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IoT networks can be viewed as collections of Internet-enabled physical devices and ob-

jects, embedded with sensor, actuator, computation, storage and communication com-

ponents, that are capable of connecting and exchanging data to one another. In recent

years, organizations have allowed more and more IoT devices to be connected to their net-

works, thereby increasing their risk and exposure to security vulnerabilities and threats.

Therefore, it is important for such organizations to be able to identify which devices are

connected to their network and which ones are legitimate and pose no risk. Leveraging

network traffic to identify devices through supervised learning has recently been gain-

ing popularity, where feature information is first extracted by intercepting device traffic

and then exploited to provide device classification. The main limitation of prior works

is that they can only identify previously seen types of devices, and any newly added

device types are treated as abnormal types. In the real world, hundreds of millions of

new IoT devices are produced each year, and the lack of sufficient amount of training

data makes a system based solely on supervised learning unrealistic. In this paper, we

propose a hybrid supervised and unsupervised learning method that enables secondary

classification of unseen device types. Our technique combines deep neural networks with

clustering to enable both seen and unseen device classification, and employs autoen-

coder techniques to reduce dimensionality of datasets, thereby providing a good balance

between classification accuracy and overhead.
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Chapter 1: Introduction

Conventional computer security systems can be divided into two types: network secu-

rity systems and host security systems. Both systems may contain different integrated

security modules, such as firewalls, intrusion detection systems (IDS), and antivirus soft-

ware, which can monitor the system or network and alert when malicious activity occurs.

Among them, IDS plays a vital role in information security technology. It is considered

to be a necessary security mechanism to deal with network attacks and identify mali-

cious activities in computer network traffic. Although numerous vendors on the market

produce embedded security modules, many attackers are still in a dominant position of

power because of the unprecedented amount of daily malware types and production such

as worms, viruses, Trojans, botnets, ransomware, etc. Besides, many small and medium-

sized Internet networks do not have the ability to update virus databases and patches

on time or connected devices do not have defense capabilities at all. Such networks are

more vulnerable to attackers. It is, therefore, necessary to design accurate automated

systems to detect and classify malware.

Internet of Things (IoT) relates to networks of physical devices and items embedded with

electronics, sensors, actuators, software, and connectivity, which enables the communi-

cation between these devices and their exchange of data. In recent years, organizations

have allowed more and more IoT devices to be connected to their networks, and due to

the nature of IoT devices, it may not be able to update security patches promptly. This

could give malware a chance to create cybersecurity threats to these networks. More

importantly, if an infected IoT device is not isolated and removed from the network in

a timely manner, it will cause cross-contamination and inject malware into the entire

network. Therefore, it is important for the organization to be able to identify which

devices are connected to their network and whether these devices are considered legit-

imate and pose no risk. Leveraging network traffic to identify devices, in general, has

been gaining in popularity in previous works. Specifically, the feature information is

extracted by intercepting traffic generated by the general operation of the device after

connecting to the network. The effect of classification is achieved through the difference
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in feature information.

Previous work mainly focused on the use of supervised learning methods to address these

issues. However, the main limitation of these methods is that they require labeled data

for training and can only identify previously seen types of devices. Any newly added

device types will end up being treated as abnormal device types. In the real world,

hundreds of millions of new IoT devices are produced each year, and the lack of a large

amount of training data makes a system based solely on supervised learning unrealistic.

In order to solve this problem, we propose in this paper a hybrid supervised and unsuper-

vised learning method that enables secondary classification to make the data processing

more refined. Clustering is an unsupervised way that divides data into groups so that

objects belonging to the same group are similar. There are several types of clustering

such as density-based clustering, model-based clustering, fuzzy clustering and hierarchi-

cal clustering. For density-based clustering, the more data points contained in a circle

of the same size, the denser this area is considered, and a smaller number of points is

considered to be sparse. The set of consecutive dense points is a group. Far from other

clusters, sparse clusters or clusters of points that do not belong to any group are con-

sidered abnormal data. However, the performance of clustering-based methods is very

dependent on which algorithm is used, and high-dimensional data is a special challenge

for data mining algorithms in density-based clustering. To address this issue caused

by the curse of dimensionality [?], methods based on reconstruction errors such as au-

toencoder techniques are widely used. The data are first reduced in dimension by the

autoencoder and then clustered in latent low-dimensional data by the OPTICS.

