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The Machine Learning (ML) algorithms are increasingly explored in varies of fields

including designing and optimizing computer systems. Recent research, such as optimizing

memory/cache prefetching by ML training or predicting traffic pattern in throughput

processors, also exhibits a promising future of introducing ML into computer system

design and optimization. Throughput optimization in throughput-oriented processors

is imperative as the computing workload of parallel and cloud computing have been

growing rapidly in recent years. At the same time, throughput optimization can be time

consuming when applying conventional design and optimizing process as the design

space is prohibitively huge. In the first part of this dissertation, we firstly define a huge

and complicated design space in silicon interposer-based throughput processors, then

utilize Monte Carlo Tree Search model (MCTS) to exploit and explore the design space.

The evaluation results show that the system performance is improved by over 20% with



only 0.05% design space is assessed. Performance and power (PnP) are also the most

important metrics that are utilized by original equipment manufacturers (OEMs) to

conduct the design of a device. Current PnP measurements rely on manual hardware

swapping and testing for systems which is time consuming and not financially-efficient.

A fast and accurate PnP value prediction solution can guide OEMs to understanding the

basic behaviour of different hardware components, and, more importantly, shortens the

time to market of a device. In the second work, we explore the common ground between

natural language processing (NLP) problems and system PnP prediction problems, and

develop an NLP-like solution to resolve the problem. The solution is available to extract

the inter- and intra-relationship among the existing system components and to predict

the behavior of system components that have not appeared before. The results of our

evaluation demonstrate that the solution achieves as high as 94% labeling accuracy in a

real-measured dataset.
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Chapter 1: Introduction

Machine Learning (ML) algorithms have been increasingly exploring in various fields,

such as image classification, speech recognition, AI for video games etc. ML solutions

have also been drawing more attention in computer system design and optimization

communities to optimize memory/cache systems [58, 10, 51, 53], improve branch

prediction accuracy [24, 23, 50] or reduce system-level energy consumption [55, 42, 5].

There are some other works that focus on improving the throughput of networks-on-chip

(NoCs) [45, 9] by applying ML-based traffic allocation strategy or routing policy. In

general, machine learning is promising and capable of resolving different types of design

and optimization issues in the field of computer systems.

Throughput-oriented processors (e.g., GPUs) have been increasingly used to speed

up a wide range of conventional and emerging applications. Due to the large number of

cores in the processors, NoCs have been gaining significant research interest [7, 6, 61,

19, 27, 44, 60, 59] to provide low-latency and high-throughput on-chip communication.

Meanwhile, with the recent advent of silicon interposer and 2.5D integration technology,

memory chips can be integrated with the processor chip in one package to provide

dramatically increased memory throughput [52, 37, 12, 20]. However, this places a huge

pressure on the NoC component. Unfortunately, existing schemes have turned out to

be ineffective when applied to these interposer-based systems. With more advanced

interposer technologies on the horizon [17, 21, 8, 32], the performance gap between the
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Figure 1.1: Overview and cross-section view of an interposer-based throughput-oriented
processor.

memory and NoC will likely get even widened. Thus, it is imperative to redesign the

NoC accordingly to meet the requirements of interposer-based throughput processors.

Silicon interposers bring both major problems and opportunities to throughput-

oriented processors. On the one hand, the many-to-few-to-many traffic pattern in those

processors may cause a bottleneck in the reply network, where data reply packets that

are destined to the many cores are injected through only a few injection nodes. With

the boosted memory bandwidth in stacked memory in interposer systems, this injection

bottleneck is greatly intensified and is only getting worse with future memory technologies.

On the other hand, interposer contains multiple dedicated Redistribution Layers (RDLs),

which provides abundant wiring resources that are currently underutilized [21, 35]. These

wiring resources have electrical characteristics that are similar to that of on-chip links [46].

This provides a basis for exploiting a hybrid use of on-chip and interposer components.

In the first work, we explore the new wiring opportunities brought by the interposer

to address the intensified injection bottleneck that is also caused by the interposer. Given

the root cause of the injection bottleneck is the few-to-many traffic pattern, we propose

Equivalent Injection Routers (EIRs) that transform the traffic to many-to-many pattern,

thus fundamentally solving the bottleneck problem. This is achieved by providing each
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injection point with a group of equivalent injection routers, all of which have “equivalent”

capability in terms of accepting and distributing the injecting traffic. The required

additional interconnects are provided by the redistribution layers in the interposer. While

the concept of EIRs is straightforward, selecting the set of equivalent routers requires

comprehensive consideration from topological, architectural and physical aspects. This

leads to a large design space as explained later in Section 3.

To demonstrate the feasibility of the proposed EIR approach, we have developed

EquiNox as a design example. The scheme employs a #-Queen based cache bank

placement as the basis for selecting equivalent routers. As the solutions of #-Queen

are not unique, a scoring policy is developed to select the placement that minimizes

network congestion and maximizes EIR potential. The groups of EIRs are then selected

by a carefully designed Monte Carlo Tree Search (MCTS) method to search through

the design space, while balancing the number of EIRs, their impact on the network, the

needed interposer links, the length of the links, and the number of cross-points in the

RDLs. The network interface architecture is also enhanced to support the increased

injection flexibility from EIRs. The proposed EquiNox is able to meet the requirements

of topologically equivalent, architecturally efficient and physically viable EIR designs.

Evaluation on a wide range of benchmarks shows that EquiNox achieves 47.7% reduction

in execution time and 55.0% reduction in energy-delay product (EDP) compared with a

single network scheme, and 23.5% reduction in execution time and 32.8% reduction in

EDP compared with a separate network scheme.

Performance and power (PnP) are the most important design metrics for OEMs to

develop a device. In recent years, with the proliferation of mobile device, the battery life
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becomes a major consideration for customers. However, the techniques that prolong the

battery life usually worsen the performance of a device. As the performance is also an

important feature in designing process, the trade-off between power and performance

becomes rather difficult to be balanced. Therefore, the OEMs usually continuously

test and tune a device until the pre-determined PnP target is satisfied. To measure

the PnP values for various systems, human experts have to manually swap hardware

components every time, and then test PnP values for the new system. Such process

requires massive number of human experts and consumes significant amount of time.

This is not financially-efficient and time-efficient for platform design companies like Intel

or OEMs like Dell. Therefore, a PnP prediction solution is necessary to accelerate the

process and to reduce the time to market of a device.

In this work, we propose a natural language processing (NLP)-like solution which

includes a word vector interpreter model, a hardware representing model, and a PnP

prediction model. The hardware components of a system are firstly transformed from

string data to floating point vectors by the word vector interpreter model. This is done by

an algorithm called Continuous Bag Of Words (CBOW). Ordinary a CBOW model is

designed for only capturing the context relationship of a sentence. To better fit CBOW

to our work, we enhance it by integrating the measured PnP value of a system as an

additional output target. For the unseen components, we predict their word vectors by

utilizing the the hardware representing model with the component specs. Eventually, the

word vectors of a system are fed into the PnP prediction model to obtain the PnP values.

Our evaluation demonstrates that the PnP prediction model accuracy is around 91.7%,

and the labeling accuracy is as high as 94.5%.
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The rest of the thesis is organized as follows. Chapter 2 summarizes the related

work. Chapter 3 introduces the MCTS-based throughput processor optimization in detail.

Chapter 4 proposes our NLP-like solution to predict PnP values for the systems with

unseen hardware components. Finally, chapter 5 concludes the thesis.
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Chapter 2: Related Work

There is a substantial amount of research that focuses on applying machine learning to

computer system design and optimization. One such topic concerning system optimization

would be branch prediction, which is naturally a problem that can be resolved by supervised

learning. Jimenez et al. [24] propose a perceptron-based branch predictor to achieve

higher prediction accuracy than a conventional two-level predictor, and later Jimenez

[23] optimizes the proposed predictor by integrating a set of novel techniques such as a

dynamic learning threshold. Alternatively, a CNN based approach is applied towards

branch prediction by Tarsa et al. [50], and they propose a “CNN-Helper” predictor

to further improve the prediction accuracy and show the efficiency on hard-to-predict

branches. Prefetching is also a widely explored field of applying machine learning. Zeng

and Guo [58] propose a LSTM-based memory prefetcher that achieves better prefetching

efficiency than traditional approaches. Braun and Litz [10] train a LSTM on several

microbenchmarks which characterized the memory access patterns and provided a better

understanding of the relationship between model parameters and the memory access

patterns. The cacheline reusing policy can also be predicted by perceptrons [51] or a

decision tree [53]. Networks-on-Chip (NoCs) is anothermajor fieldwhere researchers have

explored machine learning applications. A neural network predictor is proposed by Reze

et al. [45] to manage global resource allocation and per-node DVFS. Boyan and Littman

[9] design a Q-learning based routing policy to improve the packet routing efficiency.
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Their evaluation results suggest that the proposed Q-learning policy distributes the on-chip

traffic more evenly. There are many other works [55, 42, 5, 36, 38] employ different

machine learning models such as artificial neural network or reinforcement learning

models on optimizing system-level energy consumption to achieve energy-efficiency

system design.

Bakhoda et al. observe the M2F2M traffic pattern and propose a scheme specifically

for this pattern [6]. Some works propose to split a reply network into several reply

subnetworks physically [27, 60] or even in time division fashion [44] to gain a higher

injection rate for the reply network. Jang et al. propose VC-Monopolization design for

single network NoC system in GPGPUs, which improves VC utilization and network

throughput. These works have been compared in Section 6. The design space in

interposer-based 2.5D system is exploited for NoCs to build energy-efficent NoCs for

many-core CPUs [21, 25]. In [21], some general cases of designing energy-efficient

NoC are explored. In [25], an efficient design of NoCs in chiplet interposer-based CMP

systems is proposed. However, those designs have limited effectiveness when adopted

directly to interposer-based throughput processors due to significantly different traffic

patterns.

Express links have been proposed for both off-chip (e.g., Express Cube [14]) and

on-chip networks (e.g., Flattened Butterfly [28] and MECS [16]). Those topologies

typically use an extensive number of express links, which are redundant in throughput

processors due to minimal inter-PE traffic.

