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Chapter 1: Introduction

Learning novel concepts and relations from relational databases is an important prob-

lem with applications in several disciplines, such as data management, natural language

processing, and bioinformatics [22, 34, 60]. For a learning algorithm to be effective, the

input data should be clean and in some desired representation. Therefore, to use current

learning algorithms, users have to find the desired representations for these algorithms,

transform their data to these representations, and clean the data. This thesis demon-

strates that it is possible to develop robust learning algorithms that learn in the presence

of representational variations in the data by exploiting data dependencies.

One example of a scenario where robust learning algorithms are useful is when using

data from two or more data sources to learn a novel concept. Different data sources

may use different names to refer to the same entity. For example, one database may

contain the value J. Smith, while another database may contain the value John Smith,

even though they refer to the same entity. The use of different names to refer to the

same entity is an example of a representational variation. One approach to solve the

problem of representational variations is to resolve the heterogeneities in the data to

create a unified and clean database instance to be used for learning. However, this

process requires a great deal of time and effort. Further, it is not usually clear which

values represent the same real-world entity in different databases. For example, besides

containing the value John Smith, the second database may also contain the value Jeremy

Smith. It is not clear whether the value J. Smith in the first database refers to John

Smith or Jeremy Smith in the second database. Instead of resolving the heterogeneities

in a pre-processing step, a user may provide a set of declarative constraints that specify

the attributes across relations or databases that contain values that may refer to the

same real-world entity. Taking these constraints as input, a robust learning algorithm

should be able to explore all possible matchings and learn an effective definition.
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1.1 Objectives

In this work, we develop learning algorithms that are robust to representational varia-

tions. We seek, through robust learning algorithms, to reduce some of the obstacles that

users face when learning in the presence of representational variations. We propose to

use techniques from the database literature to develop robust and efficient learning al-

gorithms that learn novel concepts over relational databases. In particular, we integrate

data dependencies, such as inclusion dependencies (INDs) [2] and matching dependencies

(MDs) [30], into the learning algorithms. These dependencies are specified by the user

though declarative constraints or can be discovered from the database. They contain

useful information about the structure and content of the data that can be exploited by

the learning algorithms.

We focus on supervised learning algorithms that learn directly from relational databases.

Given a relational database and training examples for a new target relation, relational

machine learning (relational learning) algorithms learn an (approximate) relational defi-

nition of the target relation in terms of existing relations in the database [22, 34]. Learned

definitions are usually first-order logic formulas and often restricted to Datalog programs.

For example, consider the UW-CSE database (alchemy.cs.washington.edu/data/uw-cse),

which contains information about a computer science department. Its schema fragments

are shown in Table 1.1. Given the UW-CSE database and a set of student-advisor pairs,

one may want to predict the new relation advisedBy(stud, prof), which indicates that

the student stud is advised by professor prof. A relational learning algorithm may learn

the following Datalog program for the advisedBy relation:

advisedBy(x, y)← publication(z, x), publication(z, y),

which indicates that a student is advised by a professor if they have been co-authors of

a publication. Some benefits of relational learning algorithms are that they can exploit

the relational structure of the data and that their learned definitions are interpretable

and easy to understand.

1.2 Technical Contributions

The following is a summary of the technical contributions presented in this dissertation.
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student(stud) professor(prof)
inPhase(stud, phase) hasPosition(prof, position)
yearsInProgram(stud, years) taughtBy(course, prof, term)
courseLevel(course, level) ta(course, stud, term)
publication(title, person)

Table 1.1: Schema for the UW-CSE dataset.

Robustness Against Structural Heterogeneities. It is well established that

the same relational database may be represented under different schemas for various

reasons, such as efficiency, data quality, and usability. We refer to this representational

variation as structural heterogeneity. Learning algorithms that learn over structured

data, such as relational databases, must employ heuristics to learn efficiently. Structural

heterogeneities present a problem for these algorithms, as their output tends to vary

quite substantially over the choice of schema. In Chapter 3, we introduce the property

of schema independence for relational learning algorithms, and study both the theoretical

and empirical dependence of existing algorithms on the common class of (de-)composition

schema transformations. We show theoretically and empirically that current relational

learning algorithms are generally not schema independent. We propose Castor [54, 55],

a relational learning algorithm that is schema independent. Castor achieves schema

independence by leveraging data constraints called inclusion dependencies. We support

the theoretical results with an empirical study that demonstrates the schema dependence

or independence of several algorithms on existing benchmark and real-world datasets

under (de-)composition transformations.

Automatically Setting Language Bias. Relational learning algorithms learn over

relational domains, which generally contain multiple entities and relationships between

entities. This high expressibility comes at the expense of a large hypothesis space. In

order to constrain the hypothesis space, users must tune the learning algorithms. The

language bias of relational learning algorithms restricts the structure and syntax of the

learned Datalog programs. Unfortunately, specifying the language bias is done via trial

and error and is guided by experts’ intuitions. Hence, it normally takes a great deal

of time and effort to effectively use these algorithms. In particular, it is hard to find a

user that knows computer science concepts, such as database schema, understands the

learning algorithms, and has a reasonable intuition about the target relation in special
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domains. Further, it is difficult to specify the language bias for databases with large and

complex schemas. Also, the language bias has to be rewritten every time that the schema

changes. In Chapter 4, we propose AutoMode [53], a system that leverages information in

the schema and content of the database, encoded in data dependencies, to automatically

induce the language bias used by relational learning systems such as Castor. We show

that AutoMode delivers the same accuracy as using manually written language bias by

imposing only a slight overhead on the running time of the learning algorithm.

Because of their high expressibility, relational learning algorithms do not generally

scale to large databases – databases with dozens of relations and thousands of tuples.

Further, AutoMode may generate a language bias that does not restrict hypothesis spaces

enough to learn over large databases. In Chapter 4, we also propose to use sampling

techniques to get a subset of the data that is used to generate candidate definitions of

the target relation. We study different sampling techniques and integrate them into the

algorithm that builds candidate definitions in Castor. We show that the effectiveness

and efficiency of the learning algorithms can improve with the appropriate sampling

techniques.

Robustness Against Content Heterogeneities. One form of representational

variation consists in using different names to refer to the same entity. This form of

representational variation is particularly common when the information about a domain

is spread across several data sources or when the input data has low quality. We refer

to this representational variation as content heterogeneity. Content heterogeneity is

problematic because learning algorithms treat database entities with different names

as different real-world entities. This issue may significantly impact the accuracy of

the learned models. In Chapter 5, we propose CastorX [56], an extension of Castor

that performs relational learning over heterogeneous databases. CastorX takes as input

declarative constraints called matching dependencies. Matching dependencies specify

the attributes across relations or databases that contain values that may refer to the

same real-world entity. CastorX encodes the information about the heterogeneity of

the data, specified through matching dependencies, in the candidate definitions of the

target relation. CastorX learns a definition over the heterogeneous databases, and then

integrates some of the databases only if the learned definition so requires. That is,

CastorX interchanges the integration and learning operations. We show that CastorX is

able to learn accurate definitions over heterogeneous databases efficiently.
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We conclude with Chapter 6 where we present a summary of the achievements and

ideas for future directions.
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Chapter 2: Preliminaries

In this chapter, we introduce some background concepts related to relational databases

and first-order logic. These concepts are used throughout all chapters of this dissertation.

Next, we explain relational machine learning algorithms, which we use to learn concepts

over relational databases.

2.1 Basic Definitions

We fix two disjoint (countably) infinite sets of relation symbols and attribute symbols.

Each relation symbol R is associated with a set of attribute symbols denoted as sort(R).

Let D be a countably infinite domain of values, i.e., constants. An instance IR of relation

symbol R with n = |sort(R)| is a (finite) relation over Dn. The number of attributes in

R, i.e., |sort(R)|, is called the arity of R. A schema R is a pair (R,Σ), where R and Σ

are finite sets of relation symbols and constraints, respectively.

A constraint restricts the properties of data stored in a database. Examples of con-

straints are functional dependencies (FD) and inclusion dependencies (IND), i.e., refer-

ential integrity. We also refer to constraints as data dependencies. Let πX(IR), where

X ⊆ sort(R), denote the projection of relation IR on attribute set X. Let πX(t), where

t ∈ IR and X ⊆ sort(R), denote the projection of tuple t on attribute set X. Relation

IR satisfies FD X → Y , where X,Y ⊂ sort(R), if for each pair s, t of tuples in IR,

πX(s) = πX(t) implies πY (s) = πY (t). Given relation symbols R and S and sets of

attributes X ∈ sort(R) and Y ∈ sort(S), relations IR and IS satisfy IND R[X] ⊆ S[Y ]

if πX(IR) ⊆ πY (IS). If both INDs R[X] ⊆ S[Y ] and S[Y ] ⊆ R[X] hold in a schema, we

denote them as R[X] = S[Y ] and call it an IND with equality. An instance of schema

R is a mapping I over R that associates each relation R ∈ R to an instance IR that

satisfies all constraints in Σ. The set Σ may logically imply other constraints, e.g., FDs

X → Y and Y → Z imply X → Z [2]. The set of all constraints implied by Σ is denoted

by Σ+. To simplify our notations, we use Σ and Σ+ interchangeably.

An atom is a formula in the form of R(u1, . . . , un), where R is a relation symbol, n =
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|sort(R)|, and each ui, 1 ≤ i ≤ n, is a variable or constant. If all ui’s are constants,

the atom is a ground atom. A literal is an atom or the negation of an atom. A ground

literal is a literal whose atom is a ground atom. A clause is a finite disjunction of literals,

where at least one literal is positive, i.e., unnegated. A definite Horn clause (Horn clause

for short) is a clause with exactly one positive literal. The positive literal is called the

head of the clause, and the set of negative literals is called the body. A Horn clause has

the form: T (u) ← L1(u1), · · · , Ln(un). A Horn clause is non-recursive if its body only

contains literals with relation symbols different from the head literal. Horn clauses are

also called Datalog rules or conjunctive queries [2]. A Horn definition is a set of Horn

clauses with the same head literal. Horn definitions are also called Datalog programs

or unions of conjunctive queries. A Horn definition is non-recursive if it only contains

non-recursive clauses. A Horn definition is defined over schema R if the bodies of all

clauses in the definition contain only literals whose relation schemas are in R. A literal

Li in a clause H ← L1, . . . , Ln is head-connected if and only if at least one variable in

every Li appears either in H or in a body literal Lj , where 1 ≤ j < i.

Clause C θ-subsumes clause C ′, denoted by C ⊆θ C ′, if and only if there is some

substitution θ such that Cθ ⊆ C ′ [2, 22]. Cθ ⊆ C ′ means that the result of applying

substitution θ to clause C is a subset of clause C ′. The θ-subsumption framework is

both sound and complete for Horn clauses without functions [2].

2.2 Relational Learning

Given a relational database instance I and training examples E for a new target relation

T , relational machine learning (relational learning) algorithms learn an (approximate)

relational definition of T in terms of existing relations in the database [22, 34]. Training

examples E are usually tuples of a single target relation T , which express positive (E+)

or negative (E−) examples. The input database instance I is also called background

knowledge. The learned definition H is called a hypothesis. For efficiency reasons, hy-

potheses are usually restricted to Horn definitions without negation. A learned clause

C covers an example e if I ∧ C |= e, where |= is the entailment operator, i.e., if I and

C are true, then e is true. Definition H covers an example e if any of the clauses in H

covers e.

One benefit of relational learning algorithms is that they can exploit the relational
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structure of the data. Moreover, their learned definitions are interpretable and easy to

understand. Relational learning has several applications in database management and

machine learning, such as learning database queries [3], learning new features [21], and

learning the structure of statistical relational learning (SRL) models [33, 34].

Algorithm 1: Generic relational learning algorithm following a covering ap-
proach.

Input : Database instance I, positive examples E+, negative examples E−

Output: A Horn definition H
H = {}
U = E+

while U is not empty do
C = LearnClause(I, U,E−)
if C satisfies minimum condition then

H = H ∪ C
U = U − {c ∈ U |I ∪H |= c}

return H

Relational learning algorithms generally follow a covering approach [47, 48, 50, 54,

57]. The covering approach consists in constructing one clause at a time. After building

a clause, the algorithm adds the clause to the hypothesis, removes the positive examples

covered by the clause, and moves on to learn a new clause. Algorithm 1 sketches a

generic relational learning algorithm that follows a covering approach. The strategy

followed by the LearnClause function depends on the nature of the algorithm. In top-

down algorithms, the LearnClause function searches the hypothesis space from general

to specific hypotheses. In bottom-up algorithms, the LearnClause function searches

the hypothesis space from specific to general hypotheses. In the following chapters, we

provide concrete definitions of several relational learning algorithms.
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Chapter 3: Robustness Against Structural Heterogeneities

3.1 Motivation

Learning novel concepts over relational databases has attracted a great deal of attention

due to its applications in data management and machine learning [22, 60, 34]. Given a

relational database and training examples for some target relation, relational machine

learning (relational learning) algorithms attempt to learn (approximate) relational def-

initions of the target relation in terms of existing relations in the database [22, 54, 67].

Since the space of possible definitions, e.g., all Datalog programs, is enormous, relational

learning algorithms must employ heuristics to search for effective definitions. Unfortu-

nately, such heuristics typically depend on the precise choice of schema of the underlying

database. This issue occurs even if the schemas represent essentially the same informa-

tion. For example, consider the UW-CSE database (alchemy.cs.washington.edu/data/uw-

cse), which contains information about a computer science department. Table 3.1 shows

two schemas for the UW-CSE database, which is used as a common relational learning

benchmark. The Original schema was designed by relational learning experts. This de-

sign is generally discouraged in the database community, as it delivers poor usability

and performance in query processing without providing any advantages in terms of data

quality in return [2]. A database designer may use a schema closer to the 4NF schema in

Table 3.1. Because each student stud has only one phase and years, a database designer

may compose relations student, inPhase, and yearsInProgram. She may also combine re-

lations professor and hasPosition. Such schema is more understandable and has shorter

query execution times, without introducing any redundancy.

Example 3.1.1. We use the classic relational learning algorithm FOIL [57] to learn a

definition for the advisedBy(stud, prof) relation over the Original and 4NF schemas of

the UW-CSE database, shown in Table 3.1. FOIL learns the following Datalog rule over

the UW-CSE database with the Original schema:

advisedBy(x, y)←inPhase(x, ‘post quals’), ta(v, x, w), taughtBy(v, y, z).
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Original Schema 4NF Schema

student(stud) student(stud,phase,years)
inPhase(stud,phase) professor(prof,position)

yearsInProgram(stud,years) publication(title,person)

professor(prof) courseLevel(crs,level)

hasPosition(prof,position) taughtBy(crs,prof,term)

publication(title,person) ta(crs,stud,term)

courseLevel(crs,level)
taughtBy(crs,prof,term)

ta(crs,stud,term)

Table 3.1: Two schemas for the UW-CSE dataset.

On the other hand, FOIL learns the following Datalog rule over the UW-CSE database

with the 4NF schema:

advisedBy(x, y)←student(x, ‘post generals’, v), publication(z, x), publication(z, y).

The testing set contains 9 positive examples and 18 negative examples. The rule learned

over the Original schema covers 1 positive example and 0 negative examples. On the

other hand, the rule learned over the 4NF schema covers 4 positive examples and 1

negative example.

Generally, there is no canonical schema for a particular set of content in practice and

people often represent the same information in different schemas [2, 29]. For example,

it is generally easier to enforce integrity constraints over highly normalized schemas [2].

On the other hand, because more-normalized schemas usually contain many relations,

they are hard to understand and maintain. It also takes a relatively long time to answer

queries over database instances with such schemas [2]. Thus, a database designer may

sacrifice data quality and choose a more denormalized schema for its data to achieve

better usability or performance. Further, as the relative priorities of these objectives

change over time, the schema may also evolve.

In order to effectively use relational learning algorithms, i.e., deliver definitions for

the target relations that a domain expert would judge as correct and relevant, users

generally have to restructure their databases. These algorithms do not normally offer

any clear description of their desired schema, so database users have to rely on their
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own expertise or proceed by trial and error to find such schemas. Nevertheless, we

ideally want our database analytics algorithms to be used by ordinary users, not just

experts who know the internals of these algorithms. Further, the structure of large-scale

databases constantly evolves, and we want to move away from the need for constant

expert attention to keep learning algorithms effective. Researchers often use (statistical)

relational learning algorithms to solve various important core database problems, such

as query learning [3], schema mapping [14], and entity resolution [33]. Thus, the issue

of schema dependence appears in other areas of database management.

One approach to solving the problem of schema dependence is to run a learning

algorithm over all possible schemas for a validation subset of the data and select the

schema with the most accurate answers. Nonetheless, computing all possible schemas of

a DB is generally undecidable [29]. One may limit the search space to a particular family

of schemas to make their computation decidable. For instance, she may choose to check

only schemas that can be transformed to other schemas via join and project operations,

i.e. composition and decomposition [2]. However, the number of possible schemas within

a particular family of a data set is extremely large. For example, a relational table may

have an exponential number of distinct decompositions. As many learning algorithms

need some time for parameter tuning under a new schema, it may take a prohibitively

long time to find the best schema. Further, since relational learning algorithms need

to access the content of the database, one has to transform the underlying data to the

desired schema, which may not be practical for a large or constantly evolving database.

In this chapter, we introduce the property of schema independence, i.e., logical scala-

bility, of relational learning algorithms. We propose a formal framework to evaluate the

property of schema independence of a relational learning algorithm for a given family

of schema changes. Since none of the current relational learning algorithms are schema

independent, we leverage concepts from database literature to design a schema indepen-

dent algorithm. The main contributions of this chapter are:

1. We define the property of schema independence (Section 3.2), which formalizes the

notion of a learning algorithm returning equivalent answers over schema transfor-

mations that preserve information content.

2. We analyze the property of schema independence for the popular families of top-

down [47, 57] (Section 3.4) and bottom-up [48, 50] learning algorithms (Section 3.5).
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We prove that they are not schema independent under (de-)composition transfor-

mations.

3. We introduce Castor, a bottom-up algorithm that is provably schema independent

under (de-)composition (Section 3.6). Castor achieves schema independence by

integrating database constraints into the learning algorithm. Castor uses various

techniques to learn efficiently over large databases.

4. We formalize the notion of schema independence for query-based learning algo-

rithms, which learn the target concepts by asking queries to an oracle, e.g., a

database user [3, 41]. We prove that algorithms in this family are not schema

independent (Section 3.7).

5. We empirically compare the schema independence, effectiveness, and efficiency of

Castor to some popular relational learning algorithms under (de-)composition using

a widely used benchmark and real-world databases (Section 3.8). Our empirical

results generally confirm our theoretical results and show that Castor is more

efficient and as effective as, or more effective than, current algorithms.

3.2 Framework for Schema Independence

3.2.1 Relational Learning

Relational learning algorithms learn first-order definitions from training examples and

a relational database instance I. The definitions are usually restricted to non-recursive

Horn definitions without negation for efficiency reasons. In this chapter, we use relational

learning algorithms to learn Horn definitions that define new target relations. The

relation symbol in the head literals of all clauses in a definition is the target relation.

Example 3.2.1. Consider using a relational learning algorithm and the UW-CSE database

with the Original schema shown in Table 3.1 to learn a definition for the target relation

collaborated(x, y), which indicates that person x has collaborated with person y. The

algorithm may return the definition

collaborated(x, y)← publication(p, x), publication(p, y),
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which indicates that two persons have collaborated if they are co-authors.

We denote the set of all Horn definitions over schema R by HDR. This set can

be very large, which means that algorithms would need a lot of resources to explore

all definitions. The hypothesis space of a relational learning algorithm is the set of all

possible Horn definitions that the algorithm can explore. Because resources are limited

in practice, algorithms accept parameters that either restrict the hypothesis space or the

search strategy. For instance, an algorithm may consider only clauses whose number of

literals are fewer than a given number, or may follow a greedy approach where only one

clause is considered at a time. Let the parameters for a learning algorithm be a tuple

of variables γ = 〈γ1, ..., γr〉, where each γi is a parameter for the algorithm. We denote

the parameter space by Γ. We denote the hypothesis space (or language) of algorithm

A over schema R with parameters γ as LAR,γ . The hypothesis space LAR,γ is a subset of

HDR [47, 57].

Example 3.2.2. Continuing Example 3.2.1, consider restricting the hypothesis space to

clauses whose number of literals are fewer than a given number, which we call clause-

length. Assume that we are now interested in learning a definition for the target relation

collaboratedProf(x,y), which indicates that professor x has collaborated with professor y,

under the Original schema. If we set clause-length = 5, the learning algorithm is able to

learn the definition

collaboratedProf (x, y)←professor(x), professor(y), publication(p, x), publication(p, y).

However, if we set clause-length = 3, the previous definitions is not in the hypothesis

space of the algorithm.

3.2.2 Mapping Database Instances

One may view a schema as a way of representing background knowledge used by relational

learning algorithms to learn the definitions of target relations. Intuitively, in order to

learn essentially the same definitions over schemas R and S, we should make sure that

R and S represent basically the same information. Let us denote the set of database

instances of schema R as I(R). In order to compare the ability of R and S to represent

the same information, we would like to check whether for each database instance I ∈
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I(R) there is a database instance J ∈ I(S) that contains basically the same information

as I. We adapt the notion of equivalency between schemas to precisely state this idea [29,

40].

Given schemas R and S, a transformation is a (computable) function τ : I(R) →
I(S). For brevity, we write transformation τ as τ : R → S. Transformation τ is total

if it is defined for every element of I(R). Transformation τ is invertible if and only if it

is total and there exists a transformation τ−1 : S → R such that the composition of τ

and τ−1 is the identity mapping on I(R), that is τ−1(τ(I)) = I for I ∈ I(R). We call

τ−1 the inverse of τ and say that τ is invertible. If transformation τ is invertible, one

can convert every instance I ∈ I(R) to an instance J ∈ I(S) and reconstruct I from the

available information in J . If τ : R → S is bijective, schemas R and S are information

equivalent via τ . Informally, if two schemas are information equivalent, one can convert

the databases represented using one of them to the other without losing any information.

Hence, one can reasonably argue that equivalent schemas essentially represent the same

information. Our definition of information equivalence between two schemas is more

restricted that the ones proposed in [29, 40]. We assume that in order for schemas R
and S to be information equivalent via τ , τ−1 must be total. Although more restricted,

this definition is sufficient to cover the transformations discussed in this chapter.

Example 3.2.3. In addition to the functional dependencies shown in Table 3.1, let

the following inclusion dependencies hold over the relations of the Original schema in

this table: student[stud] = inPhase[stud], student[stud] = yearsInProgram[stud], profes-

sor[prof] = hasPosition[prof ]. One may define the transformation τ that uses these

inclusion dependencies to join relations student, inPhase, and yearsInPrograms in the

Original schema to create relation student in the 4NF schema, and join relations pro-

fessor and hasPosition in the Original schema to create relation professor in the 4NF

schema. Transformation τ maps each instance of the Original schema to an instance

of the 4NF schema. One may define the inverse transformation τ−1 that uses the func-

tional dependencies in Table 3.1 to project relation student in the 4NF schema to relations

student, inPhase and yearsInProgram in the Original schema, and project relation pro-

fessor in the 4NF schema to relations hasPosition and professor in the Original schema.

Transformation τ−1 maps each instance of the 4NF schema to an instance of the Original

schema. Hence, the Original and 4NF schemas are information equivalent via transfor-
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mation τ .

3.2.3 Mapping Definitions

Let hR and hS be Horn definitions over schemas R and S, respectively. Definitions hR

and hS are equivalent if they return the same results over all corresponding database

instances of R and S. We use the operator ≡ to indicate that two definitions are

equivalent. Let HDR and HDS be the sets of all Horn definitions over schema R and S,

respectively. In order to learn equivalent definitions over schemas R and S, we should

make sure that the sets HDR and HDS contain equivalent definitions. That is, for every

definition hR ∈ HDR, there is a equivalent Horn definition in HDS , and vice versa. If

the set of Horn definitions over R is a superset or subset of the set of Horn definitions

over S, it is not reasonable to expect a learning algorithm to learn equivalent definitions

in R and S.

Let LR be a set of Horn definitions over schema R such that LR ⊆ HDR. Let

hR ∈ LR be a Horn definition over schema R and I ∈ I(R) be a database instance. The

result of applying a Horn definition hR to database instance I is the set containing the

head of all instantiations of hR for which the body of the instantiation belongs to I(R).

The result of applying hR on I is denoted by hR(I).

Definition 3.2.4. Transformation τ : R → S is definition-preserving with respect to

LR and LS if and only if there exists a total function δτ : LR → LS such that for every

definition hR ∈ LR and I ∈ I(R), hR(I) = δτ (hR)(τ(I)).

Intuitively, Horn definitions hR and δτ (hR) deliver the same results over all corre-

sponding database instances in R and S, respectively. We call function δτ a definition

mapping for τ . Transformation τ is definition-bijective with respect to LR and LS if and

only if τ and τ−1 are definition-preserving with respect to LR and LS , respectively. If τ

is definition-bijective with respect to equivalent sets of Horn definitions, one can rewrite

each Horn definition over R as an equivalent Horn definition over S, and vice versa.

3.2.4 Bijective and Definition-Bijective Transformations

In order for a learning algorithm to learn equivalent definitions over schemas R and

S, where τ : R → S, τ should be both bijective and definition-bijective with respect
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to HDR and HDS . If τ is bijective, the learning algorithm takes as input the same

background knowledge. If τ is definition-bijective, the hypothesis spaces of the learning

algorithm over both schemas contain equivalent definitions. Nevertheless, it may be

hard to check both conditions for given schemas. We extend the results by Fan and

Bohannon [29] to find the relationship between the properties of bijective and definition-

bijective transformations. In this chapter, we consider only transformations that can be

written as sets of Horn definitions. We call these Horn transformations. Composition

and decomposition are well-known examples of Horn transformations [2].

Example 3.2.5. Let R be the Original schema and S be the 4NF schema in Exam-

ple 3.2.3. The transformation from the Original schema to the 4NF schema can be

written as the following set of Horn definitions:

student(x, y, z)←student(x), inPhase(x, y), yearsInProgram(x, z).

professor(x, y)←professor(x), hasPosition(x, y).

publication(x, y)←publication(x, y).

The inverse of this transformation from the 4NF to Original schema is a set of projection

operators, which can also be written as the following set of Horn definitions:

student(x)←student(x, y, z).

inPhase(x, y)←student(x, y, z).

yearsInProgram(x, z)←student(x, y, z).

professor(x)←professor(x, y).

hasPosition(x, y)←professor(x, y).

publication(x, y)←publication(x, y).

Let transformation τ : R → S and its inverse τ−1 : S → R be Horn transformations.

The head of each Horn definition in τ−1 is a relation in R. Let hR be a Horn definition

in HDR. Let J be in instance in I(S). The composition of hR and τ−1 applied to J ,

denoted by hR ◦ τ−1(J), is obtained by applying transformation τ−1 to J , denoted by

τ−1(J), followed by applying definition hR to τ−1(J), denoted by hR(τ−1(J)). That is,

hR ◦ τ−1(J) = hR(τ−1(J)), for J ∈ I(S). Transformation τ−1 is a Horn transformation
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whose body literals contain relations in S. The composition hR ◦τ−1 is a Horn definition

applied to the result of τ−1. Therefore, the composition hR ◦ τ−1 is a Horn definition

that belongs to HDS .

Example 3.2.6. Consider the following Horn definition hR defined over the Original

schema of Table 3.1:

collaboratedProf (x, y)←professor(x), inPhase(x, u), professor(y), inPhase(y, v),

publication(p, x), publication(p, y).

Given the transformation τ−1 from the 4NF schema to the Original schema given in

Example 3.2.5, the composition hR ◦ τ−1 is the following Horn definition:

collaboratedProf (x, y)←professor(x, u), professor(y, v),

publication(p, x), publication(p, y).

Proposition 3.2.7. Given schemas R and S, if transformation τ : R → S is bijective

and both τ and τ−1 are Horn transformations, then τ is definition-bijective with respect

to HDR and HDS .

Proof. Let us define a function δτ : HDR → HDS to be δτ (hR) = hR ◦ τ−1 for any

hR ∈ HDR. We know that δτ (hR) ∈ HDS . Furthermore, for every hR ∈ HDR and

I ∈ IR, hR(I) = hR(τ−1(τ(I))) = (hR ◦ τ−1)(τ(I))) = δτ (hR)(τ(I)). Similarly, we

define a function δ
′
τ : HDS → HDR as δ

′
τ (hS) = hS ◦ τ for any hS ∈ HDS . Clearly,

δ
′
τ (hS) ∈ HDR. Also, for every hS ∈ HDS and every J ∈ IS such that there is an

I ∈ IR where J = τ(I), hS(J) = hS(τ(I)) = (hS ◦ τ)(I) = δ
′
τ (hS)(I). Thus, τ is

definition-bijective with respect to HDR and HDS .

Intuitively, if τ : R → S is bijective and both τ and τ−1 are Horn transformations,

every Horn definition in HDR can be rewritten as a Horn definition in HDS such that

they return the same results over equivalent database instances. Hence, in the rest of

this chapter, we consider only the bijective Horn transformations whose inverses are

Horn transformations. In this chapter, we focus on composition and decomposition

transformations, explained in Section 3.3, which can be written as sets of project and

join operations. There exist other types of transformations that can also be written as
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Horn transformations, but are not composition and decomposition transformations. One

example of such transformation is horizontal decomposition, where the set of tuples of

one relation is decomposed into two or more relations. We leave the study of this type

of transformations as future work.

Example 3.2.8. Let R be the Original schema and S be the 4NF schema in Exam-

ple 3.2.3, and τ : R → S and τ−1 : S → R are the Horn transformation explained in

Example 3.2.5. According to Proposition 3.2.7, τ is definition-bijective with respect to

HDR and HDS .

3.2.5 Schema Independence Property

The hypothesis space determines the set of possible Horn definitions that the algorithm

can explore. Example 3.2.2 showed that an algorithm is able to learn a definition for a

target relation with some hypothesis space but not in another, more-restricted space. In

order for an algorithm to learn equivalent definitions for a target relation over schemas R
and S, it should have equivalent hypothesis spaces over R and S. We call this property

hypothesis-invariance. Let Γ be the parameter space for algorithm A.

Definition 3.2.9. Algorithm A is hypothesis-invariant under transformation τ : R → S
if and only if τ is definition-bijective with respect to LAR,γ and LAS,γ, for all γ ∈ Γ.

Algorithm A is hypothesis-invariant under a set of transformations if and only if A is

hypothesis-invariant under every transformation in the set. We now define the notion of

schema independence for relational learning algorithms over a bijective transformation.

A relational learning algorithm A(I, E, γ) takes as input a database instance I, training

examples E, and parameters γ ∈ Γ, and outputs a hypothesis in LAR,γ .