The remainder of the thesis is structured as follows: Chapter 2 summarizes the related

work, specifically the papers this proposed framework is based on. Chapter 3 introduces

and reviews the background of the different key concepts used in the thesis. Chapter 4

describes the proposed method in detail. Chapter 5 presents the performance evaluation

and result analysis. Chapter 6 presents the future works and conclusion.
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Chapter 2: Related Work

Yair Meidan et al. [?] proposed an approach for unauthorized IoT device identification

that uses the method of checking whether a device is on the whitelist. They focused

exclusively on features extracted from TCP/IP traffic. However, with the increasing

number of IoT devices, this method faces the problem of update and excessive retrieval

time caused by too many whitelisted devices. Our work is complementary to theirs and

can be used along with their approach to identify device type effectively.

B. Bezawada et al. [?] proposed IoTSense, a framework of device fingerprinting that uses

machine learning for IoT device identification. Similar work can also be found in [?, ?].

These works specified the IoT device granularity level used for fingerprints—device cat-

egory, type, and instance. A device type, defined as a specific device model within a

general device category, is a classified target.

Yair Meidan et al. [?] developed a multi-stage meta classifier to identify not only IoT

and non-IoT devices but also specific IoT device classes. To improve the accuracy of

the results, each device type uses its optimal classification threshold (cutoff value) and

optimal session sequence size instead of the default values.

Sandhya Aneja et al. [?] designed a device fingerprint using inter arrival time (IAT),

which is the time interval between two consecutively received data packets. Since IAT

is determined only on hardware or software, it is still reliable even when IP or MAC

addresses are spoofed. Device fingerprints are then classified by machine learning. This

method is based on the hardware of the IoT device classification. It applies to an IoT

network where there are many duplicated device types with a few device types, where

the same device with different vendors may be considered as two distinct devices.

M. Yousefi-Azar et al. [?] introduced a feature learning method for network-based anomaly

intrusion detection and malware classification using AE (autoencoder). Compared with

other algorithms, this method uses fewer features, which makes the model more effective

for real-time protection. The experiments used 41 raw byte-features using a portable

executable based on protocol, payload and time. Compared with other single classifier

models, its advantages are high accuracy and simplicity.
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Chapter 3: Background

3.1 Internet Network Traffic

3.1.1 OSI Model

OSI, which stands for Open System Interconnection and was developed by the Inter-

national Standard Organization, can be used as a reference to help understand how

applications communicate through networks. The model was introduced to standardize

networks in a way that allowed multi-vendor systems. Prior to this, it was only able

to have one vendor network because the devices from one vendor couldn’t communi-

cate with others. The OSI model has seven layers, as shown in Table ??. The data

sent from the sender passes from the upper layer to the lower layer interconnected with

the lower layer of the receiver and then is transmitted to the higher layer at the re-

ceiver. The application layer facilitates communications between end-users and the next

layer. The presentation layer is where the operating system is located and it provides

a variety of coding and conversion functions to translate data into a format that every

different system could understand. The function of this layer includes data conversion,

data encryption/decryption, and data compression/decompression. The session layer es-

tablishes, manages, and terminates the communication session between two computers.

The transport layer chops the data and adds a header. The network layer adds header

Table 3.1: OSI Models and Examples of Protocols

Layer Name Protocols

7 Application HTTP,FTP
6 Presentation SSL,SSH
5 Session API’s, Sockets
4 Transport TCP,UDP
3 Network IP, ICMP, IPsec
2 Data Link Ethernet, Switch, Bridge
1 Physical Coax, Fiber, Wireless



5

information about the destination routers and IP addresses. The data link layer adds

more header information, such as source and destination MAC address, to create or read

an Ethernet frame. Last but not least, the physical layer transforms data information

into either electronic impulses or light, depending on what kind of cable is used.

3.1.2 TCP/IP

Since our model only studies devices that communicate over the Internet, the TCP/IP

model (Transmission Control Protocol / Internet Protocol) better represents the data

shape of this design. TCP stands for Transmission Control Protocol and IP stands

for Internet Protocol. Figure ?? shows a comparison between the OSI model and the

TCP/IP model. The main difference is that the TCP/IP model has only three layers,

each of which covers the corresponding functions under the OSI model.

Figure 3.1: Comparison between OSI model and TCP/IP model [?]

Important functions are extracted from not only the data but also the header of the

TCP data segment. Figure ?? shows the connecting process and the structure of TCP

headers. As can be seen in the figure, TCP connection starts with a three-way handshake

and ends with a four-way handshake.
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Figure 3.2: TCP header and TCP connection [?]

