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Abstract

Network flows in Real-Time (RT) systems need to meet stringent end-to-end

deadlines in order for such systems to operate safely and reliably. Today, such

systems use custom or domain specific network system designs to meet end-to-end

deadlines and other constraints of real-time flows. In this work we explore the design

of real-time networks using common-off-the-shelf (COTS) components by leverag-

ing Software-Defined Networking (SDN) paradigm. In particular, we explore the

effectiveness of using i) spatially varying but locally static flow priorities and ii)

the impact of using Least-Slack Prioritization on the performance of network path

layout and provisioning algorithms. Specifically, we propose different heuristics for

spatial variation of static flow priorities in a real-time network and empirically show

that spatial variation of priorities can accommodate more real-time flows than sim-



ple static priorities. Further, we show that least-slack based flow priority assignment

performs better than deadline monotonic priority assignment for multiple path layout

algorithms considered in this work.
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Chapter 1: Introduction

Network flows in Real-Time (RT) systems need to meet stringent end-to-end dead-

lines for safe and reliable operation of such systems [11,60]. If not carefully designed

and provisioned, contention between flows in real-time (RT) networks can result in

delays that cause network flows to not meet deadline constraints. If critical messages

experience delays or delivered incorrectly, [19] then the system could fail to operate.

For example, if the front bumper of a car has a sensor that serves the purpose of

detecting an impact, the information obtained is relayed to the electronic control

unit (ECU) within 20 ms followed by an initiation of airbag deployment within a few

milliseconds [31]. Any delays that can occur in the processes could result in serious

injuries to the driver and/or the passengers. In addition to timing constraints, some

(critical) flows have distinct priorities and isolation requirements [18,25,45].

There are current designs that address this, though they have two main problems.

Solutions specific to their environment, such as the avionics full-duplex switch Eth-

ernet(AFDX) [5,15,35] and the controller area network (CAN) [26,41–43,58,62], can

be too conservative or end up over-engineered. Additionally, due to the limitations

of physical implementations, there is a large overhead incurred in order to manage

the solution. In situations similar to this, a dynamic configuration is often necessary

in routing packets based on flow delays and switch workloads that are successful in

meeting all the high priority (QoS) requirements
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We believe that if the system had ‘global’ visibility built into the network and

could perform combined resource allocation for the RT and non-RT flows, then the

design of RT networks could be significantly improved [10]. Software-defined net-

works (SDNs) have the potential to fulfill these requirements [38].

Kumar et al. [34] created one of the initial “real-time aware” SDNs, designed for

use with applications that have hard-timing constraints. In their approach, they ded-

icate a whole queue to a real-time flow, which results in the network resources being

under-utilized. Other recent works on this topic includes the papers of Qian et al. [48]

and Lee et al. [36]. There are, however, two key issues with these implementations.

First, they suffer from being overly conservative, which results in under-utilization

of the available resources in a network [34, 36]. Second, they are unable to be im-

plemented using commodity off-the-shelf (COTS) components [36,48], as a result of

needing capabilities that are not available in COTS switches. An example of this

is Lee et al. [36], that adds tolerance for link-failures to the Kumar et al. [34] ap-

proach. This approach is done by altering the data plane of a given switch, but will

still encounter problems when dealing with link failures, possibly leading to dropped

packets or the delay increasing. Our proposed work attempts further improvements

to the work of Kumar et al. and Kashinath et al. [31, 34]

1.1 Proposed Research

1.1.1 Spatially-Varying Static Priority Scheduling

Kashinath et al. presented an algorithm that statically allocates paths, pre-computes
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backup paths,and multiplexes within the same queue. It maintains compatibility

with COTS switch schemes and has the goal of guaranteeing end-to-end deadlines

within a real-time system. [31] We investigated whether adding a followup heuristic

that surgically adjusts priorities for particular flows at particular switches could

improve end-to-end deadline guarantees without losing COTS compatibility.

1.1.2 Least-Slack Prioritization

Within static priority schemes, only deadline monotonic approaches have been stud-

ied. We propose a novel approach using Least-Slack Prioritization where priority

assignment factors in path hop counts to more effectively utilize network resources.
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Chapter 2: Background

2.1 Quality of Service

Quality of Service is extremely important for certain applications, and different kinds

of applications behave differently. For example, a video application might be tolerant

of slight delay and require a large amount of bandwidth, while a voice application

may be tolerant of loss but extremely intolerant of delay due to the real-time nature

of the experience.

The Quality of Service for a flow in a network may be analyzed with respect

to four performance parameters: reliability, delay, jitter, and bandwidth. Different

applications have a wide variety of Quality of Service (QoS) requirements. Networks

that attempt to provide guarantees can be roughly categorized into three groups [61].

The first group, Best Effort networks, do their best to deliver high quality of

service but can provide no guarantees or assurances. This is a very basic approach

that is often insufficient and doesn’t provide the granularity required by modern

applications that have complex (QoS) requirements which this group fails to meet.

The second group which we consider are Integrated Service networks [9]. These

networks provide QoS guarantees as requested by individual flows and applications

on a per-flow basis. Unfortunately, this is often complicated. For example, the

network must maintain a significant amount of information about the state of each

flow in order to continually monitor their performance. This makes such a network
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inherently difficult to scale; however, they can be very effective on a small scale.

Lastly, Differentiated Service networks [9] provide QoS ’guarantees’ on a per-

class basis. Each class is associated with different QoS parameters and the network

attempts to ensure that as many of these are met as possible. This means that

there are no firm guarantees for each flow as to the QoS it will receive (a benefit

bestowed by an Integrated Service network). However, this decrease in fine-tuned

control allows for much better scalability with respect to Integrated Service networks.

In this work our goal is to provide stringent latency guarantees for flows in a

closed network while also enabling best effort flows to share the same resources. The

approach we consider falls somewhere between these last two categories,and closer

to integrated service.

2.2 Software Defined Networking (SDN)

An expand SDN contains a control plane and a data plane, which serve different

purposes. In SDN, a software program known as the controller provides guidance

for an entire network through one of several APIs. The control plane is centralized

and implemented on the controller, which drives network devices. Each individual

device follows flow rules installed by the controller, thus allowing the control plane

to configure the data plane with ease [14]. See Figure 2.1 that depicts this separation

of concerns. The controller maintains full knowledge of the data plane and enables

a control application at a high level to make determinations about flow routing. We

propose using SDN to achieve the network wide view we require. Strict priority
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Figure 2.1: SDN explained through the OpenFlow Switch Model.

scheduling that is used in this work is widely available on COTS switches. SDNs

also provide higher compatibility with a wider range of hardware manufacturers [43].

For these reasons, SDNs have received serious attention from the networking field.

Today, SDNs have been adopted in enterprise networks [37], data-center networks

[28], military networks [54], and even in industrial control networks [8, 46].

2.3 Scheduling Algorithms

Scheduling algorithms are needed in networks to ensure that packets are able to

be delivered on time. If a packet is unable to be delivered on time, the signal

to deploy the airbag in the event of a collision for example, the results could be

disastrous. In many real life cases, ensuring that traffic in a network can be scheduled

is vital to ensuring safety to the users. Scheduling algorithms come in many flavors

and a wide variety of factors influence which choice may be optimal in any given
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system. The two most important distinctions in scheduling algorithms are whether

they are preemptive or non-preemptive, and whether they are static or dynamic. In

preemptive systems, a new task (or packet) arriving at a processor (switch) may

interrupt the execution transmission of a previous task, if appropriate, and insert

itself immediately into the execution transmission order. In non-preemptive systems,

this is not allowed [13]. Instead, new tasks or packets must wait at least until the

current execution transmission is finished before they may be considered for execution

transmission [51].

In dynamic systems, the priority of a given task may change depending on current

conditions. For example, a packet that has a great deal of remaining deadline budget

might be prioritized lower than a packet which must be delivered quickly, even if

they are both part of hard real-time flows. In static systems, all factors that are

included in consideration for prioritization are preordained. For example, in a static

priority network system each flow of packets will have a preset priority that does not

change based on the actual conditions in the system when those packets arrive at a

switch [51].

This work explores static non-preemptive scheduling to provide end-to-end dead-

line guarantees.
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Chapter 3: Related Work

Much work has been done to solve the problem of meeting end-to-end deadlines in

real-time network. Some relevant approaches as applied to SDN are discussed here.

3.1 End-to-End Network Delay Guarantees for Real-Time Systems

using SDNs

Kumar et al. [34] proposed a framework with a heuristic algorithm that is used for

two purposes. First, to solve path layout optimization problem with deadline and

bandwidth constraints and second, to isolates flows in the system into discrete queues

in order to better guarantee flows will meet their end-to-end deadlines. Fundamental

to their approach was the setting of packet servicing priorities on a flow-by-flow

(static) basis. This more delay-aware SDN approach did make improvements in the

meeting of end-to-end deadlines. While their implementation treats the priority as

a fixed value, our work attempts to change the priorities on a switch-by-switch basis

and also explores different priority assignment schemes.

3.2 Safety Critical Networks using Commodity SDNs.

Kashinath et al. [31] presented RealFlow, a framework intended to ensure a practical

application of commodity SDNs in current safety-critical environments. To achieve
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this, RealFlow uses a novel static path allocation algorithm as well as pre-computed

backup paths for flows of a critical nature. Additionally, flows are multiplexed within

the same queue. RealFlow implements all of this as a path allocation algorithm,

while still maintaining compatibility with current COTS switch schemes and still

guaranteeing end-to-end deadlines within a real-time system.

This differs to the work by Kumar et al. by utilizing flow multiplexing. That

is, flows with common priorities share the same queue. In our work, we build and

extend it in two directions. (i) We study flow priorities that are different from

deadline-monotonic. (ii) We study flow priority that we vary from switch to switch.

3.3 A linux real-time packet scheduler for reliable static SDN routing.

Qian et al. [48] introduced an algorithm that aids in routing and determining the

forwarding paths for real-time message moves in distributed calculating domains

while also creating a scheduler that helps in enforcing a message forwarding policy on

network devices. In addition to that, this routing algorithm takes into consideration

network resource demands of real-time messages and deadlines. Due to this, no

results of real-time messages are allowed to be dropped due to the network contention

that performs when being controlled by the message scheduler while also no real-time

messages unable to meet their deadlines. However, this scheme requires modifications

of switch scheduling mechanisms and hence cannot be realized with COTS hardware.

Comparatively, our proposal does not require a hardware modification and can work

with COTS SDN switches.
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3.4 A priority based packet scheduler with deadline considerations.

