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Throughput-oriented processors, such as graphics processing units (GPUs), have

been increasingly used to accelerate general purpose computing, including ma-

chine learning models that are being utilized in numerous disciplines. Thousands

of concurrently running threads in a GPU demand a highly efficient memory sub-

system for data supply in GPUs. In this dissertation, we have studied the memory

architecture of the traditional GPUs and revealed that the traditional memory

architecture, initially designed for graphics processing, is less efficient in handling

general purpose computing tasks. We propose several memory architecture opti-

mizations for two primary objectives: (1) optimize current memory architecture

for more efficient handling of general purpose computing tasks; (2) improve the

overall performance of GPUs.

This dissertation has four major parts: (1) The first part deals with the L2 cache

inefficiency. A key factor that affects the memory subsystem is the order of mem-



ory accesses. While reordering memory accesses at L2 cache has large potential

benefits to both cache and DRAM, little work has been conducted to exploit this.

In this work, we investigate the largely unexplored opportunity of L2 cache access

reordering. We propose Cache Access Reordering Tree (CART), a novel architec-

ture that can improve memory subsystem efficiency by actively reordering memory

accesses at L2 cache to be cache-friendly and DRAM-friendly. (2) The second part

deals with miss handling architecture (MHA) in GPUs. Conventional MHA is

static in sense that it provides a fixed number of MSHR entries to track primary

misses, and a fixed number of slots within each entry to track secondary misses.

This leads to severe entry or slot under-utilization and poor match to practical

workloads, as the number of memory requests to different cache lines can vary sig-

nificantly. We propose Dynamically Linked MSHR (DL-MSHR), a novel approach

that dynamically forms MSHR entries from a pool of available slots. This approach

can self-adapt to primary-miss-predominant applications by forming more entries

with fewer slots, and self-adapt to secondary-miss-predominant applications by

having fewer entries but more slots per entry. (3) The third part aims to improve

the performance of Unified Virtual Memory (UVM), which is recently introduced

into GPUs. We propose CAPTURE (Capacity-Aware Prefetch with True Usage

Reflected Eviction), a novel microarchitecture scheme that implements coordinated

prefetch-eviction for GPU UVM management. CAPTURE utilizes GPU memory

status and memory access history to dynamically adjust the prefetching and “cap-

ture” accurate remaining page reusing opportunities for improved eviction. (4)

In the fourth part, we propose a comprehensive UVM benchmark suite named



UVMBench to facilitate future research on the UVM research.
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Chapter 1: Introduction

1.1 Graphics Processing Units

Graphics Processing Units (GPUs) are first designed for accelerating image display

on monitors. They are widely used in personal computers, mobile devices and game

consoles. As the image processing mainly involves in matrix operation, which can

be paralleled, the GPUs are implemented with a highly parallel architecture. With

the help of the parallel programming APIs (e.g. CUDA[25], OpenCL[38]), their

highly parallel structure makes them more efficient than CPUs on general purpose

tasks, such as machine learning acceleration and molecular simulation.

Figure 1.1 depicts the general architecture of the modern GPU (Pascal). A

GPU have several streaming multiprocessors (SMs), each of which also has multiple

cores. The cores in the SMs are composed of ALUs, thread schedulers, load/store

units, scratchpads, register files and caches, and so on. As GPUs are first designed

for streaming computing (image processing), which usually has little data reuse,

therefore, GPUs usually have much smaller cache capacity (e.g. 48KB L1 and

2.75MB L2 for GTX 1080 Ti) than the CPUs. A GPU has its own device memory

of a few GBs. And it is connected to the CPU through a PCIe bus. The codes

running on the GPUs are called kernels. The kernel is executed on the GPU in

groups of 32 threads, called a warp [86].
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Figure 1.1: GPU Diagram (Pascal Architecture).

1.2 GPU Memory Access Orders

With massive parallel computing ability, graphics processing units (GPUs) are

being increasingly used to accelerate numerous scientific, economic and general

purpose computing applications. GPUs employ single instruction, multiple thread

(SIMT) architecture, which allows thousands of threads running simultaneously

(e.g. up to 3584 threads in NVidia GTX1080 Ti). These concurrent threads
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generate a large number of memory requests that put high pressure on the memory

subsystem (e.g., cache, on-chip network, DRAM) [49]. If not designed with care,

the memory subsystem can easily become a serious factor that prevents GPUs

from achieving peak performance. With the current technology and application

trends, the issue of memory subsystem will likely worsen in the near future. On the

technology side, the development of memory technology have been lagging behind

processing, e.g., from NVidia GTX480 to GTX1080 Ti, the core count increases by

more than 7.4X, but the DRAM bandwidth increases only by about 1.7X. On the

application side, irregular memory access patterns have been exhibited in more and

more GPU workloads (such as trees, priority queues, key-value storage [19, 42]),

which often have poor cache locality and greatly exacerbate the memory stress.

Thus, it is imperative to explore new opportunities in the memory subsystem,

particularly at the architecture level, to bridge the gap between technology and

application demands.

A key factor that determines the efficacy of memory subsystem at all levels of

the memory hierarchy is the order of memory accesses. The order affects not only

the hit/miss of the current level, but also determines which accesses are exposed

to the next level. While prior research has investigated the access reordering

benefits in L1 cache and in DRAM (More details in Related Work), the reordering

opportunity at L2 cache has largely been unexplored. Nevertheless, the access

order to L2 can have a large impact on both L2 cache and DRAM. On the one

hand, the access order can be utilized to extract potential data locality to increase

cache hit, as well as to reduce avoidable head-of-line blocking in the request buffer
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of L2 cache. On the other hand, the access order also determines the request

order to DRAM. A benign request sequence to DRAM offered by L2 can greatly

facilitate memory controllers to improve row-buffer hit and bank-level parallelism

(BLP), both of which are critical to DRAM performance. Substantial research is

needed on how memory accesses can be reordered to achieve a cache-friendly and

DRAM-friendly order.

1.3 GPU Memory Miss Handling Architecture

Many-core processors have an increasing demand for higher memory level paral-

lelism (MLP) to achieve better performance [43]. Consequently, a large number

of outstanding memory requests need to be tracked simultaneously in the memory

subsystem by the miss handling architecture (MHA). This demand becomes more

pressing in GPUs, as the single instruction multiple threads (SIMT) model can

easily execute hundreds to thousands of threads concurrently, resulting in numer-

ous memory requests pending in the memory hierarchy. Thus, it is imperative to

design miss handling architectures that can process and track cache misses at a

matching rate.

MHA has been evolving continuously in the past years, with most of today’s

GPUs having MHA based on Miss Handling Status Registers (MSHRs). When a

requested data is not found in the cache and sent to the next memory level, the

associated MSHR tracks the cache miss by temporally storing the requester ID,

cache block address, requested data tag, and other related information until the
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data is returned from the lower level. A typical MHA may have dozens of MSHR

entries (e.g., 32 or 64) and each entry may in turn have multiple slots (e.g., 4 or

8). An entry is allocated to the primary miss to a cache line, and the slots within

the entry are allocated to the secondary misses to the same cache line while the

primary miss is pending. The MHA is critical to memory level parallelism, as no

new memory requests can be processed if there is no free entry or slot available in

the MHA.

While the above architecture works well to a certain degree, it may no longer be

sufficient in handling the increasing diverse miss behaviors in GPU workloads. The

main issue with the conventional array-based MSHRs is that the entire structure is

static, in the sense that every entry has the same number of slots and this number

is fixed after manufacturing. However, it is unlikely that every cache line has the

same number of misses. While some entries are in high demand for slots, other

entries may have multiple slots being unused. To understand the workload demand

in practice better, we evaluated a number of applications from three widely used

GPU benchmark suites. Results show that the cache misses in most benchmarks

are predominant by either primary misses or secondary misses. This highlights that

the entry/slot utilization in conventional MSHRs would be poor when running the

common workloads, and that the structure would not perform well for all the

applications due to the diverse miss behaviors. A direct and naive way to address

this issue is to add more entries and slots. This method not only incurs substantial

overhead (e.g., 22.3% overhead in terms of L2 cache area, as shown later), but also

has limited effectiveness as certain applications may demand over 30 secondary
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misses to the same cache line (thus requiring 30 slots per entry) but only need 2

to 3 entries. It is simply impractical to increase MSHRs from the typical 4-8 slots

per entry to that size. To address this important problem, innovative solutions are

needed to utilize the MSHR resources smartly.

1.4 Unified Virtual Memory in GPUs

The superior computing capability and improved programmability have increased

the popularity of GPUs among high performance applications [46, 39]. However,

recent AI algorithms and HPC applications [28, 6, 67, 101] on GPUs have ex-

hibited an ever-increasing demand for memory capacity (e.g., even the advanced

Titan X GPU may not be able to run the BERTLarge model when sequences be-

come a bit longer [28]). Consequently, the limited GPU memory size [83, 84] and

the traditional “copy-then-execute” programming model [108] have become major

performance bottlenecks for emerging applications. To address this issue, both

Nvidia and AMD [33] have integrated the Unified Virtual Memory (UVM) sup-

port in their GPUs released since 2017, which enables automatic on-demand page

migrations, and hence significantly saves GPU programming efforts and mitigates

the physical memory capacity limitation [7, 8, 12, 77, 95].

With the introduction of a new type of page faults in UVM, namely page far-

fault [108] (i.e., data is not present in the GPU memory and need to fetch from

CPU), the hardware can fully take charge of page fault handling if the required

data is not present in the device memory. This improvement brings a big relief
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for programmers as they no longer need to pay attention to the data presence

in the GPU memory. Nevertheless, previous studies [108, 34, 33] show that on-

demand page migration (i.e., only migrating required pages that are faulted) can

incur severe performance degradation due to frequent, long-time GPU thread stalls

caused by enormous page faults. To tackle this issue, page prefetching is adopted

as a promising way [108, 33] to reduce page fault occurrences, as most of prefetched

pages are accessed by the GPU sooner or later. However, prefetching is a double-

edged sword: prefetching an improper numbers of pages at the wrong time may

incur a high occupancy of GPU memory and also waste PCIe bandwidth between

the CPU and GPU.

1.5 GPU simulators

In the past decades, several open-source GPU simulators has been released, and

serves for different purposes. Table 1.1 summarizes current available open-source

GPU simulators. GPGPU-Sim[10] is a simulator for Nvidia GPUs. It was devel-

oped based on the Fermi architecture, and is capable of executing Nvidia virtual

ISA. Multi2-Sim[35] is a versatile simulator which can simulate virtual ISAs from

both Nvidia and AMD GPUs. Gem5-APU[13] was developed based on the Gem5

simulator, which is augmented by the AMD APU performance model. It can only

simulate AMD virtual and machine ISAs. MGPU-Sim[92] is a parallel GPU simula-

tor. The outstanding feature of this simulator is that it can conduct multi-threaded

simulation. Accel-Sim[51] is the most recent update version of the GPGPU-Sim.
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It extends the performance model of the GPGPU-Sim with recent released NVidia

GPU architectures. This simulator can also support trace level simulation. In the

following chapter, we mainly use GPGPU-sim and our in-house revised version to

validate our proposed schemes.

1.6 Benchmarks for GPU Memory Architecture Research

GPUs have been gaining great attention in accelerating traditional and emerging

workloads, such as machine learning, bioinformatics, electrodynamics, etc. due

to GPU’s massively parallel computing capability. However, there are two ma-

jor issues in the mainstream GPU programming model that severely limit further

utilization. First, the physical memory separation between a GPU and a CPU

requires explicit memory management in conventional GPU programming model.

Programmers have to explicitly copy data between CPU and GPU memories to

the location where the data is used (i.e. copy-then-execute). Second, the con-

ventional GPU programming model does not allow a kernel to be executed if it

needs more memory that what the GPU memory can provide (i.e., memory over-

subscription). This has greatly limited the use of GPUs in large data-intensive

machine learning applications [28, 101] nowadays. Recently, GPU vendors have

proposed and started to employ a new approach, Unified Virtual Memory (UVM),

in the newly released products[87, 2]. UVM allows GPUs and CPUs to share the

same virtual memory space, and offloads memory management to the GPU driver

and hardware, thus eliminating explicit copy-then-execute by the programmers.
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The GPU driver and underlying hardware automatically migrate the needed data

to destinations. Moreover, UVM enables GPU kernel execution while memory is

oversubscribed by automatically evicting data that is no longer needed in the GPU

memory to the CPU side. This is extremely important and helpful in facilitating

large workloads (especially deep learning models) and GPU virtualization [64, 40]

with limited memory sizes.

However, the advantages of UVM may come at a price. Analogous to virtual

machines that offer great flexibility over physical machines but sacrifice perfor-

mance in some degree [107], UVM also incurs performance overhead. In order to

implement automatic data migration between a CPU and a GPU, the GPU driver

and the GPU Memory Management Unit (MMU) have to track data access infor-

mation and determine the granularity of data migration over the PCIe link [33].

This may reduce performance. For example, UVM needs special page table walk

and page fault handling that introduce extra latency for memory accesses in GPUs.

In addition, the fluctuated page migration granularity may also under-utilize PCIe

bandwidth.

Due to the large potential benefits of UVM and its associated performance

issues, UVM has recently drawn significant attention from the research community.

Several optimization techniques have been proposed to mitigate the side effects of

UVM [108, 66, 60, 33, 105, 53, 32]. The earliest work is Zheng et al. [108], which

enables on-demand GPU memory and proposes prefetching techniques to improve

UVM performance. As the work predates the release of UVM, the developed on-

demand memory APIs are quite different from the version in the current UVM
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practice. More recently, Ganguly et al. [33], Yu et al. [105] and Li et al. [60]

study prefetching and/or eviction techniques for UVM in more detail. However,

their evaluation includes only benchmarks with limited number of access patterns,

which makes it difficult to assess the effectiveness of their schemes on a broader

range of benchmarks with diverse memory access patterns. In fact, comprehensive

benchmarks (or the lack thereof) have become a common issue in these and other

prior works on GPU UVM. Most of them have used their own modified versions

of existing benchmark suites (e.g., Rodinia [22, 23], Parboil [91], Polybench [78])

or several in-house workloads. Our further inspection of these benchmarks shows

that they lack unified implementation and no paper so far has provided a thorough

analysis of the memory behaviors of these benchmarks. This can be a serious

limitation for researchers and developers who aim to propose new optimizations

for UVM and who would like to make comparison with existing research works.
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Chapter 2: CART: Cache Access Reordering Tree for Efficient

Cache and Memory Accesses in GPUs

2.1 Basic Idea

In this work, we explore the opportunity of reordering memory accesses at L2

cache. We conduct an in-depth analysis on when and why access reordering at L2

can be beneficial to both cache and memory. The challenge, however, is to design

a well-rounded reordering architecture that addresses data locality, row-buffer hit,

bank-level parallelism and low design cost at the same time.

To address this challenge, we propose Cache Access Reordering Tree (CART), a

novel yet effective architecture to reorder memory accesses at L2 cache. The main

idea is to classify and group memory accesses by passing the accesses through

a reordering tree. The reordering tree takes into account data locality in cache

lines to increase cache hit, as well as the bank, row and column information of

the accesses to increase DRAM efficiency in case of cache misses. We propose a

way to use a very small number of leaf queues to mimic the effects of having a

large number of queues to reduce hardware cost. A fill policy and a drain policy

for memory requests are carefully designed to make full use of the reordering tree.

Cycle-accurate simulations based on a wide range of benchmarks show that, the

proposed CART is able to improve the average IPC (geometric mean) of memory
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intensive benchmarks by 34.2% with only 1.7% area overhead, compared with the

conventional design. Furthermore, CART is able to complement other state-of-the-

art techniques on GPU caches to achieve higher performance. For example, when

combined with MRPB (Memory Request Prioritization Buffer) [47] and RACB

(Resource Aware Cache Bypass)[27], the two combinations can achieve a total

improvement of average IPC by 38.6% and 41.5%, respectively.

2.2 Background and Motivation

2.2.1 Memory Subsystem in GPUs

Figure 2.1 depicts a typical GPU architecture and where the proposed CART

fits. A GPU mainly consists of streaming multiprocessors (SMs), interconnect

network, L2 cache, and DRAM. An SM has a number of SIMT cores (e.g. 128

cores per SM in NVidia GTX1080 Ti) to execute multiple threads in parallel. For

the memory subsystem, L1 cache(s) exists inside each SM and handles requests

from multiple SIMT cores within the SM; whereas L2 handles memory requests

that are coming from the SMs through the interconnect network. The logically

unified L2 cache is split into several partitions and each partition is associated

with a DRAM partition. To track multiple outstanding misses to the DRAM,

miss status handling registers (MSHRs) are employed to keep track of the needed

information for each DRAM request, such as the requester core ID, cache block

address, returned data destination, new data for write-back (in case of writing).
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For a primary cache miss that requests a new cache block, one MSHR entry is

allocated. For a secondary cache miss (that requests data in the same cache block

that has been allocated an MSHR entry and is currently pending), one slot in the

MSHR entry is allocated, provided that an empty slot is available in that entry.

A typical MSHR may have 32 or 64 entries, with each entry having 4 slots.

2.2.2 Impact of Access Order on L2 Cache

The order of memory accesses to L2 cache plays a significant role in determining

memory access latency. The access order not only affects the locality of data which

in turn influences cache misses, but also has a large impact on the blocking time

of memory accesses in the cache. The latter is due to the FIFO nature of the

incoming buffers in L2 cache. In conventional GPUs, memory requests that come

out of the interconnection networks are enqueued in the incoming buffer of the

corresponding L2 cache partition (Figure 2.1 and Figure 2.2(a). When a request

moves to the head of the buffer, L2 checks if the request is a hit in the cache; if

not, the request needs to be issued to DRAM by allocating an MSHR entry or slot.

However, a reservation fail (RF) may happen when no entry/slot is available in the

MSHR or when the miss queue to DRAM is full. As a result, the request has to

stay in the incoming buffer and retries later. This blocks other memory requests

in the FIFO buffer, even though some of the requests could hit in the L2 cache

(no need for MSHR) or use MSHR in other ways (more analysis in Section 3.1).

This head-of-line blocking is more pronounced for irregular memory accesses that
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Figure 2.1: A typical GPU architecture (MSHRs in L1 are omitted for clarity).
The proposed CART is added before L2.

have burst patterns. One of our goals is to reduce the occurrence of head-of-line

blocking without affecting data locality through a better cache-friendly reordering

scheme.



16

2.2.3 Impact of Access Order on DRAM

The order of memory accesses also has a large impact on the efficiency of DRAM

because of row-buffer conflicts and bank-level parallelism (BLP). DRAM has a

three-level structure, namely banks, rows and columns [20]. For example, a DRAM

chip may consist of 16 banks, with each bank having thousands of rows and tens

of columns in each row. The size of each column in a row is usually the size of

a cache line (e.g., 128 bytes). Therefore, upon a cache miss, the memory address

is decoded to locate the correct bank, row and column to fetch an entire cache

line (i.e., a column). Modern DRAMs employ a row buffer in each bank that

serves as a ”cache” function for temporarily storing the contents of one row, so

as to accelerate future accesses of columns in the same row. A row buffer conflict

occurs if the column from a different row is requested, in which the row buffer

is flushed and refilled by the contents of the newly requested row. This results

in additional access latency. Several memory schedulers (e.g. [72, 85]) try to

reduce row buffer conflicts by reordering memory accesses on the DRAM side.

However, due to the above-mentioned blocking issue in L2, many memory requests

are congested at L2. This leaves a limited number of requests at the front of

DRAM for reordering. Hence, it is important to create a benign order of memory

accesses early on at the L2 cache. Similarly, as banks in a DRAM chip can work in

parallel, it is also beneficial to reorder memory accesses at L2 in a DRAM-friendly

way to help distributing memory requests more evenly among different banks to

increase parallelism.



17

2.2.4 Need for More Research on Reordering

To improve the effectiveness of the memory subsystem, several optimization ap-

proaches have been proposed, but the opportunity of reordering memory access

order at L2 cache has largely been unexplored. One approach is to increase MSHR

sizes to reduce reservation fails. However, enlarging MSHR is often prohibitively

costly due to its content-addressable memory (CAM) circuitry [94, 44], and not

all blocking cases are caused by MSHR size limitation. Additionally, increasing

MSHR size does not improve DRAM efficiency as it could not reorder memory

requests to lower row buffer conflicts or increase BLP.

In terms of reordering, reordering memory requests at L1D in a cache-friendly

order has been proposed to increase cache hits and overall performance [47]. Cache

bypassing is used to reduce the penalty of reservation fails [104, 27, 59]. Researchers

also propose to reorder through memory schedulers at memory controllers to reduce

memory accessing latency and increase DRAM working parallelism [69]. While

more related works are discussed in Section 2.7, existing approaches have not

explored the reordering at L2 cache, which has large impact on both cache and

DRAM as analyzed in the above two subsections. In following sections, we present

how a reordering architecture and strategy can be designed at L2 cache to address

data locality, head-of-line blocking, row buffer conflict, and bank-level parallelism

at the same time.
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Figure 2.2: Blocking vs. non-blocking request buffers.

2.3 Exploring Access Reordering at L2

2.3.1 Blocking of Memory Requests at L2

The root cause of the blocking issue of memory requests at L2 is the FIFO structure

of the incoming buffer. Under such design, if the memory request at the head of the

incoming buffer (head request) is stalled, all the subsequent requests are blocked

in the buffer. Specifically, there are three cases where removing such blocking may

lead to performance benefits: (1) the head memory request is a primary cache miss

and is stalled due to the lack of available entry in MSHR; however, a currently

blocked subsequent request could have been merged into an existing MSHR entry

(i.e., a secondary miss). (2) the head memory request is a secondary cache miss

and is stalled due to the lack of available slot in the matching MSHR entry (i.e.,

needs to be merged with the primary miss); however, empty MSHR entries are
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available and could have been allocated to currently blocked subsequent requests.

(3) the head memory request is stalled due to reservation fail or DRAM saturation

(or any other reasons), but the blocked subsequent requests could have hit in L2

cache and should have proceeded.