For the three-way-handshake, the client (Host 1) who initiates the connection first

sends a packet to the server (Host 2). The first packet contains a randomly selected
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initialization sequence number i and a SYN bit to tell it to synchronize the new con-

nection. The server then responds with an acknowledgment with an ACK bit and an

acknowledgment number of i+ 1, as well as its own SYN and another random sequence

number, j. The connection is established when the client acknowledges with ACK bit

and acknowledgment number j + 1. The four-way handshake is similar to this process.

The client decides to complete the connection by sending a FIN bit. The server then

responds with an ACK bit and sends another packet with its FIN bit for the server

to also close the connection. Eventually, the client sends an acknowledgment and the

connection is closed.

3.2 Data Mining Techniques

To discover patterns and knowledge from large amount of collected traffic data, one can

use one of 6 common classes of data mining task [?]: anomaly detection, association

rule learning, clustering, classification, regression and summarization. Next, we discuss

classification and clustering in detail.

3.2.1 Random Forest

Random forest algorithm is an algorithm that uses a large collection of decorrelated

decision trees for classification. A decision tree is a structure similar to a flowchart,

in which each internal node represents a decision on an attribute, each point is split

into two branches, each branch represents the result of the decision, and each leaf node

represents a decision result class label (A decision made after calculating all attributes).

Generally, there can be many positions for branch split. One of the criterion to measure

the quality of a split is Gini Impurity, given as:

Gini(t) = 1− ppositive(t)2 − pnegative(t)2 (3.1)

where ppositive(t) and pnegative(t) are the probabilities of being positive or negative in

the test. The smaller the Gini impurity, the better the separation effect. Let S be the

matrix of training data feed into the random forest, where n is the number of features,

p is the number of data samples, and C is the class label for each data point. S can be
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represented as

S =


f1,1 f1,2 · · · f1,n C1

f2,1 f2,2 · · · f2,n C2

...
...

. . .
...

...

fp,1 fp,2 · · · fp,n Cp

 (3.2)

From the matrix S, we create a subset of M randomly selected matrices, with each

matrix having the same size of the original input matrix S and containing shuffled rows

of S (with possibly repeated ones). These subsets are called bootstrapped datasets.

Below is an example of such created matrices:

S1 =


f2,1 f2,2 · · · f2,n C2

f2,1 f2,2 · · · f2,n C2

f17,1 f17,2 · · · f17,n C17

...
...

...
...

...

 , · · · , SM =


f6,1 f6,2 · · · f6,n C6

f11,1 f11,2 · · · f11,n C11

f17,1 f17,2 · · · f17,n C17

...
...

...
...

...


(3.3)

A decision tree is created for each subset, and then the differences between each subset

and the original set are used to make predictions to measure the accuracy of the random

forest. We can then use this accuracy to fine-tune the parameters.

3.2.2 OPTICS

Ordering points to identify the clustering structure (OPTICS) is unsupervised data clus-

tering algorithm based on data space density. It works by defining a cluster as the max-

imal set of density-connected points. It was first presented by Mihael Ankerst, Markus

M. Breunig, Hans-Peter Kriegel and Jörg Sander on 1999 [?]. The basic idea comes from

the Density-based spatial clustering of applications with noise (DBSCAN) which is their

early work. There are three classifications of the points: core, border, and outlier. A

core point has at least a minimum number of points within its ε-neighborhood radius,

including itself. A border point has less than minimum points within its ε-neighborhood

radius but belongs to the neighborhood of a core point. An outlier point is a point that

cannot be reached by any cluster. Different types of points can be visualized in Figure ??.
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Figure 3.3: Red for core point, yellow for border point, and blue for outlier point,
minPts=4

There are two parameters for DBSCAN to define a cluster: ε and minPts. ε is the

maximum radius of the neighborhood, and minPts is the minimum number of points

in the ε-neighborhood to define a cluster. Compared with DBSCAN, OPTICS has the

advantage of being less sensitive to parameters because OPTICS only requires one user-

specified input parameter, minPts. The idea of OPTICS is to create a database in

ascending density order based on the distance between data points to represent its

density-based clustering structure. It stores such a clustering order using two pieces

of information: core distance and reachability distance.

The core distance of a point o, CDε,minPts(o), is defined as [?]:

CDε,minPts(o) :=

{
UNDEFINED, if |{x|d(x, o) ≤ εmax}| < minPts

minPts-dis(o), otherwise
(3.4)

where minPts−dist(o) is the distance from point o to the nearest neighbor of the given

minPts. When the point o are sufficiently isolated such that the number of other points

within radius εmax is less than minPts, the core distance is undefined. Otherwise, the

core distance is the minPts distance.

