior modes at component- and
modular-level

Function Module
(Yes/No)

Component/Assembly Behavior Modes

Convert H.E. to M.E. No Lever Nominal Off, Nominal Throttle On, Nominal Dynamic Brake On, Failed
Off, Failed Throttle On, Failed Dynamic Brake On, Stuck Off, Stuck
Throttle On, Stuck Dynamic Brake On

Actuate M.E. No Diesel Engine Nominal, Loss of Control, Failed
Convert M.E. to E.E. No Alternator Nominal, Drift Low, Drift High, No Operation
Regulate Air, Export
Air

No Valve Nominal On, Nominal Off, Failed Open, Failed Close, Stuck Open, Stuck
Close

Regulate P.E. No Disc Brake Nominal, Degraded Operation, Failed
Regulate Air Yes (Module 2A) Air Pressure Regulation

Assembly
Nominal, Failed, Low Pressure, High Pressure

Actuate P.E. Yes (Module 2B1) Brake Actuator Assem-
bly

Nominal Actuation, Nominal No Actuation, Insufficient Actuation, Failed Actuation,
Failed No Actuation

Regulate M.E. Yes (Module 2B2) Brake Assembly Nominal Braking, Insufficient Braking, No Braking

Failure Modes/Mechanisms Distributions-97 (FMD-97) [193], respectively. The expected time of

operation with no maintenance is selected as 6,700 hours, assuming that the train travels 100,000

miles per year at an average speed of 45 mph for three years. The recovery times of the components

were estimated considering the total down-time (e.g., diagnosis and repair time). The cost of lost

functions is estimated based on the impact of the functions being in a “degraded” or “lost” state on

the overall system performance. The immediate costs of lost functions are estimated assuming that

the locomotive is for a passenger train (e.g., safety, fatalities and injuries, loss of service of the track,

etc.). Four HEART [25] error producing conditions (or performance shaping factors) were identified

to influence the human action probabilities. They are,

• EPC2: a shortage of time available for error detection and corrections,

• EPC8: a channel capacity overload, particularly one caused by simultaneous presentation of

non-redundant information,

• EPC10: the need to transfer specific knowledge from task to task without loss, and
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• EPC34: prolonged inactivity or highly repetitious cycling of low mental workload tasks.

The error producing conditions were chosen based on the design of the locomotive and the actions

humans will perform to interact with the components.

Using this case study, we first study the validity of modular HEFFR assessment by comparing

the results between integral and modular assessments. Then, we explore the consistency and com-

putational expense of the modular approach for varying module divisions. We finally study results

from the modular assessment of the whole train model to study how it can guide risk-based design

decision-making. For this analysis, we have chosen the function Guide Solid as the critical function

because its loss means that the train is not performing its intended function, or worse–a derailment

or a crash. For assessments on subsystems, primary functions that directly affect the Guide Solid

function of the train were chosen as the critical function.

5.3.3 Results

For both integral versus modular and modular versus modular assessments, we performed a time-

based HEFFR simulation. The total number of time steps was set to 3, and the number of times

an event is allowed to repeat in a scenario was set to 1. The system was modeled in a way that if

a failure were to occur, it would occur within the above time step limits. As shown in Tables 5.3

and 5.4, for both integral versus modular and modular versus modular assessments, the module level

ranking of components based on the expected cost of them failing were consistent across assessment

modes. For example, in the integral versus modular analysis, the component engine had the highest

expected cost, followed by the component shaft for Module 1A2 in the modular assessment. The

ranking of these two components was the same in the integral assessment when they were grouped.

In the modular versus modular assessment, the ranking of the modules based on their expected

cost of failures was also consistent. Module 2A had the highest expected cost, followed by 2B (and

the 2B subpartitions in the case of the assessment with 3 module partitionings). In the integral

versus modular assessment, the number of function evaluations for the modular assessment reduced
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Table 5.3: Component rankings based on expected cost of component failure: integral vs. modular
assessment

Component/Module Expected Failure Cost (USD)
Modular Assessment Integal Assessment

Module Rank Component Module Level Component Level Component Level

Module 1A2 1 Engine 964,619 2419 2,168,066
2 Shaft 8.32 18,963

Module 1A1

1 Lever

416,459

92.32 429,598
2 Tank 90.20 118,975
3 Pipe 4.28 22,159
4 Valve 3.02 3598

Number of Function Evaluations 2,210 273,599

Table 5.4: Component rankings based on expected cost of component failure: modular vs. modular
assessment

Component/Module Expected Cost of Failure (USD)
2 Module Partitioning 3 Module Partitioning

Component Rank Module
Name

Module
Level

Component
Level Rank Module

Name
Module
Level

Component
Level

Valve 1

Module 2A 362,126

3,341 1

Module 2A 27,766,293

3,341
Compressor 2 1,208 2 1,208
Tank 3 590.7 3 590.7
Pipe1 4 15.7 4 15.7
Pipe2 5 2.06 5 2.06
Tank 1

Module 2B 233,243

2,281 1 Module 2B1 22,850,524 11,054
Triple Valve 2 371.5 2 4,173
Piston 3 119 1 Module 2B2 22,803,748 2,773
Brake Assembly 4 64.5 2 16.9
Number of Function
Evaluations 1,070 26,389

significantly (by 99.19%) when compared to the integral assessment. However, as the number of

modules increased from two to three in the modular versus modular assessment, the number of

function evaluations increased by 2,466%.

For the analysis of the locomotive design, the total number of time steps is set to 3, and the

number of time steps an event is allowed to repeat is set to 2 to accommodate the changes in the

train speed. The total simulation took 218,002 function evaluations. Because the number of function

evaluations grows exponentially as the number of behavior modes and time steps increase, the same

simulation would have taken hundreds of millions (around 1 billion) function evaluations if an integral

assessment was performed. As shown in Fig. 5.3, among the three modules, the Wheel System had

the highest average expected cost followed by the Air Brake System and Tractive Force and Dynamic
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Figure 5.3: Train module behavior cumulative expected cost and average module failure expected
cost

Brake System. The module behavior “failed throttle on” of the Tractive Force and Dynamic Brake

System had the highest severity followed by “failed” and “degraded operation” of the Wheel Assembly

System. To understand the contribution of components to these module failures, one may assess the

average expected cost of failures of components in this module (by following the average contribution

of a component behavior mode to the system level failure costs calculation model described in section

5.3.1, and taking the average of faulty behavior mode costs). However, this will not give insight into

worst-case behavior modes like in integral assessments. Without that knowledge, one cannot gain

insight into how to tackle specific behaviors, especially human induced, to mitigate risk.

For each module, one can identify components that contribute the highest to the systems failure

cost by ranking them based on their average failure expected costs. Once the highest contributor
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Figure 5.4: The cumulative expected cost of behaviors of components in module 1A: integral
assessment

components are found, the sub-modules these components belong to can be found. Worst-case

behavior modes can then be identified by performing integral HEFFR assessments on these sub-

modules and taking the cumulative expected cost of each behavior mode. In the train locomotive

design study, we chose the Tractive and Dynamic Brake System (the module with the behavior mode

with highest cumulative expected cost) to perform this detailed assessment. In reality, designers may

chose any module (e.g., modules with the highest average expected cost of failure) as they see fit

based on their design needs. For the Tractive and Dynamic Brake System, the components diesel

engine and lever were among the highest contributors to system-level expected cost. So, we performed

an integral assessment of the module (Module 1A) these components belonged to by choosing the

function Transfer ME as the critical function. The results from this analysis are shown in Fig. 5.4.
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As shown in Fig. 5.4, the behavior modes “loss of control” and “failed” of the diesel engine have the

highest cumulative expected costs, followed by behavior modes “failed throttle on,” “failed dynamic

brake on,” and “failed off” of the component lever. The behaviors of the diesel engine are non-human

induced. To minimize the expected cost of these behaviors, designers may choose components with

lower failure rates, add redundancies, include advanced failure detection mechanisms, or suggest

testing. The failure modes of the lever are human induced behaviors. To minimize the expected cost

of these behavior modes, designers may assess the human action combinations like in Chapter 4 to

identify worst-case human actions and action sequences. Then, based on the analysis, designers may

suggest design changes to improve performance shaping factors, ergonomic assessments, training,

operating procedures, or safety protocols. As design changes are made, these HEFFR assessments

can be repeated until the risk-related design goals are fulfilled.

