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Throughput-oriented processors, such as graphics processing units (GPUs), have
been increasingly used to accelerate general purpose computing, including ma-
chine learning models that are being utilized in numerous disciplines. Thousands
of concurrently running threads in a GPU demand a highly efficient memory sub-
system for data supply in GPUs. In this dissertation, we have studied the memory
architecture of the traditional GPUs and revealed that the traditional memory
architecture, initially designed for graphics processing, is less efficient in handling
general purpose computing tasks. We propose several memory architecture opti-
mizations for two primary objectives: (1) optimize current memory architecture
for more efficient handling of general purpose computing tasks; (2) improve the
overall performance of GPUs.

This dissertation has four major parts: (1) The first part deals with the L2 cache

inefficiency. A key factor that affects the memory subsystem is the order of mem-



ory accesses. While reordering memory accesses at L2 cache has large potential
benefits to both cache and DRAM, little work has been conducted to exploit this.
In this work, we investigate the largely unexplored opportunity of L2 cache access
reordering. We propose Cache Access Reordering Tree (CART), a novel architec-
ture that can improve memory subsystem efficiency by actively reordering memory
accesses at L2 cache to be cache-friendly and DRAM-friendly. (2) The second part
deals with miss handling architecture (MHA) in GPUs. Conventional MHA is
static in sense that it provides a fixed number of MSHR entries to track primary
misses, and a fixed number of slots within each entry to track secondary misses.
This leads to severe entry or slot under-utilization and poor match to practical
workloads, as the number of memory requests to different cache lines can vary sig-
nificantly. We propose Dynamically Linked MSHR (DL-MSHR), a novel approach
that dynamically forms MSHR entries from a pool of available slots. This approach
can self-adapt to primary-miss-predominant applications by forming more entries
with fewer slots, and self-adapt to secondary-miss-predominant applications by
having fewer entries but more slots per entry. (3) The third part aims to improve
the performance of Unified Virtual Memory (UVM), which is recently introduced
into GPUs. We propose CAPTURE (Capacity-Aware Prefetch with True Usage
Reflected Eviction), a novel microarchitecture scheme that implements coordinated
prefetch-eviction for GPU UVM management. CAPTURE utilizes GPU memory
status and memory access history to dynamically adjust the prefetching and “cap-
ture” accurate remaining page reusing opportunities for improved eviction. (4)

In the fourth part, we propose a comprehensive UVM benchmark suite named



UVMBench to facilitate future research on the UVM research.



©Copyright by Yongbin Gu
December 2, 2020
All Rights Reserved



Architecture Optimizations for Memory Systems of Throughput
Processors

by

Yongbin Gu

A DISSERTATION
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Doctor of Philosophy

Presented December 2, 2020
Commencement June 2021



Doctor of Philosophy dissertation of Yongbin Gu presented on December 2, 2020.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Yongbin Gu, Author



ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my advisor, Profes-
sor Lizhong Chen, for giving me the opportunity to become a PhD student, for
his excellent mentorship and for his encouragement during my studies at Oregon
State University. Without his support, it would not be possible to complete this
dissertation.

I also would like to thank Professor Bella Bose, Professor Ben Lee, Professor
Thinh P. Nguyen and Professor Joseph Louis for their acceptance of being my
committee members and valuable comments on my dissertation.

I am very grateful to know many friends at Oregon State University, especially
my lab-mates, Yunfan Li, Arash Azizi, Fawaz Alazemi, who helped me from the
first day I joined the group.

I also want to express my gratitude to Dr. Pengcheng Li, Dr. Tao Zhang and
Dr. Haixin Liu who are the mentors during my internship.

Last but not least, I would like to express my sincere appreciation to my family

for their continuous support and encouragement during my study.



TABLE OF CONTENTS

Page

L__Introductionl 1
[1.1 Graphics Processing Units| . . . . . . ... ... . ... ... ..... 1
(1.2 GPU Memory Access Orders|. . . . . . . ... ... ... ... .... 2
(1.3 GPU Memory Miss Handling Architecture] . . . . . . . ... ... .. 4
(1.4 Unified Virtual Memory in GPUs| . . . . . . .. ... ... ... ... 6
(Lo GPUsimulators| . . . . . .. ... oo 7
[1.6 Benchmarks for GPU Memory Architecture Research| . . . . . . . .. 9

2 CART: Cache Access Reordering Tree for Efficient Cache and Memory Ac- |

[ cesses in GPUg 12
2.1 Basicldeal . . . . . . ... 12
[2.2 Background and Motivation . . . . . . ... ... 13

[2.2.1 Memory Subsystem in GPUs[. . . . . .. ... ... ... .. 13
[2.2.2 Impact of Access Order on L2 Cache| . . . . . .. . ... .. 14
[2.2.3 Impact of Access Order on DRAM| . . ... ... ... ... 16
[2.2.4 Need for More Research on Reorderingl . . . . .. ... ... 17
[2.3 Exploring Access Reordering at L2 . . . . ... ... ... ... ... 18
[2.3.1 Blocking of Memory Requests at L2} . . . . . . ... ... .. 18
[2.3.2 A Straighttorward Non-blocking Design| . . . . . . . ... .. 19
[2.3.3 An Improved Design for Access Reorderingl . . . . . . . . .. 20
2.4 CART: Cache Access Reordering Iree|. . . . . . . . .. ... .. ... 22
241 Overview|. . . . . . . . . . .. 22
[2.4.2  Leat Queue Allocation| . . . .. ... ... ... ... .... 26
[2.4.3 Fill Policy| . . . .. ... ... ... o 27
[2.4.4 Drain Policy| . . . . ... .. ... ... ... . 27
[2.5 Evaluation Methodology| . . . . . ... ... ... ... ... ... .. 32
[2.6 Results and Analysis| . . . . . . ... ... ... 0L 33
[2.6.1 Exploring CART Design Space]. . . . . . ... ... .. ... 33
[2.6.2 Performance Comparisons| . . . . . .. ... ... .. .... 35
[2.6.3 Insight of Performance Improvement| . . . . .. ... .. .. 37
[2.6.4 Hardware Implementation| . . . . ... ... .. ... .... 37
[2.6.5 Emergy efficiencyl . . . . .. ... ... L. 38