Then the reachability distance from a point p to point o, RDε,minPts(o, p) can be defined
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as

RDε,minPts(o, p) :=

{
UNDEFINED, if |Nε(p)| < minPts

max{d(o, p), core-dist(o)}, otherwise
(3.5)

where |Nε(p)| is ε-neighborhood of p. d(o, p) and all distances mentioned above re-

fer to Minkowski distance. Intuitively, the points with the smallest reachable distance

(highest density) will be processed first. Therefore, the output of OPTICS will be the

data points sorted by processed order along with their reachability distances.

3.3 Autoencoder

Autoencoder (AE) is a symmetrical artificial neural network that trains the output to

reconstruct the input x. The network may be viewed as consisting of two parts: an

encoder to mapping input x to a given number of features (bottlenecks) and a decoder

to mapping the bottlenecks to reconstruction x̂. By forcing the reconstructed x̂ to be as

close as possible to the input, the parameters of the neural network can be learned. The

structure of a basic autoencoder is shown in Figure ??.

Figure 3.4: The structure of a basic AE
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Given a set of p input data vectors, X = {x1, x2, . . . , xp} , an input vector xi feed-

forwards to a bottleneck vector Li as

Li = fθ(xi) = σ(Wxi + b) (3.6)

where σ is activation function, W is the weight matrix, and b is the bias vector. Weight

and bias form the parameter set θ = {W, b}. The decoder then feed-forwards the bottle-

necks to reconstructed vector x̂i, with same dimension as same the input vector.

x̂i = gθ(Li) = σ(W ′Li + b′) (3.7)

Because of AE’s symmetrical structure, the weights of the decoder are usually transposed

matrices of the encoder weights; i.e., W ′ = W T . We then back-propagate AE to optimize

its parameters by minimizing the loss function

J(θ;x, x̂) =
1

p

p∑
i=1

||xi − x̂i||2 (3.8)

The size of the bottleneck space should have lower dimensionality than the input space.

If the hidden layer is larger than the input space, the network is likely to directly copy

the input to output without learning. Instead of reducing the number of neurons in the

bottleneck, an alternative way is sparse bottleneck space. Sparse AE may include more

hidden units than inputs, but only a small number of the hidden units will be active at

once [?]. Sparsity constraints can be implemented with a regularizer. The loss function

after considering sparse space becomes

Jsparse(θ;x, x̂) = J(θ;x, x̂) + Ω(L) (3.9)
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Chapter 4: The Proposed Device Classification Method

4.1 Design Overview

The types of IoT devices that may appear in the network are classified into three cate-

gories:

Known: Authorized device types that can be trusted. Here we refer to device types

that the system has trained and saved their corresponding device models.

New (Unknown): Unauthorized device but the long-term monitoring has revealed that

some observations exhibit very similar behavior. These observations are considered to

be of the same device type and may be licensed as known in the future.

Anomaly (Unknown): An observation that deviates so much from other observations

as to arouse suspicions that it was generated by a different mechanism.

The proposed device identification and classification framework is composed of 6 mod-

ules, as shown in Figure ??. When the device is first connected to the network, the Data

Processing module captures the traffic generated by the general operating procedures

and extracts the desired features from the observations. The chosen method of the Train

module for this research is based on the whitelist method described in [?, ?], where

a one-vs-rest binary classifier is created for each authority device type (known). Pro-

cessed data feeds into the Predict module, stops and labels it when a classifier responds

to acceptance. The Prediction module can directly use classifier models from Train to

predict the device type and label the feature vector. Then follows a discriminator that

determines whether the feature vector is labeled. If yes, the feature vector is sent to the

Action module, where the corresponding mitigation strategy is applied. For different

phases and categories, the Active module will give different mitigation strategies. If no,

the feature vector will be taken to the Clustering module and then continue to feed into

the Active module. In the following paragraphs, we will mainly focus on the Clustering

module.
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Figure 4.1: The whole system

4.2 Known Device Classification

The selection of the random forest model and its parameters are obtained by fine-tuning

to reach the maximum area under curve (AUC). The reason why the AUC score is

used as a criterion is that under the binary classification problem, the data is usually

unbalanced. This means that most feature vectors usually belong to ’not device’ and

few feature vectors belong to ’is device’. Therefore, an accuracy indicator reflecting

the distribution of the underlying classes may not be sufficient. The receiver operating

characteristic (ROC) curve represents the ratio between the true positive rate (TPR)

and the false positive rate (FPR). The closer the area under the curve is to 1, the better

the effect. The metric also indicates how good the data imbalance results in fact, and

it’s not just about accuracy. Besides, when determining the best model, some models

may show higher AUC scores in some device types. Here we use the average AUC score

to measure the model performance. Algorithm 1 is used to create a model for known
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device classification.