2.3.2 A Straightforward Non-blocking Design

To reap the above benefits, we start by considering a simple but non-blocking

incoming buffer design that supports any access order. As illustrated in Figure

Figure 2.2(b), the incoming buffer is restructured to enable parallel selection of

any memory request using a giant multiplexer. When a request encounters a stall,

a selection policy (e.g., round-robin) is employed to select the next request that

is qualified for draining from the buffer structure. The selected request must not

be stalled by the same resource as the previously stalled request. Although being

straightforward, this design can significantly reduce the number of stalls at L2 by

68.8% on average, as shown in Figure 2.2(c). Nevertheless, this design has two

major drawbacks:

• It only solves the blocking that is local to L2 cache, while neglecting other

opportunities in DRAM down the line, such as row buffer hit and bank-level

parallelism.

• The arbitration can be quite complex, as the multiplexer and control logic

need to scan through all the requests in the buffer to identify a qualified

draining candidate.
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Figure 2.3: Reordering based on bank information.

2.3.3 An Improved Design for Access Reordering

To tackle these problems, we examine an improved design that takes into account

bank-level parallelism and arbitration. As shown in Figure 2.3, in this design, the

FIFO incoming buffer remains the same, but B FIFO queues are added to classify

memory requests that come out of the incoming buffer. A simple address extractor

extracts the bank address from a given memory request, and directs the request

to one of the FIFO queues by calculating (bank address mod B).

Note that if B equals the number of banks, memory requests are essentially

queued by their bank addresses. However, B can be less than the number of

banks, in which case memory requests destined to different banks may share a

queue. Finally, for draining, a round-robin policy is used to select a non-empty
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queue among the B queues in each cycle.

Compared with the parallel design in Figure 2.2(b), DRAM bank-level par-

allelism is improved because every time a memory request is selected to drain,

its bank address is guaranteed to be different from the last time, thus helping to

have multiple banks to work concurrently. Furthermore, arbitration complexity is

also reduced as the arbitrator only needs to select among B choices. Simulation

results show 10.8% improvement in IPC and 21.0% improvement in DRAM effi-

ciency (defined as DRAM active cycles over total DRAM cycles) of this design,

with arbitration time appropriately accounted for. The improvement is greater for

larger B due to the higher degree of BLP.

Although this design addresses incoming buffer blocking, arbitration, and BLP

issues, it still has two drawbacks:

• While draining from different queues increases BLP, it destroys the data

locality in the original program. This significantly increases miss rate (20.8%

more on average).

• Memory requests that go into the same queue may have mixed (random) row

and column address, thus susceptible to row buffer conflicts.

To address these issues, we need a more comprehensive, yet low-cost, reordering

scheme, as proposed next.
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2.4 CART: Cache Access Reordering Tree

2.4.1 Overview

Figure 2.4: Diagram of the proposed CART.

Our objective is to reorder memory accesses at L2 cache in a cache-friendly and

DRAM-friendly way. To achieve this, in addition to classifying memory requests

based on bank addresses, the requests need to be further classified by row and

column addresses. Ideally, requests with the same bank, row and column addresses

should be grouped together, because they access the same row buffer in the DRAM

and belong to the same cache line (i.e., same column). However, this grouping

method is highly impractical as there are thousands of different rows in a bank
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and tens of columns in a row. It is impossible to provide a separate queue for

each combination of (bank, row, column). Therefore, we need a way to mimic the

effects of having a large number of queues but using a limited number of physical

queues. To realize this, we propose Cache Access Reordering Tree (CART).

As shown in Figure 2.1, CART is positioned right before L2 cache to actively

reorder memory requests. Figure 2.4 illustrates the structure within CART. Every

memory request that pops out from the incoming buffer will go through a reorder-

ing tree to reach one of the FIFO leaf queues. To achieve a high degree of BLP,

CART provides a tree branch for each bank (e.g., 16 branches if a DRAM chip has

16 banks). Within a branch/bank, instead of having a leaf queue for each pair of

(row, column), there is a small pool of leaf queues (e.g., 8 queues). A leaf queue

can be dynamically assigned to any (row, column) pair to buffer memory requests

that have the matching row and column addresses. The fill policy determines if

a memory request should be put into an existing leaf queue or be assigned a new

leaf queue. The drain policy determines which leaf queue to output a memory

request. A leaf queue is de-assigned when it is empty. A tag is attached to each

leaf queue to indicate the current (row, column) assignment of the queue. As the

bank address of a branch is implicitly known, the tag includes only the informa-

tion of row and column, where Rx represents the row address and Cx represents

the column address. To provide fairness and avoid the cases where one row uses

up all the leaf queues in a branch, each row has a fixed number of assigned leaf

queues. For example, if this number is 2 and the branch size is 8 leaf queues, then

there are four rows in a branch, with each row being capable of buffering memory
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requests for two different columns. Each leaf queue can be very small, with only a

few entries per queue.

With this structure, requests are naturally grouped by rows and columns,

whereas accesses to different banks are separated in different branches. These

properties make it possible to address data locality, row buffer hit, and BLP issues

at the same time. The carefully-designed fill and drain policies (described in fol-

lowing subsections) utilize the CART structure to achieve these objectives, while

simplifying arbitration efforts.

Figure 2.5 exemplifies what can be achieved by the proposed CART. MRn

denotes memory request n, and Bi, Rj and Ck represent the bank address, row

address and column address of this request, respectively. Figure 2.5(a) shows the

original order of a sequence of memory accesses (note: leftmost request occurs first

in time). With the FIFO incoming buffer in conventional L2 cache designs, there

are a number of places where data locality and BLP are lost. For instance, MR0

and MR4 belong to the same row in the DRAM bank. However, by the time that

MR4 arrives at the DRAM, the row buffer may have been replaced by MR1’s row,

causing an extra row buffer conflict. Also, MR0 and MR2 belong to the same cache

line and MR2 could hit in L2 without going to DRAM. However, due to MR1 that

takes place between MR0 and MR2, MR0’s cache line could be replaced by MR1

if they are mapped to the same position in L2. This disrupts data locality and

causes MR2 to miss in the cache.

Figure 2.5(b) illustrates the access order after performing cache-friendly re-

ordering. By switching the order of MR1 and MR2 (e.g., by filling MR1 and MR2
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(a) The original accessing order of memory requests

(b) The accessing order with cache-friendly reordering

(c) The accessing order with DRAM-friendly reordering
Figure 2.5: An example of the effects of CART. Bi/Rj /Ck denotes that the address
of the memory request (MR) is in bank Bi, row Rj and column Ck.

into different leaf queues and then drain MR0 and MR2 consecutively), MR2 can

result in a cache hit without fetching from DRAM. Additionally, DRAM-friendly

reordering as illustrated in Figure 2.5(c) can improve BLP and reduce row buffer

conflicts. For example, MR3 has a bank address that is different from that of MR2.

If MR3 and MR1 switch order (e.g., by draining different branches in CART), Bank

0 and Bank 1 can fetch the required data in parallel, increasing DRAM BLP. Fur-

thermore, MR4 can reuse the data in the row buffer of B0/R0 if MR4 is put into

one of the leaf queues that belong to B0/R0. This avoids a potential row buffer

conflict.
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2.4.2 Leaf Queue Allocation

A key aspect of CART is to use a small number of leaf queues to approximate

the effect of having a large number of queues in a branch. The rationale behind

this that, despite the tens of thousands of (row, column) address combination

for a bank, there are only a limited number of (e.g., tens of) outstanding memory

requests per bank. Moreover, some of the outstanding requests share the same row

and column addresses, and can be merged in one leaf queue. This indicates that

it is possible to use a small number of leaf queues to buffer all the outstanding

memory requests, as long as there is a leaf queue or an entry in a leaf queue

available by the time a new request comes.

With a given number of leaf queues in a branch, there are several queue alloca-

tion strategies. We can allocate more leaf queues to a row, so as to accommodate

more memory requests for different column addresses in the row, at the cost of fewer

rows. Or we can allocate fewer leaf queues to a row, which increases the number

and diversity of rows in a branch, but at the cost of fewer columns per row. Ad-

ditionally, under the same total buffer space, the number of entries in a leaf queue

can be reduced to increase the number of leaf queues. To this end, we conducted

an extensive experimental study to identify the best trade-off configuration. While

details are presented in Section VI-A, we observed that the performance of provid-

ing two 2-entry leaf queues per row and four rows per branch is within 3% of the

performance of a configuration that has 32 times as many buffer resources. This

demonstrates the viability of using limited queues to reorder memory requests.
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2.4.3 Fill Policy

The fill policy determines which leaf queue an incoming memory request should be

buffered. Since CART provides one branch per bank, the fill policy only needs to

select among the leaf queues in a branch. The fill policy works in a straightforward

way: if one of the leaf queues contains the same row and column information as

the new request, the request is merged into this queue by occupying an empty

entry (in the FIFO order). If there is no empty entry in the matching queue or

if there is no matching queue, a new available leaf queue is allocated to store the

request, with the tag information set to the row and column addresses of the new

request. Here, “available” means that an empty leaf queue is available among the

leaf queues that are assigned to that row. Lastly, if no such leaf queue is available,

the new memory request is stalled in the incoming buffer and retries later. Note

that the probability for stalling can be kept very low with a sufficient number of

leaf queues, and our study shows that the above configuration with only 8 leaf

queues per branch can already achieve a near-zero probability in most cases.

2.4.4 Drain Policy

The drain policy is inherently more difficult to design than the fill policy, as the

effect of a not-so-good fill decision may be delayed and partially compensated by

the buffering effect of the tree, but a drain decision directly affects which requests

are issued to the cache. Unfortunately, commonly-used general drain policies such

as greedy, longest-first, and round-robin do not work well with CART. For example,
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if the longest-first policy is applied to CART, the longest leaf queue is selected to

drain in every cycle. This increases locality as all the requests in a queue share the

same row and column, but squanders the opportunity for bank-level parallelism.

Figure 2.6 illustrates an example. When the longest-first drain policy is applied,

the first several selected requests would be in this order is Q1 MR7, Q1 MR6,

Q2 MR11, Q0 MR2, Q1 MR5, Q2 MR10 (queue ID is used for tie-breaker). As

can be seen, no requests are selected for Bank 2 and Bank 3, and they are not

working during all this time. Similarly, round-robin policy does not work well

either as it actively selects requests across different queues, thus destroying the

data locality.

To address these issues, we propose a “rotating banks and same-or-longest row”

drain policy to achieve both cache-friendly and DRAM-friendly order. The drain

policy includes two aspects. In the first aspect, the policy selects one and only

one request from a branch (i.e., leaf queues belonging to the same bank), and then

immediately rotates to the next non-empty branch (bank) in the next cycle. In

the second aspect, when the policy rotates back the same branch, the same leaf

queue that was selected last time is selected this time, or if that leaf queue has

already been fully drained, the longest leaf queue with the same row in the branch

is selected (if all the leaf queues of that row are drained, simply select the longest

leaf queue in the branch). Essentially, the first aspect increases BLP; whereas

the second aspect increases data locality and row buffer hit, as the requests in the

same leaf queue access the same cache line (if cache hit) or the same DRAM row (if

cache miss). Take the example in Figure 2.6 again. Assuming the proposed policy
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starts with Bank 1, since this is the first time with no prior history, the longest

leaf queue, Q1 MR7, is selected. Then the policy rotates to Bank 2 and selects

Q3 MR13. This is followed by Q5 MR18 in Bank 3. When the policy rotates back

to Bank 1, the same leaf queue as the last time, Q1 MR6, is selected to maintain

the locality, regardless of whether Q1 is currently the longest. Similar process

continues, with the draining order of Q3 MR12, Q5 MR17, Q1 MR5, Q4 MR15,

Q5 MR16, Q1 MR4, Q4 MR14, Q1 MR3, Q0 MR2 (because of same row with

Q1), Q0 MR1, Q0 MR0, Q2 MR11, Q2 MR10, Q2 MR9, Q2 MR8. Compared

with longest-first and round-robin, this order achieves substantially reduced cache

misses and row-buffer conflicts while utilizing multiple banks effectively.

Table 2.1: CART design configuration.

# of leaf queue Bank: 16; Row: 4; Column: 2
Queue size 2 entry per queue
Tag Row + column addresses
Drain policy Rotating banks and same-or-longest row

Table 2.2: Simulation configuration.

# of SMs 28
Warp Scheduler GTO
Per-SM limit 48 warps, 8 CTAs
# of Memory Partitions 8
L1D cache l16 KB, 32-set, 4-way, 32 MSHR,
Allocate on Miss, Local write-back,
global write-through
L2 cache l8x128 KB, 64-set, 16-way,
32 MSHR, Allocate on Miss, write-back
DRAM lFR-FCFS scheduler, GDDR5, 16 banks
SM/L2/DRAM clock 1400/700/1150 MHz
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Figure 2.6: Illustration of drain policies for a given tree status.
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2.5 Evaluation Methodology

We implement the proposed schemes in a cycle-accurate simulator, GPGPU-Sim

3.2.2 [10]. GPUWatch [58] is employed to evaluate the energy consumption of our

proposed scheme and baseline architecture. Table 2.2 lists the configuration used

in the simulator. The benchmarks from Rodinia [22], Parboil [91], and Nvidia GPU

Computing SDK are evaluated. Table 2.3 lists more details of the benchmarks. The

second and fifth columns in the table illustrate the total number of instructions

executed by the entire SMs over the number of L2 cache miss. These values

reflect the extent to which the performance of the benchmarks depends on cache

performance [89, 56]. The benchmarks whose total executed instructions per L2

miss are less than 1500 are considered as the memory intensive benchmarks and

are marked M in the “Type” column. Other benchmarks whose values are over

1500 are compute intensive benchmarks and are marked C type.

We compare CART against the baseline architecture, as well as two state-

of-the-art techniques, MRPB [47] and RACB [27]. MRPB uses memory request

prioritization buffer to reorder memory requests in the L1D cache and bypass

selected requests. RACB uses bypassing technique in both L1D and L2 cache

according to the resource availability in these caches. Note that all the schemes

employs the widely used FR-FCFC scheduling [85] at the memory controllers.

Therefore, memory request reordering opportunity before DRAM is exploited in

all the schemes.
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2.6 Results and Analysis

2.6.1 Exploring CART Design Space

While CART works better with more leaf queues, it may not necessary to provide

a large number of queues, particularly with cost consideration. To gain insight

on how to identify a good trade-off design between the resource consumption and

performance improvement, we have examined the impact of different leaf queue

numbers and queue sizes on performance. Since the number of branch is fixed to

one branch per bank, we only need to explore the design space of row numbers,

column numbers and queue sizes (entry numbers). Figure 2.7 plots the impact on

performance improvement over baseline architecture for several memory-intensive

benchmarks by using various configurations. nR denotes that there are at most

n different row addresses in the leaf queues belonging to each bank. nC means

that for the leaf queues belonging to a specific bank and row address, there are

at most n different column addresses of memory requests; the nE represents the

entry numbers in each FIFO queue.

It can be seen that, more resource leads to higher performance improvement for

CART. However, the difference is not very large, demonstrating that CART does

not need an impractical number of queues for each row and column combination.

Figure 2.7 shows a diminishing return when adding more resources. In fact, the

average performance improvement drops only by 2.0% when the resource for CART

is reduced from 8R/8C/8E to 4R/2C/2E, which is a resource reduction of 96.9%

(512 entries vs. 16 entries). While not shown in the figure, providing an extremely
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Figure 2.7: Finding good performance-cost tradeoff for CART.

Figure 2.8: Performance comparison of different schemes for memory-intensive
benchmarks.

large number of leaf queues and entries (approaching ideal performance) has a

performance improvement within 3% of the 4R/2C/2E configuration. Based on

this study, we select 4R/2C/2E as the current configuration of CART in our further

evaluation. The table 2.1 summarizes the configuration of CART.
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Figure 2.9: Perf. comparison for compute-intensive benchmarks.

2.6.2 Performance Comparisons

Our performance comparison consists of two main parts. The first part is to

evaluate how effective the proposed CART is when applied alone, compared with

other schemes (baseline, MRPB and RACB) applied alone. The second part is

to evaluate if CART can complement other schemes to improve the efficiency of

memory subsystem. As with other works in the area [89], we plot the results of

memory-intensive and compute-intensive benchmarks separately.

First of all, Figure 2.8 shows the overall performance improvement of differ-

ent schemes for the memory-intensive benchmarks. Compared with the baseline,

the proposed CART alone can achieve 34.2% average IPC improvement (geomet-

ric mean). For some benchmarks, such as Transpose (TRP), CART even achieves

2.26X IPC improvement. This shows that actively reordering the incoming requests

to a cache-friendly and DRAM-friendly order can help relieve the pressure on mem-
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ory subsystem. MRPB mainly works on the L1D cache efficiency by reordering the

cache in a cache-friendly order and bypassing upon associativity-stalled requests.

MRPB improves the average IPC of memory-intensive benchmarks by 23.4%. In

addition, RACB focuses on the resource-aware L1D and L2 cache bypassing. When

the resource in L1D or L2 cache is no longer available, the bypassing is activated.

The average IPC in RACB increases by 12.6% over the baseline. Therefore, the

proposed CART performs better than the other two schemes by a large margin.

Second, as the proposed CART improves the efficiency of both L2 cache and

DRAM, the combination of CART and MRPB or RACB can explore the benefits

across L1D, L2 cache and DRAM. Figure 2.8 also shows the performance improve-

ment of combined schemes. The combination of CART and MRPB can improve

the average IPC by 38.6%, and the combination of CART and RACB can achieve

average IPC improvement by 41.5%. Those two improvements are much higher

than applying MRPB and RACB alone. This illustrates that the proposed scheme

exploits an new opportunity that is largely complementary to existing ones.

We also examine the effect on compute-intensive benchmarks by using differ-

ent schemes. The results are shown in Figure 2.9. The performance improvement

of MRPB and RACB are both within the 1.0%. CART is slightly better with

an average improvement of around 2.5%, although some benchmarks have ob-

served larger improvement (e.g., 20.8% in QG and 12.7% in SAD). These results

on compute-intensive benchmarks are understandable as they are insensitive to

memory. For a fair comparison, when considering all the memory-intensive and

compute-intensive benchmarks together, CART is still able to achieve an average
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improvement of 26.5%.

2.6.3 Insight of Performance Improvement

Several factors may contribute to the performance improvement of CART: reduc-

tion of row buffer conflicts, improvement in L2 hits, and increase of bank utilization.

The proposed CART pursues the benefits of more row buffer hits by giving a high

priority in the drain policy to the memory requests that have the same row ad-

dresses as the previously accessed row. Figure 2.10a compares the number of row

buffer conflicts in the baseline architecture and CART. Many memory intensive

benchmarks are observed to have a reduction of row buffer conflicts. On average,

the benchmarks with CART have 12.3% decrease in row buffer conflicts. This

decrease helps to reduce the time in replacing the content of row buffers, thereby

increasing DRAM efficiency. Similarly, Figure 2.10b and Figure 2.10c show the

impact of CART on L2 cache hit and by bank utilization, respectively. Note that,

while not all the benchmarks have improvement in all the three aspects, we have

observed and verified that each benchmark has large improvement in at least one

of the aspects.

2.6.4 Hardware Implementation

We use Cacti 6.5 [99] and RTL implementation to estimate the area and timing

of CART. All the key components of CART are implemented and evaluated for
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hardware cost, including the SRAM-based leaf FIFO queues, the address extractor,

the comparators in leaf queues (eight parallel comparators to allow an incoming

request to be selected and written into a leaf queue in each cycle), the request

selector to reflect the drain policy, etc. With all the components together, CART

incurs 0.016 mm2 per L2 cache partition under 45 nm, which is only 1.7% relative

to each L2 cache partition. In comparison, MRPB adds 10.5% hardware overhead

(also relative to L2).

2.6.5 Energy efficiency

Due to the small hardware overhead, the proposed CART has very limited overhead

on power consumption. As a result, the overall energy consumption of the GPU

is reduced due to the shortened execution time. We lumped the CART power

overhead in GPUWattch, and simulation results show that CART reduces the

energy consumption by 18.9%, compared with the conventional design.

2.7 Related Work

Cache bypassing: Several studies have focused on cache bypassing to alleviate

cache pressure for GPUs. Xie et al.[103] use compilers to analyze cache utilization

of the code based on specific metric and select related instructions for cache access

and bypass. Dynamic cache bypassing is also proposed [27, 59, 104, 47]. Besides

using compilers, Xie et al.[104] propose to bypass memory requests in a thread
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block based on the ratio of thread blocks that cache or bypass at runtime. A data

locality monitoring mechanism is developed by Li et al.[59] to select highly reusable

data to be stored in L1D cache. Jia et al.[47] and Dai et al.[27] both use resource

aware technique to bypass memory requests that are stalled in cache to increase

memory efficiency. However, all those cache bypassing schemes do not consider the

possible impact on DRAM, whereas our work increases DRAM working efficiency

by improving DRAM BLP and reducing row buffer conflicts during filling and

draining.

Warp scheduling: The memory efficiency can be also improved by optimiz-

ing the warp scheduler (e.g., [71, 86, 89]). We evaluated several warp schedulers

(GTO, LRR, two-level). The proposed CART achieves similar relative improve-

ment for different warp schedulers, indicating that CART is not sensitive to warp

scheduling. It might be that the effects of warp scheduling on the access order has

been degraded (filtered) by the L1 cache before L2.

Data-locality optimizing: Besides passively bypassing memory requests, an

active optimization, MRPB (memory request prioritization buffer [47]), is proposed

that actively reorders the memory requests in the L1D cache to a cache friendly

order to increase cache hits. Also, a memory access scheduling policy is proposed

[69] to reduce the negative impact brought by inter-thread interference. This

improves the throughput of DRAM. As our proposed CART aims to change the

memory requests to a cache-friendly and DRAM-friendly order before entering

L2 cache, CART can be used to complement those schemes, as exemplified in

evaluation.
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Software-level: Software-level schemes can also be used to improve GPU

memory subsystem. Streamline is proposed [106] to resolve irregular memory ref-

erences and control flows through data reordering and job swapping in software.