5.3.4 Discussion

The above results demonstrates that the HEFFR framework can be scaled to assess complex engi-

neered systems using the modular analysis of the train locomotive design. The results show that

the modular analysis approach can produce consistent results for the modules that were assessed

regardless of the mode of assessment (integral versus modular and varying module partitionings).

Also, the computational cost was significantly low for the modular assessment compared to the

integral assessment. However, the computational cost increased (still lower than integral assessment)

as the number of modules increased. Also, the results of the locomotive design study show that the

module-based assessment can pinpoint similar design insights as integral assessments when combined

with targeted module level integral assessments.

For both integral versus modular and modular versus modular analyses, the assessment was only

performed on one subsystem each. As a result, we cannot conclude that the modular analysis will

always produce consistent results unless more systems are tested. However, the results are sufficient

to justify the use of the modular HEFFR assessment approach in the train locomotive design study
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because the validation studies were performed on modules of this system. The advantage of lower

computational cost faded as the number of modules increased. Hence, when performing modular

assessments, careful attention needs to be given to the module partitioning. Past research has shown

that the modularity of a system increases as the model granularity increases [218]. That means that

in highly detailed system models, a large number of modules can be present. In such cases, to offset

the risk of increasing computational costs, we recommend combining modules (e.g., combine Modules

1A1 and 1A2).

Having to combine the modular assessment with targeted module level integral assessments to

gain detailed insight into the cost of behavior modes may seem tedious and computationally heavy,

taking away the advantages of modular assessments. However, compared to having to perform an

integral assessment on the whole system, performing such targeted assessments are significantly

computationally cheaper. For example, in the case study presented in this research, including the

targeted integral assessment of Module 1A, the total functional evaluations were close to 500,000

which is significantly lower than the estimated number of functional evaluations (around 1 billion) for

the integral assessment. Hence, performing such targeted assessments is still advantageous compared

to having to perform integral assessments. During the design of complex engineered systems, usually,

different teams work on different parts of the design. In such cases, not all teams need to know all

the details about the individual subsystems the other team is designing. The design teams can use

the module-based analysis to get the bigger picture (in terms of system risk) of the design decisions

of other teams, while the targeted assessments can help them perform more detailed studies on the

subsystems they are designing.

Future studies may perform a more comprehensive validation study by expanding the integral

versus modular and modular versus modular analyses to more systems to understand the validity

of the modular HEFFR assessment approach to complex engineered systems in general. Also, the

validation study only checked the consistency in the results for one metric (expected cost of component

failures). While this metric can help designers determine important insights relating to component

and human behaviors, it is not useful in assisting risk-based trade studies. To understand if the
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modular analysis method can be used for risk-based trade studies, future research should include

the expected cost of the overall system as an additional metric that will be tested for consistency

in the above study expansion. For the purposes of this dissertation such an expanded study is not

necessary because the next section will be validating the overall HEFFR framework including the

modular risk assessments against real world accidents. As a result, any shortcoming in the modular

risk assessment approach will be exposed in that study.

5.4 Validating the HEFFR Framework

This section aims to validate the Human Error and Functional Failure Reasoning (HEFFR) framework.

First, we validate the ability of the HEFFR framework to generate and prioritize fault scenarios

that represent real-world failures by comparing results from a HEFFR analysis of a train locomotive

design with historic train crashes that involved fatalities and injuries. We specifically explore if

the HEFFR framework is capable of generating the scenarios that led to past accidents. Since the

HEFFR framework can generate a large number of potential fault scenarios, we further study if the

severities assigned by the HEFFR framework would have helped designers identify and prioritize

the scenarios that lead to train crashes. In addition, we explore if the HEFFR framework helps

designers identify the behaviors (both human- and component-related) that contribute to failures so

that appropriate mitigation strategies can be built into the system. In addition to validating the

HEFFR framework against past train accidents, we compare it with existing risk assessment methods

to understand how it can be used to complement risk-based design.

5.4.1 Methodology

The first step to validating the HEFFR framework is to extract past accident data to compare with

the HEFFR results. This study will compare the results from the modular HEFFR assessment

of the train design case study in section 5.3.2 with past train accident data. The train accident
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Table 5.5: Train modules and module behaviors

Module Behaviors
Air Brake System Nominal No Braking, Nominal Braking, Failed No Braking, Failed Low Braking,

Failed Braking
Throttle and Dynamic Braking
System

Nominal Throttle On, Nominal Dynamic Brake On, Nominal Off, Failed Throttle
On, Failed Throttle On - Low, Failed Throttle On - High, Failed Dynamic Brake
On, Failed Dynamic Brake On - Low, Failed Dynamic Brake On - High, Failed Off

Wheel Assembly Nominal, Degraded Operation, Failed

data were extracted from investigation reports from two databases: National Transportation Safety

Board (NTSB) and European Railway Accident Information Links (ERAIL). Both of these databases

(especially ERAIL) had reliable accident data only for accidents that happened after 2005. Hence,

only final reports published after the year 2005 were considered. Considering all accidents since the

year 2005 is not feasible because there is a large number of accidents, and analyzing each of them will

not add value to the validation study. Hence, this research focuses on a subset of accidents–accidents

with the highest severity. We defined the severity of accidents based on the number of fatalities and

injuries. All accidents with more than five fatalities and ten injuries were chosen to be analyzed as

part of the validation study. In total, 75 accidents were identified to fulfill these criteria. Among

the 75 accidents, 48 were identified as accident scenarios that must be present in the HEFFR train

design case study results. Accidents that were omitted included accidents in fully automated trains

(since these have no human operators and modeling them will not add value), and accidents that

were caused by elements outside of the train system boundary (e.g., traffic controller errors, track

maintenance crew errors, road vehicle driver error in level crossing accidents, etc.).

The next step is to convert events that led up to the accidents into HEFFR fault scenarios. We

do this by representing the events that led to the accidents through external stimuli (“move,” “slow,”

and “stop”) and module behaviors of the three modules (Air Brake System, Throttle and Dynamic

Braking System, and Wheel Assembly System) that were modeled using the HEFFR framework.

The module behaviors of each module are presented in Table 5.5. In addition to converting events

into modules, the faulty component behaviors and human actions that contributed to the accidents

were also identified. For example, the Santiago train derailment in Spain [219], which resulted in

80 fatalities and 144 injuries, was caused by overspeeding. The driver’s attention was diverted with
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Table 5.6: Example train accidents in the HEFFR fault scenario format

Timestep Throttle and Dynamic Braking
System Behavior

Air Brake System
Behavior

Wheel Assembly
Behavior

External
Stimulus

Train Derailment - Santiago, Spain (2013)
0 Nominal Throttle On Nominal No Braking Nominal Move
1 Failed Throttle On Nominal No Braking Nominal Slow

Train Derailment - Paulsboro, NJ (2012)
0 Nominal Throttle On Nominal No Braking Nominal Move
1 Nominal Dynamic Brake On Nominal Braking Nominal Stop
2 Failed Throttle On Failed No Braking Nominal Stop

repeated phone calls and caused him to brake too late when entering a curve. The late braking

resulted in the train entering the curve at almost double the speed than the recommended speed

limit. The investigation concluded that that the cause of the derailment was the lack of attention

paid by the driver (purely human factors related). This portion of the track was not installed with

an automated accident prevention system (which would have slowed down the train automatically

to the required speed limit). However, it included a safety warning system for overspeeding. If

the design decision to include the automated accident prevention system had been made, this train

crash could have been prevented. In the HEFFR fault scenario form, when the accident occurred

the external stimuli is “slow” (requiring the train to slow down), and the behavior modes of the Air

Brake System and the Throttle and Dynamic Brake System are “nominal no braking” and “failed

throttle on,” respectively. The air brake is in a nominal state because at high speeds dynamic brakes

are usually used to slow down the train and not the air brake. Hence, the driver’s lack of use of air

brake is modeled as a nominal state. At the component level, the throttle lever of the Throttle and

Dynamic Brake System and the brake valve of the Air Brake System were in failed human induced

behavior modes caused by the human action Detect being in a failed state.