Definition 3.2.10. Algorithm A is schema independent under bijective transformation

τ : R → S if and only if A is hypothesis-invariant under τ and for every I ∈ I(R) and

all γ ∈ Γ, we have: A(τ(I), E, γ) ≡ δτ (A(I, E, γ)), where δτ is the definition mapping

for τ .

Algorithm A is schema independent under the set of transformations if and only if it

is schema independent under each transformation in the set. Note that if an algorithm is

schema independent under transformation τ , it is hypothesis-invariant under τ . However,
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it is possible for an algorithm not to be schema independent, but be hypothesis-invariant.

In such cases, the cause of schema dependence must necessarily be related to the search

process of the algorithm, rather than hypothesis-representation capacity.

Example 3.2.11. Consider the Original schema and the 4NF schema in Example 3.2.3.

The Original schema is the result of a decomposition of the 4NF schema. Consider the

learning algorithm FOIL. If the target relation is collaboratedProf(x,y), as in Exam-

ple 3.2.2, FOIL is able to learn equivalent definitions under the Original schema and the

4NF schema. But, if the target relation is advisedBy(x,y), FOIL learns non-equivalent

definitions under these schemas, as seen in Example 3.1.1, and is not schema indepen-

dent.

3.3 Composition and Decomposition

There are many bijective Horn transformations between relational schemas [2, 40]. In

this chapter, we explore the schema independence of relational learning algorithms under

two widely used Horn transformations called decomposition, where the transformation is

the projection operator, and composition, where the transformation is the natural join

operator [2]. Our reasons for selecting these transformations are two-fold. First, they

are used in most normalizations and de-normalizations, e.g., 3rd normal form, which

are arguably one of the most frequent schema modifications and their importance has

been recognized from the early days of the relational model [2]. Database designers often

normalize schemas to remove redundancy and insertion and deletion anomalies. On the

other hand, database designers denormalize schemas to improve query processing time

and schema readability [2]. We also observe several cases of them in relational learning

benchmarks, one of which is presented in Section 3.1.

We define decomposition as follows [2]. Let Si ./ Sj and ISi ./ ISj denote the natural

join between Si and Sj and their instances, respectively. We restrict the definition of

natural join for the cases where Si and Sj have at least one attribute symbol in common

to avoid Cartesian product. Let ./ni=1 Si show the natural join between S1, . . ., Sn.

Recall that if both INDs S1[A] ⊆ S2[B] and S2[B] ⊆ S1[A] hold in a schema, we denote

them as S1[A] = S2[B] and call it an IND with equality.

Definition 3.3.1. A decomposition of schema R = (R,ΣR) with single relation sym-
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bol R is schema S = (S,ΣS) with relation symbols S1 . . . Sn such that sort(R) =

∪1≤i≤nsort(Si) and

1. For each relation IR there is one and only one instance (IS1 . . . ISn) of S such that

πsort(Si)(IR) = ISi, 1 ≤ i ≤ n, and ./ni=1 ISi = IR.

2. For all Si, Sj, 1 ≤ i, j ≤ n, such that X = sort(Si) ∩ sort(Sj) 6= ∅, ΣS contains

IND with equality Si[X] = Sj [X].

3. We have ΣS = ΣR ∪ λ, where λ is the set of INDs with equality in the second

condition.

The first and third conditions in Definition 3.3.1 are generally known as lossless join

and dependency preservation properties, respectively. The second condition in Defini-

tion 3.3.1 guarantees that the natural join of relations in every instance IS of S does

not lose any tuples in IS . Table 3.1 depicts an example of a decomposition. Relation

symbol student in the 4NF schema is decomposed into student, inPhase, and yearsIn-

Program in the Original schema. The conditions of Definition 3.3.1, e.g., lossless join

property, hold in this example due to the functional dependencies in the Original and

4NF schemas [2]. These conditions may also be satisfied because of other types of con-

straints in the schema, such as multi-valued dependencies. A composition is the inverse

of a decomposition, which is expressed by the natural join operator.

Consider again schema S in Definition 3.3.1. The join ./ni=1 ISi is globally consistent

if for each j, 1 ≤ j ≤ n, πsort(Sj )(./
n
i=1 ISi) = ISj [2]. Intuitively speaking, a join is

globally consistent if none of its relations has a dangling tuple regarding the join. For

example, the join between the relations of S in the first condition of Definition 3.3.1 is

globally consistent. The join ./ni=1 ISi is pairwise consistent if for each 1 ≤ i, j ≤ n,

πsort(Si)(ISi ./ ISj ) = ISi . In other words, ISi does not lose any tuple after joining with

ISj . The join ./ni=1 Si is acyclic if each instance ./ni=1 ISi that is pairwise consistent is

globally consistent [2]. For example, the join S1 ./ S2 in schema S1 :{S1(A,B), S2(A,C)}
is acyclic. But, the join S3 ./ S4 ./ S5 in schema S2 : {S3(A,B), S4(B,C), S5(B,A), }
is cyclic. In this chapter, we consider only the decompositions where the join in the

first condition of Definition 3.3.1 is acyclic [2]. Acyclic joins cover most real-world de-

compositions [2]. For example, most normal forms, e.g., 3NF, BCNF, 4NF, have acyclic

joins.
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For simplicity, we consider leaving a relation unchanged as a special case of decompo-

sition. We define a decomposition (composition) of a schema with more than one relation

as a finite set of applications of composition and decomposition to the relations in the

schema. Every decomposition is bijective [2]. Because each decomposition is bijective,

every composition is also bijective. Because both projection and natural join can be

written as Horn definitions, each decomposition (composition) and its inverse are Horn

transformations. Hence, they are definition-bijective. In this chapter, we explore the

property of schema independence for composition and decomposition.

3.4 Top-down Algorithms

In this section, we study relational learning algorithms that follow a top-down approach.

The hypothesis space in top-down algorithms is a tree in which nodes represent clauses

and each edge is the application of a basic refinement operator, which generally consists

of adding a new literal to the clause. Top-down algorithms start from the most general

clause, which corresponds to the root of the tree, and repeatedly refine it until reaching

some stopping condition. The strategy of searching the tree varies between different

top-down algorithms. For instance, FOIL [57, 67] is an efficient and popular top-down

algorithm that follows a greedy best-first search strategy. Given the current clause, FOIL

specializes a clause by adding the literal that provides the most information gain. FOIL

stops adding literals to the clause when the number of bits required to encode the clause

exceeds the number of bits required to indicate the number of positive examples covered

by the clause. Progol [47] is another well-known top-down algorithm similar to FOIL,

except that it does not follow a greedy search strategy, and it restricts the literals that

can be added to the clause. Further, Progol limits the length of the clause, i.e., the

maximum number of literals in a clause.

Intuitively, because composition and decomposition modify the number of relations

in a schema, equivalent clauses over the original and transformed schemas may have

different lengths and would require different number of bits to be encoded. Hence, the

stopping conditions used by FOIL and Progol may produce different hypothesis spaces

over different schemas.

Theorem 3.4.1. FOIL is not hypothesis-invariant.
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Proof. Let R be a schema, E be the training data, C be a clause, n be the number of

variables in C, and p be the number of positive examples covered by C. The number of

bits required to indicate that these examples are covered by C is be(C) = log2(|E|) +

log2(
(|E|
p

)
) [57]. The number of bits bc(C) required to encode clause C is equal to the

sum of the number of bits required to encode each literal in C, reduced by log2(m!),

where m is the number of literals in C. The number of bits required to encode a literal

is 1 + log2(|R|) + log2(n) [57]. A clause C is in hypothesis space L if bc(C) ≤ be(C).

Let relation R1(A,B,C) be in R and τ : R → S decompose R1 to S1(A,B) and

S2(B,C). Let T (A) be the target relation. Consider hypothesis hR: T (x)← R1(x, y, z)

over schema R, whose mapped hypothesis is hS = δτ (hR) = T (x) ← S1(x, y), S2(y, z).

Then, bc(hR) = 1 + log2(1) + log2(3) − log2(1!) and bc(hS) = (1 + log2(2) + log2(3)) +

(1 + log2(2) + log2(3))− log2(2!).

Let |E| = 5 and hR cover p = 2 examples. Because hR ≡ hS , then be(hR) = be(hS).

Let LFOILR and LFOILS be the hypothesis spaces over R and S, respectively. Hypothesis

hR is in LFOILR because bc(hR) ≤ be(hR), but hS is not in LFOILS because bc(hS) > be(hS).

Therefore, the hypothesis spaces over schemas R and S are not equivalent.

One may want to fix the problem of schema dependence in Progol by choosing dif-

ferent values for the maximum lengths over the original and transformed schemas. The

following theorem states that it is not possible to achieve equivalent hypothesis spaces

by restricting the maximum length of clauses no matter what values are used over the

original and transformed schemas.

Theorem 3.4.2. Progol is not hypothesis-invariant.

Proof. Let relations R1(A,B,C) and R2(D,B,E) be in R and τ : R → S decompose R1

to S1(A,B) and S2(B,C) andR2 to S3(D,B) and S4(B,E). Let l be the maximum clause

length and γ = 〈l〉 be the parameter setting for Progol. Without loss of generality we set

the value of l to 2. Let T (x, y) be the target relation. Consider hypothesis hR: T (x, y)←
R1(x, z, w), R2(y, z, v) over schema R whose mapped hypothesis δτ (hR) is: T (x, y) ←
S1(x, z) , S2(z, w), S3(y, z), S4(z, v). Hypothesis hR is in the hypothesis language LProgolR,γ
because it clause length is equal to 2. However, hypothesis δτ (hR) is not in the hypothesis

language LProgolS,γ because its clause length exceeds 2. Therefore, hypothesis spaces LProgolR,γ
and LProgolS,γ are not equivalent. To achieve hypothesis equivalence, one may change the
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parameter setting for S to γ′ with l = 4 so that the hypothesis δτ (hR) becomes a member

of LProgolS,γ′ . This modification also brings the new hypothesis T (x, y)← S1(x, z), S1(x,w),

S1(x, t), S1(x, y) to LProgolS,γ′ . The equivalent hypothesis to this new hypothesis over R is

T (x, y) ← R1(x, z, v1) , R1(x,w, v2), R1(x, t, v3), R1(x, y, v4) where vi, 1 ≤ i ≤ 4, is a

fresh variable. Because this hypothesis over R is minimal, one has to also change l over

R to 4 to achieve equivalent hypothesis spaces overR and S. Hence, we have to alternate

between the parameter settings over R and S without any stopping condition. Thus,

there are not any fixed parameter settings that ensure the hypothesis equivalence over

R and S.

3.5 Bottom-up Algorithms

Bottom-up algorithms also follow the covering approach shown in Algorithm 1. How-

ever, their LearnClause function searches the hypothesis space from specific to general

hypotheses. Given a positive example, bottom-up algorithms build the most specific

clause in the hypothesis space, called bottom-clause, that covers the example, relative

to the database instance [48, 50]. Then, they generalize the bottom-clause to find a

definition that covers as many positive and as few negative examples as possible. There

are multiple bottom-up algorithms whose differences lie mainly in their generalization

operator [7, 48, 50]. We consider two algorithms that are representative of the family of

bottom-up algorithms: Golem [48] and ProGolem [50].

3.5.1 Bottom-clause Construction

Let I be a database instance over schema R. The bottom-clause associated with positive

example e, relative to I, denoted by ⊥e,I , is the most specific clause over R that covers

e, relative to I [47]. The bottom-clause construction algorithm consists of two phases.

First, it finds all the information in I relevant to e. Then, given the information relevant

to e, it creates the bottom-clause ⊥e,I . The information relevant to example e is the

set of tuples Ie ⊆ I that are connected to e. A tuple t is connected to e if we can

reach t using a sequence of search operations, starting from e. Algorithm 2 depicts the

bottom-clause construction algorithm. The algorithm maintains a set M that contains

all seen constants. Let e = T (a1, . . . , an) be a training example. First, the algorithm
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adds a1, . . . , an to M . These constants are values that appear in tuples in I. Then, it

searches all tuples in I that contain at least one constant in M and adds them to Ie. For

each new tuple in Ie, the algorithm extracts new constants and adds them to M . The

algorithm repeats this process for a fixed number of iterations d. To create the bottom-

clause Ce from Ie, the algorithm first maps each constant in M to a new variable. It

creates the head of the clause by creating a literal for e and replacing the constants in

e with their assigned variables. Then, for each tuple t ∈ Ie, it creates a literal and adds

it to the body of the clause, replacing each constant in t with its assigned variable. The

algorithm may not replace some constants with variables if specified by a given language

bias, as explained in Chapter 4.

Algorithm 2: Bottom-clause construction algorithm.

Input : example e, database instance I, # of iterations d
Output: bottom-clause Ce
Ie = {}
M = {} // M stores known constants
add constants in e to M
for i = 1 to d do

foreach relation R ∈ I do
foreach attribute A in R do

IR = σA∈M (R)
foreach tuple t ∈ IR do

add t to Ie and constants in t to M

⊥e,I= create clause from e and Ie
return ⊥e,I

Example 3.5.1. Given example e=advisedBy(s1, p1) and the database instance in Ta-

ble 3.2, the bottom-clause associated with e is:

advisedBy(x, y)←student(x, ‘post generals’, ‘5’), professor(y, ‘faculty’), publication(v, x),

publication(v, y), ta(u, x, ‘spring 2010 ’), taughtBy(u, y, ‘spring 2010 ’)

courseLevel(u, ‘graduate’).

Algorithm 2 may generate very long clauses after multiple iterations. Therefore,

the number of iterations must be restricted by the parameter d. The number of iter-
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student(s1, post generals, 5) professor(p1, faculty) courseLevel(c1, graduate)
student(s2, post generals, 7) professor(p2, faculty) ta(c1, s1, spring 2010)
publication(t1, s1) publication(t1, p1) taughtBy(c1, p1, spring 2010)
publication(t2, s2) publication(t2, p2)

Table 3.2: Example database over the 4NF schema of the UW-CSE dataset.

ations limits the maximum depth of the bottom-clause [47]. The depth of a variable

x, denoted by depth(x), is 0 if it appears in the head of the clause, otherwise it is

minv∈Ux(depth(v)) + 1, where Ux are the variables of literals in the body of the clause

containing x. The depth of a literal is the maximum depth of the variables appearing in

the literal. The depth of a clause is the maximum depth of the literals appearing in the

clause. The algorithm creates literals of depth at most i in iteration i.

Example 3.5.2. The following clause, defined over the Original schema of the UW-CSE

database in Table 3.1, has depth 1:

taLevel(x, y)←ta(c, x, t), courseLevel(c, y).

On the other hand, the following clause, defined over the same schema, has depth 2:

commonLevel(x, y)←ta(c1, x, t1), ta(c2, y, t2), courseLevel(c1, l), courseLevel(c2, l).

Bottom-clauses determine the hypothesis space of a bottom-up algorithm: longer

bottom-clauses allow the algorithm to explore a larger number of definitions. To be

schema independent, bottom-up algorithms must get equivalent bottom-clauses associ-

ated with the same example, relative to equivalent instances of the original and trans-

formed schemas. Otherwise, these algorithms will not be hypothesis-invariant. Using

the parameter d, which restricts the maximum depth of bottom-clauses, does not re-

sult in such equivalent bottom-clauses because the original and transformed schemas

need different depths to create equivalent bottom-clauses. Therefore, the bottom-clause

construction algorithm is not schema independent.

Example 3.5.3. Let us compose and replace relations courseLevel(crs, level) and ta(crs,

stud, term) in the Original schema of the UW-CSE database with relation courseLevelTa(crs,

level, stud, term). The definition for target relation commonLevel from Example 3.5.2
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over this schema is the following:

commonLevel(x, y)←courseLevelTa(c1, l, x, t1), courseLevelTa(c2, l, y, t2).

This definition has depth 1. If we set the maximum depth to 1, this definition is in the

hypothesis language. However, the definition in Example 3.5.2 defined over the Original

schema is not in the hypothesis language because it contains variables that have depth 2.

Lemma 3.5.4. The bottom-clause construction algorithm is not schema independent.

Proof. Proven by contradiction with Example 3.5.3.

3.5.2 Golem

In this section, we consider a bottom-up learning algorithm called Golem [48]. Golem,

like other learning algorithms, follows a covering approach, as the one shown in Algo-

rithm 1. Golem’s LearnClause function follows a bottom-up approach, which is based on

the least general generalization (lgg) operator. Given clauses C1 and C2, the lgg of C1 and

C2 is the clause C that is more general than C1 and C2, but the least general such clause.

The notion of generality is given by θ-subsumption (defined in Section 2.1). Therefore,

clause C is more general than C1 if and only if C θ-subsumes C1 (and similarly for C2).

This notion of generality gives a computable generality relation.

The lgg of two constants a1 and a2, such that a1 6= a2, is lgg(a1, a2) = v, where v is

a new variable. The lgg of two constants that are equal, i.e., constant a, is lgg(a, a) = a.

The lgg of a constant a and a variable v is lgg(a, v) = v. The lgg of two variables v1

and v2, such that v1 6= v2, is lgg(v1, v2) = v, where v is a new variable. The lgg of

two variables that are equal, i.e., variable v, is lgg(v, v) = v. Two atoms are compatible

if they have the same relation name and the same arity. The lgg of two compatible

atoms R(u1, · · · , uk) and R(u′1, · · · , u′k), where ui and u′i are variables or constants,

is lgg(R(u1, · · · , uk), R(u′1, · · · , u′k)) = R(lgg(u1, u
′
1), · · · , lgg(uk, u

′
k)). The lgg of two

atoms that are not compatible is undefined. Two literals are compatible if their atoms

are compatible and they have the same polarity. The lgg of two compatible literals is

the lgg of its atoms. The lgg of two literals that are not compatible is undefined. The

lgg of two clauses C1 and C2 is the set of pairwise lgg operations of compatible literals

in C1 and C2. When computing the lgg of two clauses C1 and C2, the application
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of the lgg operator for a constant or variable v1 in C1 and a constant or variable v2

in C2, i.e., lgg(v1, v2) always returns the same variable v. The lgg of two clauses is

unique. The lgg of a set of clauses {C1, ..., Cn−1} is defined via pairwise operations:

lgg({C1, ..., Cn}) = lgg(lgg({C1, ..., Cn−1}), Cn). The order of pairwise applications of

the lgg operation does not matter as the lgg operator is commutative and associative.

Example 3.5.5. Consider the following clauses:

C1 = advisedBy(v1, v2)←student(v1, ‘post generals’, ‘5’),

publication(v3, v1), publication(v3, v2)

ta(v4, v1, ‘spring 2010 ’), taughtBy(v4, v2, ‘spring 2010 ’)

C2 = advisedBy(v11, v12)←student(v11, ‘post generals’, ‘7’),

publication(v13, v11), publication(v13, v12).

Then, lgg(C1, C2) is the following clause:

advisedBy(v21, v22)←student(v21, ‘post generals’, v23),

publication(v24, v21), publication(v24, v25),

publication(v24, v26), publication(v24, v22).

A ground bottom-clause is a bottom-clause that only contains constants. Given the

ground bottom-clauses of two examples e1 and e2, the operator that computes the lgg of

the two ground bottom-clauses is called the relative least general generalization (rlgg) of

e1 and e2.

Given a database instance I and training examples E+ and E−, Golem’s LearnClause

function learns a clause that covers as many positive and as few negative examples as

possible. Algorithm 3 sketches this function. Intuitively, the algorithm first randomly

selects a subset E+
S of positive examples E+. It then generates candidate clauses by

computing the rlgg between every pair of examples in E+
S . The algorithm considers only

candidate clauses that satisfy some minimum condition, e.g., minimum precision of a

clause. It then greedily includes new examples into the generalization to create new

candidate clauses. This algorithm uses the function Covers(C,E), which returns the

examples in E covered by clause C. The algorithm stops when no improvement can be
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made.

Algorithm 3: Golem’s LearnClause algorithm.

Input : Database instance I, positive examples E+, negative examples E−,
parameter K.

Output: A new clause C∗.
E+
S = K randomly selected positive examples from E+

C = {C = lgg(⊥e,I ,⊥e′,I) | e, e′ ∈ E+
S , C satifies minimum condition}

while C is not empty do
C∗ = argmaxC∈C Score(C,E+

S , E
−)

E+
S = E+

S − Covers(C∗, E
+
S )

C = {C = lgg(C∗,⊥e,I) | e ∈ E+
S , C satifies minimum condition}

return C∗

Theorem 3.5.6. The rlgg operator is schema independent.

Proof. Let τ : R → S be a bijective transformation that performs compositions or de-

compositions from relations in schema R = (R,ΣR) to relations in schema S = (S,ΣS).

Let I and J be instances of R and S, respectively, such that τ(I) = J . Let T be the

target relation, and e1 = T (a1, · · · , al) and e2 = T (b1, · · · , bl) be two positive examples.

Let (e1 ← I ′1) and (e2 ← I ′2) be the ground bottom-clauses under schema R for e1 and

e2, respectively, such that I ′1, I
′
2 ⊆ I. Similarly, let (e1 ← J ′1) and (e2 ← J ′2) be the

ground bottom-clauses under schema S for e1 and e2, respectively, such that J ′1, J
′
2 ⊆ J .

We show that the rlgg of examples e1 and e2 is equivalent under schemas R and S.

That is

rlggR(e1, e2) ≡ rlggS(e1, e2)

lgg((e1 ← I ′1), (e2 ← I ′2)) ≡ lgg((e1 ← J ′1), (e2 ← J ′2))

The lgg of clauses (e1 ← I ′1) and (e2 ← I ′2) is the set of pairwise lgg operations of com-

patible ground literals in (e1 ← I ′1) and (e2 ← I ′2). We show that the lgg of compatible

ground literals under schema R delivers equivalent results under schema S.

Let R ∈ R be a relation in R such that τ(R) = S1, · · · , Sm, 1 ≤ m ≤ |S|. Because of

Corollary 4.3.2 by Atzeni et al. [8], we know that if τ is bijective, ΣS contains inclusion

dependencies between the join attributes of S1, · · · , Sm. Let r1 = R(a1, · · · , ak) and
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r2 = R(a′1, · · · , a′k) be two ground atoms in I. Then, τ(r1) = S1(t1), · · · , Sm(tm) and

τ(r2) = S1(t
′
1), · · · , Sm(t′m) are ground atoms in J , where ti and t′i, 1 ≤ i ≤ m, are

tuples. Then, the lgg of ground atoms r1 and r2 is defined as

lgg(r1, r2) = R(lgg(a1, a
′
1), · · · , lgg(ak, a

′
k))

By applying transformation τ , R(lgg(a1, a
′
1), · · · , lgg(ak, a

′
k)) is equivalent to

S1(s1), S2(s2), · · · , Sm(sm)

where sj is a tuple that contains a subset of attributes in {lgg(a1, a
′
1), · · · , lgg(ak, a

′
k)}

for 1 ≤ j ≤ m. By definition of the lgg operator, we get

S1(s1), S2(s2), · · · , Sm(sm) =lgg(S1(t1), S1(t
′
1)), · · · , lgg(Sm(tm), Sm(t′m))

=lgg(τ(r1), τ(r2))

In Section 3.6.1 we show that the bottom-clause construction algorithm can be mod-

ified to be schema independent. Because the rlgg operator is also schema independent,

Golem can achieve schema independence. However, the size of the clauses generated by

the rlgg operator may grow exponentially with the number of positive training examples,

as we explain next. Therefore, Golem is not an efficient learning algorithm. Let C1 and

C2 be two clauses. The lgg of C1 and C2 is the set of pairwise lgg operations of compatible

literals in C1 and C2. If all the literals in the bodies of C1 and C2 are compatible, then

the clause generated by lgg(C1, C2) contains a literal for every pair of literals in C1 and

C2. Therefore, the size of lgg(C1, C2) is |C1|×|C2|, where |C1| and |C2| are the sizes of C1

and C2, respectively. As seen in Algorithm 3, given a pair of positive examples, Golem

applies the lgg operator to obtain a new clause C. It then computes the lgg between C

and the ground bottom-clause of a new positive example. Golem repeats this process

until all examples are covered. Let n be the number of positive examples to generalize

and m be the maximum length of a ground bottom-clause. Then, the length of the clause

generated by Golem is bounded by O(|C1| × · · · × |Cn|) = O(m × · · · × m) = O(mn),

i.e., it grows exponentially with the number of positive examples covered. Therefore, an
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algorithm that uses the rlgg operator, such as Golem, cannot learn efficiently without

making assumptions that do not hold over most real-world databases [50].

3.5.3 ProGolem

ProGolem is a bottom-up algorithm that can run efficiently over small or medium

databases without making generally unrealistic assumptions [50]. To explore the hy-

pothesis space and generalize clauses efficiently, ProGolem assumes that clauses are

ordered. An ordered clause is a clause where the order and duplication of literals matter.

If clause C is considered an ordered clause, then it is denoted as
−→
C . For instance, clauses

−→
C = T (x) ← P (x), Q(x),

−→
D = T (x) ← Q(x), P (x), and

−→
E = T (x) ← P (x), P (x), Q(x)

are all different.

ProGolem uses the asymmetric relative minimal generalization (armg) operator to

generalize clauses. ProGolem’s LearnClause function first generates the bottom-clause

associated with some positive example. Then, it performs a beam search to select the

best clause generated after multiple applications of the armg operator. More formally,

given clause
−→
C , ProGolem randomly picks a subset E+

S of positive examples to generalize
−→
C . For each example e′ in E+

S , ProGolem uses the armg operator to generate a candidate

clause
−→
C ′, which is more general than

−→
C and covers e′. It then selects the highest scoring

candidate clauses to keep in the beam and iterates until the clauses cannot be improved.

The beam search requires an evaluation function to score clauses. One may select an

evaluation function that is agnostic to the schema used, such as coverage, which is the

number of positive examples minus the number of negative examples covered by the

clause.

Algorithm 4: ProGolem’s ARMG algorithm.

Input : Bottom-clause ⊥e,IR , positive example e′.
Output: An ARMG of ⊥e,IR that covers e′.
−→
C is an ordered version of ⊥e,IR= T ← L1, · · · , Ln
while there is a blocking atom Li in the body of

−→
C do

Remove Li from
−→
C

Remove atoms from
−→
C which are not head-connected

Return
−→
C
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We now explain the armg operator in detail. Let ⊥e,IR be the bottom-clause associ-

ated with example e, relative to IR. Let
−→
C = T ← L1, · · · , Ln be an ordered version of

⊥e,IR . Let e′ be another example. Li is a blocking atom if and only if i is the least value

such that for all substitutions θ where e′ = Tθ, the clause
−→
C ′θ = (T ← L1, · · · , Li)θ

does not cover e′, relative to IR [50]. Algorithm 4 shows the ARMG algorithm, which

implements the armg operator. Given the bottom-clause ⊥e,IR and a positive example e′,

armg drops all blocking atoms from the body of ⊥e,IR until e′ is covered. After removing

a blocking atom, some literals in the body may not have any variable in common with

the other literals in the body and head of the clause, i.e., they are not head-connected.

ARMG also drops these literals.

For ProGolem to be schema independent, the armg operator must return equivalent

clauses given equivalent input clauses over original and transformed databases.

Example 3.5.7. Consider the following equivalent definitions for target relation hardWorking

over the Original and 4NF UW-CSE schema in Table 3.1, respectively:

hardWorking(x)←student(x), inPhase(x, ‘prelim’), yearsInProgram(x, ‘3’), publication(z, x)

hardWorking(x)←student(x, ‘prelim’, ‘3’), publication(z, x).

Assume that we use armg to generalize these clauses to cover example e′. Let e′ satisfy

literal student(x ) but not satisfy literal inPhase(x , ‘prelim’). The armg operator keeps

literal student(x ) in the first clause, but it eliminates student(x , ‘prelim’, ‘3 ’) from the

second clause. Hence, it delivers non-equivalent generalizations.

As stated in Lemma 3.5.4, the bottom-clause construction algorithm is not schema

independent. Thus, neither the bottom-clause construction nor the generalization phases

in ProGolem are schema independent.

Theorem 3.5.8. ProGolem is not schema independent.

3.6 Castor

This section presents Castor, a bottom-up relational learning algorithm. Castor uses the

covering approach presented in Algorithm 1. It follows the same search strategy as Pro-

Golem, but integrates inclusion dependencies (INDs) into the bottom-clause construction
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and generalization algorithms to achieve schema independence. INDs are normally stored

in the schema of the database. If they are not available in the schema, one can extract

them from the database content, as seen in Chapter 4. If we apply the INDs in schema R
to Horn clause hR over R, we get an equivalent Horn clause that has a similar syntactic

structure to its equivalent Horn clause in any decomposition of R [2]. For example, con-

sider schema R :{R1(A,B), R2(A,C)} with the IND R1[A] = R2[A] and the clause hR :

T (x)← R1(x, y). Because each value in R1[A] also appears in R2[A], we can rewrite hR

as gR : T (x)← R1(x, y), R2(x, z). Now, consider a composition of R, S :{S1(A,B,C)}.
The clause hS : T (x)← S1(x, y, z) over S is equivalent to both hR and gR. Clauses gR

and hS have also similar syntactic structures: there is a bijection between the distinct

variables in gR and hS . However, such bijection does not exist between hR and hS . As

learning algorithms modify the syntactic structure of clauses to learn a target definition

and hR and hS have different syntactic structures, these algorithms may modify them

differently and generate non-equivalent clauses. For instance, assume that an algorithm

renames variable z to x in hS to generate clause h
′
S : T (x)← S1(x, y, x). This algorithm

cannot apply a similar change to hR as hR does not have any corresponding variable to

z. But, the algorithm can apply the same modification to gR and generate an equivalent

Horn clause to h
′
S . Moreover, as INDs generally reflect important relationships, they

can be used by the algorithm for improving the effectiveness of the learned definitions.

Castor’s LearnClause function is shown in Algorithm 5. It first generates the bottom-

clause associated with some positive example using the modified bottom-clause con-

struction algorithm presented in Section 3.6.1. It minimizes the bottom-clause using

the procedure explained in Section 3.6.5. Then, it performs a beam search to select the

best candidate after multiple applications of the modified ARMG algorithm, explained

in Section 3.6.2.1. Finally, it reduces the best candidate using the algorithm explained

in Section 3.6.2.2.

3.6.1 Castor Bottom-Clause Construction

Castor selects a positive example and constructs its bottom-clause by following the nor-

mal procedure of bottom-clause construction: at each iteration, it selects a relation and

adds one or more literals of that relation to the bottom-clause. Let relation symbol R in

the schema R be decomposed to relation symbols S1 . . . Sn in the transformed schema
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Algorithm 5: Castor’s LearnClause algorithm.

Input : Database instance I, positive examples E+, negative examples E−,
parameters K and N .