Tamer [18] provided a dynamic priority scheduler which used cost functions to help

provide better QoS . In this scheme, when a packet is about to be served its ’cost’ is

calculated. Then, if the cost is above a threshold, that packet is served. Otherwise,

the packet is pushed back in the queue and the next set of packets are sorted, then

examined based on the same principle. This was shown to be fairly effective at

minimizing delay, but was also extremely expensive and resulted in higher loss rates

due to deadline violations. The expensive run-time resorting calculations made are

something our proposal avoids, done so by pre-computing priorities for switches.

3.5 Hybrid EDF Packet Scheduling for Real-Time Distributed Sys-

tems.

Qian and Mueller [47] showed that an ‘Earliest Deadline First’ approach could be

used to address problems with communication delay variances . They used an EDF

scheduler to forward packets in an experiment, along with periodic message trans-

mission, to minimize the affect of application-level interrupt being handled on system

predictability. In their example, the EDF packet scheduler can also minimize their

traffic control mechanism (periodic transmission) decreased variability and the dead-

line miss rate [49]. However, their implementation has the chance to insufficiently

compute the risk of a packet missing its deadline. In our proposal, a different cost

analysis calculation is made, resulting in fewer packets missing their deadline.
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3.6 Coarse-grained Scheduling with SDN Switches

Rifai et al. [50] proposed two schedulers designed to minimize time to flow completion

in an SDN, for the majority of flows. Based on the premise that the majority of flows

are very brief with comparison to a few, larger flows, they offered schedulers which

gave priority for transmission to flows which were shorter. The first (dubbed the

‘stateful scheduler’) was implemented by giving newer flows a higher priority than

older flows; thus, the longer a flow existed the lower priority it obtained. Priorities

were recalculated at a set interval, in order to reduce overhead. Their second sched-

uler, the ‘scalable scheduler’, operated on the same premise with the caveat that

flows were only monitored if they exceeded 10% of the switch’s bandwidth (thus

meriting additional examination). Their recalculation of priorities on a set interval

produces an overhead. An overhead that our implementation is able to avoid, by

only calculating priorities when a scheduling issue occurs.

3.7 Can QoS be dynamically manipulated using end-device initializa-

tion?

Sardis et al. offered an interesting alternative to the usual flow initialization proce-

dure, wherein the end host initialized new flows with a source host and specified QoS

requirements [52]. They found that delay in establishing communication depended

upon client processing power (some end hosts are very small embedded systems)

and the amount of metadata required to establish a connection. Their solution of

allowing a host to initialize a flow and modify its needs, results in more control over
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the network environment at the cost of overhead. Our approach does not attempt

to achieve this level of overhead and network control, instead choosing to use the

already allocated resources to find a solution.

3.8 Universal Packet Scheduling

Radhika et al. [40] begun by using more of a theoretical perspective and started

to analyze the existence of a single universal packet that would be considered as a

scheduling algorithm that is able to successfully replay all viable schedules. They

prove that even an algorithm such as that can not exist, the classical Least Slack Time

First (LSTF) is similar to being one (in terms of the number of congestion points

it is able to control). They also displayed the capability of LSTF to approximately

replay a broad range of scheduling algorithms while undergoing varying network

settings. While it is a theoretical interest to replay a given schedule, it requires the

knowledge of viable output times that is not available in practice. In this proposal,

it is shown that a universal packing algorithm does not exist, but an LSTF is the

closest implementable algorithm. LSTF is used in our work for this reason.

3.9 Meeting End-to-End Deadlines through Distributed Local Dead-

line Assignments

Hong et al. introduces a distributed approach that works on combining local-deadline

assignment with feasibility analysis making the resulting deadline assignment guar-
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anteed to be schedulable [29, 30]. Their approach works on formulating the local-

deadline assignment problem making it a mathematical programming problem that

includes greatly increasing the minimum slack time among all the existing jobs that

are executed on each processor [7]. To account for job interferences on each pro-

cessor, it is important that they introduce a novel transformation of the sufficient

and necessary condition. Their proposed mathematical programming formulation

addresses the shortcomings of existing work in two ways. First, by using a shared

processor to consider resource competition between all jobs. Second, by using dif-

ferent stages along the job’s execution path to work on organizing the local deadline

distribution. However, processors that do not have an execution order do not work

for this approach because it can not perform in those situations [24]. While their

proposal focuses on altering the local deadline for processors, ours aims to change

the priorities of network flows.

3.10 Cost-based scheduling and dropping algorithms to support inte-

grated services

Peha and Tobagi at Carnegie Mellon proposed a number of cost-based scheduling

algorithms. These allowed for an arbitrary cost function to be used in order to

determine the priority of each packet [45]. Unfortunately, this cost calculation is

expensive as it requires O(n) operations (where n is the number of packets in the

queue) each time a packet is sent. This is due to each remaining packet’s priority

must be recalculated at the new time step. Furthermore, in a traditional network,
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while it is possible to design cost algorithms which are sensitive to the time remaining

until a packet’s deadline or the time that a packet has thus far spent in queue, it is

not feasible to calculate cost based on the remaining distance that a packet has to

travel. This is because traditional switches do not have access to that information.

The implementations described by Peha and Tobagi do not use SDN and have the

requirement of resorting packets. Comparatively, our proposal provides control over

the packet priority without recomputing the priority.

3.11 Achieving end-to-end real-time quality of service with SDN.

Guck and Kellerer propose deterministic end-to-end real-time QoS model for the re-

alization of a centrally planned real-time communication service [21]. This service

implements a joint routing and access control system, which is based on SDN lever-

aging the centralized view that its controller has on the network. Their model allows

an admission control algorithm to be implemented on a SDN controller. It is the

objective of this work to build a QoS concept for real-time applications by exploiting

the benefits provided by SDN. The centralized view of SDN allows for deterministic

end-to-end QoS planning. The main part of this work introduces a network calculus

based end-to-end traffic model, which supports a centralized QoS resource allocation

planning. Their concept can be used for access control for real-time applications [21].



15

3.12 Dynamic priority-adjustment for real-time flows in SDN.

An et al. [6] attempts to guarantee the different delay deadlines of real-time flows

in SDN-based networks, they proposed two priority-adjustment algorithms. The

first adjusts the per-flow priority and the second adjusts per-router priority. Prior-

ities are given to each flow in the per-flow priority-adjustment algorithm that also

works on changing the priority of the flow containing the highest normalized delay

to the highest priority. Like a bubble sort, it then updates the priorities of all the

other flows from the highest to the lowest priority level. In addition to that, each

switch in the per-router priority-adjustment algorithm is given different priorities for

a flow. But this is a greedy algorithm for the priority adjustment [6]. While their

proposed algorithm takes a greedy approach to the highest normalized delay, one

which does not consider the relationship between a flow’s delay and deadline, our

solution appropriately addresses the correlation between the delay cost and deadline

requirement.

3.13 Quality of service guaranteed dynamic resource management in

SDN.

Xu et al. [59] design a novel QoS-enabled management framework to create an end-to-

end communication service over software defined networking (SDN). This framework

classifies flow into different level and allocates network resource dynamically to ensure

the request of services. The high priority flow will be rerouted by route optimization

algorithm when the original path can’t provide available bandwidth. Once there is no
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feasible path for high priority flow, this framework will enable queue mechanism to

guarantee the transmission of QoS flow [59]. The QoS requirements of this proposal

allow for a high priority flow to simply have more resources given to it as a solution

to ensure scheduling. Comparatively, our proposal attempts to find a scheduling

solution without creating and allocating additional resources.
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Chapter 4: System Model

We now describe our system model that closely follows previous literature [31,34].

4.1 Network and Flow Specifications

Consider a network with a specific set of real-time flows F (that are generated from

real-time applications), OpenFlow switches, and a controller that have pre-specified

end-to-end delays and bandwidth guarantee requirements. Each flow Fi ∈ F is

characterized by the tuple Fi = (srci, dsti, Ti, D
max
i , pkti, prii) in which srci and dsti

are considered the source and destination host, Dmax
i is the end-to-end delay bound

(deadline), Ti ∈ Z+ is the inter-arrival (period), pkti is the size of the packet in bits

(e.g., 1kB packets = 8kbits) and prii accounted as the priority resulting in Bi = 1
Ti
×

packet −sizei being the bandwidth requirement of Fi. The network is modeled as an

undirected graph N(V , E). E is a set of edges, with each edge representing a possible

path from one switch (πs) to another (πs′) and V is a set of nodes, with each node

representing a switch πs.

Queues and Priorities : All switches πi ∈ V have a set of L+1 priority queues.

It is assumed that the priorities for a give flow are chosen from L = {0, 1, · · · , L−1},

a set of predefined distinct priority-levels in which prii ∈ L and level-0 are considered

the highest priorities. This is where flows with a priority-level of l ∈ L are given

to l + 1 -th queue for each switch πs ∈ V . The priority levels are derived from the
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Table 4.1: Key Mathematical Notation

Notation Interpretation

Topology
F Set of RT flows in the network
F ′ Set of critical RT flows for which we assign backup paths (F ′ ⊆ F)

F̃ ′s Set of RT flows with priority-level l routed through the switch πs

(
F̃ ′s ⊆ F

)
πi OpenFlow switch in the network (πi ∈ V)

QoS
Dtp
s′,s Transmission and propagation delay incurred on the edge (πs′ , πs)

qsi Queuing and processing delay (FIFO) of flow Fi at switch πs
Isi Queuing and processing delay (Interference) of flow Fi at switch πs
βsi Queuing and processing delay (Blocking) of flow Fi at switch πs
Qs
i Queuing and processing delay (Total) of flow Fi at switch πs

Di (Pi) The total delay for Fi over a path Pi
Bi (Pi) The total bandwidth utilization for Fi over a path (Pi)

applications that would naturally generate or use this data. Which levels are used

is decided by the designers of the application or system in question. Finally, in our

work, we assumed that the application, and their correspondingly generated network

flows, have statically assigned priorities. This assumption is based on statically

assigned priorities being the most common type of real-time system in use currently.

Note: It’s important to consider that more than one flow at a given time can

share the same priority-level (e.g., priii = prij,∃Fi 6= Fj ). In addition to that, flows

with identical priority-level l can be multiplexed to the l + 1 -th queue successfully.

The deadline and bandwidth-aware path selection is expressed as a multi-constrained

path (MCP). The key mathematical notations used are listed above in Table 4.1.
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4.2 Delay and Bandwidth Calculations

Now we compute the delay and bandwidth values for each real-time flow Fi ∈ F , for

its path Pi from switch srai to switch dsti {πs}.

4.2.1 Delay Calculations

In each flow’s route, it will experience the following delays along the network path:

1. Transmission and Propagation Delay: A delay based on the data rate of a link

and signal’s transmission speed. Modeled as a constant upper-bound, based

on the given link capacity, material, and length.