Another work [100] proposes a new algorithm to minimize non-coalesced memory

accesses. However, requests to L2 may come from different SMs, thus revealing

new reordering opportunity. This is exploited in our scheme that reorders memory

requests before entering L2 cache. It is completely done in hardware without the

need for application profiling.

2.8 Conclusion

The order of memory accesses plays a significant role in determining the efficacy

of memory subsystem. In this work, we propose Cache Access Reordering Tree

(CART), a novel architecture that actively reorders memory requests in L2 cache

to relieve the congestion of L2 and to increase DRAM working efficiency. The

proposed CART is able to improve the IPC of a wide range of memory-intensive

workloads by 34.2%. The results also show that the proposed scheme can comple-

ment other memory subsystem optimization techniques to further improve system

performance.
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(a) Reduction of Row Buffer Conflicts.
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(c) Increase of Bank Utilization.

Figure 2.10: More details on Performance Improvement.
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Chapter 3: Dynamically Linked MSHRs for Adaptive Miss

Handling in GPUs

3.1 Basic Idea

In this chapter, we propose Dynamically Linked MSHR (DL-MSHR), a novel ap-

proach that allocates miss handling resources flexibly and adaptively to meet the

diverse miss behaviors of applications. In DL-MSHR, entries are formed dynam-

ically from a pool of available slots. A slot can be assigned as an independent

entry for processing a primary miss, or can be linked after another slot in an ex-

isting entry to increase the capacity of processing secondary misses. The number

of slots that each entry has depends on the frequency of memory accesses to the

corresponding cache line. This approach self-adapts to primary-miss-predominant

applications by forming more entries with fewer slots, and adapts to secondary-

miss-predominant applications by having fewer entries but more slots per entry.

We also propose four additional optimization techniques to further increase the

efficiency of DL-MSHR. Evaluation results show that, compared with conventional

MSHRs, the proposed DL-MSHR is able to reduce the primary- and secondary-

miss-induced reservation fails in MSHRs by 88.1%, improve the MSHR utilization

by 53.7%, and increase the overall IPC by 19.2% with only 0.6% and 0.1% area

overhead on L1D and L2 cache, respectively. Moreover, DL-MSHR can comple-
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ment existing techniques and achieve an additional 26.3% IPC improvement on

top of MRPB (Memory Request Prioritization Buffers) [47]. The average IPC of

DL-MSHR is even 8.0% higher than the conventional MSHR configured with 4X

the amount of hardware, i.e., doubling the number of entries and doubling the

number of slots per entry.

3.2 Background

Miss handling architecture (MHA) is critical to memory level parallelism and sys-

tem performance, as MHA feeds and tracks concurrent miss requests that are issued

to the next level of memory hierarchy. Over the years, miss handling architecture

has been evolving continuously and has unlocked an increasing amount of paral-

lelism that can be achieved by cache and memory. This section explains several key

considerations of MHA that lead to the explicitly-addressed, MSHR-based MHA

design today.

Lockup cache vs. lockup-free cache. When cache was originally

introduced, the associated MHA can handle only one outstanding miss at a time

(i.e., lockup cache). To read a data, the data address is used to search the cache.

A cache hit returns the requested data right away; whereas a cache miss requires

the MHA to first record the pertinent information of the request and then issue

the request to the next level in the memory hierarchy. Before the data is back, the

cache does not process new misses and is “locked up”. Writing data is similar (as

most cache designs use write-on-allocate policies), except that the MHA needs to
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provide a data buffer to store the new data temporarily before the corresponding

cache line is allocated and available.

To support lockup-free caches, multiple Miss Status Holding Registers (MSHRs)

are added to the MHA to keep track of multiple outstanding misses concurrently[55].

Each cache miss is allocated one MSHR entry which records the information of the

miss, such as the requester ID, cache block address, requested data tag, new data

for write-back (in case of writing), etc. Once the requested data is returned, the

data can be forwarded back to the corresponding requester based on the informa-

tion retrieved from the MSHR. The cache can accept new misses from processing

cores as long as there are free MSHRs available.

Primary miss vs. secondary miss. As the smallest unit for data

transferring between two cache levels is a cache line rather than individual words,

additional optimization opportunity exists in combining multiple data requests to

the same cache line. To exploit this opportunity, cache misses are divided into

two types. A primary miss occurs when the cache line containing the requested

word does not exist in the cache and a new MSHR entry needs to be allocated. A

secondary miss occurs when the requested word shares the same cache line of an

outstanding miss, in which case no new request needs to be issued to the next level

since the requested cache line is already on the way. Note that the requested word

in the secondary miss could be to a different word in the same cache line, or to

the same word as the primary miss but from a different requester (e.g., a different

core). To accommodate this, each MSHR entry further consists of several slots

to keep track of individual word requests. An address comparator is associated
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Block 
Addr

Slot 1 Slot 2 Slot nComparator

Valid bit Requestor
ID

Format
bits Data buffer

(a) Implicitly addressed MSHR (n=cache line size/word size)

Block
Addr

Slot 1 Slot 2 Slot pComparator

Valid bit Requestor
ID

Format
bits

Offset
bits Data buffer

(b) Explicitly addressed MSHR (p can be smaller than n)

Figure 3.1: Implicitly and explicitly addressed MSHRs.

with each MSHR entry to check if any incoming cache miss shares the same block

address of the cache line that the MSHR is allocated to. if yes, a free slot in

the matching MSHR entry is be needed; if not, a free MSHR entry would be

needed. The comparison is done in parallel across all the MSHRs, similar to a

fully associative cache. In this chapter, we use the term entry-full to refer to the

case where no free MSHR entry is available, and use merge-full to refer to the

situation where no free slot is available within an MSHR entry.

Implicitly vs. explicitly addressed MSHR. To realize the function-

ality of MSHRs in hardware, Kroft proposes an implementation based on implicitly

addressed MSHRs [55]. As depicted in Figure 3.1a, in this architecture, an MSHR

entry provides a pre-allocated slot for each addressable word in a cache line. All

the slots share the same block address, but the offset bits within a block (to spec-
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ify each word) do not need to be recorded in a slot (i.e., the words in a block are

implicitly addressed by using the position of the slots). If a particular word in a

cache line is requested, the requester ID and other related information is recorded

in the corresponding slot. As each word in a cache line has exactly one slot, an

MSHR entry is able to track multiple secondary misses, provided that they request

different words in a cache line. However, secondary misses to the same outstanding

word are denied because there is no place to store more than one copy of tracking

information. Although this design has simple control, having at most one out-

standing miss per word is a very severe limitation, especially in the many-core era.

Moreover, reserving one slot per word may lead to very low efficiency of MSHR

given the large cache line size in contemporary processors (e.g., 32 words).

To overcome the drawbacks of the above design, Farkas and Jouppi [30] propose

the explicitly addressed MSHR. As illustrated in 3.1b, the number of slots, p, in

an MSHR entry does not have to be the same as the number of words in a cache

line (p is the same across all the MSHRs). Instead, every slot is generic and can be

used to track any word in the cache line. Consequently, the offset of the word needs

to be explicitly recorded in the slot. Although the offset requires additional bits,

the achieved savings in the reduced slots and the benefits of increased flexibility

far outweigh the overhead, which makes this design the de facto MHA in most

of the current commercial processors including Core i7[26], Xeon E5[102], and

GTX960[74].

While the previous discussions mainly focus on L1 cache for primary and sec-

ondary misses, similar situations also exist in L2 cache, but at the granularity of
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cache lines (instead of words). A cache line in a shared L2 may be accessed by

multiple private L1 caches in different cores, thus requiring a multi-slot L2 MSHR

entry to track these requests. For example, a private L1 may request a cache line

from L2. If the line is not present in the L2, an L2 MSHR entry is allocated to

track this primary miss while the line is being fetched from the memory. Mean-

while, if another private L1 cache has a write request to L2 for the same line, this

request is allocated another slot in the above entry (i.e., secondary miss), and the

write data from the write request is temporarily stored in the data buffer of that

slot 1. The explicitly addressed MSHR design also works more efficiently than the

implicit one for L2, as there is no need to provide a reserved slot for each L1. Note

that, if any of the read and write request results in the replacement of a dirty line,

the dirty line does not need a MSHR slot; instead, it is placed into the evicted

buffer and later written back to the memory.

3.3 Motivation

The success of the explicitly addressed MSHR design demonstrates the impor-

tance of having an efficient miss handling architecture for enabling memory-level

parallelism. However, this architecture may no longer be sufficient in handling the

increasing diverse application miss behaviors.

1There can be multiple read and write requests to the same cache line in L2. To ensure
correctness (e.g., consider the sequence of W1, R1, W2, R2), the write data from different
private L1 cache requests cannot be combined in an L2 MSHR entry, thus requiring each slot to
have a data buffer.
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// Kernel in BlackScholesGPU
1: global void BlackScholesGPU(
2: float *d CallResult,float *d PutResult,
3: float *d StockPrice, float *d OptionStrike,
4: float *d OptionYears, float Riskfree,
5: float Volatility, int optN 6: ) {
7: int tid = blockDim.x * blockIdx.x + threadIdx.x;
8: int THREAD N = blockDim.x * gridDim.x;
9: for(int opt = tid; opt < optN; opt += THREAD N)
10: BlackScholesBodyGPU(
11: d CallResult[opt],
12: d PutResult[opt],
13: d StockPrice[opt],
14: d OptionStrike[opt],
15: d OptionYears[opt],
16: Riskfree,
17: Volatility
18: ); }

Figure 3.2: Blackscholes (primary-miss-predominant).

3.3.1 Diverse Application Cache Miss Behaviors

We first characterize applications by examining whether their predominant misses

are primary or secondary misses. The results can help to understand the diverse

demands on miss handling architecture. While several works have studied GPU

workloads in detail, to our knowledge, no research has examined from the perspec-

tive of cache miss types, as defined below.

Primary-Miss-Predominant Applications. This type of applica-

tions exhibit a high demand for MSHR entries but not the slots within an entry.

As an example, Figure 3.2 shows the kernel of the blackScholes benchmark from

the NVidia SDK [76] that is primary-miss-predominant. For this kernel, there are 7
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// Kernel in Aligned Types
1: template<class TData> global void testKernel(
2: TData *d odata, TData *d idata, int nE)
3: {
4: int tid = blockDim.x * blockIdx.x + threadIdx.x;
5: int numThreads = blockDim.x * gridDim.x;
6: for(int pos = tid; pos < nE; pos += numThreads)
7: d odata[pos] = d idata[pos];
8: }

Figure 3.3: AlignedType (secondary-miss-predominant).

Figure 3.4: Breakdown of reservation fail (RF) causes.

different floating variables from line 11 to 17 (4 bytes each) that need to be loaded

before further calculation. If running on a GTX750Ti using all the 640 CUDA

cores simultaneously (5 streaming multiprocessors (SMs) × 128 cores/SM = 640),

up to 140 cache lines (640 × 7 variables × 4 bytes / 128 byte/line = 140, assum-

ing perfect coalescing) could be requested in a cycle which, theoretically, needs

140 MSHR entries to track the information. Hence, the 32 entries of MSHRs in

GTX750Ti are very easy to cause execution stall. The primary-miss-predominant
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Execution Dependency Memory Dependency
Instruction Fetch Other

(a)Balanced Case (b)Merge-full Case (c)Entry-full Case

Figure 3.5: Percentage of execution stall reasons.

applications can significantly benefit from an increase in the number of MSHR

entries.

Secondary-Miss-Predominant Applications. Applications in this

category have a high demand for the slots in MSHR entries but less so for MSHR

entries. Figure 3.3 shows the kernel of the alignedTypes benchmark involving array

operations. Array elements are usually stored sequentially in the address space.

When multiple threads are executing this kernel simultaneously, these threads may

likely access the same cache lines with good spatial locality and high number of

secondary misses. Assuming the floating type for the TData template in line 1,

there can be up to 128 byte/line / 4 bytes = 32 requests, which greatly exceeds

the 8 slots in each MSHR entry in GTX750Ti. To increase the capacity of handing

secondary misses, more slots have to be added. In the current MSHR architecture,
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this is very costly as 1) each slot contains a data buffer for the possible write miss,

and 2) every MSHR entry has the same number of slots, so even adding one slot

per entry would considerably increase hardware overhead.

We studied a number of applications from the NVidia SDK [76], Rodinia [22, 23]

and Parboil [91] benchmark suites. Figure 3.4 presents the breakdown of reserva-

tion fails resulted from primary misses and secondary misses (other sources of RFs

account for less than 3%). GPGPU-Sim [10] with a typical configuration (more

details in Section 5.3) is used to simulate the benchmarks. The figure exhibits a

great diversity, with some applications such as b+tree and bfs having reservation

fails predominately from secondary misses, and applications such as blackSholes

and scan having reservation fails predominately from primary misses. These re-

sults indicates that a static, one-size-fits-all MSHR architecture may not be the

most efficient design to handle diverse GPU workloads.

To verify the merge-full and entry-full phenomenons in MSHR are not synthetic

issues of the simulator, we have developed a microbenchmark that tests the MSHR

of a recent GPU. Our intention is not to expose the publicly unavailable MSHR

details of real GPUs, but rather to show that merge-full and entry-full indeed create

performance issues in recent GPUs. There are three kernels in this microbenchmark

that represent a balanced case, a merge-full case, and a entry-full case, respectively.

Each kernel consists of 64 blocks with 256 threads per block, totaling 16384 threads.

The balanced case has relatively balanced primary and secondary misses to cache.

In the merge-full case, half of the threads access the same cache line, which causes

a large number of secondary misses. In the entry-full case, the threads occupy
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different cache lines (i.e. primary misses) as much as possible while minimizing

secondary misses. A GTX960 graphics card is employed to execute the three

kernels, and the NVidia Nsight tool [73] is used to collect the stalling data of the

GPU. Figure 5 compares the percentage of various reasons that cause execution

stall of the tested GPU. In the doughnut chart generated by Nsight, the percentage

of stall from “memory dependency” increases from 25.3% in the balanced case to

around 48% in the merge-full and entry-full cases, highlighting the severe negative

impact of MSHR merge-full and entry-full behaviors. This is particularly evident in

the merge-full case where half of the threads access the same cache line. One might

expect that such access pattern would lead to a large number of cache hits and

reduced data stall. However, the limited slots in each MSHR entry causes frequent

merge-full situations and prevents further data requests from being serviced by the

cache and MSHRs. While the performance impact of other benchmarks may not

be as large as our microbenchmark, the experiment here demonstrates that the

MSHR issue indeed exists in current practice.

3.3.2 Need for Dynamic Miss Handling

Under current MSHR architecture, addressing diverse application miss behaviors

needs to increase the number of MSHR entries and slots. Note that both entries

and slots need to be increased. Missing either of the two aspects would result

in a class of applications to suffer from primary miss induced or secondary miss

induced reservation fails. This approach is costly and inefficient for two major
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reasons. First, MSHRs are implemented as content-addressable memory (CAM).

Each MSHR entry has an address comparator, and all the entries need to be

searched in parallel up on a cache miss. This places a high capacitive load at the

output gate of the upstream address decoders. Our evaluation based on CACTI

6.5 [68] confirms that the search delay and area cost of MHA rise superlinearly as

the number of entries increases. However, these overhead is relatively small if the

total number of entries is not large (i.e., the negative effect of superlinear growth

becomes substantial only when the base number is large).

Second and more importantly, each slot contains a data buffer to temporarily

store write-back data in case of a write miss. Thus, increasing the number of

entries and/or slots would substantially increase the overall area of the MHA.

For example, as shown in Section VI, doubling the number of entries and slots

for L2 MSHR incur an area overhead of 22.3% in terms of L2 cache area, and

33.4% power overhead. Nevertheless, the performance gains from this are still

very limited. Clearly, directly increasing the size of MSHR is not a cost-effective

solution.

This calls for a flexible and dynamic MSHR design that can utilize hard-

ware resources smartly. The opportunity comes from the fact that primary-miss-

predominant applications need a large number of entries, but only few slots within

each entry is occupied. Similarly, secondary-miss-predominant applications have

high demand for the slots within certain entries, but many other MSHR entries

(and their slots) may still be free. This opportunity is exploited in the approach

proposed in this chapter.
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3.3.3 Other Related Work

GPU architecture has been improved from various aspects (e.g., [48, 54, 77, 57, 93,

41] and many others). However, only a few works have targeted the efficiency of

miss handling architecture. To reduce cache look-up time and increase bandwidth,

Tuck et al. [94] propose a hierarchical MHA, where a small MSHR file is pro-

vided at each cache bank to process the majority of secondary cache misses, and

a large MSHR file that is shared by all the banks to handle long latency misses.

In addition, Jahre et al. [45] propose to shrink the miss handling bandwidth for

a specific core that delays the execution speed of other cores, thereby achieving a

higher overall speedup. Neither of the above two designs can dynamically adjust

the number of MSHR entries or slots that can be self-configured to best suit the

needs of applications as proposed in this work. Loh[63] proposes Vector Bloom

Filter (VBF) that can provide faster access for large MHA and can dynamically

shrink MSHR capacity. However, VBF does not explore the opportunity in uti-

lizing the unused slots in an entry that is already allocated to a primary miss,

whereas DL-MSHR utilizes these slots by decomposing each entry into slots and

dynamically linking them. In evaluation, we compare DL-MSHR with a perfect

VBF where the MHA access time is one cycle regardless of the MHA size. In addi-

tion, Power et al. [79] propose a region-based coherence to reduce MSHR entries in

the coherence directory in heterogeneous systems, and Qureshi et al. [82] propose

a linked structure in V-Way cache to reduce the unbalanced set access problem.

Both works are related but have very different contexts than this work.
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Also closely related to MHA are reservation fails, which may occur due to

several reasons such as MSHR entry-full, MSHR merge-full, miss queue full, cache

reservation full etc[52]. If the data request at the head of the request buffer to

cache encounters a reservation fail, subsequent requests will be blocked even though

they could have been processed in three cases: 1) the reservation fail is caused by

entry-full with no available MSHR entry to track this primary miss, but subsequent

requests could have been merged into other allocated MSHR entries (i.e., secondary

misses); 2) the reservation fail is caused by merge-full with no slot to accept this

secondary miss in a particular MSHR entry, but subsequent requests could have

been assigned with other available MSHR entries; and 3) the blocked subsequent

requests could have hit in the cache and thus do not need MSHRs.

Several works have been proposed to address reservation fails in some degree.

Jia et al.[47] and Dai et al.[27] both use resource-aware cache bypassing techniques

to bypass memory requests when they suffer stall in the cache. Xie et al.[103, 104]

propose a compiler level cache bypassing technique. The compiler analyzes the

cache utilization of a program based on the developed metric, and then selects

certain instructions to access or bypass cache. While these cache bypassing tech-

niques are effective in avoiding reservation fails when they are imminent, they do

not explore the opportunity in improving miss handling architecture to reduce the

likelihood of reservation fails in the first place. Another technique MRPB[47] is

also proposed to actively reorder the requests into a cache-friendly order before

accessing L1D cache and the associated MSHRs. Nevertheless, the effectiveness

of MRPB is greatly limited by the “static” nature of MSHRs, e.g., when MSHR
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is entry-full (but not all the slots in the entries are occupied), no primary miss

can be accepted even if these primary miss requests are perfectly reordered. Our

proposed scheme addresses this issue by dynamically forming MSHR entries and

slots from a pool of unified resources, thus complementing MRPB in a different

way as shown in evaluation.

3.4 Dynamically Linked MSHR

3.4.1 The Basic Idea

We propose Dynamically Linked MSHR (DL-MSHR), a novel approach that al-

locates miss handling resources flexibly and adaptively. The basic idea is to de-

couple the static binding between a conventional MSHR entry and its constitut-

ing slots. Each DL-MSHR entry is dynamically formed from a pool of available

slots. The adaptivity of DL-MSHRs is reflected in two aspects. Across applica-

tions, more entries with fewer slots are formed to meet the demand of primary-

miss-predominant applications, whereas fewer entries but more slots per entry are

formed for secondary-miss-predominant applications. Within an application, the

number of slots that each entry has can also adapt to the frequency (demand)

of memory accesses to the corresponding cache line. This flexibility allows DL-

MSHRs to satisfy some extreme primary and secondary miss demands without the

need for more physical entries or slots.

Figure 3.6 shows how DL-MSHRs integrate with other components of the sys-
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Figure 3.6: Overview of dynamically linked MSHRs (the new and modified com-
ponents are highlighted).

tem. At the high level, an array of DL-MSHRs replaces the conventional MSHR

array to track multiple outstanding misses. A Dynamic Allocation Unit (DAU) is

developed to control the operations of DL-MSHRs. The DAU is placed between

the original Tag & Control unit and the DL-MSHR array. Upon a read or write

request from the processing core or from the previous level in the memory hierar-

chy, the Tag & Control unit checks if the request hits in the cache. If not, the Tag

& Control tries to insert the request to an MSHR and, if successfully (receiving

acknowledgement from the MSHR), issues the request to the next memory level.

With DL-MSHR, the DAU intercepts the signals from the Tag & Control and

inserts the request to a dynamically linked DL-MSHR slot.
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3.4.2 Challenges

While DL-MSHR conceptually is a simple but attractive approach, implementing

miss handling entries that are flexible and adaptive faces several major challenges.

First, unlike the linked list in data structure at the software level, where operations

can be easily specified in high-level programming language and executed by a

general-purpose processor, here dynamically linking slots needs to be implemented

at the hardware level and controlled by a dedicated, low cost logic unit to handle

various cases, which is not a straightforward task. Second, since MSHR slots are

dynamically formed, additional time may be needed in finding available slots and

in locating the position to link the slots. Thus, techniques and optimizations are

needed to minimize the delay and power overhead of DL-MSHR, as well as to

avoid frequent linking operations. Third, the DL-MSHR array and DAU should

be designed in a way that is transparent to other components. In other words,

all the original signals to and from the box with dashed boarder in Figure 3.6

should be exactly the same as in the conventional MSHR architecture. This avoids

changes and verification efforts to other components, and helps to integrate the

proposed scheme in commercial GPUs.