Output: A new clause C.−→
C = Castor BottomClause(first example in E+)
−→
C = Minimize(

−→
C )

BC = {
−→
C }

repeat
BestScore = highest score of candidates in BC
E+
S = K randomly selected positive examples from E+

NC = {}
foreach clause C ∈ BC do

foreach e′ ∈ E+
S do

C ′ = Castor ARMG(C, e′)
if Score(C ′) > BestScore then

NC = NC ∪ C ′
BC = highest scoring N candidates from NC

until NC = {}
C ′ = highest scoring candidate in BC
return Castor Reduce(C ′, I, E−)
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S. If the bottom-clause construction algorithm considers tuple r in an instance of R,

IR, it must also examine tuples s1, . . . , sn in instances IS1 , . . . , ISn , respectively, such

that ./ni=1 [si] = r, to ensure that the produced bottom-clauses over both schemas are

equivalent. After the bottom-clause construction algorithm replaces the constants with

variables in these bottom-clauses, it generates equivalent bottom-clauses over R and S.

Hence, if Castor examines tuple sj ∈ ISj , it should find tuples si ∈ ISi whose natural

join with sj creates tuple r. One approach is to find all relations Si that have some

common attributes with Sj as they have some tuples that join with si and produce r.

However, designers may rename the attributes on which S1 . . . Sn join. For instance, re-

lations student, inPhase, and yearsInProgram in the original schema join over attribute

stud to create relation student in the 4NF schema in Table 3.1. The database designer

may rename attribute stud to name in relation student. Hence, this approach is not

robust against attribute renaming. According to Definition 3.3.1, there are INDs with

equality between the join attributes of relation symbols S1 . . . Sn. We use INDs with

equality between the attributes in schema S to find tuples si. To simplify our notations,

we assume that the join between relations in S is still natural join. Our results extend

for composition joins that are equi-join.

Definition 3.6.1. The inclusion class N in schema S is the maximal set of relation

symbols in S such that for each Si, Sj ∈ N, i 6= j, there is a sequence of INDs Sk[Xk] =

S′k[Xk], i ≤ k ≤ j, in S such that

1. Xk = sort(Sk) ∩sort(S′k).

2. Sk+1 = S′k for i ≤ k ≤ j − 1.

Castor first constructs the inclusion classes in the input schema S. Assume that the

algorithm generates a bottom-clause relative to an instance of schema S. Also, assume

that the algorithm has just selected relation ISi and added literal Li to the bottom-

clause based on some tuple si of ISi . Let Si be a member of inclusion class N in S. For

each constraint Sj [X] = Si[X] between the members of N, Castor selects all tuples sj of

relation ISj , i 6= j such that πX(sj) = πX(si). It applies the same process for sj until it

exhausts the INDs between the members of N. As the join between S1 . . . Sn is pairwise

consistent, this method efficiently finds the all tuples s1, . . . , sn that participate in the

join and none of them is a dangling tuple with regard to the full join. Otherwise, Castor

must check the join condition for each pair of tuples.
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Example 3.6.2. Consider an instance of the original UW-CSE schema in Table 3.1

with tuples s1: student(Abe), s2: inPhase(Abe, prelim) and s3: yearsInProgram(Abe, 3).

Assume that Castor is building a bottom-clause for example hardWorking(Abe). Given

INDs student[stud] = inPhase[stud] and student[stud] = yearsInProgram[stud] hold in

this schema, student, inPhase, and yearsInProgram constitute an inclusion class. Let

Castor select tuple s1 during the bottom-clause construction and add it to the bottom-

clause. The bottom-clause, before replacing constants with variables, is:

hardWorking(‘Abe’)←student(‘Abe’).

As πstud(s1) = πstud(s2) and πstud(s1) = πstud(s3), Castor adds tuples s2 and s3 to the

bottom-clause:

hardWorking(‘Abe’)←student(‘Abe’), inPhase(‘Abe’, ‘prelim’), yearsInProgram(‘Abe’, ‘3 ’).

The INDs between relations in a inclusion class may form a cycle.

Definition 3.6.3. A set of INDs with equality λ over schema S is cyclic if there is a

sequence Si[Xi] = S′i[Yi], 1 ≤ i ≤ n, in λ such that

1. Si+1 = S′i for 1 ≤ i ≤ n− 1 and S1 = S′n.

2. There is an i where Yi 6= Xi+1.

If the INDs induced by the inclusion class N are cyclic, Castor may have to examine a

lot more tuples than the case where the INDs of N are not cyclic. For example, consider

schema S1 with relations S1(A,B), S2(B,C), and S3(C,A). The set of INDs S1[B] =

S2[B], S2[C] = S3[C], and S3[A] = S1[A] is cyclic. Consider tuples s1, s2, and s3 such

that πB(s1) = πB(s2) and πC(s2) = πC(s3). We may not have πA(s3) = πA(s1). Hence,

Castor has to scan many tuples in S3 to find a tuple s′3 that satisfies both πC(s2) =

πC(s′3) and πA(s′3) = πA(s1). The following proposition shows that if the composition

join in Definition 3.3.1 is acyclic, the INDs with equality in the decomposed schema are

not cyclic. Thus, Castor does not face the aforementioned issue.

Proposition 3.6.4. Give schema R with a single relation symbol R and its decomposi-

tion S with relation symbols S1, . . . , Sn, if the join ./nj=1 [S1, . . . , Sn] is acyclic, the INDs

with equality λ in Definition 3.3.1 are not cyclic.
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Proof. Because the join is acyclic, there is a join tree for it whose nodes are Si, 1 ≤ i ≤ n
such that (i) every edge (Si, Sj) is labeled by the set of attributes sort(Si) ∩ sort(Sj)

and (ii) for every pair Si, Sj of distinct nodes, for each attribute A ∈ sort(Si)∩ sort(Sj),

each edge along the unique path between Si and Sj includes label A. As the IND with

equalities λ are defined over the common attributes of Si and Sj , λ are acyclic.

Given Si, Sj ∈ N, too many tuples from a relation ISj may join with the current tuple

si ∈ ISi , which may result in an extremely large bottom-clause. One may limit the

maximum number of tuples that can join with the current tuple to a reasonably large

value. We use the value of 10 in our reported experiments. After finding the join tuples,

for each tuple sj , Castor creates a ground literal Lj . If a constant in Lj has been already

seen, the algorithm replaces it in Lj with the variable that was assigned to that constant.

Otherwise, it assigns a fresh new variable for that constant in Lj . Finally, the algorithm

adds Lj to the bottom-clause. Because inclusion classes are maximal, each relation

symbol belongs to at most one inclusion class. After exhausting all INDs with equality

between the members of N, Castor returns to the typical procedure of bottom-clause

construction. Castor may scan more relations than other bottom-clause construction

algorithms to find tuples that satisfy the INDs at the end of each iteration. But, a

schema usually has a relatively small number of INDs. We show in Sections 3.6.5 and

3.8 that Castor’s bottom-clause construction algorithm runs faster than other algorithms.

As explained in Section 3.5.1, the bottom-clauses may get too large. We propose a

modification of the original bottom-clause construction algorithm so that the stopping

condition is based on the maximum number of distinct variables in a bottom-clause. At

the end of each iteration, Castor checks how many distinct variables are in the bottom-

clause. If this number is less than an input parameter, Castor continues to the next

iteration; otherwise, it stops. Intuitively, since the number of distinct variables in equiv-

alent Horn clauses over composition and decomposition are equal, this condition helps

Castor to return equivalent bottom-clauses over composition and decomposition. The

following Lemma states that Castor’s bottom-clause construction algorithm is schema

independent.

Lemma 3.6.5. Let τ : R → S be a decomposition and τ−1 : S → R be a composition,

I be an instance of R, and ⊥e,I and ⊥e,τ(I) are bottom-clauses generated by Castor for

example e relative to I and τ(I), respectively. We have ⊥e,I≡⊥e,τ(I).
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Proof. Assume that τ decomposes IR to relations JS1 , . . . , JSm . Let the constants in e

appear in a subset of relation IR denoted as IeR. Thus, the constants in e must also appear

in at least a subset of one relation in τ(I)S1 , . . . , τ(I)Sm , shown as τ(I)eSi
, 1 ≤ i ≤ m.

The algorithm examines all tuples in IeR and τ(I)eSi
at the same iteration. Let L be the

set of literals that the algorithm adds to ⊥e,I based on tuples in IeR. By applying INDs,

the algorithm considers all tuples sj in JS1 , . . . , JSm such that ./nj=1 [sj ] ≡ r for every

r ∈ IeR. Hence, it will create equivalent clauses at the current iteration. In the following

iterations, as the algorithm selects tuples in I and τ(I) using the same set of constants,

it adds equivalent literals to the clauses over I and τ(I). Because the algorithm uses

a one-to-one mapping from variables to constants, the clauses over I and τ(I) will be

equivalent when the algorithm stops.

Now assume that J is an instance of schema S and τ−1 composes relations JS1 , . . . ,

JSm , where JSi ⊆ J , to relation IR. Let the constants in e appear in at least one relation

JSi denoted as JeSi
. By applying INDs to each tuple in JeSi

, the algorithm finds all tuples

sj in JS1 , . . . , JSm such that ./nj=1 [sj ] ≡ r ∈ τ−1(JS1 . . . JSm) ⊆ IR. Thus, the constants

in e must also appear in a subset of relation IR. Hence, it will create equivalent clauses

at the current iteration. In the following iterations, as the algorithm selects tuples in

J and τ−1(J) using the same set of constants, it adds equivalent literals to the clauses

over J and τ−1(J). Because the algorithm uses a one-to-one mapping from variables to

constants, the clauses over J and τ−1(J) will be equivalent when the algorithm stops.

3.6.2 Castor Generalization

3.6.2.1 ARMG Algorithm

Castor modifies Algorithm 4 to compute equivalent clauses generated by the armg oper-

ator over composition and decomposition. Before we explain the Castor generalization

algorithm, we define some concepts. Consider clause
−→
C and literal R(u) in

−→
C , where

u is a tuple. If u contains both variables and constants, we call it a free tuple. Let

X be a set of attributes. The projection πX(u) of free tuple u returns the variables or

constants that appear in attributes X in u. The join u1 ./X=Y u2 between free tuples

u1 and u2 returns a join tuple if πX(u1) = πY (u2), where πX(u1) and πY (u2) may con-

tain constants or variables. We assume that all join operations are natural joins, i.e.,
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X = Y . Our results extend for the case that joins are equi-joins. A canonical database

instance of clause
−→
C , shown as I

−→
C , is the database instance whose tuples are the free

tuples in
−→
C [2]. In other words, relation IR in I

−→
C has free tuple u if literal R(u) is

in
−→
C . Consider an IND R1[X] = R2[X]. The canonical database instance I

−→
C satisfies

the IND R1[X] = R2[X] if for any literal R2(u1) (or R2(u2)) in
−→
C , clause

−→
C contains a

literal R2(u2) (or R1(u1)) such that πX(u1) = πX(u2), where πX(u1) and πX(u2) may

contain constants or variables. Otherwise, I
−→
C violates the IND. If I

−→
C satisfies the IND

R1[X] = R2[X] for literals R1(u1) and R2(u2), we say that free tuples u1 and u2 satisfy

the IND.

In each iteration Castor’s ARMG algorithm, Castor ensures that the canonical database

instance of clause
−→
C always satisfies the INDs of the schema. Assume the algorithm is

applied on instance IR of schema R = (R,Σ). Immediately after removing a blocking

atom Li from clause
−→
C in Algorithm 4, Castor examines all remaining literals in

−→
C and

finds the ones whose relation symbols participate in an IND with equality in Σ. More

precisely, let R1(u1) be a literal and λR1 ⊆ Σ be the set of INDs with equality in which

R1 participates. For each IND R1[X] = R2[X] in λR1 , if there is not a literal with rela-

tion symbol R2 in
−→
C , Castor eliminates literal R1(u1) from

−→
C . Otherwise, assume that

−→
C contains literal R2(u2). If for all literals R2(u2), we have πX(u1) 6= πX(u2), Castor

removes literal R1(u1). Castor checks these conditions for every literal in
−→
C and all its

corresponding INDs. Castor increases the time complexity of Algorithm 4 by a factor of

O(|Cmax|2|λ|), where the |Cmax| is the size of the largest candidate clause and |λ| is the

number of INDs with equality in the schema.

Example 3.6.6. Consider again the definitions for target relation hardWorking from

Example 3.5.7 over the Original and 4NF UW-CSE schemas in Table 3.1. Let the

INDs student[stud] = inPhase[stud] and student[stud] = yearsInProgram[stud] hold in

the Original schema. Assume that Castor wants to generalize these clauses to cover

example e′, which satisfies student(x ) but does not satisfy inPhase(x , ‘prelim’). Castor

removes the inPhase literal from the first clause and then removes literals with relation

symbols student and yearsInProgram due to the INDs in the Original schema. It also re-

moves student(x , ‘prelim’, ‘3 ’) from the second clause. Over both schemas, the resulting
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generalization is:

hardWorking(x)←publication(z, x).

Lemma 3.6.7. Castor’s ARMG algorithm is schema independent.

Proof. Let τ : R → S be a bijective transformation that performs compositions or de-

compositions from relations in schema R = (R,ΣR) to relations in schema S = (S,ΣS).

Assume that τ decomposes relation Ri ∈ R to relations Si1 . . . Sim ∈ S. Assume that

the input to the ARMG algorithm over schema R is the bottom-clause for seed example

e, denoted as
−→
CR, which has the form of T (w)← L1(u1), · · · , Ln(un). The input to the

algorithm over schema S is the bottom-clause for seed example e, denoted as
−→
CS , which

has the form T (w)← P1(v1), · · · , Pk(vk). Clauses
−→
CR and

−→
CS are generated by the Cas-

tor bottom-clause construction algorithm and according to Lemma 3.6.5 are equivalent.

They also do not contain any redundant literals.

The mapping between equivalent clauses over R and S, δτ , that is associated with

τ projects each literal with relation symbol Ri in
−→
CR to literals with relation symbols

Si1 . . . Sim in
−→
CS . Hence, there is a bijective mapping M that maps each literal Ri(ul)

in the body of
−→
CR to a set of literals Si1(vj) . . . Sim(vj+(im−i1)) in the body of

−→
CS .

According to Lemma 3.6.5, ordered clauses
−→
CR and

−→
CS are equivalent. Therefore, a

literal Ll appears before Lo in the body of
−→
CR if and only if all literals in M(Ll) appear

before the ones in M(Lo) in
−→
CS . The mapping δτ only projects each literal with relation

symbol Ri(ul) to a set of literals in M(Ri(ul)). Hence, the free tuples in every pair of

literals Ll and Lo in
−→
CR have a variable in common if and only if the sets of free tuples

in M(Ll) and M(Lo) have a shared variable. Otherwise,
−→
CR and

−→
CS are not equivalent.

Assume that Castor removes literal Lb in
−→
CR because it is the blocking atom in the

current iteration. Let the positive example considered for this iteration of the algorithm

be e′. If Lb is the blocking atom, the sub-clause of
−→
CR up to and excluding Lb covers

e′ and the one up to and including Lb does not cover e′. Because mapping M preserves

the order of literals, the sub-clause of
−→
CS up to and excluding literals in M(Lb) covers e′

and the one up to and including literals in M(Lb) does not cover it. Hence, at least one

literal in M(Lb) is a blocking atom in
−→
CS . If the algorithm removes this literal, it also

drops the rest of literals in M(Lb) because the free tuples of these literals do not satisfy

the IND between relation symbols of M(Lb) in the canonical database instance of
−→
CS
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after removing the blocking atom in
−→
CS . Similarly, if one of the literals in M(Lb) is a

blocking atom, Lb will be also a blocking atom. In this case, the ARMG algorithm will

also remove the non-blocking atoms in M(Lb) that are not members of M(Lo), Lb 6= Lo,

as they do not satisfy any IND after removing the blocking atom.

Assume that a literal Ll is removed because it does not satisfy any IND in the

canonical database instance of
−→
CR immediately after dropping the blocking atom Lb.

Let Σ1 be an IND between the relation symbol of Lb and the relation symbol of Ll.

Because τ preserves the INDs between relations in R, there is also an IND Σ2 between

the relation symbol of a literal Pl in M(Ll) and the relation symbol of a literal in M(Lb).

Because Lb is a blocking atom, ARMG algorithm has already removed all literals in

M(Lb) from
−→
CS . Assume that the free tuples of Pl and another literal Po in

−→
CS satisfy

Σ2. If Po has not been already removed from
−→
CS , the free tuples of Ll and Lo satisfy

the IND constraint Σ1 in the canonical database of
−→
CR. Thus, Ll should not have been

removed from
−→
CR. Therefore, Po is removed from

−→
CS . Hence, Pl must also be removed

from
−→
CS as it does not satisfy any IND. After removing Pl, all literals in M(Ll) will be

removed from
−→
CS . Using similar argument, the ARMG algorithm removes a literal Lr

from
−→
CR because its free tuple does not satisfy any IND after dropping another literal,

the algorithm removes the literals in M(Lr) that are not members of M(Lo), Lr 6= Lo. If

the algorithm eliminates a literal Pr from
−→
CS because its free tuple does not satisfy any

IND, the algorithm also removes the literals Lr, where Pr ∈ M(Lr), from
−→
CR. Finally,

if the algorithm removes a literal because it is not head-connected, it also removes its

corresponding literals over the decomposition and vice versa.

3.6.2.2 Negative Reduction

Castor further generalizes clauses produced by ARMG by removing literals from clauses

using a step called negative reduction. Removing literals from a clause results in a more

general clause, which may cover more positive and negative examples than the original

clause. In negative reduction, Castor only removes non-essential literals. A literal is non-

essential if after it is removed from a clause, the number of negative examples covered

by the clause does not increase [48, 50]. Castor uses INDs with equality to compute

equivalent reductions of clauses over composition and decomposition. Given a clause
−→
C and inclusion class N = {Si | 1 ≤ i ≤ m} over schema S, an instance YN of N
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Algorithm 6: Castor’s negative reduction algorithm.

Input : Clause
−→
C = T ← L1, · · · , Ln, database instance I, negative examples

E−.
Output: Reduced clause

−→
C ′.

E−c ← subset of E− covered by
−→
C

I← list containing all instances of inclusion classes in
−→
C

while true do
Ii ← first inclusion instance in I such that clause T ← B, where B contains
literals in inclusion instances I1, · · · , Ii, has negative coverage E−c

H← inclusion instances in I that connect Ii with T
N← literals from inclusion instances I1, · · · , Ii not in H
I′ ← H ∪ [Ii] ∪N
if length(I′) = length(I) then

C ′ = T ← B, where B contains all literals in I′

Return C ′

I← I′

is a set of literals S1(u1), · · · , Sm(um) in
−→
C such that for every IND Si[X] = Sj [X],

1 ≤ i, j ≤ m, there are literals Si(ui) and Sj(uj) in YN such that πX(ui) = πX(uj). An

instance YN over a clause
−→
C is non-essential if after removing all literals in YN from

−→
C ,

the number of negative examples covered by the clause does not increase. First, for each

literal Lj in the input clause
−→
C , Castor computes the instances of inclusion classes in

−→
C

that start with Lj . It creates a list containing all found instances, in the order in which

they are found. Then, it iteratively removes non-essential instances from this list. In

each iteration, it finds the first inclusion instance Yi such that the sub-clause of
−→
C that

contains all literals in every inclusion instance up to Yi has the same negative coverage

as
−→
C . A head-connecting inclusion instance for Yi contains literals that connect a literal

in Yi to the head of the clause by a chain of variables. Castor moves Yi and its head-

connecting inclusion instances to the beginning of the list, and discards the inclusion

instances after Yi. These instances can be discarded because they are non-essential.

The algorithm iterates until the number of inclusion instances in the clause does not

change after one iteration. At the end, it creates a clause whose head literal is the

same as
−→
C and body contains all literals in the remaining instances of inclusion classes.

Because negative reduction only removes literals from the clause, it does not decrease
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the number of positive examples covered by the clause. Castor’s negative reduction

algorithm is depicted in Algorithm 6.

Lemma 3.6.8. Castor’s negative reduction algorithm is schema independent.

Proof. Let τ : R → S be a bijective transformation that performs compositions or de-

compositions from relations in schema R = (R,ΣR) to relations in schema S = (S,ΣS).

Let R ∈ R and τ decompose relation R to relations S1, · · · , Sm, 1 ≤ m ≤ |S|. Let N

be the inclusion class in ΣS that contains relations S1, · · · , Sm. Assume that
−→
CR is a

clause over schema R and contains k literals R(ui), 1 ≤ i ≤ k. Let
−→
CS be the equivalent

clause of
−→
CR over S. Let Reduce(C) be the function that performs negative reduction

on clause C.

Because
−→
CR contains k literals R(ui), 1 ≤ i ≤ k, and

−→
CR ≡

−→
CS , then

−→
CS must contain

k instances of inclusion class N. These instances of the inclusion class might or might

not share literals. Let n be the number of instances of inclusion class N in
−→
CS that

share literals. Without loss of generality, we assume that instances can only share the

first literal. That is, instances INi and INj share a literal if they have the form INi =

S1(v 1), S2(vi2), · · · , Sm(vim) and INj = S1(v 1), S2(vj2), · · · , Sm(vjm). We prove that

Reduce(
−→
CR) ≡ Reduce(

−→
CS) by induction on n.

Base case: let n = 1. Clause
−→
CR contains literal R(u) and

−→
CS contains an instance

of inclusion class N with literals S1(v1), · · · , Sm(vm) such that ./ml=1 [vl] = u. Notice

that
−→
CR may contain other literals with relation R and

−→
CS may contain other instances

of inclusion class N. However, because n = 1, these instances do not share literals and

can be treated independently. Then, Castor removes literal R(u) in
−→
CR if and only if it

removes literals S1(v1), · · · , Sm(vm) in
−→
CS .

Assumption step: let n = k. Clause
−→
CR contains literals [R(ui)], 1 ≤ i ≤ k, clause

−→
CS contains literals S1(v 1), [S2(vi2), · · · , Sm(vim)], 1 ≤ i ≤ k, and

−→
CR ≡

−→
CS .

Induction step: let n = k + 1. Let
−→
CS contain k + 1 instances of inclusion class N,

which share the first literal. Let
−→
CR be the equivalent clause, which contains k+1 literals

R(ui), 1 ≤ i ≤ k + 1. We divide instances in
−→
CS in two: IN(1..k) = S1(v 1), [S2(vi2), · · · ,

Sm(vim)], 1 ≤ i ≤ k and IN(k+1) = S1(v 1), S2(v(k+1)2), · · · , Sm(v(k+1)m). We also divide

literals in
−→
CR in two: R1..k = [R(ui)], 1 ≤ i ≤ k, and R(uk+1). Let

−→
C ′S contain all

literals in IN(1..k) and
−→
C ′R contain all literals in R1..k. We examine the cases where we

add literal R(uk+1) to
−→
C ′R such that

−→
C ′R ∪ {R(uk+1)} =

−→
CR, and we add all literals in
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instance IN(k+1) to
−→
C ′S such that

−→
C ′S ∪ IN(k+1) =

−→
CS .

Case 1: Castor removes all literals in R1..k and literal R(uk+1) if and only if it

removes all literals in IN(1..k) and IN(k+1). Then, Reduce(
−→
CR) ≡ Reduce(

−→
CS).

Case 2: Castor removes all literals in R1..k but not literal R(uk+1) if and only if it

removes all literals in IN(1..k), but not literals in IN(k+1). Notice that literal S1(v 1) stays

in clause Reduce(
−→
CS) because it is in instance IN(k+1). Because τ(R(uk+1)) = S1(v 1),

S2(v(k+1)2), · · · , Sm(v(k+1)m), then Reduce(
−→
CR) ≡ Reduce(

−→
CS).

Case 3: Castor removes literal R(uk+1) but not literals in R1..k if and only if it

removes all literals in IN(k+1), but not literals in IN(1..k). Again, notice that literal

S1(v 1) stays in clause Reduce(
−→
CS) because it is in instances IN(1..k). Because we know

that Reduce(
−→
C ′R) ≡ Reduce(

−→
C ′S) (assumption step), then Reduce(

−→
CR) ≡ Reduce(

−→
CS).

Based on Lemmas 3.6.5, 3.6.7, and 3.6.8, Castor is schema independent.

3.6.3 Generating Safe Clauses

Let the head-variables of a clause be the ones that appear in its head literal. A clause is

safe if every head-variable appears in some literal in the body of the clause. A definition

is safe if all its clauses are safe. The results of safe clauses and definitions are finite

over a (finite) database. By default, current relational learning algorithms, including

Castor, may learn unsafe Datalog definitions [2]. Because an unsafe definition produces

infinitely many answers over a (finite) database, it is not desirable in many relevant

applications, such as learning database queries from examples [3, 44]. Furthermore, a

relational learning algorithm that learns only safe clauses can learn a definition from

positive examples only. An empty clause is the clause that does not have any literals

in its body. An empty clause covers all positive and negative examples. By forcing the

algorithm to learn only safe clauses, it must learn non-empty clauses. Therefore, with

only positive examples as input, the algorithm would learn a definition that contains

safe clauses and has the highest score. In this section, we describe how Castor can be

modified to generate only safe definitions. As we have explained, Castor first constructs

the bottom-clause associated with some positive example e, and then generalizes this

clause using ARMG and negative reduction.
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Bottom-clause Construction: Bottom-clause construction uses the positive ex-

ample e as the initial head-literal for the bottom-clause. Castor picks every literal in

body of the bottom-clause based on the constants and variables in the head-literal. Thus,

the bottom-clause is guaranteed to be safe.

Safe ARMG Algorithm: Let the ARMG algorithm take as input clause
−→
C and

positive example e, and produce as output clause
−→
C ′. Clause

−→
C ′ may not be safe. Castor

checks whether
−→
C ′ is safe. If

−→
C ′ is safe, Castor considers it as a candidate; otherwise,

Castor simply ignores it.

Safe Negative Reduction: In negative reduction, Castor first computes all in-

stances of inclusion classes, and then iteratively removes non-essential instances. In

order to output a safe clause, Castor first sorts all instances of inclusion classes by the

number of head-variables appearing in the instance in descending order. Then, in each

iteration, Castor finds the first inclusion instance Yi such that the sub-clause of
−→
C that

contains all literals in every inclusion instance up to Yi has the same negative coverage as
−→
C . Castor then finds the head-connecting inclusion instances for Yi. Let these instances

be called HYi
. Next, from the instances of inclusion classes that will be discarded, Cas-

tor finds the first instances that contain head-variables that do not appear in Yi or HYi
.

Let these instances be SYi
The goal is to find literals needed to make the resulting clause

safe. These literals are guaranteed to exist because the clauses produced by ARMG are

forced to be safe. Castor then moves Yi, HYi
, and SYi

to the beginning of the list,

and discards the inclusion instances after Yi, except the ones in SYi
. The algorithm

continues its normal operation until the number of inclusion instances in the clause does

not change. Finally, it creates a clause whose body contains all literals in the remaining

instances of inclusion classes.

3.6.4 General Composition and Decomposition

Castor is robust over schema variations caused by bijective decompositions and com-

positions as defined in Section 3.3. Bijective compositions need at least one IND with

equality in the original schema. Bijective decompositions need at least one IND with

equality in the transformed schema. We have observed several examples of these trans-

formations in real-world databases, some of which we report in Section 3.8. However, in

addition to INDs with equality, schemas often have INDs in the general form of subset
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or equality. One can use these INDs to define a more general decomposition. More

precisely, a general decomposition of schema R with single relation symbol R is schema

S with relation symbols S1 . . . Sn that satisfies all conditions in Definition 3.3.1 but at

least one IND in S (in the second condition of Definition 3.3.1) is an IND in the form of

subset or equality. A general decomposition of a schema with multiple relations is the

union of general decompositions over each relation symbol in the schema.

A general decomposition is invertible but not bijective [2]. Consider the general

decomposition from R : {R1(A,B,C)} to S : {S1(A,B), S2(A,C)} with IND S2[A] ⊆
S1[A], and the instance IS of S : IS1 = {(a1, b1), (a2, b2)}, IS2 = {(a1, c1)}. There is

not any instance of R that represents the same information as IS . Hence, it is not clear

how to define schema independence for IS . Also, the composition from S to R is not

invertible as IS1 ./ IS2 loses tuple (a2, b2), which cannot be recovered. As some original

and transformed databases in this composition do not have the same information, it is

not reasonable to expect equivalent learned definitions over these databases.

One may resolve these issues by considering databases with labeled nulls, e.g., by

using weak universal relation assumption [2, 27]. For example, one can compose in-

stance IS in the last example to IR : {(a1, b1, c1), (a2, b2, x)} where x is a labeled null

that reflects the existence of an unknown value. However, using nulls requires defining

the semantics of learning over databases with labeled nulls and schema independence

over transformations that introduce labeled nulls, which is not trivial. Instead, we de-

fine schema independence for general decompositions by ignoring the instances in the

transformed schema that do not have any corresponding instance in the original schema.

We ignore these instances because it is not reasonable to expect Castor or any other

learning algorithm to learn equivalent definitions over instances where the transforma-

tion between the schemas is not bijective. Hence, we only consider the cases where the

mapping between the instances in the original and the remaining instances of the trans-

formed schemas is bijective. Therefore, the transformation between schemas where we

only consider these instances is also definition-bijective. We define hypothesis-invariance

and schema independence as defined in Section 3.2 for this mapping. An algorithm is

schema independent over a general decomposition if it is schema independent over its

mapping between the corresponding instances of the original and decomposed schemas.

A general composition is the inverse of a general decomposition. As we have shown,

general compositions lose information. Thus, it is not reasonable to expect algorithms
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to be schema independent over them. We limit the instances of the original schema

so that the general composition becomes invertible. For simplicity, we define schema

independence for a general composition whose transformed schema has a single relation.

Our definition extends for schemas with multiple relations. Let schema R with a single

relation symbol R be a general composition of schema S with relation symbols S1 . . .

Sn such that for all Si, Sj , 1 ≤ i, j ≤ n, X = sort(Si) ∩ sort(Sj) 6= ∅, S has IND

Si[X] ⊆ Sj [X]. The natural join between S1 . . . Sn does not lose any tuples in an

instance IS of S if and only if for each IND Si[X] ⊆ Sj [X] in S we have πX(ISi) =

πX(ISj ), where ISi and ISj are relations of Si and Sj in IS , respectively. Let J(S) denote

instances with the aforementioned property in S. The mapping from J(S) to I(R) is

bijective. Therefore, the transformation between R and S is definition-bijective. Thus,

hypothesis-invariance and schema independence properties in Section 3.2 can be defined

for this mapping. An algorithm over the general composition from S to R is schema

independent if it is schema independent over the mapping between J(S) to I(R). We call

a finite application of general decompositions and compositions a general decomposition

and composition. An algorithm is schema independent over a general decomposition

and composition if it is schema independent over its general decompositions and general

compositions.

Consider again schema S with relation symbols S1 . . . Sn. To achieve schema inde-

pendence over general composition and decomposition, given instance IS ∈ J(S), Castor

finds each IND Si[X] ⊆ Sj [X] in S where πX(ISi) = πX(ISj ) and adds the IND to its list

of IND with equality in a preprocessing step. It then proceeds to its normal execution.