2. Queuing and Processing Delays: Occurs at each switch in a path, consisting

of:

(a) FIFO Queuing Delay: Caused by flows at the same priority-level being

routed through the same switch in a path Pk .

(b) Interference Delay: Caused by higher-priority flows sharing the same

switch in a path Pk.

(c) Blocking Delay: A delay caused by the non-preemptives of packet trans-

mission.
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4.2.2 Computed Delays

• Transmission and Propagation Delay = Propagation delay + Transmission de-

lay

• Queuing and Processing Delay = Interference delay + Blocking delay + FIFO

delay

4.2.3 Transmission and Propagation Delay

All flows, Fi ∈ F , are affected by transmission delay, computed as Dt
s′,s = pkt1

data rate
.

Additionally, every flow is also affected by signal propagation delay as a result of

the medium. This is computed as Dp
s′,s = Length of the link

velocity of signal in medium
. The total packet

transmission and propagation delay that is incurred on edge (πs′ , πs) ∈ E ( i.e., the

link between πs′ and πs), is denoted as Dtp
s′,s. This can be computed as:

Dtp
s′,s = Dt

s′,s +Dp
s′,s′

4.2.4 Processing and Queuing Delay from Flows at the Same Priority

Flows sharing a priority level l, are put in the same l + 1 -th queue (assuming

bandwidth requirements are met) for each switch πs and processed in a first in, first

out (FIFO) manner. Multiplexing these same priority flows into one queue handles

the case of there being more flows than queues. This is compared to using a one-flow-

per-queue scheme which only accepts a fixed number of flows. The queuing delay is

computed for each packet in flow Fi because of the interference from other flows with
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the same priority level routing through the same switch ( i.e., ∀Fj 6= Fi | prij = prii).

Denoting F̃ ls ⊂ F as a set of flows with a priority level l with a path through switch

πs(i.e., each flow Fi ∈ F̃ ls shares the same queue ψl in πs ).

For give flow Fi ∈ F̃ ls, the worst case queuing delay can be computed as : qsi =∑
Fk∈F0!

[
T1
Tk

]
d̂k where d̂k is the per-packet processing delay. This worst case delay

occurs when Fk 6= Fi are scheduled before Fi, assuming that switch πs arbitrarily

scheduled one of these flows when packets of multiple flows with conflicting priority

levels all arrived together). For example, consider the two flows F1 (T1 = 10) and

F2 (T2 = 5). If F2 arrives at a quicker rate, then in the worst-case F1 will experience

a FIFO queuing delay from
⌈
T1
T2

⌉
= 2 packets of F2 within one period of F1.

4.2.5 Processing and Queuing Delay from Blocking and Interference

Delay

Switches process packets in order. The order is based on arrival time and priority,

where lower priority and late arriving packets will be processed later. Therefore, for

a flow Fi, any interference from other flows routed through a common switch needs

to be addressed.

Flows with a higher priority will interfere with lower priorities flows, as the switch

scheduler will dequeue the higher priority flow first. Let hp
(−→
F l
s

)
refer to a set of

flows with a higher priority than l, that are routed together through switch πs.

The interference delay, caused by higher priority flows, can have its upper bound

estimated using a response-time analysis. This calculation is shown below:



22

Isi =
∑

Fh∈hp(F̄ !)

[
Ti
Tn

]
d̂h where Isi is the interference experienced by each flow

Fi ∈ F̃ ls

A switch processes flows in a non-preemptive manner, meaning in the worst case,

a given flow may experience at most one packet delay from lower-priority flows. This

blocking delay can be computed as follows:

βsi = maxFk∈Fb,k 6=i d̂k

Therefore, the total queuing and processing delay (presented in for Fi at the

switch πs, Q
s
i ) can be expressed as follows:

Qs
i = qsi + Isi + βsi = FIFO delay + Interference delay + Blocking delay (4.1)

The highest-priority flows do not suffer interference delays (i.e., Isi = 0 if prii =

l = 0 ). However, they can experience FIFO delays from other flows, if those flows

are multiplexed into same queue (the highest-priority one). Flows that are naturally

sensitive to latency (e.g., engine control messages in avionics systems, airbag and

ABS deployment messages in cars, etc.) should be given the highest priority (see

Eqs. 4.1).

Total Delay : The total delay for flow Fi over path Pi is calculated by taking

into account transmission and propagation delay at every edge and both the queuing

and processing delays at every switch in Pi, as show in Eqs. 4.2:

Di (Pi) =
∑

(πs′ ,πs)∈Pi

Dtp
s′,s +

∑
πs∈Pi

Qs
i (4.2)
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4.2.6 Bandwidth Calculations

All flows consume resources quantified by its bandwidth use. This can be defined

as the ratio of the bandwidth requirement to the bandwidth which is still available

on the link. Therefore, the bandwidth utilization for a link (πs′ , πs) by a flow Fi is

defined as:

Bi (πs′ , πs) = B1

BR(πs′ ,πs)
whereBi is the bandwidth requirement of Fi andBR (πs′ , πs)

is residual (viz., available) bandwidth of an edge (πs′ , πs) ∈ E .

It’s important to consider that a flow can be assigned to a given path only if the

flow’s bandwidth utilization is less than one on every edge in the flow’s path.

Total Bandwidth : The total bandwidth utilization for Fi through a path (Pi)

is computed by considering the bandwidth utilization for every edge in Pi, as shown

in Eqs. 4.3:

Bi (Pi) =
∑

(πs′ ,πs)∈Pi

Bi (πs′ , πs) (4.3)

4.3 QoS-Aware Path Selection [31].

First, we introduce the QoS constraints and metrics that must be adhered to. Second,

we describe the path selection scheme propsed in [31] to compute a route Pi that goes

from a given source host si to a destination host ti for all flows RT flow Fi ∈ F , with

respect to the QoS constraints. The expressions for end-to-end delay and bandwidth

constraints of a flow Fi are derived as follows.
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4.3.1 Delay Constraint

Dmax
i is derived as the deadline constraint. Using the end-to-end delay for flow Fi

over a path Pi, defined as Di (Pi), the deadline constraint is computed using Eq.

4.2. Thus, in order for flow Fi’s delay requirements to be met, the end-to-end delay

constraint is derived as show in Eq. 4.4:

Di (Pi) ≤ Dmax
i (4.4)

4.3.2 Bandwidth Constraint

The bandwidth calculation used is the same one utilized in Kumar et al. [34].

The bandwidth bound of a flow Fi over a path Pi is computed as: Bi (Pi) ≤

max(πs′ ,πs)∈E Bi (πs′ , πs) |V| where |V| represents the cardinality for a switch set in

the topology N.

Therefore, in order to satisfy the bandwidth requirement of Bi for the flow Fi,:

Bi (Pi) ≤ B̂i, B̂i = max
(πs′ ,πs)∈E

Bi (πs′ , πs) |V| (4.5)

A path Pi is viable if the QoS guarantees for flow Fi are able to be kept, i.e. it

satisfies (see Eqs. 4.4 and 4.5). The formal definition for the path layout problem is

as follows:

Given the SDN topology N(V , E) and the set of flows F with paths over N , the

goal is to find a set of |F| feasible paths P =
{
P1,P2, · · · ,P|F|

}
where ∀Fi : Pi =
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π1π2 · · · πk with π1 = si, πk = ti and (πj, πj+1) ∈ E for all 1 ≤ j ≤ k − 1.

The problem of finding a valid path layout, with respect to the deadline and

bandwidth-constraints, is an the NP-Complete, multi-constrained path (MCP) prob-

lem [16,27]. Kashinath et al. [31] use a low-complexity heuristic solution in order to

compute the path of a flow [17,22].

4.4 Interference Index [31].

For a set of paths ρ̂, there is a path Pi ∈ ρ̂ for flow Fi. Have F̂ ls be a set of flows of

priority-level l where, for all paths in the set ρ̂, their flow passes through the switch

πs.

Formally, F̂ ls =
⋃
{Fj | prij = l : ∀Pj ∈ ρ̂ ∧ πs ∈ Pj} and let F̂s =

⋃
l∈L

{
F̂ ls
}

.

To phrase another way, F̂s represents a set of flows from Pj that all intersect at

the given switch πs , such that Pj ∈ ρ̂ ∧ πs ∈ Pj. See Algorithm 1.
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Algorithm 1 Delay and Bandwidth-Aware Path Selection(DBAPS) [31].
Input: Network topology N(V, E) and a flow set F with QoS (delay and bandwidth) requirements
Output: The path assignment P∗ =

⋃
Fi∈F {P

∗
i } , if there exists a feasible path for all flows,

Unschedulable otherwise.

Step 1 (Candidate Path Generation):
1: For each flow Fi ∈ F , generate all candidate paths,ρi =

⋃
{Pi}

2: ρ̂←
⋃
Fi∈F {ρi} /∗ Set of all possible candidate paths for all flows ∗/

3: For each path Pk ∈ ρ̂ : calculate II (Pk)
Step 2 (Low Interference Path Selection):

4: v(Pk)← false, ∀Pk ∈ ρ̂/∗A boolean flag∗ /
5: / ∗ repeat the iteration if some flow has more that one candidate path * /
6: while ∃Fi, |ρi| > 1 do
7: /∗ Find the path with highest II (e.g., maximum interference) ∗/

8: k̂ = argmax
Pk∈ρ̂∧v(Pk)= false

II (Pk)

9: Pmax ← Pk
10: Fα ← the flow contains the path Pmax

11: if |ρα| > 1 then
12: /∗ Remove the path with maximum interference ∗/
13: ρ̂← ρ̂\Pmax

14: Update II (Pj) for all paths Pj that intersect with Pmax

15: else
16: /∗ This is the only available path for Fα ∗ /
17: P∗a ← Pmax/∗Assign the path to Fα ∗ /
18: v (Pk)← true /∗ Update the flag (since the path is selected) ∗/
19: end if
20: end while
21: / ” Unable to find a path that respects QoS constraints * /

22: if ∃Fi ∈ F such that Di (P∗i ) > Dmax
i or Bi (Pi) > B̂i then

23: return Unschedulable
24: end if
25: return P∗ =

⋃
Fi∈F {P

∗
i } /∗ Return the path ∗/

Given a set of paths ρ̂ and flow Fi, the worst-case queuing interference, Q̂s
i , can be

estimated. This is done utilizing Eqs. 4.1 with modified values, specifically, changing

F̃s to F̂s and F̃ ls to F̂ ls.