In the rest of this section, we present the detailed design of DL-MSHR, ad-

dressing what specific architecture changes are needed to link the slots, how the

resources are organized physically and connected logically, what steps are involved

in processing primary and secondary misses, when to allocate and free entries

and slots, how the DAU is realized using finite state machines, along with four



60

optimization techniques to further improve the efficiency of DL-MSHRs.

3.4.3 DL-MSHRs

Figure 6 illustrates the conventional explicitly addressed MSHRs and the proposed

DL-MSHRs. All the slots in a row share the same block address and a comparator

(denoted as “C”), and each slot includes the offset bits of the read/write data,

a data buffer, and other related miss tracking information. Figure 3.7a shows a

conventional MSHR architecture with 4 entries, each having 4 slots. As a result,

if there are more than 4 concurrent primary misses or more than 3 concurrent

secondary misses after any primary miss, there will be reservation fails due to

MSHR entry-full and merge-full, respectively. However, it is unlikely that every

cache line has the same number of outstanding secondary misses. Hence, many

slots may still be available even in case of reservation fails.

To utilize the slot resource more efficiently, the proposed scheme decomposes

the static entries into a pool of slots. Several slots form a slot set as the basic

element for dynamic allocation (two slots in the example of Figure 3.7b). Managing

resource at the granularity of sets rather than individual slots adds another level

of flexibility and helps to reduce slot linking operations as discussed later. A slot

set can be dynamically allocated as an independent entry for processing a primary

miss, or can be linked after another slot set in an existing entry to increase the

capacity of processing secondary misses, forming a “super-entry”.

Figure 3.7b shows an example of how 8 slot sets are physically organized in
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the proposed DL-MSHR architecture, and Figure 3.7c shows one possible logical

state at runtime. In this logical state, there are 5 super-entries or DL-MSHRs

(we use the term super-entry and DL-MSHR interchangeably in this chapter),

and the super-entries have varying number of slots. Since there are 8 slot sets

with 16 slots in total, maximally this DL-MSHR structure can process up to 8

outstanding primary misses concurrently if all the slot sets are assigned as entries,

or handle up to 15 concurrent secondary misses after the primary miss if all the

slot sets are linked together as one super-entry. This is significantly more than

what conventional MSHRs in Figure 3.7a can handle.

The dynamic allocation is self-adaptive and does not require external inter-

ference to dictate when to link or delink. When a super-entry is full and a new

secondary miss comes, it is the time to link a free slot set if one is available. When

the requested data is returned from lower level and forwarded to the requesters,

it is the time to break the corresponding super-entry and free all its slot sets. An

internal control unit (i.e., DAU) is still needed to initiate the operations, and sev-

eral extra bits are needed in each slot set:

Head bit (H ): this bit indicates whether the slot set is the first set in a super-

entry to handle a primary miss.

Linked bit (L): this bit indicates if there is another slot set attached to the cur-

rent one to handle more secondary misses.

Pointer bits (P): these bits (e.g., 3 bits in the example of Figure 3.7c) work

together with the L bit to specify the ID of the next linked set. This allows the

control unit to find the physical location of the attached set.
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Set free bit (S free): this bit is set to 1 if all the slots in the current set are

unoccupied, so the slot set can be dynamically allocated by the control unit.

Set full bit (S full): this bit is set to 1 if all the slots in the current set of slots

are occupied. If another secondary miss comes, a new slot set needs to be linked to

the current set. The S free and S full bits are not mutually exclusive, e.g., when

a slot set is partially occupied, both S free and S full bits are 0.

Lastly, a counter nFreeSet is maintained to track the number of free slot sets in

the entire DL-MSHR structure. The counter is simply decremented or incremented

whenever the control unit allocates or frees a slot set. Using the counter is a nice

solution to avoid ANDing the S free bit of every slot set, which would otherwise

be slow. The above extra bits and the counter are all very small (no more than a

few bits), which has minimal overhead compared with the slot set.

3.4.4 Operations

With the above architectural changes, we describe the three main operations of

DL-MSHRs as follows.

Handling Primary Misses. When a miss is detected by the Tag & Control

unit (TCU) in the conventional MSHRs, a search signal is sent to the comparator

array to find whether there is a match in the MSHRs. The same signal is now sent

to the DL-MSHRs. The block address included in the miss request is compared

with the block address in each DL-MSHR. If no match is found (i.e., a primary

miss), the nFreeSet counter is checked to see if any free slot set is available. If
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yes, an allocation signal is passed on to the DAU. A free slot set is selected to

serve as a new super-entry that keeps track of the primary miss. The head bit

is asserted to indicate the current set is an independent entry. The S free bit is

set to 0 signifying that this entry is currently occupied. The cache block address,

offset address and requester ID are recorded in the first slot of the current set, as

the slot set may consist of multiple slots. If this primary miss is a write request,

the data is written into the data buffer (applicable in the write-back cache). If the

above nFreeSet counter is 0, it means that the entire DL-MSHR structure has no

available slot set to handle any new primary miss. This memory request is stalled

until a slot set becomes free, as indicated by nFreeSet.

Handling Secondary Misses. When the TCU detects a match in the

conventional MSHRs, it generates a merge signal to the matching MSHR. This

merge signal is now intercepted by the DAU. The DAU tries to merge the request

into the matching DL-MSHR by storing the request in a free slot in the last slot

set (i.e., tail slot set) of that super-entry. All the preceding slot sets should have

been fully occupied. To locate the tail slot set, the DAU searches from the head

slot set and follows the linked bit (L) and pointer bits (P) set by set until reaching

the tail slot set, whose L bit should be 0. In the tail slot set, there are 3 possible

cases:

(a) At least one slot is free (i.e., S full is 0). In this case, the information of

the miss request is recorded in the first available slot in the set. The DAU then

modifies the S full bit based on whether the current slot set is full after accepting

this secondary miss. For a write miss, the DAU also writes the data into the data
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buffer.

(b) No slot is available in the tail set, but nFreeSet ¿ 0. In this case, the DAU

selects a free slot set to be linked as the new tail set. The old tail set stores the

ID of the new tail set in the P bits and asserts the L bit to record the linking

information. The new tail set deasserts its head bit, stores the miss request in the

first slot (which should be free), and deasserts the the S free bit.

(c) No slot is available in the tail set, and nFreeSet is also 0. In this case, no free

slot set is available to be dynamically linked in the entire DL-MSHR structure.

The miss request has to be stalled until a slot set becomes free, and then goes into

the above case (b).

Deallocation of DL-MSHR. A super-entry and all of its slot sets are

deallocated and recycled when the requested data is returned from lower memory

levels and the data is forwarded back to the requesters. To deallocate, the DAU

resets the H, L, P, S free and S full bits of all the slot sets in the super-entry.

The nFreeSet counter is also incremented by the number of newly freed slot sets.

Notice that, although the super-entry is deallocated, the data is still in the cache

and subsequent accesses will result in cache hits.

3.4.5 Dynamic Allocation Unit (DAU)

A major task in implementing DL-MSHR is how to design a simple yet compre-

hensive control unit that can respond to various scenarios correctly and promptly.

In this subsection, we present the design details of the Dynamic Allocation Unit
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Figure 3.8: The finite state machine used to implement the Dynamic Allocation
Unit (assuming 2 slots per set).

(DAU), which serves as an interfacing controller between the original Tag & Con-

trol unit and the DL-MSHR arrays. The key component in the DAU is a built-in

finite state machine that controls various operations of slot sets. Figure 3.8 shows

the finite state machine for a DL-MSHR example with two slots in a set2. Follow-

ing state diagram conventions, the signals on the arrows are inputs and the signals

inside the circles are outputs.

There are two main state-transfer paths in Figure 3.8. The lower path is ac-

tivated by ReqH and the upper path is activated by ReqA. The ReqH is a signal

2The minor states for error detection and fault control are omitted in this diagram for clarity,
but they are all implemented. Additionally, the same state S 0 is only replicated in the figure
on both sides to avoid long arrows.
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that requests a free slot in a head set; if the set is not already a head set, the signal

first marks the set as head and then requests a slot. Similarly, the ReqA is a signal

that requests a free slot in an attached set; if the set is not already an attached

set, the signal first transfers the state of the set to “attached”.

The lower path containing S 1 to S 5 depicts the state-transfer when a free slot

set becomes a head set. When S 0 receives ReqH which results from a cache miss,

this path is activated and the slot set becomes a head set. Hence, the Head bit is

asserted, and the S free bit is deasserted, as shown inside the circle of S 1. The S 1

state implies that the first slot of the current set has recorded the information of

a primary miss. At this point, if a new ReqH arrives requesting another free slot,

the state is transferred to S 2 and a secondary miss is recorded in the second slot

of the current set. With a total of 2 free slots per set, the S full signal should now

be asserted. As more secondary misses continue to arrive at the current entry, the

DAU checks the nFreeSet counter to see if there is any available slot set. If a free

slot set is found, the state transfers to S 3, and the information of the linked set is

recorded. During this state, a ReqA signal is sent out that marks the newly found

set as “attached” (i.e., activating the upper path for that set, discussed shortly).

However, if nFreeSet is 0, the state is directly transferred to S 4 which generates

a reservation fail (RF ) signal. S 4 may transfer back to S 3 if a slot set becomes

free, as indicated by nFreeSet ¿ 0. Later, when the requested data is returned

from the lower memory hierarchy, a RET signal is generated. This signal is used

to release the occupied slots. This includes the transfer from both S 3 and S 4 to

S 5. After the entire set is released, the state goes back to the initial state S 0.
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Likewise, when S 0 receives ReqA that requests the set to attach to another set,

the upper path is activated. The ReqA, RET and nFreeSet are mainly responsible

for driving the state transfer. To signify that the current set is used for holding

secondary misses, the head bit is set to 0, and the S free is also deasserted to

denote an occupied slot, as shown in S 6. As more secondary misses arrive, the

S full is asserted, leading to S 7. Depending on whether a free slot set is available

(i.e., if nFreeSet > 0), the state transfers to S 8 or S 9. Later when the data is

returned, the RET signal drives the state to S 10 and the initial state.

Finally, for deallocation, when the state transfers to S 0, a S free signal is

asserted which serves as the external free signal S free EXT to the preceding slot

set which is either another “attached” set (from S 8 to S 10 ) or a “head” set (from

S 3 to S 5 ).

While the prior explanation of how DAU works is detailed, implementing the

state diagram in Verilog HDL results in almost negligible hardware overhead of

the control logic, as shown in evaluation (Section 6).

3.4.6 Additional Optimizations

Optimization 1: Group slots into sets. The above description of

DL-MSHR started with grouped slots without too much explanation. In fact, this

optimization has several benefits. First, grouping slots into one set can reduce

hardware overhead, as most of the extra bits and resources in DL-MSHR are at

the per set granularity. Second, grouping increases the chance of having a free slot
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when a secondary miss occurs, thus reducing the frequency of linking another slot

set and the associated delay and power consumption. Third, grouping reduces the

number of additional comparators needed by DL-MSHR. As each slot set can be

used as a separate MSHR entry, the total number of comparators in DL-MSHR

is equal to the number of slot sets. For example, in Figure 3.7b, with 2 slots per

set, physically DL-MSHR needs 8 comparators. If there are 4 slots per set, the

number of comparators would be the same as that of Figure 3.7a. Note that, even

in this case, DL-MSHR is still better than Figure 3.7a because the slot sets can be

dynamically linked.

Having more slots in a set increases the benefits of the above three aspects, but

also reduces adaptivity. Our empirical study shows that having two slots per set

offers a much better trade-off than other configurations by a large margin. Hence,

two slots per set is used in this chapter as the basic linking unit. In terms of the

impact on the critical path, we have used Synopsys design compiler and CACTI

6.5 [68] to evaluate the CAM searching latency of different comparator configu-

rations. A typical 32-entry MSHR design needs 0.2ns to complete the searching

of 32 comparators (parallel searching but serial signal driving). When using 64

comparators such as in the 2-slot per set configuration, the searching time only

increases slightly to 0.22ns, which is fast enough to match up with the frequency

of most commercial GPUs.

Optimization 2: Disable unused comparators. Although physi-

cally each slot set has a comparator, the comparator is not used when the set is

linked after another one. For example, logically only 5 comparators are active in
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Figure 3.7c. Therefore, the unused comparators can be disabled to avoid searching.

To realize this, we can reuse the Head bit as a double-function bit. A deasserted

Head bit in each slot set indicates that this set is either unused or attached to other

set. In both cases, the associated comparator can be safely disabled by using the

Head bit as a gated enabling signal. With this optimization, searching through the

DL-MSHR arrays still takes roughly the same time (as all the Head bits still need

to be searched), but the comparators of unused or attached sets are not activated,

thus avoiding the associated power.

Optimization 3: Locate tail set faster. During the operation to link

a slot set to an existing super-entry, the DAU needs to locate the tail slot set. If

the super-entry contains many slot sets, this may take several cycles. To avoid this

delay, an extra pointer that stores the ID of the current tail slot set can be added in

the head set in a super-entry. The pointer is updated when a free slot set is linked

as the new slot set, and is reset when the super-entry is deallocated. By adding

this pointer, the latency to locate the tail set can be reduced to one cycle. We have

evaluated this optimization, and simulation results show that the technique does

improve performance, although the improvement is not large, around 0.5% IPC

increase when averaged over the benchmarks. This is mainly because: 1) super-

entries with a large number of linked slot sets are not common, 2) locating the

tail set is needed only when linking slot sets, and 3) the latency can be partially

hidden by multiple outstanding misses.

Optimization 4: Reserve head sets. We also augment the proposed

DL-MSHR with the ability to reserve some head slot sets. In DL-MSHR, it is
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Table 3.1: Evaluated benchmarks.

Benchmarks Abbre. Ref Benchmarks Abbre. Ref
Backprop BP [22] Transpose TP [76]
Bfs BFS [22] Aligned Types AT [76]
B+tree B+T [22] AsyncAPI AA [76]
Cfd CFD [22] BlackSchole BS [76]
Dwt2d DW [22] BinomialOptions BO [76]
Heartwall HW [22] ConvolutionSeparable CS [76]
Hybridsort HB [22] FastWalshTransform FWT [76]
Nw NW [22] Merge Sort MS [76]
Srad SRA [22] QR Generator QG [76]
StreamCluster SC [22] Radix Sort Thrust RST [76]
Cutcp CUT [91] Reduction RED [76]
Histo HIS [91] ScalarProd SP [76]
Lbm LBM [91] Scan SCN [76]
Stencil STC [91] SobolQRNG SQ [76]
Sgemm SG [91] Sorting Network SN [76]

possible that all the slot sets are linked together as one huge super-entry to satisfy

the need of a particular cache line with an unusual number of secondary misses.

While this is intended and beneficial in some cases, it is rare that the entire many-

core processor has only one primary miss. This can be easily addressed by setting

the Head bit of some sets to always be 1 to prevent these sets from being attached

to other slot sets. In our design, half of the slot sets are simply reserved to process

primary misses, and the other half can be freely linked to other sets. Future work

can be done along this interesting line to explore other configurations.
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Table 3.2: Simulator configuration.

# of SMs 28
Per-SM limit 48 warps, 8 CTAs
# of Mem partitions 8
L1D cache 16KB, 32-set, 4-way

local write-back
global write-through
32×8 MSHRs per SM
(32 entries, 8 slots/entry)

L2 cache 8×128 KB, 64-set, 16-way
allocate-on-miss, write-back
32×4 MSHRs per bank
(32 entries, 4 slots/entry)

DRAM FR-FCFS scheduler
GDDR5, 16 banks
peak bandwidth 345.6GB/s

SM/L2/DRAM clock 1137/1137/2700 MHz
Warp scheduler GTO, LRR, Two-Level, SWL

3.5 Evaluation Methodology

We apply the proposed DL-MSHR to both L1D cache and L2 cache and implement

in the cycle-accurate simulator GPGPU-Sim 3.2.2 [10]. Key parameters are listed

in Table3.2. The L1D and L2 MSHR sizes are typical and in line with existing

literature and products. Note that 32 entries are per SM for L1D and per bank

for L2, so the GPU has thousands of MSHR entries as a whole. Different MSHR

sizes (up to 256×32) are also evaluated to demonstrate the cost-effectiveness of

DL-MSHR. The main evaluation assumes GTO warp scheduling policy, and other

scheduling policies are also tested. GPUWattch [58] is employed to assess energy

consumption.
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Figure 3.9: Performance comparison over the baseline architecture (normalized to
the Baseline).

A wide range of benchmarks from Rodinia [22], Parboil [91], and Nvidia GPU

Computing SDK [76] are evaluated that include both compute and memory-intensive

ones. Table 3.1 lists the details of the benchmarks. All the benchmarks are run

to the end of their execution. It is important to note that memory coalescing in

the SMs is already employed, so our evaluation methodology does not artificially

increase the number of secondary misses to the cache.

To evaluate hardware cost, we follow previous works (e.g. [47], [61], [94])

to use CACTI [68] to evaluate the ”standard” parts of (DL-)MSHR. The data

lines are stored in SRAM whereas the CAM structure is stored in flip-flops. All

the new components such as the finite-state-machine in DAU and additional bits

and control circuits are fully implemented in Verilog HDL and synthesized using

Synopsys Design Compiler under NanGate FreePDK 45nm cell library [70] for

more accurate area and power evaluation.

We compare the following 6 schemes: (1) Baseline: the baseline with conven-

tional MSHRs shown in Table 3.2; (2) 2X Entry: doubling the number of MSHR

entries of the Baseline (both L1D and L2); (3) 2X Entry+2X Slot: doubling the
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number of entries and the number of slots of the baseline, i.e., 4X total slots as the

Baseline; (4) DL-MSHR: the proposed DL-MSHR with the same total number

of slots as the Baseline; (5) MRPB: a recent technique that reduces reservation

fails by using Memory Request Prioritization Buffers to reorder memory requests

in L1D cache and bypassing the cache for selected requests. Note that the prior-

itization signature used in MRPB is designed specifically for L1D and cannot be

applied directly to L2. Also, the MRPB compared here includes both reorder and

cache bypassing to improve its performance. (6) DL-MSHR+MRPB: applying

DL-MSHR on top of MRPB to show that they exploit different opportunities and

are complementary.
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Figure 3.10: Reduction in the number of reservation fails.

3.6 Results and Analysis

3.6.1 Impact on Performance

Figure 3.9 compares the overall IPC improvement of different schemes over the

baseline structure. Here the proposed DL-MSHR is applied to both L1D and L2
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Figure 3.11: Performance comparison with L1D closed.
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cache, and separate results are present in Section 3.6.3. Compared with the Base-

line, when the number of entries is doubled, 2X Entry improves the performance

by 8.0% on average. When both entries and slots are doubled, 2X Entry+2X Slot

improves the average performance by 14.5%. This shows that increasing the num-

ber of entries and/or slots can help to relieve some of the pressure on conventional

MSHRs. However, some benchmarks such as CS and DW achieve IPC improve-

ment only when entries are doubled, whereas some benchmarks such as B+T and

BP gain performance only when slots are also doubled. These results are in line

with our previous analysis that adding more entries or slots does not work well

for all the benchmarks. In contrast, the number of entries and slots in DL-MSHR

are dynamically determined based on the cache access patterns of different bench-

marks. As a result, the proposed DL-MSHR scheme achieves the best performance

among the first four schemes, with an average of 19.2% IPC improvement over the

baseline architecture.

For AT and SC, they both benefit greatly from memory optimizations as AT ’s

kernel mostly consists of memory accesses and SC ’s access pattern has very low

reuse. However, 2X Entry+2X Slot does not improve much on SC because the

burst secondary misses in SC demand dozens of slots with an entry, which the 2X

Slots help marginally. In comparison, DL-MSHR is flexible and can attach up to

64 slots in an entry, thus meeting SC ’s demand nicely. It is important to note that

the above average IPC improvement is calculated based on geometric mean, so the

performance improvement is not just because of a few very high bars. For example,

among the 30 benchmarks in Figure 3.9, DL-MSHR has around 20% performance
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improvement for 8 benchmarks, with over 10% improvement for an additional 9

benchmarks. It is also worth mentioning that the average IPC of DL-MSHR is

even 8.0% higher than that of 2X Entry+2X Slot which has 4X the number of

total slots as DL-MSHR. This highlights the effectiveness and benefits of offering

flexible resource allocation in DL-MSHR.

The MRPB compared in the evaluation also improves the geometric mean of

IPC by 6.5%, showing that reordering memory requests and selectively bypass-

ing cache help to reduce stalls when MSHRs are heavily used3. However, it does

not help to balance the uneven slot utilization across different entries, and many

resources are still idle even when entry-full or merge-full happens. This issue is ad-

dressed by employing the dynamically linked MSHRs. Therefore, the proposed DL-

MSHR can be used to complement MRPB, and the resulting DL-MSHR+MRPB

improves the IPC by 26.3%, on average, compared with the Baseline.

3.6.2 Reducing Reservation Fails

To provide more insights of the above performance impact, Figure 3.10 compares

the number of reservation fails (RFs) normalized to the Baseline (the numbers also

include RFs from other sources which accounts for less than 3% in the evaluated

benchmarks). On average, doubling the number of entries (2X Entry) reduces the

RFs by 68.3%, and doubling the number of slots on top of this (2X Entry+2X Slot)

decreases the RFs by 89.2%. In comparison, with the same number of slots as the

3The performance gain of MRPB here is different from the original paper as we also used
Parboil and NVidia GPU Computing SDK benchmarks.
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Baseline, the proposed DL-MSHR can reduce the RFs by 88.1%, and is only slightly

less than 2X Entry+2X Slot that has 4X the number of slots. It is interesting to

see that DL-MSHR has a slightly smaller RF reduction but better IPC improve-

ment than 2X Entry+2X Slot. The reason is that, the reduction in RFs is not

proportional to increase overall performance, and varies among applications. For

example, in the LBM benchmark, 2X Entry+2X Slot reduces 46.2% of the RFs

and achieves 31.5% IPC improvement; whereas in BP, the same scheme reduces

64.2% of the RFs, but only increases IPC by 6.3%. These results indicate that

the self-adaptive nature of DL-MSHR does not blindly optimize for the overall RF

reduction, but rather fine-tunes the number of slots at the granularity of each en-

try to meet the need of primary and secondary misses at any specific time during

execution.