Another approach to mitigate the impact of the injection bottleneck is to compress

reply packets to smaller packets, and unzip after after they are injected [29]. Also, it is
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possible to alleviate injection bottleneck by employing near-data processing in interposer-

based systems [18]. With near memory computing nodes in memory stacks, the reply

traffic that needs to travel through the reply network is reduced. These two schemes

are largely orthogonal and complementary to the our proposed EquiNox. Additionally,

Ziabari et al. propose an asymmetric network design in the request and reply network

where unnecessary links are removed to exploit memory traffic characteristics in GPUs

[61]. Zhao et al. design a Heterogeneous Ring-Chain network (HRCnet) for the reply

network which provides lower area and power consumption and reduces packet conflicts

with a ring-based topology [59]. While these works are effective in their targeted contexts,

they do not consider interpose-related characteristics.
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Chapter 3: Throughput Optimization by Reinforcement Learning

3.1 Background and Motivation

3.1.1 Interposer-based Throughput Processors

To meet the growing demand of high-bandwidth and low-latency memory in many-core

processors, 2.5D integration systems have been proposed and commercially yielded to

achieve wafer-level integration of processor dies and memory dies. Figure 1.1 depicts the

architecture of a typical silicon interposer-based throughput processor. The interposer

is a silicon substrate that provides mechanical and electrical characteristics to integrate

multiple dies [21]. On the left side of Figure 1.1, the processor die is represented by

the large light yellow square. Eight memory dies are located outside the processor die,

denoted as the green squares labeled with “MEM". In the processor die, processing

elements (PEs) and last level cache banks (LLCBs or simply CBs) are placed in a

tile-based fashion. Each cache bank is connected with a dedicated memory controller

(MC) that interfaces with a memory die. Each memory die is actually a die stack, which

is composed of several individual dies that are vertically placed on top of each other to

form a 3D die stack. This technology is known as the High Bandwidth Memory (HBM)

[1, 39]. HBMs can greatly benefit from integration in 2.5D systems, since the in-package

interconnects offered by the interposer have superior physical properties than off-chip

interconnects.
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In interposer-based processors, the MCs are usually located near the edge of the

processor die to ensure short and fast interposer connections with the memory stacks. As

eachMC is connected with a CB, only a few CBs exist that are shared by all the PEs. While

the locations of the MCs are less flexible, the placement of CBs can be adjusted to achieve

more efficient on-chip communication. Different from the conventional many-core CPUs,

the PEs in throughput processors (e.g., Stream Multiprocessors (SMs) in GPUs) have

little inter-PE communication, but instead communicate with CBs (and then memory

stacks) directly. PE-generated request packets are sent to CBs through a request network.

Reply packets can be generated directly by the CBs in case of cache hits. Otherwise, the

CBs will first fetch data from the memory and then generate reply packets containing the

data. The reply packets are sent back to the PEs through a reply network. This traffic flow

from the many PEs to a few CBs and then back to the many PEs is commonly referred to

as the Many-to-Few-to-Many (M2F2M) traffic pattern in throughput-oriented processors

[6, 3].

Figure 1.1 also shows the cross-section view of the silicon interposer structure. The

processor die and memory stacks are integrated with the interposer via micro-bumps

(`bumps) in a face-down fashion (flip-chip packaging technology)[37, 15, 17]. For

example, when integrating the processor die with the interposer layer, the die is first

flipped, so the surface of the chip is facing down and attached to the interposer. As a result,

`bumps consume chip surface area. To connect the processor die with the memory dies,

wires are routed through the interposer layer with support of the `bumps. Each wire must

have a corresponding `bump to provide the electrical connectivity [37, 17, 21]. Wires in

the interposer layer are implemented by fine-pitched metal layers called Redistribution
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Figure 3.1: End-to-end traffic flow (CCs on both sides are the same).

Layers (RDLs) that provide high-bandwidth and low-latency interconnections [12]. To

achieve that, the material of the RDLs is usually copper instead of aluminum for lower

resistivity and better scalability (higher wire density). However, the Damascene process

[54] needs to be used to deal with the poor oxidation and corrosion resistance of copper.

In practice, to yield sub-micro pitch metal layers, interposer RDLs may employ a more

complex dual-damascene process [34]. Below RDLs, Through-Silicon Vias (TSVs) are

used to transfer electrical signals from RDLs to the outside of the package1.

3.1.2 Understanding GPGPU NoC Bottleneck

In this section, we present a set of experiments which, collectively, study the interactions

amongNoC components in GPGPUs to increase the understanding of potential bottlenecks

1The C4 bumps at the bottom of the interposer layer are not shown in the figure for better clarity.
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Figure 3.2: Request vs. reply packet latency.

Figure 3.3: Impact of changing request-request link widths.

in the network. We use GPGPU-Sim[7] and BookSim 2.0[22] with a wide range of

representative workloads from the Rodinia[13] benchmark suite and CUDA SDK[40].

First, on the high level, the NoCs in the end-to-end flow in Figure 3.1 can be divided

into a request network and a reply network (denoted by the dotted squares in the figure).

We use results in Figures 3, 4 and 5 to show that, due to the backpressure from the reply

network to the request network, the bottleneck of GPGPU NoC is on the reply network

side.
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Figure 3.4: Relative percentage of 4 packet types.

Figure 3.2 compares the average packet latency of the re-quest and reply network

for a typical GPGPU configured with 28 compute nodes, 8 MC nodes, and 128-bit NoC

link width. At the first glance, with the request packet latency being 5.6X of the reply

packet latency, on average, it seems that the bottleneck is on the request network side.

However, when we double the link width of the request network from 128-bit to 256-bit,

the average IPC only increases by 0.8%, as shown in Figure 3.3. In contrast, if the reply

network link width is doubled, a 25.6% increase in the average IPC is observed. This

indicates that the reply network is the actual limiting factor.

To explain why the reply network is more congested, Figure 3.4 examines the relative

percentage of four packet types that coexist in GPGPU NoCs, taking into account

the number of flits each packet type has to accurately reflect the network traffic load.

Among the four packet types, read-request and write-reply are typically short packets;

whereas read-reply and write-request are long packets with multiple flits, as they contain

large chunk of data. Although each read (write) request packet in the request network
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Figure 3.5: NI injection queue occupancy.

corresponds to exactly one read (write) reply packet in the re-ply network, there are

considerably more read transactions than write transactions in most of the benchmarks as

shown in the figure. As a result, the reply network, which predominantly carries long

read-reply packets, has much more traffic load than the request network (e.g., 72.7% vs.

27.3% of the total NoC traffic in Figure 3.4), thus being more prone to congestion. When

the reply network is congested, its injection buffer queues in NIs would be gradually

filled up (the NIs in the right half of Figure 3.1). This slows down the processing and

forwarding of data at the MC nodes to the NIs which, in turn, slows down the processing

of requests at the MC nodes on the request network side. Consequently, request packets

start to be queued up backward across the routers in the request network, until the

backpressure eventually propagates all the way back to the source CC nodes. Analogous

to the parking lot problem with a congested exit point, the cars that are the farthest from
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the exit experience the longest waiting time. Similarly, packets in the request network

experience longer NoC latency even though the congestion happens in the reply network.

It is important to note that our simulation does not artificially create the congestion

in Figure 3.2 by using 128-bit NoC links. The 128-bit link width is sufficiently wide to

match the memory traffic. We show this at two levels. First, at the per-MC level, each

connected GDDR5 is modeled after GTX980. According to the specification [40], it

operates at 1.75GHz with 32-pin and quadruple data rate. This offers up to 28GB/s of

incoming data to an MC (1.75GHz × 32b × 4 = 28GB/s). Meanwhile, each NoC link can

transfer up to 128b × 1GHz = 16GB/s of data from an MC. This leads to a total outgoing

data from an MC to be 48GB/s (i.e., 3 links from an MC that is located on the edge) or

64GB/s (4 links for a non-edge MC), which is more than the incoming data to the MC.

Second, at the aggregate level, the total incoming data from all the 8 MCs is 28GB/s × 8 =

224GB/s (again, matched with the product specification [36]). Prior work has shown that

the bisection bandwidth of the NoC need to be around 80% of the total MC bandwidth

[6], which is 224GB/s × 0.8 = 179.2GB/s in this case. With 128-bit links, the bisection

bandwidth of the simulated NoC is 128b × 1GHz × 12 (12 uni-directional links in the

bisection of a 6×6 mesh) = 192GB/s, which is larger than the needed NoC bi-section

bandwidth. The above calculations indicate that there must be other factors that cause the

congestion in the reply network.

Next, we examine the reply network more closely to identify which part of the network

is the bottleneck that limits the traffic flow. Simulation results of running a mix of 30

benchmarks show that, the average link utilization of the reply network is actually very

low, with only 0.084 flit/cycle. However, the average link utilization of the injection links
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(i.e., the links from NIs to the connected routers in Figure 3.1) is 0.39 flits/cycle which is

more than 4.5X the utilization of the links within the reply network. This indicates that

the injection points can be the potential bottleneck. To verify this is indeed the case, we

intentionally increase the capacity of the injection buffer queues in the NIs and record

the queue occupancy. Essentially, if the injection point is the bottleneck and limits the

traffic flow, as the queue capacity increases, more reply packets would be buffered in the

injection queues, waiting to be injected. Figure 3.5 plots the results and confirms that the

queue occupancy closely tracks the queue capacity as it increases from the size of 4 long

read-reply packets to 80 long packets. Other benchmarks exhibit similar characteristic

and are omitted in the figure for clarify.

The main reason why the injection point is the bottle-neck is that the reply network

has a few-to-many traffic pattern caused by the high CC-to-MC ratio (e.g., 28 vs. 8).

All the reply data that needs to be distributed back to the many CC nodes is forwarded

through only a few injection points. This is further worsened by the large number of long

read-reply packets in the reply network, thus concentrating the already heavy traffic to

only a few paths from the NIs to the connected routers. The reply injection bottleneck of

GPGPU NoCs may seriously limit the maximum achievable throughput of the traffic flow.

It also increases the packet latency by blocking critical reply data at the injection points

that is needed by programs to make forward progress. Nevertheless, simply increasing the

width of injection links is not enough to remove this bottleneck, as the injection links are

not isolated components but are closely interacting with NIs on the one end and routers

on the other end. Both ends are not fully capable of handling such an increased traffic

from wide injection links, if conventional CPU NoC designs are used. What is needed
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is a matching NI architecture that can supply a fast rate of traffic to the injection points,

and a matching router architecture that can consume the injected packets by quickly

transferring packets out of the injection points, as proposed in this work.