We enter a list with m device types and training data to get m classifier models.

Algorithm 1 Train Model For Known Device

1: Inputs:
X = {x1, x2, · · · , xp} . Input data
C = {c1, c2, · · · , cq} . Device type list

2: Initialize:
X ′ = {x′1, x′2, · · · , x′p} . Feature data
Y = {y1, y2, · · · , yp} . Label data
xi = x′i + yi

3: X = shuffle(X)
4: X = MinMaxScaler().fit(X)
5: for c ∈ C do
6: X = X ′ + Y
7: for y ∈ Y do
8: if y = c then
9: y = 1

10: else
11: y=0
12: end if
13: end for
14: Model = RandomForest()
15: Model.fit(X ′, Y )
16: Save Model
17: end for

The training data for a device type is processed separately: the features and labels are

separated, and the data points of ’is device’ are marked with 1 and ’not device’ are

marked with 0. The processed data is used to train the model and the trained model

is named after its device type. When predicting, take one model from the saved models

each time. If a test data returns ‘is device’ through the model, the process stops and

marks this piece of data as its model name. Otherwise, it continues to take the next one

from the saved model for testing.



15

4.3 Unknown Device Classification

4.3.1 Using AE for Data Compression

Besides the AE architecture discussed in Section ??, other different architectures can be

used for deep AEs. In our proposed framework, a 4-layer deep AE architecture, shown

in Figure ??, is used, and the reason for such a choice is because deep AEs are known to

outperform shallow AEs [?, ?, ?]. As described in [?], the backward propagation gradient

of the underlying error will be small for deep AEs. Instead of manually choosing the size

of the hidden layer, we sparse the autoencoder [?] on two hidden layers. The idea is that

when sparse constraints are imposed on the hidden units, only some of the units will

be active, and the remaining cells will be set to zero. Therefore, sparse AE will neither

directly copy the input (because the size of the hidden layer is larger than the input

size), nor cause under-learning (because the size of the hidden layer is too small). To

achieve this, we will add an L2 activity regularizer. The size of hidden layers h1 and h2

can be set equal to the size of input and output layers as n. The size of the bottleneck

is m.

For this, we can then write

h1 = fθ1(x) = R(W1x+ b1) (4.1)

where R(z) = max(0, z) is ReLu function and the parameter W1 is an n × n weight

matrix and b1 is an n-length bias vector. The expression relating h1 to L is

L = fθ2(h1) = R(W2h1 + b2) (4.2)

with the parameter W2 being an m × n weight matrix and b2 being an m-length bias

vector. The expression relating L to h2 is

h2 = fθ3(L) = σ(W3L + b3) (4.3)

where σ(z) = 1
1+e−x is Sigmoid function, and W3 is an n×m weight matrix and b3 is an

n-length bias vector. The expression relating h2 to x̂ is

x̂ = fθ4(h2) = σ(W4h2 + b4) (4.4)
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with W4 being an n×n weight matrix and b4 being an n-length bias vector. Finally, the

loss function then can be written as

Jsparse(θ;x, x̂) =
1

p

p∑
i=1

||xi − x̂i||2 + λ

p∑
i=1

(Wxi + b)2 (4.5)

where λ is the regularization parameter.

Figure 4.2: The architecture of the autoencoder

4.3.2 Density-Based Clustering as Unknown Classification and Anomaly

Detection

Density-based clustering locates regions of high density that are separated from one

another by regions of low density. Density in this context is defined as the number

of points within a specified radius [?]. In this work, we use Order Points to Identity

Clustering Structure (OPTICS) [?]. OPTICS can order the data points in an ascending

order according to the reachability distance. Through ranking, we can visualize the

pattern of clustering, called reachability plot. Figure ?? shows the data points displayed

in two dimensions and the reachability plot corresponding to each point. We find that
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the reachable graph presents a valley-shaped wave. Each ’valley’ is a cluster, and some

individual points (outliers) on the peak do not remain in any clusters. In the proposed

method, we consider the outlier as an anomaly. We use the ξ method [?] to extract

clusters, so that no reachability threshold needs to be specified. OPTICS label the

points in the same cluster as the same number and all outliers are marked as negative

ones.

Figure 4.3: The reachability plot
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Chapter 5: Performance Evaluation and Result Analysis

In this section, we describe the experimental setup, and analyze the performance of our

proposed framework.