Figure 3.10 also shows that MRPB does not directly reduce the number of RFs,

which is expected as MRPB is not designed for that purpose. However, MRPB can

help DL-MSHR to further bring down the number of RFs. This is shown in the

last bar where RFs are reduced by 93.2%, on average, compared with the Baseline.

The large reduction of RF in DL-MSHR can be mainly attributed to the in-

crease in MSRH utilization. Compared with the conventional MSHR, the proposed

DL-MSHR improves MSHR utilization (calculated on a per slot basis) by 53.7% on

average. The increase has been observed for every benchmark, although individual

results are omitted here due to space limitation.
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3.6.3 GPU Architecture Variation

In this subsection, we evaluate the impact of several GPU settings that may be

different across GPU generations.

Closed L1 Data Cache. In some recent Maxwell and Pascal based

GPUs, the L1D cache are closed (disabled) by default. To evaluate its impact,

we disable L1D cache and apply DL-MSHR only to L2 cache. Figure 3.11 com-

pares the performance. MRPB is no longer shown as it works on L1D. 2X Entry,

2X Entry+2X Slot and DL-MSHR improve the Baseline IPC by 8.9%, 12.1% and

15.5% on average, respectively. Comparing Figure 3.9 and Figure 3.11, we can

see that the benefits of DL-MSHR may come from both L1D cache and L2 cache,

depending on memory access patterns:

(1) when memory requests from the L1D cache of different SMs converge into

memory partitions (where L2 caches locate), the DL-MSHR in L2 brings majority

of the benefits, e.g., for AA and FWT, disabling L1D cache only loses 0.2% IPC

improvement;

(2) when there are many secondary misses in L1D but the requests for L2 does

not exceed the capacity of MSHR in the L2 cache, the benefits mostly come from

the DL-MSHR in L1D. For example, B+T gets 14.1% performance improvement

when L1D is enabled, but the improvement drops to 3.4% when L1D is disabled;

(3) Some applications place pressure on both L1D and L2, and the DL-MSHR

in both caches can help, e.g., for AT, DL-MSHR improves performance by 228.0%

with L2 only, and achieves an additional 140.6% improvement when also applied
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to L1D.

Warp Scheduling Policies. In addition to closed L1D, warp scheduling

policies may also vary a lot for different GPUs. Figure 3.12 compares the aver-

age IPC of benchmarks without DL-MSHR (first bar) and with DL-MSHR (second

bar) for GTO, LRR, Two-level [71] and SWL-best [86]. We use SWL with the best

static warp limiting numbers (SWL-best) to represent the oracle case for CCWS

[86], OAWS [97]. As can be seen from the figure, different schedulers have some

but limited impact on the effectiveness of DL-MSHR. In general, these and other

schedulers can change the scheduled order and number of warps. This affects data

locality and intensity to the cache which, in turn, change the hit and miss num-

bers. As our proposed scheme enhances miss handling, reduced cache misses may

reduce the improvement of DL-MSHR. Nevertheless, cache misses are unavoidable

even with the perfect warp scheduler, and warp scheduling does not help much

in reducing reservation fails and increasing MSHR utilization. Thus, DL-MSHR

consistently achieves sizable improvement under different warp schedulers, from

14.3% in SWL to 16.4% in LRR.

Different MSHR Sizes. While the MSHR sizes of L1D and L2 in our

baseline are in line with prior work[47, 61], Figure 3.13 compares the effectiveness

of DL-MSHR against other MSHR sizes. We assume 1-cycle access delay to all the

conventional MSHR designs regardless of their sizes (thus representing the upper

bound of VBF [63] or any other technique that reduces the access delay for large

MSHRs); whereas DL-MSHR has 2-cycle access delay due to the access of super-

entry and potentially linking of a new set (which is one cycle with the help of
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the tail set pointer, although this does not happen on every access). Hence, the

comparison is slightly favored towards conventional MSHR designs. As shown in

the figure, DL-MSHR with similar resource as Baseline is able to achieve nearly

the same performance improvement as 8X Entry+8X Slot that has 64X resource of

the Baseline, with an average IPC improvement of 16.2% vs. 16.4%. This indicates

that the proposed DL-MSHR can be a cost-effective solution to realize very large

MSHRs that may otherwise be needed in future GPUs.

Table 3.3: Area and Power of different MHA schemes.

L1D: non-MHA area 0.11mm2, non-MHA power 42.43mW
ConfigurationMHA

Area(mm2)
MHA
Over-
head

MHA
Power(mW)

MHA
Over-
head

Baseline 0.00386 3.51% 3.75 8.84%
2X Entry 0.00739 6.72% 5.67 13.4%
2X Entry+
2X Slot

0.0101 9.18% 7.20 17.0%

8X Entry+
8X Slot

0.120 110% 57.3 135%

DL-
MSHR

0.00449 4.08% 4.30 10.1%

MRPB 0.0126 11.5% 15.2 35.9%

L2: non-MHA area 0.97mm2, non-MHA power 343.28mW
Baseline 0.0601 6.19% 35.3 10.3%
2X Entry 0.114 11.7% 63.9 18.6%
2X Entry+
2X Slot

0.216 22.3% 114 33.4%

8X Entry+
8X Slot

3.18 328% 1500 437%

DL-
MSHR

0.0611 6.30% 36.1 10.5%
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3.6.4 Area and Power Overhead

Table 3.3 summarizes the area and power overhead of different schemes. The

results are obtained from Cacti 6.5 and Synopsys Design Compiler. The additional

overhead of DL-MSHR over conventional MSHR comes from the extra status bits

(head bit, linked bit, pointer bits, set free and full bits), additional comparators

and block address fields, a free slot set counter, and the DAU control unit. The

overhead of MRPB is mainly from the reorder buffers and related control logics.

To understand the relative impact of hardware cost on the cache subsystem,

we put the area and power of the non-MHA part (i.e., the regular tag and data

part) of L1D and L2 on top of each table section, whereas the numbers in the

main table refer to the MHA part (i.e., MSHRs, comparators, controls, etc.). For

instance, the MHA of Baseline in L2 incurs 0.0601mm2, which is equivalent to

6.19% of the non-MHA part of L2 area. As can be seen, the area and power over-

head of directly increasing MSHR sizes quickly becomes substantial, accounting

for a significant percentage of regular cache (e.g., 2X Entry+2X Slot has 22.3% of

L2 area). In comparison, the area and power of the proposed DL-MSHR is very

close to the MHA part of Baseline, e.g., within around 0.56% area of Baseline for

L1D and within around 0.11% area of Baseline for L2. When taking the previ-

ous performance results into consideration, it can be seen that, compared with

other optimization schemes, DL-MSHR has higher performance and lower area

and power overhead.
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3.6.5 Impact on Energy

Due to the small hardware overhead, DL-MSHR has minimal impact on the power

consumption of GPUs. Therefore, the energy consumption is mainly reduced be-

cause of the shorter execution time for reduced static energy. GPUWattch re-

sults show that, compared with the Baseline, the proposed DL-MSHR achieves

an overall GPU energy savings of 15.7% on average. In comparison, 2X Entry,

2X Entry+2X Slot, and MRPB reduce the energy consumption by 8.7%, 1.43%

and 5.1%, respectively. It is also interesting to see that, compared with 2X Entry,

the 2X Entry+2X Slot consumes more total energy even though it has shorter exe-

cution time. This is because providing additional MSHR resources in 2X Entry+2X Slot

taxes on the static energy, which illustrates from the energy perspective that

naively adding MSHR resources is not an ideal option.

3.7 Conclusion

Contemporary GPUs have an increasing demand for higher memory level paral-

lelism. Consequently, the miss handling architecture must be designed to efficiently

track a large number of outstanding memory requests concurrently. In this chap-

ter, we propose a dynamically linked MSHR (DL-MSHR) architecture, which forms

MSHR entries dynamically to adapt to application primary and secondary miss

behaviors. Evaluation shows significant reduction in reservation fails and large

improvement in overall performance, while incurring much less area and power

overhead than the alternatives. These results demonstrate the viability and po-
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tential benefits of dynamic MSHR structures.
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Chapter 4: CAPTURE: Capacity-Aware Prefetch with True Usage

Reflected Eviction for GPU Unified Virtual Memory

4.1 Basic Idea

To design a good prefetching policy, two fundamental questions need to be an-

swered: 1) when to prefetch; 2) how many pages to prefetch. Previous works

[108, 87, 60, 33] have explored different prefetchers. Some prefetchers prefetch

pages by exploiting spatial localities, while some prefetchers use a tree-structure

to enable heuristically prefetching granularity adjustment. Nevertheless, these

prefetchers still suffer from low efficiency. When exploiting spatial locality, the

fixed prefetching size can lead to low PCIe bus utilization. On the other hand, the

complicated structure-based prefetchers have to sacrifice the flexibility of choosing

appropriate eviction policies to maintain the correctness of the structure.

To address the above issues, we first propose a capacity-aware prefetcher (CAP)

that can adjust prefetching granularity based on the current memory status. Even

though the necessity of reducing far-faults prefers prefetching as much as possi-

ble, an aggressive data prefetching policy may also cause referenced pages to be

heavily displaced, especially under limited memory budgets. This indicates that

the prefetching granularity needs to be in accordance with the available memory

space. Our proposed prefetcher decreases the prefetching granularity to avoid sat-
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urating the memory too early when GPU is running out of memory, and increase

the prefetching size when more memory becomes available to reduce page far-

faults. Compared to the state-of-the-art work, the proposed prefetcher has superb

prefetching flexibility, thus allowing more effective eviction policies to be explored.

Eviction plays a crucial role in UVM, as it enables automatic page evictions

to allow programs with memory footprint larger than GPU memory to run di-

rectly. However, state-of-the-art schemes [108, 87, 60, 33] still use the classic

LRU-based policy that does not accurately reflect the need of residency of pages

(e.g., pages that have not been accessed for a long time may potentially get many

future accesses). Furthermore, existing eviction schemes share the common per-

formance degradation issue from too small/large granularity and reduced PCIe

effective bandwidth, while being complicated by the interplay between prefetch

and eviction.

In this paper, we also propose a true usage reflected eviction (TURE) that

evicts pages based on their accurate predicted lifetime in the memory. The intu-

ition is that, to avoid page thrashing, we should evict pages that are not reused

any more [21]. If the total usage of a page (i.e., page lifetime) can be precisely esti-

mated, we can selectively evict pages that have no further access. This is achieved

in TURE by the concept lease that specifies the lifetime of the data residing in

the memory. We further optimize the lease-based eviction based on the character-

ization of various GPU memory access behaviors, which substantially reduces the

hardware cost. Our final proposed CAPTURE architecture combines the above

prefetch and eviction designs in a coordianted fashion. Together, the scheme aims
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to “capture” the accurate remaining lifetime of pages, while still being simple,

dynamic, and responsive. Evaluation results show that, the prefetcher-only CAP

and the combined CAPTURE increase the overall performance by 1.8x and 1.3x

on average compared with state-of-the-art, respectively, with minimal hardware

overhead. To the best of our knowledge, this is the first work that applies the lease

concept to the management of UVM.

In summary, this work makes the following contributions:

• Prefetchers and eviction policies from recent proposals are analyzed, and key

issues that negatively impact the GPU UVM performance in these works are

identified;

• We propose a novel capacity-aware prefetcher (CAP) to improve UVM per-

formance. By dynamically adjusting the prefetching granularity at run-time,

the proposed prefetcher achieves high PCIe bandwidth and significant page

fault reduction to improve performance;

• We identify that all pages within the same memory allocation instance present

similar access frequencies by profiling different types of benchmarks. Based

on this observation, a novel eviction policy TURE is developed. TURE evicts

pages according to the estimated lease in the device memory.
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4.2 Background and Motivation

4.2.1 GPU Unified Virtual Memory

A typical GPU program consists of a piece of host code and a piece of kernel

code, which runs on the CPU and GPU, respectively. Historically, GPUs follow

a “copy-then-execute” programming model [108] because the CPU and the GPU

do not share virtual memory space. For the kernel execution, a programmer has

to explicitly allocate certain memory space on the GPU and copy data from the

CPU to the allocated GPU memory space [25].

To ease the programmers’ burden and advance GPU programming paradigm,

Nvidia [87, 75] and AMD [2] have started to employ Unified Virtual Memory

(UVM) in their newly released products. UVM enables the CPU and the GPU

to share the same virtual memory space. This technique completely offloads the

memory management overhead from programmers to hardware and OS. In CUDA,

when a call to cudaMallocManaged is made, only virtual memory is allocated with

a pointer returned for further accesses. No physical memory space is immediately

allocated on either the host or the GPU. Instead, physical memory is allocated on a

first-touch-first-served basis. For example, physical memory is allocated on the host

if the CPU first initializes the data (via the pointer). Later when the GPU needs

to access the data, a new type of page fault called far-fault is triggered, where the

GPU memory management unit (GMMU) automatically allocates physical mem-

ory on GPU, remaps the virtual memory space to the GPU physical memory, and

migrate data over [108, 33]. The entire page fault handling process is transparent
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Figure 4.1: Illustration of far page fault handling in CPU-GPU Unified Virtual
Memory.

to users.

Figure 4.1 explains how GMMU processes a far-fault. 1 Streaming proces-

sors(SPs) generate memory requests upon data accesses. The generated memory

accesses within the same warp are first coalesced to reduce redundant memory

requests [1]; 2 The Load/Store unit (LSU) in each SM has its own Translation

Lookaside Buffer (TLB). A coalesced memory request generated by the memory

coalescing unit (COAL) first queries the TLB to see if the TLB can provide a

fast address translation (i.e., a TLB hit); 3 Under a TLB miss, TLB forwards the

translation request to the GMMU; 4 The GMMU walks through a page table to

check whether the address translation entry exists. A far-fault occurs if no address

translation has been built for this virtual page (i.e., a page table miss), and an

MSHR entry is allocated to record this far-fault; 5 An on-demand page migra-

tion request is sent to the GPU driver on the host side through PCIe substrate;
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Figure 4.2: PCIe read/write throughput with different transfer sizes. We measure
the PCIe effective bandwidth on GTX 1080 Ti, where a PCIe Gen3.0 x16 link is
employed to provide 16GB/s link bandwidth.

6 The on-demand page is migrated from the host memory to the GPU memory

(a.k.a. paging). Upon the completion of the page migration, the MSHR entry is

retired and the page table is updated accordingly by adding a new page table entry

to reflect this address mapping; 7 A TLB entry is updated to take this transla-

tion information. The GMMU notifies TLB to replay pending requests with the

successful address translation.

The introduction of the UVM enables on-demand paging and greatly eases the

programming efforts. It allows GPU to be applied in memory intensive workloads

even with tight memory budget. However, the long latency brought by far-fault

handling and page migrations create new performance and implementation issues.

This calls for effective prefetch and eviction strategies for unified virtual memory.
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4.2.2 Need for Better Prefetchers in UVM

Prefetching is a promising way to reduce far-fault. Section 4.6 summarizes the

related work on UVM prefetcher designs, but even the most recently proposed

prefetchers [108, 87, 60, 33] still have significant problems, which are discussed

in detail below. These works generally fall into two categories: sequential-local

prefetchers and tree-based prefetchers.

4.2.2.1 Issues in Sequential-local Prefetchers

Sequential-local prefetchers (e.g., [108, 60]) prefetch a fixed range of contiguous

pages around the faulty page address, thereby exploiting spatial locality. This

simple prefetching strategy may not be effective in real applications due to the

difficulty in determining the fixed prefetching size. We plot the effective band-

width of PCIe in Fig. 4.2 by sweeping the data transfer size. The HostToDevice

curve corresponds to prefetching. It can be observed that the PCIe throughput is

very sensitive to the transferred data size 1. On the one hand, small prefetching

granularity may severely under-utilize PCIe bandwidth. Therefore, frequent page

faults and long page migration latency (due to low PCIe throughput) degrade pro-

gram performance. On the other hand, large prefetching granularity can saturate

PCIe bandwidth and, more importantly, exhaust the device memory prematurely,

leading to memory over-subscription. Fully occupied memory space triggers ex-

1This is mainly because of the constant PCIe protocol overhead and the limited hardware
resources (e.g., data buffer size, number of DMA channels, number of outstanding requests, etc.)



91

Page Access Page Fault Prefetched Pages Untouched Pages

50%

50% 50%

50% 50% 100% 0%

64K 64K 64K64K

100%

100% 100%

100% 100% 100% 100%

❶❷ ❸❹ ❺ ❻❻ ❻ ❶❷ ❸❹

Virtual Tree Structure Virtual Tree Structure(a) (b)

Figure 4.3: The tree-based prefetcher structure that covers 512KiB memory space.
Each leaf node refers to a 64KiB block.

cessive page evictions. If not handled carefully, this may cause page thrashing by

improperly displacing pages, especially in irregular workloads, and possibly lead

to fatal performance degradation [108].

4.2.2.2 Issues in Tree-based Prefetchers

Tree-based prefetchers are used in recent Nvidia GPUs [87] as well as in the latest

related work (e.g., [33]). The prefetchers employ tree structures to provide more

dynamic prefetching (compared with sequential-local), but incur longer latency

and additional limitations in order to maintain correctness.

Figure 4.3 illustrates the heuristic of this kind of prefetchers. A prefetcher main-

tains a number of binary trees. Each leaf node records the status (i.e., prefetched

or untouched) of a 64KiB memory chunk. For example, given a tree with eight leaf

nodes, the root of the tree can track the status of a 512KiB contiguous memory

space. As shown in Figure 4.3(a), upon a page fault 1, the tree initiates a series of
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page prefetches to load the entire 64KiB block onto the GPU (i.e. 4KiB on-demand

fetch plus 60KiB prefetch). The corresponding leaf node is marked as prefeteched

(in blue). All the intermediate nodes along the path up to the tree root node are

also updated by the percentage of their prefetched child leaf nodes. Similarly, 2

3 4 trigger page prefetches within their 64KiB boundary, respectively. As shown

in Figure 4.3(b), when another page fault 5 occurs and the corresponding 64KiB

block is prefetched, the percentage of prefetched data in the root node now reaches

62.5%, which exceeds a pre-determined 50% threshold. As a result, all the remain-

ing untouched leaf nodes (marked as 6) are scheduled for prefetching. In general,

if half of the tree leaf nodes in any branch are already prefetched, the tree predicts

that the remaining untouched nodes in that branch will also likely be used and

thus prefetches them. Depending on which level of the tree triggers the threshold,

the prefetching granularity may vary from 60KiB (a leaf node) to 252KiB (half

of tree). In practice, Nvidia GPU driver maintains a binary tree for every 2MiB

memory. Therefore, it takes at least 17 (i.e., log(2MiB/64KiB)+1) page faults to

trigger migration of the 2MiB memory managed by the tree.

Despite the dynamic prefetching granularity, tree-based prefetchers do not work

well as expected in practice for two main reasons. First, upper nodes of the tree

may suffer from a long update latency, as the update is performed recursively on all

the children nodes. This is also observed in our profiling of GPU benchmarks and

may hinder the tree to launch needed prefetches timely. Second, the prefetchers rely

on the tree structure to track prefetched pages. Correctness of the tree structure

must be maintained during the operations of prefetching and, unfortunately, also
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during eviction, as some pages are no longer present. Currently, eviction is done

either by evicting the entire tree, or through elaborately designed eviction policy

to guarantee that every tree node is tracked properly during eviction processes.

Hence, tree-based prefetchers unnecessarily complicate and limit the selection of

eviction policies that could otherwise be designed for higher efficiency.

Given the issues in the current sequential-local and tree-based prefetcher de-

signs, a more dynamic, responsive, yet simple prefetcher is much needed.

4.2.3 Problems in Existing UVM Eviction

A main advantage of UVM is that programs with memory footprint larger than

GPU’s memory capacity (i.e., memory over-subscription) can be run directly [66].

This is accomplished by enabling automatic page evictions from GPU memory

when memory is over-subscribed. Unfortunately, some useful pages may also get

evicted to the CPU side, leading to negative performance impact. Despite efforts

in state-of-the-art works on UVM eviction [108, 87, 60, 33], there still lacks a

satisfying eviction strategy that addresses several significant and common problems

in existing solutions.

4.2.3.1 Inaccurate Estimation of Page Usage

The most critical problem in existing UVM eviction works is the inaccurate estima-

tion of the usefulness of pages in memory, leading to inferior selection of eviction
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candidates. This is largely due to the wide adoption of LRU replacement policy

even in the latest works (e.g., [87, 60, 33]). Ideally, the usefulness of a page should

reflect the remaining lifetime of the page, i.e., in terms of how many accesses left

before the page becomes useless and can be evicted without performance penalty.

LRU approximates that by selecting the least recently accessed page, but is still

fundamentally different. Pages that have not been accessed for a long time may

potentially get many future accesses; it is just that the reuse distance is large.

This is particularly evident in Workloads with irregular memory access patterns

[60]. To address this problem, we need a new eviction strategy that can directly

and accurately estimate the remaining lifetime of pages and then select the least

useful page at the time of eviction.

4.2.3.2 Performance Loss due to Eviction Granularity

Another major common problem in existing eviction policies is the performance

degradation due to the adopted eviction granularity. For works [108, 60] that evict

at per-page granularity, a prefetched continuous memory block may now become

fragmented after evictions. As a result, the prefetcher must check the page table

for every prefetched address candidate (i.e., no longer once per continuous block)

to identify its presence in GPU memory. This checking incurs long delay and can

even interfere with demand accesses. Furthermore, maintaining an LRU list at

the per-page level also introduces extra delay, particularly considering the large

capacity of typical GPU memory [29].
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For works that employ the tree structure, as mentioned earlier, Nvidia GPUs

[87] evict the whole trees (2MiB) when a page eviction is triggered, to ensure that

the memory space of the tree can be freed entirely and recycled by the prefetcher.