3.1.3 Intensified NoC Bottleneck

While the use of silicon interposer brings many benefits, it also worsens the injection

bottleneck in the on-chip network. Specifically, each PE node or CBnode is associatedwith

an on-chip router, and the routers are connected to form the NoC. A node sends/receives

packets to the NoC through a network interface (NI). As mentioned, there are two networks

in the NoC: a request network and a reply network. The reply network carries much

heavier traffic than the request network. This is because typical workloads for throughput

processors have a lot more reads than writes. Read requests are short packets, but read

replies are long packets containing cache line data. Our simulation results also confirm

this, showing that reply traffic (including read reply and write reply) accounts for 72.7%

of the total NoC traffic in terms of bits, and only 27.3% is request traffic (read request and

write request). Therefore, the reply network is more susceptible to congestion than the

request network [61, 27]. As all these heavy reply traffic is eventually injected into the

reply network through a few CB nodes, these injection points (CB nodes) become the

performance bottleneck of the entire NoC [6].

In interposer-based systems, the injection bottleneck is intensified as the throughput of

HBM is significantly higher than that of conventional DRAMs. The second generation of

HBM achieves up to 256GB/s [2] which is about 10X higher than GDDR5. This dramatic
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improvement in memory bandwidth has put a huge traffic pressure on the injection points

in the reply network. To-date, only a few of works [6, 19, 27, 44, 60] have targeted the

NoC injection bottleneck, but none of them have examined the issue in interposer-based

systems where the throughput demand are drastically different. Alternatively, some works

exist (e.g., [21, 25]) that utilize interposer resources to improve on-chip networks in

many-core CPUs. However, as the M2F2M communication is very different from the

all-to-all traffic pattern in CPUs, it is ineffective to adopt these designs for throughput

processors. More discussions and quantitative comparisons are provided in later sections,

but essentially, without a more specific and effective solution, the gap between the

demanded data transfer rate in new memory technologies and the supported rate in current

injection points will continue to be widened in the near future.



19

3.1.4 Interconnects Opportunity in Interposer

Although the injection bottleneck is worsened by the stackedmemory and 2.5D integration,

the features of interposer also open up new opportunities for interconnection. First, there

is much vacant space under the processor die to route wires in the RDLs. This is because

die-to-die interconnects and the associated `bumps are placed near the boundaries of

the processor die and memory stack, as shown in Figure 1.1. This leaves the majority of

the area under the processor die unused. Second, RDLs are composed of multiple metal

layers. Although the total number of RDLs is limited due to yielding cost, substantial

wiring resources are available even with the layers in the current RDLs. Third, the wire

latency in the interposer is comparable to that of the die [46]. This allows a hybrid use of

interposer links and on-chip links without causing concerns on unmatched signal transfer

latency. Moreover, the floor planning of wires in RDLs is independent from that of the

processor or memory dies (except for the interfacing `bumps), so the cross-layer wiring

complexity within RDLs is not exposed to other system components.

With the above advantages, the next question is how the abundant wiring resources

in the interposer can be utilized more efficiently to help with system designs, such as

addressing the intensified injection bottleneck.
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3.2 Equivalent Injection Routers

3.2.1 Eliminating Few-to-Many Bottleneck

The root cause for the reply injection bottleneck is a mismatch in quantity, where a few

injection routers (i.e., CB-connected routers) need to handle all the injection traffic that is

destined to the many PE-connected routers. Therefore, a fundamental solution to this

problem is to somehow transform the “few-to-many" traffic pattern to a “many-to-many"

traffic pattern. To this end, we propose the approach of Equivalent Injection Routers (EIRs)

to eliminate the injection bottleneck. In the existing architecture as shown in Figure 3.6(a),

the injection traffic from a CB is bottlenecked at the CB-connected injection router. In

contrast, the proposed approach in Figure 3.6(b) provides a group of injection routers that

have equivalent capability in terms of accepting and distributing the injection traffic from

a given CB. Each CB has its own group of EIRs that are located strategically, so injected

packets can be quickly distributed. Collectively, all the EIRs create many injection points

to realize the many-to-many traffic pattern. However, implementing the idea of EIRs in

conventional processors is very difficult, as it requires additional interconnects between a

CB and all the EIRs in the group of that CB. This is where the RDLs in the interposer

become useful. Since RDLs are underutilized and largely independent from the main

NoC, RDLs can be a great resource to route the needed interconnects. In a sense, EIRs

provide a nice solution that utilizes the wiring opportunities brought by interposer to

address the intensified injection bottleneck that is also caused by interposer (and stacked

memory) in the first place.

While the concept of EIRs looks straightforward, selecting the set of equivalent



21

routers requires comprehensive consideration from topological, architectural and physical

aspects, as explained below.

3.3 Considerations of Selecting EIRs

3.3.1 Topologically Equivalent

Every EIR in a CB’s group is topologically equivalent in the sense that the CB directly

connects with every EIR and can use any EIR for packet injection. Therefore, the first

consideration is to determine the optimal number of EIRs in a group. At one end of

the spectrum, if there is only one EIR per group, the design regresses to the existing

architecture in Figure 3.6(a) where injection is congested. At the other end of the spectrum,

if a group includes all the PE-connected routers as the EIRs, the CB can basically send

packets to any PE in just one hop through the EIRs. In that case, however, the capacity

in transferring traffic out of the CB is way higher than what the CB can possibly inject,

thus leaving most of the added links (in the interposer) between the CB and EIRs idle.

Therefore, the optimal number of EIRs should be determined carefully.

3.3.2 Architecturally Efficient

Another consideration is whether the selection of EIRs is architecturally efficient, even

with the same number of EIRs per group. For example, with 4 EIRs in a group, there

are numerous combinations that may have dramatically different architectural efficiency.

Figure 3.7 presents an example where the blue group and the gray group both have 4 EIRs.
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As the injection routers in the blue group are located closely, the region would easily

become a hot zone that leads to high queuing latency for injected packets. In contrast, the

gray group distributes the EIRs further into the network, thus lowering the contention

among injection traffic and being more architecturally efficient than the blue group. Due

to the large number of combinations under a given number of EIRs in a group, it can be

difficult to identify the optimal EIR selection in the design space. Note that, while it is

beneficial to distribute EIRs across the network, the design in the gray group requires

long wires and increases the probability of having wire intersection, both of which place

additional constraints on physical viability, as discussed next.

3.3.3 Physically Viable

The positions of EIRs should also be selected in a way that is friendly for physical

implementation. There are three main constraints due to the unique characteristics of

interposer-based systems: 1) length of interposer links, 2) number of intersection points

in redistribution layers (RDLs), and 3) area overhead of `bumps.
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First, shorter interposer links are preferred, as long links need repeaters which would

require active silicon interposers. Active interposers face greater thermal challenges and

complexity than passive interposers. Consequently, EIRs cannot be positioned too far

away from the CB.

Second, wire intersection in the interposer needs to be minimized, as intersection

points require separate metal layers in the RDLs. For example, in Figure 3.7, at least two

layers are needed to handle the three points of intersection (the three red dots). Due to

the dual-damascene process, yielding complexity increases exponentially as more metal

layers are included [54, 41]. The process is very costly because of the operations in

cleaning residual photoresist and protecting hydrophilic low-^ dielectric films [26].

Third, because of the face-down integration in 2.5D integrated chips, `bumps consume

on-chip area of the top dies, e.g., the processor die and memory dies. Every interposer

wire needs a dedicated `bump to ensure electrical connectivity with other dies. Taking

40`< pitch `bumps [15] as an example, each 128-bit bi-directional link consumes around

0.34<<2 `bump area. This overhead can be quite substantial when the number of

interposer links is large (e.g., prior works on CPU NoCs need hundreds of interposer

links). Thus, it is challenging to place EIRs strategically that would require much fewer

interposer links, while still being able to avoid the reply injection bottleneck.

3.3.4 Other Complications

In addition to the above three aspects, there are other factors that may potentially affect

the design of EIRs. One major issue is the placement of CBs that has considerable impact
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Figure 3.8: Heat map of average router travel through cycles in different CB placement.

on system performance. For instance, if multiple CBs are placed closely at the same row,

the contention among injection traffic would be very high even with the help of EIRs.

Also, the eight nodes surrounding a CB node have more injection traffic, so it is better

not to include these surrounding nodes as EIRs which would otherwise draw even more

injection traffic. All these factors, compounded by the choice of the number of EIRs in a

group, the different combinations of EIRs, and the resulting length/number/intersection

of interposer links, make the approach of EIRs challenging (but also interesting). In the

next section, we present a design example that integrates #-Queen and Monte Carlo Tree

Search methods to explore this large design space and materialize the benefits of EIRs.

3.4 Design Example: EquiNox

3.4.1 Overview

In this work, we have developed EquiNox as a case in point to demonstrate the feasi-

bility and effectiveness of the proposed approach on using equivalent injection routers

(EIRs). EquiNox contains the right combination of several design elements to meet the

requirements of topologically equivalent, architecturally efficient and physically viable
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EIR designs. The scheme employs a #-Queen based cache bank placement as the basis

for selecting equivalent routers. Since the solutions of #-Queen are not unique, a scoring

policy is developed to select the placement that minimizes network congestion and maxi-

mizes EIR potential. The actual group of EIRs is then selected by a carefully designed

Monte Carlo Tree Search (MCTS) method. The proposed MCTS balances the number of

EIRs and their capability in distributing the injection traffic. It also helps to determine

the locations of EIRs by simultaneously reducing the number of needed interposer links,

the length of the links, and the number of cross-points. Finally, a few low-cost but critical

changes are applied to the NI architecture to support the increased injection flexibility

that is offered by multiple equivalent routers. The following subsections describe these

design elements in more detail.

3.4.2 Contention-aware CB Placement

As the basis of the EIR approach, we first present a last-level cache-bank placement that

is benign to equivalent injection routers.

Hints from Existing Placements: Several popular CB placements exist, such as

Top, Side, Diagonal and Diamond [3] that are originally proposed for the all-to-all traffic

pattern in many-core CPUs. We analyze these placement schemes to obtain some hints for

finding placements that are good for the traffic patterns in throughput processors. To get

a visual intuition of the traffic situation under different placements, Figure 3.8 draws the

heat map of the average number of cycles that a flit experiences when traveling through

a router in the reply network (where the injection traffic forms the few-to-many traffic
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pattern). Each colored block denotes a router. A brighter block means that flits spend

more cycles in this router. The scale is shown on the right, and the variance of cycles

among the routers is shown below each sub-figure. For the Top and Side placements, it

can be seen that there are severe delays that stress CB nodes and/or the nodes surrounding

them. This is due to the higher probability that reply packets may encounter each other

when CBs are placed at the same row or the same column.

