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While primary use of Global Navigation Satellite System (GNSS) is positioning, 

navigation, and timing (PNT), various GNSS applications have emerged over the past 

decades that includes GNSS meteorology. GNSS meteorology is the remote sensing of 

the atmospheric constituents in the neutral atmosphere – mostly in the troposphere - 

using GNSS to deliver information about the state of atmosphere. Precipitable water 

vapor (PWV) is the total amount of water vapor in a column of air above the earth 

surface that varies rapidly with short temporal and spatial-scale during severe 

meteorological phenomena. The amount of PWV contained in the neutral atmosphere 

can be retrieved from GNSS signals received by ground-based GNSS observations. 

GNSS is an excellent tool where it is not affected by weather conditions (e.g., presence 

of clouds, which derive a challenge to traditional weather monitoring technologies). 

Another benefit of GNSS is the data availability and accessibility.  

This dissertation focuses on developing a PWV prediction model using GNSS 

observations to monitor and forecast the path of severe precipitations induced by 



 

 

hurricanes. By using the GNSS-derived PWV and meteorological variables, the trend 

of the water vapor distribution is determined for the time frames of before, during, and 

after the severe precipitation. For each time frame a unique prediction model is 

developed suing a principle component regression (PCR). The developed model can 

forecast the severe precipitation track induced by a hurricane up to 24 hours in advance. 

In this dissertation the prediction models are examined using a proposed statistical 

model for different types of hurricanes. The case studies are: 1) Hurricane Mathew in 

2016, 2) Hurricane Harvey in 2017, 3) Hurricane Irma in 2017, and 4) Hurricane 

Florence in 2018. In each hurricane case study the patterns of the GNSS-derived PWV 

fluctuations are analyzed. In particular, a sudden and sharp increment in the PWV 

followed by sharp descending trends was observed a few hours prior to the onset of 

precipitation. Also, the predicted PWV rate of change is dramatically increased prior 

to a severe precipitation. Moreover, in each case study, the probability of precipitation 

rapidly increased when the PWV reached a threshold in the range of 50 mm to 55 mm. 

The threshold is determined by analyzing the correlation between PWV fluctuations 

and occurrence of rainfall during the hurricane lifetime. The threshold is applied for 

classification of prediction models into the “right before”, “during” and “right after” 

models based on the hurricane development stage. It should be emphasized that this 

study specially focuses on “right before” model, which is the most useful model to 

analyze the movement of hurricane. 

 The proposed method was validated by analyzing the distribution pattern of the 

predicted PWV residual, its magnitude, and the actual observed PWV in the test site. 

For a robust analysis considering the uncertainty from the measurement noise and other 



 

 

error sources in the GNSS-derived PWV, the prediction residual at multiple sites in a 

local area are evaluated within the grids in the test area. The grid size is determined 

with the consideration of the test site and the geometric distribution of available CORS. 

The high probably location of heavy precipitation location by the grid-based prediction 

well agreed with the observed rain pattern that can be used for predicting the hurricane 

path. In addition, the negative correlation between the residuals of PWV measurements 

to the prediction model and the magnitude of precipitation was revealed. It shows the 

magnitude of the predicted model residuals can be used for hurricane tracking and 

potentially applies to evaluate the storm intensity. 

This study demonstrates the feasibility of GNSS for monitoring severe 

precipitations and proves the effectiveness of the statistical model for forecasting the 

precipitation path during the hurricane that is potentially applied to a hazard early 

warning system. 
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CHAPTER 1 

 

1. INTRODUCTION 
 

1.1. Background    

Short- and long-term variations in weather systems mostly rely on changes in atmospheric 

water vapor content. While its shortage in some areas may cause prolonged drought, its rising 

value over other areas may lead to frequent outbreaks of extreme weather; hence, obtaining and 

exploiting more high-quality observations about fluctuation in the water vapor content in the 

troposphere are particularly significant in the time of monitoring and forecasting extreme climate 

occasions. The moisture content of an atmospheric column is indicated by precipitable water vapor 

(PWV), which is the height of liquid water obtained by condensation of all water vapor within the 

atmospheric vertical column over a unit area. In general, a high PWV value prompts substantial 

precipitation or severe storm (Nykiel et al. 2019); therefore, PWV influences many atmospheric 

processes, and monitoring PWV fluctuations is helpful in identifying moisture sources and 

analyzing the development and evolution of severe weather phenomena, such as tropical cyclones 

and hurricanes. In addition, the atmospheric water content varies quickly in the short temporal and 

spatial scale during a meteorological phenomenon (Akilan et al. 2015; Benevides et al. 2015). 

Direct observations of the atmospheric water content by using traditional atmosphere-sensing 

techniques such as radiosonde and microwave radiometer provide limited capability with their 

poor temporal and spatial resolution and their operational and calibration cost; therefore, obtaining 

humidity observations with high spatial–temporal resolution is essential for reliable weather 

forecasting and climate monitoring. The Global Navigation Satellite System (GNSS) is now an 

established atmospheric sensing system that can provide high-quality water vapor observations in 

https://www.sciencedirect.com/topics/physics-and-astronomy/atmospheric-process
https://www.sciencedirect.com/topics/physics-and-astronomy/atmospheric-process
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the low atmosphere. Compared with traditional techniques, ground-based GNSS measurements 

have proven to estimate PWV in much improved spatial and temporal resolutions for local and 

regional water vapor fluctuations (Bevis et al. 1992; Shi et al. 2015). The capability of GNSS for 

analyzing PWV distribution for weather monitoring and forecasting is the focus of this 

dissertation. 
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1.2. Weather monitoring sensors and techniques    

There is a variety of instruments and techniques to measure the amount of water vapor in 

the atmosphere. This section summarizes commonly-used techniques and instruments for 

measuring atmospheric water vapor content. 

Radiosonde 

A radiosonde is a balloon-borne instrument platform that can provide vertical profile 

information of the Earth’s atmosphere throughout the troposphere and stratosphere. A radiosonde 

provides direct measurements of air pressure, temperature, and relative humidity. In particular, the 

integration of the vertical absolute humidity profiles from the surface to the top of the radiosonde 

profiles gives the atmospheric water vapor (Ning 2012). Each radiosonde is equipped with a GPS 

unit and a radio transmitter to measure its position and send the position data back to the ground 

receivers, respectively. By tracking the position of the radiosonde in flight via GPS, measurements 

of wind speed and direction are also obtained. All radiosonde sensors, together with the radio 

transmitter, are attached to a weather balloon, which lifts the radiosonde to altitudes exceeding 35 

km and drifts it horizontally more than 200 km from the release point. Within 2 h after the 

radiosonde is launched, the vertical variations of observed weather elements are reported back to 

a receiving site. The data are processed, compared with data from other radiosondes, 

and utilized to project the climate conditions around the world (Ning 2012). The radiosonde data 

are used to project the current dynamic of the atmospheric parameters and are also used as inputs 

for weather forecasting models. The radiosonde is the most commonly used instrument for 

determining the atmospheric water vapor distribution, providing a long and continuous water vapor 

time series. However, the data quality varies in the upper atmospheric layers like troposphere and 

is reduced in the stratosphere, and high and low humidity (Schuler 2001).  

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/troposphere
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/stratosphere
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When short-term fluctuations in atmospheric parameters are small, the radiosonde 

observations can effectively reflect the atmospheric condition over a location for hours. On the 

other hand, when the atmosphere varies greatly, for example, during severe weather phenomena, 

the radiosonde observations may not be valid for more than a minute and may not accurately 

represent the atmospheric condition over the area (Nash 2015). Moreover, the radiosondes require 

high-cost calibration, operation, and maintenance, which restrict their use by the US National 

Weather Service (NWS) and most other national agencies to only twice per day (Niell et al. 2001). 

Therefore, because they lack long-term stability and traceability and have low spatial coverage, 

radiosonde data are limited for climate research.  

Water Vapor Radiometer (WVR) 

Water vapor radiometers (WVR) are another type of instrument used to measure the 

troposphere brightness temperatures and estimate integrated water vapor contents in the 

troposphere along a given line of sight (England et al. 1992; Schuler 2001). The fundamental 

quantities measured by WVR are the line-of-sight brightness temperatures at three 

frequencies: 20.7, 22.2, and 31.4 GHz. The brightness temperatures are then converted into 

quantities at each frequency and combined to estimate the integrated precipitable water 

vapor content of the atmosphere (England et al. 1992). Although the vertical resolution of a 

WVR is lower than a radiosonde, it has the advantage of high temporal resolution on the order 

of seconds to minutes (Niell et al. 2001). For weather and climate monitoring, using space and 

ground-based microwave radiometers, atmospheric parameters such as the vertical profile of 

temperature and humidity and the amount of atmospheric water vapor can be derived with a high 

temporal resolution (Schuler 2001). However, the water vapor retrieval process requires a 

specific setting for required parameters for computing its variations with the season and 
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geographic location. Therefore, a WVR must be calibrated to the local conditions if obtaining 

water vapor quantities at the highest precision is desired (Bevis 1992; England et al. 1992). 

Moreover, WVRs are expensive tools with poor horizontal resolution, and their usage is 

limited to weather conditions without rainfall (Schumer 2001). 

Very Long Baseline Interferometry 

Very long baseline interferometry (VLBI) uses radio signals from an astronomical radio 

source such as a quasar at multiple radio telescopes on Earth or space as known positions. It 

measures the difference in the time of arrival of radio waves from the sources at stations on the 

Earth's surface by many telescopes simultaneously (Blewitt 2015). Because the telescopes are at 

different locations, they receive the signal from the radio source at different time intervals. The 

time delay can be estimated by connecting the received signals, which depends on the position of 

the radio source relative to the baseline between the telescopes and the distance between the pair 

of telescopes (Ning 2012). Using the estimated time delay, various parameters, including telescope 

positions, Earth rotation and orientation parameters, clock corrections, and zenith wet delay can 

be obtained (Ning 2012). Although the geodetic VLBI-derived zenith wet delay estimates can be 

used for continuous monitoring of water vapor over an area, the spatial resolution of VLBI-derived 

water vapor is a limiting factor. Less than 150 telescopes all over the world are used in geodetic 

VLBI, and 90% are located in the northern hemisphere (Ning 2012). This shows that the spatial 

coverage of the VLBI-derived water vapor is limited. However, VLBI observation is less affected 

by signal multipath than by other techniques because of the very high directivity of the VLBI 

telescope’s antenna. Meanwhile, because the VLBI instrumentation is stable over time, the VLBI 

technique has the advantage of high long-term stability. Given these advantages, VLBI-derived 

https://www.sciencedirect.com/topics/physics-and-astronomy/radio-waves
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water vapor is a useful reference for detecting systematic errors in the water vapor obtained from 

other techniques (Ning 2012). 

Satellite Imageries  

Weather satellites, including polar-orbiting and geostationary satellites, are essential 

observational tools for weather and climate monitoring and forecasting. Observation is typically 

conducted using a visible and infrared portion of the electromagnetic spectrum. Smoke, haze, 

wind, clouds, and cloud systems are detected by a visible spectrum and are apparent in visible-

light images (Hasler et al. 2008). Infrared satellite imagery is primarily used to determine cloud 

heights and types that are used to calculate land and surface water temperatures and to detect ocean 

surface features. Infrared satellite imagery can also be used effectively for detecting tropical 

cyclones using the differences in temperatures.  

Satellite imageries monitor PWV over a wide area. Although a few multispectral images 

can measure even the vertical distribution of high-resolution PWV, the reliability of imagery-based 

PWV decreases with the presence of clouds. Space-borne microwave radiometers can acquire 

measurements for cloudy regions, but they are reliable only over the ocean in general (Gutman et 

al. 2001). One of the widely used space-based observation methods is the Moderate Resolution 

Imaging Spectroradiometer (MODIS). MODIS provides water vapor images using near-infrared 

channels twice a day for the entire world (Liu et al. 2013). The infrared MODIS observes water 

vapor with a 1 km spatial resolution under cloud-free conditions and/or above clouds over both 

land and ocean (Gao et al. 2003; Chen et al. 2017). Envisat satellites, including the Medium-

Resolution Imaging Spectrometer (MERIS), measure the solar radiation reflected from the Earth’s 

surface and clouds during the daytime in the visible and near-IR portion of the electromagnetic 

spectrum. MERIS-derived water vapor products above land or ocean surfaces under cloud-free 
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conditions are provided at two different spatial resolutions: 0.3 km for full-resolution mode and 

1.2 km for the reduced-resolution model (Albert et al. 2001; Bennartz et al. 2001, Yu et al. 2017). 

However, in cloudy conditions, neither MODIS nor MERIS provides reliable water vapor 

observations above land or ocean surfaces (Yu et al. 2017). Similarly, the atmospheric water vapor 

can be measured globally by the Atmospheric Infrared Sounder (AIRS) with a vertical resolution 

of 2 km and a spatial resolution at nadir of 45 km. AIRS only operates in cloud-free or partly 

cloudy conditions (Bennartz et al. 2001; Chen et al. 2017).  

Direct observations of the atmospheric water vapor that use the traditional atmosphere 

sensing techniques suffer from the lower temporal resolution and spatial coverage and high 

operational and calibration costs. GNSS is also capable of monitoring the perturbations in 

atmospheric water content (Bevis et al. 1992; Bordi et al. 2015; Benevides et al. 2015). Ground-

based GNSS measurements have proven to estimate PWV in spatial and temporal resolutions for 

local and regional water vapor fluctuations that are much improved over traditional techniques 

(Bevis et al. 1992; Shi et al. 2015).  
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1.3. GNSS Meteorology for Weather Monitoring   

While the primary use of the GNSS is positioning, navigation, and timing, various GNSS 

applications have emerged over the past decades that include GNSS meteorology. GNSS 

meteorology is the remote sensing of the atmospheric constituents in the neutral atmosphere—

mostly in the troposphere—using GNSS to deliver information about the state of the atmosphere.  

The troposphere is a non-dispersive medium for signals lower than 30 GHz, including 

GNSS signals whose frequency range is 1.1–1.6 GHz. Therefore, it cannot be easily eliminated by 

combining different frequency measurements on a single ray path. Thus, the quantity of the signal 

delay should be either modeled or estimated to mitigate its impact on high accuracy positioning. 

The tropospheric delay is related to meteorological parameters such as temperature, humidity, 

pressure, and the location of the receiver and satellites. About 90% of the delay comes from the 

hydrostatic component of the atmosphere, which can be modeled with high accuracy. However, 

the high and random spatial and temporal variations of water vapor in the troposphere make 

determining the wet component of the atmosphere difficult. The tropospheric wet delay takes about 

10% of the total delay: typically, a few tens of centimeters.  

GNSS meteorology is a proven technique to measure the atmospheric water vapor content 

in the troposphere. Although the atmospheric water vapor content can be measured by other 

methods as introduced in Section 1.2., GNSS meteorology provides several advantages coming 

from the nature of the GNSS technique as well as well-constructed infrastructure worldwide. The 

densely distributed GNSS tracking network stations and other ground-based GNSS networks 

stations provide high spatial and temporal resolution GNSS measurements. Moreover, operating 

costs are much lower than other techniques, thanks to the pre-existing GNSS infrastructure. The 

rapid growth in GNSS products and services has facilitated technical advancements in 
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meteorology, climatology, numerical weather modeling, and atmospheric science. The 

tropospheric PWV obtained by GNSS precise point positioning (PPP) technique provides a 

promising opportunity for real‐time monitoring of the initiation and development of convective 

systems. The PPP technique provides a higher temporal resolution of tropospheric parameters 

using precise real-time products such as the International GNSS Service (IGS) real-time service. 

Although the close relationship between the PWV and a rainfall is revealed in numerous 

researches, fewer studies have focused on predicting the path of severe precipitation using GNSS 

derived PWV.  

This dissertation proposes a novel method to forecast precipitation effectively during 

severe weather events, such as hurricanes and tropical storms, by applying the GNSS meteorology 

technique. This dissertation analyzes the temporal and spatial variation of the PWV retrieved from 

GNSS measurements to predict the path of severe precipitation during a hurricane. By taking 

advantage of GNSS-derived PWV data, this study suggests a multivariate statistical model for 

forecasting the path and intensity of severe rainfall induced by hurricanes.  

This dissertation consists of five chapters. Chapter 1 describes the PWV measurement 

techniques and introduces GNSS for severe weather monitoring and forecast. Chapter 2 describes 

an introduction to the GNSS, including a brief history of satellite positioning systems, the 

functioning principles and provides a summary analysis of the various error sources and 

computation methods. It also describes characteristics of the ionosphere and troposphere as the 

signal propagation media and briefly discusses the main applications of the GNSS meteorology to 

give an overview of the state of the art of this research field. Chapter 3 introduces a multivariate 

statistical approach for forecasting a severe precipitation path during a hurricane by using GNSS-

derived PWV and meteorological parameters. This chapter describes the prediction model 
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classification during the hurricane lifetime and the procedure to retrieve the models. Chapter 4 

demonstrates the experiments, including the data processing procedure, descriptions of a case 

study, a technical description of the test implementations, and the experimental results. The 

processing results are shown for different hurricane case studies, and a quantitative comparison of 

the model performance is given. A comparison of the results relative to different scenarios and 

conditions is also given. The results are validated with the confirmed observation of the 

precipitation path and intensity provided by the National Hurricane Center (NHC). This chapter 

also examines the feasibility of applying the GNSS based forecasting model to different types of 

hurricanes to demonstrate the performance of the proposed prediction model in different 

geographic and climate characteristics. Chapter 5 summarizes the main contribution of this 

research and lists recommendations for future research.  