This granularity of eviction is aggressive and may result in substantial performance

loss. Figure 4.4 shows the performance of this aggressive eviction for benchmarks

with different memory access patterns, under three cases where memory is over-

subscribed (so eviction is needed). Performance degradation rapidly grows to an

almost unacceptable point after memory becomes full. In the latest tree-based

eviction work [33], this issue is mitigated but at the cost of introducing another

source of performance loss. This is discussed next.

4.2.3.3 Reduced PCIe Effective Bandwidth

Reduced effective Bandwidth of PCIe between the CPU and GPU is also a main

concern in both per-page and per-tree eviction granularities. For per-page or other

small eviction granularities, the DeviceToHost curve in Figure 4.2 shows that the

PCIe bandwidth is severely under-utilized, due to a relatively fixed amount of

PCIe overhead that would be better amortized over larger transferred data sizes.

Because of the slowed transfer, the needed memory space for on-demand pages is

not released timely, which eventually leads to stall in the kernel execution.

Meanwhile, inspired by the Nvidia tree-based prefetcher, an eviction policy

is proposed [33] that reverses the process of tree-based prefetcher. The eviction

policy uses the Nvidia tree structure information as well as hardware resources
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to initialize and conduct the eviction process. Although not explicitly explained

in that paper, because the tree structures are built and maintained in the driver,

the eviction information can only be obtained by frequent communications with

the CPU side over PCIe. This put more contention on PCIe, thus reducing the

effective bandwidth for the actual prefetch and demand accesses.

4.2.3.4 Challenging Prefetch-Eviction Interplay

Both prefetchers and eviction policies play important roles in the GPU UVM

model. When memory is over-subscribed, both of them are active which may

raise additional issues. In particularly, it can be challenging to identify whether a

specific page is located on the GPU memory or CPU memory. This is needed at

the time of prefetching to determine if pages need to be prefetched from CPU. In

this aspect, none of the recent works provides a satisfying solution. The eviction

policies in Zheng et al. and Li et al.[108, 60] require the prefetcher to check the

page table for every prefetching page candidate regardless of the granularity of the

prefetcher; the Nvidia eviction policy [87] evicts the whole tree to avoid checking

individual addresses; and the eviction policy developed by Gauguly et al. [33]

needs to communicate with CPU to get the required information. All of the above

impact performance negatively.

In summary, despite the great importance of eviction policies in achieving high

performance UVM, current state-of-the-art works suffer from non-ideal selection

of eviction candidates, which are further worsened by various performance over-
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Measurement is done on GTX 1080 Ti.

head due to eviction granularity, PCIe bandwidth utilization, and interplay with

prefetch. Therefore, a more effective eviction strategy is much needed.

4.3 Proposed Approach

In this section, we propose a novel, coordinated prefetch-eviction scheme for UVM

called CAPTURE (Capacity-Aware Prefetch with True Usage Reflected Eviction)

which is simple, dynamic, responsive and reflects the true usefulness of pages in

eviction. The proposed CAPTURE consists of two main parts as depicted in the

blue and red dashed boxes in Figure 4.5 (the gray ones are existing components

in GMMU). The capacity-aware prefetcher (CAP) is proposed to improve the effi-

cacy of page prefetching. By monitoring the current memory status, the proposed

prefetcher dynamically adjusts the prefetching granularity based on the available

memory space, which balances the PCIe bandwidth utilization and memory oc-
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Figure 4.5: Overview of CAPTURE in GMMU.

cupancy. Moreover, a true usage reflected eviction (TURE) is developed for page

evictions during memory over-subscription. The eviction aims to “capture” the

lifetime of the page in the GPU memory by introducing the concept of lease, and

selects pages for eviction based on their remaining lifetime to maximize the useful-

ness. With several additional optimizations, TURE nicely addresses the issues of

PCIe bandwidth utilization and performance overhead mentioned in the previous

section.

While CAPTURE looks attractive on the high level, the micro-architecture

details need to be designed carefully to ensure its effectiveness. For example,

the prefetcher needs to dynamically decide the appropriate prefetching size by

taking memory status into consideration, while still keeping the hardware simple.

Also, unlike lease cache [62], CAPTURE does not involve OS (which would incur
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huge storage overhead and intensive computations) and thus does not have the

global view of all memory accesses. Additionally, it is challenging to find the most

appropriate time for eviction and the evicted data size. Immediately evicting a

lease-expired page may cause heavy page thrashing and low PCIe bus utilization

due to small eviction granularity. These and other design and implementation

details are presented in the rest of this section.

4.3.1 Capacity-Aware Prefetcher

4.3.1.1 Determining Prefetch Granularity

The goal of the proposed CAP is to dynamically adjust the prefetching granularity.

The design is based on the following rationale. Large prefetching sizes may help

to reduce the number of page faults in the GPU. When there is large available

space in the memory, it is beneficial for performance to prefetch large sizes. On

the contrary, small available space should correspond to small prefetching sizes

to avoid prematurely oversubscribing the limited device memory. In addition, a

large allocated memory space usually gets more memory accesses than a small one

over the same period of time. Therefore, prefetching size for a given allocated

memory space should also be proportional to its size allocated by the function call

cudaMallocManaged.

Specifically, during the time when a kernel is being launched, CAP assigns a

dedicated granularity tracking register for each memory space allocated by cudaMa-
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llocManaged. The register is used to track the prefetching granularity for the

on-going page far-faults. When the GMMU begins to service a page far-fault,

CAP first inquires the available memory space and then calculates the prefetching

granularity threshold based on the eq.4.1,

G = Mavail × (Mreq/(Magg × c)) (4.1)

where G is the calculated prefetching threshold of the current page fault; Mavail

is the total available memory space; Mreq is the requesting memory size specified

by one of the input parameters of the functional call; Magg is the aggregated size

of the memory allocated by all cudaMallocManaged function calls; and c is an

artificial factor. Without c, when G is equal to the available memory size after

calculation, the prefetched pages can saturate the memory directly. To avoid over-

subscribing the memory directly, this conservative factor c is introduced to decrease

the prefetching threshold. In this paper, we set c to 1.1 empirically, as results are

not sensitive to this factor when it is within (1, 2).

Since calculated G may not be a power of 2, we round down G to one of five

nearest granularity candidates from 64KiB to 1MiB (e.g. if G is calculated to be

420 KiB, and then the prefetching granularity is 256 KiB). Note that the minimum

prefetching granularity is set to 64KiB, which is the same as the size used in the

tree-based prefetcher. Also, Figure 4.2 reveals that 1MiB is a sweet point to assure

full PCIe bandwidth, 1MiB is set as the maximum prefetching granularity. There

is a restriction when calculating prefetching granularity threshold: when the Mreq
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Figure 4.6: Touching percentage of allocated pages.

is smaller than a threshold, the maximum threshold it can select is also rounded

down to its nearest prefetching candidate. For instance, if Mreq is 220KiB, its

granularity candidates is from 64KiB to 128KiB.

The reason why our proposed prefetcher works well is that GPU memory ac-

cess usually reflects certain streaming behavior: the next N pages are likely to

be accessed immediately after the occurrence of the current page being accessed

[108]. We can apply this on CAP to evaluate if the prefetched pages are eventu-

ally accessed in different types of benchmarks. We define page touch rate as the

percentage of total allocated pages that are accessed during execution. If most

of the pages stay untouched at the end, the page touch rate would be low, which

indicates prefetching pages may not be accessed. Figure 4.6 shows the page touch

rate of different types of benchmarks. From the figure, most of the benchmarks

have extremely high page touch rate (i.e., >98%). Only one tested benchmark

has relatively low touch rate, but is still above 93%. This indicates that most
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of the prefetched pages in CAP are touched (i.e., useful) as expected. Moreover,

compared with the tree-based prefetcher shown in Figure 4.3, the simple structure

of our prefetcher gives us more flexibility of designing eviction policy.

4.3.1.2 Handling Memory Over-subscription

Based on prior art [108, 33] as well as our results shown in the evaluation section,

prefetcher should be enabled under memory oversubscription to reduce page faults

and increase PCIe bandwidth utilization. However, if following the calculation

of eq.4.1 after memory is fully occupied, CAP would always stay at the smallest

prefetching granularity (64 KiB). To address this issue, the proposed prefetcher

automatically increases the prefetching granularity to 512KiB when memory over-

subscription is detected. The size of 512KiB is selected as the best trade-off

prefetching granularity after conducting a series of experiments (presented in Sec-

tion 4.5.3). This size is also consistent with a prior work [108]. Any invalid 64KiB

blocks within this 512KiB address range are scheduled for prefetching.

4.3.1.3 Locating Pages during Prefetch

As discussed in Section 2, a key operation of the prefetcher is to identify whether

pages are in the device memory or not. In other words, the prefetcher only

prefetches pages that are not present in the GPU memory. Previous works ei-

ther need to perform page table walk for every page or frequently communicate
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with the CPU side to get prefetching information. Our proposed prefetcher nicely

avoids these problems. As our smallest migration (both prefetch and eviction)

granularity is 64KiB, we only need to check whether the first page of a 64 KiB

chunk is present in the device memory. Therefore, the worst case of the page

table walks is 16 (1MiB / 64KiB = 16), which is much better than the per-page

granularity prefetch. In addition, our prefetcher completes this step in the device

hardware, thus saving the trouble of communicating with the CPU to frequently

synchronize the page residence information. During evaluations, a latency of 45

µs is used for page fault handling, which is quite conservative.

4.3.2 Lease-Based Eviction Policy

To capture the usefulness of pages in memory more accurately, our proposed evic-

tion is based on the concept of lease. A lease specifies the lifetime of data in a

temporary storage. The concept was initially proposed in distributed file caching

[37], and further developed in TLB [9] and cache [62]. Lease is measured in log-

ical time and a lease of p means to keep the data in the storage for the next p

accesses. The lease gets updated whenever the associated data is accessed. The

data is eventually evicted once its lease expires. When this concept is used in the

UVM as the metric to guide evictions, it actually estimates the usage of each page.

Even though the concept is straightforward, the implementation can be extremely

costly if the number of leases is at scale. For example, a relatively accurate lease

is crucial for the scheme to work properly. Therefore, previous work [62] needs a
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Figure 4.7: Memory access frequency statistics. The X-axis is the touched page
ID across the whole execution period, and the Y-axis is the access frequency
of the page. The red dashed lines highlight the different access patterns from
cudaMallocManaged.

variable per cache line to track the access behavior in the OS. Nonetheless, the

GPU memory can have millions of pages (e.g., for a GPU memory of tens of GiB

memory capacity and 4KiB page size, which is a common case today). This could

incur significant design overhead if each page has a counter to store its lease. For-

tunately, we are able to integrate the lease concept with the GPU UVM through

several optimizations.
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4.3.2.1 Lease Prediction

Our low-cost prediction of page leases is made possible by an interesting observa-

tion from our analysis of GPU page access characteristics. Figure 4.7 demonstrates

the result of some benchmarks that have regular and irregular page access patterns

as defined in prior art [60]. The X-axis shows the touched page number (page ID)

across the whole execution period, and the Y-axis shows the access frequency of

the page (i.e., the total number of accesses to the page). The red dashed lines

divide the figure into several segments to highlight the different access patterns

from memory allocation instances (i.e., cudaMallocManaged).

A key observation from the result is that contiguous pages originated from

the same allocation call have similar access frequency2. This observation

prompts us that these pages can be clustered into a group and their average access

frequency can be used as a lease for all the pages in the group. As the number of

memory allocation calls in the kernel is usually several orders of magnitude smaller

than the number of allocated pages, it can significantly reduce the design overhead

if a lease is given per memory allocation call (rather than per page). Therefore,

we define page group in this work as the pages allocated by the same function call.

For all the pages in a page group, a single lease is used as they have the similar

access frequency. We have tested various benchmarks to validate our assumption.

It is, however, still possible for some complex workloads to exhibit very fluctuated

memory access behaviors. In that case, the workload should require a large cache

2While not shown in the figure, all other tested benchmarks support the same observation.
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size to cache different data, so these workloads may not be suitable for the GPU

acceleration in the first place due to the small size of caches.

According to the analysis of GPU memory access behavior, we propose a pe-

riodical sliding window sampling technique to periodically sample incoming page

requests in the GMMU. This procedure periodically activates the page access ana-

lyzing block shown in Figure 4.5. When this block is activated, TURE samples the

access frequencies of the incoming page addresses and the corresponding blocking

addresses. Contiguous sampling usually requires large storage space to store the

sampled information. Therefore, to minimize the storage overhead, it works for D

duty cycles in every S cycles (e.g. 1000 duty cycles in every 6000 cycles). During

sampling, depending on the page group size, TURE maintains one or more entries

for each page group to derive the average access frequency. Having 16 entries turns

out to be sufficient in the current design, and increasing the number of entries has

minimal overhead due to the small size of an entry (Section 4.5.5. When there is

no free entry, TURE ignores the following accesses to a new page group, which

should be a rare case. Each entry consists of an access counter and a page diver-

sity tag. The access counter increments by one when there is a reference to the

page group. The page diversity tag works as a set data structure that only unique

pages belonging to the page group is set. At the end of a sampling period, the

average access frequency of each page group (Favg access) is calculated by eq.4.2,

where n is the number of entries belonging to the page group, Ni is the number

of page accesses from the access counter, and Pi is the number of pages touched

by counting 1s in the page diversity tag. The new average access frequency of the
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page group is further adjusted in a weighted manner to generate the final lease, as

shown in the Procedure.

Favg access =
i∈n∑
i

(Ni/Pi)/n (4.2)

Although the Procedure approximates and tracks the lease during real time,

it is still inevitable to have inaccuracies in the lease estimation, as one lease is

used for the whole page group after all. Individual pages have some fluctuation

in access frequencies, as illustrated in Figure 4.7. If not dealt with care, it can

cause significant page thrashing if the lease is given inaccurately and the pages are

evicted immediately after the lease expires. In addition, PCIe bus can be saturated

undesirably by these expired pages. Therefore, we further propose to coalesce the

evictions caused by lease expiration to mitigate the negative performance impact

of inaccurate lease.

4.3.2.2 Eviction Coalescing

As discussed above, the inaccurate lease of a page can result in inefficient page

eviction, either too early or too late, and degrades the performance due to page

thrashing and memory pollution. Inspired by the warp coalescing concept in the

GPU cache, we propose page eviction coalescing technique. The size of a coalescing

granularity is 64KiB, which is consistent with the minimum prefetching granularity

of the tree-base prefetcher. Additionally, this coalescing process makes sure that
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the eviction granularity can make use of the PCIe bandwidth. In the proposed

design, a coalescing table is employed and each entry is used for a coalescing

granule. Once the lease of a page expires, its address information is first sent into

the coalescing table. An entry is allocated for the corresponding coalescing granule

if it does not exist yet. Then the page offset is set to indicate that the expired

page is ready for eviction. In this work, the coalescing table can support up to 256

entries to provide good eviction performance.

Two events can trigger the eviction controller to schedule page eviction. First,

it starts to evict pages whenever the coalescing table becomes full (i.e., all entries

have been allocated). Under this situation, the least recently updated entry is

selected for eviction to release the entry. Secondly, the controller also evicts pages

if GPU memory is under over-subscription. In this case, four blocks are selected

each time for eviction based on the LRU policy. The larger eviction size is to make

enough room for the incoming on-demand pages. Note that the selected pages are

evicted no matter if some of them fully expire or not. As a consequence, some

useless pages can be evicted for free to help performance.

Predicted smaller lease may result in the early eviction of useful page blocks. To

mitigate this effect, we propose a recall mechanism. When a page with expired lease

is accessed, the TURE revokes the entire entry, and re-assign those pages with half

of the initial lease. As a result, the eviction coalescing brings us two major benefits.

Like the effect of a victim cache, the eviction coalescing table temporarily buffers

the expired pages to avoid immediate eviction. Also, it consolidates individual

expired pages to fully make use of the PCIe bandwidth and reduce write-back
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latency.

4.4 Evaluation Methodology

A wide range of benchmarks from Rodinia [22] and Polybench [36] are evaluated

that include regular and irregular page access patterns by following the method-

ology in prior work [60, 33]. Benchmarks 2DCONV, 3DCONV, ADDVECT and

PATHFINDER exhibit a fairly streaming page access pattern across all thread

blocks’ memory accesses. ATAX and MVT exhibit reuse patterns with a short

reuse distance at the kernel start, but then show a sparse page access pattern.

HOTSPOT shows a periodically burst reuse pattern. BFS and SRAD have the

most page access reuses with a long reuse distance. FDTD-2D, RA and SRAD ex-

hibit large variations on page access frequency for all pages. Similar to prior work

(e.g., [60, 33]), due to the impractically long simulation time, we limit the data size

of these benchmarks to between 4MiB and 64MiB, with an average of 20.3 MiB.

The device memory size is set to 1GiB for non oversubscription experiments, and

is shrunk to the corresponding sizes when testing oversubscription cases.

We implemented the CAPTURE in a cycle-based simulator GPGPU-Sim UVM

Smart [33], a modified version of GPGPU-Sim [10]. The simulator models the pro-

cess of page fault handling and data migration. Table 4.1 lists the main parameters

we use in this paper.

We compare our approach with four other prefetchers and four other evic-

tion policies. The first configuration is the baseline, denoted by NP (short for no
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prefetcher), which only migrates a 4KiB page on-demand without any prefetching.

A random prefetcher, RP randomly evicts one page within the corresponding 2MiB

virtual address range of the faulted page. A sequential prefetcher, SP, fetches se-

quentially contiguous 64KiB of pages where the faulted page fall within. The fourth

prefetcher is Nvidia’s tree-based prefetcher [33], denoted by TP. Our prefetcher is

denoted as CAP.

The first eviction policy, denoted as RE, which randomly evicts one page when

out of physical memory. The second is a sequential policy, which is a corresponding

policy to SP and denoted by SE. All pages are organized with an LRU list. At the

time of an eviction, we first identify the least recently used page in the LRU list

and evict a contiguous 64 KiB of pages where the page falls within. Similar to

this policy, Nvidia GPU maintains pages into an LRU list in the granularity of

2MiB, that is, an entry is a 2MiB of pages. At the time of an eviction, 2MiB pages

are discarded. We call it NE (Nvidia Eviction) for short. The state-of-the-art is a

tree-based eviction policy, denoted as TE, just by reversing the process of Nvidia’s

tree-based prefetcher by Ganguly et al. [33]. It first finds out a leaf node of 64KiB

pages that is the least recent accessed, and then traverses the tree bottom-up to

evict any parent node that has more than 50% pages evicted earlier. Our eviction

policy is denoted as TURE. The no prefetcher case is denoted as NP in the following

evaluation.
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Table 4.1: GPU simulator configuration.

GPU architecture Nvidia Pascal

# of SMs 28 SMs @1481 MHz

Per-SM Limit 64 warps, 32 CTA

Page Size 4KiB

Page Fault Handling Latency 45µs

Page Table Walk Latency 100 Core Cycles

PCIe Bus PCIe 3.0 16x 8GT/s

4.5 Experiment Results

4.5.1 Effectiveness of Prefetching Schemes

Figure 4.8 compares the effectiveness of different prefetchers without memory over-

subscription. Results are normalized for clarity, as the run time of different bench-

marks varies by orders of magnitude. The result confirms the effectiveness of

prefetching as all prefetchers significantly reduce kernel execution time. CAP con-

sistently outperforms all other prefetchers, NP by 74.6x, RP by 52.7x, SP by 5.6x,

and TP by 1.8x, on average. RP only has mild improvement over NP by 1.4x while

SP improves the performance by an order of magnitude. Therefore, it indicates

that the spatial locality is a critical factor for performance. On top of it, CAP

further gains 3.1x speedup over SP because it takes advantage of large prefetching

granularity as the available memory capacity permits. As a result, CAP achieves

the best performance because of the effective detection of memory status. On the

other hand, although TP also employs dynamic adjustment on prefetching size, the

average granularity of CAP is statistically 6× larger than that of TP. Therefore, CAP

is the winner.
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Figure 4.8: Performance speedups of different prefetchers normalized to NP without
memory over-subscription. The performance refers to as the GPU kernel execution
time.

To provide more insights of the above performance impact, Figure 4.9 shows

the page-fault numbers and PCIe bandwidth utilization rates with different tech-

niques. With CAP, about 99.5% pages are prefetched before being accessed. Hence,

we can observe a considerable page faults reduction. In addition, about 99.0%

prefetched pages are accessed by the GPU, which indicates the high efficiency of

CAP prefetcher. On average, TP and CAP reduces the page-fault numbers by the

most, 65x and 234x, respectively. CAP is even better than TP. Both TP and CAP

can bring considerable page-fault reduction as the two schemes can provide large

prefetching granularities, up to 1MiB, though they are realized through different

ways. This page fault reduction considerably reduces the time cost by page fault

handling process, which further reduces the stall of kernel executions. Profiling

results in Figure 4.2 reveal that small data transfer size through PCIe suffers rel-
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Figure 4.9: Benefits comparison of different prefetchers over non-prefetcher config-
uration.

atively long latency due to constant setup overhead. NP and RP migrate data

with a 4KiB granularity, which not only flood the PCIe bus with massive page

migration requests but also keep it working in a very low efficiency. For CAP, the

large prefetching granularity of 1MiB increases PCIe bandwidth utilization by 5.0x

compared with the small 64KiB granularity.
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Figure 4.10: Performance comparison with different eviction policies under memory
over-subscription.

4.5.2 Effectiveness of Eviction Policies

There are two cases triggering page evictions. One is when GPU memory is run

out of; the other is when the coalescing table is full, which enables our eviction

policy to become a proactive eviction policy.

To isolate the evaluation of eviction policies, we devise a testing strategy fol-

lowing the work [33]. For all eviction policies, we first run the tree-based prefetcher

to load pages into GPU memory and then disable the hardware prefetcher when

memory is over-subscribed to avoid any inference to the tested eviction policies.