TABLE OF CONTENTS (Continued)

Page

28 Conclusionl. . . . . . . . . . 40
[3  Dynamically Linked MSHRs for Adaptive Miss Handling in GPUs| 42
3.1 BasiclIdeal . . . . . . . .. 42
[3.2 Background| . . . . .. ... o 43
3.3 Motivationl . . . . . . . . ... 47
[3.3.1 Diverse Application Cache Miss Behaviors| . . . . . . . . .. 48

[3.3.2 Need tor Dynamic Miss Handlingl . . . . .. ... ... ... 52

3.3.3 Other Related Workl . . . ... ... ... .. ... ..... 54

[3.4 Dynamically Linked MSHR} . . . . .. ... ... ... ... .. ... 56
B.41 The BasicIdeal . . . . .. .. ... ... ... ... ..... 56

[3.4.2 Challenges| . . . . . . ... ... o000 59
BA3DL-MSHRS . . . . . . o o 60

[3.4.4 Operations| . . . . . . . . . ... 62

£3.4.5 Dynamic Allocation Unit (DAU)[. . . . . .. ... ... ... 64

[3.4.6 Additional Optimizations|. . . . . . . . .. ... ... .... 67

[3.5 Evaluation Methodology| . . . . . . ... ... ... ... ... ..., 71
[3.6 Results and Analysis| . . . . . . .. ... ... L. 73
[3.6.1 Impact on Performance{. . . . . . . .. ... ... ... ... 73

[3.6.2 Reducing Reservation Fails| . . . . . .. ... ... ... ... 76

8.6.3 GPU Architecture Variationl . . . . .. ... ... ... ... 78

[3.6.4 Area and Power Overhead . . ... ... ... ... ... .. 81

[3.6.5 Impact on Energy| . . . . . . .. ..o 82

B7 Conclusionl. . . . . . . . . . .. 82

4 CAPTURE: Capacity-Aware Pretetch with True Usage Reflected Eviction |

[ tor GPU Unified Virtual Memory| 84
4.1 BasicIdeal . . . . . . .. o 84
[4.2 Background and Motivation . . . . . . ... ... 87

[4.2.1 GPU Unified Virtual Memory| . . . . . ... ... ... ... 87
4.2.2 Need for Better Prefetchersin UVMI. . . .. .. ... .. .. 90
[4.2.3 Problems in Existing UVM Eviction|. . . . . . . ... .. .. 93

[4.3 Proposed Approach| . . . . ... ... ... ..o 0. 97




TABLE OF CONTENTS (Continued)

Page

[4.3.1 Capacity-Aware Pretetcher{ . . . . . . . ... ... ... ... 99

[4.3.2 Lease-Based Eviction Policy| . . . . .. ... ... ... ... 103

[4.4 Evaluation Methodology|l . . . . . . . ... ... ... ... ... ... 109
[4.5 Experiment Results] . . . . . . ... ... ... 0oL 111
[4.5.1 Effectiveness ot Pretetching Schemes|. . . . . . . . .. .. .. 111

“.0.2 Iffectiveness of [iviction Policies| . . . . . . . ... ... . .. 114

4.5.3 Coordinated Prefetch and Fviction) . . . .. .. ... .. .. 116

[4.5.4 Memory Pressure Sensitivity| . . . . . . . . . ... ... ... 120

[4.5.5 Overhead Analysis| . . . . ... ... .. ... ... ..... 121

4.6 Related Workl . . . . . . ..o 122
4.7 Discussionl . . . . . . . .. 124
48 Conclusionl. . . . . . . . . .. 125

[> UVMBench: A Comprehensive Benchmark Suite for Researching Unified |

[ Virtual Memory in GPUsg| 126
b1 BasicIdeal . . . . . ... o 126
Hh.2 UVMBenchl . . .. ... ... 128
[>.3 Evaluation Methodology| . . . . . .. ... ... ... ... ... .. 138
[>.4 Results and Analysis| . . . . . . ... ... ... ... ... 140

[>.4.1 Memory Access Pattern Profilingl . . . ... ... ... ... 140
b.4.2 UVM vs. non-UVM Performancel . . . ... ... ... ... 143
[5.4.3 Eftect of Data Migration on PCle Bandwidth|. . . . . . . .. 148
[5.4.4 Oversubscription| . . . . . . . . .. ... ... ... ... .. 150
b5 Conclusionl. . . . . . o oL 152

6__Conclusions and Future Workl 153
(6.1 Summary| . . . .. ... 153
0.2 Future Workl. . . . . . . . .o 155

Bibliograp 157



LIST OF FIGURES
Figure Page
[l.1 GPU Diagram (Pascal Architecture).| . . . . .. .. ... ... ... 2

2.1 A typical GPU architecture (MSHRs in L1 are omitted for clarity). |

| The proposed CART is added betore L2.| . . . . .. ... ... ... 15
[2.2  Blocking vs. non-blocking request bufters.| . . ... ... ... ... 18
[2.3  Reordering based on bank information. . . . . . .. . ... ... .. 20
[2.4  Diagram of the proposed CART| . . . . ... ... ... ... ... 22