The proofs of Lemmas 3.6.5, 3.6.7, and 3.6.8 extend for the corresponding instances of R
and S that have the same information in non-bijective decompositions. Using a similar

argument, these proofs also hold for the corresponding instances that have the same in-

formation over general decomposition. Thus, Castor is schema independent over general

decompositions and compositions. Using this method, Castor also handles combinations

of INDs in general form and INDs with equality.

The pre-processing step of checking for each IND Si[X] ⊆ Sj [X] in schema S whether

πX(ISi) = πX(ISj ) holds may take a long time and some users may not want to wait for

this pre-processing phase to finish. Another approach is to use INDs in the form of subset

or equality in Castor directly as follows. We extend Castor to use both INDs with equality

and in general form. In the rest of this section, we refer to both type of INDs simply as



47

INDs and denote them by the symbol ⊆. We redefine an inclusion class N in schema S
as a set of relation symbols Si, Sj in S such that there is a sequence of INDs Sk[Xk] ⊆
S′k[Xk] or S′k[Xk] ⊆ Sk[Xk] i ≤ k ≤ j, in S where Xk = sort(Sk) ∩sort(S′k) and Sk+1 =

S′k for i ≤ k ≤ j − 1. Assume that Castor picks a tuple si from relation Si in inclusion

class N during the bottom-clause construction. For each Si[X] ⊆ Sj [X] in N, Castor

selects all tuples sj of relation ISj , i 6= j such that πX(sj) ⊆ πX(si). Castor repeats

this process for sj until it exhausts all INDs in N. After this step, Castor follows the

bottom-clause construction algorithm explained in Section 3.6.1. Since the natural join

between relations in S is acyclic, the pairwise consistency implies the global consistency

of the join tuples. For the same reason, the proof of Proposition 3.6.4 extends for INDs.

Hence, the INDs in each inclusion class are not cyclic and Castor efficiently finds the

tuples that join according to the INDs. We also extend Castor’s ARMG algorithm to

ensure that the free tuple of each literal S(u), u, satisfies all INDs in which S participates

after a blocking atom is removed. If u does not satisfy any of its corresponding INDs,

S(u) it is removed from the clause. Finally, we redefine the instance of an inclusion class

N, YN, in an ordered clause
−→
C as a set of literals S1(u1), · · · , Sm(um) in

−→
C such that for

each IND Si[X] ⊆ Sj [X], 1 ≤ i, j ≤ m, there are literals Si(ui) and Sj(uj) in YN where

πX(ui) = πX(uj). We modify our negative reduction algorithm in Section 3.6.2.2 to use

the new definition of inclusion class instance.

The extension of Castor that uses INDs in the form of subset may not be schema

independent, as it may miss some tuples in bottom-clause construction or ignore some

literals in the ARMG algorithm. For example, consider the general decomposition from

R :{R1(A,B,C)} to S :{S1(A,B), S2(A,C)} with IND S2[A] ⊆ S1[A] and instances JR :

JR1 = {(a1, b1, c1)} and JS : JS1 = {(a1, b1)}, JS2 = {(a1, c1)}. Assume that the modified

Castor bottom-clause construction over JS starts with tuple (a1, b1). IND S2[A] ⊆ S1[A]

does not force Castor to select (a1, c1) for the bottom-clause. Hence, Castor delivers

non-equivalent bottom-clauses over JS and JR. Our empirical results in Section 3.8

show that this extension of Castor is more robust than other algorithms over general

decomposition and composition.
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3.6.5 Castor System Design Choices and Implementation

Current bottom-up algorithms do not run efficiently over medium or large databases

because they produce long bottom-clauses [50]. Also, these clauses are time-consuming

to evaluate. A relational learning algorithm evaluates a clause by computing the number

of positive and negative examples covered by the clause. These tests dominate the time

for learning [22]. It is generally time-consuming to evaluate clauses with many literals.

Castor implements several optimizations to run efficiently over large databases.

In-memory RDBMS: Castor is implemented on top of the in-memory relational

database management system (RDBMS) VoltDB (voltdb.com). Relational databases are

usually stored in RDBMSs. Therefore, it is natural to implement a relational learning

algorithm on top of an RDBMS. Castor performs bottom-clause construction multiple

times during the learning process. The bottom-clause construction algorithm queries

the database multiple times, each of which selects all tuples in a table that match given

constants from the training data. We leverage RDBMS indexing to improve the running

time of these queries.

Stored Procedures: We implement the bottom-clause construction algorithm in-

side a stored procedure to reduce the number of API calls made from Castor to the

RDBMS. Castor makes only one API call per each bottom-clause. The first time that

Castor is run on a schema, it creates the stored procedure that implements the bottom-

clause construction algorithm for the given schema. Castor reuses the stored procedure

when the algorithm is run again, with either new training data or an updated database

instance.

Efficient Clause Evaluation: One approach to computing the number of positive

(negative) examples covered by a clause is to join the table containing the positive

(negative) examples with the tables corresponding to all literals in the body of the

clause. If two literals share a variable, then a natural join between the two columns

corresponding to the shared variable in the literals is used. This strategy works well

when clauses are short, as in top-down algorithms [67]. However, our empirical studies

show that the time and space requirements for this approach are prohibitively large

on large clauses generated by bottom-up algorithms. Thus, we perform coverage tests

by using a subsumption engine. A ground bottom-clause is a bottom-clause that only

contains constants. A candidate clause C covers example e if and only if C θ-subsumes
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the ground bottom-clause ⊥e associated with e. Castor uses the subsumption engine

Resumer2 [43]. Resumer2 efficiently checks if clause C covers example e by deciding the

subsumption between C and the ground bottom-clause ⊥e of e. Given clause C and a

set of examples E, Castor checks if C covers each e ∈ E separately. Castor divides E in

subsets and performs coverage testing for each subset in parallel.

Coverage Tests: Castor optimizes the generalization process by reducing the num-

ber of coverage tests. Castor first generates the bottom-clause relative to a positive

example. Then, Castor generalizes this clause. If clause C covers example e, then clause

C ′′, which is more general than C, also covers e. If Castor knows that C covers e, it does

not check if C ′′ covers e.

Minimizing Clauses: Bottom-up algorithms such as Castor produce large clauses,

which are expensive to evaluate. Castor minimizes bottom-clauses by removing syn-

tactically redundant literals. A literal L in clause C is redundant if C is equivalent to

C ′ = C − {L}. Clause equivalence between C and C ′ can be determined by checking

whether C θ-subsumes C ′ and C ′ θ-subsumes C. By definition, C ′ θ-subsumes C be-

cause C ′ is a subset of C. Therefore, we only need to check whether C θ-subsumes

C ′. Castor minimizes clauses using theta-transformation [19]. It uses a polynomial-time

approximation of the clausal-subsumption test, which is efficient and retains the prop-

erty of correctness. Given clause C, for each literal L in C, the algorithm checks if

C ⊆ C ′ = C − {L}. If this holds, then L is redundant and will be removed. Minimizing

bottom-clauses reduces the hypothesis space considered by Castor. It also makes cov-

erage testing faster. Castor also minimizes learned clauses before adding them to the

definition. Minimized clauses are more concise and interpretable.

3.7 Query-based algorithms

In this section, we consider query-based learning algorithms, which learn exact definitions

by asking queries to an oracle [3, 7, 41, 58]. This type of algorithm has been used

recently in various areas of database management, such as finding schema mappings and

designing usable query interfaces [3, 14]. Queries can be of multiple types, however

the most common types are equivalence queries and membership queries. In equivalence

queries (EQ), the learner presents a definition to the oracle and the oracle returns yes

if the definition is equal to the target relation definition; otherwise it returns a counter-
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example. In membership queries (MQ), the learner asks if an example is a positive

example, and the oracle answers yes or no.

Because query-based algorithms follow a different learning model, Definition 3.2.10

is not suited for evaluating their schema (in)dependence. Since a query-based algorithm

can ask the oracle whether candidate definitions are correct, the algorithm will always

learn the correct definitions by asking sufficient number of queries from the oracle. As it

takes time and resources to answer queries, a desirable query-based algorithm should not

ask too many queries [7]. For instance, some database query interfaces use query-based

algorithms to discover users’ intents [3]. Because the oracle for these algorithms is the

user of the database, a more desirable algorithm should figure out the user’s intent by

asking fewer queries from the user.

Query-based algorithms are theoretically evaluated by their query complexity – the

asymptotic number of queries asked by the algorithm [41]. Therefore, we analyze the

impact of schema transformations on the query complexity of these algorithms. Gen-

erally, if an algorithm has different asymptotic behaviors over equivalent schemas, then

the algorithm is schema dependent. One way to show that an algorithm has different

asymptotic behaviors over different schemas is by comparing the lower bound on the

query complexity of the algorithm against the upper bound on its query complexity. If

the lower bound under one of the schemas is greater than the upper bound under another

schema, then the algorithm is highly schema dependent. Of course, this behavior is not a

desirable property, as it means that the choice of representation has a huge effect on the

performance of the algorithm. However, we prove that a popular query-based algorithm

called A2 suffers from this property.

A2 [41] is a query-based learning algorithm that learns function-free, first-order Horn

expressions. The reasons for choosing this algorithm are three fold: i) A2 is representative

of query-based learning algorithms that work on the relational model, ii) there is an

implementation of the algorithm [7], iii) A2 is a generalization to the relational model of

a classic query-based propositional algorithm [4].

Let pR be the number of relations in schema R and aR be the largest arity of any

relation in schema R. Let k be the largest number of variables in a clause, m be the

number of clauses in the definition of the target relation, and n be the largest number

of constants (i.e. objects) in any example. Parameters k, m, and n are independent

of the schema. The upper bound on the number of EQs and MQs made by the A2
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algorithm over schema R is O(m2(pR)k(aR)+3k + nm(pR)k(aR)+k) and the lower bound

is Ω(m(pR)k(aR)) [41].

Theorem 3.7.1. There is a schema R and decomposition τ , where τ(R) = S, such that

Ω(m(pR)k(aR)) > O(m2(pS)k(aS)+3k + nm(pS)k(aS)+k).

Proof. Let schema R = (R,ΣR) contain the single relation R(A1, · · · , Al). Assume that

l ≥ 2 and there are l − 1 functional dependencies A1 → Ai, 2 ≤ i ≤ l, in ΣR. Let

τ(R) = S = (S,ΣS) be a decomposition of R, such that relation R(A1, · · · , Al) ∈ R

is decomposed into l − 1 relations in S in the form of Si(A1, Ai), 2 ≤ i ≤ l. For each

relation Si(A1, Ai) ∈ S, ΣS contains the functional dependency A1 → Ai. For each set

of relations Si(A1, Ai), 2 ≤ i ≤ l, ΣS also contains 2(l − 1) inclusion dependencies in

the form of S2[A1] ⊆ Sj [A1] and Sj [A1] ⊆ S2[A1], 2 < j ≤ l. Because the number of

relations in R is pR = 1 and the maximum arity is aR, then the maximum number of

relations in S is pS = aR − 1. We also have that aS = 2.

Let LR be the hypothesis language that consists of the subset of Horn definitions

defined over schema R that contain a single clause in which no self-joins are allowed. All

definitions in LR have the form T (u)← R(x1, x2, · · · , xl), where T is the target relation

and u is a subset of {x1, x2, · · · , xl}. Let δτ be the definition mapping for τ . Because

transformation τ is a decomposition, for any definition hR ∈ LR, its corresponding

definition δτ (hR) ∈ LS also contains a single clause.

Any clause in a definition hR ∈ LR has at most l distinct variables, which corresponds

to the arity of relation R. Therefore the largest number of variables in a clause is k = l.

As schema S is a decomposition of schema R, and no self-joins are allowed in LR, the

definition hS = δ(hR) ∈ LS also has at most k = l variables. Because definitions in LR
and LS contain only one clause, then the maximum number of clauses in a definition is

m = 1.

In order to prove our theorem, the following should hold for R and S

Ω(m(pR)k(aR)) >O(m2(pS)k(aS)+3k + nm(pS)k(aS)+k)

where the left side of the inequality is the lower bound on the query complexity under

schema R and the right side is the upper bound on the query complexity under schema

S. The operator > means that A2 will always ask asymptotically more queries under
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schema R than under schema S. We have that k and m are the same for both schemas.

We can also ignore n as it is independent of the hypothesis space and the schemas.

Therefore, by canceling out some terms, the previous inequality can be rewritten as

Ω(k(aR)) > O(m(aR − 1)k2+3k + (aR − 1)k2+k).

The first term in the upper bound dominates the second term, then we have

Ω(k(aR)) > O(m(aR − 1)k2+3k)

Assuming that m = 1, as in LR, we get

Ω(k(aR)) > O((aR − 1)k2+3k)

This inequality holds for sufficiently large k and aR.

The lower bound of A2 is the Vapnik-Chevonenkis dimension (VC-Dim) of the hy-

pothesis language that consists of function-free, first-order Horn expressions. Therefore,

we have proven in Theorem 3.7.1 that there are cases where the lower bound on the

query complexity of any algorithm under this hypothesis language is greater than the

upper bound on the query complexity of A2.

3.8 Experiments

We empirically evaluate several sample-based and query-based relational learning algo-

rithms to answer the following questions:

1. Are existing relational learning algorithms schema independent? (Section 3.8.2)

2. Is Castor schema independent? (Section 3.8.2)

3. How does Castor’s effectiveness and efficiency compare with other relational learn-

ing algorithms? (Section 3.8.2)

4. What is the relationship between the style of schema design and the effectiveness

of a learning algorithm? (Section 3.8.2)
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5. What is the effect of Castor’s design choices? (Section 3.8.3)

6. What is the effect of the schema on the query complexity of query-based relational

learning algorithms? (Section 3.8.4)

3.8.1 Experimental Settings

We use three datasets whose statistics are shown in Table 3.3. The HIV-Large dataset

contains information about 42,000 chemical compounds obtained from the National

Cancer Institute’s AIDS antiviral screen (wiki.nci.nih.gov/display/NCIDTPdata). The

schema contains relation compound(comp, atm), which indicates that compound comp

contains atom atm. It also has relations that indicate the chemical element that an atom

represents, e.g., element C(atm), as well as relations to indicate properties of each atom,

e.g., p2 1(atm). The schema represents a bond between two atoms by relation bonds(bd,

atm1, atm2), and it has a relation for each type of a bond, e.g., bondType1(bd, t1). The

goal is to learn the relation hivActive(compound), which indicates that compound has

anti-HIV activity. The original HIV dataset is stored in flat files and does not have any

information about its constraints. We explored the database for possible dependencies.

In particular, we have discovered that the INDs bonds[bd] = bondType1[bd], bonds[bd]

= bondType2[bd], bonds[bd] = bondType3[bd] hold in the database. We have used these

dependencies to compose relations bonds, bondType1, bondType2, and bondType3 into a

single relation bonds and create a schema in 4NF, named 4NF-1. We also decompose

relation bonds in the initial schema to relations bondSource and bondTarget to create

another schema, called 4NF-2. The schemas and all INDs for this dataset are shown in

Tables 3.4 and 3.5, respectively. In the HIV-2K4K dataset, we keep the same back-

ground knowledge, but reduce the number of examples to 2K positive and 4K negative

examples.

The UW-CSE dataset contains information about an academic department and

has been used as a benchmark in the relational learning literature [60]. The goal is to

learn the target relation advisedBy(stud, prof), as explained in Section 3.1 The dataset

comes with a set of constraints in form of first-order logic clauses that should hold

over the dataset domain. The INDs in these constraints are shown in Table 3.6 (top).

If there are more INDs with equality in the schema, one can generate more schemas
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Name Schema #R #T #P #N

HIV-Large
Initial 80 14M

5.8K 36.8K4NF-1 77 7.8M
4NF-2 81 16M

UW-CSE

Original 9 1.8K

102 204
4NF 6 1.4K

Denormalized-1 5 1.3K
Denormalized-2 4 1.3K

IMDb
JMDB 46 8.4M

1.85K 3.6KStanford 41 10.5M
Denormalized 33 7.2M

Table 3.3: Numbers of relations (#R), tuples (#T), positive examples (#P), and negative
examples (#N) for each dataset.

Initial 4NF-1 4NF-2

bonds(bd, atm1, atm2) bonds(bd, atm1, atm2, t1, t2, t3) bondSource(bd, atm1)
bondType1(bd, t1) bondTarget(bd, atm2)
bondType2(bd, t2) bondType1(bd, t1)
bondType3(bd, t3) bondType2(bd, t2)

bondType3(bd, t3)

Common relations

compound(comp, atm) element C(atm) ... element O(atm)
p2 0(atm) p2 1(atm) ... p3(atm)

Table 3.4: Schemas for the HIV-Large and HIV-2K4K datasets.

bonds[bd]=bondType1[bd] bonds[bd]=bondType2[bd]
bonds[bd]=bondType3[bd]
bonds[atm1]⊆compound[atm] bonds[atm2]⊆ compound[atm]
elem C[atm]⊆compound[atm] . . . elem O[atm]⊆ compound[atm]
p2 0[atm]⊆compound[atm] . . . p3[atm]⊆compound[atm]

Table 3.5: INDs in the initial HIV dataset.
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student[stud] = inPhase[stud] yearsInProg[stud] ⊆ student[stud]
hasPosition[prof] = professor[prof] ta[stud] ⊆ student[stud]
ta[crs] = taughtBy[crs]

taughtBy[prof] = professor[prof] student[stud] ⊆ yearsInProg[stud]
courseLevel[crs] = taughtBy[crs]

inPhase[stud] ⊆ student[stud] yearsInProg[stud] ⊆ student[stud]
hasPosition[prof] ⊆ professor[prof] ta[stud] ⊆ student[stud]
taughtby[prof] ⊆ professor[prof] taughtby[crs] ⊆ courseLevel[crs]

Table 3.6: INDs in the UW-CSE dataset. Top: INDs in the original dataset. Middle:
INDs added to have bijective transformations. Bottom: INDs that should hold according
to the semantics of the database.

from the original UW-CSE schema using composition transformation. To evaluate the

effectiveness of algorithms over more varieties of schemas, we add the INDs shown in

Table 3.6 (middle) to the schema. We enforce the constraints by removing a small fraction

of tuples, 159 tuples, from the original dataset. We transform the original schema to three

other different schemas. The original and a composed schema, called 4NF, are shown in

Table 3.1. We compose courseLevel and taughtBy relations in 4NF schema to create a

more denormalized schema, named Denormalized-1, and compose courseLevel, taughtBy,

and professor in 4NF schema to generate the fourth schema, named Denormalized-2.

The IMDb (imdb.com) dataset contains information about movies. We learn the tar-

get relation dramaDirector(director), which indicates that director has directed a drama

movie. JMDB (jmdb.de) provides a relational database of IMDb data under a 4NF

schema. We create a subset of JMDB database by selecting the movies produced after

year 2000 and their related entities, e.g., actors, directors, producers. The relationships

between relation movie(id, title, year) and its related relations, e.g., director(id, name),

are stored in relations movies2X where X is the name of the related entity set, e.g.,

movies2director(id, directorid). The resulting database has 11 INDs with equality in

the form of movies2X[Xid] =X[id], e.g., movies2director[directorid] = director[id]. To

test over more transformations, we have changed 5 INDs in the form of subset to INDs

in the form of equality, e.g., movies2X[id] ⊆ movie[id] to movies2X[id] = movie[id], by

removing some tuples from the database. We use the first set of 11 INDs with equality

to compose 11 pairs of relations in JMDB schema to create a new schema, called Denor-

malized. We use the second set of INDs with equality to compose 5 relations in JMDB
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JMDB Stanford

movie(id, title, year) movie(id, title, year, genreid,
movies2genre(id, genreid) colorid, prodcompid,
movies2color(id, colorid) directorid, producerid)
movies2director(id, directorid)
movies2producer(id, producerid)
movies2prodcomp(id, prodcompid)

Common relations

language(id, language) plot(id, plot)
country(id, country) color(id, color)
business(id, text) altversion(id, version)
runningtime(id, times) prodcompany(id, name)
actor(id, name, sex) editor(id, name)
director(id, name) producer(id, name)
writer(id, name) akaname(name, akaname)
akatitle(id, langid, title) cinematgr(id, name)
biography(id, name, bio) movies2misc(id, miscid)
composer(id, name) costdesigner(id, name)
distributor(id, name) rating(id, rank, votes)
genre(id, genre) misc(id, name)
mpaarating(id, text) technical(id, text)
proddesinger(id, name) releasedate(id, countryid, date)
movies2actor(id, actorid, character) movies2editor(id, editorid)
movies2writer(id, writerid) movies2cinematgr(id, cinamtid)
movies2composer(id, composerid) movies2costdes(id, costdesid)
movies2language(id, langid) certificate(id, countryid, cert)
movies2proddes(id, proddesid) movies2country(id, countryid)

Table 3.7: JMDB and Stanford schemas for the IMDb dataset. Relations in bottom are
contained in both schemas.
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Denormalized

movie(id, title, year) language(id, language)
movies2actor(id, actorid, name, character, sex) plot(id, plot)
movies2color(id, colorid, color) altversion(id, version)
movies2X(id, Xid, name) where runningtime(id, times)
X= {writer, editor, composer, prodcompany(id, name)

cinematgr, costdes, proddes, country(id, country)
director, producer, misc} akaname(name, akaname)

akatitle(id, langid, title) biography(id, name, bio)
distributor(id, name) rating(id, rank, votes)
genre(id, genre) releasedate(id, countryid, date)
movies2language(id, langid) certificate(id, countryid, cert)
mpaarating(id, text) technical(id, text)
movies2country(id, countryid) business(id, text)

Table 3.8: Denormalized schema for the IMDb dataset.

movies2X[id] = movie[id]
where X= {genre, color, prodcompany, producer, director}

movies2Y[Yid] = Y[id]
where Y= {actor, cinematagr, color, composer, costdes, director,

editor, misc, proddes, producer, writer}
Z[id] ⊆ movie[id]

where Z={business, runningtime, altversion, certificate,
plot, rating, akatitle, distributor, releasedate,

technical, movies2actor, movies2country, movies2composer,
movies2writer, movies2costdes, movies2misc, movies2editor,

movies2cinematgr, movies2language, movies2proddes}
certificate[countryid] ⊆ country[countryid]
releasedate[countryid] ⊆ country[countryid]

akatitle[langid] ⊆ language[langid]
movies2country[countryid] ⊆ country[countryid]

movies2language[langid] ⊆ language[langid]
movies2genre[genreid] ⊆ genre[genreid]

movies2prodcompany[prdcompid] ⊆ prodcompany[prdcompid]

Table 3.9: INDs in IMDb dataset.
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schema, and create a schema called Stanford that follows a structure similar to the one

used in the Stanford Movie DB (infolab.stanford.edu/pub/movies). The three schemas

and the full list of INDs in IMDb data are shown in Tables 3.7, 3.8 and 3.9. In the

UW-CSE and IMDb datasets, we generate negative examples by using the closed-world

assumption, and then sample to obtain twice as many negative examples as positive

examples.

We compare Castor to three relational learning systems: FOIL [57], Aleph [61], and

GILPS [50]. The FOIL system implements the FOIL algorithm but does not scale to

medium and large datasets. Therefore, we also emulate FOIL using Aleph by forcing

Aleph to follow a greedy strategy and call it Aleph-FOIL. Aleph is a well known

Inductive Logic Programming (ILP) system that implements Progol [47]. To differentiate

the two variations of Aleph used in our experiment, we call the default implementation of

Aleph Aleph-Progol. GILPS implements ProGolem, which is a bottom-up algorithm.

Aleph contains the parameter clauselength, which restricts the size of the learned

clauses. Over HIV-Large and HIV-2K4K, the definition for the target relation must

contain long clauses. With the default value of clauselength = 4, Aleph-FOIL and Aleph-

Progol do not learn any clauses. Therefore, we set this parameter to have values of 10

and 15.

Machine learning algorithms usually require parameter tuning to run them success-

fully. We use the default parameter configuration for all systems, with some exceptions.

Because we use noisy datasets, we must allow the algorithms to learn clauses that cover

some negative examples. To limit the number of negative examples covered by any

learned clause, we require that the ratio of positive to negative examples covered by a

clause (precision) is at least 2 to 1. That is, the number of positive examples examples

covered by a clause must be two times greater than or equal to the number of negative

examples covered by the clause. In FOIL, this value is set with the accur parameter;

in Aleph it is set with the minacc parameter; in ProGolem and Castor it is set with

the minprec parameter. In FOIL, the only settings that we modify is aaccur=0.67. In

Aleph, the settings that we modify are minacc=0.67, minpos=2, noise=inf, and open-

list=1 (only for Aleph-FOIL). In Castor and ProGolem, the settings are minprec=0.67,

noise=1, minpos=2, and sample=1, beamwidth=1 for HIV-Large, HIV-2K4K, and IMDb,

and sample=20, beamwidth=3 for UW-CSE. In the IMDb dataset, we also restrict the

number of literals with the same relation symbol added to a ground bottom clause in
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one iteration of the bottom clause construction algorithm. We set this value to 10. If

this value is unrestricted, a bottom clause may contain hundreds or thousands of literals

with the same relation symbol (one for each tuple).

There are far fewer query-based relational learning systems available than the ones

that use samples for learning. To empirically evaluate the schema independence of query-

based learning methods, we use the LogAn-H system [7], which is an implementation

of the A2 algorithm [41]. We call the learning algorithms that use batches of training

samples, e.g., FOIL and ProGolem, sample-based algorithms to distinguish them from

query-based algorithms in this section.

We refer to the quality of a definition as the effectiveness of the definition. We use

the metrics of precision and recall to measure the effectiveness of definitions. Let the

set of true positives for a definition be the set of positive examples in the testing data

that are covered by the definition. The precision of a definition is the proportion of its

true positives over all examples covered by the definition. The recall of a definition is

the number of its true positives divided by the total number of positive examples in the

testing data. Precision and recall are between 0 and 1, where an ideal definition delivers

both precision and recall of 1. Similar to other machine learning tasks, it is not often

possible to learn an ideal definition for a target concept due to various reasons, such

as the hardness of the target concept, the lack of sufficient amount of training data, or

simply because the target concept might not be definable. In these situations, the values

of reasonable precision and recall for a definition depend on the underlying applications,

e.g., 5% improvement in precision may not be important in a financial application but

vital in a medical application. Nevertheless, definitions with higher precision or recall

are generally more desirable [50, 57, 61]. We use the learning time to measure the

efficiency of all systems. We perform 5-fold cross validation for UW-CSE and 10-fold

cross validation for HIV and IMDb datasets. We evaluate precision, recall, and learning

time, showing the average over the cross validation.

We ran experiments on a server containing 32 2.6GHz Intel Xeon E5-2640 processors,

running CentOS Linux 7.2 with 50GB of main memory.
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3.8.2 Sample-based Algorithms

Castor is schema independent over all datasets and delivers equal precision and recall

across all schemas of each dataset in our experiments. However, other algorithms are

schema dependent.

HIV datasets. Aleph-FOIL, Aleph-Progol and Castor are the only algorithms that

scale to the HIV-2K4K dataset. Aleph-FOIL and Castor also scale to the HIV-Large

dataset. The definitions learned by Aleph-FOIL and Aleph-Progol over different schemas

are not equivalent as shown by their precision and recall values across schemas in Ta-

ble 3.10. Different schemas cause Aleph-FOIL and Aleph-Progol to explore different

regions of the hypothesis space. Aleph-FOIL and Aleph-Progol are not able to find any

definition over the 4NF-2 schema of HIV-Large and HIV-2K4K datasets. The reason is

that any good clause must contain information about bonds. In the 4NF-2 schema, this

information is represented by two relations, bondSource and bondTarget, and three more

to indicate their types. With a top-down search, these algorithms are not able to find a

clause that contains these relations. Aleph-FOIL terminates without learning anything

and Aleph-Progol does not terminate after 75 hours. Aleph-Progol does not terminate

after 75 hours over the 4NF-2 schema of HIV-2K4K. FOIL crashes on both HIV datasets.

ProGolem does not learn anything after 5 days running, even on smaller subsets of the

HIV dataset.

UW-CSE dataset. As shown in Table 3.11, all algorithms except for Castor are

schema dependent and learn non-equivalent definitions over different schemas of UW-

CSE. As this dataset is smaller than the HIV and IMDb datasets, it has a relatively

smaller hypothesis space. Hence, the degree of schema dependence for these algorithms

over this dataset is generally lower than other datasets. The precision and recall of all

algorithms are not significantly different across schemas. Over denormalized schemas,

Aleph-FOIL learns definitions consisting of many clauses, each covering a few examples.

This results in low generalization, hence very low precision and recall. On the other

hand, over the Original schema, it learns definitions consisting of a lower number of

clauses, each covering a greater number of examples. Note that Aleph-FOIL does not

exactly emulate FOIL. FOIL uses a different evaluation function and explores an unre-
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stricted hypothesis space. Therefore, FOIL does not suffer from the same problems as

Aleph-FOIL. However, it is less effective than other algorithms. Castor’s effectiveness is

comparable to Aleph-Progol and ProGolem over the Original and 4NF schemas. Nev-

ertheless, Aleph-Progol and ProGolem perform worse on other schemas. On the other

hand, Castor is effective over all schemas.

IMDb dataset. The target relation for the IMDb dataset has an exact Datalog

definition given the background knowledge and training examples. Castor finds this def-

inition over all schemas and obtains precision and recall of 1, as shown in Table 3.12.

Aleph-FOIL fails to find this definition over all schemas. Aleph-Progol finds this def-

inition only over the Stanford schema. The definitions learned by Aleph-FOIL and

Aleph-Progol over different schemas are largely different.