 

 

 



11 
 

 
 

CHAPTER 2 

 

1. GNSS METEOROLOGY 
 
While the primary use of the GNSS microwave signals is to determine the location of a 

receiving antenna, the information the signals carry can be used for atmospheric remote sensing 

because the waves passing the atmosphere are affected by the concentration of free electrons in 

the ionosphere and by the air density in the neutral atmosphere. GNSS meteorology utilizes GNSS 

radio signals to derive data of atmospheric constituents based on the remote sensing technique 

using a satellite platform (Pavelyev et al. 2010) and ground stations (Bender et al. 2010). GNSS 

receivers providing continuous GNSS measurement in a high spatial and temporal resolution is an 

excellent tool for studying the Earth's atmosphere. Therefore, GNSS meteorology can be a crucial 

method for numerous meteorological applications.  

This chapter starts with a quick review of GNSS observables and parameters, then 

introduces the error sources and error mitigation strategies. The atmospheric regions and effects 

of the atmosphere on GNSS radio signal delays are then described in detail. The chapter ends with 

the literature review of severe weather monitoring using GNSS meteorology, describing the 

existing limitations and proposing the improvements through this dissertation.  

 

2.1. Overview of GNSS 

GNSS is a generic term describing any satellite constellation that provides worldwide 

positioning, navigation, and timing (PNT) services. Examples of GNSS satellite constellations 

include the USA’s Global Positioning System (GPS), Europe’s Galileo, Russia’s GLONASS, and 

China’s BeiDou navigation satellite system. The systems differ in their design and frequency range. 

https://www.gsa.europa.eu/european-gnss/galileo/galileo-european-global-satellite-based-navigation-system


12 
 

 
 

The fundamental observation of GNSS is the signal transmission time from a satellite to a receiver. 

Multiplying the signal’s travel time from a satellite to a receiver by the speed of light in a vacuum 

gives the pseudorange between the satellite and the receiver. Note that the pseudorange is the travel 

distance of the signal that involves the range between a satellite and a receiver and whose 

additional terms consist of systematic and random errors. Two types of pseudoranges are obtained 

by correlating the code or the carrier phase in the received signal to the replica from the receiver, 

referred to as code or carrier phase measurements, respectively. For navigation purposes with an 

accuracy of a few meters, code measurements are typically used, whereas carrier phase 

measurements are mainly used for applications demanding centimeter-level or higher accuracy. 

Because the phase can be measured to 1% of the wavelength of the carrier signal, using the carrier 

phase measurements can lead to around 2 mm accuracy for the GPS constellation (Ning 2012). In 

comparison with GPS, observations from other GNSS can be down-weighted because of the mis-

modeling of the satellite orbits and clocks (Kazmierski et al. 2018). An additional factor 

influencing the quality of GNSS observables is the characteristics of individual signals such as 

signal-to-noise and related propagation errors. (Cai et al. 2016; Kazmierski et al. 2018). The 

following sections focus on describing the GNSS positioning and its signal-processing concepts.  

GNSS Positioning  

The GNSS positioning is based on the trilateration concept, which measures the ranges 

between satellites and a GNSS receiver. However, these range measurements are affected by 

various errors, as presented in the equations (2-1) and (2-2) taken from (Li et al. 2015; Håkansson 

et al. 2017):  

Φ𝑟𝑟,𝑓𝑓
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜌𝜌𝑟𝑟

𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑐𝑐�𝑡𝑡𝑟𝑟 − 𝑡𝑡𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑏𝑏𝑟𝑟,𝑓𝑓
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑏𝑏𝑓𝑓

𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜏𝜏𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠� −  𝐼𝐼𝑟𝑟,𝑓𝑓
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 +  𝑚𝑚𝑟𝑟𝑇𝑇𝑟𝑟 + 𝜆𝜆𝑁𝑁𝑟𝑟,𝑓𝑓

𝑠𝑠 + 𝜀𝜀𝑟𝑟,𝑓𝑓
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠  (2 − 1) 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠,𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠,𝑠𝑠 =  𝜌𝜌𝑟𝑟𝑠𝑠 + 𝑐𝑐�𝑡𝑡𝑟𝑟 − 𝑡𝑡𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑑𝑑𝑟𝑟,𝑓𝑓

𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑑𝑑𝑓𝑓
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜏𝜏𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠� + 𝐼𝐼𝑟𝑟,𝑓𝑓

𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 +  𝑚𝑚𝑟𝑟𝑇𝑇𝑟𝑟 + 𝑒𝑒𝑟𝑟,𝑓𝑓
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 (2 − 2) 
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where 

𝐼𝐼𝑟𝑟,𝑓𝑓
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑘𝑘𝑓𝑓

𝑠𝑠𝑠𝑠𝑠𝑠𝐼𝐼𝑟𝑟,1
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 ;  𝑘𝑘𝑓𝑓 =  𝜆𝜆1

2

𝜆𝜆𝑓𝑓
2 , 

where the superscripts s and sys refer to a satellite and the type of GNSS constellation; the subscript 

r and f indicate a receiver and a carrier frequency, respectively; 𝜌𝜌𝑟𝑟𝑠𝑠 denotes the geometric distance 

between the satellite s and the receiver r; c is the speed of light; 𝑡𝑡𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 and  𝑡𝑡𝑟𝑟 are the clock biases 

of satellite and receiver; 𝑁𝑁𝑟𝑟,𝑗𝑗
𝑠𝑠  is the integer ambiguity; 𝑑𝑑𝑟𝑟,𝑓𝑓

𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 is the frequency-dependent receiver 

hardware code bias (or uncalibrated code delays [UCD]) concerning satellite s and 𝑑𝑑𝑓𝑓
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 is 

frequency-dependent satellite hardware code bias (or UCD); and 𝑏𝑏𝑟𝑟,𝑓𝑓
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠and 𝑏𝑏𝑓𝑓

𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 are the 

frequency-dependent receiver and satellite hardware phase bias (or uncalibrated phase delays 

[UPD]). When multiple GNSSs are used for one positioning solution, different reference times and 

reference frame between the GNSSs should be taken into account. Therefore, 𝜏𝜏𝑠𝑠𝑠𝑠𝑠𝑠 is the time offset 

for the system time of the GNSS system concerning a chosen reference; 𝜆𝜆𝑗𝑗 is the wavelength; 

𝐼𝐼𝑟𝑟,1
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠is the line of sight ionospheric delay of the signal path at frequency f, the ionospheric delays 

at different frequencies where 𝑘𝑘𝑓𝑓
𝑠𝑠𝑠𝑠𝑠𝑠is the frequency-dependent multiplier factor which is 

independent of the satellite pseudorange noise (PRN) code; and 𝑇𝑇𝑟𝑟 is the tropospheric zenith wet 

delay at the station r; it should be noted that the slant tropospheric delay consists of the dry and 

wet components. Each component is being expressed by its individual zenith delay and mapping 

function. A priori model is usually used to correct the dry component of the tropospheric delay, 

whereas the wet part of the tropospheric delay is estimated from the GNSS observations; 𝑚𝑚𝑟𝑟 is the 

wet mapping function; 𝜀𝜀𝑟𝑟,𝑓𝑓
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑒𝑒𝑟𝑟,𝑓𝑓

𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠 denote the sum of measurement noise and multipath error 

for the carrier phase and pseudorange observations. The relativistic effects, Sagnac effect, tidal 
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loadings, phase windup (only for carrier phase), antenna Phase Center Offsets (PCOs), and 

variations (PCVs) of satellites and receivers should also be considered to be either corrected or 

modeled (Kouba, 2009). Note that these are not explicitly included in the equations above. All the 

variables in the above equations are expressed in meter except for the ambiguity and UPDs, which 

are expressed in cycles. 

GNSS Observables   

The GNSS observables indicate the signals where measurements yield the range or distance 

between the satellite and the receiver. Two types of observables occur: Pseudorange (code) and 

carrier-phase measurements. In general, the travel time of the received signals in a GNSS receiver 

can be estimated by analyzing the time shift required to align the code received from a satellite 

with a replica simultaneously generated in the receiver. This estimated signal travel time is then 

multiplied by the speed of light to obtain the code measurements, which is sometimes called code 

pseudorange. The prefix “pseudo” is used because of a difference between this quantity and the 

actual receiver satellite distance caused by error sources. The code measurements for each 

constellation are formulated as follows: 

𝑃𝑃𝑟𝑟,𝑓𝑓
𝐺𝐺 =  𝜌𝜌𝑟𝑟𝐺𝐺 + 𝑐𝑐�𝑡𝑡𝑟𝑟 − 𝑡𝑡𝐺𝐺 + 𝐵𝐵𝑟𝑟𝐺𝐺,𝑓𝑓 − 𝑑𝑑𝑓𝑓𝐺𝐺� +  𝑘𝑘𝑓𝑓𝐺𝐺𝐼𝐼𝑟𝑟,1

𝐺𝐺 + 𝑚𝑚𝑟𝑟
𝐺𝐺𝑇𝑇𝑟𝑟 + 𝑒𝑒𝑟𝑟,𝑓𝑓

𝐺𝐺   (2− 3) 

The carrier phase measurements consist of two parts: an integer and a fractional part, in 

terms of carrier cycles. A receiver can directly measure the fractional part of the carrier phase, 

whereas the integer part can be estimated in post-processing using specific algorithms (referred to 

ambiguity solutions). The phase difference between the signal transmitted by the satellite and 

received by the receiver and the signal replica generated in the receiver is measured in the receivers 

as phase measurement. Because of the unknown initial integer number of carrier cycles during the 

signal travel between satellite and receiver, the phase measurement contains the ambiguity term. 
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The full mathematical expression for GNSS pseudo-range measurement on Φ𝑓𝑓 frequency is as 

follows:  

Φ𝑟𝑟,𝑓𝑓
𝐺𝐺 =  𝜌𝜌𝑟𝑟𝐺𝐺 + 𝑐𝑐�𝑡𝑡𝑟𝑟 − 𝑡𝑡𝐺𝐺 + 𝑏𝑏𝑟𝑟𝐺𝐺,𝑓𝑓 − 𝑏𝑏𝑓𝑓𝐺𝐺� −  𝑘𝑘𝑓𝑓𝐺𝐺𝐼𝐼𝑟𝑟,1

𝐺𝐺  + 𝑚𝑚𝑟𝑟
𝐺𝐺𝑇𝑇𝑟𝑟 + 𝜆𝜆𝑓𝑓𝐺𝐺𝑁𝑁𝑟𝑟,𝑑𝑑

𝐺𝐺 + 𝜀𝜀𝑟𝑟,𝑑𝑑
𝐺𝐺  (2 − 4). 

GNSS Parameters    

Many parameters in GNSS observables can be modeled or corrected by applying external 

models. The parameters are listed below. 

Solid Earth Tides  

The gravitational forces of the Sun and the Moon cause variations in the Earth’s crust and 

are called solid Earth tides. The effects of solid Earth tide on positioning error is up to several 

decimeters and can be computed and corrected with good approximation. The movements of the 

Earth’s crust can be detected by GNSS geodetic networks. The periodic vertical and horizontal site 

displacements caused by tides can be modeled using geophysical models and spherical harmonics. 

These harmonics are weakly dependent on station latitude and tidal frequency that must be 

considered when a position precision of 1 mm is desired. The Love number  ℎ𝑛𝑛𝑛𝑛 and the Shida 

number 𝑙𝑙𝑛𝑛𝑛𝑛 with the spherical harmonic degree (n) and order (m) characterize site displacements 

caused by the tidal effect of the gravitational force from the Sun and Moon. The latitude 

dependency and a small inter-band variation are caused by the Earth’s ellipticity and the Coriolis 

force, which is due to the Earth’s rotation. It should be noted that solid Earth tides errors are much 

larger than the minor effects of polar tides or ocean loading (Kouba 2009). 

Pole Tides   

Polar motion is the change of the Earth’s spin axis related to the Earth’s crust. The change 

in the Earth’s centrifugal potential causes periodical deformations. Polar motion affects the 

determination of the receiver and satellite position in the reference frame and causes up to a few 
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centimeters of positioning error. The effects of the polar tide cannot be neglected for applications 

required sub-centimeter position precision, and the polar tide corrections must be applied. Contrary 

to the effects of the solid Earth tides and the ocean loading, the pole tides do not approach zero 

over a 24 h period (Kouba 2009).  

Ocean Tide Loading  

Ocean tides are caused by a temporal deformation of the ocean mass and the relative load 

on the Earth’s crust. Similar to solid Earth tides, ocean tide loading is mainly influenced by diurnal 

and semi-diurnal periods (Lou 2013). While the magnitude of the displacement is smaller than 

those caused by the solid Earth tide, ocean loading is still considered because it has a localized 

impact and is not consistent (Kouba 2009). The ocean tides can be modeled as a harmonic series 

of the main tidal constituents. The main tidal constituents include the semi-diurnal, the diurnal, 

and the long-period tidal constituents. Each main tidal constituent has its own amplitudes and 

phases. The magnitude of the amplitudes and phases depends on the station’s location. To estimate 

the amplitudes and phases of these main tidal constituents, a global ocean tide model such as 

FES2004 is used (Kouba 2009). A global ocean tide model can be developed using the sea surface 

height data provided by tide gauges and satellite altimeters. Using the Green’s function obtained 

by the Earth’s elastic models, the station-specific amplitudes and phases of these main tidal 

constituents can be estimated. The amplitudes and phases of the main tidal constituents for each 

station can be obtained directly and free of charge through the online ocean loading service of the 

Onsala Space Observatory at froste.oso.chalmers.se/loading (Kouba, 2009). With the obtained 

station-specific amplitudes and phases of these main tidal constituents, the site displacement 

caused by ocean tide loading can be estimated (Bayram 2016). In general, the ocean loading tidal 

corrections can reach up to 100 mm. Worth mentioning is that the closer the site is to the ocean, 
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the more significant ocean tide loading displacements can be produced. Ocean loading effects can 

be neglected for stations located far from the ocean. This effect is also negligible for any static 

positioning over a 24 h period and also for any single epoch positioning that requires less than a 5 

cm precision level (Antonini 2013). In other positioning modes such as kinematic or precise point 

positioning near the coastal area, even though the observation period is less than 24 h, ocean load 

effects must be taken into account. Moreover, the ocean load effects must be taken into account 

when the tropospheric delay or clock parameters are required in the positioning solutions, even for 

a more than 24 h static precise point positioning. This effect can be safely neglected if the station 

is far from the nearest coastal region (>1000 km). Otherwise, the effects of ocean loading should 

be considered in the tropospheric and clock solutions (Antonini 2013). 

Relativistic Effects 

An inertial cartesian coordinate system is used in GNSS to measure and determine the 

satellites’ orbits and is called the Earth-Centered Inertial (ECI) reference system. The origin of this 

reference system, located at the center of mass of the Earth, the Earth’s equatorial plane 

corresponds with its x-y plane and the x, y axis is directed toward determined positions over the 

celestial sphere; the z axis is perpendicular to the x-y plane oriented to the north direction. Because 

of the extensive motion velocities in GNSS satellites, the circular shape of satellites’ orbit, the 

Earth’s rotation, and the existence of a gravitational potential difference between the satellite and 

the receivers, the relativistic effects cannot be negligible. The difference between the gravitational 

field at the satellite and the observation site and the motion of the satellite influences the frequency 

of the satellite clock (according to general and special relativity). According to general relativity 

theory, clocks at high altitudes above the Earth and moving with low relative velocity run faster 

than clocks located on the Earth’s surface and moving with higher velocity because of less gravity 
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and according to the special relativity theory. This relativistic effect should be added to the precise 

satellite clock product (Kouba, 2009; Takasu, 2013). Furthermore, in the presence of the Earth’s 

gravitational field, the speed of light changes, thus affecting signal propagation. As a result, the 

magnitude given by (Subirana et al. 2013) should be added to the geometric range. Besides, during 

the signal propagation from the satellite to the receiver, the Earth rotates, and the related relativistic 

effect known as the Sagnac effect should be formulated. A GNSS receiver clock located on the 

Earth’s surface is moving about 500 m/s at the equator because of the Earth’s rotation. This causes 

10 ns receiver clock error (1 ns causes 30 cm range error) after 3 h (Hofmann et al. 2008). However, 

this effect is generally corrected by the receiver software or absorbed by the receiver clock offset. 

Therefore, the relativistic effect corrections can be expressed as a combination of following 

corrections:  

• Relativistic effect corrections applied to carrier-phase measurements (in meters) 

• Relativistic effect correction applied to the satellite precise clock correction (in 

seconds) 

• Relativistic effect correction applied to geometric range (in meters) 

In general, even after applying the corrections, some relativistic effects always remain 

because of the orbit oscillations and the perturbations in Earth’s gravitational field.  

Receiver Clock Bias  

            The geometric distance between each satellite and a receiver can be accurately determined 

using precise measurement of the signal travel time with a clock that was set precisely to system 

time (Hafmann et al. 2008). The clocks in receivers are quartz crystal clocks with different quality 

than satellite clocks. The precise and more stable atomic clocks are used in satellites. Therefore, 

there is always an offset between receiver clocks on the ground and satellite clocks concerning the 
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true time system, which is known as receiver clock bias. This bias causes a difference between a 

measured distance from the receiver to the satellite and the true geometric range, which should be 

considered in the positioning solution (Hafmann et al. 2008). 

Satellite Clock Bias  

The drift in the satellite clock leads to significant errors in the positioning solutions. The 

satellite clock is monitored by and compared with the GNSS ground control system’s clock. The 

estimate of the satellite clock offset is provided for the users in navigation messages (Hafmann et 

al. 2008). The clock errors can be compensated by using real-time corrections and precise clock 

products. 