2.5 An example of the effects of CART. Bi/Rj/Ck denotes that the
| address of the memory request (MR) is in bank Bi, row Rj and

| column CEl . . . . . . 25
[2.6 Illustration of drain policies for a given tree status.| . . . . . . . .. 30
[2.7  Finding good performance-cost tradeoft for CART.| . . . . . . . .. 34
[2.8  Performance comparison of ditterent schemes for memory-intensive |

| benchmarks). . . . . . ... oo 34
[2.9  Pert. comparison for compute-intensive benchmarks.|. . . . . . . .. 35
[2.10 More details on Performance Improvement. . . . . . . . . . . . . .. 41
[3.1 Implicitly and explicitly addressed MSHRs.|. . . . . . . . . ... .. 45
3.2 Blackscholes (primary-miss-predominant).| . . . . . ... ... ... 48
(3.3 AlignedType (secondary-miss-predominant).| . . . . ... ... . .. 49
3.4  Breakdown of reservation fail (RF) causes.| . . . . . ... ... ... 49
[3.5 Percentage ot execution stall reasons.| . . . . . . ... ... ... .. 50

13.6  Overview of dynamically linked MSHRs (the new and modified com- |
| ponents are highlighted).| . . . . . ... ... ... 000 57

[3.7 Ilustration of conventional MSHRs and dynamically linked MSHRs |
| (DL-MSHRs).| . . . . o 58




LIST OF FIGURES (Continued)

Figure Page
[3.8  The finite state machine used to implement the Dynamic Allocation |
| Unit (assuming 2 slots perset).| . . . . ... ... ... ... 65
3.9  Performance comparison over the baseline architecture (normalized |
| to the Baseline).|. . . . ... . ... oo o 72
13.10 Reduction in the number of reservation fails) . . . . . . ... .. .. 73
[3.11 Performance comparison with L1D closed.| . . . . . . ... ... .. 74
.12 Schedulers). . . . .. .o oo 74
B.13 MSHR sizesl. . . . . . . . . . . 74
4.1 Ilustration of far page fault handling in CPU-GPU Unified Virtual |
| Memory.| . . . . .. 88

m2

PCle read/write throughput with different transfer sizes. We mea-

sure the PCle effective bandwidth on GTX 1080 Ti, where a PCle

| Gen3.0 x16 link is employed to provide 16GB/s link bandwidth. . . 89
4.3 The tree-based pretetcher structure that covers 512KiB memory |
| space. Fach leat node refers to a 64KiB block.| . . . . . . .. .. .. 91
4.4 Execution time under varying memory over-sub-scription settings. |
| Measurement is done on GTX 1080 T3l . . . . . . . . .. .. .. .. 97
4.5 Overview of CAPTURE in GMMUJ. . . ... ... ... ... ... 98
[4.6  Touching percentage of allocated pages|. . . . . . .. ... .. ... 101
4.7 Memory access frequency statistics. The X-axis 1s the touched page |
| ID across the whole execution period, and the Y-axis is the access |
| frequency of the page. The red dashed lines highlight the difterent |
| access patterns from cudaMallocManaged. |. . . . . . . . .. . . .. 104
[4.8  Performance speedups ot different prefetchers normalized to NP with- |
| out memory over-subscription. The performance refers to as the |
I GPU kernel execution timeld . . . . . . ..o 112
[4.9  Benefits comparison of different prefetchers over non-prefetcher con- |
| figuration.| . . . . . ... 113




LIST OF FIGURES (Continued)

Figure Page
[4.10 Performance comparison with different eviction policies under mem- |
| ory over-subscription. | . . . . . .. ..o 114
[4.11 Page fault numbers with different eviction policies. | . . . . . . . .. 116

.12 Performance comparison of different fixed prefetching sizes (KiB) |
| under memory over-subscription (Normalized to the 64 KiB result).| 117

{4.13 Pertormance comparison of different pretetcher and eviction policy |

[ combinations| . . . . . . .. ... 118
[4.14 Study of memory over-subscription sensitivity| . . . . . . . . . . .. 120
.1 Memory access patterns of benchmarks in UVMBench.,| . . . . . .. 141

(5.1 Memory access patterns of benchmarks in UVMBench (continued).| 142

(5.2 Direct UVM conversion in UVMBench leads to large performance |

| degradation vs. non-UVM. | . . .. ... ... ... ... ... 143
E3 Pad VN S I ] a BhE l
[ vocatlons) . . . . . .. 145
[>.4  Pertormance of UVM restores by enabling pretetching.| . . . . . .. 147

[5.5  Achieved PCle bandwidth of non-UVM vs. UVM during data mi- |
| gratlon.] . . . . . . . L. 148

[>.6 Change in benchmark execution time when GPU memory oversub- |
| scripted (normalized to no memory oversubscription).| . . . . . . .. 148




LIST OF TABLES

Table Page
(1.1 Open-source GPU simulators| . . . ... ... ... .. ....... 8
2.1 CART design configuration.| . . . . .. ... ... .. ... ..... 29
[2.2  Simulation configuration.|. . . . .. ... ..o 29
2.3 Evaluated benchmarks) . . . . . .. ... ... ... ... ... 31
3.1 FEwvaluated benchmarks) . . . . . . . . .. ... ... o0 70
[3.2  Simulator configuration.| . . . . ... ... 71
B.3 Area and Power of different MHA schemes). . . . . . ... ... .. 80
(4.1  GPU simulator configuration.| . . . . . . ... ... .. ... ... 111
[>.1 List of Benchmarks in the proposed UVMBench.|. . . . . . ... .. 129
(.2 UVMBench vs. other benchmarks or benchmark suites] . . . . . . . 139

[>.3  Evaluation Plattorm Setup.| . . .. ... ... ... ... ...... 140




Chapter 1: Introduction

1.1 Graphics Processing Units

Graphics Processing Units (GPUs) are first designed for accelerating image display
on monitors. They are widely used in personal computers, mobile devices and game
consoles. As the image processing mainly involves in matrix operation, which can
be paralleled, the GPUs are implemented with a highly parallel architecture. With
the help of the parallel programming APIs (e.g. CUDA[25], OpenCL[38]), their
highly parallel structure makes them more efficient than CPUs on general purpose
tasks, such as machine learning acceleration and molecular simulation.