Another accident, the freight train derailment in Paulsboro, New Jersey [220], had more than

28 injuries and was estimated to cost around 30.5 million U.S. Dollars. The train driver stopped

at a red signal and waited for a movable bridge to extend and fall in place. The red signal usually

turns green once the bridge is fully engaged. This time it did not turn green because the bridge

was not engaged properly due to a malfunction. The operator visually inspected the bridge and

confirmed that it was fully engaged and was given permission to bypass the red signal. The train
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derailed because of the false detection by the operator. In the HEFFR fault scenario form, when the

accident occurred, the behavior modes of the modules are the same as the Santiago accident, but

the external stimulus is “stop.” The HEFFR scenarios for both of the accidents above are presented

in Table 5.6. Note that the train locomotive designs and the fault scenarios generated do not include

any advanced features such as the safety warning system. The train design was kept simple to keep

the design minimal, representing an early design stage concept. One of the main objectives of this

validation study is to explore the abilities of the HEFFR framework during the conceptualization

stages (where concepts may start from a basic form and developed over time) of design. Hence, it is

important to validate with a basic concept when the uncertainties are at the highest.

With the converted train accident scenarios we aim to explore three questions.

• Q1: Will the HEFFR train locomotive HEFFR assessment generate all of the accident scenarios.

• Q2: If the accident scenarios were generated, did the HEFFR assessment assign severity that

are high enough to enable designers to easily detect those accidents?

• Q3: Are the most common module behaviors, component behaviors, and human actions that

were involved in the accidents easily identifiable?

The goal of Q1 is to validate if the HEFFR framework can generate a wide range of realistic fault

scenarios. The answers to Q1 are explored by searching through the HEFFR results to see if all

of the accident scenarios were generated by HEFFR. The second question studies if the severity

quantification in the HEFFR framework is realistic and if it does help designers identify worst-case

fault scenarios accurately. To study Q2, we rank the HEFFR fault scenarios based on severity and

check if the accident scenarios are ranked in the top half. The third question validates if the HEFFR

framework is capable of pinpointing the worst-case component behaviors and human actions. Q3 is

investigated by first ranking the cumulative expected cost of each module behavior and checking if

the module behaviors that were involved in the accidents are ranked in the top 50th percentile.

We calculate the cumulative expected cost of a module behavior by summing the expected cost

of all scenarios with the module behavior present in the last time step. We only consider the last
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time step for the cumulative cost of behavior calculation because the module behaviors of the train

accidents are from the final moments of the accident and most reports do not detail the events

that happened before. For each of the module behavior, we calculate the contribution of component

behaviors and test if the component behaviors that contributed to the accidents are ranked among the

top 50th percentile. We calculate the contribution of component behaviors by taking the average event

cost of each component behavior mode that can result in a particular module behavior. Similarly,

we calculate the contribution of human actions to human induced behaviors and check if the human

actions that contributed to the accident are easily identifiable in the HEFFR results. We calculate

the contribution of human actions by counting the number of action combinations that can result in

a human induced behavior with a specific faulty human action present. If the majority of the human

action combinations that result in a specific faulty behavior have a specific faulty human action, we

deduce that the designers will easily identify and prioritize that human action. The goal of these

tests is to find out if the HEFFR framework will help designers identify the faulty module behaviors,

component behaviors, and human actions that can have the worst outcomes. For Q2 and Q3, we

assume that the designers will prioritize fault scenarios, module behaviors, component behaviors,

and human actions that are in the top half when they are ranked in terms of their contribution to

the severity of failures.

The final step in the validation study is to compare the HEFFR framework with existing risk

assessment methods to understand its merits and shortcomings compared to existing risk assessment

methods. The results of this study will give insight into the ideal usage of the HEFFR framework

and when other methods are preferred over the HEFFR framework. To compare HEFFR with the

existing risk assessment methods, we first identify the capabilities and limitations of the existing risk

assessment methods discussed in Chapter 2. Then, we identify the capabilities and limitations of

the HEFFR framework from the studies in Chapters 3, 4, and 5. Then, the results are compared

to understand how the HEFFR framework compares against existing risk assessment methods. The

results of the validation study are detailed in the following section.
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Table 5.7: HEFFR accident scenario ranking based on severity and minimum and maximum expected
costs of scenarios with the same end state as the accident scenario

Scenario Rank Total Acci-
dents

Number of Similar Scenarios
Generated by HEFFR

Minimum Expected Cost Among
Similar Scenarios (USD)

Maximum Expected Cost Among
Similar Scenarios (USD)

1 3565 2 68 7340 25037
2 287 1 68 24621 166548
3 273 22 33 14682 717277
4 70 5 33 14682 717277
5 37 1 4 14815 1090563
6 22 1 10 7346 1266181
7 8 14 5 14864 2423381

5.4.2 Results

Seven unique HEFFR fault scenarios were created when all accident scenarios were converted to

HEFFR form. As shown in Table 5.7, a majority of accidents (36) were represented by two HEFFR

fault scenarios. While the scenarios that led to these accidents were similar at a higher level (e.g.,

failure to detect a signal and proceeding without stopping), they still had minor differences in details

(e.g., late application of brake vs. no application of brake). Since HEFFR simulation is discrete, it is

not able to capture such minor details. Since the outcome is not stopping at the expected moment

in both late application and no application of brakes, HEFFR treats them similarly. This lack of

fidelity is an expected trait of HEFFR because it is an early design stage risk assessment framework

that models failures with the abstract data that is available.

Answering the first question formulated above, all of the accident scenarios were generated by

the HEFFR framework. The accident scenarios also had a shorter time to failure 1 or 2 time steps,

meaning that if designers were analyzing the fault scenarios with shorter time steps to failure, they

would have identified and prioritized the accident scenarios. As shown in Table 5.7, the HEFFR

framework also generated scenarios (with 1 or 2 time steps) that would have had the same result as

an accident but with a different event sequence. For example, for accident scenario 1, the HEFFR

framework generated 68 similar scenarios that had the same result with different event sequences

in 2 or 3 time steps. The expected cost of these scenarios differs (even though they have the same

outcome) because the probabilities of occurrence are different. All but one accident scenario had the

highest expected cost among the similar accident scenarios. In the case where the accident scenario
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cost was not the highest (Scenario 3), the similar accident scenario with the highest expected cost

was captured as part of a different accident scenario (Scenario 4). Being able to analyze similar fault

scenarios to worst-case fault scenarios will help designers study the different event sequences that

may lead to the same system-level failures and make sure that preventive strategies are built into

the design. When a large number of scenarios are generated, lower severity scenarios will only get

minimal attention (often analyzed as a whole and not individually). However, having similar scenarios

to worst-case scenarios will allow designers to identify and individually analyze lower severity fault

scenarios that may have a similar result to worst-case fault scenarios.

As shown in Fig. 5.5, all of the accident scenarios were assigned serveries in the top 50th percentile,

answering the second question. The expected costs were ranked higher than the 97th percentile of

the 134,187 scenarios generated by HEFFR, meaning that 97 percent of the generated scenarios had

expected costs that were lower than or equal to the accident scenarios. This is much better results

than the expected 50th percentile, and it means that the accidents scenarios will be among the very

top priority (meaning higher chances of risk mitigation) if the scenarios are prioritized based on the

severities. A majority of the accidents had the faulty module behaviors “failed no braking” for the

Air Brake System and “failed throttle on” for the Throttle and Dynamic Braking System. Among

the accidents that involved the Wheel Assembly System, the faulty module behavior “failed” was

common. As seen in Fig. 5.6, the modules that are most common among the accidents scenarios

had the highest cumulative expected costs (when considering their presence in the last step of the

scenario) for each subsystem (highlighted in red). This means that the HEFFR framework can help

designers identify and prioritize the faulty module behaviors that can have the worst outcomes.