The worst-case residual bandwidth can be formally calculated as, BR (τs′ , τs) =

B (τs′ , τs) −
∑
∀Fj∈F̂(πs′ ,πs)

Bj. Where, (πs′ , πs) represents the link, B (τs′ , τs) is the

link capacity, and F̂(πs′ ,πs)
= ∪{Fj : (πs′ , πs) ∈ Pj ∧ Pj ∈ ρ̂} is the set of all unique
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flows that pass through the given link (πs′ , πs).

Note: If the routes of two flows travel over the same switch(es) at the same time,

the link bandwidth available will be reduced and the flows will interfere with each

other.

In order to calculate the effect of this cross interference, the interference index

(II), defined as follows is used.

II (Pi)
def
=
(
Dtp (Pi) + Q̂ (Pi)−Dmax

i

)
+ [U (Pi)]+ ,

for a given set of paths ρ̂(4.6)

Where:

• Q̂ (Pi) =
∑

πs∈Pi Q̂
s
i represents the worst-case queuing delay.

• Dtp (Pi) =
∑

(πs′ ,πs)∈Pi
Dtr
s′,s is the transmission and propagation delay for the

path Pi.

• Dtp (Pi) + Q̂ (Pi) −Dmax
i is the difference of the potential worst case for end-

to-end delay and the relative deadline Dmax
i .

• U (Pi) =
∑

(πs′ ,πs)∈Pi
Bt

BR(πs′ ,πs)
represents the worst-case link utilization. Where,

U (Pi) is a large, non-negative, number ( i.e., ∃ (πs′ , πs) : BR (πs′ , πs) = 0 ).

This is done to avoid both divide by zero errors and high amounts of interfer-

ence on a link.

• The operator [x]+ = x if x ≥ 0, else x̄+. Where, x̄+ is an arbitrary large,

non-negative, number.
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If the resulting value of II is positive, it means that the path encounters inter-

ference. With a larger positive value indicating more interference is present. If the

value of II is negative, it means the path has communication laxity, or slack. Again,

a “larger” negative number represents more slack being present in this path.

If given a set of paths which are potential swap candidates, metric II defines how

much interference from other flows a given path Pi encounters.

The work done by [34] showed lower end-to-end delays when flows encounter less

interference from queuing. Thus, the path selection algorithm aims to, for each flow

Fi, determine a path Pi that with the least interference, or, the smallest II (Pi).

4.5 Path Layout Algorithm

In Kashinath et al. [31], they develop an iterative, pruning-based scheme (Algorithm

1) in order to calculate a flow’s path. The algorithm has two steps. First, for

all flows, generate a set of candidate paths and second, assign generated paths to

flows by discarding paths with higher interference. We used this path layout scheme

(shown in Algorithm 1) as a base case in our implementation.

First, beginning with a set of candidate paths ρ̂ =
⋃
Fi∈F {ρi}. Let ρi represents

a set of candidate paths for flow Fi (Line 2) and then compute the interference index

of all paths Pi ∈ ρ̂ (Line3). All simple paths , from si to ti can be calculated by

utilizing previously proposed approaches [39, 53, 57]. This calculation requires the

given network topology and the source si and destination ti for a flow Fi. Then,

from the output of this calculation, we only select a set of candidate paths ρi that
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are able to ensure the below condition is met:

∀Pk ∈ ρi :
∑

(πs′ ,πs)∈Pk
Dtp
s′,s ≤ Dmax

i

Any paths that fail to meet this condition are considered trivially unschedulable.

Meaning, these paths fail to meet the delay constraint defined in Eq. 4.4.

Second, during each iteration of the algorithm, the path P max (the path with

the highest II or the maximum interference) is discarded. After this discard, the

interference index is then recalculated for the remaining candidate paths ρ̂\P max

(Line 14). During any of these iterations, if the only candidate path is the the path

with the highest II (e.g., |ρi| = 1), then this path is assigned to the flow (Line 17).

The algorithm will continue as long as there is at least one flow, with more than one

candidate paths ( (i.e. , ∃Fi : |ρi| > 1 ). If an assigned path is found to violate the

QoS constraint for a given flow (Eq.4.4 and Eq. 4.5), then a feasible path can not

be found and the flow-set is marked as unschedulable (Line 23).

4.5.1 Time Complexity

The step of reducing candidates (Lines 4-20), has a finite number of iterations due

to the finite set of initial candidate paths. This results in Algorithm 1 having a time

complexity of O(|ρ̂|).

Step 1 of Algorithm 1 is the generation of ρ̂, which is all possible paths for

each flow. Given only a single path, the complexity to find a solution would be

O(V + E). However, the number of simple paths that a topology could have can

be quite a bit larger than one. Resulting in a complexity of closer to O(n!) for a
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complete graph of order n. Finally though, the majority of practical networks are

not fully-connected [33], resulting in the complexity of candidate path generation

being polynomial, or O(|ρ̂|(V +E)). However, since these paths are computed offline

the polynomial overhead for the path layout does not impact real-time performance.
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Chapter 5: Spatially-Varying Locally Static Priorities

5.1 Research Question

The goal of a Real-Time Network (RTN) is to ensure that all packets arrive at their

appropriate destinations while meeting their basic Quality of Service requirements

(reliability, delay, jitter, and bandwidth) [55]. Accomplishing this goal poses a dif-

ficult problem; determining a schedule to satisfy end-to-end deadlines of all packets

in any given system. Finding a feasible schedule in non-preemptive context is known

to be NP-complete [16,44].

Furthermore, scheduling packets in a network becomes more difficult as the net-

work load and demands of users or machines within the network increase. Networks

are made up of multiple hubs. Each individual hub may experience unique con-

ditions depending on the amount and kind of traffic it must process.We focused

on networks extremely sensitive to perturbation and require guarantees on delivery

times for packets. Examples include power substations, avionics, industrial control

systems, manufacturing plants, automobiles and more.

Performance constraints of networks can be captured by the notion of flow pri-

orities and deadlines. Flow priority governs packet processing at each switch, and

resulting delays can dictate whether deadlines for that flow are met or not. Not all

configurations of priorities and deadlines, local or otherwise, will guarantee that all

flows throughout the network will meet their requirements. [56]. For the case of an
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unschedulable network topology (flow does not meet their deadline requirements).

So far, related work using static priorities maintain the same priorities throughout

the network. We will investigate whether spatially-varying locally static priorities

can help improve schedulability.

5.1.1 Motivating Example

The work by Kumar et al. [34] took the approach of setting packet servicing priorities

on a flow-by-flow (static) basis in a deadline-monotonic fashion, and this achieves

a certain performance [34]. Deadline-monotonic priority settings honor the urgency

of traffic as the key factor. Instead of keeping the priorities same through out the

network we explore using different priorities for the flow in different parts of the

network. This suggests a more surgical refinement of flow priorities that takes into

account one flow’s characteristics vs another at a given switch. Our approach will

attempt to utilize the slack available in a higher priority flow to allow a previously

non-schedulable flow to meet its deadline. This is done by switching priorities for the

two flows at the switch [24]. We will determine the degree of improvement achieved

by the surgical adjustments of priorities through various heuristic approaches.
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Figure 5.1: Original Topology: The 5 switch topology used for this experiment. Each
switch would also connect to the controller via a management port (not shown).
Within this topology, Flow 4 is unable to reach its destination.

As an example, we use the topology shown in Figure 5.1. This example contains

a network topology with six flows. Of these six flows, all are schedulable within their

required deadline, with the exception of flow f4. Flow f4 has a required deadline of



34

2.24ms. However, the total delay for flow f4 is 2.4126ms, resulting in it being not

schedulable. In order to improve flow f4’s performance, we can leverage a higher

priority flow that has more slack, such as f1. Since f1 only has two switches in it’s

path, it has enough slack such that we can swap its priority relative to f4 at sw4.

The extra slack means that f1 doesn’t need to have a higher priority than f4 at

every switch their paths share, even though f1 has a shorter deadline. See Figure

5.2.

The System Model utilized is described in Section 4, System Model. For de-

tails about the implementation of the Network and Flow Specifications, Delay and

Bandwidth Constraints, QoS-Aware Path Selection, Interference Index, or our Path

Layout Algorithm, please refer to the aforementioned section.
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Figure 5.2: Improved Topology: The 5 switch topology used for this experiment.
This version shows the resulting corrections made by our algorithm, allowing Flow
4 to be scheduled.

5.2 Proposed Solution

In order to solve the problem of network scheduling and deadline guarantees, algo-

rithms have been developed for other networking contexts that utilize local priority
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assignment to better address competition for resources in a network [20]. The es-

sential idea is to use the schedulability conditions proposed by Park [44] along with

an SDN in order to leverage the high-level view of the network an SDN provides to

better guarantee end-to-end deadlines.

The main benefit of SDN comes when additional flows are added to a system. The

SDN can determine the schedulability of the system when new flows are added [44]

by leveraging its awareness of network characteristics. Kumar et al. proposes a

framework that solves a multi-constraint optimization problem using SDN in a way

that makes SDNs more aware of delays in a system. It uses a heuristic algorithm

based on static priority for each flow to solve an optimization problem with multiple

constraints. Additionally, it also isolates flows in the system into discrete queues to

better guarantee that jobs meet their end-to-end deadlines [34].

We also use heuristic algorithms to improve schedulability for their framework

that leverage the ability to refine the priorities switch-by-switch within each flow.

Details of our heuristic algorithm are described below. This includes the network

specifications, calculations for both delay and bandwidth, path selection, Interfer-

ence Index, the algorithm determining path layout, and our heuristics for improving

priorities.

5.2.1 Spatially-Varying Static Priority Scheduling Heuristics

As mentioned in the section (5.1.1). We pursue a surgical approach where we refine

flow priorities, taking into account one flow’s characteristics vs. another at a given
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switch. We swap priorities for two flows at the switch in an attempt to utilize the

slack available in the higher priority flow to allow the non-schedulable flow to meet

its deadline. This approach serves as the basis of our heuristics, described below.

5.2.1.1 Heuristic 1 (Single Swap at Switch).

Given a topology that fails (non-schedulable), we look at the flow(s) that exceed their

deadline with current paths assigned by DBAPS [31]. For a given flow’s path, we

start at the last switch S where the flow is still under the deadline. We then create a

list of other flows that share the same forward link. We iterate through candidate list

in decreasing slack order. We swap flow priority of the failed flow with the candidate

flow at the switch S. We test if this change results in the failed flow not exceeding its

deadline. If the flow does not exceed its deadline, we test if the topology is now valid

(schedulable). If the topology is now valid that is, schedulable, we return success.