Figure depicts the general architecture of the modern GPU (Pascal). A
GPU have several streaming multiprocessors (SMs), each of which also has multiple
cores. The cores in the SMs are composed of ALUs, thread schedulers, load/store
units, scratchpads, register files and caches, and so on. As GPUs are first designed
for streaming computing (image processing), which usually has little data reuse,
therefore, GPUs usually have much smaller cache capacity (e.g. 48KB L1 and
2.75MB L2 for GTX 1080 Ti) than the CPUs. A GPU has its own device memory
of a few GBs. And it is connected to the CPU through a PCle bus. The codes
running on the GPUs are called kernels. The kernel is executed on the GPU in

groups of 32 threads, called a warp [86].
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Figure 1.1: GPU Diagram (Pascal Architecture).

1.2 GPU Memory Access Orders

With massive parallel computing ability, graphics processing units (GPUs) are
being increasingly used to accelerate numerous scientific, economic and general
purpose computing applications. GPUs employ single instruction, multiple thread
(SIMT) architecture, which allows thousands of threads running simultaneously

(e.g. up to 3584 threads in NVidia GTX1080 Ti). These concurrent threads



generate a large number of memory requests that put high pressure on the memory
subsystem (e.g., cache, on-chip network, DRAM) [49]. If not designed with care,
the memory subsystem can easily become a serious factor that prevents GPUs
from achieving peak performance. With the current technology and application
trends, the issue of memory subsystem will likely worsen in the near future. On the
technology side, the development of memory technology have been lagging behind
processing, e.g., from NVidia GTX480 to GTX1080 Ti, the core count increases by
more than 7.4X, but the DRAM bandwidth increases only by about 1.7X. On the
application side, irregular memory access patterns have been exhibited in more and
more GPU workloads (such as trees, priority queues, key-value storage [19] 42]),
which often have poor cache locality and greatly exacerbate the memory stress.
Thus, it is imperative to explore new opportunities in the memory subsystem,
particularly at the architecture level, to bridge the gap between technology and
application demands.

A key factor that determines the efficacy of memory subsystem at all levels of
the memory hierarchy is the order of memory accesses. The order affects not only
the hit/miss of the current level, but also determines which accesses are exposed
to the next level. While prior research has investigated the access reordering
benefits in L1 cache and in DRAM (More details in Related Work), the reordering
opportunity at L2 cache has largely been unexplored. Nevertheless, the access
order to L2 can have a large impact on both L2 cache and DRAM. On the one
hand, the access order can be utilized to extract potential data locality to increase

cache hit, as well as to reduce avoidable head-of-line blocking in the request buffer



of L2 cache. On the other hand, the access order also determines the request
order to DRAM. A benign request sequence to DRAM offered by L2 can greatly
facilitate memory controllers to improve row-buffer hit and bank-level parallelism
(BLP), both of which are critical to DRAM performance. Substantial research is
needed on how memory accesses can be reordered to achieve a cache-friendly and

DRAM-friendly order.

1.3  GPU Memory Miss Handling Architecture

Many-core processors have an increasing demand for higher memory level paral-
lelism (MLP) to achieve better performance [43]. Consequently, a large number
of outstanding memory requests need to be tracked simultaneously in the memory
subsystem by the miss handling architecture (MHA). This demand becomes more
pressing in GPUs, as the single instruction multiple threads (SIMT) model can
easily execute hundreds to thousands of threads concurrently, resulting in numer-
ous memory requests pending in the memory hierarchy. Thus, it is imperative to
design miss handling architectures that can process and track cache misses at a
matching rate.

MHA has been evolving continuously in the past years, with most of today’s
GPUs having MHA based on Miss Handling Status Registers (MSHRs). When a
requested data is not found in the cache and sent to the next memory level, the
associated MSHR tracks the cache miss by temporally storing the requester 1D,

cache block address, requested data tag, and other related information until the



data is returned from the lower level. A typical MHA may have dozens of MSHR
entries (e.g., 32 or 64) and each entry may in turn have multiple slots (e.g., 4 or
8). An entry is allocated to the primary miss to a cache line, and the slots within
the entry are allocated to the secondary misses to the same cache line while the
primary miss is pending. The MHA is critical to memory level parallelism, as no
new memory requests can be processed if there is no free entry or slot available in
the MHA.