The human-induced component behaviors “failed throttle on” of the throttle lever and “failed

close” of the brake valve were the most common faulty component behaviors among the accident

scenarios. The component behaviors “failed throttle on” of the throttle lever, “leak” of the diesel

tank, and “stuck throttle on” of the throttle lever were the top three (among 27 faulty component

behaviors) contributors to the module behavior “failed throttle on” of Throttle and Dynamic Braking

System in the HEFFR framework results. The component behaviors “stuck close” of the triple valve,
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Figure 5.5: Expected cost of failures and likelihood of occurrence for the train accident scenarios with
their ranking percentiles when compared to rest of the scenarios generated by the HEFFR framework

“degraded operation” of the brake assembly, and “failed close” of the brake valve were identified as

the top three (among 18 faulty component behaviors) contributors to the module behavior “failed

no braking” of the Air Brake System in the HEFFR framework results. Both common component

behaviors in the accident scenarios were ranked higher than the top 50th percentile (Ranked as the

highest contributor in the case of “failed throttle on” and ranked third highest contributor in the

case of “failed close”), meaning that the HEFFR framework would have helped designers pinpoint

the faulty component behavior modes that had the worst outcomes.
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Figure 5.6: The cumulative expected cost of behaviors of modules with the fault behavior modes
that were present in most train accidents highlighted in red

Action classifications “failed not detected” (signal present but not detected) and “failed detected”

(signal is not present or a different signal is present and wrongfully detected) were among the most

common human action failures that contributed to the faulty component behaviors that resulted in

the accidents. The HEFFR framework assessment results showed that 36 human action combinations

of the 48 that can result in the component behavior “failed close” for the brake valve had the faulty

human action classification “failed not detected.” One hundred and twelve human action combinations

of the 130 that can result in the component behavior “failed throttle on” for the throttle lever had

either the “failed fetected” or “failed fot fetected” action classifications. The presence of the faulty
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human actions that were common in the accident scenarios in a high percentage of action combination

means that the HEFFR framework would have helped designers identify these faulty human actions

with the worst system-level outcomes. In summary, these results show that the HEFFR framework

would have helped designers pinpoint the faulty module behaviors, component behaviors, and human

actions that would result in failures with the highest severity, answering the third question.

As shown in Table 5.8, the major advantage of the HEFFR framework when compared to existing

methods is its ability to analyze the system level propagation of human errors and component

failures acting in combination during early design stages. The HEFFR framework lacks fidelity

when compared to the late design stage risk assessment methods. This is expected because the

HEFFR framework models failures with the minimal data available during the early design stages.

The risk matrices of the HEFFR framework are relative, making them useful only for comparison

purposes, whereas the risk matrices in more detailed methods are more accurate and can be used

to understand failure probabilities and severities better. HEFFR uses event-time when used with

automated scenario generation and discrete-time when fault prediction is performed alone (as in

Chapter 3) for dynamic simulations. The dynamic risk assessment methods, on the other hand, are

capable of more detailed simulations with continuous-time. Theoretically, the HEFFR framework

should be able to analyze hardware-software and software-human interaction related failures because

it is an extension of the FFIP framework. However, this has to be validated to fully understand the

capabilities of the HEFFR framework surrounding modeling hardware-software and software-human

interaction-related failures. When compared with systemic risk assessment methods, the HEFFR

framework falls short in terms of analyzing organizational factors related risks. In summary, while

there are some limitations to HEFFR when compared to existing risk assessment methods, none

of the existing methods are capable of analyzing the system-level effects of component failure and

human error interactions during early design stages as the HEFFR framework does.
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Table 5.8: Comparing the capabilities and limitations of existing risk assessment methods with the
capabilities and limitations of the HEFFR framework

Category Subcategory Risk Assessment
Methods

Component
Failures

Human
Errors

Human
Errors,
Com-
ponent
Failures
Com-
bined

Failure
Propa-
gation

Early
De-
sign
Stage

Dynamic
Sim-
ula-
tions

Hardware-
Software
Inter-
action
Failures

Software-
Human
Inter-
action
Failures

Subjective

THERP [34] No Yes No Yes No Yes No Yes Yes
SHERPA [36] ,
SPAR-H [38]

No Yes No No No No No Yes Yes

HEART [25, 43–
49]

No Yes No No No No No Yes NoNon-cognition
Focused

SLIM [37, 50, 51] No Yes No No No No No Yes No
HCR [35],
ATHEANA [39],
MERMOS [41,
42]

No Yes No No No No No Yes Yes

Cognition
Focused CREAM [40, 52–

56, 61, 62]
No Yes No No No Yes No Yes No

Dynamic
Simulation
Methods

PSPHERE [63],
Ref. [60]

No Yes No No No Yes No Yes No

TECHR [58],
THEA [57]

No Yes No No Yes No No Yes Yes

Human
Reliability
Assessment

Early
Design eMHRA [59] No Yes No Yes No No No Yes Yes

FMEA [64, 67–
72]

Yes Yes No No No No No No No

FTA [65, 73–77] Yes Yes No No No Yes No No No
ETA [66, 78–80] Yes Yes No Yes No No No No Yes

Traditional
Methods

RBD [82], Bow-
tie diagrams [81]

Yes No No Yes No No No No Yes

FFDM [83, 84] Yes No No No Yes No No No No
CSCSIT [85] Yes No No No Yes No No No No
COBRA [86] Yes No No Yes Yes No No No No
FFIP [23, 90–92] Yes No No Yes Yes Yes Yes No No

Early
Design
Stage

Bayesian Net-
work [88, 89]

Yes No No Yes Yes Yes No No Yes

Markov Chain-
based [93, 94]

Yes No No Yes No Yes Yes No Yes

Component
Failure
Assessment

Hardware-Software
Interaction Environmental

Modeling-
based [95–97]

Yes No No Yes Yes Yes Yes No No

Systemic
Risk
Assessment

STAMP [98],
FRAM [99],
Ref. [100]

Yes (orga-
nizational
level)

Yes
(orga-
niza-
tional
level)

Yes (orga-
nizational
level)

Yes No No Yes No Yes

FHEDM [108],
Ref. [107]

Yes Yes Yes No Yes No No No No
Human Error
+ Component
Failures

HEFFR Yes Yes Yes Yes Yes Yes
(Event
Time
or Dis-
crete
Time)

Not
validated

Not Vali-
dated

Minimal
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5.4.3 Discussion

This research has validated the HEFFR framework in terms of its ability to predict failures realistically

and its comparability with existing risk assessment methods. The results show that the HEFFR

framework generated all the severe train accident scenarios and assigned appropriate severity to these

failures. Moreover, the module behaviors, component behaviors, and human actions that were most

common in severe train accidents were also easily identifiable. In addition to generating the accident

scenarios, the HEFFR framework also generated scenarios that would have the same outcome but

with different event sequences, allowing designers to identify low probability high impact scenarios

that otherwise would have had low expected costs (due to the lower probabilities). Also, the accident

scenarios had shorter paths to failures when compared with a majority of the potential fault scenarios.

However, the HEFFR scenarios were not able to represent the minute details that were present in

the accident scenarios because of the discrete nature of the simulation and early design application of

the HEFFR framework. The comparison study showed that the HEFFR framework cannot replace

the existing high fidelity risk assessment methods but can complement them by catching potential

failures early in the design stages and minimizing the chances of finding major vulnerabilities when

more detailed studies are performed.