For the Diagonal or Diamond placements, since there are no CBs at the same

row/column, the traffic is more balanced, as indicated from the significantly reduced

variance values. However, these two placements may cause intersection problems for

EIRs due to diagonally neighboring CBs. Consider the two adjacent CB nodes such as

the two red-circled nodes in the Diamond (or Diagonal) placement. If the upper CB

node has a horizontal (e.g., x-) interposer link connecting an EIR and the lower CB has a

vertical (e.g., y+) interposer link connecting another EIR, the two links would inevitably

intersect with each other even if both links are only one-hop long. This increases the

number of RDLs and yielding cost. In comparison, for the two yellow-circled nodes

that are not directly positioned diagonally, intersection can be avoided if the lengths of

interposer links are selected carefully. Moreover, neighboring diagonal CBs also increase

the contention of injection traffic, which could be mitigated if they are not positioned

diagonally.

#-Queen Based Placement: The above analysis prompts us to find a CB placement

that minimizes the alignment of CBs in the same row, column or diagonal, so as to

reduce traffic contention and be friendly with interposer wiring. These considerations

lead us to utilize the #-Queen algorithm that is originally proposed to place # queens
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on a chessboard where no two queens can capture each other. If used for placing the

CBs, such placement ensures that there is only one CB node in a row or a column and

there are no CB nodes in diagonal (whether neighboring or not). An example is shown

in Figure 3.8 where the placement is very effective, with a variance of only 0.54. This

is 35.7% lower than the Diamond placement and 96.7% lower than the Top placement.

Moreover, the fact that only one CB node is on any diagonal in the #-Queen placement

also decreases the probability of having wire intersection. This increases the flexibility of

selecting equivalent injection routers.

Scoring Policy: The #-Queen algorithm does not generate a unique solution. Many

#-Queen placements exist, and they may have different impact on traffic congestion. To

assess different placements quantitatively, we introduce a concept of hot zone. The hot

zone of a CB node is defined as the 8 nodes that surround the CB node, as illustrated

in Figure 3.9. In particular, the 4 nodes that are connected directly with a CB node are

called Direct Access Zones (DAZs). DAZs are very congested as any injected packet

is forwarded through DAZs as the first hop. The other 4 nodes at the four corners are

called Corner Access Zones (CAZs). Packets have a high probability of being forwarded

to CAZs as the second hop. If there is an overlap between the DAZ hot zone of a CB

node with the CAZ hot zone another CB node, traffic congestion is greatly exacerbated.

Therefore, hot zone overlaps can be used as a metric to assess the quality of #-Queen

placements. It is worth pointing out that, in #-Queen placement, it is not possible to

have DAZ-DAZ or CAZ-CAZ overlaps, which is another reason why #-Queen is a good

placement strategy.

The following scoring policy is introduced. Under a given placement, we calculate
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a penalty score for each node (tile) in the network, and the summation of the penalty

scores of all the nodes is the final penalty score of that placement. Among the four direct

neighbors of a node, if < of them are hot zone overlaps, the penalty score of this node is∑<
1 . We use this policy rather than simply adding < points, to reflect the compounded

delay by multiple hot zone overlaps. For example, in Figure 3.9, to calculate the penalty

score of the red node, we notice that two of its direct neighbors (light yellow nodes) are

hot zone overlaps, so the penalty score of the red node is 1+2=3. Note that the node

above the red node is a DAZ but is not a hot zone overlap; whereas the two yellow nodes

are DAZ-CAZ overlaps. In case of an 8 × 8 network, there are 92 different #-Queen

placements. The one with the lowest score is chosen, as shown in Figure 3.9. For larger

networks, a similar procedure is followed to generate a number of #-Queen placements,

and the least penalized one is selected.

3.4.3 Selecting EIRs with MCTS

After the CB placement is decided by the above N-Queen and scoring policy, the next

step is to select the EIRs. Two observations can be used to simplify the complexity of

the selection. First, for a given CB, it is better to distribute EIRs on different directions

from the CB, as two EIRs on the same direction would cause contention in that direction.

Second, it is better to place EIRs within a few hops from a CB to avoid using long

interposer wires and to reduce intersection. However, the design space after these

simplifications is still quite large. In the example of an 8× 8 network, there are 1.7× 1010

possible combinations of EIR selections, even if we limit EIRs to be within 3 hops of the
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corresponding CB node. Therefore, a systematic search approach is needed to identify a

good EIR selection. In this work, we develop a search method based on Monte Carlo

Tree Search (MCTS).

MCTS is a classic search algorithm in machine learning [11] and has been recently

employed to enhance the AI algorithms in the game of Go, Shogi and StarCraft II

[47, 48, 4] to search their huge solution spaces. We adopt MCTS due to the inherent

similarity between placing EIRs in our problem and placing stones in the game of

Go. Other search algorithms might work, such as genetic algorithm (GA) or simulated

annealing (SA), but likely at a lower efficiency due to the additional mathematical

transformation and less effective problem representation. For example, to utilize GA, a

natural representation is to use a 64-bit gene for an 8 × 8 network, where each bit is either

0 or 1 to indicate if that node is an EIR. This unnecessarily expands the problem space

to 264 (or 1.8 × 1019) and introduces numerous invalid solutions during crossover and

mutation operations. Similar issue on problem formulation exists in SA as well.

Our proposed search method follows a typical MCTS, with a few customization

and optimizations specific to EIR selection. The search process builds a search tree

iteratively. Each iteration consists of four steps, namely selection, expansion, simulation

and backpropagation, as shown in Figure 3.10.

(1) Selection: Search starts from the root node (e.g., an empty state with no EIR selected)

and recursively selects a child node until reaching a current leaf node (e.g., a few EIRs

added from previous iterations). This step selects a promising path from the current search

tree, so the path can be expanded in the following steps. The selection is based on an
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Figure 3.9: N-Queen placement.

Upper Confidence Bound (UCB) formula2 that balances exploitation, which maximizes

the rewards from known nodes, and exploration, which explores unknown nodes for

potentially higher rewards [31].

(2) Expansion: Assuming the above leaf node is not a terminating node (e.g., last EIR

added), this step randomly chooses a possible successive state (e.g., add another EIR or a

group of EIRs), attaches to the leaf node, and expands the tree by one level.

(3) Simulation: Possible outcomes following the expansion are “simulated” by performing

a rollout policy. In case of the Go game, this step means that multiple moves are performed

speculatively if the current move is indeed made. Similarly, additional EIRs are selected

speculatively (but not actually selected).

(4) Backpropagation: An evaluation function estimates the value of the rollout based on

a set of defined rules and grading policy. The evaluation score is then backpropagated to

all the nodes on the path, starting from the expanded node to the root node. The score is

2Defined as E8 +� ×
√
;=#/=8 , where E8 is the estimated value of the chosen child, =8 is its total number

of visits, and # is the total number of visits of its parent node. � is a balancing parameter.
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accumulated to the existing scores of those nodes.

At the end of the first iteration, the level-1 child node of the root with the highest

accumulative score is considered as near-optimal, and the corresponding EIR selection

represented by that node is added to the final EIR selection. This information is carried

over to the second iteration as part of the new root state. The second iteration finalizes

the EIR selection of a level-2 child (with the highest accumulative score) of the root, and

so on so forth, until the EIRs of all the CBs are selected.

The above search process adds EIR one by one. While this is correct, during

implementation we observe that the search tree can be as deep as 24 levels for an 8 × 8

network and even deeper for larger networks. This reduces search efficiency significantly.

To address this issue, instead of adding EIR one at a time, we add EIRs group by group.

Specifically, each node expansion adds the selection of all the EIRs belonging to a CB

node. Therefore, the tree depth equals exactly the number of CB nodes, which is usually

limited in a processor.

An important component of MCTS is the evaluation function in backpropagation.

We integrate four metrics in the evaluation function to reflect the considerations on EIR

efficacy and physical viability: (minimizing) the max of EIR traffic load, average hop

count, number of intersection points, and link length. The first metric estimates the total
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amount of traffic that each EIR needs to handle for all the PE nodes, and the objective is

to minimize the maximum one across all the EIRs. This metric helps to balance traffic

load among EIRs to avoid hotspots. This is particularly useful as some CB nodes may

have fewer EIRs, e.g., due to the consideration of avoiding intersection or simply due to

boundary constraints. The second metric uses average hop count to approximate packet

latency. The third and fourth metrics consider the physical constraints of RDLs in the

interposer. All the four metrics can be easily calculated under a specific EIR selection and

CB placement, assuming each PE has relatively similar traffic load. Owing to this, metric

calculations can be performed quickly in each backpropagation step to guide the search

process; whereas detailed full system simulations with actual workloads are conducted

later only for EIR selections that are found to be promising by MCTS. The evaluation

function sums the four metrics (after normalization). Lower function values indicate

better EIR selections.

We implement the above MCTS model in Python 3.7.3 [43] and execute on an x86_64

Linux server, equipped with an Intel E5-2630v3 32-core processor and 64GB memory.

The search process turns out to be quite efficient. For instance, for an 8 × 8 network,

MCTS can stabilize to a near-optimal EIR selection in less than 10 hours by assessing

only 0.047% of the entire solution space. Figure 3.11 shows the best design found by

MCTS in this case. EIRs with the same color belong to the same group of a CB (in

MCTS, we do not allow an EIR to be shared with more than one CB). While the search

process is carried out without human intervention, it is interesting to see that MCTS

seems to be able to “synthesize” several design attributes of good EIR selections. First,

as can be seen, all the EIRs are placed exactly 2 hops away from each CB, despite the up
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to 3-hop flexibility in the constraint. Closer examination verifies that 2-hop away EIRs

bypass both DAZ and CAZ hot zones surrounding the corresponding CB node. Second,

intersection is completely avoided, thus requiring minimally only one RDL in the silicon

interposer. Furthermore, interposer links with 2-hop length can be fit into one clock cycle,

thus avoiding the use of repeaters and active interposers. Note that those 2-hop links are

routed in the interposer, so they do not interfere with the placement of regular links in the

processor die.