While the above architecture works well to a certain degree, it may no longer be
sufficient in handling the increasing diverse miss behaviors in GPU workloads. The
main issue with the conventional array-based MSHRs is that the entire structure is
static, in the sense that every entry has the same number of slots and this number
is fixed after manufacturing. However, it is unlikely that every cache line has the
same number of misses. While some entries are in high demand for slots, other
entries may have multiple slots being unused. To understand the workload demand
in practice better, we evaluated a number of applications from three widely used
GPU benchmark suites. Results show that the cache misses in most benchmarks
are predominant by either primary misses or secondary misses. This highlights that
the entry/slot utilization in conventional MSHRs would be poor when running the
common workloads, and that the structure would not perform well for all the
applications due to the diverse miss behaviors. A direct and naive way to address
this issue is to add more entries and slots. This method not only incurs substantial
overhead (e.g., 22.3% overhead in terms of L2 cache area, as shown later), but also

has limited effectiveness as certain applications may demand over 30 secondary



misses to the same cache line (thus requiring 30 slots per entry) but only need 2
to 3 entries. It is simply impractical to increase MSHRs from the typical 4-8 slots
per entry to that size. To address this important problem, innovative solutions are

needed to utilize the MSHR resources smartly.

1.4 Unified Virtual Memory in GPUs

The superior computing capability and improved programmability have increased
the popularity of GPUs among high performance applications [46} [39]. However,
recent Al algorithms and HPC applications [28] [6, 67, [10T] on GPUs have ex-
hibited an ever-increasing demand for memory capacity (e.g., even the advanced
Titan X GPU may not be able to run the BERT 4,4 model when sequences be-
come a bit longer [28]). Consequently, the limited GPU memory size [83] 84] and
the traditional “copy-then-ezecute” programming model [I0§] have become major
performance bottlenecks for emerging applications. To address this issue, both
Nvidia and AMD [33] have integrated the Unified Virtual Memory (UVM) sup-
port in their GPUs released since 2017, which enables automatic on-demand page
migrations, and hence significantly saves GPU programming efforts and mitigates
the physical memory capacity limitation [7, [8 12} [77, [95].

With the introduction of a new type of page faults in UVM, namely page far-
fault [108] (i.e., data is not present in the GPU memory and need to fetch from
CPU), the hardware can fully take charge of page fault handling if the required

data is not present in the device memory. This improvement brings a big relief



for programmers as they no longer need to pay attention to the data presence
in the GPU memory. Nevertheless, previous studies [108] 34, 33] show that on-
demand page migration (i.e., only migrating required pages that are faulted) can
incur severe performance degradation due to frequent, long-time GPU thread stalls
caused by enormous page faults. To tackle this issue, page prefetching is adopted
as a promising way [108], B3] to reduce page fault occurrences, as most of prefetched
pages are accessed by the GPU sooner or later. However, prefetching is a double-
edged sword: prefetching an improper numbers of pages at the wrong time may
incur a high occupancy of GPU memory and also waste PCle bandwidth between

the CPU and GPU.

1.5 GPU simulators

In the past decades, several open-source GPU simulators has been released, and
serves for different purposes. Table summarizes current available open-source
GPU simulators. GPGPU-Sim[I0] is a simulator for Nvidia GPUs. It was devel-
oped based on the Fermi architecture, and is capable of executing Nvidia virtual
ISA. Multi2-Sim|[35] is a versatile simulator which can simulate virtual ISAs from
both Nvidia and AMD GPUs. Gem5-APU[13] was developed based on the Gem5
simulator, which is augmented by the AMD APU performance model. It can only
simulate AMD virtual and machine ISAs. MGPU-Sim[92] is a parallel GPU simula-
tor. The outstanding feature of this simulator is that it can conduct multi-threaded

simulation. Accel-Sim[51] is the most recent update version of the GPGPU-Sim.
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It extends the performance model of the GPGPU-Sim with recent released NVidia
GPU architectures. This simulator can also support trace level simulation. In the
following chapter, we mainly use GPGPU-sim and our in-house revised version to

validate our proposed schemes.

1.6 Benchmarks for GPU Memory Architecture Research

GPUs have been gaining great attention in accelerating traditional and emerging
workloads, such as machine learning, bioinformatics, electrodynamics, etc. due
to GPU’s massively parallel computing capability. However, there are two ma-
jor issues in the mainstream GPU programming model that severely limit further
utilization. First, the physical memory separation between a GPU and a CPU
requires explicit memory management in conventional GPU programming model.
Programmers have to explicitly copy data between CPU and GPU memories to
the location where the data is used (i.e. copy-then-execute). Second, the con-
ventional GPU programming model does not allow a kernel to be executed if it
needs more memory that what the GPU memory can provide (i.e., memory over-
subscription). This has greatly limited the use of GPUs in large data-intensive
machine learning applications [28, [101] nowadays. Recently, GPU vendors have
proposed and started to employ a new approach, Unified Virtual Memory (UVM),
in the newly released products[87, 2]. UVM allows GPUs and CPUs to share the
same virtual memory space, and ofioads memory management to the GPU driver

and hardware, thus eliminating explicit copy-then-execute by the programmers.
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The GPU driver and underlying hardware automatically migrate the needed data
to destinations. Moreover, UVM enables GPU kernel execution while memory is
oversubscribed by automatically evicting data that is no longer needed in the GPU
memory to the CPU side. This is extremely important and helpful in facilitating
large workloads (especially deep learning models) and GPU virtualization [64], 40]
with limited memory sizes.

However, the advantages of UVM may come at a price. Analogous to virtual
machines that offer great flexibility over physical machines but sacrifice perfor-
mance in some degree [107], UVM also incurs performance overhead. In order to
implement automatic data migration between a CPU and a GPU, the GPU driver
and the GPU Memory Management Unit (MMU) have to track data access infor-
mation and determine the granularity of data migration over the PCle link [33].
This may reduce performance. For example, UVM needs special page table walk
and page fault handling that introduce extra latency for memory accesses in GPUs.
In addition, the fluctuated page migration granularity may also under-utilize PCle
bandwidth.