5.1 Datasets

The datasets we used in this thesis are comprised of real-world data that was originally

collected by Yair Meidan et al. [?] from 10 different IoT device types out of 17 IoT devices,

including baby monitor, lights, motion sensor, security camera, smoke detector, socket,

thermostat, TV, watch, and water sensor. Some of these types are also produced by

different vendors or same vendor with different models. Wireshark is used to record traffic

data passed through a switch that connects all devices in a pcap file. Then, the recorded

data is converted into a feature vector with n = 297 features by the feature extractor.

We assume that the devices we studied are all Internet-enabled devices. Examples of

features are the destination port number, packet size, number of packets with the PUSH

bit set, number of out-of-order TCP segments of higher-level protocols running on top

of it like SSL and HTTP. The full list can be found in [?]. A TCP session refers to a

successful connection that starts with a 3-way-handshake and stops when it times out

or receives a pair of FIN and ACK segments.

The dataset for training consists of 1400 feature vectors from 7 device types with their

device-type labeled. The dataset for testing has 1005 feature vectors from 10 device types

with 3 device types out the 10 are provided without label and considered as ’anomaly’

device types. That is, 3 of the 10 device types are considered new and 7 are considered

known. Detailed information about these experimental IoT devices are given in Table ??.
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Table 5.1: Instances Model and Distribution

Device Type Make and Model
Number of Instances

train test

baby monitor Beseye Baby Monitor, Pro 200 100

lights Samsung 200 100

motion sensor D Link DCH S150 200 100

security camera Simple Home XCS7 1001, Withings WBP02 WT9510 200 100

smoke detector Nest Nest Protect 200 100

TV Samsung UA40H6300AR, UA55J5500AKXXS 200 100

watch LG G Watch R, Urban,Sony SWR50 200 100

unknown1 N/A 0 100

unknown2 N/A 0 100

unknown3 N/A 0 100

5.2 Experimental Setup

Our proposed method was implemented using Python3 on the macOS Catalina operating

system. Because different features in the raw dataset have different ranges of values, we

used the built-in MinMaxScaler of the Sklearn library in Python to perform min-max

scaling on the data, making all feature values falling within the [0,1] range. (It is well-

known that highly different values in the features’ ranges might lead to less accurate

results and problems with the training.) We use the same experiment setups as in [?] for

training and predicting known devices. The classifier uses Random Forest from Sklearn

and sets its tool-kit specific parameters as follows: The number of trees in the forest is

n estimators = 200, the function to measure the quality of a split criterion =′ entropy′,

the maximum depth of the tree max depth = 15, and the minimum number of samples

required to be at a leaf node min samples leaf = 5.

As mentioned in Section ??, an L2 regularizer is chosen to sparse the hidden layer h1.

The regularizer parameter in loss function (??) is λ = 10−5. The optimization algorithm

uses Adam, with a constant learning rate of 10−3. The dimension of hidden layer and

bottleneck layer is set to n = 297 and m = 20. For the parameters used in OPTICS,

the number of samples in a neighborhood for a point to be considered as a core point
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is minPt = 50, and the other parameters are set to the default values provided from

Sklearn library.

5.3 Results

5.3.1 Accuracy

Our experimental results were performed using Python’s Matplotlib library on the ma-

cOS Catalina operating system. Under the parameter settings mentioned above, ??–??

shows the prediction accuracy of classifying known and unknown device types in the test

dataset with the size of bottleneck layer sizes equaling 2, 3, 5, 20, and 200. Our method

achieved an average of 95% accuracy for known device classification and an average of

71%, 75.3%, 80.3%, 80.6%, and 80.6% for new devices under different bottleneck layer

sizes. It can be seen from the figure that as the bottleneck size increases, the accuracy

of predictions for unknown devices increases. When the bottleneck size increases to a

certain value, the accuracy stabilized.
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Figure 5.1: The confusion matrix with L=2
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Figure 5.2: The confusion matrix with L=3



23

Figure 5.3: The confusion matrix with L=5
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Figure 5.4: The confusion matrix with L=20
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Figure 5.5: The confusion matrix with L=200

5.3.2 Optimal Bottleneck Size

To determine the optimal bottleneck size, we tested different compression ratios to get

Figure ?? and ??. The calculation formula for the compression ratio is

Compression Ratio =
Uncompressed Size

Compressed Size
=

Feature Size

Bottleneck Size
(5.1)

We compress the bottleneck layer of the autoencoder to determine whether there is a

dimensional region in which the behavior of the reconstruction loss, SPI, and SAI metrics

change significantly, which is also called the ’elbow region.’ We trained an autoencoder

to reduce the size of the bottleneck layer from 297 to 2 in steps of 1.