As the network size increases, one might think that EIRs located multiple hops

away from CBs are more efficient. However, the 2-hop away EIRs actually work very

well for larger networks. First, the number of routers to distribute the injected packets

increases geometrically as the packets are forwarded further into a network (e.g., 4 routers

after the first hop, 16 routers after the second hop, etc.). Thus, for larger networks, the

bottleneck is still at the region close to injection points. Second, we have observed that,

the contention delay from injection quickly drops after one or two hops after the injection

points, regardless of the network sizes. Therefore, using interposer links to bypass the

first two hops are sufficient to avoid injection contention even in large networks. For

extremely large networks, if the need arises, it is possible to use slightly longer interposer

links (e.g., 3-hop links). Intersection can still be avoided as those networks provide more

space to place non-intersected links. However, as we show later in the Evaluation section,

two hops are more than enough even for 16 × 16.
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Figure 3.12: CB-connected NI architecture in EquiNox.

3.4.4 Modifications to Microarchitecture

To implement EquiNox, some modifications are needed to the architecture. In the original

NI structure, an injected packet from the last-level cache bank is serialized by the NI

core logic and then stored in a packet injection buffer. This buffer directly connects to

the local CB-connected router. The size of the buffer is usually a few packets, although

only one flit is sent to the connected router in a given cycle. With the use of EIRs, the

CB-connected NI needs to connect to multiple equivalent injection routers. Consequently,

the NI structure needs to be modified, as depicted in Figure 3.12. The main change is that
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the injection buffer is split to five single-packet buffers, where four of them are connected

to the four EIRs that are two hops away through interposer, and the remaining one is

connected to the original local router. To reduce design and verification effort, all the

CB-connected NIs use this architecture, even though some ports can be left idle if there

are fewer EIRs connected. Later in the evaluation section, we configure the original NI

to have one packet-sized injection buffer and the modified NI to have five packet-sized

injection buffers to appropriately account for the overhead. In addition, a de-multiplexer

is inserted to switch injected packets to different injection buffers, and a buffer selection

signal is generated by the Buffer Selector when the NI core logic is processing a packet.

To avoid detouring, injected packets are only allowed to use the EIRs on the shortest

paths (or the local router which is also on the shortest path), even though other EIRs might

have less traffic. This is fulfilled by the Buffer Selector. Specifically, the relative position

of a packet’s destination (G3 , H3) with regard to its source (GB, HB) is first generated. Based

on the relative position (ΔG,ΔH), there are 8 possible relative directions, of which 4 are

right on the axis (either ΔG or ΔH is 0) and 4 are inside the four quadrants. If a destination

is on an axis, there is one and only one EIR that is on the shortest path, and that EIR

is selected. If the destination is inside one of the four quadrants, there are up to two

shortest-path EIRs exist (except for boundary cases). In this scenario, round-robin is used

to select the EIR. In either case, if the buffer that connects to the to-be selected EIR(s) is

not available, the packet is injected into the local CB-connected router. Detailed selection

policy is presented in Buffer Selection 1. Note that it is not possible for both ΔG and ΔH

to be 0 as MC nodes do not send packets to themselves.

While not shown in Figure 3.12, the EIR on the receiving side needs to accept injected
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Buffer Selection 1: Buffer Decision Policy
if ΔG == 0 or ΔH == 0 then

if the buffer is available then
Inject to the buffer associated with the node on destination direction

else if local buffer is available then
Inject to the local buffer

else
Retry next cycle

else if ΔG ! = 0 and ΔH ! = 0 then
if 2 buffers are available then

Choose 1 buffer in round-robin fashion
else if 1 buffer is available then

Inject the packet to the buffer
else if local buffer is available then

Inject to the local buffer
else

Retry next cycle

else
Error

packets from the split NI injection buffer. Therefore, one input port is added to the EIR.

Note that this is needed only for routers that are selected as EIRs and only for the reply

network, while routers in the request network is unchanged. Some EIRs are located

on the boundary, so an unused input port might already be available, if the boundary

routers use the same router template as the non-boundary ones (to reduce verification

cost). Either way, the amortized overhead is only a few percent and much better than

existing alternatives to mitigate the injection bottleneck, as presented in Section 7.

Deadlock freedom is a related critical issue that should be discussed. First of all,

EIRs do not affect existing virtual channel (VC) allocation. Packets that are injected
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from an NI to an EIR use the same VC allocation policy as if the packets are injected

to the local router. Also, without detouring, the addition of EIRs do not change the

routing policy in the original network. Therefore, if the channel dependence graph of

the original network is acyclic, the EIRs do not introduce new cycles and are free from

routing-induced deadlocks. Regarding protocol-introduced deadlock, since the request

and reply packets are routed through two physical networks, there is no dependence at the

endpoints and no protocol-introduced deadlock either. Thus, EquiNox is deadlock-free.

To summarize, with the combination of a #-Queen based CB placement, a set of

carefully placed equivalent injection routers determined by MCTS, and the needed

microarchitecture modifications to enable correct and deadlock-free operations, the

proposed Equnix effectively removes the injection bottleneck and utilizes interposer

wiring resources. In the following sections, EquiNox is evaluated quantitatively.

3.5 Evaluation Methodology of EquiNox

The proposed EquiNox design is evaluated using a combination of architecture and

RTL level simulators. Due to the lack of a comprehensive cycle-accurate simulator that

models HBM and interposer, we have developed an integrated simulation environment by

combining and heavily modifying BookSim 2.0 [22], GPGPUSim 3.2.3 [7] and Ramulator

[30]. The NoC simulation is performed by the cycle-accurate simulator BookSim 2.0 that

includes all the on-chip network resources (e.g., links, routers, network interfaces). We

integrate Ramulator with GPGPUSim to enable HBM simulation. The simulated HBM

contains 8 chips, each having 4 stacks. There are 64 TSV IOs per channel and 16 channels
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Table 3.1: Key Parameters in Simulation.
Parameter Value
Network size 8x8, 12x12, 16x16
Network routing Minimum adaptive
Virtual channel 2/port, 1 pkt/VC
Allocator Separable input first
PE frequency 1126MHz
Shared memory / PE 48KB
L1 cache / PE 16KB
L2 cache (LLC) per bank 2MB
# of LLC banks 8
HBM bandwidth 256GB/s per stack
# of Memory dies / stack 4
Memory controllers 8, FR-FCFS

per chip, totaling 1024 IOs for each chip. The physical layer PHY that has 8 channels

and locates on top of each memory stack [33] is also simulated as the interface between

HBM and memory controllers. The area and power consumption of NoCs are based on

DSENT [49] which is extensible to simulate novel components of NoCs. Following the

methodology of prior works on interposer [21, 18, 57], we modify and extend DSENT to

model interposer links. To evaluate area overhead more accurately, we use Verilog HDL

to implement the RTL of new components in EquiNox that are not modeled in DSENT. A

standard VLSI design flow is followed that employs Design Compiler for logic synthesis

using 28=< process technology [56]. Table 3.1 lists the key configuration parameters. A

8 × 8 Mesh NoC is assumed for the main simulations, and 12 × 12 and 16 × 16 NoCs

are also simulated for scalability study. A wide range of 29 benchmarks from Rodinia

[13] and Nvidia CUDA SDK [40] are executed to evaluate the performance of different

proposed schemes.

We compare the following seven schemes. In particular, schemes (1), (2) and (3) are
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based on the single network type where the request and reply networks share the same

physical network. Schemes (4), (5), (6) and (7) are based on the separate network type

where the request and reply networks have separate physical networks. In both types, we

include a baseline, one or two recent but conventional (no interposer) schemes, and an

interposer-based design. Below are the details.

(1) SingleBase: baseline for the single network type with Diamond placement and

minimal adaptive routing.

(2) VC-Mono [19]: a recent scheme that increases network throughput by allocating all

the VCs (monopolization) to either request or reply traffic if only one of them is present.

(3) Interposer-CMesh [21]: a state-of-the-art scheme for many-core CPU NoCs that

introduces an additional CMesh network whose links are in the interposer.

(4) SeparateBase: baseline for the separate network type with Diamond CB placement

and minimal adaptive routing.

(5) DA2Mesh [27]: a recent scheme that splits the reply network into eight narrow

subnets with 1/8 flit size; the network frequency is set to 2.5X of the baseline in [27].

(6) MultiPort [6]: a scheme that uses multiple injection (and ejections) ports for all

CB-connected routers to mitigate the reply injection bottleneck.

(7) EquiNox: the proposed scheme with #-Queen placement and MCTS-selected EIRs,

as described in Chapter 5.
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Figure 3.13: Comparison of Execution time, energy and energy-delay product (EDP).

3.6 Results and Analysis of EquiNox

This section presents the detailed evaluation results. As single network schemes and

separate network schemes have very different performance-energy characteristics, we

thereby juxtapose execution time and energy consumption with ener-gy-delay product

(EDP) to reflect the trade-off more accurately.
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3.6.1 Effect on Performance

Figure 8(a) plots the execution time for the seven schemes, normalized to SingleBase.

VC-Mono reduces the execution time by 3.6% on average, although large reduction is

observed in some benchmarks (e.g., 13.1% in kmeans) because of better utilization of

virtual channels via monopolization. However, these two conventional single network

schemes (SingleBase and VC-Mono) do not provide additional bandwidth to mitigate

the reply injection bottleneck and thus have lower performance than other schemes. The

third single network scheme, Interposer-CMesh, achieves 37.9% execution time reduction

compared with SingleBase. This is mainly due to the use of an extra network formed

by interposer links in the RDLs. The separate network schemes perform noticeably

better than the single network schemes in general, as the separate network schemes

provide a dedicated network for the reply traffic, thus having more injection bandwidth.

DA2Mesh obtains sizable reduction in execution time for heartwall, kmeans, monteCarlo

and particlefilter, whereas MultiPort has larger improvement for fastWalshTrans, scan

and sortingNetworks. However, the two schemes do not seem to perform much better

than the SeparateBase when averaged over all the benchmarks. For DA2Mesh, this is
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due to the high packet serialization latency from its narrow subnetwork links3. For

MultiPort, although multiple ports widens the injection bandwidth at CB-connected

routers, the injected traffic cannot be quickly transferred out, due to the traffic contention

in the hot zone surrounding CB nodes. It is interesting to see that the three conventional

separate network schemes (SeparateBase, DA2Mesh and MultiPort) have slightly lower

performance than Interposer-CMesh. This shows that it is beneficial to exploit interposer

links. Finally, the proposed EquiNox reduces execution time by 47.7% compared with

SingleBase and by 23.5% compared with SeperateBase, which is the largest reduction

among all the schemes. In particular, EquiNox performs much better than Interposer-

CMesh as EquiNox specifically addresses the injection bottleneck that is unique to

throughput processors.