Due to the large potential benefits of UVM and its associated performance
issues, UVM has recently drawn significant attention from the research community.
Several optimization techniques have been proposed to mitigate the side effects of
UVM [I08, 66} 60, B3], 105, 53|, 32]. The earliest work is Zheng et al. [108], which
enables on-demand GPU memory and proposes prefetching techniques to improve
UVM performance. As the work predates the release of UVM, the developed on-

demand memory APIs are quite different from the version in the current UVM
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practice. More recently, Ganguly et al. [33], Yu et al. [105] and Li et al. [60]
study prefetching and/or eviction techniques for UVM in more detail. However,
their evaluation includes only benchmarks with limited number of access patterns,
which makes it difficult to assess the effectiveness of their schemes on a broader
range of benchmarks with diverse memory access patterns. In fact, comprehensive
benchmarks (or the lack thereof) have become a common issue in these and other
prior works on GPU UVM. Most of them have used their own modified versions
of existing benchmark suites (e.g., Rodinia [22, 23], Parboil [91], Polybench [78])
or several in-house workloads. Our further inspection of these benchmarks shows
that they lack unified implementation and no paper so far has provided a thorough
analysis of the memory behaviors of these benchmarks. This can be a serious
limitation for researchers and developers who aim to propose new optimizations

for UVM and who would like to make comparison with existing research works.
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Chapter 2: CART: Cache Access Reordering Tree for Efficient

Cache and Memory Accesses in GPUs

2.1 Basic Idea

In this work, we explore the opportunity of reordering memory accesses at L2
cache. We conduct an in-depth analysis on when and why access reordering at L2
can be beneficial to both cache and memory. The challenge, however, is to design
a well-rounded reordering architecture that addresses data locality, row-buffer hit,
bank-level parallelism and low design cost at the same time.

To address this challenge, we propose Cache Access Reordering Tree (CART), a
novel yet effective architecture to reorder memory accesses at L2 cache. The main
idea is to classify and group memory accesses by passing the accesses through
a reordering tree. The reordering tree takes into account data locality in cache
lines to increase cache hit, as well as the bank, row and column information of
the accesses to increase DRAM efficiency in case of cache misses. We propose a
way to use a very small number of leaf queues to mimic the effects of having a
large number of queues to reduce hardware cost. A fill policy and a drain policy
for memory requests are carefully designed to make full use of the reordering tree.
Cycle-accurate simulations based on a wide range of benchmarks show that, the

proposed CART is able to improve the average IPC (geometric mean) of memory
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intensive benchmarks by 34.2% with only 1.7% area overhead, compared with the
conventional design. Furthermore, CART is able to complement other state-of-the-
art techniques on GPU caches to achieve higher performance. For example, when
combined with MRPB (Memory Request Prioritization Buffer) [47] and RACB
(Resource Aware Cache Bypass)[27], the two combinations can achieve a total

improvement of average IPC by 38.6% and 41.5%, respectively.

2.2 Background and Motivation

2.2.1 Memory Subsystem in GPUs

Figure depicts a typical GPU architecture and where the proposed CART
fits. A GPU mainly consists of streaming multiprocessors (SMs), interconnect
network, L2 cache, and DRAM. An SM has a number of SIMT cores (e.g. 128
cores per SM in NVidia GTX1080 Ti) to execute multiple threads in parallel. For
the memory subsystem, L1 cache(s) exists inside each SM and handles requests
from multiple SIMT cores within the SM; whereas L2 handles memory requests
that are coming from the SMs through the interconnect network. The logically
unified L2 cache is split into several partitions and each partition is associated
with a DRAM partition. To track multiple outstanding misses to the DRAM,
miss status handling registers (MSHRs) are employed to keep track of the needed
information for each DRAM request, such as the requester core ID, cache block

address, returned data destination, new data for write-back (in case of writing).
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For a primary cache miss that requests a new cache block, one MSHR entry is
allocated. For a secondary cache miss (that requests data in the same cache block
that has been allocated an MSHR entry and is currently pending), one slot in the
MSHR entry is allocated, provided that an empty slot is available in that entry.

A typical MSHR may have 32 or 64 entries, with each entry having 4 slots.

2.2.2 Impact of Access Order on L2 Cache

The order of memory accesses to L2 cache plays a significant role in determining
memory access latency. The access order not only affects the locality of data which
in turn influences cache misses, but also has a large impact on the blocking time
of memory accesses in the cache. The latter is due to the FIFO nature of the
incoming buffers in L2 cache. In conventional GPUs, memory requests that come
out of the interconnection networks are enqueued in the incoming buffer of the
corresponding L2 cache partition (Figure and Figure 2.2(a). When a request
moves to the head of the buffer, L2 checks if the request is a hit in the cache; if
not, the request needs to be issued to DRAM by allocating an MSHR entry or slot.
However, a reservation fail (RF) may happen when no entry/slot is available in the
MSHR or when the miss queue to DRAM is full. As a result, the request has to
stay in the incoming buffer and retries later. This blocks other memory requests
in the FIFO buffer, even though some of the requests could hit in the L2 cache
(no need for MSHR) or use MSHR in other ways (more analysis in Section 3.1).