Relationship between style of design and effectiveness. Our results show

that there is not any single style of design, e.g., 4NF, on which all algorithms, except

for Castor, are effective over all datasets. Generally, the style of design on which a

relational learning algorithm delivers its most effective results varies based on the met-

ric of effectiveness, the dataset, and the algorithm. For example, Aleph-Progol delivers

its highest precision over a denormalized schema, Denormalized-1, for UW-CSE, but its

highest recall over the original schema, which is more normalized than 4NF. Aleph-Progol

also delivers its lowest precision on UW-CSE data over another denormalized schema,

Denormalized-2, for this dataset. Hence, it is generally hard to find a straightforward

relationship between the style of design and the precision or recall of an algorithm over

a given dataset. Furthermore, each algorithm prefers a different style of design over each

dataset. For example, Aleph-Progol has higher overall precision and recall on the most

normalized schema, original schema, for UW-CSE. But, it delivers its highest overall

precision and recall over the most denormalized schema, Stanford, for IMDb. Finally,

different algorithms prefer distinct styles of design over the same dataset. For example,

FOIL delivers both its highest precision and highest recall over a denormalized schema

for UW-CSE data, Denormalized-2, over which Aleph-Progol delivers both its lowest

precision and lowest recall. Over the same database, ProGolem achieves both its highest

precision and highest recall for the most normalized schema, i.e., original schema.
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HIV-Large

Algorithm Metric Initial 4NF-1 4NF-2

Aleph-FOIL Precision 0.58 0.72 0
(clauselength = 10) Recall 0.42 0.91 0

Time (h) 3 0.9 6

Aleph-FOIL Precision 0.68 0.68 0
(clauselength = 15) Recall 0.41 0.85 0

Time (h) 11.7 3.7 47

Castor
Precision 0.81 0.81 0.81

Recall 0.85 0.85 0.85
Time (h) 3.5 1.9 56

HIV-2K4K

Aleph-FOIL Precision 0.72 0.78 0
(clauselength = 10) Recall 0.69 0.81 0

Time (m) 6.2 7.9 20.6

Aleph-FOIL Precision 0.70 0.78 0
(clauselength = 15) Recall 0.79 0.89 0

Time (m) 6.72 7.07 122.2

Aleph-Progol Precision 0.70 0.79 -
(clauselength = 10) Recall 0.85 0.90 -

Time (m) 58.5 72.2 > 75 h

Aleph-Progol Precision 0.72 0.75 -
(clauselength = 15) Recall 0.89 0.87 -

Time (m) 155.51 13.56 > 75 h

Castor
Precision 0.80 0.80 0.80

Recall 0.87 0.87 0.87
Time (m) 15.1 6.5 335.5

Table 3.10: Results of learning relations over the HIV-Large and HIV-2K4K dataset.
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Algorithm Metric Original 4NF Den-1 Den-2

FOIL
Precision 0.84 0.79 0.77 0.85

Recall 0.35 0.36 0.42 0.47
Time (s) 18.7 20.84 30.72 30.64

Aleph-FOIL
Precision 0.78 0.50 0.36 0.19

Recall 0.17 0.18 0.13 0.11
Time (s) 3.5 4.3 14.8 398.1

Aleph-Progol
Precision 0.95 0.97 0.98 0.55

Recall 0.54 0.45 0.36 0.29
Time (s) 9.7 13.2 27.9 334.8

ProGolem
Precision 0.95 0.95 0.80 0.82

Recall 0.54 0.54 0.48 0.48
Time (s) 24.4 28.8 26.7 54.1

Castor
Precision 0.93 0.93 0.93 0.93

Recall 0.54 0.54 0.54 0.54
Time (s) 7.2 7.4 7.9 12.4

Table 3.11: Results of learning relations over the UW-CSE dataset.

Algorithm Metric JMDB Stanford Denormalized

Aleph-FOIL
Precision 0.66 0.92 0.67

Recall 0.44 1 0.45
Time (m) 6.4 1,229 476.4

Aleph-Progol
Precision 0.66 1 0.69

Recall 0.47 1 0.52
Time (m) 312.9 1,248 937.4

Castor
Precision 1 1 1

Recall 1 1 1
Time (m) 15.14 108.15 32.4

Table 3.12: Results of learning relations over the IMDb dataset.
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Efficiency. Besides being schema independent, Castor offers the best trade-off be-

tween effectiveness and efficiency. Generally, Aleph-FOIL is more efficient than Castor,

but less effective. Aleph-Progol is usually effective, but becomes very inefficient as the

size of data grows. FOIL and ProGolem only scale to small datasets.

Aleph-FOIL and Castor are the only algorithms that scale to the HIV-Large dataset.

Aleph-FOIL with clauselength = 10 is more efficient than Castor. However, when clause-

length is set to 15, it becomes less efficient, as shown in Table 3.10. Aleph-FOIL with

both clauselength = 10 and 15 is also faster than Castor over the HIV-2K4K dataset.

In general, top-down algorithms that follow greedy search strategies are expected to be

more efficient than bottom-up algorithms. Top-down algorithms have a search bias for

shorter clauses, which are cheaper to compute. They usually limit the maximum length

of the clauses to be learned. Further, algorithms that follow greedy search strategies can

be more efficient. Greedy algorithms are used systems that focus on efficiency [31, 67].

However, as the maximum clause length is increased, the hypothesis space grows, and

these algorithms become less efficient. Top-down algorithms that do not follow a greedy

search strategy, such as Progol, are generally not efficient. In our empirical studies,

Aleph-Progol did not scale to the HIV-Large dataset, and is the slowest algorithm on

the HIV-2K4K dataset.

Castor is able to scale to large databases such as HIV-Large and HIV-2K4K because

of the optimizations explained in Section 3.6.5. By reusing information about previous

coverage tests, Castor reduces the number of coverage tests on new clauses. Reusing

information about coverage tests is particularly useful on large databases with complex

schemas, such as the HIV datasets, where generated clauses are large and expensive

to evaluate. Parallelization also helps Castor on reducing the time spent on coverage

testing. For these experiments, Castor parallelized coverage testing by using 32 threads.

Finally, minimization helps in reducing the size of clauses. For instance, over both of

HIV datasets, Castor reduces the size of bottom-clauses over the Initial schema by 19%,

over the 4NF-1 schema by 13%, and over the 4NF-2 schema by 18%, on average. Castor

removes redundant literals from the bottom-clause, which results in reducing the search

space and the cost of performing coverage tests. Note that the running time of all

algorithms increases significantly over the 4NF-2 schema of the HIV-Large and HIV-

2K4K datasets. As the bond relation is decomposed into bondSource and bondTarget in

this schema, the number of tuples to represent bonds is doubled compared to the Initial
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HIV-2K4K

Metric Initial 4NF-1 4NF-2

Precision 0.77 0.79 0.73
Recall 0.63 0.87 0.76

Time (m) 27 14.8 576

UW-CSE

Metric Original 4NF Denorm-1 Denorm-2

Precision 0.93 0.93 0.93 0.93
Recall 0.54 0.54 0.54 0.54

Time (s) 8 8.9 9.1 13.3

IMDb

Metric JMDB Stanford Denormalized

Precision 1 0.98 1
Recall 1 0.84 1

Time (m) 7.3 90.8 8.1

Table 3.13: Results of learning over the HIV-2K4K, UW-CSE and IMDb datasets using
INDs in the form of subset.

schema. Therefore, algorithms must explore clauses with a large number of literals

– hundreds – whose coverage tests take a very long time. We plan to optimize the

coverage-testing engine of Castor to efficiently process such datasets.

The efficiency of Castor is comparable to that of Aleph-FOIL and Aleph-Progol over

the Original and 4NF schemas of the UW-CSE dataset. The running time of Aleph-

FOIL and Aleph-Progol is heavily affected on the Denormalized-2 schema, as shown in

Table 3.11. Castor is efficient over all schemas of this dataset. UW-CSE is the only

dataset for which FOIL and ProGolem scale. However, in general, they are less efficient.

Castor is significantly more efficient and effective than Aleph-FOIL and Aleph-Progol

on the IMDb dataset, as shown in Table 3.12. In general, top-down algorithms are effi-

cient if they take the correct first steps when searching for the definition. In this case,

Aleph-FOIL and Aleph-Progol (over two schemas) take the wrong steps and focus on a

section of the hypothesis space that does not contain the correct definition.

General composition and decomposition. As it is explained in Section 3.6.4,

there are two methods to achieve robustness over the schema variations created by the
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INDs in general forms. One can use a preprocessing step to check whether the IND

holds in the form of equality over the available instance. Then, one can apply the

original Castor algorithm and achieve complete schema independence. The empirical

results of this method are exactly the same as the ones of the original Castor algorithm

with the overhead of its preprocessing step. Another method is to use the INDs in

general form directly without any preprocessing. We empirically evaluate the robustness

of the latter method in this section. To explore general composition and decompositions

of HIV, UW-CSE, and IMDb, we restore the INDs with equality that we have enforced

on their schemas to their original forms. For instance, we restore the enforced INDs

with equality movies2X[id] = movie[id] in IMDb schemas to movies2X[id] ⊆ movie[id]

in IMDb schemas. We also modify the INDs with equality that are originally found in

these datasets to INDs in form of foreign key to primary key referential integrities in their

schemas. For example, we have changed INDs movies2X[Xid] = X[id] to movies2X[Xid]

⊆ X[id] over IMDb schemas. Hence, the transformations explained in Section 3.8.1 for

these datasets are general composition and decomposition and not bijective. We do not

change the example sets. We run the extended version of Castor from Section 3.6.4 using

the aforementioned INDs and all other regular INDs in each schema. For HIV-2K4K,

Castor uses the INDs in Table 3.5 (bottom). For UW-CSE, Castor uses the INDs in

Table 3.6 (bottom). For IMDb, Castor uses the INDs in Table 3.9 (bottom). Table 3.13

shows the results of Castor learning relations over the HIV-2K4K, UW-CSE and IMDb

datasets, using only INDs in the form of subset. The extension of Castor gets the same

results as in Table 3.11 over UW-CSE and is schema independent. It is also robust and

delivers the same results as in Table 3.12 for JMDB and Denormalized schemas of IMDb.

But, it returns precision of 0.98 and recall of 0.84 over the database with Stanford schema.

Overall, it is more effective and schema independent than other algorithms over IMDb.

However, the results of the extension of Castor vary with the schema over the HIV-2K4K

dataset: it delivers precision of 0.77, 0.79, and 0.73 and recall of 0.63, 0.87, and 0.76 over

the Initial, 4NF-1, and 4NF-2 schemas, respectively. Castor cannot access some tuples

in the bottom-clause construction in these databases as explained in Section 3.6.4. Its

precisions are equal or higher than the those of Aleph-FOIL and Aleph-Progol over all

schemas and its recall is higher than that of Aleph-FOIL and Aleph-Progol in 4NF-2

schema. But, its recall is lower than the recall of Aleph-FOIL and Aleph-Progol over the

Initial and Aleph-Progol over 4NF-1 schemas.
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Figure 3.1: Effect of parallelization on Castor’s running time over the HIV-Large dataset.

3.8.3 Effect of Castor Design Choices

We evaluate the effect of parallelization and the use of stored procedures on Castor’s

running time. There are some variations in the running times of Castor compared to

the experiments in the previous section because we re-ran experiments, and the running

times may fluctuate.

Effect of parallelization. Castor performs coverage tests in parallel to improve

its running time. Figures 3.1, 3.2, and 3.3 show the effect of parallelization on Castor’s

running time over HIV-Large (Initial schema), HIV-2K4K (Initial schema) and IMDb

(JMDB schema), respectively. Over both HIV-Large and HIV-2K4K datasets, Castor

benefits from parallelization. Over the HIV-Large dataset, the best performance is ob-

tained by using 32 threads, which reduces the running time by half compared to using

1 thread. Over the HIV-2K4K dataset, the running time also reduces significantly with

parallelization and the best performance is obtained with 16 threads. Over the IMDb

dataset, there is no benefit in using parallelization. In this case, Castor does not per-

form many coverage tests, as it is able to find the perfect definition very quickly. In

this case, most of Castor’s running time is spent in creating the ground bottom-clauses,

as explained in Section 3.6.5. Because the UW-CSE dataset is very small, there is no

need for parallelization. Notice that sequential Castor (1 thread) is more efficient than
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Figure 3.2: Effect of parallelization on Castor’s running time over the HIV-2K4K dataset.

Figure 3.3: Effect of parallelization on Castor’s running time over the IMDb dataset.
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Dataset With stored procedures W/o stored procedures

HIV-Large 3.79h 4.75h
HIV-2K4K 15.28m 25.23m

IMDb 10.27m 19.49m

Table 3.14: Impact of stored procedures on Castor’s running time over the HIV-Large,
HIV-2K4K, and IMDb datasets.

Aleph-FOIL with clauselength = 15 over the HIV-Large dataset and more efficient than

Aleph-Progol over the HIV-2K4K and IMDb datasets. Therefore, besides parallelization,

the techniques explained in Section 3.6.5 allow Castor to run efficiently.

Effect of stored procedures. Castor uses the bottom-clause construction algo-

rithm to generate bottom-clauses in the LearnClause procedure, as well as to generate

ground bottom-clauses, used to test coverage. As mentioned in Section 3.6.5, we imple-

ment the bottom-clause construction algorithm inside a stored procedure. To evaluate

the benefit of using stored procedures, we also implement a version of Castor that does

not use stored procedures. Table 3.14 shows the running time of the versions of Castor

with and without stored procedures over the HIV-Large (Initial schema), HIV-2K4K

(Initial schema) and IMDb (JMDB schema) datasets. The version of Castor that uses

stored procedures obtains between 1.25x and 1.9x speedup over the version that does

not use stored procedures.

3.8.4 Query-based Algorithms

We used the interactive algorithm with automatic user mode in the LogAn-H system.

In this mode, the system is told the Horn definition to be learned, so that it can act

as an oracle. Then the algorithm’s queries are answered automatically until it learns

the exact definition. When answering EQs, the counter examples are produced by the

system. Therefore, LogAn-H only takes as input the schema of the dataset, but not

the database instance. We performed experiments using the schemas of the UW-CSE

dataset. We generated random Horn definitions over the Denormalized-2 schema of the

UW-CSE dataset. The definition generator has a parameter to indicate the number of

variables in each clause. To generate the head of each clause, we created a new relation
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of random arity, where the minimum arity is 1 and the maximum arity is the maximum

arity of the relations in the Denormalized-2 schema. The body of each clause can be

of any length as long as the number of variables in the clause is equal to the specified

parameter and all variables appearing in the head relation also appear in any relation in

the body. The body of the clause is composed of randomly chosen relations, where each

relation can be the head relation or any relation in the input schema. Head and body

relations are populated with variables, where each variable is randomly chosen to be an

existing or new variable.

After generating each random Horn definitions over the Denormalized-2 schema, we

transformed these expressions to the Denormalized-1, 4NF and Original schemas by

simply doing vertical decomposition to each of the clauses in a definition. We varied

the number of clauses in a definition to be between 1 and 5, each containing between

4 and 8 variables. Therefore, we generated 50 random definitions for each setting. We

ran the LogAn-H system and recorded the number of queries required to learn each

definition under each schema. The number of EQs and MQs asked by the algorithm are

presented in Figure 3.4 and 3.5, respectively. The average number of EQs required by

the A2 algorithm is constant for different number of variables and similar throughout all

schemas. However, the average number of MQs required by the A2 algorithm varies with

the schema. Particularly, the number of MQs is greater for more decomposed schemas,

e.g., the Original schema. Further, the number of MQs also increases with the number of

variables. This difference of MQs between the schemas originates from a step in the A2

algorithm that removes non-essential literals in ground bottom-clauses generated from

negative examples. This process is similar to Castor’s negative reduction. It removes a

literal and asks an MQ to verify whether the example is still negative. Therefore, the

more decomposed the schema is, the more literals can be removed, hence more MQs are

asked.

3.9 Related Work

There has been a growing interest in developing relational learning algorithms that scale

to large databases [16, 31, 67]. AMIE [31] and Ontological Pathfinding [16] focus on

learning first-order rules from RDF-style knowledge bases. They impose several restric-

tions on the learned rules to be able to learn over large knowledge bases. QuickFOIL [67]
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Figure 3.4: Average number of equivalence queries by the A2 algorithm.

Figure 3.5: Average number of membership queries by the A2 algorithm.
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provides an in-RDBMS implementation of a modified version of FOIL. Besides efficiency,

we also focus on schema independence.

Davis et al. [21] use a relational learning algorithm to learn new features, which are

used to improve the performance of an Statistical Relational Learning (SRL) model.

The proposed system in this chapter can also be used to learn these features as well

as the structure of the SRL models, with the added benefit of efficiency and schema

independence.

We build upon the body of work on transforming databases without modifying their

content by exploring the sensitivity of relational learning algorithms to such transforma-

tions [29, 40]. Another notable group of database transformations is schema mapping

for data exchange [28]. These transformations generally lose information and introduce

incomplete information to a database. However, for the property of schema indepen-

dence, a transformation should preserve the information content of databases. Fagin

explores invertible schema mappings that preserve the information content of database

instances [27]. Nevertheless, these mappings may introduce labeled nulls to the database

instance. Similar to answering queries over databases with labeled nulls, we believe that

it is challenging to define reasonable semantics and design efficient and effective algo-

rithms for learning relations over such databases. Researchers have defined the property

of design independence for keyword query processing over XML [63]. We extend this

line of work by exploring the schema independence for relational learning algorithms.

The architects of the relational model have argued for logical data independence,

which oversimplifying a bit, means that an exact query should return the same answers no

matter which logical schema is chosen for the data [2, 18]. In this chapter, we extend the

principle of logical data independence [2] for relational learning algorithms. The property

of schema independence also differs with the idea of logical data independence in a subtle

but important issue. One may achieve logical data independence by an affordable amount

of experts’ interventions, e.g., defining views over the database. However, it takes deeper

expertise to find the proper schema for a learning algorithm, particularly for database

applications that contain more than a single learning algorithm. Hence, it is less likely

to achieve schema independence via experts’ interventions.
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Chapter 4: Automatically Setting Language Bias

4.1 Motivation

The space of possible hypotheses that a relational learning algorithm can explore con-

sists of all Datalog programs defined over the schema of the input database. This space

can be very large if the schema of the input database contains many relations or many

attributes. Therefore, users must constraint the hypothesis space of relational learning

algorithms using a language bias. One form of language bias is syntactic bias, which

restricts the structure and syntax of the learned Datalog programs. Relational learn-

ing systems usually allow users to specify the syntactic bias through statements called

predicate definitions and mode definitions [22]. Predicate and mode definitions express

several types of restrictions on the structure of the learned Datalog programs, such as

the relations allowed to be in the Datalog program, whether an attribute can appear

as a variable or constant, and whether two relations can join. Consider the UW-CSE

database (alchemy.cs.washington.edu/data/uw-cse), which contains information about a

computer science department and whose schema is shown in Table 4.1. Table 4.2 shows

a fragment of predicate and mode definitions used for the UW-CSE database. A detailed

explanation of these definitions is given in Section 4.2. To the best of our knowledge,

all (statistical) relational learning systems require some form of syntactic bias to restrict

the hypothesis space. Malec et al. [45] have shown that predicate and mode definitions

significantly reduce the running time of (statistical) relational learning algorithms.

For a relational learning algorithm to be effective and efficient, predicate and mode

definitions must encode a great deal of information about the structure of the learned

student(stud) professor(prof)
inPhase(stud, phase) hasPosition(prof, position)
yearsInProgram(stud, years) taughtBy(course, prof, term)
courseLevel(course, level) ta(course, stud, term)
publication(title, person)

Table 4.1: Schema for the UW-CSE dataset.
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Predicate definitions Mode definitions

student(T1) advisedBy(+,+)
inPhase(T1,T2) student(+)
professor(T3) inPhase(+,-)
hasPosition(T3,T4) inPhase(+,#)
publication(T5,T1) professor(+)
publication(T5,T3) hasPosition(+,-)

...

Table 4.2: A subset of predicate and mode definitions for the UW-CSE dataset.

Datalog programs [22]. A user should both know the internals of the learning algorithm

and the schema of the input database and have a relatively clear intuition on the struc-

ture of effective Datalog programs for the target relation to set a sufficient degree of

restriction. However, there may not be any user that both knows the database concepts,

such as schema, and has a clear intuition about the target relation. Furthermore, the

number of predicate and mode definitions of is generally large and hard to debug and

maintain. Users normally improve the initial set of definitions via trial and error, which

is a tedious and time-consuming process. Hence, it takes a lot of time and effort to write

and maintain these definitions, particularly for a relatively complex schema. In our con-

versations with (statistical) relational learning experts, they have called predicate and

mode definitions the “black magic” needed to make relational learning work and believe

them to be a major reason for the relative unpopularity of these algorithms among users.

We propose AutoMode, a system that leverages the information in the schema and

content of the database to automatically generate predicate and mode definitions. The

predicate and mode definitions generated by AutoMode can be used by relational learn-

ing systems such as Castor (Chapter 3). We show that the predicate and mode defi-

nitions produced by AutoMode deliver the same accuracy as the manually written and

tuned ones while imposing only a modest running-time overhead over large real-world

databases.

Relational learning algorithms do not generally scale to large databases. Generating

the language bias automatically through AutoMode may result in an under-restricted

hypothesis space. Therefore, with such a language bias, it may be extremely time-

consuming to learn over large databases. We propose to use sampling techniques to get

a subset of the data that is used to generate candidate definitions. We study different
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sampling techniques and integrate them into the algorithm that builds candidate defini-

tions in Castor. We show that the effectiveness and efficiency of the learning algorithms

can improve with the appropriate sampling techniques.

4.2 Language Bias

In relational learning algorithms, language bias restricts the structure and syntax of the

generated clauses. Language bias is specified through predicate and mode definitions [22].

Predicate definitions assign one or more types to each attribute in a database

relation. In a candidate clause, two relations can be joined over two attributes (i.e.,

attributes are assigned the same variable) only if the attributes have the same type. For

instance, in Table 4.2, the predicate definition student(T1) indicates that the attribute

in relation student is of type T1, and the predicate definition inPhase(T1,T2) indicates

that the first and second attributes of relation inPhase are of type T1 and T2, respectively.

Therefore, relations student and inPhase can be joined on attributes student[stud] and

inPhase[stud]. It is possible to assign multiple types to an attribute. For example the

predicate definitions publication(T5,T1) and publication(T5,T3) indicate that the

attribute author in relation publication belongs to both types T1 and T3. Predicate

definitions restrict the joins that can appear in a candidate clause: two relations can be

joined only if their attributes share a type.

Mode definitions indicate whether a term in an atom should be a new variable, i.e.,

existentially quantified variable, an existing variable, i.e., appears in a previously added

atom, or a constant. They do so by assigning one or more symbols to each attribute

in a relation. Symbol + indicates that a term must be an existing variable, except for

the atom in the head of a Horn clause. Symbol − indicates that a term can be an

existing variable or a new variable. For instance, the mode definition inPhase(+,-) in

Table 4.2 indicates that the first term must be an existing variable and the second term

can be either an existing or a new variable. Symbol # indicates that a term should be

a constant. For instance, the mode definition inPhase(+,#) indicates that the second

term must be a constant. Each atom in a candidate clause must satisfy at least one

mode definition.
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Figure 4.1: Architecture of the AutoMode system.

4.3 AutoMode System

We propose AutoMode, a system that leverages the information in the schema and con-

tent of the database to automatically generate predicate and mode definitions. Figure 4.1

shows the components of the AutoMode system. The predicate and mode definitions gen-

erated by AutoMode can be used by relational learning systems such as Castor (Chap-

ter 3). AutoMode reads and extracts the information about the schema of the underlying

database from the relational database management system (RDBMS). It then generates

predicate and mode definitions in a pre-processing step. Castor uses these definitions to

learn the definition of some target relation. The same predicate and mode definitions

can be used to learn different target relations.

4.3.1 Generating Predicate Definitions

Let R and S be two relation symbols in the schema of the underlying database. Let

R(e1, · · · , en) and S(o1, · · · , om) be two atoms in a clause C. Let ei be the term in at-

tribute R[A] and oj be the term in attribute S[B], and let ei and oj be assigned the same

variable or constant. That is, clause C joins R and S on A and B. Clause C is satisfiable

only if these attributes share some values in the input database. Typically, the more

frequently used joins are the ones over the attributes that participate in inclusion depen-

dencies (INDs), such as foreign-key to primary-key referential constraints. AutoMode

uses INDs in the input database to find which attributes, among all relations, share the

same type. Let X and Y be sets of attribute names in R and S, respectively. Let IR and
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IS be the relations of R and S in the database. Relations IR and IS satisfy exact IND

(IND for short) R[X] ⊆ S[Y ] if πX(IR) ⊆ πY (IS). If X and Y each contain only a single

attribute, the IND is a unary IND. Given IND R[X] ⊆ S[Y ] in a database, the database

satisfies unary IND R[A] ⊆ S[B], where A ∈ X and B ∈ Y . INDs are normally stored

in the schema of the database. If they are not available in the schema, one can extract

them from the database content. AutoMode uses the Binder algorithm [52] to discover

INDs from the database, shown by the Exact IND discovery box in Figure 4.1, and

generates all unary INDs implied by them.

We have observed that using exact INDs is not enough for generating helpful pred-

icate definitions. For instance, consider using the UW-CSE database, whose schema

fragments are shown in Table 4.1. Consider the task of learning a definition for the rela-

tion advisedBy(stud, prof), which indicates that the student stud is advised by professor

prof. A relational learning algorithm may learn the following Datalog program for the

advisedBy relation:

advisedBy(x, y)← student(x), professor(y), publication(z, x), publication(z, y)

which indicates that a student is advised by a professor if they have been co-authors

of a publication. This definition requires joining relations publication, student, and pro-

fessor on attributes publication[author], student[stud], and professor[prof]. However, the

UW-CSE database does not satisfy INDs publication[author] ⊆ student[stud] or publi-

cation[author] ⊆ professor[prof] because publication[author] contains both students and

professors. Hence, AutoMode also uses approximate INDs to assign types to attributes.

In an approximate unary IND (R[A] ⊆ S[B], α), one has to remove at least α fraction

of the distinct values in R[A] so that the database satisfies R[A] ⊆ S[B] [1]. Approx-

imate INDs are not usually maintained in a schema and are instead discovered from

the database content. We have implemented a program to extract approximate INDs

from the database, shown by the Approximate IND discovery box in Figure 4.1. We

use a relatively high error rate, 50%, for the approximate INDs to allow for a flexible

hypothesis space.

After discovering unary exact and approximate INDs, AutoMode runs Algorithm 7

to generate a directed graph called type graph, which it then uses to assign types to

attributes. First, it creates a graph whose nodes are attributes in the input schema
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and has an edge between each pair of attributes that participate in an exact or approx-

imate IND. Figure 4.2 shows an example of the type graph containing a subset of the

attributes in the UW-CSE schema, where edges corresponding to exact and approximate

INDs are shown by solid and dashed lines, respectively. If there are both approximate

INDs (R[A] ⊆ S[B], α1) and (S[B] ⊆ R[A], α2), AutoMode uses only the one with lower

error rate. The algorithm then assigns a new type to every node in the graph without

any outgoing edges. For example, it assigns new types T1, T3, and T5 to student[stud],

professor[prof], and publication[title], respectively, in Figure 4.2. If there are cycles in

the type graph, the algorithm assigns the same new type to all nodes in each cycle.

Next, it propagates the assigned type of each attribute to its neighbors in the reverse

direction of edges in the graph until no changes are made to the graph. For example, in

Figure 4.2, the algorithm propagates type T1 to inPhase[stud] and ta[stud] and attribute

publication[author] inherits types T1 and T3 from student[stud] and professor[prof], re-

spectively. Because the error rates of approximate INDs accumulate over multiple edges

in the graph, AutoMode propagates types only once over edges that correspond to ap-

proximate INDs.

Algorithm 7: Algorithm to generate the type graph.

Input : Schema S and all unary INDs Σ.
Output: Type graph G.
create graph G = (V,E) where V contains a node for each attribute in the
schema and E = ∅

foreach IND R[A] ⊆ S[B] ∈ Σ do
add edge v → u to E, where v and u correspond to attributes R[A] and
S[B], respectively

foreach node u ∈ V without outgoing edges do
generate new type T and set types(u) = {T}

foreach cycle K ⊆ V do
generate new type T and set types(u) = {T} ∀u ∈ K

repeat
foreach v → u ∈ E where types(u) 6= ∅ do

set types(v) = types(v) ∪ types(u)

until no changes in G
return G

Given the resulting graph, for each relation, AutoMode computes the Cartesian prod-
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Figure 4.2: A fragment of the type graph for the UW-CSE dataset. Solid lines represent
exact INDs and dashed lines represent approximate INDs.

uct of the types associated with its attributes. For each tuple in this Cartesian product,

it produces a predicate definition for the relation. For instance, given the type assign-

ment in Figure 4.2, AutoMode generates predicate definitions publication(T5,T1) and

publication(T5,T3) for the publication relation.

4.3.2 Generating Mode Definitions

AutoMode allows every attribute of every relation be a variable. However, it forces at

least one variable in an atom to be an existing variable, i.e., appears in previously added

atoms, to avoid generating Cartesian products in the clause. For each attribute A in

relation R, AutoMode generates a mode definition for R where attribute A is assigned

the + symbol and all other attributes are assigned the − symbol. Hence, all attributes

are allowed to have new variables except the attribute with symbol +. For instance,

AutoMode generates the mode definitions publication(+,-) and publication(-,+)

for relation publication in Table 4.1.

AutoMode uses a hyper-parameter called constant-threshold to determine whether

an attribute can be a constant. The value for constant-threshold can take an absolute

or a relative threshold. If it is an absolute threshold, AutoMode allows an attribute

to be a constant if the number of distinct values in the attribute is below the value of

constant-threshold. If it is a relative threshold, AutoMode allows an attribute to be a

constant if the ratio of distinct values of the attribute to the total number of tuples in the

relation is below the value of constant-threshold. This hyper-parameter has a relatively

intuitive meaning.
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For each relation R in the database, AutoMode finds all attributes in R that can

be constants using the aforementioned rule. Then, it computes the power set M of

these attributes. For each non-empty set M ∈ M, AutoMode generates a new set of

mode definitions where it assigns + and − symbols as described above, except for the

attributes in M , which are assigned the # symbol. For example, AutoMode finds that

the number of values in attribute phase of relation inPhase in Table 4.1 is smaller than

the input threshold. Then, this attribute can be constant and AutoMode generates the

mode definition inPhase(+,#) for relation inPhase.

4.4 Improving Efficiency Through Sampling

When learning over large databases, relational learning algorithms can be inefficient.

Further, if the language bias written by an expert or generated by AutoMode is not

restrictive enough, algorithms can be extremely inefficient. In this section, we study

sampling techniques that allow relational learning algorithms to learn efficiently. We

implement these techniques in Castor (Chapter 3). However, the same techniques can

be implemented in other algorithms that build bottom-clauses, such as Progol [47] and

ProGolem [50].

A bottom-clause Ce associated with an example e is the most specific clause in the

hypothesis space that covers e. The bottom-clause construction algorithm consists of

two phases (refer to Section 3.5.1). First, it finds all the information in I relevant to e,

denoted by Ie. Then, given the information relevant to e, it creates the bottom-clause

Ce. The tuple set Ie may be large if many tuples in I are relevant to e. Thus, bottom-

clause Ce would be very large, making the learning process prohibitively expensive. To

overcome this problem, it is necessary to obtain a smaller tuple set Ise ⊆ Ie. Then, the

bottom-clause Ce is created based on the tuples in Ise , instead of Ie. Existing algorithms,

such as Progol [47] and ProGolem [50], already use sampling to build bottom-clauses.

They use a technique that we call näıve sampling, which we explain below. We propose

two other sampling techniques called random sampling and stratified sampling. We

implement the three sampling techniques in Castor and empirically evaluate them in

Section 4.5.2.
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4.4.1 Näıve Sampling

Let Ce be a bottom-clause associated with example e. A näıve sample Cse of clause Ce

is the clause obtained the following way. Let IR be the set of tuples in relation R that

can be added to Ie. The näıve sampling algorithm obtains a uniform sample IsR of IR

and only adds tuples in IsR to Ie. In a uniform sample, every tuple in IR is sampled

independently with the same inclusion probability, i.e., ∀t ∈ IR, p(t) = 1
|IR| .