3.6.2 Effect on Energy

Figure 8(b) compares NoC energy consumption. As can be seen, the three conventional

separate network schemes (SeparateBase, DA2Mesh and MultiPort) have the highest

energy due to the overhead of two physical networks. While being a separate network

scheme, EquiNox has low energy consumption because of small power overhead and

large reduction in execution time. On average, EquiNox achieves 15.0% less NoC energy

than SingleBase and 18.9% less than SeparateBase.

3The improvement of DA2Mesh is smaller here than what is reported in [27] due to differences in
benchmarks and settings. As verification, our implemented DA2Mesh performs similarly as in the original
paper if those factors are the same.
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3.6.3 Effect on Energy-Delay Product

Figure 8(c) examines the normalized EDP of the compared schemes. The conventional

single network schemes (SingleBase and VC-Mono) have higher EDP than the separate

network schemes, as single network schemes have higher execution time but similar

energy consumption. However, Interposer-CMesh that exploits the interposer layer

is able to reduce the EDP by 44.7% compared with SingleBase, and achieves 26.4%

and 21.0% less EDP when compared with DA2Mesh and MultiPort, respectively. The

results indicate that the interposer-based designs are useful in exploiting the interposer

opportunity to achieve better performance-energy trade-off. The proposed EquiNox is

able to reduce EDP by 55.0% when compared with SingleBase and by 32.8% compared

with SeparateBase. These large improvement further supports the observation that

interposer-based designs are promising for high-performance and energy-efficiency. In

addition, the EDP of EquiNox is 18.2% lower than Interposer-CMesh, if compared

relatively. This demonstrates the need for optimizing the use of interpose links for specific

traffic behaviors in throughput processors.

3.6.4 Reduction of Packet Latency

To gain more insights on why EquiNox is able to achieve a large performance improvement,

Figure 3.14 plots the NoC packet latency, breaking down into queuing and non-queuing

parts for both request and reply latency. The scheme bars follow the same order as Figure

9 from left to right. Because DA2Mesh has a different NoC frequency, all the results are

converted to nanosecond (ns) and then normalized to SingleBase to provide an accurate
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and fair comparison. Due to normalization, for benchmarks such as gaussian and myocyte,

the bars do not indicate that their non-queuing latency is high; they just mean that most

of the latency is from the non-queuing part.

On average, the figure shows that request latency is considerably higher than reply

latency. This might be non-intuitive since the bottleneck is at the reply injection point.

However, this is correct because the congestion at reply injection creates a backpressure

that is propagated to the request network. Analogous to the classic parking lot problem

with a congested exit point, the cars that are the farthest from the exit experience the

longest waiting time. Similarly, packets in the request network experience longer NoC

latency even though the actual congestion occurs in the reply injection. This trend is

consistent with prior observations [6, 19, 27, 60].

Overall, the single network schemes have relatively higher packet latency. This is

expected due to the traffic contention between mixed request and heavy reply traffic. With

interposer links, Interposer-CMesh reduces packet latency by 35.6%. SeparateBase and

MultiPort have similar reduction in packet latency, with 33.1% and 40.2% on average,

respectively. The highest average packet latency is observed in DA2Mesh. Further

inspection shows that this is mainly caused by a much higher serialization latency. For

the proposed EquiNox, it has the lowest reply packet latency as the use of EIRs addresses

the bottleneck at the reply injection. It can be seen that the queuing part of the request

latency is reduced significantly in EquiNox, due to the backpressure explained above.

Compared with SingleBase, EquiNox greatly reduces the request, reply and total packet

latency by 44.6%, 40.6% and 45.8%, respectively.
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3.6.5 NoC Area

We have also assessed the area cost of various schemes, plotted in Figure 3.15. As

expected, conventional single network schemes have lower area than separate network

schemes. The only exception is Interposer-CMesh, which has an extra concentrated

mesh network with 16 routers (links are in the interposer but not the routers). Moreover,

these routers have 2x more ports than a basic router because of the need to handle both

concentrated traffic and inherent CMesh traffic. This contributes to a higher NoC area

for Interposer-CMesh. On the separate network schemes side, DA2Mesh has lower area

due to the narrower and simpler routers, whereas MultiPort and EquiNox have higher

area than SeparateBase due to the use of extra ports. In particular, with the additional

components such as added buffers in NIs and added input ports in EIRs, the proposed

EquiNox consumes 4.6% more die area than SeparateBase.

3.6.6 Comparison of `bumps Area

This subsection compares the `bumps area for Inter-poser-CMesh and EquiNox. To

support the additional concentrated mesh network, Interposer-CMesh needs 128 uni-

directional links between the processor die and interposer, with 256 bits for each link. This

leads to a total of 32,768 `bumps for physical and electrical connectivity in Interposer-

CMesh. In contrast, the proposed EquiNox has 24 uni-directional 128-bit links and two

`bumps for each wire (from the process die to interposer and back to the processor die),

resulting in 6,144 `bumps. The `bumps overhead is significantly reduced in EquiNox

by 81.25%. The large saving comes from the fact that EquiNox utilizes the M2F2M
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Figure 3.15: NoC area comparison. Figure 3.16: Scalability.

traffic pattern and strategically places only a few EIRs. Note that neither schemes has

intersection of interposer links, so one RDL is sufficient in both schemes.

3.6.7 Scalability

As analyzed in Section 4.3, the proposed scheme is expected to work well with larger

network sizes. To verify this, we follow the same design flow of #-Queen and MCTS

for 8 × 8 to generate EquiNox versions for 12 × 12 and 16 × 16 networks. As compared

in Figure 3.16, the performance improvement (average IPC) is 1.31x in 12 × 12, and

1.30x in 16 × 16, both of which are greater than the 1.23x in 8 × 8. Larger networks may

have more serious injection bottleneck issue, so the impact of EquiNox becomes greater.

These results demonstrate the excellent scalability of EquiNox.
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3.6.8 Discussion

One potential issue is how to deal with the number of CBs that is greater than # .

Apparently, there will be more than one CBs on at least one row, column or diagonal.

Due to space constraint, we state here without providing proof that, if the number of CBs

is greater than # in a # ∗ # layout, placing CBs following the knight-move shape in

chess can lead to the lowest occurrence where two CBs are on the same row, column

or diagonal. The scoring policy is still applicable except that hot zone overlaps may be

between DAZ-DAZ and CAZ-CAZ. The remaining steps are the same as Section 4.2.

If the number of CBs is less than # , the redundant CBs from the #-Queen solution

can be randomly deleted, and the scoring policy can be used to select the (near) optimal

one.
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Chapter 4: Machine Learning-based Responsiveness and Battery Life

Prediction

4.1 Background and Motivation

PnP has become a chief area of competition. Devices including laptops, notebooks,

tablets, 2-in-1 compute devices, smartphones are primarily operated without an AC cord

plugged in so battery life becomes particularly important for connected scenarios, gaming

scenarios, video playback and related use cases. Meanwhile, the system performance

is also a major customer consideration when selecting a new device. As the techniques

that enhance the system performance usually consume higher energy which reduces the

battery life, the trade-off between performance and power is difficult to be balanced. That

is, the PnP requirements have become the most important features when designing and

optimizing a computing system.

Original equipment manufacturers (OEMs) need the PnP values for newly designed

systems to check whether they meet the PnP requirements. However, industry companies

such as Intel often test PnP values by manually swapping hardware components on a

system. Such processes costs a significant amount of time, and the OEMs have to wait for

a response from Intel. More importantly, manual hardware swapping requires human

resources to supervise the process and to hand tune the system hardware configurations to

meet the system PnP requirements. For OEMs, it is imperative to have a fast and accurate
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method to speed up the hardware tuning process. For an industrial company like Intel, it

is imperative to reduce the number of experts on such repetitive and tedious tasks and

move them to more creative positions. Therefore, a solution is urgently needed to predict

the PnP values for newly designed systems, so that the need of OEMs and Intel can be

satisfied at the same time.

Intel has already developed a tool called Docea to partially resolve the issue. However,

Docea is a pure computational model which is based on the default and constant parameters

and weights. The major issue with Docea is that the calculation accuracy is less than

satisfactory. This is because the internal calculations are all based on the parameters and

weights, while in the real world, the PnP-related parameters and weights are dynamic in

different systems. Therefore, the constant parameters and weights cannot reveal the real

hardware behavior and produce low calculation accuracy.

In this research, we propose a natural language processing (NLP) based solution

which integrates several models and provides relatively high PnP prediction accuracy.

The solution firstly learns the inter- and intra-relationship among the components and

system features and transfers the string data in the dataset to floating point word vectors

by using an enhanced Continuous Bag of Words (CBOW) model. This model resolves

the input issue of using string data and is also helpful for the purposes of dataset analysis.

We also propose a model, representing the hardware, that utilizes the component specs to

predict the word vectors for future unseen hardware models of the existing components.

Finally, a newly designed system can be represented by combining the transformed word

vectors from the original dataset and the predicted word vectors from the model. The

word vectors of this system are then fed into a PnP prediction model to get the predicted
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PnP values for the system.

To summarize, in this work, we design and implement a solution which takes measured

system components and features as inputs and predicts PnP values for the systems with

unseen component models. This solution contains three different models. Firstly, The

enhanced CBOWmodel learns the component intra- and inter-relationships and transforms

component string data to floating point vectors. Secondly, The hardware representing

model predicts the word vectors for future unseen hardware models. Thirdly, the PnP

prediction model infers the PnP values for any input systems.

4.2 Problem Statement

The specific problem we try to resolve can be stated as follows: suppose a bill-of-material

(BOM) or an anchor system along with its response time and battery life values are

measured and provided, can the solution predict the response time and battery life for

derivative components, with a variety of specs, which may appear in future design?

We define the anchor system as the systems which were already tested and proved to

meet all Intel Athena Project requirements. The requirements are the threshold of key

experience indicators (KEIs). If all measured values of a system meet the threshold of

the corresponding KEIs, then the system is considered an anchor system.