Antenna Phase Center Offsets 

The antenna phase center does not coincide with the antenna’s geometrical center, making 

the antenna phase center offset. To model the effect of the antenna phase center, the contribution 

of the receiver- and satellite-related antenna phase centers must be individually corrected. The 

typical error is of the order of a few centimeters. It should be noted that the phase center is 

determined by considering the elevation angle-dependent variation of the incoming signal, which 

is also dependent on the signal frequencies (Sanz Subirana et al. 2011a). The antenna phase center 

(APC) varies with the frequency of the signals. Therefore, the antenna reference point (ARP), a 

point tied to the base of the antenna, is additionally introduced as a more accurate reference (Sanz 

Subirana et al. 2011b). Manufacturers usually provide technical information about the APC and 

ARP, compiled by IGS and published as ANTEX files to be utilized for receiver antenna 

correction. The satellite position in orbit is determined with respect to the center of the mass of the 

satellite, whereas the actual observation refers to the antenna’s phase center. The satellite positions 

provided by the broadcast ephemeris refer to the satellite’s antenna phase center, whereas those 
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from the precise orbits and clocks refer to the satellite mass center, necessarily considering the 

Phase Center Offset (PCO) vector. The Phase Center Variation (PCV) should also be considered 

because the electrical phase center of the antenna varies with the signal frequencies and signal 

directions. The offset between the center of the mass of the satellite and the antenna phase center 

is difficult to measure because the phase center depends on the electronic design rather than a 

mechanical point. The phase center’s offset is the direction of the z-axis toward the Earth and the 

direction of the x-axis, which is on the plane containing the sun in the body frame (Zhu et al. 2003).  

Phase Wind-Up Correction 

The electric field vector of the signal transmitted by GNSS satellites rotates with an angular 

frequency. Assuming the receiver spins rapidly (with an angular frequency), the received 

frequency consists of the two angular frequencies. The resulting phase accumulation is called 

phase windup (Hofmann et al. 2008). 

Hardware Biases 

Hardware bias is usually a significant concern in point positioning if code and phase 

observations are combined. For generating the carriers and the modulations, an in-satellite 

oscillator with a base frequency (f0) of 10.23 MHz is generally used. The satellite hardware can 

cause delays when these components are combined. A receiver can also cause a similar delay when 

the replica of the signal is generated in the receiver. The intra-frequency and inter-frequency 

differential signal delays caused by satellite and receiver hardware can be estimated with numerous 

techniques. However, the correlation between GNSS hardware biases, clock offsets, and ambiguity 

parameters can create complications in determining the absolute delay for a particular signal or 

modulation. Typically, the hardware biases are merged with the abovementioned parameters 

(Banville et al. 2008). 
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GNSS Preprocessing and Error Mitigation Algorithms 

Data Screening 

- Satellite Availability/Dilution of Precision (DOP) 

The satellite visibility and position dilution of precision (PDOP) are significant factors for 

evaluating the performance of satellite-based positioning technology. The PDOP describes the 

propagation of random errors in GNSS observations into the noise levels of the unknown 

parameters (Pan et al. 2017). Therefore, it can be utilized to indicate the geometric strength of 

observations and the accuracy level of positioning solutions. In multi-GNSS standard point 

positioning (SPP) or PPP, in PDOP calculation, the mismatch between different satellite systems 

is considered. The incompatibility of the PDOP calculation may be considered if the satellite 

constellations are incompatible. In this situation, there is an inter-system time-scale offset (ITSO) 

that is broadcast to the users through the broadcast ephemeris. In GNSS standard point positioning, 

the time group delay (TGD) and inter-signal correction (ISC) are two factors in the correction of 

the satellite-dependent code biases.  

On the other hand, in the parameter estimation process, the receiver-dependent code biases 

will be merged into the receiver clock. The ITSO in broadcast navigation messages also includes 

the receiver-dependent inter-system code biases relative to the biases for the selected reference 

satellite system (Pan et al. 2017). To improve the structure of the normal equation, the condition 

number of the design matrix is introduced in the reference satellite selection method because the 

condition number indicates an error in the normal equation and improves positioning accuracy and 

reliability (Gao et al. 2017).  
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- Signal-to-Noise Ratio (SNR) 

The raw carrier-to-noise ratio is stored as SNR observations in the data records and 

expressed in decibel-Hertz (dbHz). SNR data are routinely recorded by receivers that are sensitive 

to carrier phase multipath. SNR data is reported in RINEX data files as observable types, and 

record “raw signal strength” or SNR values as given by the receiver for the phase observations. 

The ratio of the carrier power indicates the signal power of the tracked satellite and the noise 

density present in the measurement (Bilich et al. 2007). Signal strength is shown by a scale of 1 to 

9. The minimum signal-to-noise ratio is represented by 1; for the medium rate, 5 is used, a 

maximum possible rate of signal strength is indicated by 9, and 0 or blank represents an unknown 

rate.  

- Clock Jumps 

If receiver clock jumps are not completely detected, cycle slip detection can fail, which can 

cause a repeated re-initialization process or even prevent a convergent positioning solution, 

resulting in significant errors in the PPP solution. In the occurrence of clock jumps, discontinuities 

mainly influence the pseudorange, carrier phase measurement, and time parameters (Guo et al. 

2014). Clock jumps can result in GNSS observation inconsistency, similar to cycle slips. Note that 

the temporary loss of lock in the carrier phase tracking causes discontinuities of an integer number 

of cycles in the carrier phase measurements and leads to cycle slip. However, clock jumps are 

continuous unique discontinuities introduced by receiver manufacturers to control lock offset size. 

The resulting inconsistency between pseudorange and carrier phase measurements from clock 

jumps can be considered receiver clock bias or ambiguity parameter in the positioning solution. 

However, the clock jumps can be corrected without data screening by applying appropriate data 

processing techniques such as Kalman filtering (Guo et al. 2014).  
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Clock jumps cannot be picked up by commonly used linear combinations, such as geometry free 

linear combination, that are used in cycle slip detection because the phase measurements on all 

frequencies are identically affected. Depending on the receiver type, clock jump effects show a 

“sawtooth”-like signature when plotting the time series of the carrier phase or code measurements 

(El-mowafy et al. 2015). El-mowafy utilized the Multi-Constellation and Multi-Frequency 

(MCMF) GNSS observations, including both carrier phase and code measurements, to detect and 

repair the clock jumps. In the proposed algorithm, the average linear combination of code and 

carrier phase measurements, together with a spline function, is used to approximate the data for a 

preset time interval before each measuring epoch. 

Cycle Slip Detection and Repairs  

A Cycle Slip (CS) is a sudden discontinuity in carrier phase measurements represented by 

an integer number of cycles. Failure or high dynamics of a receiver, signal blockage or interruption, 

and low signal-to-noise ratio can lead to CS. They must be detected and corrected using the 

positioning process before the carrier phase (Dai 2012). One of the conventional ways to handle 

cycle-slips is the following:  

1. Detection: Detect CS by observing signals epoch-by-epoch (given that a CS is a random 

event). 

2. Determination: Quantify the amplitude of the detected CS.  

3. Validation: Validate the corrected CS.  

4. Removal: Subtract the CS after the values are fixed and pass the validation.  

Note that the above strategy demonstrates the case of the cycle slip repair. Alternatively, 

the contaminated observation can be removed entirely, which does not require the 
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determination/validation steps. Xiao et al. (2018) classified the cycle slip detection and correction 

algorithms into the following three categories.  

The first group contains algorithms based on the analysis of the GNSS observations time 

series. Cycle slips are determined as sudden jumps in a continuous and smooth signal, which can 

be modeled by multi-polynomial regression. The TurboEdit algorithm is a typical example of a 

dual-frequency CS algorithm. TurboEdit is the combination of the Hatched Melbourne Wubbana 

approaches and ionospheric residual combinations. With high sampling rate data and under high 

ionospheric activity circumstances, some modifications should be applied to the TurboEdit 

algorithm to enhance the cycle slip detection (Cai et al. 2013). Another method for CS and outlier 

detection in this category is to apply Bayesian theory (Lacy et al. 2008; Zhang et al. 2013 ). The 

approaches in the first category need the continuity of carrier phase measurements for several 

minutes before and after a cycle slip (Huang et al. 2016).  

The methods in the second category are based on the optimal combinations of multi-

frequency observations. The main algorithm in this category is the linear combinations of GNSS 

observations to eliminate the effects of other parameters, such as geometric terms or ionospheric 

errors. This type combines multiple carrier phase measurements to mitigate the geometry and all 

non-dispersive effects (Li et al. 2016). Even after the removal of the first-order ionospheric effect, 

the performance of the CS detector is influenced and degraded by the high ionospheric activity, 

specifically with a low sampling rate data (i.e.,  s). The occurrence of cycle slips is 

independent on each signal; therefore, to detect all possible jumps, two independent combinations 

must be utilized. When two independent combinations are simultaneously used, the inappreciable 

jumps produced by the combination of  and  in the geometry-free combination can safely 

detect (Navpedia website). Dai et al. (2009) proposed one example combination algorithm in 
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which two geometry-free combinations of triple frequency carrier phase measurements are 

employed for cycle slip detection. Further, triple-frequency carrier phase combinations are used in 

Huang et al.’s (2016) proposed method to detect and repair cycle slips. De Lacy et al. (2012) 

presented more than five types of linear combinations based on triple-frequency GNSS 

measurements for real-time cycle slip detection and repair. Zhao et al. (2017) employed 

undifferenced triple-frequency GNSS measurements in independent linear combinations for real-

time cycle slip detection and correction. As described, a common characteristic of the triple-

frequency signals’ CS detection methods is the forming of optimal combinations to mitigate the 

presence of geometric and ionospheric errors (Xiao et al. 2018). 

The third category includes the algorithms employing geometry-based and time-

differenced models. Banville and Langley (2013) and Zhang and Li (2012) investigated the dual-

frequency CS correction algorithm based on a time-differenced model. Similarly, Zhang and Li 

(2016) applied triple-frequency observations and investigated adding the third frequency on cycle 

slip detection. In their model, time-difference observation equations are formed between two 

consecutive epochs and all satellite equations are processed in an integrated adjustment showing 

great potential for carrier frequency identification of cycle slips (Xiao et al. 2018). However, if 

discontinuity is detected for one satellite, the algorithm flags all carrier phase frequencies as 

detected cycle slips (Banville and Langley 2013).  

Satellite and Receiver Instrumental Delays and Differential Code Biases 

Satellite and receiver hardware biases are one of the main issues in combining code and 

phase observations in precise point positioning. The carriers and the modulations are generated at 

the fundamental frequency (𝑓𝑓0) of 10.23 MHz by a satellite oscillator. In general, several delays 

can occur when code and phase observations are combined. Similarly, when the replica of the 
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signals is generated in the receivers, delays can occur. Instrumental biases are different based on 

different codes and frequencies. A separated bias is assigned to each pseudorange observable, 

including C1 (C/A code on the 𝑓𝑓1 frequency), P1 (P code on the 𝑓𝑓1 frequency), and P2 (P code on 

the 𝑓𝑓2 frequency). Because of the changes in satellite hardware conditions (such as temperature 

and wear), and because the hardware biases of satellite and receiver are merged into measurements, 

the absolute value of instrumental biases cannot be directly retrievable. However, different 

methods can estimate the intra- and inter-frequency delays for each signal, determination of the 

delay’s absolute value for a particular signal is very complicated. The correlation of the GNSS 

parameters, including the instrumental biases, clock offsets, and carrier phase ambiguity, leads to 

the complexity of delay’s absolute value retrieval (Banville et al. 2008). Therefore, the 

combination of biases, which is referred to as Differential Code Biases (DCB), is commonly used 

in positioning. For error correction purposes, DCB cannot be applied to a single observation but is 

applied to a combination of observables. The hardware code and phase bias in satellites and 

receivers are described separately in the following sections. 

- Satellite and Receiver Hardware Code Biases  

Satellite clock corrections from the broadcast navigation message or IGS products, together 

with the DCB corrections, are commonly used to eliminate the Satellite hardware code biases from 

the code observations. For the receiver hardware code biases, some parts of the biases are absorbed 

in the receiver clock parameter, and the remaining parts propagate into the code residuals and other 

estimated parameters such as the receiver coordinates (Banville et al. 2008). In PPP, the receiver 

hardware delays are assumed to be consistent for the satellites of the same type of GNSS 

constellation, including GPS, Galileo, and BeiDou, which uses the Code Division Multiple Access 

(CDMA) technique. While it cannot be applied to GLONASS, which employs frequency division 
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multiple access (FDMA). For GLONASS satellite constellation, the receiver hardware bias will 

differ for each satellite with different frequencies (Li et al. 2015; Håkansson et al. 2017) and is 

usually known as inter-frequency biases (IFB). The code IFB must be taken into account in the 

standard point, positing, and fixing the ambiguity parameters in PPP (Hakansson et al. 2017). Note 

that the code IFB is dependent on the receiver’s firmware version of and antenna type. The code 

IFB is stable over time; therefore, pre-calibrated values can be utilized in positioning solutions 

(Antonini 2013). Moreover, because of the various signal structure in different GNSS constellation 

satellites and different types of frequencies, the code biases are not the same in a multi-GNSS 

receiver. The differences between these biases are usually called code inter-system biases (ISB) 

(Hakansson et al. 2017). Code ISB is constant over time and similar in the same type of receiver. 

Unlike phase ISB, code ISB can be estimated unambiguously as an unknown parameter. When a 

single satellite transmits two GNSS signals, a time delay between two transmitted signals will 

occur, known as DCB. Note that DCB includes code biases in the receiver hardware at reception 

as well as satellite hardware code biases in transmission (Antonini 2013). The DCB is a crucial 

factor, especially in the application of TEC estimation from the pseudorange and phase data of 

multi-constellation signals. Even a small amount of DCB equal to 1-ns leads to TEC estimation 

error as large as 2.9 TECU. For some receivers, the systematic DCB variations, including the 

seasonal and environmental variations (such as temperature and humidity changes), can cause up 

to 20 TECU in the TEC estimation (Antonini 2013; Mylnikova et al. 2015). 

- Satellite and Receiver Hardware Phase Biases  

The receiver and satellite hardware can also cause delays in the carrier phase observations. 

Similar to code biases, the phase delays are also different for GNSS constellations, and their 

differences are known as phase inter-system biases (ISB). Although satellite phase biases are 



28 
 

 
 

different for each satellite and carrier frequency, receiver phase biases are frequency-dependent 

and are the same for each satellite. The satellite phase biases are merged into the carrier phase 

ambiguity parameters; therefore, this aspect becomes a major concern for ambiguity resolution. 

Receiver phase biases are absorbed by the receiver clock, the phase ambiguities, and estimated 

coordinate (Banville et al. 2008). In GNSS constellations with an identical carrier phase-frequency 

between the systems (such as combined GPS/Galileo), the double-difference technique can be 

applied to preserve the integer nature of ambiguities. For the fixed solution in PPP, these delays 

cause an issue in resolving the integer ambiguity if they are not adequately corrected. Because of 

satellite phase biases, fixing the phase ambiguities to integer cannot be done in the same way as 

the double-differenced relative positioning (Hakansson et al. 2017).  

Therefore, the full phase ambiguities resolution in a fixed solution is constrained not only 

by the satellite phase biases but also by the receiver side phase IFB. Moreover, not only do the 

receiver’s hardware biases contain the phase IFB, but the satellite phase bias can also include the 

phase IFB. Because the phase IFBs and the satellite phase biases are highly correlated, they cannot 

be separated for the correction. Unfortunately, these biases increase the number of unknown 

parameters in the positioning solution, which tends to derive a rank deficiency (Teunissen et al. 

2015). Therefore, the phase biases should be determined beforehand in case of PPP ambiguity 

fixed solution because the receiver hardware biases are often assumed to be the same for all 

satellites in a constellation. Because there is no correlation between the receiver phase bias 

concerning a satellite and the phase ambiguity, the receiver phase bias can be canceled out with 

the receiver clock error in the single differences between satellite procedure. Therefore, for fixing 

the ambiguities in PPP, the satellite clock error and the satellite phase biases should be corrected. 

The satellite phase biases have short-term stability and must be provided on the user side every 15 
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minutes. The corrections for satellite phase bias can be in the form of a fractional cycle bias (FCB) 

(Ge et al. 2008; Geng et al. 2012). In the positioning process, the satellite phase bias can also be 

integrated into the satellite clock corrections (Collins et al. 2010). 

Multipath 

The multipath has an impact on both GNSS observables, code, and carrier phases. 

However, the carrier phase observations are less affected between different types of receivers. The 

direct effects of multipath error are mainly on the accuracy of pseudorange observations, which 

are critical in a standard point positioning technique (Tahami et al. 2018). The maximum multipath 

error could be approximated as half of the code chip length and one-quarter of carrier-phase 

wavelength. Therefore, the magnitude of the multipath error could be a maximum 150 m for C/A 

code, 15 m for P(Y) code, and about 5 cm for the carrier-phase measurements. However, its 

magnitude is generally about 1–5 m in the pseudo-range measurements and 1–5 cm in carrier-

phase measurements (Hofmann et al. 2008). The t effects of multipath cannot be eliminated 

through modeling or differencing techniques. However, its impact may be reduced by an 

appropriate antenna design (choke ring antenna), selecting the sites protected from highly 

reflective objects, or applying a mitigation technique. Also, the risk of multipath interference can 

be reduced if the satellites at low elevations are discarded by setting an elevation cutoff angle. The 

pseudorange multipath can be estimated by eliminating the satellite-receiver geometry and all 

atmospheric effects through the linear combination of dual-frequency observations. However, 

utilizing these combinations cannot resolve the phase ambiguities and eliminate any differential 

biases. Although the differential biases do not significantly change over time, the ambiguities 

cannot be assumed as constant over time because of the presence of CSs (Vaclavovic 2016). Thus, 

the CSs must be detected (and, optionally, repaired) before the multipath estimation. In addition 
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to the linear combination of various frequencies, the detection and mitigation of the multipath 

interference can be performed by comparing the carrier-power-to-noise ratio (C/N0) with different 

frequencies. After detecting the multipath, the affected signals may be either excluded altogether 

or down-weighted in the position solution (Strode et al. 2016). Another multipath mitigation 

approach is to select signals by checking the consistency. Because none of the available methods 

for eliminating the multipath effects on GNSS positioning are entirely reliable, specifically in real-

time applications, the effects of multipath are critical for the precise positioning.  