4.4.2 Random Sampling

Let sample(I) be a random sample of I. One way to obtain a smaller tuple set Ise ⊆ Ie

is to obtain a random sample Ise = sample(Ie). Let the inclusion probability p(t) of tuple

t ∈ Ie be the probability that t is included in sample(Ie). The inclusion probability

of t should be proportional to the number of tuples that are connected to e through t.

Let t and t′ be two tuples in Ie and let T and T ′ be the sets of tuples connected to e

through t and t′, respectively. If |T | > |T ′|, then the inclusion probability p(t) of t should

be greater than the inclusion probability p(t′) of t′. This idea is similar to the idea of

performing random sampling over joins [15].

A join tree is a tree structure where nodes represent relations or tuples of a relation.

Let nR represent a node in the join tree that represents relation R. A node nR1 in the

join tree has a child nR2 if R1 can join with R2. Let T be the target relation and e = T (t)

be a training example. We create a join tree G where the root is e and the children of

each node nR in the tree are nodes representing all relations in the schema that can join

with R. The depth of the tree is limited by the given parameter d. Let R ≺ Ri denote

that nR is an ancestor of nRi in the join tree G. For any relation R and any tuple t ∈ IR,

let the weight of t be w(t) = |t ./ (./i:R≺Ri Ri)| and w(R) = Σt∈IRw(t). In random

sampling, the inclusion probability of a tuple t ∈ IR is p(t) = w(t)
w(R) .

The bottom-clause construction algorithm using random sampling is depicted in Al-

gorithm 8. Computing the weight w(t) requires computing all join paths that can be

derived from t. To sample a tuple from IR, we would have to compute w(t) for all t ∈ IR.

Instead, we use the sampling technique proposed by Olken [51]. We use Algorithm 8, but

we change the way that we sample tuples. The algorithm samples a tuple t ∈ (T o R)

uniformly, i.e., with probability 1
|ToR| . Let IR = (T o R). Then, the algorithm accepts
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or rejects tuple t with a probability based on the frequency of value v = t[A] on IR,

denoted as dA(v, IR) = |t : t ∈ IR, t[A] = v|. Let DA(IR) = maxv dA(v, IR). That is,

tuple t is accepted with probability dA(v,IR)
DA(IR) and rejected otherwise. If accepted, tuple t

is added to S and TR. Otherwise, the algorithm samples again until s tuples have been

accepted.

Algorithm 8: Bottom-clause construction algorithm using random sampling.

Input : example e, # of iterations d, sample size s
Output: Bottom-clause C
Ise = {}
foreach child relation Ri of R do

Ise = Ise∪ Acyclic-Sample({t}, Ri, 1, d, s)
C = create bottom-clause from Ise
return C
Function Acyclic-Sample(T,R, i, d, s):

S = {}, TR = {}
for i = 1 . . . s do

t← a random tuple t ∈ (T oR) with probability w(t)/w(T oR)
S = S ∪ {t}
TR = TR ∪ {t}

if i < d then
foreach child relation Rj of R do

S = S∪ Acyclic-Sample(TR, Rj , i+ 1, d, s)

return S

4.4.3 Stratified Sampling

Let G be a join tree with root node set to example e. Let S be a relation that contains

attribute A, where A can appear as a constant according to the language bias. We extend

the join tree G to contain a new node for each distinct value in S[A]. The parents of

these nodes are the same as nS , the node for relation S.

Given a node nR in G, we define a stratum for each child of nR. Therefore, there is a

stratum for each relation S that can join with R and, if S contains an attribute A that

can be a constant, there is a stratum for each each distinct value in S[A]. A stratified

sample Ise of Ie is a subset of Ie that contains at least one tuple for each stratum in
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G. A stratified sample Cse of clause Ce is the clause created from the stratified sample

Ise of Ie. Algorithm 9 depicts the bottom-clause construction algorithm using stratified

sampling. The algorithm traverses join tree G in a depth-first manner. Once it reaches a

given depth, it computes the strata in the current relation, e.g., relation S, and samples

a number of tuples for each stratum in S and adds them to Ie. When the algorithm

backtracks to the parent relation R of S, it adds all tuples in R that join with the

sampled tuples in S to Ie.

Algorithm 9: Bottom-clause construction algorithm using stratified sampling.

Input : example e, # of iterations d, sample size s
Output: bottom-clause Ce
Ise = {}
foreach attribute A in e do

foreach relation R containing attribute A do
Ise = Ise ∪ StratRec(R,A, {e[A]}, 1, d, s)

Ce = create clause from e and Ise
return Ce
Function StratRec(R, A, M , i, d, s):

Ise = {}
IR = σA∈M (R)
if i = d (last iteration) then

Ise = Ise ∪ SampleStrata(IR, s)
else

foreach attribute B in R do
foreach relation S containing attribute B do

IS = StratRec(S,B, πB(IR), i+ 1, d, s)
Ise = Ise ∪ (σB∈πB(IS)(IR))

return Ise

4.5 Empirical Results

We empirically evaluate AutoMode and the proposed sampling techniques to answer the

following questions:

1. What is the benefit of setting a language bias in relational learning? (Section 4.5.1)

2. How does Castor perform when using language bias generated by AutoMode com-
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Name #R #T #P #N

UW-CSE 9 1.8K 102 204
HIV 80 14M 2K 4K

IMDb 46 8.4M 1.8K 3.6K

Table 4.3: Number of relations (#R), tuples (#T), positive examples (#P), and negative
examples (#N) for each dataset.

pared to using language bias written by an expert? (Section 4.5.1)

3. How do sampling techniques affect the efficiency and effectiveness of Castor? (Sec-

tion 4.5.2)

4.5.1 Evaluating AutoMode

We run experiments over three datasets whose information is shown in Table 4.3. The

UW-CSE database contains information about a computer science department. We learn

the target relation advisedBy(stud, prof), which indicates that student stud is advised

by professor prof. The HIV database contains structural information about chemical

compounds (wiki.nci.nih.gov/display/NCIDTPdata). We learn the target relation anti-

HIV(comp), which indicates that compound with id comp has anti-HIV activity. In this

dataset, the positive examples are compounds known to have anti-HIV activity, while

negative examples are compounds known to lack anti-HIV activity. The IMDb database

(imdb.com) contains contains information about movies and people who make them. We

learn the target relation dramaDirector(dir), which indicates that person with id dir has

directed a drama movie. Over the UW-CSE and IMDb databases, we generate the neg-

ative examples by using the closed-world assumption, and then sample to obtain twice

as many negative examples as positive examples.

We use four methods of setting language bias.

1. Baseline assigns the same types to all attributes and allows every attribute to be

a variable or a constant.

2. Baseline without constants is the same as the baseline method, except that it

does not allow any attribute to be a constant.
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3. Manual tuning uses the language bias written by an expert who has knowledge

of the relational learning system and knows how to write predicate and mode

definitions. The author of this thesis acted as the expert. The expert had to

learn the schema and go through several trial and error phases by running the

underlying learning system and observing its results to write the predicate and

mode definitions. The expert has written 36, 165, and 112 predicate and mode

definitions for the UW-CSE, HIV, and IMDb databases, respectively.

4. AutoMode uses the automatically generated predicate and mode definitions, as

described in Section 4.3. The original databases do not contain INDs. Therefore,

AutoMode calls the IND discovery tools shown in Figure 4.1. The pre-processing

step of AutoMode to extract INDs takes 2 seconds, 45 minutes, and 53 minutes

over the UW-CSE, HIV, and IMDb databases, respectively. We set the hyper-

parameter in AutoMode used to determine whether an attribute can be a constant

(Section 4.3.2) to 5 for UW-CSE, 20 for HIV, and 400 for IMDb.

We compare the quality of the learned definitions using the metrics of precision and

recall [22]. We also compare the learning time of Castor to show the effect of predicate

and mode definitions. We perform 10-fold cross validation for HIV and IMDb datasets

and 5-fold cross validation for UW-CSE. We evaluate precision, recall, and learning time,

showing the average over the cross validation. We run experiments on a 2.3GHz Intel

Xeon E5-2670 processor, running CentOS Linux 7.2 with 500GB of main memory.

The results are shown in Table 4.4. We analyze the results of each setting.

Baseline. Over the UW-CSE database, Castor is less accurate and efficient com-

pared to other settings. Over the HIV database, Castor does not terminate after 36

hours. Over the IMDb database, Castor is killed by the kernel because of extreme use

of resources. By allowing every attribute to be a constant, every value in the database –

even if it has a non-predictive value – may appear in a literal as a constant. Therefore,

the generated bottom-clause contains a large number of literals, many of which are not

useful for learning a definition for the target relation. For instance, the first bottom-

clause created when running over the IMDb databases contains on average 1255 literals.

Further, by assigning the same type to all attributes in all relations, it allows all relations

to join with each other on any attribute, resulting in a long running time.

Baseline without constants. Over the UW-CSE database, this setting is the most
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efficient, and obtains competitive precision and recall compared to manual tuning and

AutoMode. Over the HIV database, Castor is able to learn a reasonable definition,

but less accurate than manual tuning and AutoMode. However, because this setting

uses the same type for all attributes, it allows all relations to join with each other over

any attribute, resulting in a long running time. Over the IMDb database, the perfect

definition for the target relation dramaDirector contains a constant. However, in this

setting, constants are not allowed. Therefore, Castor learns other definitions which are

significantly less accurate compared to manual tuning or AutoMode.

Manual tuning. Castor obtains similar precision and recall using manual tuning

and AutoMode. Castor with manual tuning is very efficient. However, an expert had to

spend significant amount of time tuning the language bias. Further, a non-expert user

would not be able to specify this bias.

AutoMode. AutoMode is more effective than the baselines, and as effective as man-

ual tuning. However, AutoMode is slightly less efficient than manual tuning. Manually

written predicate and mode definitions provide a more restricted hypothesis space than

the ones generated by AutoMode. Thus, Castor has to explore a larger hypothesis space

when using AutoMode. Nevertheless, the overhead in the running time is about 18 min-

utes for the HIV database and 4 minutes for the IMDb database, which is a reasonable

overhead for saving an expert’s time and the enterprise’s financial resources that pay the

machine learning expert. There is no overhead over the UW-CSE database. Hence, we

argue that automating the generation of predicate and mode definitions with the cost of

a modest overhead in performance is a reasonable trade-off. Further, AutoMode enables

non-experts to use relational learning systems more easily.

4.5.2 Evaluating Sampling Techniques

In this section, we empirically evaluate the sampling techniques presented in Section 4.4.

We use two versions of the HIV dataset. Both datasets contain the same background

knowledge, but we vary the number of training examples. The first version, which we call

HIV-Large, contains 5.8K positive and 36.8K negative examples. The second version,

which we call HIV-2K4K, contains 2K positive and 4K negative examples. The schema

of the HIV dataset used in Section 4.5.1 contains one relation for each type of element

and each bond type. We modify the schema so that the types of element and bonds are
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Dataset Measure Baseline
Baseline Manual

AutoMode
(w/o const.) tuning

UW-CSE
Precision 0.76 0.96 0.93 0.93

Recall 0.50 0.48 0.54 0.54
Time 47s 6.6s 11s 10.8s

HIV
Precision - 0.72 0.77 0.77

Recall - 0.91 0.89 0.89
Time >36h 20h 14.7m 32.2m

IMDb
Precision - 0.68 1 1

Recall - 0.51 1 1
Time - 9.2h 2.7m 6.9m

Table 4.4: Results of learning relations over UW-CSE, HIV, and IMDb data (h=hours,
m=minutes, s=seconds).

compounds(compound, atom) atoms(atom, element)
atoms p2(atom, type) atoms p3(atom, type)
bonds(bond, atom1, atom2, type)

Table 4.5: New schema for the HIV dataset.

stored in an attribute. The new schema is shown in Table 4.5. This schema follows a

more common database design. Further, it allows a better comparison of the sampling

techniques.

We use three versions of Castor. Each version uses a different sampling technique for

bottom-clause construction:

1. Castor-Näıve uses näıve sampling, as explained in Section 4.4.1.

2. Castor-Random uses random sampling, as explained in Section 4.4.2. Random

sampling is implemented using Olken’s sampling approach.

3. Castor-Stratified uses stratified sampling, as explained in Section 4.4.3.

Table 4.6 shows the results of Castor learning over the HIV-Large and HIV-2K4K

datasets with different sampling techniques. Over the HIV-Large dataset, Castor-Stratified

obtains the best precision and recall and is the most efficient. Castor-Random obtains

a better precision than Castor-Näıve, but lower recall. Over the HIV-2K4K dataset,

Castor-Stratified obtains the best recall and a competitive precision. Castor-Random
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Dataset Measure
Castor- Castor- Castor-
Näıve Random Stratified

HIV-Large
Precision 0.80 0.84 0.87

Recall 0.77 0.73 0.88
Time 7.4h 6.3h 6.1h

HIV-2K4K
Precision 0.74 0.83 0.81

Recall 0.84 0.86 0.91
Time 22.3m 20.2m 24.3m

Table 4.6: Results of learning relations over HIV data with different sampling techniques
(h=hours, m=minutes).

obtains the best precision and a competitive recall and is the most efficient. Castor-

Näıve obtains the lowest precision and recall. In the HIV background knowledge, shared

by both datasets, compounds contain hundreds of atoms. Some atoms are common

elements, e.g., Hydrogen, while other atoms are rare elements, e.g., Lithium. Castor-

Stratified is able to explore join paths that lead to all types of elements in a compound.

Therefore, the bottom-clauses generated by Castor-Stratified contain diverse informa-

tion, which allows it to learn better definitions. Castor-Random focuses on obtaining a

subset of the data that is representative of the whole data, but is not necessarily helpful

for learning definitions. Castor-Näıve simply samples tuples uniformly in each relation.
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Chapter 5: Robustness Against Content Heterogeneities

5.1 Motivation

Users often use machine learning methods to discover interesting and novel relations over

relational databases [22, 34, 67]. For instance, consider the IMDb database (imdb.com),

which contains information about movies, for which schema fragments are shown in

Table 5.1 (top). Given this database, a user may want to use a relational learning

algorithm such as Castor to find the definition for the new relation highGrossing(title),

which indicates that the movie with a given title is high grossing. The user may provide

a set of high grossing movies as positive examples and a set of low grossing movies as

negative examples to a relational learning algorithm. Given the IMDb database and

these examples, the algorithm may learn the following definition:

highGrossing(x)←movies(y, x, z),mov2genres(y, ‘comedy ’),

mov2releasedate(y, ‘May ’, u),

which indicates that high grossing movies are often released in May and their genre is

comedy.

Databases often contain heterogeneities in representing data values [12, 24, 30, 33],

which may prevent the learning algorithms from finding an accurate definition. In par-

ticular, the information in a domain is sometimes spread across several databases. For

example, IMDb does not contain the information about the budget or total grossing

of movies. This information is available in another database called Box Office Mojo

IMDb

movies(id, title, year) mov2countries(id, name)
mov2genres(id, name) mov2releasedate(id, month, year)

Box Office Mojo

mov2totalGross(title, gross) highBudgetMovies(title)

Table 5.1: Schema fragments for the IMDb and Box Office Mojo datasets.
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(BOM) (boxofficemojo.com), for which schema fragments are shown in Table 5.1 (bot-

tom). Thus, to learn an accurate definition for the highGrossing relation, the user has

to collect (more) data from the BOM database. For instance, the information about the

budget of movies may be helpful in learning an effective definition for the highGrossing

relation as high grossing movies may have high budgets. Thus, users may integrate these

two databases under a unified schema over which to learn the target relation. However,

the same entity or value may be represented in various forms in the integrated database.

For instance, the titles of the same movie in IMDb and BOM have different formats,

e.g., the title of the movie Star Wars: Episode IV is represented in IMDb as Star Wars:

Episode IV - 1977 and in BOM as Star Wars - IV. In this case, the learning algorithm

cannot learn the aforementioned accurate definition for the highGrossing relation as it

will not be able to connect the information about the same movie from IMDb and BOM

movie relations. Such heterogeneities in representing names of entities and data values

may also appear in a single data source due to the inconsistencies in data entry and

collection [12, 30].

Currently, users must manually resolve the heterogeneities in representing data val-

ues and then learn over the clean database. However, it is difficult, time-consuming, and

labor-intensive to resolve these heterogeneities over large databases [24, 33]. First, the

user has to develop and train a matching function that distinguishes and unifies different

values that refer to the same entity, apply that function on the database, and materi-

alize the produced instance. Second, a unification may lead to new inconsistencies and

opportunities to do more cleaning. For example, after unifying the titles of movies in a

database, the user may notice that the names of directors of these movies are different

in the database. To keep the database consistent, the user has to unify the names of

the directors whose movies have been unified in the recently produced database. This

process will be repeated for entities related to directors, e.g., production companies with

which a director has worked, and other entities related to the movies until there are no

more values to reconcile. Thus, it will take a long time to produce and materialize a

clean database instance. Third, the process of unifying values may produce numerous

clean database instances as one value may match multiple distinct values [12, 13, 30].

For example, title Star Wars may match both titles Star Wars: Episode IV - 1977 and

Star Wars: Episode III - 2005. Since we know that the Star Wars: Episode IV - 1977

and Star Wars: Episode III - 2005 refer to two different movies, the title Star Wars must
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be unified with only one of them. For each choice, one ends up with a distinct database

instance. Since a large database has often many potentially matches, the number of clean

database instances may be enormous. It is not clear which clean instance one should use

to learn an accurate definition for a target relation.

Recently, there have been efforts to develop systems that use data constraints to

clean and materialize a unified database instance [9, 13, 59]. For instance, the HoloClean

system uses data constraints, such as denial constraints and matching dependencies, to

perform data repairing and materialize a probabilistic database [59]. To find repairs,

HoloClean generates all possible values for an entity and assigns probabilities to them.

These values are taken from tuples in the input database. To generate a unified database

instance, for each entity with multiple possible values, HoloClean assigns the value with

the highest probability. There are some downsides to this approach. First, HoloClean

may produce inconsistent databases. For instance, in one tuple, the value Star Wars

may be repaired with the value Star Wars: Episode IV - 1977, while in another tuple,

the same value Star Wars may be repaired with the value Star Wars: Episode III - 2005.

The generated database is inconsistent because the same entity in the original database is

given two different interpretations. Another problem is that the data repairs considered

by HoloClean are only given by the existing values in the database. In some cases, the

correct data repair may not be an existing value in the database, but a combination of

values or a repair given by a domain expert.

The aforementioned tasks substantially increase the time needed to get insights. In

fact, most data scientists spend about 80% of their time on data preparation tasks, such

as dealing with data heterogeneities [42]. Since users cannot wait for a long time or

allocate enormous resources to prepare large datasets, researchers have proposed on-

demand approaches to data preparation [36, 37, 42, 65]. These methods may reduce

the time and effort of data cleaning by preparing only a subset of the data that may be

relevant to the task at hand. More importantly, the process of data analysis is inherently

iterative [37]. Users may start by collecting the data items which they deem relevant to

the target relation, clean and prepare them, and learn a definition over the data. If the

learned definition is not sufficiently accurate, users may look for other data items and

repeat this process. An on-demand approach enables users to evaluate the relevance of

a dataset to the target relation faster.

In this chapter, we build upon the idea of on-demand data analysis and propose a
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novel learning method that learns directly over the original data without finding and

materializing appropriate clean instance(s) of the data. Our approach advances the on-

demand approaches as users do not have to perform any cleaning and preparation on

the underlying data. Instead, users provide only a set of declarative (logical) constraints

on the database schema, which determine values of what attributes can meaningfully

match and be unified [5, 9, 11, 13, 30, 32, 39, 38, 64]. For instance, the values of the

attribute title in relation mov2totalGross in BOM and the ones in the attribute title in

relation movies in IMDb databases may match and be unified. On the other hand, it

is not meaningful for the values of attributes gross in relation mov2totalGross and year

in relation movies to be unified as they refer to different types of entities and values.

Hence, our method substantially reduces the effort needed to produce clean database

instance(s) for data analysis. The contributions of this chapter are the following:

1. Since the representational conflicts in a heterogeneous database are not resolved,

the properties of a desirable learned definition over a heterogeneous database are

not clear. In particular, one heterogeneous database may have several clean in-

stances. We introduce and formalize the problem of learning over a content-

heterogeneous relational database (Section 5.3).

2. We propose a novel relational learning algorithm called CastorX, an extension

of Castor (Chapter 3), to learn over a database with heterogeneous values (Sec-

tion 5.4). It leverages the set of declarative constraints on attributes whose values

can meaningfully match and unify during learning to learn an effective definition.

3. Every learning algorithm chooses the final result based on its coverage of the train-

ing data, i.e., roughly speaking, the more (less) positive (negative) examples a

definition covers the more accurate it is. It is challenging to perform these steps

effectively over a database without cleaning it, as resolving certain entities, e.g.,

movies, may lead to unifying other entities of the same or other types, e.g., direc-

tors. Furthermore, one database may have numerous possible clean versions. We

propose an efficient method to compute the coverage of a definition directly over

the heterogeneous database without cleaning it (Section 5.4.2).

4. We provide an implementation of CastorX over a main-memory relational database

management system. We use sampling techniques to scale learning over large
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databases while keeping it effective (Section 5.5).

5. We perform an extensive empirical study over real-world datasets and show that

CastorX scales to large databases and learns efficiently over heterogeneous databases.

5.2 Matching & Cleaning

5.2.1 Matching Dependencies

Learning over databases with heterogeneity in representing values may deliver inaccurate

answers as the same entities and values may be represented under different names. Thus,

one must resolve these representational differences to produce a high-quality database

to learn an effective definition. If one wants to match and resolve values in a couple

of attributes, one may use a supervised or unsupervised matching function to identify

and unify their potential matches according to the domain of those attributes [24, 33].

For example, given that the domain of attributes is a set of strings, one may use string

similarity functions, such as edit distance, to find potential matches. Users develop and

use matching and resolution rules and functions based on their domain knowledge. For

example, consider relation Employee(id, name, home-phone, address). According to her

domain knowledge, the user knows that if the phone numbers of two tuples are sufficiently

similar, e.g., 001-333-1020 and 333-1020, then their addresses must be equal. Knowing

this rule, the user may manipulate the database to ensure that all tuples with a similar

phone number have equal addresses.

There may be a large number of matching rules over several sets of attributes in

a large relational database [5, 9, 11, 13, 30, 32, 39, 38, 64]. Furthermore, these rules

may interact with each other. For example, consider again the relation Employee(id,

name, home-phone, address). Assume that the user also knows that if two tuples have

sufficiently similar addresses, e.g., 1 Main St., NY and 1 Main Street, New York, and

names, they must have the same values for attribute id. Now, consider two tuples whose

names and home phone numbers are sufficiently similar but their addresses are not.

According to this rule, one cannot unify the ids of these tuples. But, after applying

the rule mentioned in the preceding paragraph on the phone number and address, their

addresses become sufficiently similar. Then, one can apply the second rule to unify

the values of id in these tuples. The abundance of rules to match values and their
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interactions and dependencies call for a more formal approach to data cleaning where

one can guarantee that all matching and resolution rules have been applied to the original

data.

The database community has proposed declarative matching and resolution rules to

express the domain knowledge about matching and resolution [5, 9, 11, 13, 30, 32, 39,

38, 64]. Matching dependencies (MD) are a popular type of such declarative rules, which

provide a simple yet powerful method of expressing domain knowledge on matching

values [10, 12, 30]. Let S be the schema of the original database and R1 and R2 two

relations in S. Let dom(A) be the domain of values for attribute A. Attributes A1 and

A2 from relations R1 and R2, respectively, are comparable if dom(A1) = dom(A2). Given

two pairs of pairwise comparable attributes A1, A2 and B1, B2 from relations R1 and R2,

respectively, an MD φ in S is a sentence of the form R1[A1] ≈ R2[A2] → R1[B1] 


R2[B2], where ≈ is a similarity operator and R1[B1] 
 R2[B2] indicates that the values

of R1[B1] and R2[B2] refer to the same value, i.e., are interchangeable. Intuitively, the

aforementioned MD says that given the values of R1[A1] and R2[A2] are sufficiently

similar, the values of R1[B1] and R2[B2] are essentially different representations of the

same value. For example, consider again the database that contains relations from IMDb

and BOM whose schema fragments are shown in Table 5.1. According to our discussion

in Section 5.1, one can define the following MD:

movies[title] ≈ highBudgetMovies[title]→ movies[title] 
 highBudgetMovies[title].

The exact implementation of the similarity operator depends on the underlying do-

mains of attributes. Our results are orthogonal to the implementation details of the

similarity operator. The definition of MDs extend for the case where A1, A2 are lists of

attributes. For the sake of simplicity, we assume that MDs have only a single attribute

in their left-hand sides. Our results extend to MDs with a list of attributes on their

left-hand side. We also assume that all attributes share the same domain dom in the

rest of this chapter. Our results generalize to other cases.
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5.2.2 Stable Instances

Given an input database with MDs on its relations, one must enforce the MDs to generate

a high-quality database. Let t1 and t2 belong to R1 and R2 in database I of schema

S, respectively, such that tI1[A1] ≈ tI2[A2]. To enforce the MD φ : R1[A1] ≈ R2[A2] →
R1[B1] 
 R2[B2] on I, one must make the values of tI1[B1] and tI2[B2] identical as they

actually refer to the same value [12, 30]. For example, if attributes B1 and B2 contain

titles of movies, one unifies both values Star Wars - 1977 and Star Wars - IV to Star

Wars Episode IV - 1977 as it deems this value as the one to which tI1[B1] and tI2[B2]

refer. The following definition formalizes the concept of applying an MD to the tuples

t1 and t2 on I.

Definition 5.2.1. Database I ′ of schema S is the immediate result of enforcing MD φ

on t1 and t2 in I, denoted by (I, I ′)[t1,t2] |= φ if

1. tI1[A1] ≈ tI2[A2], but tI1[B1] 6= tI2[B2];

2. tI
′

1 [B1] = tI
′

2 [B2] ; and

3. I and I ′ agree on every other tuple and attribute value.

One may define a matching function over some domains to map the values that refer

to the same value or entity to the correct value or entity in the stable instance. It

may, however, be difficult to define such a function in many cases due to the lack of

information. For example, let B1 and B2 in Definition 5.2.1 contain information about

names of people and tI1[B1] and tI2[B2] have values J. Bryan Smith and John B. Smith,

respectively, which according to an MD refer to the same actual name. It is not clear

how to compute this name using the values of tI1[B1] and tI2[B2]. Thus, we know that

after enforcing φ, the values of tI
′

1 [B1] and tI
′

2 [B2] will be identical, but we do not know

their exact values. Because we aim at developing learning algorithms that are efficient

and effective over databases from various domains, we do not fix any matching method

in this chapter. We assume that matching every pair of values a and b in the database

creates a fresh and new value denoted as va,b.

Given the database I of schema S with set of MDs Σ, I ′ is stable if (I, I ′)[t1,t2] |= φ

for all φ ∈ Σ and all tuples t1, t2 ∈ I ′. In a stable database instance, all values that

represent the same data item according to the database MDs are assigned equal values.
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Thus, it does not have the heterogeneities that may reduce the effectiveness of learning

and analyzing databases. Given a database I with set of MDs Σ, one can produce a

stable instance for I by starting from I and iteratively applying each MD in Σ according

to Definition 5.2.1 to the output of the previous application finitely many times. In

other words, let I, I1, . . . , Ik denote the sequence of databases produced by applying

MDs according to Definition 5.2.1 starting from I such that Ik is stable. We say that

(I, Ik) satisfy Σ and denote it as (I, Ik) |= Σ. Each database may have (finitely) many

stable instances depending on the order of applications of MDs [12, 30].

Example 5.2.2. Let (10,‘Star Wars: Episode IV - 1977’, 1977) and (40,‘Star Wars:

Episode III - 2005’, 2005) be tuples in relation movies and (‘Star Wars’) be a tuple

in relation highBudgetMovies whose schemas are shown in Table 5.1. Consider MD

movies[title] ≈ highBudgetMovies[title] → movies[title] 
 highBudgetMovies[title]. Let

‘Star Wars: Episode IV - 1977’ ≈ ‘Star Wars’ and ‘Star Wars: Episode III - 2005’ ≈
‘Star Wars’ be true. Since the movies with titles ‘Star Wars: Episode IV - 1977’ and

‘Star Wars: Episode III - 2005’ are different movies with distinct titles, one can unify

the title in the tuple (‘Star Wars’) in highBudgetMovies with only one of them in each

stable instance. Each unification alternative leads to a distinct stable instance.

The number of stable instances of a database generally grows exponentially with

the number of matches and unification applications in the database. For example, in

Example 5.2.2, if relation highBudgetMovies has a hundred titles that each matches and

unifies with at least two titles in relation movies, the database will have around 2100

stable instances. Since there are often many matches and unification applications in

a large database, one may have to generate numerous stable and clean databases. To

produce only one stable instance, one may assume that all distinct unified values for a

given value in the database represent the same value. For example, in Example 5.2.2,

if one assumes that all movies with prefix Star Wars represent the same movie, one

can unify the titles of all movies to the same value. Nevertheless, this approach often

violates the semantics of the underlying database and adds misleading information to it.

For example, in Example 5.2.2, this approach leads to assuming that movies with titles

‘Star Wars: Episode IV - 1977’ and ‘Star Wars: Episode III - 2005’ have the same titles,

which is obviously incorrect and misleading. This approach may also violate the integrity

constraints in the database. For example, if matches and unifications are between key
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attributes, this approach will violate the key or functional dependency constraint by

adding duplicate keys to a relation and make the database inconsistent.

5.3 Learning Over Heterogeneous Data

5.3.1 Approaches to Learning Over Heterogeneous Data

Given the database I of schema S with MDs Σ and a set of training examples E, we

wish to learn a Horn definition for a target relation T in terms of the relations in schema

S. Obviously, one may not learn an accurate definition by applying current learning

algorithms over the set of input databases as it may consider different occurrences of

the same entity or value to be distinct because of their different representations. Let

StableInstances(I,Σ) be the set of stable instances of I. One can learn definitions by

generating all stable instances, i.e., J = StableInstances(I,Σ), learning a definition over

each stable instance J ∈ J separately, and computing a union (disjunction) of all learned

definitions. Since the discrepancies in value representations are resolved in the stable

instances, this approach may learn accurate definitions.

However, this method is not desirable or feasible for learning over large databases. As

a large database may have numerous stable instances, it takes a great deal of time and

storage to compute and materialize all of them. Moreover, we have to run the learning

algorithm once for each stable instance, which may take an extremely long time. More

importantly, as the learning has been done separately over each stable instance, it is

not clear whether the final definition is sufficiently effective considering the information

of all stable instances. For example, let database I have two stable instances Is1 and

Is2 over which the aforementioned approach learns definitions H1 and H2, respectively.