A specific example of this problem is, if we have the PnP values of a virtual system

which is composed of an i5 CPU, a 16GB memory and a 256GB SSD, is it possible for

our solution to predict the PnP values for a system with an i7 CPU, a 32GB memory and

512GB SSD? Suppose the prediction is possible, then OEMs have a reliable solution to
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assert a small range of configuration space, and industrial companies like Intel can also

reduce the human experts on configuration hand tuning tasks.

4.3 Dataset Analysis

Our integrated dataset has 15 system features for each system including power related

parameters and component models. The dataset contains 215 unique systems, where about

1/4 are anchor systems and the rest are derivative systems. As mentioned previously,

the anchor systems meet all Intel Athena Project requirements. 28 out of 35 KEIs are

response time KEIs and the rest 7 are battery life KEIs. A KEI is an operation during

system runtime, such as opening Microsoft Word or streaming an online video. Due to

the sensitivity of this information, we are not going to discuss the details of our dataset.

4.4 Motivation of NLP-based Solution

As the PnP values are closely related to the hardware components and system paramters,

an accurate prediction solution should learn the inter- and intra-relationship among the

input features of a configuration and among all measured configurations. Interestingly,

the input dataset can be considered as a special ’language’. In such language, each

configuration is a sentence, a system parameter or a component is an element in a

sentence and each specific value or model of a system parameter or a component is a

word in the vocabulary of this language. The inter- and intra-relationship thus can be

revealed by such a language. Different components or system parameters may have
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Figure 4.1: The prediction flow of the proposed NLP-based solution.

inter-relationship, this can be analogous to different elements of a sentence, such as

subject-predicate-object. For example, SSD-memory-CPU may be closely related to the

PnP values. The intra-relationship of different models in a component can be analogous

to many words of the same element in a sentence in English, such as you/we/they can all

be the subject in a sentence. Taking SSD as an example, Samsung/Micron/SK Hynix can

all be the vendor of SSD and could related to the PnP results. Such observation prompts

us to use NLP-like solution to explore the inter- and intra-relationship in the dataset and

predict the PnP values.

4.5 Overview of NLP-based Solution

To clarify our proposed solution, we demonstrate our overview flow in Figure 4.1. The

inputs of our solution are the measured dataset and component specs from Intel, and the

outputs are the predicted PnP values and the predicted pass/fail labels for each system.
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The CBOW algorithm with carefully designed enhancements is employed in our first

model. The enhanced CBOW model transforms string data such as component names or

system features in the dataset to the floating point vectors which are so called word vectors

that contain the information of the inter- and intra-relationship among the components.

Then, in the second step, the component specs and the word vectors of the existing

components are fed into the hardware representing model to predict the word vectors for

future unseen components. For example, suppose the word vector of a memory model

with 8GB and 1333GHz is generated by the enhanced CBOW model in the first step. The

word vector of an unseen memory model with 16GB and 2666GHz can then be easily

predicted by the hardware representing model. In the third step, we take the word vectors

of a derivative system with some unseen models from the first two steps, then utilize a

ML model to predict the PnP values and the system label information. We use different

models such as MLP, RNN and CNN in this step to study the impact of different models.

4.6 Enhanced CBOWModel

The majority of cells in the dataset are string data, such as component model names. It is

impossible for the string data to be the inputs for any machine learning model. Therefore,

the string data should be transformed to floating point vectors which can be accepted by

machine learning models. In this section we introduce our proposed model to achieve the

necessary transformation.

One-hot transformation is a conventional and efficient solution to transform strings to

floating point vectors. The size of one-hot vectors is exactly equal to the total number of
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words that should be transformed. Each one-hot vector only contains 0s and a single 1 to

differentiate itself from all the others. The one-hot vectors are easy to generate but have

some crucial defects. First of all, there are a significant amount of 0s in a one-hot vector,

as the size of each vector is the total number of input words. These 0s notably increase

the training complexity for any machine learning model as most of the weights cannot be

updated in each training epoch, and the 0s also could potentially decrease the prediction

accuracy. Another defect of one-hot transformation is that the meaning of each word

cannot be represented accurately. The one-hot transformation only ensures that there is

a single 1 in each vector and any two vectors do not have the same position of their 1.

Therefore, the distance between any nearby two words is constant. That is, a machine

learning model would consider the nearby words to be related and have about the same

distance for every pair of nearby words. However, when considering the meaning of

these words, it is impossible for them to be the same distance. In reality, the relationship

among the input words is more like a complicated network while the one-hot vectors can

only reveal linear relationship. In conclusion, one-hot transformation is only suitable

for those datasets that do not care about the distance between the input words. In our

project, the input words are actually the hardware model names which are related to the

PnP values. That is, the distance and meaning of each word is important and should be

carefully considered.

To compress the one-hot vectors and derive the meaningful vectors, we introduce the

Continuous Bag of Words (CBOW) model. The CBOW model takes the one-hot vectors

of the context of a center word as inputs, and predicts the center word. For example,

suppose we have a sentence "I have a computer", then I/have/a/computer can all be the
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Figure 4.2: CBOW on Intel dataset.

center word, and the rest of the words in the sentence are the context.

A typical CBOW model has two layers, suppose there are in total , words in a

vocabulary and the pre-determined word vector size is B. Then, the first layer of CBOW

has B hidden units and the second layer has, output units. Thus, the size of the weight

matrix "1 of the first layer is, × B where each row vector with size 1 × B is the word

vector we look for. At the start of the CBOW training process, each word is labeled with a

unique one-hot vector with size 1 ×, and a single 1. The one-hot vectors of the context

words are summed together to form a new vector as the input, so the input vector size

is also 1 ×, , but contains # 1s where # is the number of context words. The output

size is, × 1 where each cell is the probability that a word is the center word. Then, we

select the word with maximum probability as the center word. In the training process, We

employ negative log-likelihood loss in the output layer to perform the backpropagation.

After training the CBOW model with the context-center-word pairs, the model learns the

potential relationship for each word as the center word with its context words. To extract

the word vector for a word, the one-hot vector of this word is fed into the CBOW model,

and the word vector is the only activated row in "1 as there is always a single 1 in each

one-hot vector. More specifically, the one-hot vector - with size 1 ×, is multiplied by

"1, where the size is, × B, and the result is a vector whose size is 1 × B and is exactly
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Figure 4.3: The enhanced CBOW model.

the word vector for this word.

Word vectors implicitly contain the context information. In our dataset, as shown in

Figure 4.2 each parameter and component model can be the center word and the rest of

the system features are the context. That is, the word vector for each system parameter

or component model contain the information of which “role” that the parameter/model

plays in a configuration.

Nevertheless, the ordinary CBOW model is designed to catch the context relationship

in natural languages. Besides the context relationship, the configuration behaviour (i.e.

measured values of KEIs) is another piece of information that the word vectors should

include. The configuration behaviour is a standard score for evaluating a configuration,

and such information helps the following models that use the generated word vectors

predict PnP values more accurately. To integrate the configuration behaviour, we add the

KEI index as one of the inputs and the measured value of the KEI as an output. Figure

4.3 depicts the enhanced CBOW model for our dataset. There are two outputs, the center

word and the predicted PnP value under the current configuration.

To obtain the best word vectors for each system parameter or component model,

we train the enhanced CBOW multiple times with different training parameters, such
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Figure 4.4: The unlabeled (left) and labeled (right) figures of generated word vectors
after applying PCA algorithm.

as learning rates or the weights of the two outputs. This is because the two outputs

use different loss functions. The center word output uses classification loss (i.e. cross

entropy loss) and the PnP value output uses regression loss (i.e. mean square error loss).

In our evaluation, the two losses have different gradient step scales, the learning rates

of the center word output and the PnP value output are around 1 × 10−3 and 1 × 10−6,

respectively. Moreover, the two losses have opposite gradient descent directions, that

is, the decreasing of one loss leads to the increasing of the other loss and vice versa.

Therefore, the enhanced CBOW model is tuned and trained multiple times to ensure the

best word vectors are collected.

After numerous tests, we see that the word vector size 1 × 12 provides the best

performance in our case. There are 345 words in the dataset which come from 15 different

features (e.g. SSD, memory, display panel, power level, CPU etc.). To evaluate the

correctness and accuracy of the enhanced CBOW model, we utilize principle component

analysis (PCA) algorithm to map the 1 × 12 high dimension word vectors to 2-dimension
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Figure 4.5: The inputs and output of the proposed hardware representing model.

visualized space as shown in Figure 4.4. The neighboring points on the figures meaning

that they have relatively similar impact to the PnP values. We circle some models in the

left figure of Figure 4.4 as examples to demonstrate our generated word vectors. There

are three example panel models named A, B and C. The Panel-A and Panel-B both have

13 inch sized panel and 1920 × 1080 resolution the only difference is their brightness, so

the two word vectors stay near by each other. Panel-C also has 13 inch sized panel but its

resolution is 2560 × 1600 with higher brightness than the other two. That is, Panel-C

locates faraway from the other two example panels. The other data points on the figures

exhibit the same location pattern.

The enhanced CBOW model generates word vectors for the system features in the

previously collected and measured configurations. However, for future unseen system

parameters or component models, there should be another algorithm to predict the word

vectors.

4.7 Hardware Representing Model

The word vectors of unseen component models cannot be generated by the enhanced

CBOW model as there is no measured PnP values for the configurations that contain the

unseen models. To predict the word vectors for the unseen models, we propose a machine

learning based approach.
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For any hardware models, there are several technical specs to differentiate a given

model from the others. For example, a memory model can be differentiated by memory

capacity, memory technique (e.g. DDR2/3/4, LPDDR4 etc.), memory main frequency

and burst frequency, memory read/write speed, memory read/write timing etc. This

observation enlightens us to the fact that the specs can also be the input features of a

ML model to predict the word vectors as shown in Figure 4.5. The training dataset

includes the hardware models that appear in the configurations which are measured. After

multiple phases of testing and tuning on different ML models, we introduce a Multi-Layer

Perceptron (MLP) model with one hidden layer and 128 hidden units in this case as the

hardware representing model. However, this model is proposed and tuned for the current

dataset. If there are more hardware models or complicated hardware specs which are

introduced into the dataset in the future, this model can also be replaced by any complex

machine learning model that supports regression loss.