For the generation of memory over-subscription, the data size of all benchmarks

is of 110% GPU memory capacity (sensitivity study is shown later). Figure 4.10

compares the performance of all policies for all benchmarks but ATAX and MVT

on RE, since they have excessively long running time caused by severe page thrash-
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ings. Performance numbers are normalized to SE due to lack of results on RE for

the two programs.

TURE gains superior performance on 2DCONV, 3DCONV, and PATHFINDER,

by 4.6x, 2.1x, and 4.3x over RE, on average. The three benchmarks have a clear

streaming access pattern, which just confirms that TURE predicts the lifetime of a

page precisely. The precise prediction just allows to evict a page right after its use

without any delay of the occupancy of memory. It is not surprising that RE has

more performance enhancement compared with SE and TE. The essential reason

is that SE and TE incurs many page thrashings because they use large eviction

granularities without the help of the prefetcher. In contrast, TURE only evicts the

expired pages. As long as the lifetime prediction is precise, it does not evict any

pages that will be accessed in the future.

TURE is slightly better than the other policies on ATAX, ADDVECT, MVT,

BACKPROP and RA. All these benchmarks access the same pages within a short

time and do not reuse them again, which enables TURE to capture and to estimate

their accurate average access frequency for each memory allocated space. Bench-

marks like RA, BACKPROP having large page access frequency variations for

individual page can suffer more page thrashings that counterpart partial benefits.

FDTD-2D, BFS, HOTSPOT and SRAD are observed to have the performance

degradation with both TE and our proposed TURE scheme. This results are actually

as expected, as their reuse distance is large, which indicates that these benchmarks

actually favor small eviction granularity to preserve pages as many as possible for

potential reuse. However, with the combination of the prefetcher, this performance
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loss can be recovered, as shown in the next subsection.

Figure 4.11 depicts the page fault numbers with different eviction policies.

The results shows our scheme incurs fewer page faults, which is correlated with

the performance improvement. These results also highlight the importance of

prefetchers under memory over-subscription, as page faults are surprisingly high if

a page is migrated on-demand under memory over-subscription.

4.5.3 Coordinated Prefetch and Eviction

This section assesses the effectiveness of combined prefetching and eviction. As

mentioned before, our proposed prefetcher enforces a fixed prefetching granular-

ity when memory is over-subscribed. To gain insight on how to identify a good

trade-off between prefetching granularity and performance improvement, we have
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Figure 4.12: Performance comparison of different fixed prefetching sizes (KiB)
under memory over-subscription (Normalized to the 64 KiB result).

examined the impact of different prefetching sizes on performance. Figure 4.12

compares the impact on performance improvement by using different fixed prefetch-

ing sizes under memory over-subscription. It can be seen that larger prefetching

sizes lead to higher performance improvement at the beginning (equal or less than

512 KiB ). The reasons behind this improvement are page faults reduction and

high PCIe bandwidth utilization. However, when the prefetching size continues to

increase after 512 KiB, the performance actually begins to suffer a degradation.

When memory is fully occupied, prefetching data excessively can cause severe

page displacement by frequently triggering the eviction process. Therefore, based

on this study, we select 512 KiB as the fixed prefetching size when memory is

over-subscribed in our further evaluation.

In the following evaluations, we name the combination using the concatenation

of the abbreviations of the prefetcher and the eviction. For example, TPSE denotes
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Figure 4.13: Performance comparison of different prefetcher and eviction policy
combinations.

using the tree-based prefetcher TP and the sequential eviction policy SE.

Based on the state-of-the-art works and our proposed scheme, five combined

straties are evaluated, RPRE, SPSE, TPTE, TPNE, and CAPTURE, with respect to the

semantics between a prefetcher and an eviction policy. TPNE is the current Nvidia’s

scheme. TPTE is the state-of-the-art [33]. For the generation of memory over-

subscription, the data size of all benchmarks is of 110% device memory capacity.

Figure 4.13 shows the performance comparison between the five strategies.

Results of ATAX and MVT on SPSE are not shown due to the unacceptable long

running time. CAPTURE consistently outperforms RPRE, SPSE, TPTE, and TPNE by

30.4x, 3.3x, 1.3x and 1.3x, respectively, on average. Large granularity prefetching

in our scheme can guarantee that PCIe bandwidth are fully exploited throughout

the entire execution time. This effectively decreases the page fault numbers and
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kernel execution stalls. Our eviction policy tries to evict pages that are less likely

to be reused in the near future. It mitigates significant page thrashings under

memory oversubscription. The best performing programs are with a streaming

access pattern, i.e., 2DCONV, 3DCONV, ADDVECT and PATHFINDER. On

RA, CAPTURE reaches the maximal speedups over TPTE by 2.0x and TPNE by 3.0x.

Due to some inaccuracy in lease prediction, CAPTURE performs a little worse

than TPTE on FDTD-2D and HOTSPOT. We explain the reason in detail by taking

FDTD-2D for example. FDTD-2D exhibits phase behaviors of page accesses in

Figure 4.7c. The access frequency is very different from phase to phase, but within

a phase, the access frequency of a page is close to that of another. We compute

the average access frequency in each phase and assign the average as a lease for

all the addresses in the phase. However, variations exist from the average to an

individual access frequency. These variations incur non-negligible page thrashing

for FDTD-2D.

It is illustrative to compare CAPTURE with TPNE, as TPNE is the actual practical

implementation of Nvidia’s memory management policy. The average speedup of

CAPTURE over TPNE is 1.4x. For all programs but HOTSPOT and SRAD, CAPTURE

is significantly better than TPNE. The reason behind is that the aggressive eviction

granularity in NE causes severe thrashing as it could evict highly re-referenced

pages, especially for workloads with large reuse distance. TPNE is slightly better

than CAPTURE by 6.4% on HOTSPOT and SRAD. As analyzed before, the large

reuse distance in these two benchmarks reduces the efficiency of our eviction.
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Figure 4.14: Study of memory over-subscription sensitivity.

4.5.4 Memory Pressure Sensitivity

Greater memory pressure usually slows down program performance. To assess the

memory pressure sensitivity, we vary device memory capacity to simulate different

memory over-subscription scenarios. Figure 4.14 shows the execution time compar-

ison under 110%, 120% and 140% memory over-subscription. Results demonstrate

that CAPTURE is not sensitive to memory pressure for programs that have a stream-

ing access pattern, e.g., 2DCONV and PATHFINDER. It just indirectly suggests

that our capacity-aware prefetching is just a right choice for streaming programs

and the lease estimation is very precise. For other programs, CAPTURE exhibits

a linear, small increase of execution time when memory pressure becomes more,

showing a good scalability.
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4.5.5 Overhead Analysis

The proposed CAPTURE has low hardware overhead. Despite the various compo-

nents shown in Figure 4.5, CAPTURE is essentially just a control block that can be

generated by a hardware description language, similar to other control blocks such

as the network interface. The storage elements in CAPTURE account for the main

overhead of the synthesized circuit. Specifically, the overhead mainly comes from

three things: (1) A 84-byte buffer, located in Page Access analyzing in Figure 4.5,

for periodically sampling incoming requests when analyzing memory access pat-

terns. It consists of 16 entries that are attached by a 10-bit counter and a 16-bit

page diversity tag to record different blocks addresses. (2) An overhead of 1.25

MiB, added to the page table. TURE selects eviction candidates based on the re-

maining lifetime of the pages. Therefore, in the page table, each entry is added

with 10 bits to record the remaining lifetime of the corresponding page. Ten bits,

or 1024 different values, are more than enough for this purpose based on our pro-

filing experiments. As page table is stored in the DRAM, this overhead becomes

trivial when compared with the size of the DRAM. (3) A coalescing table with 256

entries is employed to coalesce eviction candidates It is about 1 KiB in total, as

each entry has 32 bits address and a valid bit. Putting together, CAPTURE incurs

about 0.01% storage overhead over the DRAM size of Nvidia GTX 1080 Ti.
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4.6 Related Work

The most related papers have been discussed in Section 4.2.2, 4.2.3. Other related

work is summarized below.

Memory Virtualization in GPUs. Address translation is the crucial part

for virtualizing the memory. A number of research has been conducted to reduce

the overheads of address translation [11, 14, 15, 16, 17, 18, 80, 77, 7, 90]. Power

et al. propose a per-compute unit TLBs and shared page table walker to enable

GPU memory virtualization with minimal overheads. Ausavarungnirun et al. [7]

proposes a scheme that allows GPU to support multiple page sizes to find the best

trade-off between address translation and demand paging latency. Pichai et al [77]

develops an optimized MMU for GPUs by proposing modest TLB and page table

walker enhancements. Shin et al. [90] explores the impact of orders of servicing

page table walks on addresss translation overhead, and proposes a SIMT-aware

page table walk scheduler.

UVM in GPUs. Compared with conventional ”copy-then-execute” program-

ming models, the UVM in GPUs enables on-demand paging [87, 2, 88]. The driver

is responsible for data migration between CPUs and GPUs. Therefore, the UVM

eases the programming efforts and enables the GPU to run applications whose

dataset is larger than the memory capacity. Nevertheless, this performance im-

pact brought by the new programming model cannot be ignored and has been

studied [4, 50, 5, 108, 66, 33, 60]. Agarwal et al. [4] first employs a sequential-

local prefetcher to balance the PCIe bandwidth by aggressively prefetching and
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throttling page migration based on the bandwidth information. Agarwal et al. [5]

further maximizes GPU throughput by exploring page placement strategies based

on memory system bandwidth. Kehne et al. [50] and Markthub et al. [66] both

enables GPU memory system directly to access system memory to enlarge the

device memory capacity. Different from above works only focusing on memory

bandwidth or memory capacity issues, The CAPTURE provides a comprehensive

strategy addressing issues in prefetching and evictions.

The most recent work [53] proposes a thread over-subscription technique that

generates more pages faults within a short time to increase page fault handling

batch size. It can amortize the GPU runtime fault handling time with increased

concurrent page fault handling capacity, and saves eviction waiting time by over-

lapping the page evictions and CPU-to-GPU page migrations. Nevertheless, this

work does not touch any existing prefetching issues, and its per-page granularity

eviction policy still encounters low bandwidth utilization problems.

Lease in Systems. Cache leases are initially used in distributed file caching

[37], later in most Web caches [31], and recently in TLB [9]. The purpose of their

leases is similar, which is to specify the lifetime of data in cache to reduce the cost of

maintaining consistency. Li et al. [62] extends lease concept into cache replacement

policy. Since the entire replacement operation is completed by the OS and the

cache size is relatively small, a complete hash table recording and predicting the

lease is built for each data block. However, in the GPU UVM, the entire hardware

operation and the large size of the DRAM make it impractical for directly applying

lease concept on the GPU UVM. Based on the profiling observation, we made
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several key optimizations to greatly reduce the lease overhead on the GPU UVM.

4.7 Discussion

Page sizes. The newly released GPUs begin to support up to 2MiB pages size [7].

Such a large page size is rarely adopted in real applications, because it is difficult

for applications to utilize large contiguous regions of memory[7] (and Nvidia does

not provide any public materials regarding its large page size application). Despite

that, our proposed CAPTURE can easily support large page sizes by only revising

the prefetching size threshold. This is because CAP prefetches pages of continuous

addresses without the need of considering page size, and TURE is based on the

predicted remaining lifetime of pages, which is also independent of the page size.

In contrast, the Nvidia tree-based prefetcher and the tree-based eviction policy

cannot work with the 2MiB page size , because the whole tree structure represents

512 continuous pages that equals 1GiB when adopting large page sizes. The page

prefetching in that case can cause significant memory waste, whereas the eviction

can lead to severe page thrashings.

Page Table Walk Latency. Following prior works[108, 60, 33], a 100 core

cycles is assumed for the page table walk latency in the above evaluation. We

have also tested other page table walk latency, ranging from 50 to 100 and to 150.

The overall speedup difference is smaller than 0.01%, thus can be considered as

negligible.

Multiple kernels on one GPU. When multiple kernels are running simul-



125

taneously on a GPU, the kernel executions can potentially affect each other due

to different data accesses. It would be interesting to evaluate the effectiveness of

UVM under multi-kernel scenarios, but due to the limitation of currently available

simulators [33, 7, 108], research along this line will need to be left for future work.

4.8 Conclusion

The UVM programming model is rapidly gaining popularity in GPUs as it re-

moves the limitation of GPU physical memory size and reduces programming ef-

forts. Consequently, an effective virtual memory management strategy must be

developed to maintain good performance of UVM in various memory conditions.

In this chapter, we propose CAPTURE, a coordinated capacity-aware prefetching

and lease-based eviction strategy for GPU UVM. The proposed strategy is able to

dynamically adjust prefetching granularity based on the memory status, and evict

blocks with less reused opportunities under memory over-subscription. Evalua-

tion results show that our proposed scheme can achieve considerable performance

improvement with and without memory oversubscription, while incurring low hard-

ware overhead. These results demonstrate the viability and potential benefits of

CAPTURE.
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Chapter 5: UVMBench: A Comprehensive Benchmark Suite for

Researching Unified Virtual Memory in GPUs

5.1 Basic Idea

In this chapter, we aim to enrich the GPU UVM research community by de-

veloping a comprehensive UVM benchmark suite consisting of 32 representative

benchmarks belonging to different application domains. This suite features unified

programming implementation and diverse memory access patterns across bench-

marks, allowing researchers to thoroughly evaluate and compare with current state-

of-the-art. In addition to traditional benchmarks, the proposed suite also includes

more machine learning related workloads, as GPUs have been increasingly used in

machine learning tasks. This would help researchers to understand better the role

that GPU UVM plays in machine learning acceleration.

The developed benchmarks are evaluated on a Nvidia GTX 1080 Ti GPU with

11GB memory capacity. The code volume is reduced by removing explicit memory

management APIs thanks to UVM. Evaluation results show that, if we directly im-

plement/convert benchmarks to the UVM programming model, there is an average

of 34.2% slowdown than the non-UVM benchmarks. However, if we augment with

proper manual optimizations on data prefetching and data reuse, the performance

can be restored to almost the same as the non-UVM programming model. This in-
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dicates that there is substantial room for UVM research on developing autonomous

memory management to close the gap between UVM and non-UVM models and

possibly exceed the performance of non-UVM. Our experiment also verifies the

capability of the UVM-enabled benchmarks to execute successfully under memory

oversubscription scenarios, where UVM essentially creates the illusion of a large

GPU memory by using a small GPU memory and the CPU memory. While per-

formance degradation is observed compared with a true large GPU memory, this

enabling technology opens up new opportunities in accelerating large workloads

on GPUs.

The main contributions of this chapter are the following:

• Identifying the need for a benchmark suite for UVM;

• Developing a comprehensive UVM benchmark suite to facilitate the research

on UVM;

• Profiling memory access patterns of the benchmark suite, and studying the

relevance of the patterns to performance under memory oversubscription;

• Conducting thorough analysis of performance difference between the UVM

and non-UVM programming models.

We have discussed the importance of GPU UVM research and the motivation

for a benchmark suite in this section. In the remaining of this paper, Section

5.2 describes the proposed benchmark suite in more detail. Section 5.3 explains

our evaluation methodology. Section 5.4 presents and analyzes test results. Key
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observations drawn from the results and suggestions for future UVM research are

highlighted sporadically in that section. Finally, Section 5.5 concludes the paper.

5.2 UVMBench

Benchmarks play an important role in evaluating the effectiveness and generaliza-

tion when an architecture optimization is proposed. We develop a comprehensive

UVM benchmark suite to facilitate the research on the GPU UVM. This suite

covers a wide range of application domains marked in Table 5.1. The bench-

marks exhibit diverse memory access patterns (more in Section 5.4.1) to help

evaluate memory management strategies in GPU UVM. The suite also includes

several auxiliary python-based programs to help create and test memory oversub-

scription cases. The benchmark suite is referred to as UVMBench, and has been

made available to the GPU research community for both non-UVM and UVM ver-

sions (https://github.com/OSU-STARLAB/UVM_benchmark). Table 5.1 lists all

the benchmarks and their configurations in UVMbench. Table 5.2 compares the

UVMbench with some related but limited workloads in several important aspects.

The development of the benchmark suite includes the following major efforts.

(1) Re-implement existing benchmarks. We start with combining three

existing popular GPU benchmark suites, i.e., Rodinia [22, 23], Parboil [91] and

Polybench [78], removing redundant workloads and workload types, and converting

into the UVM-based programming model. To implement UVM for these bench-

marks, we replace all the host pointers (CPU side) and device pointers (GPU

https://github.com/OSU-STARLAB/UVM_benchmark
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side) with a unified pointer allocated by the UVM API cudaMallocManaged. Also,

because the GPU driver is now responsible for data migration, all the explicit

memory data migration APIs in each original program need to be removed. This

may involve rewriting part of the code around the API calls in some benchmarks

to achieve the equivalent functionalities. Moreover, the non-UVM data allocation

structure should be adapted to the UVM version. For instance, we have to flatten

non-UVM 2D arrays, previously allocated on the host side, into 1D arrays, as no

2D array allocation API is provided in the UVM programming model.

(2) Develop machine learning workloads. As recent machine learning

tasks heavily rely on GPUs for acceleration, we also add more machine learning

related workloads in our benchmark suite, as briefly described below:

• Bayesian Network (BN) is a probabilistic-based graphical model, often used

for predicting the likelihood of several possible causes given the occurrence

of an event. Our implementation is based on the SJTU version [98] and,

during the conversion to UVM, retains the two phases that are accelerated

by the GPU: preprocessing where local scores of every possible parent set

for each node are calculated, and score calculation where threads obtain the

local scores and return the best one.

• Convolutional Neural Network (CNN) is most commonly applied to image

recognition. It has also been extended to video analysis, natural language

processing and many other fields. Our implementation follows the general

practice where, for forward propagation, the kernels of convolutional oper-



131

ations, activation operations and fully connected operations are accelerated

on the GPU; and for back propagation, the kernels on error calculations and

weight and bias update operations are accelerated on the GPU.

• Logistic Regression (LR) is used to predict the probability of the existence of

a certain class or event. The cost calculation is accelerated on the GPU. The

input of this benchmark is the document-level sentiment polarity annotations

which is first introduced in [65].

• Support Vector Machine (SVM) is to find support vectors that, collectively,

form a hyper plane to separate different classes. In our implementation, the

kernel matrix calculation is accelerated on the GPU. The code is based on

the Julia project [81] and converted to UVM.

Listings 5.1 and 5.2 show the partial code of the sigma update function in the

SVM benchmark, which demonstrates the re-implementation process and newly

added benchmarks. Several unrelated variables are omitted for simplicity. List-

ing 5.1 is the code without UVM, while Listing 5.2 is the code with UVM during

runtime. As the traditional programming model requires explicit memory man-

agement, the program in Listing 5.1 has to allocate memory space on the device

by calling CudaMalloc (lines 12-20). It also needs to call CudaMemcpy APIs (lines

22-24 and lines 28-31) before and after the kernel launch to explicitly migrate the

required data between the host and the device. In contrast, the UVM program-

ming model in Listing 5.2 unifies the memory space of the host and the device. By

calling cudaMallocManaged APIs (lines 6-7), the code allocates bytes of managed
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memory. The allocated variables can be accessed by the host and the device di-

rectly, and are managed by the Unified Memory system of the GPU. In Listing 5.2,

when this Sigma update function is called in the main function (line 1), the vari-

ables, defined by cudaMallocManaged, are passed into the function, and the device

kennels can directly access these variables. Therefore, device variable definitions

and memory management APIs are removed (i.e., lines 6-7 in Listing 5.2 vs. lines

12-20 & 22-24 & 28-31 in Listing 5.1). It can be seen that the UVM programming

model greatly reduces the code complexity.

1 Sigma update(int ∗iters, float ∗alpha, float ∗sigma,float ∗K, int ∗y, int

l , int C)

2 {

3 //Define variables on the device

4 float ∗dev alpha = 0;

5 float ∗dev sigma = 0;

6 float ∗dev K = 0;

7 int ∗dev y = 0;

8 int ∗dev block done = 0;

9 float ∗dev delta = 0;

10 void ∗args[10] = {&dev iters, &dev alpha, &dev sigma, &dev K, &dev y,

&dev block done, &grid dimension, &dev delta, &l, &C};

11

12 //Allocate memory space on the device memory

13 cudaMalloc(&dev iters, sizeof(int));



133

14 cudaMalloc(&dev alpha, l∗sizeof(float));

15 cudaMalloc(&dev sigma, l∗sizeof(float));

16 cudaMalloc(&dev K, l∗l∗sizeof(float));

17 cudaMalloc(&dev y, l∗sizeof(int));

18 cudaMalloc(&dev block done,

19 grid dimension∗sizeof(int));

20 cudaMalloc(&dev delta, 1∗sizeof(float));

21

22 //Data migration: Host to Device

23 cudaMemcpy(dev K, K, l∗l∗sizeof(float), cudaMemcpyHostToDevice);

24 cudaMemcpy(dev y, y, l∗sizeof(int), cudaMemcpyHostToDevice);

25

26 /∗Kernel Launch∗/

27

28 //Data migration: Device to Host

29 cudaMemcpy(iters, dev iters, sizeof(int) , cudaMemcpyDeviceToHost);

30 cudaMemcpy(alpha, dev alpha, l∗ sizeof(float),

cudaMemcpyDeviceToHost);

31 cudaMemcpy(sigma, dev sigma, l∗ sizeof(float),

cudaMemcpyDeviceToHost);

32

33 //Free allocated memory space

34 cudaFree(dev block done);
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35 cudaFree(dev delta);

36 cudaFree(dev y);

37 cudaFree(dev K);

38 cudaFree(dev sigma);

39 cudaFree(dev alpha);

40 cudaFree(dev iters) ;

41 }

Listing 5.1: Sigma Update function in SVM with non-UVM.

1 Sigma update(int ∗iters, float ∗alpha, float ∗sigma, float ∗K, int ∗y, int

l , int C)

2 {

3 int ∗dev block done = 0;

4 float ∗dev delta = 0;

5 void ∗args[10] = {&iters, &alpha, &sigma, &K, &y, &dev block done, &

grid dimension, &dev delta, &l, &C};

6 cudaMallocManaged(&dev block done, grid dimension∗sizeof(int));

7 cudaMallocManaged(&dev delta, 1∗sizeof(float));

8

9 /∗Kernel Launch∗/

10

11 cudaFree(dev block done);

12 cudaFree(dev delta);
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13 }

Listing 5.2: Sigma Update function in SVM with UVM.