The validation study also showed that the HEFFR framework can help designers mitigate severe

failure through multiple fronts. The straightforward way to identifying potential worst-case fault

scenarios is to prioritize scenarios based on expected cost. Another approach will be to analyze the

failures with the shortest event sequence because the validation study showed that all of the accident

scenarios had a shorter time to failure. One may also identify the specific system behaviors that can

contribute to worst outcomes by taking the cumulative expected cost of module behaviors based on

the final event, identifying the specific component behaviors that had the highest contribution to the

module behaviors with the highest expected costs, and pinpointing human actions that were present

in most human action combinations that resulted in the component behaviors with the highest

contribution. If such behaviors are identified early on, designers may include design strategies that

prevent the system from going into those behaviors. The HEFFR framework does not include any
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data synthesis. Rather, the focus is to provide as much data as possible to the designers so they can

tailor the data synthesis to the needs and specifications. If the designers are aiming to mitigate the

most severe failures, the data synthesis approach used in this study will be ideal. However, if the

purpose of assessment is different (e.g., risk-based trade studies), the data synthesis approach will

have to be tailored to fit that specific purpose (e.g., calculate the overall system’s expected costs and

compare with other design alternatives).

The comparison study with existing risk assessment methods showed that the HEFFR framework

is capable of modeling the combined effects of human errors and components failure during early

design stages (a trait no other method had). However, there were areas that HEFFR could not

achieve while other methods could (e.g., higher accuracy of the risk matrices, continuous-time dynamic

simulations, fidelity levels, etc.). Hence, the HEFFR framework cannot be used to replace existing

risk assessment methods. Instead, it should be used to complement them. The HEFFR framework

should be used to analyze (and mitigate) risk early on and inform the later design stage detailed

assessments. Since the HEFFR framework lacks fidelity and may be subject to uncertainties, some

finer details may go unnoticed. However, if the risk insights are used to inform the late design stage

detailed risk assessments such details may come to light. Also, such usage of the HEFFR framework

will minimize the chances of finding major vulnerabilities later in the design stages. In summary,

when used to complement the existing risk assessment methods, HEFFR can enhance the capabilities

of the overall risk assessment and improve safety, performance, cost, and efficiency.

The lack of fidelity of the HEFFR framework fault scenarios is expected because it is an early design

stage risk assessment tool. During conceptualization, there are only minimal system data available.

The goal of the HEFFR framework is to generate fault scenarios with the minimal data available to

help designers identify potential risks with enough fidelity. The validation study showed that the

HEFFR framework can achieve this even when the fault scenarios are low fidelity. The HEFFR

framework does not account for any uncertainties during fault modeling and risk quantification.

There are higher uncertainties during the early design stages. While the results from this study prove

that the HEFFR framework can help designers identify and prioritize worst-case fault scenarios,
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there is no validation on how the uncertainties can affect risk quantification and prioritization. Since

the HEFFR framework is an early design stage risk assessment method, it is important to study the

effects of uncertainties on the overall risk model. Future work should explore and validate the effects

of uncertainties in the HEFFR framework’s risk model.

5.5 Applying the HEFFR Framework to Perform Risk-informed Ergonomic

Assessments

This section aims to demonstrate an application of the HEFFR framework to perform risk-informed

ergonomic assessments. We couple the HEFFR framework with Digital Human Modeling (DHM)

simulations to analyze physical ergonomics and visualize human product interactions. The HEFFR

framework is used to identify and prioritize human actions with the worst outcomes. DHM is used

to analyze the ergonomics surrounding the worst-case human actions. When the HEFFR framework

is applied alone, it is not capable of analyzing ergonomic vulnerabilities. Without the HEFFR

framework, designers have no way of prioritizing the needed ergonomic assessments. Hence, coupling

the HEFFR framework with DHM complements each other and enhances their capabilities.

5.5.1 Methodology

As shown in Fig. 5.7, the first step is to generate a system model and perform a HEFFR simulation.

Next, the resulting data is synthesized to identify and prioritize worst-case human actions. Note that

this research does not recommend any specific data synthesis approaches, allowing designers to tailor

the data synthesis based on their goals. For example, if the goal is to identify the human actions

that can have the greatest reduction in the probability of failures, designers may synthesize the data

similar to the approach presented in section 4.5. If the goal is to identify the human actions that

contribute to the most severe failures, designers may analyze the data using the approach presented

in section 5.4. Once the worst-case human actions are identified, designers may use traditional
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Figure 5.7: Workflow of Performing Risk Informed Ergonomic Assessments Using the HEFFR
Framework

human factors approaches to analyze ergonomics and mitigate risk if the actions are cognitive. If

the identified human actions are physical, they may use DHM to analyze ergonomics and mitigate

risk. They may switch back and forth between the DHM assessments and human factors approaches

as they see fit.

To perform DHM simulations, first, a low fidelity Computer-Aided Design (CAD) model is created

and loaded into a DHM tool (e.g., Siemens Jack). Then, for each of the identified worst-case human

actions (that are physical), the desired ergonomic studies are performed. For example, for the action

reacR, a designer may choose to use the reach envelope analysis, reach obscuration, or if the reach

requires severe postural changes, such as asymmetric bending, a comfort analysis. DHM has a wide

range of potential ergonomic assessment tools to choose from. Examples of DHM analysis tools

include National Institute for Occupational Safety and Health (NIOSH), Lifting Index and Rapid

Upper Limb Assessment (RULA), and vision analysis and obscuration zone evaluations. In addition,
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using DHM can also help designers perform more complex early design stage computational studies

such as exploring the design space using surrogate models to optimize human performance [221] and

combining DHM with virtual reality and motion capture technology to perform human subject data

collection [222]. Designers may choose the best form of analysis depending on the problem they are

solving, the worst-case human actions, and the available data.

Based on the analysis results, designers may chose to make design changes, suggest training,

develop safe operating procedures and safety protocols, or run further assessments. If the modified

design requires changes to the system model, the system model is updated to reflect the changes.

Then, a new HEFFR analysis is performed. This process may be iterated until a satisfactory design

is derived.

5.5.2 Case Study: Train Locomotive Design

The same train locomotive design case study used in the previous sections in this chapter is used to

demonstrate the application of the HEFFR framework to perform risk-informed ergonomic assess-

ments. To identify and prioritize the worst-case human actions, the same data synthesis approach

used in section 5.4 is used (i.e., the human actions that had the highest contribution to the worst-case

fault scenarios are identified). First, the worst-case module behaviors are identified by calculating the

cumulative costs of module behaviors based on if they are present in the last time step. Then, for each

module, the module behavior with the highest cumulative cost is identified. Then, the component

behaviors are ranked based on their contribution to each module behavior with the highest cumulative

cost. Then, human actions are ranked based on their contribution to the highest-ranked component

behavior in each module. The contribution of human actions is calculated by considering the number

of action combinations (with the specific human actions) that can result in the highest-ranked human

induced component behaviors.

This research uses Siemens Jack as the DHM tool to model the train locomotive. Jack has various

human performance capabilities such as vision and reach envelop assessments, hand clearance and



136

interference assessment, force-influenced posture prediction, etc., and multiple ergonomic analysis

tools such as static and real-time fatigue, low back analysis, NIOSH, OWAS, RULA, static strength

predictions, time standards, etc [223]. It also has occupant packaging tools which include comfort

assessment, SAE packaging guidelines, multiple vision zones, etc. [223]. For this study, a low-fidelity

CAD model of a diesel-electric train locomotive is developed and injected into the DHM platform to

perform ergonomic assessments. The results of this application are discussed in the following section.

5.5.3 Results

In section 5.4, it was found that the module behaviors “failed,” “failed throttle on,” and “failed

no braking” from modules Wheel Assembly, Throttle and Dynamic Brake System, and Air Brake

System respectively, had the highest cumulative costs for each respective modules. To mitigate the

risk of the Wheel Assembly failing, designers may choose to install a health monitoring system and

establish safety protocols to mitigate severity when failures are detected. The system model can be

updated, and the scenarios involving the safety protocol can be simulated using HEFFR to check the

effectiveness of the protocols. The human induced behaviors “failed close” and “failed throttle on” of

the components brake valve and throttle lever from the modules Air Brake System and Throttle and

Dynamic Brake System respectively, were the highest-ranked human induced component behaviors

for each of the modules. As shown in Fig. 5.8, the human actions for the brake valve can be ranked

as Turn, Detect, Reach, See, and Grasp based on the contribution of each human action to the

behavior “failed close.” Similarly, the human actions for the throttle lever can be ranked as Detect,

Move, Reach, Grasp, and See. Designers may prioritize ergonomic assessments for each of these

components based on the human action ranking. Among the components, the throttle lever should

be given higher priority because the module behavior relating to the Throttle and Dynamic Brake

had the highest cumulative expected cost.