If the topology is not yet schedulable, we attempt to fix the next failed flow. If

that flow then still exceeds the deadline, we test the next candidate flow with higher

slack. If no candidates result in a success after swapping flow priority, we attempt

a second fix on that failed flow, by trying the priority swap at the switch before the

current switch S. Note that in this process, for a given improvement attempt, if that

attempt does not make the flow schedulable, then that change is tossed aside and

the next attempt will be made against the original topology and performance data

for that flow. This approach is captured in Algorithm 2. Applying this heuristic to

the network depicted in Figure 5.2 serves as an illustration.
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A key step in our approach is to choose a swap target, based on whether or not

the target in question and our failed flow have an overlapping path. A flow is also a

valid swap target if it and a failed flow share a forward link in their paths. In Figure

5.1, f4 starts at PC31, travels through s3 to s4 and then to s5, ending at PC 51. f1

starts at PC 42, travels through s4 to s5, and then ends at PC 52. The link shared

is the link between s4 and s5. f1 has a required deadline of 1.76ms and completes

its path in 0.9681ms, meaning f1 is schedulable. Because f1 is under its deadline

and shares the link s4 to s5, f1 is a valid swap target.

In the experimental framework, total path delay is computed by adding up the

queuing delays at each switch, plus the propagation delays between switches. The

delay at each switch is obtained by adding together two different delay values. The

first, FIFO delay, is the time packets must wait due to other flows with the same

priority. The second, Interference Delay, is the time packets must wait due to flows

with higher priority. Prior to performing our priority swap, f4 has a cumulative

delay of 0.6116ms and f1 has a cumulative delay of 0.0676ms.

After performing our priority swap for f4 (originally priority 2) and f1 (originally

priority 0) at switch 4, f4 now has a priority level 0 and f1 now has a priority level

2. The cumulative queuing delay of f1 at switch 4 is increased from 0.0676ms

to 0.0987ms, which results in the total path delay of f1 increasing from 0.9681ms

to 0.9992ms. With this delay increase, f1 still meets its deadline of 1.76ms, and

so continues to be schedulable. The cumulative queuing delay of f4 at switch 4

decreases from 0.6116ms to 0.4313ms. This reduces f4’s total path delay, bringing

it down to 2.2323ms, which is under the deadline of 2.24ms.
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The heuristic has succeeded in making the failed flow schedulable without making

the swap target flow unschedulable. This means the network as a whole is now

schedulable.

Algorithm 2 Single Swap at Switch
Input: The network N = (V,E), flow(s) F = {f1, . . . , fn}, failed flow(s) H = {g1, . . . gm}, switches

π = {s1, . . . , sl}, source s, destination t
Output: Schedulable flow if possible. Otherwise, note non-schedulability.

1: function Heuristic1(N,F,G, S, s, t)
2: for each failed flow gi ∈ G do
3: for each switches sj under deadline do
4: Candidates← []
5: for each flow fk ∈ F do
6: if fk shares a forward link with s then
7: Candidates.append(fk)
8: end if
9: end for

10: Sort Candidates in decreasing order of slack
11: for each fk ∈ Candidates do
12: /* Swap flow priority of failed flow with candidate flow at a single switch. */
13: Swap(gi, fk)
14: /* Test if this change resulted in the failed flow not exceeding its deadline. */
15: if !ExceedsDeadline(gi) then
16: /* Test if the topology is now valid */
17: if TopologyValid(G) then
18: Return Success

19: else
20: /* The flow has been fixed, so we proceed to trying to improve the next

failed flow */
21: Break
22: end if
23: end if
24: end for
25: end for
26: end for

27: end function
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5.2.1.2 Heuristic 2: Single Boost at Switch

Is identical to Heuristic 1, except that rather than swapping priorities at a particular

switch, the failed flow is given the priority of the candidate flow at that switch.

The candidate flow’s priority is not changed. In other words, we attempt to make

a singular improvement (at one switch) that is sufficient to make the failed flow

schedulable, but it only involved changing priority of the failed flow. If that works,

we try the same on other failed flows. Algorithm 3, depicts this heuristic.

5.2.1.3 Heuristic 3: Single Swap at Switch and Boost Path

Is identical to Heuristic 1, except we apply the new priority to all switches in the

failed flow’s path. Here we broaden the scope of each change, adjusting the priority

at every switch of the failed flow. Compared to Heuristic 1, this heuristic makes

larger changes to the failed flow in an attempt to see if it can improve more flows

than Heuristic 1. If that works, we try the same on other failed flows in our attempt

to make the topology schedulable. This heuristic is captured in Algorithm 4.
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Algorithm 3 Single Boost at Switch
Input: The network N = (V,E), flow(s) F = {f1, . . . , fn}, failed flow(s) H = {g1, . . . gm}, switches

π = {s1, . . . , sl}, source s, destination t
Output: Schedulable flow if possible. Otherwise, note non-schedulability.

1: function Algorithm2(N,F,G, S, s, t)
2: for each failed flow gi ∈ G do
3: for each switches sj under deadline do
4: Candidates← []
5: for each flow fk ∈ F do
6: if fk shares a forward link with s then
7: Candidates.append(fk)
8: end if
9: end for

10: Sort Candidates in decreasing order of slack
11: for each fk ∈ Candidates do
12: /* Boost flow priority of failed flow with candidate flow at a single switch. */
13: Boost(gi, fk)
14: /* Test if this change resulted in the failed flow not exceeding its deadline. */
15: if !ExceedsDealine(gi) then
16: /* Test if the topology is now valid */
17: if TopologyValid(G) then
18: Return Success

19: else
20: /* The flow has been fixed, so we proceed to trying to improve the next

failed flow */
21: Break
22: end if
23: end if
24: end for
25: end for
26: end for
27: end function
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Algorithm 4 Single Swap at Switch and Boost Path
Input: The network N = (V,E), flow(s) F = {f1, . . . , fn}, failed flow(s) H = {g1, . . . gm}, switches

π = {s1, . . . , sl}, source s, destination t
Output: Schedulable flow if possible. Otherwise, note non-schedulability.

1: function Algorithm3(N,F,G, S, s, t)
2: for each failed flow gi ∈ G do
3: for each switches sj under deadline do
4: Candidates← []
5: for each flow fk ∈ F do
6: if fk shares a forward link with s then
7: Candidates.append(fk)
8: end if
9: end for

10: Sort Candidates in decreasing order of slack
11: for each fk ∈ Candidates do
12: /* Swap flow priority of failed flow with candidate flow at a single switch. */
13: Swap(gi, fk)
14: /* Boost the flow priority of all failed flow switches to the priority of the candidate

flow. */
15: Boost(gi, fk)
16: /* Test if this change resulted in the failed flow not exceeding its deadline. */
17: if !ExceedsDealine(gi) then
18: /* Test if the topology is now valid */
19: if TopologyValid(G) then
20: Return Success

21: else
22: /* The flow has been fixed, so we proceed to trying to improve the next

failed flow */
23: Break
24: end if
25: end if
26: end for
27: end for
28: end for

29: end function
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Algorithm 5 Single Boost at Switch and Boost Path
Input: The network N = (V,E), flow(s) F = {f1, . . . , fn}, failed flow(s) H = {g1, . . . gm}, switches

π = {s1, . . . , sl}, source s, destination t
Output: Schedulable flow if possible. Otherwise, note non-schedulability.

1: function Algorithm4(N,F,G, S, s, t)
2: for each failed flow gi ∈ G do
3: for each switches sj under deadline do
4: Candidates← []
5: for each flow fk ∈ F do
6: if fk shares a forward link with s then
7: Candidates.append(fk)
8: end if
9: end for

10: Sort Candidates in decreasing order of slack
11: for each fk ∈ Candidates do
12: /* Boost the flow priority of all failed flow switches to the priority of the candidate

flow. */
13: Boost(gi, fk)
14: /* Test if this change resulted in the failed flow not exceeding its deadline. */
15: if !ExceedsDealine(gi) then
16: /* Test if the topology is now valid */
17: if TopologyValid(G) then
18: Return Success

19: else
20: /* The flow has been fixed, so we proceed to trying to improve the next

failed flow */
21: Break
22: end if
23: end if
24: end for
25: end for
26: end for

27: end function
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5.2.1.4 Heuristic 4: Single Boost at Switch and Boost Path(”Boost

Path”)

Is identical to Heuristic 2, where adjustment is made only to the failed flow priority

at the given switch, except that we also now apply the new priority to all switches in

the failed flow’s path. We again have the broadened scope of change as in Heuristic

3, where priority is adjusted at all switches in the failed flow, and adjustments that

do not achieve failed flow schedulability are forgotten, even if they made incremental

improvement. If this fixes the failed flow, we try the same on other failed flows. This

heuristic is depicted in Algorithm 5.

5.2.1.5 Heuristic 5: Multiple Switch Swap

Is similar to Heuristic 1, but with a key difference that changes are kept if they make

incremental improvement to the the failed flow’s schedulability, even if they don’t

solve it outright. As an illustration, if we perform a priority swap at a given switch

in the failed flow, and the resulting total path delay is still over the deadline, but

has been reduced, we retain that adjustment as part of the input for the next step.

In this way, incremental reductions in total path delay can add up as we back up

through the switches of the flow and make swaps. (See Figure 5.4). This heuristic is

depicted in Algorithm 6.
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5.2.1.6 Heuristic 6: Multiple Switch Boost

Is similar to Heuristic 2, but with a key difference that changes are kept if they

make incremental improvement to the the failed flow’s schedulability, even if they

don’t solve it outright. As an illustration, if we perform a priority adjustment at a

given switch in the failed flow (priority is set as per what would have been the swap

candidate flow’s priority), and the resulting total path delay is still over the deadline,

but has been reduced, we retain that adjustment as part of the input for the next

step. In this way, incremental reductions in total path delay can add up as we back

up through the switches of the flow and make swaps. This heuristic is depicted in

Algorithm 7.



46

Algorithm 6 Multiple Switch Swap
Input: The network N = (V,E), flow(s) F = {f1, . . . , fn}, failed flow(s) H = {g1, . . . gm}, switches

π = {s1, . . . , sl}, source s, destination t
Output: Schedulable flow if possible. Otherwise, note non-schedulability.

1: function Algorithm5(N,F,G, S, s, t)
2: FailedF lowSequences← generateFailedF lowSequences(G)
3: for each FailedFlowSequence ffsh ∈ FailedF lowSequences do
4: for each failed flow gi ∈ FailedF lowSequence do
5: for each switches sj under deadline do
6: Candidates← []
7: for each flow fk ∈ F do
8: if fk shares a forward link with s then
9: Candidates.append(fk)

10: end if
11: end for
12: Sort Candidates in decreasing order of slack
13: for each fk ∈ Candidates do
14: /* Swap flow priority of failed flow with candidate flow at a single switch. */
15: Swap(gi, fk)
16: /* Test if this change improved the flow’s performance. */
17: if PerformanceImproved(gi) then
18: /* Test if this change resulted in the failed flow not exceeding its deadline.