Atmospheric error  

In GNSS, the Earth's atmosphere is classified into different layers based on their physical 

characteristics and the impacts of electromagnetic (EM) spectrums. Structure-wise, the atmosphere 

is divided into the neutral atmosphere and the ionosphere. Although the neutral atmosphere 

includes the troposphere and the stratosphere, the troposphere is usually used as a representative 

of the neutral atmosphere in the GNSS community (Hofmann et al. 2008; Antonini 2013). The 

troposphere can be separated into dry (0–40 km) and wet (0–11km) components. The dry 

component consists of dry gas molecules and occupies about 90% of the total tropospheric error, 

whereas the wet component consists of the water molecules and occupies about 10% of the total 

tropospheric error. The dry tropospheric error can be modeled successfully at zenith direction, but 

the wet tropospheric error cannot be modeled easily because the atmospheric water content varies 

considerably over time (Hofmann et al. 2008).  

Another effect of atmosphere layers on the GNSS signal is the ionospheric delay. The 

ionospheric delay, or, more precisely, the ionospheric group delay on code observations and the 

ionospheric phase advance on the carrier phase observations, is the refraction of radio signals 

caused by the presence of electron density in the ionosphere. Total electron content (TEC) is 
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defined as the integral of electron density in one square meter column on the ionosphere along the 

ray transition path. The TEC unit is represented as TECU, and one TECU is equal to 1016 

electrons/m2. Since the ionosphere is highly variable in space and time, the electron density can 

be considered a spatiotemporal random function. In basic PPP models, the ionospheric delay can 

be removed by multiple-frequency ionospheric-free combinations. Alternatively, the ionospheric 

day for particular locations at a specific time can be computed from any external models (Antonini 

2013).  

The effects of the atmospheric layer on GNSS signals are described in more detail in 

Section 2.2. 
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2.2. Atmosphere and GNSS signals  

2.2.1. Atmospheric Region  

The physical characteristics of atmosphere and structure of the electromagnetic spectrum 

are the main factors in the classification of atmosphere. Since GNSS signals operate in L band 

frequency, in this study the classification of atmosphere is according to L band frequency signal 

propagation in the atmosphere. In terms of radio signal propagation, the atmosphere is made up of 

troposphere and ionosphere layers: 

• Troposphere: the lowest atmospheric layer to the Earth’s surface with the altitude 

ranging from zero to approximately 50 km. It is part of the electric neutral layer of the 

atmosphere and is a non-dispersive medium for signal frequencies below 30 GHz. The 

atmosphere refraction index in the troposphere varies based on the atmospheric 

pressure, temperature, and water vapor pressure and can be considered constant with 

frequency (Antonini 2013). 

• Ionosphere: a slightly ionized plasma composed of a free electron and extending from 

an altitude of 50 km to more than 1000 km from the Earth’s surface.  

The troposphere contains about 75% of the neutral air mass and 99% of atmospheric water 

vapor content; therefore, many meteorological phenomena such as clouds, precipitations, and 

storms are formed in this layer (Antonini 2013). It is worth mentioning that in sporadic cases, 

water vapor presents in the stratosphere layer with an altitude of 20 and 30 km from the Earth’s 

surface. In general, about 99% of the neutral atmospheric mass and all of the atmospheric water 

vapor content exist in up to 50 km of the Earth’s atmosphere; therefore, troposphere and 

stratosphere layers are similar in terms of radio signal propagation and are commonly categorized 

as a single layer in GNSS literature (Antonini 2013). Both the troposphere and the ionosphere 



33 
 

 
 

cause refractions in GNSS signals. These refractions cause a delay in the signal travel time and 

therefore are considered error sources for GNSS observations, as described in more detail in the 

next section. 

2.2.2. Effects of Atmosphere on Radio Signal Delay 

Ionospheric Delay 

The ionosphere is a layer of the Earth’s atmosphere in the altitude of 50 to 1000 km from 

the Earth’s surface. This layer contains ionized particles that lead to a delay or expedition in the 

satellite signals’ travel time. The ionospheric delay on code observations and the ionospheric phase 

advance on the carrier phase observations are the refraction of radio signals due to the presence of 

electron density in the ionosphere. Moreover, the direction of radio signal propagation is deviated 

by the ionospheric refraction of the electromagnetic signals. The ionospheric delay decreases at 

higher elevations of the satellite receiver direction. The opposite effects of the ionosphere on the 

code and carrier phase measurements are due to the dispersive characteristic of the ionosphere on 

the signal velocity. The total electron content (TEC) in the ionosphere is used to determine the 

magnitude of the ionospheric effects, and it varies from 1 to 100 m or more. Reliable modeling of 

the ionospheric delay is essential to resolve phase ambiguity in GNSS precise point positioning 

(Gregorczyk et al. 2017). In basic models of PPP, the ionospheric delay can be removed by 

multiple-frequency ionospheric-free combinations. Alternatively, the ionospheric day for a 

specified location at a specific time can be computed from any external model. 

Tropospheric Delay  

The troposphere is a non-dispersive layer causing refractions in the propagation of GNSS 

radio signals. Refraction takes place during the transition of the radio signal from one medium to 

another. The refraction effects on the radio signals include 1) a deviation of the signal propagation 
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direction from a straight line (bending) and 2) a velocity change, with respect to the signal velocity 

in the vacuum (slowing). The refraction is generally represented by a refractive index n of a 

medium as follows: 

𝑛𝑛 =  
𝑐𝑐
𝑣𝑣

     (2 − 5) 

where c is the speed of light in vacuum and v is the speed of light.  

The refractive index is used in the electric field (E) for determination of signal propagation 

in space and time: 

𝐸𝐸(𝑟𝑟, 𝑡𝑡) =  𝐸𝐸0𝑒𝑒𝑠𝑠[𝑛𝑛(𝑟𝑟)𝑘𝑘.𝑟𝑟−𝑤𝑤𝑤𝑤]     (2 − 6) 

where 𝑛𝑛(𝑟𝑟) is the refraction index, 𝐸𝐸0 is the amplitude of the electric field,  r is the position vector 

in x, y, and z directions, 𝑘𝑘 is the wave vector (|𝑘𝑘| =  2𝜋𝜋
𝜆𝜆

),  and 𝑤𝑤 = 2𝜋𝜋𝑓𝑓 is the angular frequency. 

Refractivity (N) can be determined as follows : 

𝑁𝑁 = (𝑛𝑛 − 1) × 106       (2 − 7) 

 

In the lower atmosphere, the spatiotemporal variation of the water vapor is much higher 

than other components, including gases like nitrogen, oxygen, argon, and carbon dioxide. 

Moreover, the major part of radio signal refractivity is due to the presence of water vapor.  

The general form of the refractivity, which is directly dependent on the water vapor content, is as 

follows (Antonini 2013): 

𝑁𝑁 = 𝐾𝐾1
𝑃𝑃𝑑𝑑
𝑇𝑇
𝑧𝑧𝑑𝑑−1 + 𝐾𝐾2

𝑒𝑒𝑤𝑤
𝑇𝑇
𝑧𝑧𝑤𝑤−1 + 𝐾𝐾3

𝑒𝑒𝑤𝑤
𝑇𝑇2

𝑧𝑧𝑤𝑤−1           (2 − 8) 

where 

𝐾𝐾1; 𝐾𝐾2; 𝐾𝐾3 are empirical constants; 𝑃𝑃𝑑𝑑 denotes the dry air’s partial pressure in [hPa]; 𝑇𝑇 is the 

temperature [K]; 𝑒𝑒𝑤𝑤is the water vapor’s partial pressure of water vapor [hPa]; 𝑧𝑧𝑑𝑑−1 and 𝑧𝑧𝑤𝑤−1 are the 
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factors for the inverse of compressibility of dry air and water vapor, respectively; and Z is the 

compressibility factor for considering the gas ideal behaviors in the real gas relationship 

 𝑃𝑃𝑃𝑃 = 𝑍𝑍𝑍𝑍𝑇𝑇  (2 − 9) 

where 𝑃𝑃, 𝑃𝑃 , 𝑍𝑍 , 𝑇𝑇 and are the pressure, volume, universal gas constant, and temperature, 

respectively. The compressibility factor is expressed by 

𝑧𝑧𝑑𝑑−1 = 1 + 𝑃𝑃𝑑𝑑 �57.91 × 10−8 �1 +
0.52
𝑇𝑇

� − 9.4611 × 10−4 �
𝑇𝑇𝑐𝑐
𝑇𝑇2
��    (2 − 10) 

𝑧𝑧𝑤𝑤−1 = 1 + 1650
𝑒𝑒𝑤𝑤
𝑇𝑇3

[1 − 0.01317 𝑇𝑇𝑐𝑐 + 1.75 × 10−4𝑇𝑇𝑐𝑐2  + 1.44 × 10−6𝑇𝑇𝑐𝑐3]     (2 − 11) 

where 𝑍𝑍 = 8.31434  𝑘𝑘𝑘𝑘 𝑘𝑘𝑚𝑚𝑘𝑘𝑙𝑙−1 𝐾𝐾−1 is the universal gas constant; 𝑀𝑀𝑑𝑑 = 28.9644  𝑘𝑘𝑔𝑔 𝑘𝑘𝑚𝑚𝑘𝑘𝑙𝑙−1 is 

the molar weight of dry air; 𝑀𝑀𝑤𝑤 = 18.0152  𝑘𝑘𝑔𝑔 𝑘𝑘𝑚𝑚𝑘𝑘𝑙𝑙−1 is the molar weight of water vapor; and  

𝑀𝑀𝑤𝑤
𝑀𝑀𝑑𝑑

= 0.621977. 

The total mass density is given by 

𝜌𝜌𝑇𝑇 =  𝜌𝜌𝑑𝑑 +  𝜌𝜌𝑤𝑤     (2 − 12) 

 

Using the above quantities in the refractivity equation, and the new coefficient of 𝐾𝐾2′, the 

refractivity can be expressed by 

𝐾𝐾2′ =  𝐾𝐾2 − 𝐾𝐾1
𝑀𝑀𝑤𝑤

𝑀𝑀𝑑𝑑
     (2 − 13) 

𝑁𝑁 =  𝐾𝐾1𝜌𝜌𝑇𝑇
𝑍𝑍
𝑀𝑀𝑑𝑑

+ 𝐾𝐾2′
𝑒𝑒𝑤𝑤
𝑇𝑇
𝑧𝑧𝑤𝑤−1 +  𝐾𝐾3

𝑒𝑒𝑤𝑤
𝑇𝑇2

𝑧𝑧𝑤𝑤−1         (2 − 14) 

In general, the total refractivity can be expressed by two components: the hydrostatic (dry) 

refractivity (𝑁𝑁ℎ) and the wet refractivity (𝑁𝑁𝑤𝑤): 

𝑁𝑁ℎ =  𝐾𝐾1𝜌𝜌𝑇𝑇
𝑍𝑍
𝑀𝑀𝑑𝑑

    (2 − 15) 
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𝑁𝑁𝑤𝑤 =  𝐾𝐾2′
𝑒𝑒𝑤𝑤
𝑇𝑇
𝑧𝑧𝑤𝑤−1 +  𝐾𝐾3

𝑒𝑒𝑤𝑤
𝑇𝑇2

𝑧𝑧𝑤𝑤−1        ( 2 − 16) 

Because the signal delay is associated with the total refractivity, similar components can 

be used to represent the signal delay. The two components are called hydrostatic and wet delays, 

respectively.  

The radio signals traveling through troposphere experience a path delay. The amplitude of 

the path delay in the zenith direction and at the sea level varies between 2.30 m to 2.60 m. For a 

satellite, at an elevation angle of 3 degrees, the delay can be up to 50 m. The delay is considered 

to be the neutral atmospheric delay, conventionally referred to as the tropospheric delay (TD) 

because it is mostly affected by the troposphere (Boehm et al. 2006; Benevides et al. 2015)  

𝑇𝑇𝑇𝑇 =  10−6 �𝑁𝑁𝑑𝑑𝑁𝑁     (2 − 17) 

where N is total refractivity along the propagation path, s. The tropospheric delay can also be 

decomposed in the hydrostatic (dry) and the wet terms: 

𝑇𝑇𝑇𝑇 =  10−6 �𝑁𝑁𝑑𝑑𝑟𝑟𝑠𝑠𝑑𝑑𝑁𝑁 + 10−6 �𝑁𝑁𝑤𝑤𝑤𝑤𝑤𝑤𝑑𝑑𝑁𝑁     (2 − 18) 

The hydrostatic delay causes 90% of the tropospheric delay. This delay occurs in the dry 

part of the atmosphere, and its amplitude can reach to about 2 m at zenith direction. On the other 

hand, the tropospheric wet delay, which is significantly smaller than dry delays, happens in the 

wet atmosphere, and its range varies from 0 m to 0.40 m. Using a mapping function that is related 

to the satellite elevation angle, the total tropospheric delay on the slant path of the signal can be 

mapped onto the zenith direction, yielding the total zenith delay (TZD). The TZD is expressed as 

the sum of the zenith hydrostatic delay (ZHD), and the zenith wet delay (ZWD); their mathematical 

representation is 

𝑇𝑇𝑍𝑍𝑇𝑇 = ZHD × 𝑚𝑚ℎ(𝑒𝑒𝑙𝑙𝑒𝑒𝑣𝑣) + ZWD × 𝑚𝑚𝑤𝑤(𝑒𝑒𝑙𝑙𝑒𝑒𝑣𝑣)     (2− 19) 
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where 𝑚𝑚ℎ(𝑒𝑒𝑙𝑙𝑒𝑒𝑣𝑣) and 𝑚𝑚𝑤𝑤(𝑒𝑒𝑙𝑙𝑒𝑒𝑣𝑣) are the hydrostatic and wet mapping functions concerning the 

satellite elevation angle 𝑒𝑒𝑙𝑙𝑒𝑒𝑣𝑣. The ZWD depends mostly on the distribution of water vapor content 

along the signal propagation path. Because of the high variability of the atmospheric water vapor, 

many studies rely on the relatively accurate ZHD model to calculate the ZWD as shown in (Bevis 

et al. 1992; Rocken 1993): 

𝑍𝑍𝑍𝑍𝑇𝑇 = TZD − 𝑍𝑍𝑍𝑍𝑇𝑇      (2 − 20) 

The PWV can be computed using ZWD measurements from GNSS signals. Retrieving the 

PWV from the ZWD requires meteorological parameters such as pressure and temperature. 

Equation (2-5) represents the relation between the PWV and the ZWD (Bevis et al. 1992;  Rocken 

1993): 

PWV = 𝑍𝑍𝑍𝑍𝑇𝑇 × 𝛱𝛱   (2 − 20) 

and conversion factor 𝛱𝛱 is expressed in (2-16):  

Π−1 = 10−6 × ρ × 𝑍𝑍𝑣𝑣 �
(3.739 ± 0.012)105

𝑇𝑇𝑛𝑛
+ (22.1 ± 2.2)�    (2 − 21) 

where ρ is the water vapor density (1000 kg 𝑚𝑚−3) and 𝑍𝑍𝑣𝑣 denotes the specific gas constant of 

water vapor (461.5 J 𝑘𝑘𝑔𝑔−1𝐾𝐾−1). 𝑇𝑇𝑛𝑛 is the modeled weighted mean temperature of the troposphere 

(K), which is computed based on the regression relation between 𝑇𝑇𝑠𝑠 (surface temperature) and 𝑇𝑇𝑛𝑛 

from a linear function, 𝑇𝑇𝑛𝑛 = 70.2 + 0.72 𝑇𝑇𝑠𝑠 proposed by (Bevis et al. 1992). Although the ZHD 

and, therefore, PWV computations involve the meteorological parameters, they are relatively 

stable in time and space and can be obtained by an interpolation method.  

In this study, the abovementioned tropospheric zenith delay is calculated using the JPL's 

GIPSY-OASIS software. An automatic precise point positioning service (APPS) within GIPSY is 

implemented to process the GPS phase and code measurement. JPL's Final products, JPL's Rapid 
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products, or JPL's Real-Time products can be used to determine GPS orbit and clock parameters. 

APPS uses the most accurate orbit and clock products if they are available. Following IGS 

standards, APPS automatically applies satellite and receiver antenna phase center variation (APV). 

The antenna type is used to determine the choice of receiver APV maps. When the antenna type is 

not recognized, APV is not applied in APPS. The 15-degree elevation angle cutoff is applied in 

APPS for GPS observation processing.  

The following parameters are estimated using GIPSY processing of GNSS observations:  

• A random walk function is used to derive the Zenith wet delay with a variance of 3 

𝑚𝑚𝑚𝑚2 per hour 

• A random walk function is used to determine the wet delay gradient with a variance of 

0.3 𝑚𝑚𝑚𝑚2 per hour 

To retrieve the tropospheric delay components, GIPSY applies the GMF troposphere 

mapping function and a priori hydrostatic delay in meters calculating from eq. 2-17: 

apriori hydrostatic delay = 1.013 × 2.27 × exp(−0.000116 × h)        (2 − 22) 

where h is the indication of the station height above the ellipsoid in meters. A priori for the wet 

delay is 0.1 m. Tropospheric gradients are also estimated in the GIPSY positioning process. The 

Tropospheric Delay Parameter (TDP) file, containing time series for all estimated parameters with 

their formal errors, are provided as the GIPSY APPS output. The estimated wet delay parameter 

provided by GIPSY is used in eq. 2-16 to retrieve the PWV.  
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2.3. Severe Weather Monitoring and Forecasting Using GNSS Meteorology  

Several atmospheric factors contribute to the development and occurrence of extreme 

precipitation. The moisture and water vapor content, instability, and convergence–divergence 

conditions are vital factors to take into account to forecast heavy precipitation (Kiely et al. 1998; 

Dayan et al. 2015; Tian et al. 2015). Recently, there has been great interest in using GNSS in 

meteorology studies. It is due to the proved effectiveness of GNSS for the atmospheric water vapor 

content estimation in a higher spatial and temporal resolution compared with the study of the 

classic instruments such as radiosondes and the water vapor radiometers (Haase et al. 2003; 

Champollion et al. 2004; Vedel et al. 2004; Jade et al. 2005; Jin et al. 2007; Seco et al. 2012). The 

GNSS infrastructure, with a good distribution of GNSS reference stations, allows for collecting 

water vapor data in the atmosphere all over the US (Gradinarsky et al. 2002; Jade et al. 2005; Jin 

et al. 2007; Seco et al. 2012). 