H1 and H2 must cover a relatively small number of negative examples over Is1 and Is2 ,

respectively. However, H1 and H2 may cover a lot of negative examples over Is2 and Is1 ,

respectively. Thus, the disjunction of H1 and H2 will not be effective considering the

information in Is1 and Is2 . Hence, it is not clear whether the disjunction of H1 and H2 is

the definition that covers the most positive and the least negative examples over Is2 and

Is1 . Finally, it is not clear how to encode and represent usably the final result as we may

end up with numerous different definitions, each of which is accurate over one stable

instance. One may end up with hundreds or thousands of learned definitions. Thus,
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learning over each stable instance may take a very long time, not return an effective

definition that considers information of all stable instances, and will be hard to use.

Another approach is to consider only the information shared among all stable in-

stances for learning. The resulting definition will cover the most positive and the least

negative examples considering the information common among all clean instances. This

idea has been used in the context of query answering over inconsistent data [6, 12].

However, this approach may lead to ignoring many positive and negative examples as

their connections to other relations in the database may not be present in all stable

instances. For example, consider the tuples in relations movies and highBudgetMovies

in Example 5.2.2. The training example (‘Star Wars’) has different values in different

stable instances of the database, therefore, it will be ignored. It will also be connected

to two distinct movies with vastly different properties in each instance. Nevertheless,

the training examples are very important in delivering an effective result and are usu-

ally costly to attain. In a sufficiently heterogeneous database, most or all positive and

negative examples will not have the same information among all stable instances. The

learning algorithm may simply learn an empty definition in these cases.

Thus, we hit a middle-ground. We follow the approach of learning directly over the

original database. But, we also give the language of definitions and semantic of learn-

ing enough flexibility to take advantage of as much (training) information as possible.

Each definition will be a compact representation of a set of definitions, each of which is

sufficiently accurate over some stable instances. If one increases the expressivity of the

language, learning and checking coverage for each clause may become inefficient, e.g., dis-

junctive Datalog [25]. We ensure that the added capability to the language of definitions

is minimal so learning remains efficient. In this section, we present our modifications to

the hypothesis space and semantic of learning.

5.3.2 Representing Heterogeneity in Definitions

We represent the heterogeneity of the underlying data in the language of the learned

definitions. Each new definition encapsulates the varieties of definitions learned over the

stable instances of the underlying database. To achieve this, we increase the hypothesis

space of relational learning algorithms over schema S by introducing a fresh and unique

(built-in) relation symbol per each MD in S. These symbols do not belong to S and are
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called matching relations. More precisely, given schema S and MD φ in S, we add relation

symbol mφ with arity two to the set of relation symbols used by the Datalog definitions

in the hypothesis space. A literal with a matching relation symbol is a matching literal.

Consider again the database created by integrating IMDb and BOM datasets, whose

schema fragments are in Table 5.1, with MD φ : movies[title] ≈ highBudgetMovies[title]

→ movies[title] 
 highBudgetMovies[title]. We may learn the following Datalog defini-

tion for the target relation highGrossing.

highGrossing(x)←movies(y, t, z),mov2genres(y, ‘comedy ’),

highBudgetMovies(x),mφ(x, t).

The matching literal mφ(x, t) represents the relationship between titles in relations high-

Grossing and movies. According to the definition of MDs, for every matching literal mφ,

we have mφ(x, y) if and only if mφ(y, x).

We call a clause (definition) stable if it does not have any matching literal. Each

clause (definition) with matching literals represents a set of stable clauses (definitions).

We convert a clause with matching literals to a set of stable clauses by iteratively applying

the MDs that correspond to each matching literal and eliminating the matching literal

from the clause, similar to the process of applying MDs to a database instance described

in Section 5.2. Given a clause C and an MD φ, to apply φ to C, we do the following.

For each matching literal mφ(x, y) in C, we create a new variable vx,y. We then replace

every occurrence of x and y in C with vx,y. Finally, we remove the original matching

literal mφ(x, y) from C. The algorithm progressively applies MDs to the created clause

until no matching literal is left in the clause. Similar to the one explained in Section 5.2,

this algorithm is guaranteed to terminate. The resulting set is called the stable clauses

of the input clause.

Example 5.3.1. Consider the following clause over the movie database of IMDb and

BOM.

highGrossing(x)←movies(y, t, z),mov2genres(y, ‘comedy’),

highBudgetMovies(x),mφ(x, t).

The application of MD φ : highGrossing [title] ≈ movies[title] → highGrossing [title] 
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movies[title], unifies variables t and x to variable vx,t and generates the following clause:

highGrossing(vx,t)←movies(y, vx,t, z),mov2genres(y, ‘comedy’),

highBudgetMovies(vx,t).

After each application of an MD to a clause, the modified variables will not be

similar to any term in the clause because we do not have enough information to declare

the variable or constant created after matching equal to any other variable or constant.

Therefore, we treat the application of MDs to clauses similarly to how we treat the

application of MDs to databases explained in Section 5.2. Similar to the application of

MDs to a database instance, the application of MDs to a clause may generate multiple

stable clauses.

Example 5.3.2. Consider a target relation T (A), an input database with schema {R(B),

S(C)}, and MDs φ1 : T [A] ≈ R[B] → T [A] 
 R[B] and φ2 : T [A] ≈ S[C] → T [A] 


S[C]. The definition H : T (x) ← R(y),mφ1(x, y), S(z),mφ2(x, z) over this schema has

two stable definitions: H ′1 : T (vx,y)← R(vx,y), S(z) and H ′2 : T (vx,z)← R(y), S(vx,z).

As Example 5.3.2 illustrates, using matching literals enables us to provide a compact

representation of multiple learned clauses and definitions where each may explain the

patterns in the training data in some stable instances of the input database. Given

an input definition H, the stable definitions of H are a set of definitions where each

definition contains exactly one stable clause per each clause in H.

5.3.3 Coverage Over Heterogeneous Data

A learning algorithm evaluates the score of a definition according to the number of its

covered positive and negative examples. One way to measure the score of a definition is

to compute the difference of the number of positive and negative examples covered by

the definition. Each definition may have multiple stable definitions each of which may

cover a different number of positive and negative examples on stable instances of the

underlying database. Thus, it is not clear how to compute the score of a definition over

a database.

One approach is to consider that a definition covers a positive example if at least one

of its stable definitions covers it in some stable instance(s). Given all other conditions
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are the same, this approach may lead to learning a definition with numerous stable

definitions where each may not cover sufficiently many or none positive examples. Thus,

it is not clear whether each stable definition is accurate. A more restrictive approach

is to consider that a definition covers a positive example if all its stable definitions

cover the example. This method will deliver a definition whose stable definitions have

high positive coverage over stable instances. There are similar alternatives for defining

coverage of negative examples. One may consider that a definition covers a negative

example if all its stable definitions cover it. Thus, if at least one stable definition does

not cover the negative example, the definition will not cover it. This approach may lead

to learning numerous stable definitions, which cover many negative examples. On the

other hand, a restrictive approach may define a negative example covered by a definition

if at least one of its stable definitions covers it. In this case, generally speaking, each

learned stable definition will not cover too many negative examples.

We follow the more restrictive approach for definition of coverage of positive and

negative examples.

Definition 5.3.3. A definition H covers a positive example e with regard to database I

if and only if every stable definition of H covers e in some stable instance of I.

Example 5.3.4. Consider again the schema, MDs, and definition H in Examples 5.3.2

and the database of this schema with training example T (a) and tuples {R(b), S(c)}.
Assume that a ≈ b and a ≈ c are true. The database has two stable instances I ′1 :

{T (va,b), R(va,b), S(c)} and I ′2 : {T (va,c), R(b), S(va,c)}. Definition H covers the single

training example in the original database according to Definition 5.3.3 as its stable defi-

nitions H ′1 and H ′2 cover the training example in stable instances I ′1 and I ′2, respectively.

Definition 5.3.3 provides a more flexible semantic than considering only the common in-

formation between all stable instances as described in Section 5.3.1. The latter semantic

considers that the definition H covers a positive example if it covers the example in all

stable instances of a database. As explained in Section 5.3.1, this approach may lead to

ignoring many if not all examples for learning.

Definition 5.3.5. A definition H covers a negative example e with regard to database I

if at least one of the stable definitions of H covers e in some stable instance of I.
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To compute the coverage of a clause C for a set of positive examples, learning algo-

rithms simply check the coverage of the clause for each example in the set and sum the

covered examples. This approach can be safely applied for the case where C is stable.

However, if C is not stable, this method may deliver a clause that does not cover suffi-

ciently many positive examples in any stable instance. For example, consider a database

with one hundred stable instances and a set of one hundred positive examples. Let

each stable clause of a clause C cover only one example over each stable instance of the

database. Obviously, C is not effective on any of these instances as its stable clauses

cover an extremely small number of positive examples over each stable instance. This

method, however, declares that C covers all the positive examples and is effective. Thus,

a more reasonable approach is to ensure that each stable clause of C also covers suffi-

ciently many positive examples over a stable instance. Given database I, stable clause

C, and example e, let IC,e be the set of stable instances of I on which C covers e.

Definition 5.3.6. Given a database I, clause C, and set of positive examples E+, C

covers E+ in some stable instance if C covers each e ∈ E+ and for every stable clause

Cs of C and every pair of examples e, f ∈ E+, we have ICs,e∩ ICs,f 6= ∅.

The definition naturally extends to (Horn) definitions and the set coverage for negative

examples.

As explained in Section 5.3.1, our semantic of coverage based on Definitions 5.3.3 and

5.3.5 provides a middle-ground between the approaches of using only the information

common between all stable instances and learning over each stable instance separately

and returning the union of the results. It avoids ignoring too many examples and also

ensures that the learned definition does not cover too many negative examples overall.

It also guarantees that each stable definition of the learned definition covers sufficiently

many positive examples and does not cover too many negative examples if the learning

algorithm checks these restrictions on the learned definition.

5.4 CastorX: A Learning Algorithm for Heterogeneous Data

There are, generally speaking, two types of relational learning algorithms. In the top-

down approach [57, 60, 67], algorithms search the hypothesis space from general to

specific. A top-down algorithm starts with an empty clause, iteratively adds some lit-
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erals to it, evaluates the resulting clause(s) over the training examples and database,

and stops as soon as the clause satisfies certain criteria, e.g., covers the most positive

and least negative examples. This method is challenging to use for learning over het-

erogeneous data, as it has to evaluate numerous clauses, i.e., queries, over the original

(dirty) dataset. Since the dataset may have many stable solutions, query answering is

shown to be generally difficult and inefficient over a relatively large and heterogeneous

dataset [12]. The second approach for relational learning algorithms is bottom-up, in

which the algorithm starts by exploring the patterns and clauses available in the data

and then generalizes them to cover the training examples [46, 50, 54]. More specifically,

a bottom-up algorithm has two steps. It first builds the most specific clause in the hy-

pothesis space that covers a given positive example, called a bottom-clause. Then, it

generalizes the bottom-clause to cover as most positive and as least negative examples

as possible.

In this section, we propose a bottom-up algorithm called CastorX for learning over

heterogeneous data efficiently. CastorX is an extension of Castor (Chapter 3). To learn

over heterogeneous data, CastorX integrates the input MDs into the learning process.

It also uses novel techniques to pick the most accurate clauses (and definitions) without

computing the stable instances of the data. Because it is guided by the training data,

CastorX automatically determines whether and which databases one has to integrate to

learn an accurate definition for the target concept. Next, we explain the two main steps

of the algorithm in detail.

5.4.1 Bottom-clause Construction

A bottom-clause Ce associated with an example e is the most specific clause in the hypoth-

esis space that covers e. The concept of a bottom-clause was introduced in Section 3.5.

In this chapter, extend the bottom-clause construction algorithm to leverage matching

dependencies. Let I be the input database of schema S and Σ be the input matching

dependencies. The bottom-clause construction algorithm consists of two phases. First,

CastorX finds all the information in I relevant to e. The information relevant to example

e is the set of tuples Ie ⊆ I that are connected to e. A tuple t is connected to e if we

can reach t using a sequence of (similarity) search operations, starting from e. Given the

information relevant to e, CastorX creates the bottom-clause Ce.
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movies(m1,Superbad (2007),2007) mov2genres(m1,comedy)
movies(m2,Zoolander (2001),2001) mov2genres(m2,comedy)
movies(m3,Orphanage (2007),2007) mov2genres(m3,drama)
mov2countries(m1,c1) countries(c1,USA)
mov2countries(m2,c1) countries(c2,Spain)
mov2countries(m3,c2) englishMovies(m1)
mov2releasedate(m1,August,2007) englishMovies(m2)
mov2releasedate(m2,September,2001) spanishMovies(m3)

Table 5.2: Example movie database.

Example 5.4.1. Given example highGrossing(Superbad), the database in Table 5.2, and

MD

φ : highGrossing [title] ≈ movies[title]→ highGrossing [title] 
 movies[title],

CastorX finds the relevant tuples movies(m1, Superbad (2007), 2007), mov2genres(m1,

comedy), mov2countries(m1, c1), englishMovies(m1), mov2releasedate(m1, August, 2007),

and countries(c1, USA). As the movie title in the training example, e.g., Superbad, does

not match with the movie title in the movies relation, e.g., Superbad (2007), the tuple

movies(m1, Superbad (2007), 2007) is obtained through a similarity search according to

MD φ. The other tuples are obtained through exact search.

To find the information relevant to e, CastorX uses Algorithm 10. CastorX maintains

a set M that contains all seen constants. Let e = T (a1, . . . , an) be a training example.

First, CastorX adds a1, . . . , an to M . These constants are values that appear in tuples

in I. Then, CastorX searches all tuples in I that contain at least one constant in M and

adds them to Ie. For exact search, CastorX uses simple select operations. For similarity

search, CastorX uses MDs in Σ. If M contains constants in some relation Ri and given

an MD φ ∈ Σ, φ : Ri[A] ≈ Rj [B] → Ri[A] 
 Rj [B], CastorX performs a similarity

search over Rj [B] to find relevant tuples in Rj , denoted by ψB≈M (Rj). For each new

tuple in Ie, the algorithm extracts new constants and adds them to M . The algorithm

repeats this process for a fixed number of iterations d.

To create the bottom-clause Ce from Ie, CastorX first maps each constant in M to

a new variable. It creates the head of the clause by creating a literal for e and replacing

the constants in e with their assigned variables. Then, for each tuple t ∈ Ie, CastorX



105

Algorithm 10: CastorX’s bottom-clause construction algorithm.

Input : example e, # of iterations d, sample size s
Output: bottom-clause Ce
Ie = {}
M = {} // M stores known constants
add constants in e to M
for i = 1 to d do

foreach relation R ∈ I do
foreach attribute A in R do

IR = σA∈M (R)
if ∃ MD φ ∈ Σ, φ : S[B] ≈ R[A]→ S[B] 
 R[A] then

IR = IR ∪ ψA≈M (R)
foreach tuple t ∈ IR do

add t to Ie and constants in t to M

Ce = create clause from e and Ie
return Ce

creates a literal and adds it to the body of the clause, replacing each constant in t with

its assigned variable. If there is an input MD φ : Ri[A] ≈ Rj [B]→ Ri[A] 
 Rj [B], and

there is a tuple t′ ∈ Ri, then Ie may contain a tuple t obtained through similarity search.

In this case, we add a matching literal mφ(v1, v2), where v1 and v2 are the variables

assigned to t′[A] and t[B], respectively. A matching literal indicates that the two values

represented by the variables in the literal are interchangeable, according to the MD.

Example 5.4.2. Given the relevant tuples found in Example 5.4.1, CastorX creates the

following bottom-clause:

highGrossing(x)←movies(y, t, z),mφ(x, t),mov2genres(y, ‘comedy’),

mov2countries(y, v), countries(v, ‘USA’), englishMovies(y),

mov2releasedate(y, ‘August’, u).

5.4.2 Generalization

After creating the bottom-clause Ce for example e, CastorX generalizes Ce iteratively.

To generalize Ce, CastorX randomly picks a subset E+s ⊆ E+ of positive examples. For
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each example e′ in E+s, CastorX generalizes Ce to generate a candidate clause C ′, which

is more general than Ce and covers e′. It does so by removing the blocking literals. Let

Ce = T ← L1, · · · , Ln be the bottom-clause. Li is a blocking literal if and only if i is the

least value such that for all substitutions θ where e′ = Tθ, the clause (T ← L1, · · · , Li)θ
does not cover e′ [50]. From the set of generalized clauses, CastorX selects the highest

scoring candidate clause. The score of a clause is the number of positive examples

covered by the clause minus the number of negative examples covered by the clause. It

then repeats this process with the selected clause until the clause cannot be improved.

Example 5.4.3. Consider the bottom-clause Ce in Example 5.4.2 and positive example

e′ = highGrossing(‘Zoolander’). To generalize Ce to cover e′, CastorX drops the literal

mov2releasedates(y, ‘August’, u) because the movie Zoolander was not released in August.

A matching literal can also be a blocking literal.

Example 5.4.4. Consider again the bottom-clause Ce in Example 5.4.2 and positive

example e′′ = highGrossing(‘Inception’). The movie with title ‘Inception’ does not appear

in the movies relation. Therefore, the first blocking literal in Ce is mφ(x, t), which is in

the join path between highGrossing(x) and movies(y, t, z).

CastorX checks whether a candidate clause covers training examples in order to find

blocking literals in a clause. It also computes the score of a clause by computing the

number of training examples covered by the clause. Coverage tests dominate the time

for learning [22]. One approach to perform a coverage test is to transform the clause into

a SQL query and evaluate it over the input database to determine the training examples

covered by the clause. However, since bottom-clauses over large databases normally have

many literals, e.g., hundreds of literals, the SQL query will involve long joins, making

the evaluation extremely slow. Furthermore, it is challenging to evaluate clauses using

this approach over heterogeneous data [12]. Moreover, it is not clear how to evaluate

clauses that contain matching literals.

Therefore, CastorX uses an approach based on θ-subsumption. The concept of θ-

subsumption was introduced in Section 2.1. We review it in this section and extend to

handle non-stable clauses. Assume that clause C does not contain matching literals, i.e.,

C is a stable clause. Clause C θ-subsumes clause G, denoted by C ⊆θ G, if and only if

there is some substitution θ such that Cθ ⊆ G [2, 22]. Cθ ⊆ G means that the result of
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applying substitution θ to clause C is a subset of clause G. To evaluate whether a clause

C covers an example e over database I, we first build a ground bottom-clause Ge for e in

I, i.e., a bottom-clause for e without replacing constants with variables. Then, we check

whether C ⊆θ Ge, which in turn indicates whether C ∧ I |= e. This approach is used by

other learning algorithms, such as Castor [50, 54]. Ideally, Ge must have one literal per

each tuple in the database that is connected to e through some joins; otherwise, the θ-

subsumption test may declare that C does not cover e when C actually covers e. Ground

bottom-clauses may be very large over large databases. The θ-subsumption is expensive

over large bottom-clauses. We will discuss how to handle these cases in Section 5.5.

Clause C and ground bottom-clause Ge may not be stable. Therefore, there are

possibly multiple stable clauses that can be derived from C and Ge. Following Defini-

tions 5.3.3 and 5.3.5, we define θ-subsumption between potentially non-stable clauses.

Definition 5.4.5. Given clauses C and G+
e , where G+

e is the ground bottom-clause for

positive example e, clause C θ-subsumes G+
e if each stable clause of C θ-subsumes at

least one stable clause of G+
e .

Definition 5.4.6. Given clauses C and G−e , where G−e is the ground bottom-clause for

negative example e, clause C θ-subsumes G−e if at least one stable clause of C θ-subsumes

at least one stable clause of G−e .

According to Definitions 5.4.5 and 5.4.6, given training example e, to check whether

C θ-subsumes G+
e (G−e ), one has to enumerate and check θ-subsumption of almost every

pair of stable clauses of C and G+
e (G−e ) in the worst case. Since both (ground) bottom-

clauses normally contain many literals and θ-subsumption is NP-hard [2], this method is

time-consuming. More importantly, because the learning algorithm performs numerous

coverage tests, learning a definition may be extremely inefficient.

Actually, we can check whether C θ-subsumes G+
e (G−e ) in a much more efficient way

and without enumerating all stable clauses of C and G+
e (G−e ). We consider matching

literals in C and G+
e (G−e ) that correspond to the same MD as the same relation symbol.

For positive coverage, to find a substitution θ for C such that Cθ ⊆ G+
e , we treat

matching literals in C and G+
e as normal literals. If such substitution exists, then C

θ-subsumes G+
e , hence C covers e.
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Example 5.4.7. Consider clause C

highGrossing(x)←movies(y, t, z),mφ(x, t),mov2genres(y, ‘comedy’).

Consider positive example e′ = highGrossing(Zoolander) and ground bottom-clause G+
e′

highGrossing(‘Zoolander’)← movies(‘m2 ’, ‘Zoolander(2001 )’, ‘2001 ’),

mφ(‘Zoolander’, ‘Zoolander(2001)’),mov2genres(‘m2 ’, ‘comedy’),

mov2countries(‘m2 ’, ‘c1 ’), countries(‘c1 ’, ‘USA’),

englishMovies(‘m2 ’),mov2releasedate(‘m2 ’, ‘September , 2001 ’).

C θ-subsumes G+
e′ using substitution θ = {x = ‘Zoolander’, t = ‘Zoolander(2001 )’, y =

‘m2 ’, z = ‘2001 ’}. Thus, C covers e′.

We follow a similar approach for the negative examples. Let G−e be the ground

bottom-clause for the negative example e. We generate all stable clauses of C as described

in Section 5.3 and check whether the generated stable clause θ-subsumes G−e exactly the

same way as checking θ-subsumption for C and a ground bottom-clause for a positive

example explained in the preceding paragraph. We declare the C θ-subsumes G−e as

soon as one stable clause of C θ-subsumes G−e . In the following theorem, we prove that

the aforementioned algorithms correctly detects θ-subsumption between clauses.

Theorem 5.4.8. Given a clause C and G+
e over schema S, clause C θ-subsumes G+

e

if and only if the aforementioned algorithm for checking the θ-subsumption of C and a

positive ground bottom-clause finds a substitution θ such that Cθ ⊆ G+
e . Similarly, given

a clause C and G−e over S, clause C θ-subsumes G−e if and only if the aforementioned

algorithm for checking the θ-subsumption of C and a negative ground bottom-clause finds

a substitution θ for one stable clause of C, Cs such that Csθ ⊆ G−e .

Proof. We prove the theorem for ground bottom clauses of positive examples. Assume

that there is a substitution θ such that Cθ ⊆ G+
e . Thus, each matching literal of C, such

as mφ(x, y), is mapped and unified with a matching literal mφ(x′, y′) in G+
e . Let Cφ

and G+
eφ be the results of applying mφ(x, y) and mφ(x′, y′) to C and G+

e , respectively.

We show that the applications of mapped matching literals in these clauses preserve

the substitution, i.e., Cφθ ⊆ G+
eφ. Applying a matching literal does not eliminate any
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non-matching literal from a clause and only replaces some of their variables with new

ones. Let Cφ and G+
eφ be created by applying mφ(x, y) and mφ(x′, y′) to R(x̄), S(ȳ)

and R(x̄′), S(ȳ′), respectively. The application of mφ(x, y) replaces x and y in R(x̄)

and S(ȳ) with a new variable vx,y. Similarly, by applying mφ(x′, y′), we replace x′ and

y′ in R(x̄′) and S(ȳ′) with vx′,y′ . The applications of mφ(x, y) and mφ(x′, y′) do not

modify the literals that do not share any variable with them. Thus, we have Cφθ ⊆ G+
eφ.

Furthermore, as we assume that matching functions are not similarity preserving, i.e.,

each application of a matching function creates a fresh constant, subsequent applications

of the matching literals other than mφ(x, y) and mφ(x′, y′) do not modify the variables

introduced by applying these matching literals. Thus, the substitution θ is preserved

over the application of each matching literal in C and its corresponding one in G+
e .

After exhausting the application of all matching literals in C and their corresponding

ones in G+
e , G+

e may still contain matching literals. However, applying these literals to

G+
e retains the substitution between the stable clause of C and subsequent results of

application of produced stable clauses of G+
e . The necessity of the theorem is proved

by reversing the aforementioned steps. Now, we consider the case that G−e is a negative

ground bottom-clause. In this case, the algorithm checks the subsumption using every

stable clause of the bottom-clause. Let C be one of these stable clauses. If C subsumes

G−e , according to the first part of this proof, C subsumes every stable clause of G−e . The

proof for the necessity of this part is also similar to the one of the part of the theorem

on positive ground bottom-clauses.

Given bottom-clause C and a set of positive examples E+, according to Defini-

tion 5.3.6, it seems that one cannot use the simple method of computing the coverage of

C for each example in E+ and summing up the results to calculate the coverage of C

over E+. However, in the following theorem we prove that if one uses the aforementioned

subsumption method to check the coverage of C for each example, this simple method

returns the desired coverage value for C. Therefore, our algorithm is able to compute the

coverage of a clause over a set of examples without any extra overhead. In the following

theorem, we assume that no MD is defined over the relation that contains the training

examples, i.e., all MDs are defined on (other) relations in the background knowledge.

Theorem 5.4.9. Given a database I, set of positive examples E+, and clause C, let C

θ-subsume G+
e and G+

f , which are ground bottom-clauses for e, f ∈ E+, respectively. For
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each stable clause Cs of C, we have ICs,e∩ ICs,f 6= ∅.

Proof. For brevity, we denote G+
e and G+

e as Ge and Gf , respectively. Our goal is to

show that the set ICs of stable instances in which Cs θ-subsumes some stable clauses

of both Ge and Gf is not empty. Let Gse and Gsf be the stable clauses of Ge and Gf ,

respectively, that are θ-subsumed by Cs. The set ICs becomes empty if and only if a

tuple in the original database has different values in the stable instance(s) in which C

θ-subsumes Gse compared to all stable instance(s) in which C θ-subsumes Gsf . If this

holds, there will not be any stable instance in which Cs θ-subsumes both Gse and Gsf .

Otherwise, one can construct at least one stable instance over which Cs θ-subsumes both

Gse and Gsf .

First, assume that Ge and Gf do not share any normal, i.e., non-matching, literal.

Since Ge and Gf do not have any literal in common, Gse and Gsf are produced by applying

matching literals on two completely different sets of literals. Let M1 and M2 be the

sequence of MDs that correspond to the matching literals whose applications on Ge and

Gf create the stable clauses Gse and Gsf , respectively. Since Cs θ-subsumes both Gse

and Gsf , ICs,e and ICs,f contain stable instances produced by applying the MDs that

correspond to M1 and M2, respectively. There is not any tuple in the original database in

which an MD from the MDs in M1 and an MD from the MDs in M2 are applied. Hence,

the intersection of ICs,e and ICs,f is not empty and contain all the stable instances in

which Cs θ-subsumes both Gse and Gsf .

Now, assume that Ge and Gf share a literal R(a). The sets ICs,e and ICs,f are

disjoint if and only if 1) Ge and Gf have matching literals m1(b, c) and m2(b, d), c 6= d,

respectively, that are used to create both Gse and Gsf and 2) m1(b, c) is applied to literals

(R(a), S(f)) in Ge and m2(b, d) is applied to literals (R(d), U(g)) in Gf . This way the

tuple in the original database that corresponds to the literal R(a) will have different

constants in the stable instance(s) in which C θ-subsumes Gse than the ones in which C

θ-subsumes Gsf .

For the sake of simplicity, let R(a) be the only literal shared between the bodies of

Ge and Gf . Our proof extends to other cases. According to the algorithm of creating

ground bottom-clauses, all literals in Ge that have a constant in common with R(a),

i.e., their corresponding tuples in the database are connected to the tuple of R(a) in the

data through some join paths, will also appear in Gf . The same claim is true about the
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literals constructed and added to the ground bottom-clauses based on the tuples that are

connected to R(a) via the similarity predicate of some MD. Let us call this set of literals

and their corresponding matching literals LR(a). According to the algorithm of ground

bottom-clause construction, we may extend LR(a) to another set L, which contains all

and only the literals that are connected to at least one literal in L via a join path, i.e.,

common constant, or a matching literal. We also add the matching literals that connect

the (normal) literals of L to L. The literals in L appear in the bodies of both Ge and

Gf .

Let θe and θf be the substitution mappings from constants in the literals of Ge and

Gf , respectively, to the variables or constants in the literals of C. Members of θe are

pairs of (a, x) where a is a constant in Ge and x is a variable or constant in C. Let

θLe ⊆ θe and θLf ⊆ θf be the substitution mappings from Ge and Gf to C, respectively.

Let’s replace θLf with θLe in θf and get a substitution θ
′
f . Since the literals in L do not

have any constant or matching literal in common with the rest of literals in Gf , C still

θ-subsumes Gf using θ
′
f . θe and θ

′
f unify every (matching) literal in L with the same

(matching) literal in C.

Matching literals that are not in L do not share any constant with the literals in

L. Hence, applying these matching literals does not change the constants of any literal

in L. Thus, without loss of generality we assume that Ge and Gf contain only literals

that appear in L. Let MC be the sequence of matching literals in C whose application

creates Cs. Let ML be the sequence of matching literals in L that are unified with MC

using θe and θ
′
f . One can generate Gse and Gsf by first applying ML and then the rest of

matching literals in L in an arbitrary order. Cs θ-subsumes both Gse and Gsf . Since Gse

and Gsf are created by applying the same sequence of matching literals on the same set

of literals, R(a) has the same value in both stable clauses.

Theorem 5.4.9 extends for negative examples. After learning, one may use these

coverage testing methods to use the learned definition and apply the learned definition

to do prediction over the original database.
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5.4.3 Commutativity Property

As discussed in Section 5.3, our proposed semantic for coverage over heterogeneous data

as described in Definitions 5.3.3 and 5.3.5 is more restrictive than the method of learning

definitions over every stable instance and then providing a union of all definitions as the

final result. Since the method of learning over every stable instance separately contains

all possible definitions learned over the data, it is important to understand whether

our algorithm works with the same set of (stable) definitions as this method to get an

understanding of the coverage of the definitions produced by our algorithm in terms of

the learned definitions over the individual stable instances. We show that our algorithm

starts with and generalizes the same set of stable definitions used to learn over each stable

instance. In other words, assume that we apply the bottom-clause construction part of

our learning algorithm, as described in Section 5.4.1 directly to each stable instance of

database I and output a set of stable bottom-clauses B. As we explained in the beginning

of this section, the algorithm of CastorX over non-heterogeneous, i.e., stable, databases is

essentially existing state-of-the-art relational learning algorithms [50, 54]. Now, assume

that we apply the bottom-clause construction part of our proposed algorithm directly

over the original heterogeneous database and get a (unstable) definition H. We show that

B is exactly the set of stable instances ofH. Let StableDefinitions(H) denote the set of all

stable definitions of H. Let BottomClause(I, e,Σ) denote the bottom-clause generated by

applying the bottom-clause construction algorithm using example e over (heterogeneous)

database I with the set of MDs Σ. Also, let BottomClauses(StableInstances(I,Σ), e) be

the set of stable clauses generated by applying the bottom-clause construction algorithm

to every stable instance of I using example e.