Action Detect is cognitive, and action See is both cognitive and physical. Also, from the action

sequence graphs, the successful execution of the action See is a precursor for the success of action
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Figure 5.8: The percentage of human action combinations with faulty human action states that
result in the highest ranked human induced behavior

Detect (i.e., if the operator fails to see, action Detect all always fail). Since the action Detect is

among the top-ranked for both components (especially for the throttle lever), designers may prioritize

the actions Detect and See. To improve the action Detect, they may suggest training, improve signal

salience, or add redundant signals. To improve the cognitive aspects of the action See, designers may

suggest training or explore ways to keep the operator’s attention at appropriate levels to promote a

higher chance of detection. The rest of the actions are physical and are assessed using DHM. While

the actions Turn and Move for the brake valve and throttle lever were ranked the highest among

the physical actions, the actions See, Reach, and Grasp cannot be ignored because from the action

sequence graphs, we know that the success of these actions is a requirement for the actions Turn and

Move to be successful (i.e., one cannot turn the valve without reaching and grasping it). However,

the actions for the throttle lever should get a higher priority than the brake valve because the module

behavior relating to the throttle lever had the highest cumulative expected cost.

Based on the prioritization, reach- and vision-related assessments were identified as the necessary

DHM assessments. Vision-related assessments were chosen because of their relation to the action
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Figure 5.9: Reach postures and vision obcuration zones (only for while reaching the throttle lever of
the 95th percentile U.S. Male when reaching the throttle lever and brake valve

Detect. Reach-related assessments were chosen to analyze the actions Reach, Grasp, and Turn. The

DHM assessments were performed for both 5th percentile U.S. female manikin and 95th percentile

U.S. male from the ANSUR anthropometric library to make sure that analysis covers the needs of

the majority of the population. As shown in Fig. 5.9, the 95th percentile U.S. male had to bend

to reach the throttle lever and brake valve. Also, the vision obscuration zones were analyzed while

reaching the throttle lever because this will be the default posture of the train conductor. The vision

obscuration assessment showed that there is 37 percent obscuration when the U.S. 95th percentile

U.S. male manikin was reaching the throttle lever. Similar to the 95th percentile U.S. male, the 5th

percentile U.S. female manikin also had to bend to reach the throttle lever and brake valve but to a

lesser degree. The vision obscuration was worse for the 5th percentile U.S. female.

From the DHM assessments, it becomes apparent that the placement of the throttle lever and

brake valve need to be moved because both manikins had to bend to reach them. Bending for long

periods is associated with lower back injuries. To improve the placement of the controls, designers

may relocate them or change the seating position. During this process, they may not be able to find

an optimal position that promotes maximum vision coverage while having no bending postures when

reaching the throttle lever and brake valve. In such a case, since the brake valve had lesser priority

than the throttle lever and the train conductor will only be reaching the brake valve occasionally,
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they may change the placement of the throttle lever to make sure that there is no bending while

allowing minimal bending for reaching the air brake. Regardless of the placement of the throttle lever

and brake valve, there should not be any comprise in the vision coverage because of the important

role it plays with detection. Designers should make an effort to maximize the vision coverage. These

adjustments can be done manually by moving the manikin and the controls in the DHM environment,

or a surrogate model-based design exploration can be performed using the framework proposed by

Ahmed et al. [221].

5.5.4 Discussion

In this case study, we present an application of the HEFFR framework to perform risk-informed

ergonomic analysis during early design stages. Also, the proposed application allows designers to

visualize human product interactions. The results above indicate how the HEFFR framework’s results

can be used to prioritize ergonomic assessments. The results also show that such prioritization can be

helpful in terms of finding the right ergonomic assessments and when design trade-offs are required.

Being able to prioritize human actions and perform ergonomic assessments early in design will allow

designers to make design decisions based on ergonomics, which would potentially help to improve the

overall performance and safety of the system. Also, when trade-offs are needed between ergonomic

features, they may make informed decisions based on risk-based prioritization. In addition, designers

can apply the HEFFR framework along with DHM to perform more complex analysis with motion

capture and virtual reality systems to have a more exhaustive risk-based design space exploration

without having to rely on fully functional physical prototypes. Obtaining data about potential

human-product interaction errors early in the design can also contribute to the efforts for reducing

the overall design cost.

The application of the HEFFR framework for risk-based ergonomic assessment is one of many

applications of the HEFFR framework. When applied for risk-based ergonomic assessments, the

HEFFR framework complements the traditional ergonomic assessment process by allowing the pri-
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oritization of ergonomic assessments and ergonomic features based on risk. Also, this application

enhances the capabilities of the HEFFR framework by allowing the assessment of ergonomic vulner-

abilities. Some examples of other potential applications of the HEFFR framework are risk-based

trade-off studies, component selection studies, resilient design, establishing operating procedures and

safety protocols, and training development.

5.6 Conclusion

We have demonstrated the applicability of the HEFFR framework to complex engineered systems,

validated the framework in terms of its ability to predict failures, demonstrated its application to

perform risk-informed ergonomic assessments. To study the applicability of the HEFFR framework

to complex engineered systems, we first introduced a modular analysis approach to manage the

complexity and computational cost of performing HEFFR assessments on complex engineered systems.

Then, we validated the modular analysis approach to ensure that it produces consistent results

when compared to integral assessments. We also explored the consistency surrounding different

module partitionings. The study shows that the proposed modular analysis approach can produce

consistent results for the modules assessed, justifying the use of modular HEFFR assessments for

a train locomotive design study. When performing modular assessments, the data analyses need

to be tailored with the modular fault simulation in mind to extract similar information to integral

assessments.

The validation study had two parts. The first part explored the ability of the HEFFR framework

to predict and prioritize failures realistically. To achieve this, events that led to past severe train

accidents were converted to HEFFR fault scenario form and compared with the HEFFR results of a

train locomotive design case study. The results showed that the HEFFR framework generated all of

the scenarios that led to the past severe accidents and assigned appropriate serveries to all of them. In

addition, The HEFFR framework was able to pinpoint the module behaviors, component behaviors,

and human actions that were most common in the accidents. The second part of the validation
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study compared the HEFFR framework with existing risk assessment methods. The capabilities and

limitations of existing risk assessment methods were identified from the literature and compared

against the merits and limitations of the HEFFR framework to define the ideal usage of the HEFFR

framework. The HEFFR is best used when applied during early design stages to complement the late

design stage risk assessment process. Such an implementation will minimize the chances of finding

major risks later on when design changes can introduce more vulnerabilities and increase cost and

time-to-market.

Finally, an application of the HEFFR framework was demonstrated. The HEFFR framework was

applied to perform risk-informed ergonomic assessments. The results from the HEFFR framework

were used to prioritize ergonomic assessments based on their contribution to overall system risk. Then,

the use of DHM to perform ergonomic assessments and inform design was demonstrated using the

train locomotive design case study. The prioritization of ergonomic assessments can help designers

choose the correct ergonomic studies and inform design decisions when trade-offs are needed between

ergonomic features.
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Chapter 6: Conclusions

The goal of this research is to enable designers to assess the effects of human- and component-

related vulnerabilities during early design stages. Achieving this goal will minimize late design stage

redesign and improve performance, safety, costs, and time-to-market. To achieve this goal, this

work has introduced an early design stage computational risk assessment framework (Human Error

and Functional Failure Reasoning (HEFFR)) to assess the system-level effects of human errors and

component failures acting together (and in isolation). The HEFFR framework assesses risk using

three main components; scenario generation, fault prediction, and risk quantification. The fault

prediction model is developed by expanding the Functional Failure Identification and Propagation

(FFIP) [24] framework to include the human aspects of the system. Then, the fault prediction model

is validated using the Air France 447 crash and a flight simulator. The automated scenario generated

approach uses a modified depth first search to generate a wide range of potential fault scenarios

involving both components and humans. The risk quantification model quantifies the expected cost

of failures and likelihood of occurrence using principles from reliability engineering, human factors,

and resiliency modeling.