The capability of GNSS-based tropospheric parameters for monitoring and prediction of 

precipitation has been proven in previous studies (Boniface et al. 2009; Benevides et al. 2015; 

Sapucci et al. 2016; Chen et al. 2017). Askne and Nordius used a ground-based GNSS network to 

propose a relationship between ZWD, and GNSS derived PWV to detect atmospheric water vapor 

(Askne, J. & Nordius 1987; Bevis et al. 1994). A correlation between the GNSS-derived PWV and 

the measured rainfall is shown by Sapucci et al. (2016). Wang showed that tracking the sudden 

rises in the GNSS-derived PWV in the long-term data can indicate the rainfall occurrence and, 

therefore, can be used for rainfall forecasts. Wang utilized the combination of the GNSS-derived 

PWV and other meteorological parameters in a neural network algorithm to propose a rainfall 

prediction model with a high success rate for 2 h time intervals (Wang et al. 2010). GNSS-derived 

PWV is used to illustrate the enhancement of the near real-time prediction of precipitation by Cao 
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et al. (2016). Shi et al. (2015) verified the feasibility of using the real-time GPS-derived PWV in 

precipitation prediction by analyzing several rainfall events in Wuhan, China. Real-time GNSS-

derived PWVs are used to define an empirical threshold for the forecast. Shoji et al. showed the 

relationship between the time when PWV exceeds a given threshold and rainfall probability 

increases (Shoji et al. 2013). By using long-term GNSS-PWV and meteorological data in the 

northeast of Spain, Seco et al. (2012) proposed a method for short-term rainfall forecast. Utilizing 

the GNSS-derived PWV, Liu et al. (2006) showed that atmospheric water vapor above 25 mm and 

an increase in water vapor more than 5 mm can cause an increase in rainfall probability by about 

50%. During the increased period of GNSS-derived PWV in the PWV time series, Benevides et 

al. (2015) used the first derivative of PWV to forecast the rainfall with a success rate of about 75% 

(Yao et al. 2017). Also, Manandhar et al. (2018) proposed a data-driven algorithm using GNSS-

PWV and meteorological parameters, including dew point temperature, relative humidity, and 

solar irradiance, to forecast rainfall with a success rate of 87.4%. Zhao et al. (2018) verified that 

the relationship between the PWV increases and decreases before and after the occurrence of 

rainfall, respectively, and used the PWV fluctuations over time to detect and monitor rainfall 

events. Yao et al. 2018 also proposed a prediction algorithm by utilizing the GNSS PWV data and 

achieved a rainfall forecast success rate of approximately 80%. Zhao et al. (2018) verified the 

feasibility of direct utilization of ZTD and its first derivatives in a rainfall forecast algorithm to 

overcome the observation error associated with the meteorological data and ZWD to PWV 

conversion error.  

When GNSS-based estimated PWV is analyzed with the local atmospheric elements, the 

formation process of severe precipitation can be observed by assessing the correlation between 

atmospheric pressure, temperature, and PWV. For example, the low-pressure system leads to 



41 
 

 
 

condensation of water vapor as well as the formation of clouds and precipitation. In addition to the 

low-pressure system, high humidity and temperature contribute to forming precipitation. Past 

studies found both negative and positive correlations between precipitation and temperature, 

depending on seasons and locations (Madden and Williams 1997; Weining et al. 1993). Because 

the PWV fluctuation is the indication of precipitation showing an interrelation with other 

atmospheric parameters, the PWV rate of change (ROC) over time can be used to track the 

atmospheric variations. Several studies have shown that the PWV significantly increases a few 

hours before the most intense rainfall, then sharply decreases when precipitation begins to weaken 

and finally ceases (Tahami et al. 2020; Realini et al. 2014; Priego et al. 2017; Tahami et al. 2017; 

Manandhar et al. 2018). The literature found that 1) PWV peaks occur at a few hours before the 

precipitation onset and 2) the PWV ROC sharply varies before the start of the rain in the most 

rainfall events. Thus, the significant spatial-temporal variation of PWV and PWV ROC 

corresponds to the rain event in time and can be identified as essential features for short-term 

precipitation forecasting purposes (Tahami et al. 2020; Tahami et al. 2017; Yao et al. 2017; 

Manandhar et al. 2018). While previous studies have discussed the relationship between PWV and 

rainfall, extensive studies are yet to be done in the precipitation prediction using GNSS-derived 

PWV. Therefore, a new method of short-term precipitation forecasting during severe weather 

phenomena such as a hurricane is proposed here based on GNSS-derived PWV. 
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CHAPTER 3 

 

3. SPATIAL-TEMPORAL ANALYSIS OF METEROLOGICAL 

DATA  
 

In this chapter, the spatiotemporal variation of PWV and meteorological data, measured by 

a GNSS and meteorological sensors respectively, during a severe weather event is analyzed to find 

the correlation between the GNSS-derived PWV variations and severe precipitation. Statistical 

characteristics of PWV over time, and temporal variation of meteorological parameters including 

pressure and temperature during severe weather events, are analyzed to introduce the major 

components in monitoring and forecasting the severe precipitation onset. This chapter proposes a 

new method that quantifies the relationship between a spatiotemporal atmospheric event’s 

intensification and GNSS derived PWV and meteorological observations.  

3.1. GNSS-based PWV processing  

The use of GNSS-derived tropospheric delays to measure and monitor the PWV and its 

variations has been investigated by numerous researchers (Benevides et al. 2015; Shoji et al. 2015; 

Bonafoni et al. 2016; Realini et al. 2016). To find the relationship between variations of PWV and 

other atmospheric parameters in the formation of severe weather phenomena, Hurricane Matthew 

2016 was selected, and several GNSS Continuously Operating Reference Stations (CORS) and 

weather stations were used as an example for the analysis. Figure 3-1 shows an example of GNSS 

and weather stations located in Hurricane Matthew 2016 (further description of the geographical 

distribution of GNSS CORS with details in the Hurricane Matthew case study are found in Chapter 

5). 
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Figure 3-1: Example of distributed GNSS and meteorological stations in Hurricane 

Matthew 2016 (Base map from ESRI ArcGIS)   

As described in Chapter Two on the use of GNSS stations, the GNSS-derived ZTD can be 

estimated using the automatic precise positioning service (APPS) developed by NASA’s Jet 

Propulsion Laboratory (JPL) (http://apps.gdgps.net). From each ZTD site-dependent value, the 

ZWD is calculated by subtracting the ZHD from the ZTD, where the former is obtained from the 

online service at each GNSS site. The ZWD data from the GNSS CORS network are used to 



44 
 

 
 

retrieve the PWV above the respective CORS stations as described by Bevis et al. (1992). To 

provide the PWV for the entire study area rather than the PWV at each GNSS CORS site, the 

inverse distance weighting (IDW) interpolation method was applied (Yang et al. 2015). Because 

the water vapor varies with height (Askne et al. 1987), the topography of the study area should be 

investigated by generating a digital elevation model using GNSS-derived height and geoid height 

from GEOID12B. In the case study of Hurricane Matthew, the topography of the study area mostly 

shows insignificant dynamics for the stations located at the coastline area.  

The meteorological parameters, such as atmospheric pressure and temperature around the 

CORS stations, provide superior precision on estimating the tropospheric delay throughout the 

process (Benevides et al. 2015). Because the surface pressure and temperature measurements are 

available only at the weather stations in the test area, they should be corrected for the selected 

CORS stations. In particular, pressure is an important factor in estimating GNSS-derived PWV. 

Hence, Realini et al. (2014) proposed an approach based on the barometric formula of Berberan-

Santos et al. (1997) to adjust the pressure measurements to different heights as shown in eq. (4). 

This provides sufficiently accurate pressure measurement for each GNSS station.  

𝑃𝐶𝑂𝑅𝑆 =  𝑃𝑀𝐸𝑇 . exp(−
𝑔𝑀𝑑(𝐻𝑀𝐸𝑇 − 𝐻𝐶𝑂𝑅𝑆)

𝑅∗ 𝑇𝐼𝑆𝐴
)     (3 − 1) 

where g is the gravitational acceleration constant (9.80665 m s-2), 𝑀𝑑 is the molar mass of dry air 

(0.0289644 kg mol−1), 𝑅∗ is the gas constant for air (8.31432 J mol-1 K-1), and 𝑇𝐼𝑆𝐴 is the 

international standard temperature of the atmosphere at sea level (288.15 K). 𝐻𝑀𝐸𝑇  and 𝐻𝐶𝑂𝑅𝑆 are 

the orthometric heights of meteorological and CORS stations, respectively. The orthometric height 

of each CORS station is provided through Online Positioning User Service processing in NAVD88 

computed using GEOID12B provided by the National Geodetic Survey.  
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To compute the orthometric height for all stations in the test area, the IDW interpolation 

technique is performed. Figure 3-3 shows the computed pressure (𝑃𝐶𝑂𝑅𝑆) time series for some of 

the CORS stations as a dashed line, while the weather station measurements are represented by 

circles on the graph. The height-corrected pressure data for CORS stations with the meteorological 

pressure data are used to calculate meteorological-based ZWD delay in the following sections. 

Because the height variations over the coastal area are small, the height corrections for the CORS 

stations located near the coast are insignificant. Figure 3-2 shows the corrected pressure for the 

CORS stations and observed pressure at their corresponding meteorological stations.  

 

Figure 3-2: Comparison of the observed pressure data with the corrected pressure for the 

height differences of sample CORS stations: Dash lines represent the corrected pressure at 

CORS stations, and continuous lines display the observed pressure at the meteorological 

stations 

 

 



46 
 

 
 

3.2. Variations in meteorological parameters during severe weather 

In addition, the meteorological measurements are interpolated using the IDW technique 

over the study area by taking into account the height differences between the metrological stations 

and their nearby CORS stations as described earlier. Figures 3-3 and 3-4 show a sample realization 

of interpolation for the pressure and temperature, respectively.  

 

Figure 3-3: Example of pressure fluctuations over the study area on selected time epoch 

during Hurricane Matthew, which hit October 7, 2016 at 9 a.m. GMT (left) and 24h later on 

October 8, 2016 at 9 a.m. GMT (right). The red hurricane symbols represent the center of 

hurricane and time of the hurricane hit as reported by the National Hurricane Center 

(NHC) 
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By analyzing the interpolated pressure data, the movement of the low-pressure system from 

Florida toward South Carolina is identified. The low-pressure system in the area causes air to 

converge, leading to condensation of water vapor and formation of the clouds and, consequently, 

precipitation. As an example, the left plot in Figure 3-3 shows the low-pressure center over the 

study area at Florida on October 7, 9 a.m. GMT, while 24h later on October 8, 9 a.m. GMT, the 

low pressure system left Florida and arrived in South Carolina. The displayed areas under the 

influence of low-pressure centers can expect generally cloudy conditions with precipitation. 

 

Figure 3-4: Example of temperature fluctuations over the study area on selected time 

epochs during Hurricane Matthew, which hit October 7, 2016 at 9 a.m. GMT (left) and 24h 

later on October 8, 2016 at 9 a.m. GMT (right). The red hurricane symbols represent the 

centers of the hurricane as reported by NHC 
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In addition to pressure, temperature plays an important role in the formation of 

precipitation. In high humidity and low temperature, the air pushes together, squeezes out water, 

and derives precipitation. Therefore, precipitation and temperature are negatively correlated, 

which indicates that the colder area does not tend to be dry and is likely affected by rain. The right 

plot in Figure 3-4 illustrates the low temperature on October 7 in Florida that is correlated to the 

low-pressure center at the same influenced area. Because the elevation differences in the study 

area are reflected in the GNSS-derived PWV values, the dependency of PWV with respect to the 

station altitude is investigated and demonstrated in Figure 3-5. As an example, the estimated PWV 

values in the five-day period from October 6–10 have been plotted with respect to the station’s 

orthometric heights. A visible decrease of PWV by increasing the altitude has been shown in the 

plot. In addition, owing to the extremely reduced atmospheric pressure and increased temperature 

range on October 7 (see Figures 3-3 and 3-4), the PWV on October 7 became larger than all other 

dates at all altitudes. A significant decrease in PWV with increasing altitude is also seen. 
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Figure 3-5: PWV changes with respect to CORS station’s height 

 

Taking the exponential relationship between the scale height and PWV, Parker et al. (2009) 

suggested normalizing the PWV based on the heights of a reference station and target stations. 

However, the altitude effect can be ignored (like in this study) if less variation in the elevation of 

the study area is observed. Figure 3-6 shows the example of the spatial distribution of PWV 

interpolated from GNSS-derived PWV by the IDW interpolation method. It can be seen that the 

highest values were recorded in the area of Florida and South Carolina during the 24h period from 

October 7, 2016 at 9 a.m. GMT to October 8, 2016 at 9 a.m. GMT. 
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Figure 3-6: PWV variations over the study area on selected time epochs during the 

Hurricane Matthew, which hit October 7, 2016 at 9 a.m. GMT (left) and 24h later on 

October 8, 2016 at 9 a.m. GMT (right). The red hurricane symbols represent the location 

and time of the hurricane center as reported by NHC 

 

As Figure 3-6 shows, the maximum PWV in the area coincides with the area influenced by 

the low-pressure system and high temperature as shown in Figures 3-3 and 3-4. This confirms the 

correlation between GNSS-derived PWV and meteorological parameters as pressure and 

temperature.  
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3.3. Spatiotemporal variations of GNSS-based PWV during severe weather  

To monitor the hurricane movement in the area, the analysis of GNSS-derived PWV over 

the area during the hurricane is performed. First, the GNSS-derived ZTD variations over time are 

presented in Figure 3-7. In all stations influenced by the hurricane, a sharp descent followed by an 

ascending trend in ZTD is identified. The PWV fluctuations time series are also presented in Figure 

3-8 referring to Florida GNSS stations including CCV6, DLND, FLBN, and ZJX1 located from 

the south to northeast part of Florida. The movement pattern of the PWV fluctuations at Florida 

stations indicates the possible occurrence of the northeast movement of the water vapor that 

corresponds to the hurricane movement from the south toward the northeast region. The increase 

of the PWV started from CCV6 around 59 mm and rapidly reached the maximum value of 61 mm 

corresponding to a period around 4 hours of increment. A similar increase can be seen in other 

Florida stations with a few hours offset. The monitoring results validated by the reported time and 

locations of the hurricane-affected areas clearly indicate a general upward trend of PWV just 

before the reported hurricane time at all stations regardless of the different level of PWV variation 

at each station. For all stations, the water vapor variation reached the highest level before the time 

of each event and then dramatically decreased during and after the event. The spatial distribution 

of PWV along the east coast shows that the highest values were on October 7–8 at Florida stations 

and on October 8–9 in South Carolina, which was well matched with the reported hurricane 

occurrence time. The highest values were recorded in the area of Florida (PWV of 0.059 m) and 

South Carolina (PWV of 0.061 m).  
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Figure 3-7: ZTD changes over Florida stations during Hurricane Matthew. A similar 

pattern of PWV fluctuation is observed at the more southern part of Florida (CCV6) 

toward the more northern part (ZJX1) 

 

Similar behaviors were observed with the gradual increase of PWV to around 0.061 m at 

GABK on October 7 (4–11 p.m.), which reached the maximum value of 0.063 m on October 8 (10 

a.m. –1 p.m.) for SCHY. Because the rain occurred a few hours after a significant PWV peak in 

the time series of PWV variations, the hurricane effects were estimated at the stations in Georgia 

and South Carolina in the morning and night of October 8, respectively. 
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Figure 3-8: GNSS-derived PWV changes over Florida stations during Hurricane Matthew. 

A similar pattern of PWV fluctuation is observed at the more southern part of Florida 

(CCV6) toward the more northern part (ZJX1) 

 

Figure 3-9 shows the pattern of time series of six CORS stations that cover the entire study 

area. It shows that the peak occurred first at GABK in Georgia and later at SCHY in South 

Carolina, indicating the movement of the atmospheric water vapor from the south to the northeast. 

By considering the peak of PWV time series for GABK and SCHY, one can see that the estimated 

PWV at SCHY is larger, indicating that the intensity of the hurricane is more significant in South 

Carolina. The presented discontinuities at some epochs in the graphs show the nonavailability of 

GNSS data for the corresponding epochs.    
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Figure 3-9: PWV fluctuations at five CORS stations located in Florida (CCV6 & ZJX1), 

Georgia (GABK), South Carolina (SCWT), and North Carolina (NCCH & NCBE) during 

Hurricane Matthew 2016 
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3.4. Meteorological patterns and GNSS-based PWV variations  

By utilizing the meteorological data during the severe weather, the simultaneous behaviors 

of PWV and other atmospheric parameters can be identified. Figure 3-10 shows that while the 

PWV increases (presented in blue bars), the pressure decreases (presented in a black line). In 

addition, humidity can be considered as another indicator of atmospheric phenomena. During the 

event of October 6–10, there was a significant decrease of maximum 8 K in temperature and 25 

hPa in pressure for all stations in Florida and North Carolina (Figures 3-10 and 3-11). Furthermore, 

the prominent changes in pressure found during the reported hurricane period, as shown in Figure 

3-10, show that a distinct decrease in pressure was observed to occur around 12 hours prior to the 

precipitation (Figures 3-10 and 3-11). The PWV was greatly increased a few hours prior to the 

most intense rainfall, and then a sharp decrease was observed a certain time after the heavy rainfall, 

as also shown by other studies (Priego et al. 2016). 
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Figure 3-10: PWV, pressure, and humidity fluctuations at ZJX1 in Florida. The dashed box 

indicates the significant change of the meteorological parameters prior to the most intense 

precipitation at ZJX1 

 

The sharp decrease in pressure (around 20 hPa), increase in humidity (reaching up to 

100%), and the increasing trend of the PWV over the ZJX1 occurred prior to the severe rainfall. It 

can be seen that the maximum PWV at ZJX1 happened at 8 p.m. on October 7, which is well 

matched with the interpreted meteorological data. Figure 3-11 presents a similar trend in one of 

the North Carolina stations, NCFF, from 12 p.m. on October 8. By considering the intense rain in 

a few hours after the obvious trend in the pressure, humidity, and PWV, the intense rainfall must 

have occurred after 12 p.m. on October 8. It also coincides with the interpreted meteorological 
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data, which indicates that the North Carolina region was affected by the severe rainfall from 4 a.m. 

on October 9.  