Theorem 5.4.10. Given database I with MDs Σ and set of positive examples E+, for

every positive example e ∈ E+

BottomClauses(StableInstances(I,Σ), e) =

StableDefinitions(BottomClause(I, e,Σ))

Proof. Without loss of generality, assume that all learned definitions contain one clause.

Let J = StableInstances(I,Σ) = {J1, . . . , Jn}. We show that BottomClause(I, e,Σ) = C

is a compact representation of BottomClauses(J, e) = {C1, . . . , Cn}.
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Let StableDefinitions(C) = {C ′1, . . . , C ′m}. We remove the literals that are not head-

connected in each clause in {C ′1, . . . , C ′m}. Let {JC′
1 , . . . , JC

′
m} be the canonical database

instances of {C ′1, . . . , C ′m} [2]. This set is the same set as the one generated by applying

StableInstances(IC ,Σ), where IC is the canonical database instance of C.

Let {JC1 , . . . , JCn} be the canonical database instances of {C1, . . . , Cn}. By defini-

tion, IC contains all tuples that are related to e, either by exact or similarity matching

(according to MDs in Σ). Because StableInstances(IC ,Σ) = {JC′
1 , . . . , JC

′
m}, all tuples

that may appear in an instance in {JC1 , . . . , JCn} must also appear in an instance in

{JC′
1 , . . . , JC

′
m}.

A tuple t may appear in an instance in JC
′
j ∈ {JC′

1 , . . . , JC
′
m}, but not appear in the

corresponding instance JCi ∈ {JC1 , . . . , JCn}. In this case, t became disconnected from

training example e when generating the stable instance Ji, which is a superset of JCi .

Then, when building bottom-clause Ci from Ji, a literal was not created for t. However,

the same tuple would also become disconnected from training example e in JC
′
j . Because

we remove literals that are not head-connected in each clause in {C ′1, . . . , C ′m}, we would

remove t from C ′j .

The sets of canonical database instances {JC′
1 , . . . , JC

′
m} and {JC1 , . . . , JCn} are both

generated using the function StableInstances with the same matching dependencies Σ,

and only contain tuples related to e. Therefore, StableDefinitions(C) = {C ′1, . . . , C ′m} is

equal to {C1, . . . , Cn}.

Our algorithm considers exactly the same set of candidate clauses and definitions

as the one that learns over each stable instance. We further prove that this set is in-

tact during generalization. Similar to above, assume that Generalize(C, I, e′,Σ) denotes

the clause generated by generalizing clause C to cover example e′ over (heterogeneous)

database I with the set of MDs Σ. Also, let C be a set of stable clauses and let Generalizes

(C,StableInstances (I,Σ), e′) be the set of stable clauses generated by generalizing every

stable clause in C to cover example e′ over every stable instance of I.

Theorem 5.4.11. Given database I with MDs Σ and set of examples E

Generalizes(C,StableInstances(I,Σ), e′) =

StableDefinitions(Generalize(C, I, e′,Σ))
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Proof. Let J = StableInstances(I,Σ). We show that the definition Generalize(C, I, e′,Σ)

= C∗ is a compact representation of Generalizes(C,J, e
′) = {C∗1 , . . . , C∗n}, i.e.

StableDefinitions(C∗) = {C∗1 , . . . , C∗n}.
Assume that the schema is R = {R1(A,B), R2(B,C)} and we have MD φ : R1[B] ≈

R2[B]→ R1[B] 
 R2[B]. This proof generalizes to more complex schemas. Assume that

database instance I contains tuples R1(a, b), R2(b
′, c), and R2(b

′′, c), and that b ≈ b′ and

b ≈ b′′. Then, bottom-clause C has the form

T (u)←L′1, . . . , L′l−1,

R1(a, b), R2(b
′, c),mφ(b, b′), R2(b

′′, d),mφ(b, b′′),

L′l, . . . , L
′
n,

where L′k, 1 ≤ k ≤ n, is a literal.

Now consider two stable instances generated by StableInstances(I,Σ): J1, which con-

tains tuples R1(a, vb,b′), R2(vb,b′ , c), R2(b
′′, c); and J2, which contains tuples R1(a, vb,b′′),

R2(b
′, c), R2(vb,b′′ , c). The bottom-clause C1 over instance J1 has the form

T (u)←L1, . . . , Ll−1,

R1(a, vb,b′), R2(vb,b′ , c), R2(b
′′, c),

Ll, . . . , Ln,

and the bottom-clause C2 over instance J2 has the form

T (u)←L1, . . . , Ll−1,

R1(a, vb,b′′), R2(b
′, c), R2(vb,b′′ , c),

Ll, . . . , Ln,

where Lk, 1 ≤ k ≤ n, is a literal.

We want to generalize C1 to cover another training example e′. Let Ge′ be the ground

bottom-clause for e′ and G′e′ be a stable clause of Ge′ . The literals in C1 that are blocking

will depend on the content of the ground bottom-clause G′e′ . Assume that the sets of

literals {L′1, . . . , L′n} in clause C and the set of literals {L1, . . . , Ln} in clauses C1 and

C2 are equal. We consider the following cases for the literals that are not equal. The
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same cases apply when we want to generalize any other clause generated from a stable

instance, e.g., C2.

Case 1: G′e′ contains the literals R1(a, vb,b′) and R2(vb,b′ , c). In this case, R1(a, vb,b′)

and R2(vb,b′ , c) are not blocking literals, i.e., they are not removed from C1. Ge′ also

contains literals R1(a, b), R2(b
′, c),mφ(b, b′). Therefore, the same literals are not blocking

literals in C either.

Case 2: G′e′ contains literals with same relation names but not the same pattern.

Assume that G′e′ contains the literals R1(a, b) and R2(d, c), i.e., they do not join. In

this case, literal R2(vb,b′ , c) in C1 is a blocking literal because it joins with a literal that

appears previously in the clause, R1(a, vb,b′). Hence, it is removed. Ge′ also contains

literals R1(a, b) and R2(d, c). Because in clause G′e′ , created from the stable instance,

these literals do not join, in Ge′ they do not join either. In this case, the blocking literal

in C is mφ(b, b′). After literal mφ(b, b′) is removed, literal R2(b
′, c) is not head-connected.

Therefore, it is also removed.

Case 3: G′e′ contains R1(a, vb,b′), but not R2(vb,b′ , c). In this case, literal R2(vb,b′ , c)

is a blocking literal in C1. Therefore, it is removed. Ge′ also contains literals R1(a, b)

and mφ(b, b′), but not R2(b
′, c). Therefore, literal R2(b

′, c) in C is also blocking and it is

removed.

Case 4: G′e′ contains R2(vb,b′ , c), but not R1(a, vb,b′). This case is similar to the

previous case.

Case 5: G′e′ contains neither R1(a, vb,b′) nor R2(vb,b′ , c). In this case, both R1(a, vb,b′)

and R2(vb,b′ , c) are blocking; hence they are removed. Ge′ does not contain literals

R1(a, b), R2(b
′, c), mφ(b, b′). Hence, these literals are also blocking literals in C and are

removed.

The generalization operations Generalize(C, I, e′,Σ) and Generalizes(C,J, e
′) con-

sist of removing blocking literals from C and C respectively. We have shown that the

same literals are blocking over both the clauses. Therefore, StableDefinitions(C∗) =

{C∗1 , . . . , C∗n}.

This property indicates that CastorX leverages all information available in the hetero-

geneous database and learns all interesting patterns in its stable instances. Of course,

as we follow a more restrictive semantic to provide more accurate definitions overall,

our output may not be exactly as the one by the method that learns over each stable
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instance.

5.4.4 Using the Learned Definitions

The final goal of learning a definition for a target relation is to make predictions. In

traditional relational learning, one can make predictions by running the learned Horn

definition over the underlying database [46, 50, 60, 67]. Performing prediction and infer-

ence is slightly different in our case as it must be done over a database that is not stable.

Given a learned definition, one has to compute the subset of stable instances that contain

the relations in the learned definition. This subset may be significantly smaller than the

set of all stable solutions for the entire database. One may follow the semantic of certain

answers and compute the final result of the definition as the intersection of its results on

all stable instances [6, 12, 13]. Thus, the learned definition guides the user and reduces

her effort needed for integration as the alternative approach is to compute all stable

instances to learn an accurate definition. In particular, one may be able to learn an

accurate definition using the relations of one database without any need to use the ones

of other databases. The user can use those relations without any pre-processing effort for

prediction. In this case, our approach helps users to avoid spending time and resources

on cleaning and computing stable instances for learning and prediction. Users may also

avoid computing stable instances by using methods to evaluate approximate answers to

a query over the original and non-stable databases [12, 13]. Finally, one may also use

the method proposed in Section 5.4.2 for computing coverage to determine whether the

learned definition covers an input tuple by generating the ground bottom-clause for the

input tuple and checking θ-subsumption for the produced ground bottom-clause and the

learned definition. One can also apply the latter to determine the coverage of the input

tuple if the learned definition is not stable.

5.5 Implementation Details

CastorX is an extension of the Castor relational learning system (Chapter 3). CastorX

is implemented on top of a main-memory relational database management system. In

this section, we explain implementation details of CastorX.
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5.5.0.1 Approximate Coverage Testing

As mentioned in Section 5.4.2, CastorX uses θ-subsumption to compute the coverage of

candidate clauses. Ideally, a ground bottom-clause Ge for example e must contain one lit-

eral per each tuple in the database that is connected to e through some (similarity) joins.

Otherwise, the θ-subsumption test may declare that C does not cover e when C actually

covers e. However, it is expensive to check θ-subsumption for large clauses. Therefore,

to improve efficiency, we use sampling to build ground bottom-clauses. Because we use a

sampled bottom-clause Gse, checking whether C ⊆θ Gse is an approximation of checking

whether I ∧ C |= e. Our empirical results in Section 5.6.4 indicate that this issue does

not significantly affect the accuracy of the learned definitions. The learning algorithm in-

volves many (thousands) coverage tests. Because CastorX reuses ground bottom-clauses,

it can run efficiently over large databases.

5.5.1 Matching Dependencies

To implement matching dependencies, CastorX uses the similarity operator defined as

the average of the Smith-Waterman-Gotoh and the Length similarity functions. The

Smith-Waterman-Gotoh function [35] measures the similarity of two strings based on

their local sequence alignments. The Length function computes the similarity of the

length of two strings by dividing the length of the smaller string by the length of the

larger string. Using a combination of these similarity functions results in a similarity

operator that considers two strings as similar if they have local sequence alignments and

they have a similar length. Given a string s1, CastorX considers a string s2 similar to

s1 if their similarity score is greater than or equal to 0.65 and s2 is within the top-km

similar strings to s1. In our empirical evaluation in Section 5.6, we vary the value of

km. To improve efficiency, we pre-compute the pairs of similar values according to the

similarity operator. We use the pre-computed pairs as an index for similarity search.

5.6 Experiments

We empirically evaluate CastorX to answer the following questions:

1. Can CastorX learn over heterogeneous databases effectively and efficiently? (Sec-
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Name #R #T #P #N

IMDB 9 3.3M
100 200

OMDB 15 4.8M

Walmart 8 19K
77 154

Amazon 13 216K

DBLP 4 15K
500 1000

Google Scholar 4 328K

JMDB 43 9.2M
1000 2000

BOM 8 92K

Table 5.3: Numbers of relations (#R), tuples (#T), positive examples (#P), and negative
examples (#N) for each dataset.

tion 5.6.2)

2. What is the benefit of using matching dependencies during learning? (Section 5.6.2)

3. How does the number of training examples affect CastorX’s effectiveness and effi-

ciency? (Section 5.6.3)

4. How does sampling affect CastorX’s effectiveness and efficiency? (Section 5.6.4)

5.6.1 Experimental Settings

5.6.1.1 Datasets

We use four pairs of databases whose statistics are shown in Table 5.3.

1. IMDB + OMDB: The Internet Movie Database (IMDB) and Open Movie Database

(OMDB) contain information about movies, such as their titles, year and coun-

try of production, genre, directors, and actors [20]. We learn the target relation

dramaRestrictedMovies(imdbId), which contains the imdbId of movies that are of

drama genre and are rated R. The imdbId is only contained in the IMDB database,

the genre information is contained in both databases, and the rating information
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is only contained in the OMDB database. We specify the MD

IMDB .movies[title] ≈ OMDB .movies[title]→

IMDB .movies[title] 
 OMDB .movies[title].

We refer to this dataset with one MD as IMDB + OMDB (one MD). We also

create MDs that match cast members and writer names between the two databases.

We refer to the dataset that contains the three MDs as IMDB + OMDB (three

MDs). The original dataset in the Magellan data repository [20] contains ground

truth that matches IMDB and OMDB movies. We use the ground truth to generate

positive examples. To generate negative examples, we generate movies that are not

of drama genre or rated R and sample them to obtain twice the number of positive

examples.

2. Walmart + Amazon: The Walmart and Amazon databases contain information

about products, such as their brand, price, categories, dimensions, and weight [20].

We learn the target relation upcOfComputersAccessories(upc), which contains the

upc of products that are of category Computers Accessories. The upc is contained

in the Walmart database and the information about categories of products is con-

tained in the Amazon database. We specify the MD

Walmart .products[title] ≈ Amazon.products[title]→

Walmart .products[title] 
 Amazon.products[title].

The original dataset in the Magellan data repository [20] contains ground truth

that matches Walmart and Amazon products. We use the ground truth to generate

positive examples. To generate negative examples, we generate products that are

not computer accessories and sample them to obtain twice the number of positive

examples.

3. DBLP + Google Scholar: The DBLP and Google Scholar databases contain

information about academic papers, such as their titles, authors, and venue and

year of publication [20]. The information in the Google Scholar database is not

clean, complete, or consistent, e.g., many tuples are missing the year of publica-
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tion. Therefore, we aim to augment the information in the Google Scholar database

with information from the DBLP database. We learn the target relation gsPa-

perYear(gsId, year), which contains the Google Scholar id gsId and the year of

publication of the paper as indicated in the DBLP database. We specify the MDs

DBLP .papers[title] ≈ GoogleScholar .papers[title]→

DBLP .papers[title] 
 GoogleScholar .papers[title]

DBLP .papers[venue] ≈ GoogleScholar .papers[venue]→

DBLP .papers[venue] 
 GoogleScholar .papers[venue].

The original dataset in the Magellan data repository [20] contains ground truth

that matches DBLP and Google Scholar papers. We use the ground truth to

generate positive examples. To generate negative examples, we generate pairs of

Google Scholar ids and years of publication that are not correct, and sample them

to obtain twice the number of positive examples.

4. JMDB + BOM: We scrape the Box Office Mojo (BOM) website to obtain a list

of movies and their total grossing. We use the JMDB database (jmdb.de), which

contains information from the IMDb website in relational format. We use these

databases to learn a definition for the target relation highGrossing(title), which

indicates that the movie with title title is high grossing. From BOM, we obtain the

top 1K grossing movies and use them as positive examples, and obtain the lowest

2K grossing movies and use them as negative examples. We specify the MD

BOM .highGrossing [title] ≈ JMDB .movies[title]→

BOM .highGrossing [title] 
 JMDB .movies[title]

Notice that the learning time of relational learning algorithms is not only affected

by the number of training examples, but also by the number of tuples in the underlying

database. CastorX builds bottom-clauses for training examples. Learning over a large

database often results in large bottom-clauses, which translates to long learning times.

Therefore, learning over relational databases is generally time-consuming [54, 67]. In

Section 5.6.3 we evaluate the effect of the number of training examples on CastorX.
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5.6.1.2 Systems and Environment

We compare CastorX against three baseline systems.

1. Castor-NoMDs: We use the relational learning system Castor [54] to learn over

the original databases. Castor does not use MDs. We use Castor because it scales

to large databases.

2. Castor-Exact: We use Castor [54], but allow the attributes that appear in an

MD to be joined through exact joins. Therefore, this system uses information from

MDs but only considers exact matches between values.

3. Castor-Clean: We resolve the heterogeneities between entity names in attributes

that appear in an MD by matching each entity in one database with the most

similar entity in the other database. We use the same similarity function used by

CastorX. Once the entities are resolved and the databases are integrated, we use

Castor [54] to learn over the unified database.

4. CastorX: We use CastorX, as described in Section 5.4.

CastorX uses the parameter sample size to restrict the size of (ground) bottom-

clauses. We fix sample size to 10. In Section 5.6.4, we evaluate the impact of this

parameter on CastorX’s effectiveness and efficiency.

We refer to the quality of a definition as the effectiveness of the definition. We use the

F1-score to measure the effectiveness of definitions. The F1-score, which is the harmonic

average of the precision and recall, measures the effectiveness of the learned definitions.

We use the learning time to measure the efficiency of all systems. We perform 5-fold

cross validation over all datasets. We evaluate the F1-score and learning time, showing

the average over the cross validation.

All systems use 16 threads to parallelize coverage testing. All experiments were run

on a server with 30 2.3GHz Intel Xeon E5-2670 processors, running CentOS Linux with

500GB of main memory.

5.6.2 Effectiveness and Efficiency

Table 5.4 shows the results of learning over all datasets using CastorX and the baseline

systems. Over all datasets, CastorX obtains a better F1-score than the baselines. Cas-
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Dataset Metric
Castor- Castor- Castor- CastorX
NoMDs Exact Clean km = 2 km = 5 km = 10

IMDB + OMDB F1-score 0.47 0.59 0.86 0.90 0.92 0.92
(one MD) Time (m) 0.12 0.13 0.18 0.26 0.42 0.87

IMDB + OMDB F1-score 0.47 0.82 0.86 0.90 0.93 0.89
(three MDs) Time (m) 0.12 0.48 0.21 0.30 25.87 285.39

Walmart + F1-score 0.39 0.39 0.61 0.61 0.63 0.71
Amazon Time (m) 0.09 0.13 0.13 0.13 0.13 0.17

DBLP + F1-score 0 0.54 0.61 0.67 0.71 0.82
Google Scholar Time (m) 2.5 2.5 3.1 2.7 2.7 2.7

JMDB + F1-score 0 0.01 0.84 0.85 0.74 0.58
BOM Time (m) 0.36 1.03 7.83 10.3 29.73 51.93

Table 5.4: Results of learning over all datasets. Number of top similar matches denoted
by km.

torX uses information in the input MDs to find relevant information from all databases.

Castor-NoMDs does not learn any definition in the DBLP + Google Scholar dataset.

Over this dataset, Castor cannot access information from the DBLP database. There-

fore, it is not able to find a reasonable definition. We see a similar result in the JMDB

+ BOM dataset.

Castor-Exact is able to learn a definition over all datasets. However, as it relies on

exact matches, the learned definitions are not as effective as the definitions learned by

CastorX. In particular, we see that Castor-Exact obtains a low F1-score over the JMDB

+ BOM dataset. In this dataset, the same entities over these databases are consistently

represented by different names. On the other hand, Castor-Exact obtains a competitive

F1-score in the IMDB + BOM dataset with three MDs. The MDs that match cast

members and writer names between the two databases contain many exact matches.

Therefore, Castor-Exact is able to find paths that connect movies in IMDB with movies

in OMDB.

Castor-Clean outperforms the other baselines. Therefore, integrating the input databases

by using a simple entity resolution technique provides benefits for learning effective defi-

nitions. With the correct value for km, CastorX outperforms Castor-Clean in all datasets.

CastorX is able to learn effective definitions over heterogeneous databases efficiently.

The effectiveness of the definitions learned by CastorX depends on the number of matches

considered in MDs, denoted by km. In the Walmart + Amazon, IMDB + BOM (one
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MD), and DBLP + Google Scholar datasets, using a higher km value results in learning

a definition with higher F1-score. Even though the number of incorrect matches by the

similarity function may increase, CastorX is able to ignore these false matches during

learning. However, when using multiple MDs or when learning a difficult concept, a high

km value affects CastorX’s effectiveness. In these cases, incorrect matches represent noise

that affects CastorX’s ability to learn an effective definition. CastorX’s effectiveness is

lower with higher values of km in the IMDB + OMDB (three MDs) dataset and in the

JMDB + BOM dataset. For this reason, it is not always better to use multiple MDs.

CastorX obtains an effective definition over the IMDB + OMDB with one MD and is

significantly more efficient than using three MDs.

These experiments show that with the right value for km, CastorX can learn effective

definitions. Therefore, one should find the right value for km by experimenting with

different values. In general, CastorX performs well with a sufficiently small km, with

the benefit that it can learn directly from the dirty data. As km increases, the learning

time also increases. Therefore, there is a trade-off between the looseness of the similarity

function used in MDs and CastorX’s effectiveness and efficiency.

The alternative approach to learning over heterogeneous databases is to generate all

stable instances and then learn over each of them. However, there may exist an extremely

large number of stable instances. For instance, the movie American Splendor - 2003 in

IMDB matches 145 movies in the OMDB database. Just from this movie, we would get

145 distinct stable instances. Integrating and cleaning databases would take significant

amount of time and manual labor. Materializing all stable instances would take a huge

amount of space. Further, learning over each stable instance would be time-consuming.

Therefore, the biggest benefit of CastorX is that it avoids these problems by learning

directly from dirty data.

The definitions learned by CastorX and Castor are interpretable. Therefore, we can

analyze the learned definitions. For instance, over the JMDB + BOM dataset, CastorX

learns the following definition:

highGrossing(x)←movies(y, x, z),mov2genres(y, ‘Fantasy ’),

mov2countries(y, ‘USA’), releaseseason(y, ‘Winter ’),

technical(y, ‘PFM : 35mm’).
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On the other hand, Castor-NoMDs is not able to learn any definition. Castor-Exact can

only access information in JMDB for movies whose titles match exactly with titles in

BOM, and it learns the following definition:

highGrossing(x)← movies(y, x, z),mov2genres(y, ‘Fantasy ’).

5.6.3 Scalability of CastorX

One advantage of relational learning algorithms is that they are data-efficient, i.e., they

can learn effective definitions from a small number of training examples [26]. However,

for a given learning task, it is not clear how many examples are needed. In this section, we

evaluate the effect of the number of training examples in both CastorX’s effectiveness and

efficiency. We use the IMDB + OMDB (three MDs) dataset and fix km = 2. We generate

2100 positive and 4200 negative examples. From these sets, we use 100 positive and

200 negative examples for testing. From the remaining examples, we generate training

sets containing 100, 500, 1000, and 2000 positive examples, and double the number of

negative examples. For each training set, we use CastorX to learn a definition. Figure 5.1

shows the F1-scores and learning times for each training set. With 100 positive and 200

negative examples, CastorX obtains an F1-score of 0.80. With 500 positive and 1000

negative examples, the F1-score increases to 0.91. More training examples do not affect

the F1-score significantly. On the other hand, the learning time consistently increases

with the number of training examples. Nevertheless, CastorX is able to learn efficiently

even with the largest training set.

5.6.4 Effect of Sampling

In this section, we evaluate the effect of sampling on CastorX’s effectiveness and effi-

ciency. We use the IMDB + OMDB (three MDs) dataset and fix km = 2 and km = 5.

We use 800 positive and 1600 negative examples for training, and 200 positive and 400

negative examples for testing. Figures 5.2 and 5.3 show the F1-score and learning time

of CastorX with km = 2 and km = 5, respectively, when varying the sample size. For

both values of km, the F1-score does not change significantly with different sampling

sizes. With km = 2, the learning time remains almost the same with different sampling
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Figure 5.1: Results of learning over the IMDB+OMDB (three MDs) dataset while in-
creasing the number of positive and negative (#P, #N) training examples.

Figure 5.2: Results of learning over the IMDB+OMDB (three MDs) dataset while in-
creasing sample size for km = 2.
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Figure 5.3: Results of learning over the IMDB+OMDB (three MDs) dataset while in-
creasing sample size for km = 5.

sizes. However, with km = 5, the learning time increases significantly. Therefore, using

a small sample size is enough for learning an effective definition efficiently.

5.7 Related Work

Surveys on relational learning algorithms and their applications have been written by

Getoor and Taskar [34] and Muggleton et al. [49]. We have witnessed a surge in building

efficient relational learning algorithms for large databases [31, 54, 66, 67]. Our work

complements this line of work by creating an efficient relational learning system over

heterogeneous databases.

Entity resolution is an active and important area of research in data management

whose aim is to find whether two data values or tuples refer to the same real-world

entity [33]. One may use these efforts to implement precise similarity operations for

MDs.

There have been multiple efforts on modeling value and entity heterogeneity in

databases using declarative constraints and defining the properties of clean instances

under them [5, 9, 11, 12, 13, 30, 32, 39, 38, 64]. Our effort extends the same approach

of dealing with heterogeneous data by efficiently learning over the original database.

A different approach to querying and analyzing multiple databases is to use the avail-
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able constraints, including MDs, define concrete similarity and matching functions for the

databases, and create and materialize a unified database instance [17, 23, 59]. One may

represent the inherent uncertainties in similarities between producing matched values

as probabilities and store the final integrated database in a probabilistic database [62].

This approach is preferable if one is able to define a similarity function that accurately

quantifies the degree of similarity between values in the domain and a matching function

that is able to generate the correct unified value from its input. Such a matching func-

tion is hard and resource-intensive to define and usually requires a great deal of expert

attention and manual labor. Also, one is not usually able to define a general one that

can be used across various domains. Our goal is to create a learning algorithm that

can be used over databases from various domains. Moreover, if the input databases are

relatively large, the materialized database has to accommodate tuples from numerous

stable instance causing the database to become extremely large. Learning over such a

database is challenging. Our proposed method is able to learn over the original database,

which contains significantly fewer tuples and avoids this challenge.

ActiveClean gradually cleans a dirty dataset to learn a convex-loss model, such as

Logistic Regression [42]. Its goal is to clean the underlying dataset such that the learned

model becomes more effective as it receives more cleaned records. Cleaning may be

done manually by an expert. Our objective, however, is to learn a model over dirty

data without cleaning and transforming it. Furthermore, ActiveClean does not address

the problem of having multiple cleaned versions of the database and assumes that the

dataset has a unique clean instance.
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Chapter 6: Conclusion and Future Work

6.1 Summary

The thesis of this work is that it is possible to develop robust learning algorithms that

learn in the presence of representational variations by using data dependencies. Data

dependencies contain useful information about the structure and content of the data.

By exploiting this information, learning algorithms can be robust against several types

of representational variations, such as structural heterogeneities and content hetero-

geneities.

Chapter 3 introduces the concept of schema independence. An algorithm that is

schema independent is robust against structural heterogeneities. We developed Castor,

a system that achieves schema independence by using inclusion dependencies. Further,

Castor is able to learn concepts over large databases efficiently.

Generally, relational learning algorithms do not scale to large databases. Chapter 4

introduces systems and techniques that allow relational learning algorithms such as Cas-

tor to learn efficiently over large databases. We developed AutoMode, a system that au-

tomatically generates the language bias used by common relational learning algorithms.

Further, we proposed sampling techniques that are integrated into the candidate gener-

ation algorithms in Castor. Using sampling allows Castor to learn over large databases

efficiently and effectively.

Finally, Chapter 5 considers the problem of learning directly over heterogeneous data.

We leveraged the concept of declarative constraint for data cleaning and defined a novel

semantic for learning over such databases. We developed CastorX, a system that learns

over unclean data. CastorX uses matching dependencies, which can be easily provided by

the user, to find the relevant information across databases and learn effective definitions.



129

6.2 Future Work

We believe that this work initiates some exciting new investigations on the development

of robust learning algorithms. Data heterogeneities are ubiquitous. At the rate in which

new data is generated, it becomes increasingly difficult to clean and transform the data.

We propose a new approach that builds upon the idea of on-demand data preparation for

learning algorithms. Users provide only a set of declarative (logical) constraints about the

schema or content of the database. We equip the learning algorithms with techniques that

use these constraints to implicitly explore data transformations, automatically determine

which data is useful, and learn directly from dirty data. This approach removes the need

of transforming the data before applying learning algorithms.

We see two exciting future directions for this research. One interesting direction is to

explore how this approach extends to other types of learning algorithms. In this work,

we focused on relational learning algorithms, which learn from structured data. There

exist numerous learning algorithms that learn different types of models over different

types of data. The most popular and commonly-used learning algorithms assume that

data is stored in a single table. It would be interesting to explore how to make this type

of algorithms robust to representational variations. There are already efforts to develop

learning algorithms that follow an on-demand data preparation approach [42]. However,

these approaches still require significant manual work from the user. We envision algo-

rithms that, if equipped with the proper data constraints, can learn over heterogeneous

data without any user involvement.

Another interesting future direction is to explore several types of representational

variations and how to encode the transformations that resolve these variations into data

constraints. In this work, we focused on popular declarative data constraints such as

inclusion dependencies and matching dependencies. These constraints are normally used

for designing schemas that guarantee data integrity, as well as for doing data cleaning.

However, we believe that the proposed approach can be extended to support other types

of transformations and data constraints. On one hand, it would be interesting to ex-

plore different types of schema transformations. For example, several transformations

have been studied for data exchange and integration [28]. On another hand, it would

be interesting to explore different types of content transformations and data cleaning

operations. Multiple types of declarative constraints are currently being used for data
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cleaning [5, 11, 13, 32, 59, 64]. It would be interesting to explore how to cast this con-

straints into operations that can transform data automatically and integrate them into

machine learning algorithms.
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[43] Ondrej Kuzelka and Filip Zelezný. A restarted strategy for efficient subsumption
testing. Fundam. Inform., 89:95–109, 2008.

[44] Hao Li, Chee Yong Chan, and David Maier. Query from examples: An iterative,
data-driven approach to query construction. PVLDB, 8:2158–2169, 2015.

[45] Marcin Malec, Tushar Khot, James Nagy, Erik Blasch, and Sriraam Natarajan. In-
ductive logic programming meets relational databases: An application to statistical
relational learning. In ILP, 2016.

[46] Lilyana Mihalkova and Raymond J. Mooney. Bottom-up learning of Markov logic
network structure. In ICML, 2007.

[47] Stephen Muggleton. Inverse entailment and Progol. New Generation Computing,
13:245–286, 1995.

[48] Stephen Muggleton and Cao Feng. Efficient induction of logic programs. In ALT,
1990.

[49] Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter A. Flach,
Katsumi Inoue, and Ashwin Srinivasan. ILP turns 20. Machine Learning, 86:3–23,
2011.

[50] Stephen Muggleton, Jose Santos, and Alireza Tamaddoni-Nezhad. ProGolem: A
system based on relative minimal generalisation. In ILP, 2009.

[51] Frank Olken. Random Sampling from Databases. PhD thesis, UC Berkeley, 1993.

[52] Thorsten Papenbrock, Sebastian Kruse, Jorge-Arnulfo Quiané-Ruiz, and Felix Nau-
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