This head-of-line blocking is more pronounced for irregular memory accesses that
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Figure 2.1: A typical GPU architecture (MSHRs in L1 are omitted for clarity).
The proposed CART is added before L2.

have burst patterns. One of our goals is to reduce the occurrence of head-of-line

blocking without affecting data locality through a better cache-friendly reordering

scheme.
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2.2.3 Impact of Access Order on DRAM

The order of memory accesses also has a large impact on the efficiency of DRAM
because of row-buffer conflicts and bank-level parallelism (BLP). DRAM has a
three-level structure, namely banks, rows and columns [20]. For example, a DRAM
chip may consist of 16 banks, with each bank having thousands of rows and tens
of columns in each row. The size of each column in a row is usually the size of
a cache line (e.g., 128 bytes). Therefore, upon a cache miss, the memory address
is decoded to locate the correct bank, row and column to fetch an entire cache
line (i.e., a column). Modern DRAMs employ a row buffer in each bank that
serves as a “cache” function for temporarily storing the contents of one row, so
as to accelerate future accesses of columns in the same row. A row buffer conflict
occurs if the column from a different row is requested, in which the row buffer
is flushed and refilled by the contents of the newly requested row. This results
in additional access latency. Several memory schedulers (e.g. [72, B5]) try to
reduce row buffer conflicts by reordering memory accesses on the DRAM side.
However, due to the above-mentioned blocking issue in L2, many memory requests
are congested at L2. This leaves a limited number of requests at the front of
DRAM for reordering. Hence, it is important to create a benign order of memory
accesses early on at the L2 cache. Similarly, as banks in a DRAM chip can work in
parallel, it is also beneficial to reorder memory accesses at L2 in a DRAM-friendly
way to help distributing memory requests more evenly among different banks to

increase parallelism.
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2.2.4 Need for More Research on Reordering

To improve the effectiveness of the memory subsystem, several optimization ap-
proaches have been proposed, but the opportunity of reordering memory access
order at L2 cache has largely been unexplored. One approach is to increase MSHR
sizes to reduce reservation fails. However, enlarging MSHR is often prohibitively
costly due to its content-addressable memory (CAM) circuitry [94, 44], and not
all blocking cases are caused by MSHR size limitation. Additionally, increasing
MSHR size does not improve DRAM efficiency as it could not reorder memory
requests to lower row buffer conflicts or increase BLP.

In terms of reordering, reordering memory requests at L1D in a cache-friendly
order has been proposed to increase cache hits and overall performance [47]. Cache
bypassing is used to reduce the penalty of reservation fails [104, 27, 59]. Researchers
also propose to reorder through memory schedulers at memory controllers to reduce
memory accessing latency and increase DRAM working parallelism [69]. While
more related works are discussed in Section existing approaches have not
explored the reordering at L2 cache, which has large impact on both cache and
DRAM as analyzed in the above two subsections. In following sections, we present
how a reordering architecture and strategy can be designed at L2 cache to address
data locality, head-of-line blocking, row buffer conflict, and bank-level parallelism

at the same time.
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Figure 2.2: Blocking vs. non-blocking request buffers.

2.3 Exploring Access Reordering at L2

2.3.1 Blocking of Memory Requests at L2

The root cause of the blocking issue of memory requests at L2 is the FIFO structure
of the incoming buffer. Under such design, if the memory request at the head of the
incoming buffer (head request) is stalled, all the subsequent requests are blocked
in the buffer. Specifically, there are three cases where removing such blocking may
lead to performance benefits: (1) the head memory request is a primary cache miss
and is stalled due to the lack of available entry in MSHR; however, a currently
blocked subsequent request could have been merged into an existing MSHR entry
(i.e., a secondary miss). (2) the head memory request is a secondary cache miss
and is stalled due to the lack of available slot in the matching MSHR entry (i.e.,

needs to be merged with the primary miss); however, empty MSHR entries are
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available and could have been allocated to currently blocked subsequent requests.
(3) the head memory request is stalled due to reservation fail or DRAM saturation
(or any other reasons), but the blocked subsequent requests could have hit in L2

cache and should have proceeded.

2.3.2 A Straightforward Non-blocking Design

To reap the above benefits, we start by considering a simple but non-blocking
incoming buffer design that supports any access order. As illustrated in Figure
Figure 2.2(b), the incoming buffer is restructured to enable parallel selection of
any memory request using a giant multiplexer. When a request encounters a stall,
a selection policy (e.g., round-robin) is employed to select the next request that
is qualified for draining from the buffer structure. The selected request must not
be stalled by the same resource as the previously stalled request. Although being
straightforward, this design can significantly reduce the number of stalls at L2 by
68.8% on average, as shown in Figure 2.2(c). Nevertheless, this design has two

major drawbacks:

e [t only solves the blocking that is local to L2 cache, while neglecting other
opportunities in DRAM down the line, such as row buffer hit and bank-level

parallelism.

e The arbitration can be quite complex, as the multiplexer and control logic
need to scan through all the requests in the buffer to identify a qualified

draining candidate.
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2.3.3  An Improved Design for Access Reordering

To tackle these problems, we examine an improved design that takes into account
bank-level parallelism and arbitration. As shown in Figure in this design, the
FIFO incoming buffer remains the same, but B FIFO queues are added to classify
memory requests that come out of the incoming buffer. A simple address extractor
extracts the bank address from a given memory request, and directs the request
to one of the FIFO queues by calculating (bank_address mod B).

Note that if B equals the number of banks, memory requests are essentially
queued by their bank addresses. However, B can be less than the number of
banks, in which case memory requests destined to different banks may share a

queue. Finally, for draining, a round-robin policy is used to select a non-empty
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queue among the B queues in each cycle.

Compared with the parallel design in Figure 2.2(b), DRAM bank-level par-
allelism is improved because every time a memory request is selected to drain,
its bank address is guaranteed to be different from the last time, thus helping to
have multiple banks to work concurrently. Furthermore, arbitration complexity is
also reduced as the arbitrator only needs to select among B choices. Simulation
results show 10.8% improvement in IPC and 21.0% improvement in DRAM effi-
ciency (defined as DRAM active cycles over total DRAM cycles) of this design,
with arbitration time appropriately accounted for. The improvement is greater for
larger B due to the higher degree of BLP.