 

 

 

Figure 3-11: PWV, pressure, and humidity fluctuations at NCFF in North Carolina. The 

dashed box indicates the significant change of the meteorological parameters prior to the 

most intense precipitation at NCFF 
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By tracking the trace of a hurricane, it can be further extended to predict the path of the 

hurricane from the behavior of the PWV ROC (PROC), which is considered a significant indicator 

for the intensity and duration of the event. For this approach, the PROC in a one-hour interval was 

computed for two stations, ZJX1 and NCFF in Florida and North Carolina, respectively. At ZJX1 

in Florida, the maximum PROC was observed between 9 and 10 p.m. on October 8 (Figure 3-12).  

By observing the PROC for this event, the threshold of the PROC is empirically set up as 0.030 

m/h for the hurricane indicated with the red dashed line, and the associated time windows are 

marked in black dashed boxes in Figure 3-12 that match up to the actual hurricane event. Based 

on the definition for the level of hurricane intensity at each station, different thresholds may be 

applied to classify the intensity. By defining the threshold, the full time series of PROC was 

analyzed to locate all hours when that threshold was exceeded to indicate a hurricane. The 

determination of the threshold must be further investigated by considering the other meteorological 

parameters and the site characteristics, which will be the future work.  

Figure 3-12: PROC at ZJX1 in Florida during Hurricane Matthew’s lifetime  
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Figure 3-12 shows two time windows that match the highest PROC analyzing the time and 

intensity of the hurricane observed at ZJX1. It seems the most intense parts of the hurricane in the 

area occurred on October 8, when the PROC was 0.036 m/h. The represented intensive parts of 

the hurricane are generally associated with the severe precipitation’s time suggested by Figure 3-

12, indicating the probability of the most intensive precipitation on October 8 for the northern part 

of Florida. 

 

Figure 3- 13: PROC at NCFF in North Carolina during Hurricane Matthew’s lifetime 

 

From Figure 3-13, the relation between the maximum PROC and the rain intensity at NCFF 

can be observed. Figures 3-9 and 3-13 indicate a clear positive correlation between the occurrence 

time of the maximum PROC and the maximum probability of precipitations. The corresponding 

time for both the maximum PROC occurrence and the intensive rain is about 2 p.m. on October 8 

and 4 a.m.–2 p.m. on October 9, respectively. The greater magnitude of maximum PROC at NCFF 

(0.053 m/h) in comparison to the corresponding value at ZJX1 (0.036 m/h) is further evidence of 
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more intense precipitation occurring over North Carolina than Florida. Therefore, by defining the 

appropriate thresholds based on amplitude of the maximum PROC, this approach can be used to 

further prediction of time, path, and intensity of the hurricane.  

Moreover, the variation of the hurricane intensity and the prediction of its path were 

monitored based on the dynamical-statistical model using high spatiotemporal resolution GNSS 

observations. The dynamical-statistical model, which can be considered as a statistical prediction 

model, quantifies the relationship among a spatiotemporal hurricane intensification, the PROC, 

and meteorological variables. As discussed earlier, the low-pressure system, where it increases in 

humidity along with the decreased temperature, is a valuable factor for predicting the time and 

intensity of the severe rainfall. Based on the aforementioned relationships among the hurricane 

intensification, the PROC, and the meteorological parameters, a multivariate regression model is 

proposed to predict the PWV over different locations and times. 
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CHAPTER 4 

 

4. STATISTICAL MODELING OF PWV DURING HURRICANES 
 

In this chapter a novel short-term forecasting method is proposed to forecast the path of 

precipitation phenomena by retrieving precipitable water vapor in the troposphere from GNSS data 

and surface meteorological measures. 

 
4.1. Overview of statistical models for monitoring and predicting hurricanes 

Spatial variations of PWV show the transition pattern of water vapor content in the area 

affected by the hurricane. When PWV are analyzed with the local atmospheric elements, the 

formation process of a severe precipitation can be observed by assessing the correlation among 

atmospheric pressure, temperature, and PWV. A low-pressure system leads to the condensation of 

water vapor as well as formation of cloud and precipitation. In addition to the low-pressure system, 

high humidity and temperature contribute to forming the precipitation (Weining et al. 1993; 

Madden and Williams 1997). Because the PWV variation acts as an indication of the precipitation 

showing the interrelation with other atmospheric parameters, the PWV rate of change (ROC) can 

be used to observe the atmospheric variation over time. Studies have shown that the PWV greatly 

increases a few hours prior to intense rainfalls, then sharply decreases when precipitation begins 

to weaken and finally ceases (Realini et al. 2014; Priego et al. 2017; Tahami et al. 2017; Manandhar 

et al. 2018). The researchers found that 1) PWV peaks occur a few hours before the precipitation 

onset and 2) the PWV ROC sharply changes before the start of the rain in most rainfall events. 

Thus, the significant spatiotemporal variations of PWV and PWV ROC correspond to a rain event 

and can be identified as important features for short-term precipitation forecasting purposes 



62 
 

(Tahami et al. 2017; Yao et al. 2017; Manandhar et al. 2018). To improve the capability of 

forecasting the path of severe weather events, a statistical model using PWV derived from GNSS 

measurements and meteorological data is proposed (Tahami et al. 2020). As the primary input 

data, the PWV observations are obtained from GNSS data as shown in eq. 2-5. The prediction of 

PWV is derived from the PWV ROC and meteorological parameters. In eq. 3-1, the PWV at epoch 

t+1 is estimated by computing the derivatives of PWV, temperature (T), pressure (P), and relative 

humidity (RH) at epoch t. The derivative of those parameters is calculated by subtracting the 

weighted mean of measurements in a time window (e.g., 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡)—here, a one-hour window is 

used—for each parameter from the corresponding parameter at epoch t. The derivative of PWV at 

t is expressed as ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 that is referred to as PWV derivative. Owing to the nature of the 

meteorological parameters that are related to each other, the multivariate linear regression model 

is applied. In the proposed multivariate linear regression model, the PWV derivative as a 

dependent variable is described with respect to the independent explanatory variables of pressure, 

temperature, and relative humidity. Eq. 3-1 can be simplified to eq. 3-2, where the next value of 

dependent output (∆𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡+1) is regressed on the basis of the previous values of the input regressor 

(∆𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡,∆𝑃𝑃𝑡𝑡,∆𝑇𝑇𝑡𝑡,∆𝑅𝑅𝑅𝑅𝑡𝑡):  

(𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡+1) =  𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑐𝑐1�𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡� + 𝑐𝑐1�𝑃𝑃𝑡𝑡 − 𝑃𝑃𝑡𝑡� + 𝑐𝑐3�𝑇𝑇𝑡𝑡 − 𝑇𝑇𝑡𝑡� + 𝑐𝑐4�𝑅𝑅𝑅𝑅𝑡𝑡 − 𝑅𝑅𝑅𝑅𝑡𝑡�

+ 𝑒𝑒               (4 − 1) 

(∆𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡+1)= 𝑐𝑐𝑖𝑖[∆𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡,∆𝑃𝑃𝑡𝑡,∆𝑇𝑇𝑡𝑡,∆𝑅𝑅𝑅𝑅𝑡𝑡]+ e         (4 − 2) 

where  ∆𝑃𝑃𝑃𝑃𝑃𝑃 is PWV derivative, P is pressure, T is temperature, RH is relative humidity, c 

consists of regression coefficients, t is time, and e is the error term. For each prediction time 

window, the model estimates the prediction of PWV using the hourly PWV ROC and the 
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derivatives of P, T, and RH. In this study, a model with 12h and 24h lead time is presented to 

forecast PWV that is applied to predict the hurricane path for 12h and 24h forecasts. Figure 4-1 

shows the workflow.  

 

Figure 4-1: Flowchart describing the phases in prediction of severe precipitation path 

during a hurricane 

The process starts with analyzing the fluctuation of metrological data, including the 

pressure and rainfall, and GNSS-derived PWV to define the hurricane development stages. The 

PWV variations during the hurricane development stage are then used to classify the prediction 
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models, which will be explained in section 4.2. For each class of hurricane development, a 

principal component regression (PCR) model is applied to decorrelate the model parameters in a 

multiple linear regression analysis for PWV prediction. The detail will be explained in Section 4.3. 

It should be noted that the CORSs are classified to training and test datasets to be applied in the 

development and testing of the prediction model. The coefficient of the prediction models is then 

derived using PCR and the training dataset; more explanation will be given in section 4.4. The 

PCR is then applied to test the dataset, and the model’s residuals are calculated to verify the model. 

Further explanations will be provided in section 4.5. The model’s residuals are then used to track 

the hurricane path, which will be discussed in more detail in Chapter 5. 
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4.2. Classification of prediction models based on hurricane development stage      

During a hurricane, the PWV in the affected region fluctuates with varying intensity 

depending on different development stages. The rapid fluctuation of PWV is highly correlated to 

the severe rainfall and can be modeled in the dynamic statistical multivariate regression model. 

However, the PWV ROC and other atmospheric parameters behave differently at the different 

stages of the hurricane, so that the principal regression model introduced in this section should be 

tailored to each stage in the lifetime of hurricane. Therefore, the time series of PWV observations 

during a hurricane are divided into multiple classes of before, right before, during, right after, and 

after the presence of a hurricane at a PWV observing site—here, CORS—and a unique regression 

model is developed for each class. To characterize each model, the meteorological parameters and 

the PWVs from CORSs in the test site are analyzed. In the experiment, a pattern of sudden and 

sharp increments in the PWV a few hours prior to the onset of precipitation, followed by a sharp 

descending trend, was observed. Moreover, a correlation between the peaks of PWV and of a 

hurricane intensity was found. The analysis results show consistent patterns in those 

meteorological parameters in all sites for each model (Tahami et al. 2017). The results provide 

evidence that the level of PWV fluctuations can be precisely matched to the meteorological and 

geographic conditions. This clearly indicates a negative correlation between the pressure and the 

PWV peaks associated with the intense precipitation in the study area. From the findings, the PWV 

threshold is set to a range of 0.50–0.055 m, where most of the severe precipitation events occurred 

when PWV exceeded that threshold. The selection of this threshold is also supported by other 

studies conducted in different regions and different times whose authors claim that the highest 

amount of water vapor is observed typically a few hours before the heavy precipitation when the 

PWV exceeded that threshold (Tahami et al. 2017; Yao et al. 2017; Manandhar et al. 2018). From 
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the findings of previous studies, the numerical criteria of the classes for this event were determined. 

Each class is defined by applying the threshold to the GNSS-derived PWV fluctuations. Figure 4-

2 is an example (CCV6 station in Hurricane Matthew) showing the PWV, pressure, and rainfall 

with respect to the aforementioned classes of hurricane stage—before, right before, during, right 

after, and after—based on the hurricane occurrence time. 

 

Figure 4-2: Classification of model based on PWV threshold 

 

As seen in Figure 4-2, the GNSS-derived PWV stayed below 0.055m during the before 

class, which is a normal condition, and no severe rainfall was observed during that time. The 

estimated PWV continuously increased and reached the threshold in the right before class when 

an increase in PWV and decrease in pressure were observed (green symbol indicated as A in Figure 
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3-2). Therefore, the first epoch of the right before class coincides with the beginning of the rainfall. 

The PWV time series show an active, increasing pattern in the right before class. The last epoch 

of the right before class is the time when PWV exceed the threshold (green symbol indicated as B 

in Figure 4-2). It is the time when the first epoch of the during class is also defined. In the during 

class, the rainfall amounts reach their peak. Then the PWV time series dramatically decreases to 

reach the threshold where the right after class is defined (green symbol indicated as C in Figure 4-

2). It then decreases to below the threshold, while the after class is formed where rainfall begins 

to cease (green symbol indicated as D in Figure 4-2). It is evident that for this event, all severe 

precipitations happen when the PWV is fluctuating above 0.055 m. The same strategy is applied 

to the PWV time series of other stations to define the classes. After defining the classes, a unique 

regression model can be applied for each class to predict PWV in different prediction time 

windows to determine the rainfall occurrence during each class. To characterize the model, the 

training dataset for all the classes, which serve a priori information, are analyzed, and then the 

models are generalized for detecting the path of hurricane precipitation. The initial condition of 

forming the hurricane, reflected in the meteorological parameters in the 

right before class for six stations, is used to characterize the model. These stations are typically 

near the coast, where the onset of a hurricane usually happens. It should be emphasized that this 

study is specifically focused on the right before model, which is the most useful model to analyze 

the movement of a hurricane. To derive the coefficients, 𝑐𝑐𝑖𝑖, of each model in eq. 4-2, the 

representative stations are selected to generate the training datasets of the corresponding model. 

To derive the coefficient of the right before model at the specific time in the study area, six stations, 

including MTNT, OKCB, ZJX1, GAAU, SCRS, and NCKN, are selected. All of the selected 

stations in the right before model training dataset should reach the threshold in the right before 
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class at the start point of the forecast period. The meteorological and GNSS-derived PWV 

measurements at a few stations near a hurricane landfall in the area (typically near the coast) are 

required to serve as the initial information and set the prediction model that makes this method 

valid for real-world application. This approach is validated by applying the model to other 

remaining CORSs in the study area as the independent test dataset.  
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4.3. Principle component regression      

A regression model requires a preliminary analysis for identifying the relationships 

between independent variables and dependent variables to find the multicollinearity problem 

(Shirzadi Babakan et al.2015; Shirzadi Babakan  et al. 2016; Tahami et al. 2016; Tahami et 

al.2019). The multicollinearity problem occurs as a result of the presence of the correlation 

between the variables in a model. The multicollinearity can be evaluated by examining the 

correlation matrix and the variance inflation factor (VIF). The VIF identifies the correlation 

between independent variables and provides an index for the strength of correlation, that is, 

severity of existence of multicollinearity. Montgomery et al. (1992) and Adams et al. (2015) 

suggested that a VIF equal to or less than 5 indicates a moderate correlation and that a VIF greater 

than 5 implies critical levels of multicollinearity. Table 4-1 shows an example of the correlation 

coefficient among PWV, P, T, and RH over the stations in the training dataset station and for right 

before classes for our selected test event, which is Hurricane Matthew in 2016. The right before 

class is selected to be used for driving the model coefficient in this section because it is the most 

important class in the prediction of the hurricane’s development. It should be emphasized that the 

right before model is most influential for the purposes of this study to determine the rainfall path 

during the hurricane because it evaluates the conditions before the passage of the storm front.  

Table 4-1: Correlation matrix of variables 

Variables  
PWV 

 
P 

 
T 

 
RH 

PWV 1 -0.760 0.297 0.754 

P -0.760 1 -0.046 -0.719 

T 0.297 -0.046 1 -0.243 

RH 0.754 -0.719 -0.243 1 
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 Table 4-2 provides multicollinearity statistics for each variable in the model. The statistics 

include R-squared value (𝑅𝑅2); the tolerance factor, which is (1-𝑅𝑅2); and VIF, which equals the 

inverse of the tolerance factor. A high value for 𝑅𝑅2 and a VIF value greater than 5 may cause 

nonsignificant parameter estimates in the regression owing to the multicollinearity problem.  

Table 4-2: Multicolinearity statistics 

 PWV P T RH 

𝑅𝑅2 0.840 0.628 0.595 0.815 

Tolerance 0.160 0.372 0.405 0.185 

VIF 4.235 2.686 2.470 4.416 

 

As shown in Tables 4-1 and 4-2, moderate to significant correlations exist between the 

tested meteorological parameters. To avoid the multicollinearity from the suggested statistical 

model, PCR is applied, which is based on the principal component analysis (PCA). The PCA 

extracts the maximum variance of a dataset as a factor in an iterative process. The resulting factor 

represents the vector that maximizes the dispersion of the observations (Yahoodik et al.2020; 

Tahami and Fakhravar 2020). The first principal component (PC) accounts for the largest 

variability in the data, and each succeeding component accounts for the next biggest variability of 

the remaining property in the data. PCs are uncorrelated orthogonal linear functions of the original 

variables obtained by a transformation of the form (Wasimi 1990; Zuur et al. 2010): 

F = ZA           (4-3) 
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where F is a set of PCs, Z is a set of original variables, and A is a set of eigenvectors 

associated with significant eigenvalues obtained from the correlation matrix of the original 

variables (Zuur et al. 2010). In PCR, the independent variables are standardized to avoid the 

noncommensurate unit problem of the variables so that: 

 𝑍𝑍 = [𝑍𝑍𝑡𝑡𝑡𝑡]            (4-4) 

where t = 1, 2, …, n and j = 1, 2 ,…, p and 𝑍𝑍𝑡𝑡𝑡𝑡 is described as  

𝑍𝑍𝑡𝑡𝑡𝑡 =  𝑋𝑋𝑡𝑡𝑡𝑡−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑋𝑋𝑡𝑡𝑡𝑡�
𝑠𝑠𝑡𝑡𝑠𝑠 �𝑋𝑋𝑡𝑡𝑡𝑡�

              (4-5) 

where 𝑋𝑋𝑡𝑡𝑡𝑡 is ∆𝑃𝑃𝑃𝑃𝑃𝑃,∆𝑃𝑃, ∆𝑇𝑇 and ∆𝑅𝑅𝑅𝑅. The Kaiser-Meyer-Olkin (KMO) measure of sampling 

adequacy and Bartlett’s test of sphericity are used to evaluate the suitability of data for factor 

analysis. The KMO statistic indicates if each variable in a data set is predicted without error by the 

other variables. KMO can vary between 0 to 1, the higher values (close to 1.0) generally indicate 

that a factor analysis is useful with the data set. If the value is less than 0.50, the results of the 

factor analysis is unacceptable for factor analysis. Moreover, Bartlett's test of sphericity tests the 

hypothesis identifies if the correlation matrix is an identity matrix, which would indicate that the 

variables are unrelated and therefore unsuitable for factor analysis. Small values (less than 0.05) 

of the significance level (of 95%) indicate that a factor analysis is suitable for factor analsysis. 