The overall framework’s applicability to complex engineered systems is studied by introducing

a HEFFR based modular risk assessment approach to manage complexity. The study showed that

the modular risk assessment approach yielded results similar to integral assessment regardless of the

number of partitions and reduced the computation costs significantly. The validity of the HEFFR

framework is studied on two fronts. First, past train accidents with severe outcomes were compared

with the results of the HEFFR analysis of a train locomotive design. The results showed that

the HEFFR framework generated all the scenarios that led to the accidents and assigned severities

appropriately. In addition to identifying the most severe fault scenarios, the HEFFR framework was

also able to pinpoint rarer fault scenarios with similar outcomes to the accident scenarios (scenarios
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with lower likelihood but high failure cost). Next, the HEFFR framework is compared with existing

risk assessment methods to understand its usage. Results show that the HEFFR framework works

best when it is used to complement more detailed risk assessment methods. Finally, the application of

the HEFFR framework to inform risk-based ergonomic assessments is demonstrated. The results from

the HEFFR framework are used to identify and prioritize human actions with the worst outcomes

to perform ergonomic assessments using digital human modeling.

The next sections will conclude this dissertation by discussing the contributions and implications

of this research and pointing out limitations that may be addressed in future work.

6.1 Contributions and Implications

This work has numerous contributions to the field of risk-based design. First, it will enable the

assessment of risks relating to human errors and component failures in combination rather than in

isolation during early design stages. Conventional risk assessment techniques either assess component

failures or human errors in isolation, are not capable of assessing the propagation of failures and/or

are not applicable during early design stages. This work overcomes these limitations by introducing

a discrete time-based fault propagation modeling framework that can assess the combined risk of

component failures and human errors during early design stages. The second contribution is the

introduction of the automated scenario generation and prioritization process that appropriately uti-

lizes computational resources to express sufficient model fidelity using the minimal data available

during early design stages. The automated fault scenario generation and prioritization allow the

identification and consideration of worst-case fault scenarios early in the design, enabling the incor-

poration of mitigating strategies early on. Also, it allows designers identify human errors that do not

cause immediate harm to the system and may easily be overlooked. This is important because such

underlying errors may easily turn into catastrophic failure when they interact with other elements

of the system. Lastly, this work demonstrated an approach to perform ergonomic assessments and

visualize human-product interactions before any physical prototypes are built. No early design stage



144

human-centered digital prototyping framework exists that can inform designers on the ergonomic

priorities when it comes to promoting optimal system performance and safety. They usually rely on

experts or are realized later in the design process when more details about the design are present [224].

This research demonstrated an application of HEFFR framework that injected digital human model-

ing, fault modeling, and reliability analysis strategies into a computational design environment to

prioritize ergonomic assessments to minimize system vulnerabilities earlier in the design process with

the goal of improving overall system safety and performances.

Setting up the system model and creating the behavior models and human action models for

the HEFFR framework can help designers think deeper about the system under design, resulting in

well-thought-out designs. The framework can also be used to help design decision-making during

the early design stages. For example, it may be used to perform trade studies to evaluate alternate

designs. The HEFFR framework can also be used to identify points of automation and points of

human intervention based on risk. With the identification of component behavior-related risks,

the HEFFR framework can inform component selection. The overall framework can be used to

identify safe operating procedures and inform safety protocols. For example, safety protocols can be

developed and tested for worst-case scenarios so that operators may identify them early and take

preventive measures. It can also inform training in terms of helping with failure prevention. Since

the HEFFR framework takes the performing shaping factors when calculating severities, it can help

designers understand operator requirements (e.g., experience level, workload limits, etc. ) for safe

operation. When coupled with digital human modeling, the HEFFR framework can inform occupant

packaging and interface layout design. In summary, the HEFFR framework can help designers make

risk-informed decisions regarding both component- and human-related elements in the system during

early design stages.

With the advancements in artificial intelligence and the shift towards automation, how humans

interact with systems has to be redefined. Regardless of the industry (e.g., automobile, manufacturing,

aviation, etc.), the human’s role (as an operator, maintainer, or end-user) needs to be re-assessed.

Some of the challenges surrounding this can be resolved by exploring questions such as which
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functions to automate? In what circumstances does the human need to take control? What happens

when a failure occurs? Even in a fully automated system such as a self-driving car, humans still

need to be kept in the loop to make sure that they can take over when situations demand it. To

successfully address these challenges, designers need to consider both human- and machine-elements

concurrently and explore solutions that minimize risk and improve safety and human well-being.

The HEFFR framework can help designers explore these questions early in the design stages. For

example, designers may identify when humans need to take control by identifying events that can

lead to the worst outcomes and studying mitigation actions that can prevent the system from further

cascading into the worst outcome.

The HEFFR framework can promote more sustainable products through resource conservation

and failure prevention. When design changes are made late in the design stages, they are costly and

time-consuming. This often required extra resources and time (e.g., budget overruns and missed

deadlines of the F-35 joint striker program [225]). By moving risk assessment to early design stages,

the HEFFR framework helps designers identify potential risks early on, minimizing the chances for

design changes later. As a result, the additional resources spent on late design stage design changes

can be minimized. When accidents occur in complex engineered systems, they can have lasting effects

on the economies, societies, and environments these systems operate on (e.g., the effects of Bhopal

gas leak were still present after 20 years [14]). By mitigating the potential failures, the HEFFR

framework can minimize the effects of failures on the economies, societies, and environments complex

systems operate on. Updating detailed simulation models when new elements are introduced to the

systems can be expensive and resource-intensive. Since the HEFFR simulations are relatively easy to

set up and computationally inexpensive, the HEFFR system model can act as a low fidelity digital

twin to test upgrades, change in operation procedure, and new safety protocols when the system

is in use. While it cannot replace the more detailed evaluations and testing, it can buy designers

time by allowing quick and easy simulations until more detailed simulation models are available and

reduce the need for repetition by reducing the chances of having to update the detailed models often.

As a result, the overall cost can be minimized while promoting more sustainable products.
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Going back to the Boeing 737 Max debacle discussed in Chapter 1, let us imagine that the

engineers at Boeing had access to a tool like HEFFR. They may have been able to identify the risk

of their design changes with the engine and MCAS system early in the design stages. They would

have been more likely to address those risks rather than ignoring them because the cost and time

pressure would have been minimal. As a result, the loss of life and the economic impact could have

been avoided. All these are speculations, and we may never know the course of action Boeing would

have taken unless the events are repeated with the availability of a tool like HEFFR. The question

of if the HEFFR framework would have been able to capture the risks that were present with the

Boeing 737 Max can only be answered if the aircraft is modeled using HEFFR. The goal of this

research is to not answer that question but to take a step in that direction, in making a tool available

for designers to assess the combined effects of failures as captain Sullenberger put it–“Each aircraft

manufacturer must have a comprehensive safety risk assessment system that can review an entire

aircraft design holistically, looking for risks, not only singly, but in combination [6].”

6.2 Future Work

Chapters 3, 4, and 5 in this dissertation discuss potential future work within the context of the

research presented in them. This section will explore potential future work opportunities that are not

covered in those chapters. The HEFFR framework does not consider uncertainties when modeling

faults or quantifying severity. Since the fault modeling relies on system models that are created

by experts, the system representations and the behavior models can vary from expert to expert

due to the abstract nature of the system details available during early design stages. Similarly, the

uncertainties present in the variables (e.g., failure rates, failure distributions, human error producing

condition factors, etc.) in the risk quantification model can affect the severity quantification. Future

work should explore how to account for uncertainties in the HEFFR framework to enable designers to

best account for it in hazard modeling and risk-based decision-making. Another area of future work

can explore how the HEFFR framework compares with existing risk assessment methods in terms
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of its ability to predict failures. The validation study presented in this research does not explore if

the HEFFR framework generates more or less risk insights when compared to existing methods. A

study with experts applying the HEFFR framework along with other risk assessment methods to

the design of the same system will help identify if the HEFFR framework is capable of generating

similar risk insights to existing risk assessment methods.