*/
19: if !ExceedsDealine(gi) then
20: /* Test if the topology is now valid */
21: if TopologyValid(G) then
22: Return Success

23: else
24: /* The flow has been fixed, so we proceed to trying to improve the

next failed flow */
25: Go To Line 2
26: end if
27: else
28: /* Keep improvement and attempt to fix at the switch before the current

one. */
29: Go To Line 3
30: end if
31: end if
32: end for
33: end for
34: end for
35: Return error
36: end for

37: end function
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Algorithm 7 Multiple Switch Boost
Input: The network N = (V,E), flow(s) F = {f1, . . . , fn}, failed flow(s) H = {g1, . . . gm}, switches

π = {s1, . . . , sl}, source s, destination t
Output: Schedulable flow if possible. Otherwise, note non-schedulability.

1: function Algorithm6(N,F,G, S, s, t)
2: FailedF lowSequences← generateFailedF lowSequences(G)
3: for each FailedFlowSequence ffsh ∈ FailedF lowSequences do
4: for each failed flow gi ∈ FailedF lowSequence do
5: for each switches sj under deadline do
6: Candidates← []
7: for each flow fk ∈ F do
8: if fk shares a forward link with s then
9: Candidates.append(fk)

10: end if
11: end for
12: Sort Candidates in decreasing order of slack
13: for each fk ∈ Candidates do
14: /* Boost flow priority of failed flow with candidate flow at a single switch. */
15: Boost(gi, fk)
16: /* Test if this change improved the flow’s performance. */
17: if PerformanceImproved(gi) then
18: /* Test if this change resulted in the failed flow not exceeding its deadline.

*/
19: if !ExceedsDealine(gi) then
20: /* Test if the topology is now valid */
21: if TopologyValid(G) then
22: Return Success

23: else
24: /* The flow has been fixed, so we proceed to trying to improve the

next failed flow */
25: Go To Line 2
26: end if
27: else
28: /* Keep improvement and attempt to fix at the switch before the current

one. */
29: Go To Line 3
30: end if
31: end if
32: end for
33: end for
34: end for
35: Return error
36: end for

37: end function
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5.2.1.7 Heuristic 7: Multiple Switch Swaps and Boost Path

Is similar to Heuristic 3, except that incremental changes are kept if they improve

performance, so this Heuristic is more carefully exploring all the opportunities for

achieving schedulability. In Heuristic 3, if a change improves the failed flow’s per-

formance but does not get it under the deadline, that change is tossed aside rather

than being incorporated for the next improvement step. This heuristic is depicted

in Algorithm 8.

5.2.1.8 Heuristic 8: Multiple Switch Boosts and Boost Path

Is similar to Heuristic 4, except that incremental changes are kept if they improve

performance, so this Heuristic is also more carefully exploring all the opportunities

for achieving schedulability. In Heuristics 4, if a change improves the failed flow’s

performance but does not get it under the deadline, that change is tossed aside rather

than being incorporated for the next improvement step. This heuristic is depicted

in Algorithm 9.
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Algorithm 8 Multiple Switch Swaps and Boost Path
Input: The network N = (V,E), flow(s) F = {f1, . . . , fn}, failed flow(s) H = {g1, . . . gm}, switches

π = {s1, . . . , sl}, source s, destination t
Output: Schedulable flow if possible. Otherwise, note non-schedulability.

1: function Algorithm7(N,F,G, S, s, t)
2: FailedF lowSequences← generateFailedF lowSequences(G)
3: for each FailedFlowSequence ffsh ∈ FailedF lowSequences do
4: for each failed flow gi ∈ FailedF lowSequence do
5: for each switches sj under deadline do
6: Candidates← []
7: for each flow fk ∈ F do
8: if fk shares a forward link with s then
9: Candidates.append(fk)

10: end if
11: end for
12: Sort Candidates in decreasing order of slack
13: for each fk ∈ Candidates do
14: /* Swap flow priority of failed flow with candidate flow at a single switch. */
15: Swap(gi, fk)
16: /* Boost the flow priority of all failed flow switches to the priority of the

candidate flow. */
17: Boost(gi, fk)
18: /* Test if this change improved the flow’s performance. */
19: if PerformanceImproved(gi) then
20: /* Test if this change resulted in the failed flow not exceeding its deadline.

*/
21: if !ExceedsDealine(gi) then
22: /* Test if the topology is now valid */
23: if TopologyValid(G) then
24: Return Success

25: else
26: /* The flow has been fixed, so we proceed to trying to improve the

next failed flow */
27: Go To Line 2
28: end if
29: else
30: /* Keep improvement and attempt to fix at the switch before the current

one. */
31: Go To Line 3
32: end if
33: end if
34: end for
35: end for
36: end for
37: Return error
38: end for

39: end function
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Algorithm 9 Multiple Switch Boosts and Boost Path
Input: The network N = (V,E), flow(s) F = {f1, . . . , fn}, failed flow(s) H = {g1, . . . gm}, switches

π = {s1, . . . , sl}, source s, destination t
Output: Schedulable flow if possible. Otherwise, note non-schedulability.

1: function Algorithm8(N,F,G, S, s, t)
2: FailedF lowSequences← generateFailedF lowSequences(G)
3: for each FailedFlowSequence ffsh ∈ FailedF lowSequences do
4: for each failed flow gi ∈ FailedF lowSequence do
5: for each switches sj under deadline do
6: Candidates← []
7: for each flow fk ∈ F do
8: if fk shares a forward link with s then
9: Candidates.append(fk)

10: end if
11: end for
12: Sort Candidates in decreasing order of slack
13: for each fk ∈ Candidates do
14: /* Boost flow priority of failed flow with candidate flow at a single switch. */
15: Boost(gi, fk)
16: /* Boost the flow priority of all failed flow switches to the priority of the

candidate flow. */
17: Boost(gi, fk)
18: /* Test if this change improved the flow’s performance. */
19: if PerformanceImproved(gi) then
20: /* Test if this change resulted in the failed flow not exceeding its deadline.

*/
21: if !ExceedsDealine(gi) then
22: /* Test if the topology is now valid */
23: if TopologyValid(G) then
24: Return Success

25: else
26: /* The flow has been fixed, so we proceed to trying to improve the

next failed flow */
27: Go To Line 2
28: end if
29: else
30: /* Keep improvement and attempt to fix at the switch before the current

one. */
31: Go To Line 3
32: end if
33: end if
34: end for
35: end for
36: end for
37: Return error
38: end for

39: end function
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5.3 Evaluation

Our strategy for determining effectiveness is to use the Kashinath et al. [31] simu-

lator to generate topologies that are unschedulable with DBAPS that we then can

try to repair with our heuristics. This involves modifications to their simulator to

extract information, and implementing and testing a new standalone system which

will execute and evaluate our heuristics.

The Kashinath et al. [31] simulator generates random topologies with priority and

deadline characteristics and tests whether they are schedulable or not. We capture

unschedulable topologies by instrumenting their system to collect all information that

we will need for our analysis. Careful analysis of their simulator architecture allows

us to identify the proper location to position our instrumentation and the proper

run context to extract data. Each pass through schedulability experiment code then

results in a file being generated in the event that the topology was not schedulable.

This network info file (netInfoFile) contains the delay information for each switch in

each flow as well as the information used to compute that. Our heuristic evaluation

system takes the netInfoFile as input and generates a revised netInfoFile as output.

For our focused problem of assessing improvements to schedulability, it is simpler

to write our system from scratch rather than trying to reuse simulator code directly.

Because of this, we have the task of ensuring that we implement delay calculations

exactly as their system does and this is done by writing unit tests that compare our

results to those saved in the input netInfoFile.

Each dataset is comprised of one thousand netInfoFiles each representing un-

schedulable topologies. To generate these, we wrap their schedulability experiment
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code in a driver which will run it repeatedly. If the run results in a schedulable

topology, it is ignored. We also filter out topologies that fall into one of three situ-

ations. First, if the propogation delay is greater than the deadline for a flow, then

it is non-reparable and ignored. Second, if any of the failed flows are high priority,

we deem this topology as likely unfixable and it is ignored. Third, our heuristics in-

volve swapping priority between two flows at a particular switch and this only makes

sense to do if those flows share a forward link, so topologies that do not satisfy this

constraint are ignored as well. The remaining unschedulable topologies contain one

or more failed flows and are candidates for our heuristics to improve.

The Kashinath et al [31] simulator generates topologies that contain a certain

number of flows. Each of our datasets contains netInfoFiles that all have the same

number of flows. Varying a parameter in the simulator allows that number to vary

from 6 to 15, yielding ten datasets.

Each run of our heuristic evaluation system applies its process to each of the

thousand netInfoFiles in the dataset and gathers statistics on how often schedulabil-

ity is achieved as well as how many adjustments are made by the heuritistic on each

particular topology.

5.3.1 Simulation Setup

The simulator of Kashinath [31] is instrumented to provide the input to our system

in the form a networkInfoFile. Each networkInfoFile contains information on how

many flows are present by listing the flow ids ([0,1,2,3,4,5]). For each flow id, the file
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contains the flow’s priority, propagation delay, end-to-end deadline, packet processing

time, period, total path delay, and whether that flow was schedulable or not. Also,

the path of the flow is represented as a list of host and switch ids ([”h11”, ”s1”,

”s5”, ”s4”, ”h42”]). For each switch in each flow’s path, information represented

includes the fifo delay, interference delay, the delay so far along that path (which is

the sum total of accumulated delays to that point), and the slack, where slack is the

remaining time available before the flow’s deadline is used up.

The Kashinath [31] simulator both generates topologies and computes delay char-

acteristics. Our simulator uses their topologies as inputs and then computes the FIFO

and interference delay characteristics. These computations use the period and packet

processing times that are associated with each flow, found in the networkInfoFile.

See Figure 5.3.
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Figure 5.3: Simulation Setup



55

5.3.2 Result

5.3.2.1 Performance of all Spatially Varying Static Priority Heuristics

Our results from looking at only SWAP spatially varying static priority heuristics

are shown in Figure 5.4.

Figure 5.4: Compare Performance of all Spatially-Varying Static Priority Heuristics
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5.3.2.2 Performance of all Boost Heuristics

The heuristic result from only boost variants is displayed in Figure 5.5.

Figure 5.5: Compare Performance of all Boost Heuristics

5.3.2.3 Performance of all Heuristics

Analysis reveals that Heuristic 8 (Multiple Switch Swaps and Boost Path) has the

best performance among the Heuristics - an increase of up to 10.6 % see Table 5.1.