Therefore, the significant Chi-square value at a 95% confidence level, and the KMO statistic of 

greater than 0.50 for all variables confirms that PCA is valid for further analysis of data.  In the 

next step, the eigenvalues and eigenvectors are computed from the correlation matrix of the 

standardized independent variables. 
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Table 4-3: Eigenvectors resulting from PCA 

  
𝐹𝐹1 

 
𝐹𝐹2 

 
𝐹𝐹3 

 
𝐹𝐹4 
 

∆𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 0.588 0.236 0.354 0.088 

∆𝑃𝑃𝑡𝑡 -0.575 0.004 0.815 0.071 

∆𝑇𝑇𝑡𝑡  0.342 0.921 0.030 -0.082 

∆𝑅𝑅𝑅𝑅  0.568 -0.309 0.235 -0.013 

 

Table 4-3 shows the correlation among the meteorological variables in Table 4-1 and their 

PCs (F1–F4). Clearly, the first PC is substantially correlated with PWV, pressure, and relative 

humidity. The second and third components are correlated with temperature and pressure, 

respectively. However, the fourth PC is moderately not correlated with the explanatory variables. 

The contribution of each factor to the total variability of the dataset is shown in Table 4-4.  

           Table 4-4: Eigenvalues explain most of the variability in data 

 𝐹𝐹1 𝐹𝐹2 𝐹𝐹3 𝐹𝐹4 

Eigenvalue 2.491 1.157 0.266 0.085 

Variability (%) 62.282 28.935 6.662 2.121 

Cumulative % 62.282 91.217 97.879 100.000 

 

This demonstrates that the first PC (𝐹𝐹1) accounts for 62.28% of the system variance, while 

the second (𝐹𝐹2), third (𝐹𝐹3), and fourth (𝐹𝐹4) components account for 28.93%, 6.66%, and 2.12%, 

respectively. Because reduction of dimensionality is a goal of PCA, several criteria have been 

applied for determining the proper number of PCs that should be kept in the analysis. Kaiser (1960) 
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proposed dropping components whose eigenvalues are less than one because these provide less 

information than is provided by a single variable. Jolliffe (1972) suggested using a cutoff on the 

eigenvalues of 0.7 when correlation matrices are analyzed. Other authors noted that if the largest 

eigenvalue is close to one, then holding to a cutoff of one may cause useful components to be 

dropped. However, if the largest components are several times larger than one, then those near one 

may be reasonably dropped. Another criterion is to preset a certain percentage of the variation that 

must be accounted for and then keep enough components so that this variation is achieved 

(reference: NCSS Chapter 425). For this case study, the total percentage that explains variation is 

set to larger than 95%. Therefore, all PCs up to a predetermined total percentage of explained 

variation should be included, and the remaining components should be ignored in the analysis. 

Therefore, based on the contribution of each component in the dataset and factor loadings of PCs, 

the first three PCs were chosen for the PCR. The selected PCs explain more than 97% of the 

variance. The regression model is then described as:  

y = Fb + e           (4-6) 

where y is a dependent variable, F represents PCs, b is the regression coefficients to be estimated, 

and e indicates an error term.  
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4.4. Model parametrization    

The PCR model in eq. (4-6) generates the set of coefficients for the PCs. The set of 

regression coefficients shown as b vector in eq. (4-6) as well as the ‘t’ statistic for each coefficient 

are provided in Table 4-5. A t-test and the corresponding p-values are performed to test a null 

hypothesis and evaluate the significance of each component in the regression model. The null 

hypothesis is that the regression equation does not explain the significant variation of a dependent 

variable; that is, the regression coefficients are equal to zero. The p-values are compared with a 

significance level (0.05 in this study) to evaluate the null hypothesis. If the p-value for a variable 

is less than the significance level, the null hypothesis will be rejected. 

Table 4-5: Principal component regression coefficients 

  
VALUE 

 
STANDARD 

ERROR 

 
T-TEST 

 
Pr 
 

𝑏𝑏1 0.928 0.004 207.867 < 0.0001 

𝑏𝑏2 0.254 0.003 56.882 < 0.0001 

𝑏𝑏3 0.183 0.004 40.866 < 0.0001 

 

Based on the t-test values and their corresponding p-values, and given the significance level 

of 5%, the information brought by the following variables is statistically significant and provides 

significant information to explain the variability of the dependent variable (PWV). When the 

nonzero regression coefficients are statistically significant, the calculated coefficients can be used 

to form a PCR model. By applying the derived coefficients to each factor in eq. (3-6), the final 

model is described as follows: 

https://statisticsbyjim.com/glossary/significance-level/
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               ∆𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡+1 = 𝑏𝑏1(𝐹𝐹1) + 𝑏𝑏2(𝐹𝐹2) + 𝑏𝑏3(𝐹𝐹3) +  𝑒𝑒         (4-7) 

To validate the model, two statistical tests, including a normality test and evaluation of 

residuals’ autocorrelation, are performed. Though the normal distribution of independent variables 

is not essential to perform PCR, the normality of PCR residuals is a critical requirement for the 

ability to use the standard critical value for statistics tests such as t- and F-test. Moreover, 

autocorrelated PWV residuals lead regression coefficients to be statistically insignificant and make 

statistic tests unreliable. Therefore, the normality test and autocorrelation function are used to 

evaluate the conditions of normal distribution and detection of autocorrelation respectively. The 

proposed statistical model quantifies the relationship between the predicted PWV ROC and 

meteorological variables. The model is further extended to predict the path of the hurricane by 

utilizing the behavior of the PWV ROC as a significant indicator of predicting different intensity 

and duration of the event.  
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4.5. Validation of the prediction model 

For each class in the hurricane development phases represented in Figure 4-2, the derived 

coefficients from the training dataset are applied to all other CORSs in the independent test dataset 

to compute the residuals of the models. The reliability of the prediction model is validated by 

calculating the residuals of the PWV measurements for each model. As an example for the chosen 

case study, Hurricane Matthew in 2016, the coefficients derived for each class from the training 

dataset are applied to a CORS in Florida, CCV6, to predict PWV for each class for CCV6. Figure 

4-3 depicts the predicted PWV at CCV6 over the period of October 5–12, 2016 and the 

corresponding residuals using a one-hour prediction model for all classes of event. The bottom 

panel in Figure 4-3 shows that the residuals of the predicted PWV from the estimated PWV are 

generally extremely low. The amplitude of the residuals is about 5–10% of the amplitudes of the 

corresponding PWV. A significant rise in the residual is found at the after class, possibly owing 

to the fact that the prediction models are derived based on the PWV fluctuation during the rainfall 

so that they are not sensitive to non-rain scenarios such as the after rain event. Moreover, the 

maximum residuals are within the first or last epochs of the corresponding class in each model 

except the after class. This is because of the transition from one model to another. 
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Figure 4-3: Prediction models and the corresponding residuals for CCV6 during October 5–

12, 2016; the top panel shows the models in different colors that are mapped over the actual 

PWV time series (black line), and the blue bars represent the recorded actual rainfall on the 

station for the mentioned period; the bottom panel shows the residuals of observations with 

respect to each model 

 

 

The demonstrated statistical model for predicting PWV can then be used to obtain the 

temporal variation of PWV at a particular site. By observing the temporal variation of PWV at 

multiple sites simultaneously, the spatial variation of PWV at a certain epoch can be monitored 

and analyzed to be applied to forecast the path of a severe weather event, which will be described 

in Chapter 5. 
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CHAPTER 5 

 

5. EXPERIMENTS AND RESULTS 

Based on the relationship among GNSS-derived PWV ROC and other atmospheric 

parameters, which are pressure, temperature, and relative humidity, a short-term forecasting 

method was established in Chapter 4. From the model, the temporal variation of PWV at a 

particular site can be obtained. By observing the temporal variation of PWV at multiple sites 

simultaneously, the spatial variation of PWV at a certain epoch can be monitored, and the residuals 

of PWV from the model are analyzed. In Chapter 4, four PWV prediction models were introduced 

and defined as a different stage of precipitations. For each model, PWV measurements are 

compared and the residuals are computed, namely PWV residuals. The site with the minimum 

residuals for each prediction model site indicates the location of best fit to the actual observations 

on the specific time window. The PWV residual can be applied to forecast the spatial movement 

of a severe weather event, such as a hurricane. The distribution pattern and the magnitude of the 

PWV residual to the prediction model can be applied for determining the direction of the hurricane 

path. The distribution pattern of minimum PWV residuals is demonstrated by forming clusters in 

the local area and is used for determination of precipitation path during the hurricane. Moreover, 

a full analysis of several hurricane categories is performed in this chapter to support the use of 

GNSS-derived PWV for prediction of the track and intensity of a hurricane accompanied with 

different levels of precipitation. For each case study, the coefficients of a right before model are 

derived as described in Chapter 4 to predict PWV. The residuals of PWV for the right before model 

are utilized for forecasting hurricane-induced precipitation.  
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5.1. Description of case studies   

To validate the suggested methodology in Chapter 4, four major hurricane events in 2016–

2018 were selected. In selection of the case studies the following factors were considered to be 

evaluated, 1) how different climate characteristics at different locations can affect the prediction 

results from the proposed methodology, 2) how effective is the proposed methodology by 

comparison of the case studies occurred at the same location and similar climate characteristics 

but in different times, and 3) how the proposed methodology can respond to different severity of 

the storm. The case studies are listed as follows: 

 

Case 1: Hurricane Matthew in October 2016 

Hurricane Matthew is one of the most destructive and long-lived hurricanes in the United 

States. Hurricane Matthew’s path caused substantial damage in the US during October 2016. The 

major landfalls in the United States were along the coasts of Florida, South Carolina, and North 

Carolina. Overall, 585 direct deaths were attributed to Hurricane Matthew, with more than 500 

deaths occurring in Haiti, making Matthew the deadliest Atlantic hurricane since Hurricane Stan 

in 2005 (NHC Hurricane Matthew report 2017). On October 5–7, 2016, Hurricane Matthew made 

landfall on the east coast of Florida and was designated as a Category 4. On October 7, Hurricane 

Matthew’s center moved along the Florida coast, but it remained offshore and was designated a 

Category 2. On the same day, some parts of Georgia experienced significant flooding as Hurricane 

Matthew’s eye traveled northward off the state’s coast. During October 8, the eye of Hurricane 

Matthew approached South Carolina, causing massive flooding in that area as the storm weakened 

to a Category 1. Then it passed through North Carolina, resulting in severe rainfall. On October 9, 

Matthew moved from the US east coast and traveled toward the Atlantic Ocean; hence it is 
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recorded as a post-tropical storm. The effects of Hurricane Matthew on October 10, observed along 

the North Carolina border.  

To retrieve the PWV from GNSS data, a network of thirty-eight Continuously Operating 

Reference Stations (CORS)s was formed that are regionally distributed along the coasts of Florida, 

Georgia, and South and North Carolina, and the seven days (October 5–11, 2016) of CORS 

observations were processed. The PWV was retrieved by proceesing only GPS observations.  

Fourteen weather stations close to the CORS stations were utilized for this experiment, providing 

three meteorological parameters: pressure, temperature, and relative humidity. The average 

interstation distance in the test site is 120 km. The temporal resolution of the GNSS-derived PWV 

and the meteorological parameters are 5 and 60 minutes, respectively. To jointly process the GNSS 

data and the meteorological data for the statistical analysis, the meteorological data are temporally 

interpolated at every 5 minutes. Figure 5-1 shows the geographical distribution of the GNSS CORS 

and meteorological stations over the study area. It should be noted that for all case studies the 

number of CORS or weather stations in the area is more than the represented stations in the figure. 

The represented stations were selected based on data availability during the time of case studies. 

The figure also indicates the severity of the hurricane and the corresponding location with the time 

tag with the format of reported time in yyyymmddhh. The reported path and associated hurricane 

time are based on the reported data from the NHC (https://www.nhc.noaa.gov/gis/). The storm 

severity scale shown in Figure 5-1 and other figures in this chapter varies among 0, 1, 2, 3, and 4, 

and each scale is assigned to a different storm type. The storm scale of 0 is defined for the tropical 

storms, and scales of 1, 2, 3, and 4 represent the hurricane categories 1, 2, 3, and 4, respectively. 

The Saffir-Simpson Hurricane Wind Scale is generally used for hurricane classification based on 

the hurricane’s intensity at the indicated time (Pielke et al. 2008). 

https://www.nhc.noaa.gov/gis/


81 
 

 
 

 

 

             

Figure 5-1: The representation of Hurricane Matthew’s path and geographic distribution of 

stations over the study area 
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Case 2: Hurricane Harvey in August–September 2017 

Hurricane Harvey started as a typical weak August tropical storm that affected the Lesser 

Antilles and dissipated over the central Caribbean Sea. However, after reforming over the Bay of 

Campeche, Harvey rapidly intensified into a category 4 hurricane (on the Saffir-Simpson 

Hurricane Wind Scale) before making landfall along the middle Texas coast (NHC Tropical 

Cyclone Report 2017). The storm then stalled, with its center over or near the Texas coast for four 

days, dropping historic amounts of rainfall of more than 60 inches over southeastern Texas. The 

rains caused catastrophic flooding, and Harvey is the second most costly hurricane in US history, 

after accounting for inflation, behind only Katrina (2005) (NHC Tropical Cyclone Report 2017). 

Hurricanes reaching Category 3 and higher are considered major hurricanes because of their 

potential for significant loss of life and damage. Category 1 and 2 storms are still dangerous, 

however, and require preventative measures. To investigate the GNSS-derived PWV during the 

selected event, 10-day (August 23–31, 2017) observations of selected CORS were used to track 

the path of the hurricane. In this study, a network is formulated, which consists of twenty two 

CORS stations and seventeen meteorological stations. The nearby weather stations to the CORS 

stations were utilized for this experiment to provide meteorological parameters in one hour of 

temporal resolution as described in Case 1. The GNSS and meteorological stations were selected 

based on the data availability between August 23 and 31, 2017, including the event period covering 

a few days before, during, and after the severe hurricane event. Figure 5-2 shows the geographical 

distribution of the GNSS CORS and meteorological stations and the hurricane’s path over the 

study area.  
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Figure 5-2: The representation of Hurricane Harvey’s path and geographic distribution of 

stations over the study 
 

Case 3: Hurricane Irma in August–September 2017 

Irma was a long-lived Cape Verde hurricane that reached category 5 intensity on the Saffir-

Simpson Hurricane Wind Scale. The catastrophic hurricane made seven landfalls, four of which 

occurred as a category 5 hurricane across the northern Caribbean Islands. Irma made landfall as a 

category 4 hurricane in the Florida Keys and struck southwestern Florida at category 3 intensity. 

Irma caused widespread devastation across the affected areas and was one of the strongest and 

costliest hurricanes on record in the Atlantic basin. The distribution of the CORS and 

meteorological stations, the hurricane’s path, and rainfall map over the study area are presented in 

Figure 5-3. The data selected covered September 8–15, 2017, to include a few days before, during, 
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and after the hurricane event. Although some parts of the study area affected by Hurricanes 

Mathew and Irma are similar, covering certain parts of Florida and Georgia, the distribution of 

CORS stations is different in each study area. This is explained by 1) the GNSS data availability 

during each hurricane’s lifetime and 2) the different direction of the hurricanes’ development 

inside the land. The direction of the hurricane’s development changed from the northeast direction 

in Hurricane Matthew to the northwest direction in Hurricane Irma. Therefore, some CORS 

stations are selected differently in the case of Hurricanes Harvey and Mathew to ensure that the 

CORS stations with available observations cover the area along with the hurricanes’ path. 
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Figure 5-3: The representation of Hurricane Irma’s path and geographic distribution of stations 

over the study area 

 

Case 4: Hurricane Florence in August–September 2018 

Hurricane Florence was a long-lived Cape Verde hurricane and the wettest tropical 

cyclone on record in the Carolinas. Florence became a tropical depression near Cape Verde on  

August 31 and progressed west-northwest, becoming a tropical storm on September 1. Florence 

strengthened rapidly on September 4–5, becoming a Category 4 storm on the Saffir-Simpson wind 
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scale. Florence weakened to a tropical storm by September 7, but the system regained hurricane 

strength on September 9 and attained major hurricane status with winds of 140 mph on September 

10. By the evening of September 13, Florence had been downgraded to a Category 1 hurricane. 

Hurricane Florence made landfall near Wrightsville Beach early on September 14 and weakened 

further as it slowly moved inland. Florence produced extensive wind damage along the North 

Carolina coast from Cape Lookout across Carteret, Onslow, Pender, and New Hanover counties. 