Figure ?? shows how system runtime and memory usage changes at different autoen-
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coder compression ratios, compared to the performance without the autoencoder. As

can be seen from the figure, our proposed autoencoder can significantly reduce system

running time and save memory compared with no autoencoder. At the same time, as the

compression ratio increases, time and memory both decrease. Therefore, we conclude

from these two restrictions that the smaller the bottleneck size, the better, as long as

the reconstruction loss is kept small at the same time. Figure ?? shows three criteria

used in [?] to evaluate the reconstruction capability of the autoencoder. Multiple criteria

can better evaluate the quality and performance of the network training process. The

calculation of reconstruction loss is given in function (??).

The Structure Preservation Index (SPI) captures the input structure distortion caused

by the autoencoder process. The calculation is as follow:

SPI =
1

p2

p∑
i=1

||Dij − D̂ij ||2 (5.2)

where Dij is the cosine similarity score between ith and jth data vector in the input

dataset. Similarly D̂ij is the cosine similarity score between ith and jth data vector in

the reconstructed dataset. The closer the SPI value is to zero, the better.

The Similarity Accumulation Index (SAI) illustrates the level of similarity between the

input vector and its reconstructed version by looking at the angle instead of the magni-

tude. This validates the preservation of the relative strength of the vector dimension in

the reconstruction. The calculation is as follows:

SAI =
1

p

p∑
i=1

cosine(xi − x̂i) (5.3)

As we can see from Figure ??, SPI shows the clearest ’elbow region.’ It clearly captures

the fact that after m = 20, the value of SPI will not increase significantly much if the

value of m is greatly increased. Therefore, the size of the bottleneck should not be chosen

less than m = 20. Combined with the conclusion of Figure ??, the optimal bottleneck

size is m = 20.
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Figure 5.6: System runtime and memory usage at different AE compression ratios and
without AE
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Figure 5.7: Reconstruction loss, SPI and SAI metrics as compression ratio decreases

5.3.3 Dataset Revisited: Feature Selection Consideration

When classifying the device type, there seems to be some feature vectors that dominate

the discrimination. Therefore, we assess in this section the dominance of each feature by
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calculating its mutual information (MI) with the different device types. Let C denote

the set of the device types, F denote the set of all features used in the dataset, and for

each feature f ∈ F , Vf denote the set of all possible values that feature f can take on.

For each feature f ∈ F , the mutual information (MI) between feature f and device type

set C is given by:

MI(C, f) =
∑
c∈C

∑
a∈Vf

p(C,f)(c, a) log
p(C,f)(c, a)

pC(c)pf (a)
(5.4)

where pC(c) for each c ∈ C represents the probability that device type c is occurred in

the dataset and can be expressed as

pC(c) =
Number of data points belonging to device type c

Total number of data points in dataset
, (5.5)

for each f ∈ F , pf (a) for each a ∈ Vf represents the probability that value a of feature

f is occurred in the dataset and can be expressed as

pf (a) =
Number of data points in which feature value a occurred

Total number of data points in dataset
(5.6)

and for each f ∈ F , p(C,f)(c, a) for each device type c ∈ C and each feature value a ∈ Vf
represents the joint probability for device type c and feature value a of feature f and

can be expressed as

p(C,f)(c, a) =
Number of data points in which value a of feature f occurred for device type c

Total number of data points in dataset
(5.7)

Figure ?? shows the MI of each feature across all device types. We observe that

a significant number of features used in the dataset have high MI values, dictating

that these features are too device-type specific, and hence, they provide high device

separability. For instance, if a MAC address is used as a feature, then this feature will

have very high MI, as each device will have a different MAC address, and hence, if used

for separability, such a feature will suffice to ensure 100% classification accuracy.