Although this design addresses incoming buffer blocking, arbitration, and BLP

issues, it still has two drawbacks:

e While draining from different queues increases BLP, it destroys the data
locality in the original program. This significantly increases miss rate (20.8%

more on average).

e Memory requests that go into the same queue may have mixed (random) row

and column address, thus susceptible to row buffer conflicts.

To address these issues, we need a more comprehensive, yet low-cost, reordering

scheme, as proposed next.
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2.4 CART: Cache Access Reordering Tree

2.4.1 Overview
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Figure 2.4: Diagram of the proposed CART.

Our objective is to reorder memory accesses at L2 cache in a cache-friendly and
DRAM-friendly way. To achieve this, in addition to classifying memory requests
based on bank addresses, the requests need to be further classified by row and
column addresses. Ideally, requests with the same bank, row and column addresses
should be grouped together, because they access the same row buffer in the DRAM
and belong to the same cache line (i.e., same column). However, this grouping

method is highly impractical as there are thousands of different rows in a bank
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and tens of columns in a row. It is impossible to provide a separate queue for
each combination of (bank, row, column). Therefore, we need a way to mimic the
effects of having a large number of queues but using a limited number of physical
queues. To realize this, we propose Cache Access Reordering Tree (CART).

As shown in Figure 2.1, CART is positioned right before L2 cache to actively
reorder memory requests. Figure illustrates the structure within CART. Every
memory request that pops out from the incoming buffer will go through a reorder-
ing tree to reach one of the FIFO leaf queues. To achieve a high degree of BLP,
CART provides a tree branch for each bank (e.g., 16 branches if a DRAM chip has
16 banks). Within a branch/bank, instead of having a leaf queue for each pair of
(row, column), there is a small pool of leaf queues (e.g., 8 queues). A leaf queue
can be dynamically assigned to any (row, column) pair to buffer memory requests
that have the matching row and column addresses. The fill policy determines if
a memory request should be put into an existing leaf queue or be assigned a new
leaf queue. The drain policy determines which leaf queue to output a memory
request. A leaf queue is de-assigned when it is empty. A tag is attached to each
leaf queue to indicate the current (row, column) assignment of the queue. As the
bank address of a branch is implicitly known, the tag includes only the informa-
tion of row and column, where R, represents the row address and C, represents
the column address. To provide fairness and avoid the cases where one row uses
up all the leaf queues in a branch, each row has a fixed number of assigned leaf
queues. For example, if this number is 2 and the branch size is 8 leaf queues, then

there are four rows in a branch, with each row being capable of buffering memory
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requests for two different columns. Each leaf queue can be very small, with only a
few entries per queue.

With this structure, requests are naturally grouped by rows and columns,
whereas accesses to different banks are separated in different branches. These
properties make it possible to address data locality, row buffer hit, and BLP issues
at the same time. The carefully-designed fill and drain policies (described in fol-
lowing subsections) utilize the CART structure to achieve these objectives, while
simplifying arbitration efforts.

Figure [2.5] exemplifies what can be achieved by the proposed CART. M Rn
denotes memory request n, and Bi, Rj and C'k represent the bank address, row
address and column address of this request, respectively. Figure (a) shows the
original order of a sequence of memory accesses (note: leftmost request occurs first
in time). With the FIFO incoming buffer in conventional L2 cache designs, there
are a number of places where data locality and BLP are lost. For instance, MRO
and MR4 belong to the same row in the DRAM bank. However, by the time that
MR4 arrives at the DRAM, the row buffer may have been replaced by MR1’s row,
causing an extra row buffer conflict. Also, MR0O and MR2 belong to the same cache
line and MR2 could hit in L2 without going to DRAM. However, due to MR1 that
takes place between MR0O and MR2, MRO’s cache line could be replaced by MR1
if they are mapped to the same position in L2. This disrupts data locality and
causes MR2 to miss in the cache.

Figure 2.5(b) illustrates the access order after performing cache-friendly re-
ordering. By switching the order of MR1 and MR2 (e.g., by filling MR1 and MR2
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MRO MR1 MR2 MR3 MR4
BO/RO/CO — BO/R1/C1 H BO/RO/CO — B1/R0O/C2 — BO/RO/C2

(a) The original accessing order of memory requests

MRO MR2 MR1 MR3 MR4
BO/RO/CO — BO/RO/CO H BO/R1/C1 — B1/R0O/C2 — BO/RO/C2

(b) The accessing order with cache-friendly reordering

MRO MR2 MR3 MR4 MR1
BO/RO/CO — BO/RO/CO H B1/R0/C2 H BO/RO/C2 — BO/R1/C1

(c) The accessing order with DRAM-friendly reordering

Figure 2.5: An example of the effects of CART. Bi/Rj/Ck denotes that the address
of the memory request (MR) is in bank Bi, row Rj and column CF.

into different leaf queues and then drain MR0O and MR2 consecutively), MR2 can
result in a cache hit without fetching from DRAM. Additionally, DRAM-friendly
reordering as illustrated in Figure [2.5(c) can improve BLP and reduce row buffer
conflicts. For example, MR3 has a bank address that is different from that of MR2.
If MR3 and MR1 switch order (e.g., by draining different branches in CART), Bank
0 and Bank 1 can fetch the required data in parallel, increasing DRAM BLP. Fur-
thermore, MR4 can reuse the data in the row buffer of B0O/RO if MR4 is put into
one of the leaf queues that belong to BO/R0. This avoids a potential ro