In this Heuristic, a priority swap at multiple switches is combined with a wholesale

adjustment of priority at the remaining switches of the failed flow, using the priority

value that was originally held by the swap target flow in all switches in the path

(boost). In these Heuristic, the FIFO delay are increase and this lead to minimize
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the performance (See Figure 5.6).

Figure 5.6: Compare Performance of all Heuristics
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Table 5.1: Compare Performance of all Heuristics

Heuristics Name in Paper Improvement Ratio(%)

Heuristic 1: Single Swap at Switch (4.1 % - 6.7 %)

Heuristic 2: Single Boost at Switch (4.1 % - 6.8 %)

Heuristic 3: Single Swap at Switch and Boost Path (5.3 % - 10.4 %)

Heuristic 4: Single Boost at Switch and Boost Path(”Boost Path”) (5.5 % - 9.4 %)

Heuristic 5: Multiple Switch Swap (5.4 % - 7 %)

Heuristic 6: Multiple Switch Boost (4.1 % - 6.7 %)

Heuristic 7: Multiple Switch Swaps and Boost Path (8 % - 10.6 %)

Heuristic 8: Multiple Boost Swaps and Boost Path (8.1 % - 9.5 %)
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Chapter 6: Least-Slack Prioritization

6.1 Research Question

A Real-Time Network (RTN) aims to ensure that packets in a network are able to

make it to their specific destination all while maintaining their Quality of Service

requirements [55]. However, this presents us with a challenge - how to correctly

schedule all packets in a system in such a way as to satisfy end-to-end deadlines of

all packets.

Additionally, as the network load and user demands of a network increase, the

difficulty of scheduling packets in this network also increases. Furthermore, as a net-

work’s internal makeup consists of multiple switches, packets may encounter different

conditions at each hub that impact its traversal. Our focus is specifically on net-

works that are abnormally sensitive to perturbation and have guarantee requirements

regarding packet delivery times. Networks that fit this description include: avion-

ics, automobiles, industrial control systems, power substations, and manufacturing

plants, to name a few.

We can use a metric of the performance constraints applicable to a network by

identifying the flow priorities and the deadlines in play. The flow priority dictates

the packet processing hierarchy at each switch in a network. The delays caused

here can affect whether a flow’s deadline requirement can be achieved. While it

would be ideal for all flows to meet their requirements, not all possible priority and
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deadline variations will be guaranteed to meet these requirements [56]. Rather than

considering the deadline constraints from a total path point of view as was done

previous works we instead consider a per-hop deadline budget constraint, computed

by dividing the deadline for the entire path by the number of switch-to-switch hops

in that path. Flow priorities are then derived from these per-hop deadlines and these

priorities and may be used to influence search order in our algorithms.

We consider two approaches to leveraging per-hop deadlines in static path as-

signment. As a reference algorithm, we use Kashinath’s [31] Delay and Bandwidth

Aware Path Selection (DBAPS-DM), which use an end-to-end deadline-monotonic

Prioritization. First, with Delay and Bandwidth Aware Path Selection with Least-

Slack (per-hop budget) Prioritization (DBAPS-LSP), we investigate whether we can

improve (DBAPS-DM) by allowing it to leverage priorities derived from per-hop

deadlines. Second, with Greedy Delay and Bandwidth Aware Path Selection with

Least-Slack (per-hop budget) Prioritization (GDBAPS-LSP), we investigate whether

a first assignment of prioritise as path can perform as well or better than DBAPS.

6.1.1 Motivating Example

Our example topology contains two flows that are not able to be scheduled when

(DBAPS-DM) is used to assign paths. We show that by using per-hop deadlines to

dictate flow priority, the topology is then schedulable.

The example topology shown in Figure 6.1 has six flows, and flow priority is

assigned according to end-to-end deadlines. Two flows are not schedulable with
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this approach. The failed flows are flow f2 and flow f3. Flow f2 originally had a

priority of 1 with a deadline requirement of 1.92ms, but a total delay of 2.021ms.

Additionally, flow f3 also has a priority of 1 with a deadline of 2.08ms, but takes

2.0971ms to reach its target.



62

Figure 6.1: Original Topology: The 5 switch topology used for this experiment. Each
switch would also connect to the controller via a management port (not shown).
Within this topology, Flow 2 and Flow 3 is unable to reach its destination.

When the network flows are instead prioritized according to their per-hop dead-

lines, the network becomes schedulable. Here, both flow f2 and flow f3 are assigned

low per-hop deadlines (0.96ms and 1.04ms respectively). These low per-hop dead-
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lines result in the priority of both flows being increased to priority 0. Flow f2 now

has a total delay of 1.8857ms and flow f3’s delay was shortened to 1.8717ms. This

allows schedulability, even though the delays of other flows may have increased, as

the increased delay may still be within the end-to-end deadline. See Figure 6.2.
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Figure 6.2: Improved Topology: The 5 switch topology used for this experiment.
This version shows the resulting corrections made by our algorithm, allowing both
Flow 2 and Flow 3 to be scheduled.

6.2 Proposed Solution

To find a solution to network scheduling and deadline guarantees, previously devel-

oped algorithms use local priority assignment in order to improve and reduce resource
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competition [20]. Park’s proposed schedulability conditions [44] are utilized, in tan-

dem with the high-level network view provided by an SDN. Kashinath [31] expands

on a different approach used by Kumar et al, which applies a multi-constraint opti-

mization technique to optimally determine static priorities for flows (DBAPS-DM).

Flows are assigned to queues, allowing prioritization at the switch level, which can

improve schedulability. [31, 34] The algorithm serves as our reference algorithm in

assessing performance of our algorithms.

6.3 Static Priority Assignment Algorithms

For our two algorithms, we take a least slack first approach to setting flow priorities

using per-hop deadlines as a guiding constraint in our attempt at improved network

utilization.

6.3.1 DBAPS-DM Algorithm.

For DBAPS-DM, path assignment is performed using interference index as a measure.

The interference index takes into account both bandwidth and deadline constraints.

First, path candidates are determined for each flow. A search is performed through

the path candidates looking for the one with the lowest interference index for as-

signment to it’s corresponding flow. This search is repeated until all flows have a

path assigned. In each pass, the algorithm iterates over flows by order of their ID,

as determined by the order of their creation. (See Algorithm 1)
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6.3.2 DBAPS-LSP Algorithm.

In this Algorithm, we modified DBAPS to allow it to accept the flow priorities we

derive using per-hop deadlines. We compute per-hop deadlines as follows: for each

flow, find the shortest path, ignoring bandwidth constraints. These paths are then

used to compute the per hop deadline values of each flow, where the flows with the

highest priority are assigned to the shortest per hop deadline. The prioritized flows

are then passed to modified DBAPS-DM to dictate the order in which it will search

for the path candidate with the shortest interference index. (See Algorithm 10)

Algorithm 10 Delay and Bandwidth Aware Path Selection with Least-Slack (per-
hop budget) Prioritization (DBAPS-LSP).
Input: The network N(V,E), set of flows F , delay and bandwidth utilization constraints on

links Dk = [Dk(u, v)]∀(u,v)∈E , D̃k = [D̃k(u, v)]∀(u,v)∈E and Bk = [Bk(u, v)]∀(u,v)∈E , B̃k =

[B̃k(u, v)]∀(u,v)∈E , for each flow fk ∈ F , respectively, and the delay and bandwidth bounds

Dk ∈ R+ and B̂k ∈ R+, respectively, and positive constant Xk ∈ Z, ∀fk ∈ F .
Output: The path vector P = [Pk]∀fk∈F where Pk is the path if the delay and bandwidth con-

straints (Dk(Pk) ≤ Dk and Bk(Pk) ≤ B̂k) are satisfied for fk, or False otherwise.

1: for each fk ∈ F (starting from higher to lower priority) do
2: /* Relax bandwidth constraint and solve */
3: Find the shortest path
4: if SolutionFound then /* Path found for fk */
5: Use those paths to compute per hop deadline values for each flow
6: Set flow prios with highest priority assigned to shortest per hop deadline
7: /* To control the order it visits flows in its search for a shortest interference index path

to assign in that pass */
8: Pass the prioritized flow ids to the Algorithm 1
9: if SolutionFound then

10: /* Path found by relaxing delay constraint */
11: Pk := P∗ /* Add path to the path vector */
12: else
13: Pk := False /* Unable to find any path for fk */
14: end if
15: else
16: Pk := False /* Unable to find any shortest path for fk */
17: end if
18: end for
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6.3.3 GDBAPS-LSP Algorithm.

This Algorithm is simpler than DBAPS in that it pays attention to bandwidth ,

and deadline constraints but is greedy. For each flow, we choose the shortest path

available that still has enough bandwidth given prior path assignments. Those paths

are then used to compute per hop deadline values for each flow. We then assign

the highest flow priority to the shortest per-hop deadline flow. This is described in

Algorithm 11.

Algorithm 11 Greedy Delay and Bandwidth Aware Path Selection with Least-Slack
(per-hop budget) Prioritization (GDBAPS-LSP).
Input: The network N(V,E), set of flows F , delay and bandwidth utilization constraints on

links Dk = [Dk(u, v)]∀(u,v)∈E , D̃k = [D̃k(u, v)]∀(u,v)∈E and Bk = [Bk(u, v)]∀(u,v)∈E , B̃k =

[B̃k(u, v)]∀(u,v)∈E , for each flow fk ∈ F , respectively, and the delay and bandwidth bounds

Dk ∈ R+ and B̂k ∈ R+, respectively, and positive constant Xk ∈ Z, ∀fk ∈ F .
Output: The path vector P = [Pk]∀fk∈F where Pk is the path if the delay and bandwidth con-

straints (Dk(Pk) ≤ Dk and Bk(Pk) ≤ B̂k) are satisfied for fk, or False otherwise.

1: for each fk ∈ F (starting from higher to lower priority) do
2: /* Abiding bandwidth constraints and solve */
3: Find the shortest path
4: if SolutionFound then /* Path found for fk */
5: Use those paths to compute per hop deadline values for each flow
6: Set flow prios with highest priority assigned to shortest per hop deadline
7: if SolutionFound then
8: /* Path found by relaxing delay constraint */
9: Pk := P∗ /* Add path to the path vector */

10: else
11: Pk := False /* Unable to find any path for fk */
12: end if
13: else
14: Pk := False /* Unable to find any shortest path for fk */
15: end if
16: end for
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6.4 Evaluation

After path assignments are performed using the three approaches (DBAPS-DM,DBAPS-

LSP,GDBAPS-LSP), the default Kashinath [31] schedulability logic is used to deter-

mine schedulability. We assess performance by computing the percentage of schedula-

ble runs for each approach using a number of parameterizations for network topology

and bandwidth.