We simulate a potential network security hazard that supposes an attacker learns to

mimic normal device communication behavior by observing the IDS classification method
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Figure 5.8: Mutual information of all 297 features of the dataset



31

Table 5.2: Features Found to be Important

Features description Average mutual information (bits)

TCP packets time-to-live by server 1.28
TCP packets time-to-live 1.19

Packets inter arrival time by client 1.1
Packets inter arrival time 1.07

Packets inter arrival time by sever 0.8
Packets size 0.7

Number of bytes send and receive 0.66
TCP packets time-to-live by client 0.61

Packets size by client 0.54
Total packets number 0.54

so that a malicious device can generate some features similar to normal devices to fool

IDS. We need to verify whether our proposed method can still accurately identify the

device type in this case. To this end, we set three thresholds for MI of 1 bit, 0.6 bits, and

0.4 bits, and remove features with MI values higher than the threshold, leaving us with

features that we refer to as ’important’. The description of features that considered to be

important and their mutual information are shown in Table ??, and their corresponding

classification accuracy results are shown in the Figure ??. The average accuracy is 91.2%,

92.9%, 89.8%, and 81.8% when the number of input features is 297 (initial dataset), 234,

203 and 179, respectively. Therefore, it can be said that in terms of accuracy, the system

can remain stable even if attackers spoof 40% of the features and retains only 60% of

the original features.

The main assumption that must be validated to verify the experimental results is

that the inter-class variance is closer and stronger than the intra-class variance. Devices

in the same type behave sufficiently similarly, while devices in separate types behave

differently. However, the results show that intra-class differences between certain device

types (”lights” and ”unknown1”) are not negligible and will have an impact during the

analysis. This assumption applies well in some types and less in others. The problem

of differences in specific types is a limitation of this design. One solution is to use more

devices in each device type and continuously capture more data for the training section.

The similarity between different types of certain devices reduces the impact of similar

characteristics by increasing the diversity of devices. In regard to the most appropriate
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(a) n = 297 (b) n = 234

(c) n = 203 (d) n = 179

Figure 5.9: The confusion matrix with different numbers of input features n
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bottleneck layer size, the reconstruction capability of the autoencoder is highly related

to the size of the bottleneck layer, because the smaller the bottleneck layer is, the more

information is lost. The simplified steps of the autoencoder are also called hashing, and

because similar sentences in the projection space are close to each other, this technique

is also called semantic hashing. Choosing the right bottleneck layer size is important for

two reasons: (i) too large a size may lead to higher computing and storage costs, and (ii)

too small a size may cause high information loss [?]. The method of calculating the most

suitable bottleneck dimension has rarely been mentioned in previous studies. We can

only weigh the optimal size based on actual experiment run time, memory consumed,

and reconstruction loss.
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Chapter 6: Future Work and Conclusion

6.1 Future Work

There is still much work to be done in the future to create a powerful self-contained

anomaly detection system for IoT devices. One of them is to formulate a specific net-

work restriction rule for a classified equipment system. For example, there can be three

isolation levels: enabling communication with other devices and all Internet connections

for known devices, disabling communication with other devices for new devices, opening

only a limited set of remote targets, and disabling all communication for abnormal de-

vices.

Another possibility worth considering is increasing the number of device types to eval-

uate the system accuracy. Because in actual applications, known devices cannot be

identified 100%, this will cause the data of some unidentified known devices to fall into

the unknown set and become the noise of the unknown classifier. This reduces the ac-

curacy of the entire system. Therefore, measures need to be taken to mitigate this loss

of accuracy.

Future research could also explore developing applications and adapting our designs

to other scenarios [?]. These may include different network protocols and various ap-

plication environments to better understand how our approach can be extended and

generalized.

6.2 Conclusion

In this paper, we propose a system that uses device behavior to classify IoT device

types. The ultimate goal is to detect anomalies in order to protect network security,

using unsupervised learning to classify device types to make the system self-updating.

The whole system consists of two parts: the classification of the known device category

and the classification of the unknown category (including new and anomaly). The raw

data is first processed by the data processor into a feature vector represented by 297
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features. For known devices, the system then trains a corresponding classifier model for

each device type and passes the data through the model in turn. If any model gives a

positive response, the data is verified as the corresponding equipment type of its model.

For unknown devices, the data is compressed into low dimensions by the encoder in

the autoencoder. These data are stored and clustered to label the nearest data points

as a class. Individual data points are labeled as anomalies. We successfully identified

unknown devices using our proposed method with accuracy as high as 100%. Therefore,

our system shows both high accuracy and good practicability.
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[17] M. Steinbach, L. Ertöz, and V. Kumar, “The challenges of clustering high dimen-
sional data,” in New directions in statistical physics. Springer, 2004, pp. 273–309.

[18] E. Schubert and M. Gertz, “Improving the cluster structure extracted from optics
plots.” in LWDA, 2018, pp. 318–329.

[19] “Full network traffic features set.”

[20] P. Gupta, R. E. Banchs, and P. Rosso, “Squeezing bottlenecks: exploring the limits
of autoencoder semantic representation capabilities,” Neurocomputing, vol. 175, pp.
1001–1008, 2016.