(3) Optimize data prefetch. In our experiment, we observe that directly

converting to the UVM programing model from the non-UVM model can lead to

performance degradation, as UVM has to track memory accesses and migrate data

to destinations. Therefore, we add an optimization, namely asynchronous prefetch-

ing, before each kernel launch by calling the provided API cudaMemPrefetchAsync.

The purpose of this optimization is to exemplify that hardware prefetchers may

bring considerable performance improvement in UVM, as shown later in evaluation

results. Users of our benchmark suite can easily enable or disable this optimization

by changing the macro definition in the Makefile.

Listing 5.3 shows the code in the Backprop benchmark after enabling the above

asynchronous prefetching. The program uses CUDA streams to manage concur-

rency in GPU applications. Different streams can execute their corresponding

commands concurrently. To prepare asynchronous prefetching, it first creates dif-

ferent streams (lines 2-11). With different streams, the prefetching APIs (lines

13-16 and 23-24) prefetch the required data asynchronously. As the data have

been fetched in the device before the kernel is launched, the Unified Memory sys-

tem does not need to stall the kernel and handle page faults. Therefore, the data

migration overhead in the UVM is mitigated under asynchronous prefetching.

1 //Create streams for asynchronous prefetch

2 cudaStream t stream1;
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3 cudaStream t stream2;

4 cudaStream t stream3;

5 cudaStream t stream4;

6 cudaStream t stream5;

7 cudaStreamCreate(&stream1);

8 cudaStreamCreate(&stream2);

9 cudaStreamCreate(&stream3);

10 cudaStreamCreate(&stream4);

11 cudaStreamCreate(&stream5);

12

13 cudaMemPrefetchAsync(input cuda, (in + 1)∗sizeof(float), 0, stream1);

14 cudaMemPrefetchAsync(output hidden cuda, (hid + 1)∗sizeof(float), 0,

stream2);

15 cudaMemPrefetchAsync(input hidden cuda, (in + 1)∗(hid + 1)∗sizeof(float

), 0, stream3);

16 cudaMemPrefetchAsync(hidden partial sum, num blocks∗WIDTH∗sizeof(

float), 0, stream4);

17

18 //Performing GPU computation

19

20 bpnn layerforward CUDA<<<grid, threads, 0, stream5>>>(input cuda,

output hidden cuda, input hidden cuda, hidden partial sum, in, hid);

21 cudaDeviceSynchronize();
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22

23 cudaMemPrefetchAsync(input prev weights cuda, (in + 1)∗(hid + 1) sizeof

(float), 0, stream1);

24 cudaMemPrefetchAsync(hidden delta cuda, (hid + 1)∗sizeof(float), 0,

stream2);

25

26 bpnn adjust weights cuda<<<grid, threads, 0, stream5>>>(

hidden delta cuda, hid, input cuda, in, input hidden cuda,

input prev weights cuda);

27 cudaDeviceSynchronize();

Listing 5.3: Enable Prefetching in Backprop with UVM.

(4) Optimize data reuse. Data reuse can also mitigate performance overhead

of UVM. This is because if the useful data resides in the device memory for longer

time, fewer page faults may occur. To investigate the impact of data reuse where

multiple (same) kernels access the same data during the runtime, we add the option

to run multiple iterations of a kernel execution to create this type of data reuse

opportunities (i.e., the same kernel reuses the same data in different iterations).

Users can change the number of iterations (≥ 1) by modifying the macro in each

benchmark program file.

Benchmarks in the proposed UVMBench are all implemented in CUDA and can

be run on Nvidia GPUs. This suite includes both the non-UVM version (original)

and the UVM version implementation for performance comparison. There are no
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algorithmic changes when developing the UVM version of the benchmarks. This

ensures fair comparison between the traditional programming model and the UVM

programming model. Consequently, the observed performance changes are mostly

attributed to the difference between programming models rather the algorithms.

Some previous works [33, 24] and the Nvidia SDK present a limited number

of UVM-enabled workloads to demonstrate the effectiveness of the UVM or their

proposed ideas. Table 5.2 compares the existing benchmarks with our proposed

UVMbench in five important aspects. Compared with the existing benchmarks,

UVMbench presents more workloads from different domains. In particular, UVM-

bench includes machine learning workloads to explore the possibility of apply-

ing UVM techniques in data-intensive machine learning applications. Moreover,

UVMbench provides diverse memory access patterns and supports memory over-

subscription.

5.3 Evaluation Methodology

Our evaluation methodology is designed to enable a set of experiments that test the

proposed benchmark suite. To investigate the impact of memory access behaviors

on UVM, we need to profile memory access patterns of each benchmark. Direct

performance comparison is also needed between the UVM and non-UVM imple-

mentations. As the driver is responsible for data migration under UVM, the impact

on PCIe bandwidth should also be examined. Additional experiment is needed to

evaluate the UVM performance under memory oversubscription scenarios.
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Table 5.3: Evaluation Platform Setup.

CPU Intel Xeon E5-2630 V4 10 Cores 2.2 GHz

Memory DDR4 16GB x 4

PCIe PCIe Gen3x16 16GB/s

Operating System Ubuntu 18.04 64bit

GPU Nvidia GTX1080Ti

Driver version 440.33.01

CUDA CUDA 10.2

Profiling Tools nvprof, Nvidia Visual Profiler, NVBit

To conduct the above experiments, we employ an Nvidia GTX 1080 Ti GPU

with the Pascal architecture. We use the Nvidia Binary Instrumentation Tool

(NVBit) [96] to extract the global memory access patterns of the UVMBench suite.

NVBit provides a fast, dynamic and portable binary instrumentation framework

that allows users to inspect/instrument instructions. we use two Nvidia official

profiling tools to profile the performance related data of benchmarks: nvprof, a

command line tool to collect and view profiling data, and Nvidia Visual Profiler,

a GUI to visualize the application performance. Table 5.3 includes more details of

the CPU-GPU platform.

5.4 Results and Analysis

5.4.1 Memory Access Pattern Profiling

To study the relationship between memory behaviors and UVM efficiency, we first

profile memory access patterns of each benchmark. In this experiment, NVBit is
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(a) 2DCONV (R) (b) 2MM (R) (c) 3DCONV (R) (d) 3MM (R)

(e) ATAX (I) (f) BACKPROP (R) (g) BFS (I) (h) BICG (I)

(i) BN (R) (j) CNN (R) (k) CORR (I) (l) COVAR (I)

(m) DWT2D (R) (n) FDTD-2D (I) (o) GAUSSIAN (I) (p) GEMM (I)

(q) GESUMMV (I) (r) GRAMSCHM (I) (s) HOTSPOT (R) (t) HOTSPOT3D (R)

(u) KMEANS (I) (v) KNN (R) (w) LR (R) (x) MVT (I)

Figure 5.1: Memory access patterns of benchmarks in UVMBench.
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(y) NW (I) (z) PFILTER (R) () PATHFINDER (R) () SRAD (R)

() SC (I) () SVM (I) () SYR2K (I) () SYR2K (R)

Figure 5.1: Memory access patterns of benchmarks in UVMBench (continued).

used to generate memory reference traces by injecting the instrumentation function

before performing each global load/store. The memory traces are plotted in Figure

5.1. The horizontal axis corresponds to the logical access time, and the vertical

axis shows the accessed memory addresses.

As can be seen from the figure, benchmarks in the UVMBench suite exhibit

diverse memory access patterns. They can be generally classified into regular and

irregular memory access patterns, as indicated after each benchmark name as (R)

or (I) in Figure 5.1 (and as indicated in the “Type” column in Table 5.1). This

classification follows the same classification method as [60]: if benchmarks access

only a small number of memory pages at any point of time, they are classified as

regular benchmarks; in contrast, benchmarks with large unique memory pages ac-

cess at a given time are identified as irregular benchmarks. For regular benchmarks

(e.g., 2DCONV, 2MM and so on), they exhibit a streaming access pattern. These

benchmarks access only a small number of memory addresses and seldom exhibit
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Figure 5.2: Direct UVM conversion in UVMBench leads to large performance
degradation vs. non-UVM.

data reuse within the kernel. In contrast, irregular benchmarks show very differ-

ent memory access patterns: accessing many memory addresses at a given time

(e.g., ATAX, BICG, GAUSSIAN), repeatedly accessing the same memory address

over time (e.g., COVAR, GRAMSCHM), or accessing random addresses (e.g., SC,

SVM). Note that benchmark NW is classified as irregular, as it exhibits a sparse,

localized and repeated memory accesses, although this is not quite visible in the

figure due to the scale. In the experiment of memory oversubscription presented

later in Section 5.4.4, we find that benchmark performance is highly related to

memory access patterns.

5.4.2 UVM vs. non-UVM Performance

a. Performance of Direct UVM Conversion

As mentioned earlier, while UVM greatly eases programming efforts by remov-

ing explicit memory management, this is achieved at the cost of certain perfor-
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mance overhead, particularly with naive/direct conversion to UVM. Figure 5.2

compares the performance of all the benchmarks in the non-UVM and UVM pro-

gramming models. The IPCs are obtained from Nvidia nvprof. Across the bench-

marks, the performance of the UVM version has an average of 34.2% slowdown

compared with the non-UVM one. These results are expected as the page fault

handling causes large performance overhead for kernel execution. Under the UVM

programming model, data is allowed to reside in other location (e.g., on the CPU

side) while a kernel is executing. When the required data does not reside in the

GPU DRAM (page fault occurrence), the kernel has to be stalled while waiting for

the data to be fetched from the CPU side. In the non-UVM version, programmers

have made sure that data is always available on the GPU side.

Among these benchmarks, we can observe that 2DCONV, BACKPROP, HOTSPOT,

GESUMMV and PATHFINDER have the most significant performance drop in the

UVM implementation. The reason is that, for these 5 benchmarks, the data migra-

tion time accounts for majority of the entire execution (over 80%), and their kernels

have little to no data reuse and are only invoked once. A considerable amount of

stall time occurs during the one-time execution of the kernels to wait for data, and

the fetched data is not used again. These factors lead to the observed large perfor-

mance degradation. However, as shown shortly, the performance degradation can

be greatly mitigated with some additional programming efforts.

b. Restoring UVM Performance via Data Reuse

Data reuse can mitigate UVM performance degradation by reducing the occur-

rence of page faults. As mentioned earlier, we study the impact of data reuse by
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Figure 5.3: Performance of UVM restores with increased number of kernel invoca-
tions.

modifying the number of times a kernel is invoked. Figure 5.3 plots the change

in performance as we increase the kernel invocation times (there is no kernel ex-

ecution dependency between consecutively invoked kernels). It can be seen that

the performance of these benchmarks under UVM is rapidly improving with more

invocation and eventually approaches to the performance of non-UVM. Except for

the first executed kernel, the following kernels in the GPU program may reuse the

data that has been fetched during the execution of the first kernel, and fewer page

faults would occur. The results confirm that more data reuse leads to smaller data

migration overhead.

Observation/Suggestion: Although data reuse is artificially introduced in the

software program in this experiment, it prompts us that if applications exhibit
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significant data reuse opportunities, either inherent or created through architecture

optimizations, UVM can be an attractive model that provides flexibility while

having little performance overhead.

c. Restoring UVM Performance via Data Prefetch

Nvidia provides a runtime API cudaMemPrefetchAsync that enables asyn-

chronous data prefetching. Through this API, data can be prefetched to the de-

vice memory before the data is accessed by a kernel on the GPU. This reduces

the occurrence of page faults. To study the impact of prefetching on UVM kernel

execution performance, we augment all the benchmarks in UVMBench with such

prefetching capability. Figure 5.4 shows the results from the above 5 benchmarks

that experience the largest performance drop in UVM.

It can be observed that the performance of these benchmarks improves con-

siderably after this optimization and is close to the performance of the non-UVM

version. The geometric mean of the slowdown has decreased from 95.8% to merely

0.7%. The improvement comes from the fact that kernel execution is now rarely

stalled as data has already been fetched in the device memory before being ac-

cessed. While not shown, the performance of other 27 UVM-version of the bench-

marks also restores to very close to the non-UVM version after using asynchronous

prefetching.

Observation/Suggestion: Besides data resue, another alternative to restore

performance degradation of UVm is data prefetching by employing the runtime

API cudaAsyncPrefetch. In theory, page faults can be completely eliminated if

there is an oracle prefetecher that is able to load any required data into the GPU
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Figure 5.4: Performance of UVM restores by enabling prefetching.

memory before the data is accessed. That can serve as an upper-bound of future

UVM prefetech schemes.

It is important to note that, we achieve data reuse and data prefetch in the

above experiments by manually modifying the software programs. In other words,

these optimizations are realized on the software side and requires additional pro-

gramming efforts. This is not the intention of UVM that aims to reduce program-

ming efforts. In practice, what is needed is innovation in architecture research that

can achieve similar level of data reuse and prefetch but is transparent to program-

mers. Facilitating research along this line is what our UVMBench suite is created

for.
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5.4.3 Effect of Data Migration on PCIe Bandwidth

The performance of data migration between CPU and GPU also closely relates

to the effective PCIe bandwidth. Under the UMV programming model, variable

sized on-demand data is transferred from the CPU memory to the device memory.

To understand performance trade-offs, it is worth studying the effect of UVM data

migration on the PCIe link. Figure 5.5 compares the achieved PCIe bandwidth

with non-UVM and UVM programming models during data migration. On aver-
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age, the achieved PCIe bandwidth of UVM is 15.2% lower than that of non-UVM.

In general, the larger the transferred data size is, the higher the effective PCIe

bandwidth can achieve. This is mainly because of the constant PCIe protocol

overhead and limited hardware resources (e.g., data buffer size, number of DMA

channels, number of outstanding requests, etc.), so the overhead can be amortized

better with larger transferred data. Since the non-UVM model copies the entire al-

located data chunk to the GPU memory before execution, this results in relatively

high effective bandwidth. In contrast, the migrated data size in UVM is usually

much smaller than the non-UVM one as only on-demand data is migrated through

the PCIe bus (usually smaller than 1MB). Note that benchmarks BN and CNN

in UVM and non-UVM both exhibit low effective PCIe bandwidth, because the

sizes of allocated variables in these two benchmarks are all small (less than 4KB),

and even the entire chunk of allocated variable transmission cannot fully utilize

the PCIe bandwidth.

Figure 5.5 also shows that, among UVM benchmarks, the effective PCIe band-

width may vary a lot. The variation is mainly caused by the hardware prefetcher

inside the GPU. For example, Nvidia has implemented a tree-based hardware

prefetcher in their GPUs, which heuristically adjusts the prefetching granularity

based on access locality. The difference in memory access patterns across bench-

marks put the hardware prefetcher in different degrees of efficacy. More detailed

discussion on UVM hardware prefetchers can be found in other papers such as

[33, 105, 60].

Observation/Suggestion: The above results on the effective PCIe bandwidth
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indicate that hardware prefetchers that are currently employed in GPUs cannot

fully utilize PCIe bandwidth. Thus, future research is much needed to continue

developing and optimizing GPU hardware prefetchers that are UVM-aware.

5.4.4 Oversubscription

A major advantage of UVM is to enable kernel execution when memory is oversub-

scribed. Performance under memory oversubscription can be significantly reduced

since part of the data now needs to be brought from the CPU memory. Despite

this, UVM is still very attractive, as such memory oversubscription is not pos-

sible under non-UVM. To quantify the performance degradation when the GPU

memory is oversubscribed, we run all the benchmarks in the suite under various

memory capacities. As different benchmarks have different required memory foot-

print, to create memory oversubscription, we modify the available memory space

through the cudaMalloc runtime API. The required memory footprint is set to

be 110% and 125% of the available memory space in the GPU physical memory.

Figure 5.6 shows the results. As expected, all the benchmarks suffer considerable

performance degradation under memory oversubscription. The more memory is

oversubscribed, the more performance degrades.

From Figure 5.6, we also observe that many of the benchmarks can com-

plete execution with 2-3x slowdown under memory oversubscription, whereas other

benchmarks suffer from a significant performance penalty or even crash, marked as

>100X in the figure (e.g., LR uses the cublas library which cannot support mem-



151

ory oversubscription and leads to crash). For the former, we find that the main

performance overhead is caused by kernel stalls when waiting for the eviction of

pages to create space for newly fetched data. These benchmarks usually have a

streaming access pattern (Section 5.4.1). With this pattern and the LRU eviction

policy in Nvidia GPUs, the evicted data does not affect kernel execution as the

evicted data is not reused any more. Therefore, the performance overhead mainly

comes from the waiting time of page eviction. For the latter, the large performance

penalty mainly comes from severe page thrashings, which repeatedly migrate the

page back and forth between the GPU and the CPU. This usually occurs when a

benchmark has a short data reuse distance so the evicted data is needed/reused

within a short time. Note that, although the degradation seems large, UVM is still

much better non-UVM which does not allow kernels to run at all if the memory is

oversubscribed.

Observation/Suggestion: The significant performance degradation under mem-

ory oversubscription suggests that the current eviction policies are doing a poor

job at selecting the best candidate pages to evict, thus causing severe page thrash-

ings and limiting the amount of memory that can be oversubscribed. This may

be possibly because existing eviction policies are not designed specifically with

supporting UVM in mind. We urge researchers to develop more effective eviction

policies that can select evicted data more accurately or even proactively to make

space for expected data accesses.
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5.5 Conclusion

The Unified Virtual Memory (UVM) programming model has been introduced

recently in GPUs to ease the programming efforts and to allow kernel execution

under memory oversubscription. This chapter identifies the need for representa-

tive benchmarks for GPU UVM, and proposes a comprehensive benchmark suite

to help researchers understand and study various aspects of GPU UVM. Several

observations and suggestions have been drawn from the evaluation results to guide

the much needed future research on UVM.
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Chapter 6: Conclusions and Future Work

In the past decade, GPU has become the most import computing platform for

accelerating general purpose computing tasks. As the memory subsystem of the

GPU was originally designed for streaming image processing, it has become the

bottleneck to prevent performance improvement when running irregular workloads.

Therefore, it is necessary to optimize the GPU memory subsystem to make it suit-

able for current general-purpose workloads. In this work, several memory opti-

mizations focusing on different parts are proposed to improve GPU performance

on irregular workloads.

6.1 Summary

Chapter 1 provides the background of GPUs. It also discusses current memory

inefficiencies of different parts of memory in modern GPUs, and the potential

opportunities to improve the performance. We also introduce current mainstream

GPU simulators and emphasize the necessity of developing new benchmarks to

facilitate GPU memory research.

Chapter 2 investigates the largely unexplored opportunity of L2 cache access

reordering. And we introduces Cache Access Reordering Tree (CART), a novel

architecture that can improve memory subsystem efficiency by actively reordering
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memory accesses at L2 cache to be cache-friendly and DRAM-friendly.

Chapter 3 identifies the inefficiency of current Miss Handling Architecture in

modern GPUs. Based on this observation, we propose Dynamically Linked MSHR

(DL-MSHR), a novel approach that dynamically forms MSHR entries from a pool

of available slots. This approach can self-adapt to primary-miss-predominant ap-

plications by forming more entries with fewer slots, and self-adapt to secondary-

miss-predominant applications by having fewer entries but more slots per entry.

Chapter 4 targets the new techniques in GPUs, called Unified Virtual Mem-

ory (UVM). Our experiment and analysis reveal that even state-of-the-art schemes

still incur significant GPU kernel performance degradation due to the inefficient

page fault handling mechanism in the current UVM programming model. In this

chapter, we propose CAPTURE (Capacity-Aware Prefetch with True Usage Re-

flected Eviction), a novel microarchitecture scheme that implements coordinated

prefetch-eviction for GPU UVM management. CAPTURE utilizes GPU mem-

ory status and memory access history to dynamically adjust the prefetching and

“capture” accurate remaining page reusing opportunities for improved eviction.

Chapter 5 tries to enrich the GPU research community with a new benchmark

suite. As UVM is attracting significant attention from the research community to

develop innovative solutions to these problems, in this chapter, we propose a com-

prehensive UVM benchmark suite named UVMBench to facilitate future research

on this important topic. The proposed UVMBench consists of 32 representative

benchmarks from a wide range of application domains. The suite also features

unified programming implementation and diverse memory access patterns across
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benchmarks, thus allowing thorough evaluation and comparison with current state-

of-the-art.

6.2 Future Work

GPUs will still be the mainstream accelerators for general purpose computing

workloads in the near future. In this section, we would like to discuss some research

topics that we would like to study in the future.

• Intelligent data prefetching on traditional GPU programming model. Cur-

rent GPUs have adopted High Bandwidth Memory (HBM) as their device

memory to improve the performance of data-intensive workloads like Deep

learning applications, as HBM can provide much higher bandwidth than the

traditional memory. The current GPU memory hierarchy only load data

from off chip memory (HBM) when there is a cache miss. As HBM provides

high bandwidth, we can prefetch some data that will be used in the near fu-

ture to the cache to reduce memory stall. We can identify the memory load

patterns using machine learning methods. After learning the pattern, we

can use this pattern to guide data prefetch from the off-chip memory. This

prefetch can significantly reduce memory stall time as the DRAM access time

usually 100x times over the cache access.

• Intelligent data management strategy on the GPU UVM. Unified Virtual

Memory (UVM) has drawn attentions from researchers as it greatly sim-

plified the GPU programming efforts. It unifies the memory space of CPU
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and GPU sides. The driver and the hardware will be responsible for the

data migration. Current UVM management strategy is not efficient and re-

sults in significant performance degradation. Machine learning methods is

an interesting topic that can be used to learn the data migration patterns

between CPUs and GPUs. Once the pattern is identified, the machine learn-

ing agent can fetch the data from the CPU or evict data from the GPU side

in advance to overlap the data migration latency. This research topic can be

applied upon the Chapter 5 to further improve UVM performance.
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