With this hardware representing model, the word vectors of future unseen hardware

models can be predicted. Therefore, the derivative systems are able to be represented

by word vectors. In the final step, we propose a PnP prediction model to take the word

vectors of a system and infer the PnP values.

4.8 PnP Prediction Model

There are two types of system features in a derivative system, the unseen and the existing

features. Each feature in a system should be transformed to a corresponding word vector.

The word vectors of existing features are retrieved from the enhanced CBOW model, and
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Figure 4.6: The example of the proposed MLP structure.

the word vectors of unseen features are predicted by our hardware representing model.

The word vectors of a system are then fed into a PnP prediction model to perform PnP

value prediction. There are three potential candidates that we evaluated for the PnP

prediction model, which are multi-layer perceptron (MLP), recurrent neural network

(RNN) and convolution neural network (CNN).

4.8.1 Multi-Layer Perceptron (MLP)

MLP is a classic machine learning model which has proven to be efficient when applied

to datasets with divisible data distribution. As there is no prior information for the

dataset distribution in our case, we introduce MLP to provide a baseline prediction

accuracy. As shown in Figure 4.6, our best performance MLP has an input layer,

an output layer and two hidden layers, with the first hidden layer having 128 hidden

units and the second layer containing 64 hidden units. The input feature size equals

(F>A3_E42C>A_B8I4 × #BHBC4<_ 5 40CDA4B where (F>A3_E42C>A_B8I4 is the word vector size of our



61

Figure 4.7: A typical RNN structure.

vocabulary (i.e. 1 × 12) and #BHBC4<_ 5 40CDA4B is the total number of system features in a

configuration, i.e. 15 in the dataset. That is, the size of the input features is 12× 15 = 180.

The output size is always 1 as the target is a PnP value. For performance KEIs, the value

is response time, and for power KEIs, the value is battery life.

4.8.2 Recurrent Neural Network (RNN)

RNNs are suitable for exploring the temporal locality in sequence data. The Figure

4.7 depicts a typical RNN, it has an input layer (-C−1 to -C+1) which takes the input

features sequentially, a hidden layer (ℎC−1 to ℎC+1) which takes the current input feature

and the last hidden state, and an output layer ($). The ℎC is calculated by an equation:

ℎC = 5ℎ (,ℎ-C + *ℎℎC−1 + 1ℎ). The current input -C and the last hidden state ℎC−1 is

included in the equation, so the ℎC combines the memory from the previous hidden layers

and the current input. Thus, RNNs catch the temporal locality by recurrently using the

previous calculated hidden states.

A defect of RNNs is that the early input features can be “forgotten” during the

forwarding path which leads to an imbalanced understanding of the input features and



62

Figure 4.8: The same 3 × 3 filter (orange dot line) catches different system features in
different input orders.

a reduction in prediction accuracy. However, in this project, we can utilize this defect

to emphasize the important system features. This can be done by intentionally moving

the important system features close to the output layer in the data pre-processing stage.

Thus, the early input system features that have limited impact on the final results would

be intentionally “forgotten” and the RNN model will tend to focus on catching the

relationship among the late, important system features. In our numerous tests, we found

that the original RNN would forget too much early information which leads to an unstable

training process and relatively lower accuracy than MLP. Thus, we replace the ordinary

RNN cell with a long-short term memory (LSTM) cell to overcome the issues. LSTM has

a forget gate to selectively forget the aforementioned unimportant information. Therefore,

part of the early input system features would be kept during the training process to increase

the prediction accuracy.

4.8.3 Convolution Neural Network (CNN)

CNNs are a well-known machine learning model for capturing spatial locality. The

structure of a CNN is flexible, but usually contains convolution layers, fully connected

layers, pooling layers and residual layers. By applying convolution layers, the spatial
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locality of the input features are gradually integrated and the final target is predicted. A

dataset that is suitable for learning by CNN usually has equally distributed spatial locality.

For example, every pixel in an image is equally distributed and has the same spatial

feature. In our dataset, that relationship is not satisfied. The size of the input matrix

of a configuration is 15 × 12, as there are 15 system features and 1 × 12 word vector

for each feature. The different order of system features would result in varying spatial

locality, which can be demonstrated as follows. Suppose the convolution layer of a CNN

model has a 3 × 3 filter. In the left figure of Figure 4.8, the first three system features

are bluetooth (BT), SSD and memory (Mem), so the CNN model tends to integrate

information from the word vectors of BT, SSD and Mem. If the first three system features

are SSD, display panel and CPU as shown in the right part of Figure 4.8, the same CNN

model catches completely different information and consequently, predicts different PnP

values. Therefore, to utilize the CNN model, it is important to have the experienced prior

information to provide reasonable input feature order.

4.9 Evaluation Results

4.9.1 Evaluation Methodology

We tested many different structures and parameters for the proposed models, we will only

present the one that provides the best accuracy for each of the models in the following

sections. Our proposed MLP model, as aforementioned, has two hidden layers, with 128

hidden units and 64 hidden units, respectively. The proposed RNNmodel utilizes a LSTM
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cell and has 32 hidden units in its hidden layer. The CNN model has two convolution

layers and 3 fully connected layers. Both convolution layers have 1 × 3 filter size, the first

layer has 32 such filters and the second layer has 64 such filters. The number of hidden

units in the three layers are 256, 128 and 64, respectively.

We introduce “accuracy” as a metric for evaluation purpose. The definition of

accuracy in this project is as follows:

022DA02H =
1
=

∑
=

(1 − | 58 − H8 |
H8
)

where n is the total number of data points, 58 and H8 are the predicted and measured PnP

value for the i-th configuration. This accuracy reflects the averaged relative deviation of

the predicted values from the measured values. To better understand the model efficiency,

we also introduce “labeling accuracy” as a complement. Suppose the measured PnP

value of a KEI in a system meets the pre-determined threshold of the KEI, then the data

point is labeled as a pass, otherwise, the data point is labeled as a fail. If the predicted

pass or fail label is the same as the measured pass or fail label for a given KEI, then this

prediction is considered as a “hit” on that KEI. Then, we define the labeling accuracy

as )>C0; ℎ8CB
)>C0; C4BC43  ��B >= 0;; Cℎ4 BHBC4<B

. In the following sections, we primarily use the two

introduced metrics to evaluate our proposed models.

To evaluate our solution, we intentionally remove some component (memory and

display panel as example) models and the configurations relating those models from the

dataset. Then, we train the enhanced CBOW model first to get word vectors for all the

hardware models of the system features. The word vectors of the removed hardware
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Figure 4.9: The accuracy and labeling accuracy for the proposed models with unseen
memory models.

Figure 4.10: The accuracy and labeling accuracy for the proposed models with unseen
display panel models.

models are predicted by the hardware representing model (MLP with one hidden layer or

MLP1H). Finally, all word vectors of a derivative system are fed into the PnP prediction

model to get the PnP target.

4.9.2 Evaluation Results of Prediction Models

Figure 4.9 and 4.10 show the accuracy and labeling accuracy when there are unseen

memory or display panel models. First of all, the two tables demonstrate that the three

proposed PnP prediction models have relatively similar behavior with different unseen

models. As mentioned, we moved 11 out of 52 memory models and 15 out of 75 panel

models with their relating configurations to two testing datasets, then we train and test

our NLP-like solution.
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Figure 4.11: The measured (red) and predicted (green) curve for battery life in testing
dataset with MLP2H.

It is clear that the MLP with two hidden layers (MLP2H) PnP prediction model

performs worst among the three proposedmodels, with only around 87% labeling accuracy.

This is mainly because the MLP model is too simple to catch the complicated data inter-

and intra-relationship in our dataset. In our tests, we found that the number of hidden

layers and the number of hiddens units in each layer have very limited impact to the

prediction accuracy. That is, a more complicated MLP cannot catch the relationships

as well. In Figure 4.11, we depict the measured and the predicted battery life values for

part of the data points in testing dataset. The figure reveals that MLP2H only learns the

coarse-grained trend of the testing dataset. In general, the MLP model only produces

the baseline accuracy, but is also suitable for the scenario that no prior information is

provided.

The RNN (LSTM) model achieves around 92% labeling accuracy in the two testing

datasets which is notably better than MLP2H. According to our tests, the more hidden

units in the RNN model, the higher accuracy that model is able to achieve. The labeling

accuracy is improved from around 88% to 91% when the number of hidden units is

increased from 4 to 32. However, more hidden units leads to training instability as
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Figure 4.12: The loss-epoch curve for 4 and 32 hidden units in RNN.

depicted in Figure 4.12. The loss-epoch curve has more oscillation in the 32-unit RNN.

Moreover, adding more hidden units has the potential for over-fitting issues in the future.

The proposed CNN model has the best labeling accuracy which is as high as around

94%. In our tests, we observe that the number and the size of convolution layers have

a minor influence on the prediction results, as do the fully connected layers. The filter

size, on the contrary, affects the predicted PnP results significantly. When we reduce the

filter size from 7 × 3 to 1 × 3, the accuracy on the responsiveness dataset increases from

81.07% to 91.73%. This is because the height size impacts how many different pieces of

component information are combined. For example, filter size 7 × 3 implies that every 7

neighboring component information would be integrated together and filter size 1 × 3

implies that no component information would be integrated. One important observation

is that the influence of filter size on the responsiveness dataset and the battery life dataset

is reversed. A larger filter size in the battery life dataset provides better accuracy. This

observation implies that the information of hardware components should be considered

comprehensively to predict battery life value while the information should be split when
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predicting response time.
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Chapter 5: Conclusions

In the past a few years, machine learning algorithms are widely exploited in various fields

including computer system design and optimization. Our EquiNox work suggests that the

application of reinforcement learning models such as Monte Carlo Tree Search (MCTS)

is capable of speeding up the search efficiency in huge design space without any prior

experience. Our MCTS model produces the near-optimal result by assessing only 0.05%

design space. The NLP-like solution introduces a novel point of view to resolve PnP

prediction problem. The string data can be transformed to word vectors by applying

an augmented CBOW model. The word vectors of the unseen component models are

predicted by using the component specs with the proposed MLP1H model which also

can be replaced to a more complicated model if necessary. The proposed PnP prediction

model can be MLP2H, RNN or CNN where RNN and CNN provides exceptionally good

prediction accuracy. Different ML models catch different information from the input

features. In conclusion, machine learning algorithms are promising when applied to

computer system optimization, which calls for more research on this field in the future.
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