6.4.1 Simulation Setup

The simulator of Kashinath [31] uses the end-to-End Deadline-Monotonic algorithm

(DBAPS-DM) for assigning paths. The algorithm takes into account both bandwidth

and deadline constraints by using those measures to compute an interference index

for every path that is deemed a candidate for a given flow. The algorithm then

searches for the candidate with the lowest interference index and assigns that path

to its associated flow. The search order is naive in that it follows the flow id rather

than any particular measure that would compel a certain prioritization. Once a path

is assigned, the search is repeated until all flows have paths assigned to them.

We modified the simulator to allow us to try two additional path assignment

approaches, each applied to the same topology as was used for DBAPS-DM. For

each topology, we would try the four approaches to see for each approach, how many

would be schedulable versus unschedulable.

The first approach we added was called Delay and Bandwidth Aware Path Se-

lection with Least-Slack (per-hop budget) Prioritization (DBAPS-LSP). In this ap-
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proach we first assign paths using an simple algorithm that is naive in that it does

not take into consideration bandwidth constraints for priority assignment. Instead

it uses the shortest available path for any given flow. It then computes the per-hop

deadline for each flow, and assigns flow priorities with the highest priority assigned

to the path with shortest per-hop deadline. We then re-assign the paths by using

a modified DBAPS-DM that allows the flow priorities to control the order in which

candidate paths are considered.

The second approach we added was called Greedy Delay and Bandwidth Aware

Path Selection with Least-Slack (per-hop budget) Prioritization (GDBAPS-LSP). In

this approach we assign paths using an algorithm uses the shortest path available that

abides bandwidth constraints where prior path assignments consume the bandwidth

needed by the flow. We use those paths to calculate the per-hop deadline for each

flow and assign flow priorities with the highest priority assigned to the path with

shortest per-hop deadline. See Figure 6.3.
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Figure 6.3: Simulation Setup
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6.4.2 Result

Our analysis of the different algorithms used reveals that the Delay and Bandwidth

Aware Path Selection with Least-Slack (per-hop budget) Prioritization (DBAPS-

LSP) algorithm resulted in the most flows scheduled, of the three algorithms tested.

Greedy Delay and Bandwidth Aware Path Selection with Least-Slack (per-hop bud-

get) Prioritization (GDBAPS-LSP) was the second best performing algorithm, with

Delay and Bandwidth Aware Path Selection with Deadline Monotonic Priorities

(DBAPS-DM) being the worst performing. (See Figure 6.4)

Figure 6.4: 7 Switches 3 Mbps - Average over 10 datasets of 1000 topologies each

Additionally, analysis revealed that the two algorithms DBAPS-LSP and GDBAPS-

LSP perform significantly better when the priority (queues) levels used are not fixed

at three priorities. We found that adding additional priority levels improved the

acceptance ratio in these two algorithms, with DBAPS-LSP having the best perfor-
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mance. (See Figure 6.5 and Figure 6.6)

Figure 6.5: Performance of all Algorithms , 3 priority levels , 7 Switches, 5 Mbps

Figure 6.6: Performance of all Algorithms with 3 - 8 level priority 7 Switches, 5 Mbps



73

The path layout algorithms DBAPD-LSP and GDBAPS-LSP are both more

topology-aware than [31] in that they take into account flow hop count. Figure

6.7 reveals that this leverage gives them better performance than [31], by up to 16%

in the case of GDBAPS-LSP and up to 18% in the case of DBAPS-LSP. Also rep-

Figure 6.7: Performance of path layout algorithms with Spatially Varying Algorithm
applied

resented in Figure 6.7 is the effect of applying the Spatially Varying Priorities as

an after-step to the three path assignment approaches to determine if schedulability

can be improved. We see that the [31] algorithm is improved upon by up to 5% in

acceptance ratio. However, we see that no improvement is made by applying it to

either DBAPS-LSP or GDBAPS-LSP. This indicates that the more topology-aware

path layout approaches are already making better use of the available slack in the

network.
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Chapter 7: Future Work

7.1 Local Swap Priority

The most pressing future improvement to this work would be a proper implementa-

tion of this system using a modification of a commercial SDN controller [1, 4]. For

our evaluation experiment we used Kashinanth et al.’s [31] simulation framework and

refactoring by Python3 [2, 3] . It remains to be seen how well our approach could

be integrated into a production system using existing technology. Doing so would

provide an immediate benefit as a new scheduling system using controller-switch

cooperation could be achieved.

An expansion on this work could address a failing flow’s path. This work focused

on changing the local priorities of a flow as a method of improvement. Future work

could address not just the alteration of switch priorities, but could attempt changes

to a failed flow’s path in order to improve its deadline performance.

Another valuable addition to this research would be a mechanism to mix routing

and scheduling together. In our system, we allowed routes to be set by the framework,

but in a real significant improvement could be gained if a controller’s intelligence

were leveraged to route flows along faster paths, dynamically, where required. For

example, our implementation was able to track delay for each flow inside each switch,

along with the maximum and minimum delay. This information could be leveraged

by a well-designed controller. An adaptation of the cost system based on real-time
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data might be possible wherein the controller could re-route flows to faster paths

based on cost or other factors.

An interesting expansion of this work would be to introduce even more intelligence

to queuing priority packets [32]. One approach which has been discussed, but has

yet to be properly expanded and considered, is an approach wherein high priority

packets are dynamically pushed on to queues with the smallest current size. This

might allow for high priority packets to be allocated to those queues where they are

most likely to receive quick service.

Lastly, our approach needs to be compared with other approaches to determine

its effectiveness and efficiency.

7.2 Dynamic Priority

Qian et al. introduced an algorithm that aids in routing and determining the for-

warding paths for real-time message moves in distributed calculating domains while

also creating a scheduler that helps in enforcing a message forwarding policy on net-

work devices. In addition to that, this routing algorithm takes into consideration

network resource demands of real-time messages and deadlines. Due to this, no re-

sults of real-time messages are allowed to be dropped due to the network contention

that performs when being controlled by the message scheduler while also no real-time

messages unable to meet their deadlines. However, this scheme requires modifica-

tions of switch scheduling mechanisms and hence cannot be realized with COTS

hardware. Comparatively, our proposal does not require a hardware modification
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and can work with COTS SDN switches. One direction is to explore ways to achieve

this with COTS hardware.

7.3 Leverage Proposed Switch Capabilities

P4 (Programming Protocol-independent Packet Processors) is a language in develop-

ment by a wide array of researches in industry and academia. It’s primary purpose

is to provide a unified programming paradigm in which software can be written to

control the data plane directly [12]. The language is as-yet incomplete, but very in-

teresting work is ongoing which will allow for event-based controls like the algorithms

we have proposed.

Figure 7.1: A P4-configured switch [12]

Additionally, a framework called Inband Network Telemetry has been developed

which could give switches access to the kind of information they would need to make

useful decisions about packet prioritization [23].
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From these two developments we think the next step in using these new methods

to improve the networking landscape - we must work with the P4 language to ensure

that the specification of this important new development is flexible and robust enough

to handle these efficient new prioritization algorithms.
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Chapter 8: Conclusion

8.1 Spatially-Varying Locally Static Priorities

Network flows in Real-Time (RT) systems need to meet stringent end-to-end dead-

lines for safe and reliable operation of such system.

The historical and simple approach to support this demand has been to increase

the number of switches as load increases. However, switches are expensive. Further-

more, large, complex networks are hard to manage due to hardware integration of

the control and data plane.

We propose using SDN to achieve the flexibility and dynamism we require. With

SDN, the software control layer is decoupled from the data plane. Such software

systems are relatively easy to manage, compared to traditional networks. They also

provide higher compatibility with a wider range of hardware manufacturers. To solve

this problem, there are two approaches Spatially-Varying Locally Static Priorities

and Static Priority Assignment

In Spatially Varying Static Priority Scheduling real time traffic flows was im-

proved. We analyze end-to-end deadlines in a real-time system to ensure that all

packets reach their destination meeting the static end-to-end deadlines set before

the environment is run. To schedule flows, we use a deadline-monotonic scheduling

algorithm. In order to better achieve the goal of meeting end-to-end deadlines we

contrast a system with static global priorities for flows with one where priorities are
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assigned at switches, giving local priorities to flows again based on the deadline-

monotonic scheduling algorithm, instead of using [34]. We used heuristic algorithms

to improve schedulability for their framework, but leverage our ability to refine the

priorities switch-by-switch within each flow. This allows our algorithms to make

more surgical improvements.

The analysis of this study reveals that Heuristic 7 (Multiple Switch Swaps and

Boost Path) has the best performance among the algorithms - an increase of up to

10.6%. In this algorithm, a priority swap at a multiple switch is combined with a

wholesale adjustment of priority at the remaining switches of the failed flow, using

the priority value that was originally held by the swap target flow happen in all

switches in the path (boost).

8.2 Least-Slack Prioritization

We compared the performance of two path assignment algorithms to the reference

algorithm, Delay and Bandwidth Aware Path Selection with Deadline Monotonic Pri-

orities (DBAPS-DM). Varying flow counts and keeping the number of priority levels

(i.e. ,queues) constant at 3, our Delay and Bandwidth Aware Path Selection with

Least-Slack (per-hop budget) Prioritization (GDBAPS-LSP) algorithm performed

up to 17% better than (DBAPS-DM), with the most improvement in the range of 6

to 15 flows in the network. Our Delay and Bandwidth Aware Path Selection with

Least-Slack (per-hop budget) Prioritization (DBAPS-LSP) algorithm performed up

to 19% better than DBAPS-DM, again in the 6 to 15 flow range.
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Taking a second approach of increasing the number of priority queues as flow

counts increase (by keeping the number of flows per priority level constant at 3, and

varying the priority levels from 3 to 8), we see consistent improvement across all flow

counts from 9 to 24. The improvement for GDBAPS-LSP varied from 18% to 23%.

The improvement for DBAPS-LSP varied from 20% to 25%. These improvements

are significant enough to consider applying these algorithms in the proper contexts.

Finally, we determined that applying the Spatially Varying Priorities Algorithm

8 as an after-step to the three path assignment approaches only improves schedu-

lability in the case of DBAPS [31] , where the improvement seen was up to 5% in

acceptance ratio, with the most improvement occurring in the 9 - 15 flow range.

No improvement is made by applying it to either DBAPS-LSP or GDBAPS-LSP,as

these more topology-aware approaches are already making better use of the available

slack in the network.
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