Another area of future work may explore the automation of fault modeling using the HEFFR

framework. Past research has explored automating functional modeling using a design repository and

machine learning [226]. A similar approach can be explored to creating the system representation of

the HEFFR framework automatically. Components such as behavior models and action classifications

in the HEFFR framework are repeatable, meaning that the behavior modeling and simulations can

be automated. With the availability of historic accident data, machine learning can be employed to

study failure patterns and predict failures smartly. On the whole, future work may examine design

repositories and past accident data with machine learning to inform automated system modeling

and fault prediction using the HEFFR framework. The automation of risk assessment will bring

consistency and minimize subjectivity while making them faster and more efficient. The HEFFR

framework is only capable of modeling humans in an enclosed space (e.g., a pilot in a cockpit). It is

not capable of modeling human interactions that occur from outside of an enclosed space, making it

useless when modeling systems where a human is not in an enclosed space (e.g., a fleet of delivery

drones operated through a control tower). With the move towards Industry 4.0 and advances in

autonomous systems, it is important to be able to analyze the human interactions with such systems.

Future work may expand the HEFFR framework to unlock the modeling of human interactions is

systems that involve human interactions outside of an enclosed space.
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Appendix A: HEART Generic Tasks and Error Producing Conditions

Table 1: HEART GENERIC TASK TYPES [25]

Generic
Task
Type

Description Proposed
Nominal
Human

Unreliability
(A) Totally unfamiliar, performed at speed with no real idea of likely

consequences
0.55

(B) Shift or restore system to a new or original state on a single attempt
without supervision or procedures

0.26

(C) Complex task requiring high level of comprehension and skill 0.16
(D) Fairly simple task performed rapidly or given scant attention 0.09
(E) Routine, highly-practiced, rapid task involving relatively low level

of skill
0.02

(F) Restore or shift a system to original or new state following proce-
dures, with some checking

0.003

(G) Completely familiar, well-designed, highly-practised, routine task
occurring several times per hour, performed to highest possible
standards by highly-motivated, highly-trained and experienced per-
son, totally aware of implications of failure, with time to correct
potential error, but without the benefit of significant job aids

0.004

(H) Respond correctly to system command even when there is an aug-
mented or automated supervisory system providing accurate inter-
pretation of system state

0.00002

(M) Miscellaneous task for which no description can be found 0.03

Table 2: HEART ERROR PRODUCING CONDITION FACTORS [25]

EPC# Error Producing Conditions Maximum

Effect Factor

1 Unfamiliarity with a situation which is potentially important but which

only occurs infrequently or which is novel

17

2 A shortage of time available for error detection and corrections 11

3 A low signal to noise ratio 10
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4 A means of suppressing or over-riding information or features which is

too easily accessible

9

5 No means of conveying spatial and functional information to operators

in a form which they can readily assimilate

8

6 A mismatch between an operator’s model of the world and that imagined

by a designer

8

7 No obvious means of reversing an unintended action 8

8 A channel capacity overload, particularly one caused by simultaneous

presentation of non-redundant information

6

9 A need to unlearn a technique and apply one which requires the appli-

cation of an opposing philosophy

6

10 The need to transfer specific knowledge from task to task without loss 5.5

11 Ambiguity in the required performance standards 5

12 A mismatch between perceived and real risk 4

13 Poor, ambiguous or ill-matched system feedback 4

14 No clear direct and timely confirmation of an intended action from the

portion of the system over which control is to be exerted

4

15 Operator inexperience (e.g. a newly-qualified tradesman, but not an

“expert”)

3

16 An impoverished quality of information conveyed by procedures and

person/person interaction

3

17 Little or no independent checking or testing of output 3

18 A conflict between immediate and long-term objectives 2.5

19 No diversity of information input for veracity checks 2.5

20 A mismatch between the educational achievement level of an individual

and the requirements of the task

2

21 An incentive to use other more dangerous procedures 2
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22 Little opportunity to exercise mind and body outside the immediate

confines of a job

1.8

23 Unreliable instrumentation (enough that it is noticed) 1.6

24 A need for absolute judgments which are beyond the capabilities or

experience of an operator

1.6

25 Unclear allocation of function and responsibility 1.6

26 No obvious way to keep track of progress during an activity 1.4

27 A danger that finite physical capabilities will be exceeded 1.4

28 Little or no intrinsic meaning in a task 1.4

29 High-level emotional stress 1.3

30 Evidence of ill-health amongst operatives, especially fever 1.2

31 Low workforce morale 1.2

32 Inconsistency of meaning of displays and procedures 1.2

33 A poor or hostile environment (below 75% of health or life-threatening

severity)

1.1

34 Prolonged inactivity or highly repetitious cycling of low mental workload

tasks

1.1 (for 1st

half-hour)/1.0

(for each hour

thereafter)

35 Disruption of normal work-sleep cycles 1.1

36 Task pacing caused by the intervention of others 1.06

37 Additional team members over and above those necessary to perform

task normally and satisfactorily

1.03 per

additional team

member

38 Age of personnel performing perpetual tasks 1.02
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Appendix B: Simulation Inputs for the Risk Quantification Model in

Chapter 4

Table 3: COMPONENT FAILURE RATES, DISTRIBUTIONS, REPAIR COST, AND RECOVERY
TIMES

Component Failure
Modes

Failure Rate
(NPRD-95) [192]

per million
hours

Distributions
(FMD-97)[193] Notes Repair

Cost ($)1
Repair

Time (h)1

Tank Leak 1.616 100% Summary Data from Storage Tank was used due to its
similarities with the coolant tank case study 20000 24

Valve StuckOpen 3.0764 47.44% A hydraulic valve was chosen. The failure mode leak was omitted because
it is modeled in the pipe and modeling it here will be redundant

10000 6
StuckClose 52.56% 10000 6

Pipe Leak 0.4734 7.42% Summary data of the component Piping was chosen for the pipe failure rate.
The Failure Mode Broken is Considered as ruptured

10000 6
Ruptured 92.58% 15000 12

Table 4: HUMAN ACTIONS, DESIGNATIONS, AND RELATED GENERIC TASKS

Actions Designation Generic Task
Look Both E- 0.02
Detect Diagnosis M - 0.03
Reach Action D - 0.09
Grasp Action D - 0.09
Turn Action F - 0.003

Table 5: COSTS OF FUNCTION FAILURES

Performance
Cost1

Immediate
Cost1

Function Degraded Lost Lost
Import Liquid 35000 175000 0
Guide Liquid 60000 300000 0
Transfer Liquid 80000 400000 2000000
Store Liquid 100000 500000 5000000
Supply Liquid 40000 200000 0
Transfer Liquid 25000 125000 3000000
Guide Liquid 75000 375000 0
Export Liquid 30000 150000 0

1Details on how these values were assigned are provided in section 4.5.
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Table 6: HUMAN ERROR PRODUCING CONDITIONS AND THEIR PROPORTION OF EF-
FECTS FOR EACH ACTION

Error Producing
Conditions (EPC)

EPC Propotion of Effects1

Look Detect Reach Grasp Turn
Inlet Valve OutletValve Inlet Outlet Inlet Outlet Inlet Outlet Inlet Outlet Inlet Outlet
EPC2-11 EPC2-11 0 0 0.1 0.2 0.1 0.1 0 0 0.4 0.6
EPC10-5.5 EPC10-5.5 0 0 0.2 0.2 0 0 0 0 0.2 0.2
EPC13-4 EPC13-4 0.1 0.2 0 0 0.1 0.1 0 0 0 0
EPC14 - 4 EPC14 - 4 0.6 0.3 0.1 0.1 0 0 0 0 0 0
EPC17-3 EPC17-3 0 0 0 0 0 0 0 0 0.6 0.4
EPC34 - 1.1 EPC34 - 1.1 0.9 0.9 0.6 0.6 0 0 0 0 0 0
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