The historic legacy of Hurricane Florence was a record-breaking storm surge of 9–13 feet and 

devastating rainfall of 20–30 inches, which produced catastrophic and life-threatening flooding. 

To study the Florence hurricane, seventeen CORS covering the landfall area were selected 

during September 12–19, 2018. Figure 5-4 shows the distribution of CORS and weather stations 

as well as hurricane’s path over the study area.  
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Figure 5-4: The representation of Hurricane Florence’s path and geographic distribution of 

stations over the study area 
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5.2. Experiments: Spatiotemporal analysis of PWV for predicting hurricane 

paths    

In this section the methodology described in Chapter 4 is applied to the aforementioned 

case studies, and the experiment results are presented.   

Hurricane Matthew 

To investigate the PWV responses to the storm front, the PWV residuals of right before 

and right after models are derived for all stations in the study area for each hurricane case. Figures 

5-5 and 5-6 present the residuals of PWV for a one-hour prediction model for Hurricane Matthew. 

Figure 5-5 shows the PWV residuals for a right before model when the rain event approached 

Florida during Hurricane Matthew, and Figure 5-6 shows the PWV residual for a right after model 

when the rain event passed that area. In Figure 5-6, the increase of residuals at Florida stations 

corresponds to the time period when the extinction of the convective storm in the area was 

observed.  
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Figure 5-5: Distribution of actual PWV and the residuals for the right before model on 

October 7 at 11 a.m. over the area corresponding to Hurricane Matthew. The red hurricane 

mark shows the actual reported time and location of the hurricane eye provided by NHC 
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Figure 5-6: Distribution of actual PWV and the residuals for the right after model on October 8 at 

12 p.m. over the area corresponding to Hurricane Matthew. The red hurricane mark shows the 

actual reported time and location of the hurricane eye provided by NHC 

 

 

The experimental results in both prediction models show the distribution pattern of the 

residual bars, the magnitude, and the actual observed PWV in the region. They also show that the 

location of the minimum residuals along the hurricane days agree with the observed rain pattern, 

which is used for prediction of the hurricane path. The smaller residual appeared a few hours before 

the hurricane passage, demonstrating a higher concentration of the rainfall in the area of the right 

before model. In this model, the larger residuals corresponded to either 1) the area not yet affected 
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by the hurricane or 2) the area where rain ceases; that is, the area with smaller residuals can be 

considered as a probable area to be affected by a hurricane.  

Table 5-1 presents the statistics for the residual of the observed PWV of the right before 

model over different time lags at CCV6 for Hurricane Matthew. Because the right before model 

is most influential for determining the hurricane path by evaluating the condition before the 

passage of the storm front, this study is mostly focused on this prediction model.  

The hurricane path can be determined by observing the predictions of PWV at multiple 

sites in different directions. The stations with the minimum residuals of the right before model can 

be considered as an indicator for the most probable region to be affected by the hurricane. The 

residuals of the right before model at those sites are compared for the prediction time lags of 1–24 

hours over the study area.      

 

 

 

 

Considering the uncertainty from the measurement noise and other error sources in the 

GNSS-derived PWV, the residual PWV at multiple sites are evaluated within the grids of 200×200 

𝑘𝑘𝑘𝑘2 in the test area. The grid size was determined based on the area of the test site and the 

geometric distribution of available CORS. Figure 5-7 presents the residuals to the right before 

models at the stations in the Hurricane Matthew study area for 12-hour and 24-hour forecasts in 

Figures 5-7 (a) and 5-7 (b), respectively. In Figure 5-7, each cell is wide enough to cover multiple 

Table 5-1: Residuals for the prediction model (right before the hurricane) in 
prediction time lags (unit: mm) 

  
1h 

 
6h 

 
12h 

 
24h 

 
Mean 4 3 3 3 

Standard deviation 0.01 0.09 0.01 0.01 
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CORSs, which reduces the risk of failure or error of a particular station. Furthermore, the cell is 

small enough to distinguish the directions of potential paths of hurricanes. The optimization of 

grid size determination based on the distance between available CORS as well as the area coverage 

is left for the future. Unlike the conventional method of NHC forecast, which provides the different 

size of probability circles for the location of hurricane eyes, our proposed approach indicates the 

most probable cell for the hurricane path with the mean and standard deviation of the model 

residuals. 

 

Figure 5-7: Predicted residuals over the study area by applying prediction model to CCV6 

at Hurricane Matthew on October 7, 2016. The hurricane hit the area close to CCV6 on 

October 7 at 9 a.m. GMT. The red hurricane mark shows the reported time and location of 

the hurricane provided by NHC. The red curve shows the reported hurricane path. Red 

grids show the stations that fall into the hurricane’s path, and black grids show the stations 

located outside the hurricane’s eye. The residuals correspond to the right before model in 1h 

and 24h time prediction lead time in the left panel and right panel, respectively 
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CCV6 is located at the area where Hurricane Matthew landed at around 9 a.m. on October 

7. The right before model is applied to CCV6 station, and the residuals for different time lag 

intervals are shown in the figures. The hurricane’s path is determined based on the direction of 

grids containing the sites with the smallest residuals among all grids. Figure 5-7 (a) shows the 

observational residuals of the right before model on CCV6 station in the 12h prediction time lag. 

The red line in figures is the reported path during the hurricane’s lifespan from NHC. The reported 

time of the hurricane’s eye along this path is presented in Fig 5-1.  

Based on the residuals, two types of grid clusters of stations are specified. The grid cluster 

in red indicates the stations with the lowest residuals, while the other cluster in the black grid 

contains the stations with the higher rate of residuals. By comparing the average residuals within 

each grid, the hurricane path can be predicted in each time frame. The observations from 9–10 

a.m. on October 7 are then used in a 24h prediction time lag to predict the path. As shown in Figure 

5-7 (b), the cluster with the minimum residual determining the path of hurricane-induced 

precipitation is moving toward the northeast 24 hours after the reference time. Moreover, the 

residuals within the corresponding cluster can also be used to investigate the intensity of rainfall 

in the hurricane’s path. For instance, among the stations in Figure 5-7 (a), ZJX1 in the red grid 

represents the lowest residual. This means that after a 12-hour time lag (9 p.m. on October 7), 

ZJX1 station will be hit more severely by the hurricane than the other stations in the study area. 

The same strategy is applied for the 24-hour prediction time lag showing the hurricane’s movement 

toward South Carolina and North Carolina on 9 a.m. on October 8. The numerical comparisons of 

prediction residuals for the grids located inside and outside of the hurricane are provided in Figures 

5-8 (a) and 5-8 (b), respectively. 
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Figure 5-8: Residuals and their standard deviation in parentheses (in mm) for the grids 

inside Hurricane Matthew (red cell) and outside Hurricane Matthew (white cell). The 

results in the left panel (Figure 5-8 [a]) and right panel (Figure 5-8 [b]) are attributed to the 

right before prediction model at 9 a.m. on October 7, 2016 (reference time) to predict the 

PWV after 12h and 24h from the reference time, respectively 

As shown in Figure 5-8, the characteristic PWV residual in each cell plays a role as a 

forecast indicator to predict the path of the hurricane and its relative intensity at different prediction 

time windows. Regarding the prediction of precipitation’s relative intensity, comparing the 

magnitude of residuals shows that the stations with the lower residuals within that grid show the 

more severe areas of precipitation during the hurricane. The experimental results shown in Figures 

5-7 and 5-8 indicate a sequence of rapidly predicted PWV residual decrements for each station, 

starting from Florida at 9 a.m. GMT October 7 and reaching South and North Carolina after 24 

hours at 9 a.m. on October 8; our experimental result is confirmed by the reported hurricane path 

in Figure 5-1. Because different hurricanes have their own characteristics, the proposed method 

was applied to the other hurricane case studies to investigate the versatility of the model with 

consideration of individual characteristics of each hurricane. The following are the experimental 

results for Hurricanes Harvey, Irma, and Florence. Two time lags for the right before prediction 
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model were chosen, which were 12 hours and 24 hours in each experiment. To verify the predicted 

path of precipitation during the hurricane events, radar base reflectivity images from Doppler radar 

were used to demonstrate the precipitation distribution and its intensity at the selected prediction 

time. In the base reflectivity image, the radar is located in the center of the image, and the colors 

represent the strength of returned energy to the radar expressed in values of decibels (dBZ). As 

dBZ values increase, so does the intensity of the rainfall. When the radar is in precipitation mode, 

the scale represents dBZ values from 5–75. The scale of dBZ values is also related to the intensity 

of rainfall. Typically, light rain is occurring when the dBZ value reaches 20. The higher the dBZ, 

the stronger the rain rate.  

Hurricane Harvey 

To assess the performance of the right before prediction model, it was applied to the 

Hurricane Harvey study area, which has different geographic features and climate properties in 

comparison to Hurricane Matthew. Figures 5-9 (a) and (b) demonstrate the distribution of the 

residuals for the right before model at 12h and 24h prediction time lags, respectively. For both 

prediction cases, the observations on August 25, 2017 at 6 p.m. were used as the observation of 

the reference time to predict the precipitation path. Numerical comparison of prediction residuals 

over the study is shown in Figure 5-9. In Figures 5-9 and 5-10, the red grids containing the 

minimum residuals projected the most probable location of the severe precipitation 12h and 24h 

later than the reference time at 8 a.m. on August 25 and 6 p.m. on August 26, respectively.  
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Figure 5-9: Distribution of the prediction residuals related to Hurricane Harvey over the 

study area. Hurricane Harvey hit the ocean on August 25, 2017 at 6 p.m. (reference time). 

The residuals corresponding to the right before model 12h and 24h later than the reference 
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time are shown in the upper panel (Figure 5-9 [a]) and lower panel (Figure 5-9 [b] 

respectively). The red mark shows the time and location of the hurricane reported by NHC 

 

 

Figure 5-10: Residuals and their standard deviation in parentheses (in mm) for the grids 

inside Hurricane Harvey (red cell) and outside Hurricane Harvey (white cell). The results in 

the left panel (Figure 5-10 [a]) and right panel (Figure 5-10 [b]) are attributed to the right 

before prediction model at 6 p.m. on August 25, 2017 (reference time) to predict the PWV 

after 12h and 24h from the reference time, respectively 

 

As Figure 5-10 (b) shows, the predicted path of precipitation is toward the northeast of the 

reference hurricane’s center after 24h from the reference time, while at the same time the NHC-

reported center of the hurricane is toward the northwest of the reference hurricane’s center. The 

difference between the predicted path from the right before model and the location reported by 

NHC is ascribed to the fact that the proposed prediction model is aimed at predicting the most 

intense rainfall and is sensitive to the presence of water vapor content in the area, while the NHC-

forecast models are mostly reliant on the presence of wind. In addition, the storm scale was 

downgraded from hurricane scale 1 at the reference time to a tropical storm at the prediction time 

(NHC Hurricane Harvey report 2017). This shows that while the storm intensity was downgraded 
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after 24h from the reference time, the severe precipitation existing in the area can still be predicted 

by the prediction model. However, the NHC-reported center of the hurricane did not project the 

location of the severe precipitation because the Saffir-Simpson scale does not account for rainfall 

levels or storm surges, and those factors have a direct impact on rainfall prediction. Figure 5-11 

illustrates the most probable path of precipitation derived from the right before model along with 

the radar reflectivity base image and NHC-reported predicted hurricane path. Comparing the 

previous results with the radar reflectivity images shows the correlation between the amplitude of 

the predicted residual and the intensity of the rainfall reflected by the radar images. This is because 

both figures show that the grids with the minimum residuals are located in the area with the most 

intense rainfall according to radar images. 
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Figure 5-11: Most probable precipitation path during Hurricane Harvey. Hurricane 

Harvey hit the ocean on August 25, 2017 at 6 p.m. GMT (reference time). The results in the 

upper figure (Figure 5-11 [a]) and lower figure (Figure 5-11 [b]) are attributed to the right 

before prediction model at the reference time to predict the precipitation path after 12h  

and 24h from the reference time, respectively. The red mark shows the reported time and 

location of the hurricane provided by NHC. Radar reflectivity shows the precipitation over 

the area at the prediction time   

 

Figure 5-12 demonstrates the observed PWV during Hurricane Harvey. According to the 

reported hurricane path in Figure 5-2, TXCC and TXCU are the CORSs in the most intense area 

of the hurricane with the storm severity scale of 4 denoting hurricane category 4, while the storms 

affecting DWL1, CALC, and LSUA are considered tropical storms with storm severity of zero. 

TXLR is one of the stations outside the hurricane path. The analysis of CORS GNSS time series 

shows that the lowest amount of PWV during the observation time is associated with the CORSs 
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located away from the hurricane path (TXLR). Moreover, the PWV fluctuation above the applied 

threshold (red line in the figure) shows the consistent pattern over time for the stations close to the 

hurricane eye. In this figure, for all the stations excluding TXLR and LSUA, the PWV fluctuates 

consistently during August 26, 2017. PWV variation above the threshold during this time is the 

rainfall indicator at the corresponding time for these stations, as also shown in Figures 5-10 and 5-

11.   

 

 

Figure 5-12: Observed PWV variations during Hurricane Harvey over the study area. Time 

series are associated with selected GNSS CORS inside and outside the hurricane’s path. 

The red dashed line shows the applied threshold for the PWV forecast, which is set to 55 

mm for the Hurricane Harvey case study 
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Hurricane Irma 

The performance of the prediction model was also evaluated with the Hurricane Irma case 

study. For this evaluation, the prediction results for Hurricane Irma can be compared to Hurricane 

Mathew owing to the similarity of geographic and climate characteristics of the affected areas in 

both case studies, although the hurricanes occurred in different years. Hurricane Irma hit the area 

close to NAPL on September 10, 2017 at 6 p.m., which was set as the reference time. The right 

before model is applied to the stations in the Hurricane Irma case study to forecast the precipitation 

path for 12h and 24h later than the reference time. Figures 5-13 (a) and 5-13 (b) show the 

distribution of the prediction residuals for 12h and 24h forecast times, respectively. Figure 5-13 

(a) shows that after 12h from the reference time, at 6 a.m. on September 11, 2017, most of the 

stations in Florida reflect the high intensity of precipitation because of the low amplitude of the 

prediction residuals. However, the lowest residuals are distributed in the northern part of the 

reference point, showing that the most severe precipitation path is toward western Florida. On the 

other hand, after 24h from the reference time, the majority of the stations reflect the higher 

magnitude of the prediction residuals, showing that the precipitation intensity decreases over time. 

Comparing the magnitude of residuals in Figure 5-13 (b) shows that the intense part of 

precipitation exits Florida and enters northwest neighboring states 24h later than the reference time 

at 6 p.m. on September 11, 2017.  
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Figure 5-13: Predicted residuals over the study area corresponding to the right before model 

in 12h and 24h prediction lead time in the left panel (Figure 5-13 [a]) and right panel 

(Figure 5-13 [b]) respectively. Hurricane Irma hit the area close to NAPL on September 10, 

2017 at 6 p.m. GMT. The red mark shows the reported time and location of the hurricane 

provided by NHC 

 
 

The magnitude of the prediction residuals for the right before model is shown in Figures 

5-14(a) and 5-14(b) for 12h and 24h later than the reference time. The clustered minimum residuals 

projected in the red grids indicate that the precipitation path during Hurricane Irma is toward the 

north and northwest of the reference point for 12h and 24h forecast times, respectively.  
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Figure 5- 14: Residuals and their standard deviation in parentheses (in mm) for the grids 

inside Hurricane Irma (red cell) and outside Hurricane Irma (white cell). The results in the 

left panel (Figure 5-14 [a]) and right panel (Figure 5-14 [b]) are attributed to the right 

before prediction model at 6 p.m. GMT on October 10, 2017 (reference time) to predict the 

PWV after 12h and 24h from the reference time, respectively 

 

Figure 5-15(a) shows that, though the clustered minimum residuals during Hurricane Irma 

(red grids) reflect the most probable location hit by the hurricane 12h later than the reference time, 

the amplitude of the distributed residuals projects the severity of the rainfall along the predicted 

path, which is similar to what radar images reflect as the rainfall intensity.  
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Figure 5-15: The most probable precipitation path during Hurricane Irma. Hurricane Irma 

hit the area close to NAPL on September 10, 2017 at 6 p.m. GMT (reference time). The 

results in the left figure (Figure 5-15 [a]) and right figure (Figure 5-15 [b]) are attributed to 

the right before prediction model at the reference time to predict the precipitation path 

after 12h and 24h from the reference time, respectively. The red mark shows the reported 

time and location of the hurricane provided by NHC. Radar reflectivity shows the 

precipitation over the area at the prediction time 

 

The time series of observed PWV variation during Hurricane Irma are presented in Figure 

5-16. The maximum PWV values are observed with a similar trend at the stations close to the 

hurricane’s path, including NAPL and ZEFR. During September 10–11 2017, the maximum PWV 

are observed at NAPL and then reach ZEFR, showing the precipitation path is from NAPL toward 

ZEFR. In addition, compared to ZEFR, the PWV values at NAPL are higher, showing more intense 

rainfall for this station. During that time, PWV values at TALH, CRST, and COLA are fluctuating 
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below the threshold, showing that these two stations will not be affected by severe rainfall as also 

shown by Figure 5-15. 

 

Figure 5-16: Observed PWV variations during Hurricane Irma over the study area. Time 

series are associated with selected GNSS CORS inside and outside the hurricane’s path. 

The red dashed line shows the applied threshold for PWV forecast, which is set to 55 mm 

for the Hurricane Harvey case study 

 

Hurricane Florence 

The prediction model was also tested for Hurricane Florence, which occurred in 2018. The 

importance of this case study is that many of the weather prediction models failed to forecast the 

hurricane’s intensity as Florence approached the coastline. As Florence approached the East Coast, 

it was downgraded, which meant that at landfall in North Carolina it was declared a Category 1 
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hurricane, while at an earlier stage, it was predicted as a Category 5 hurricane by meteorologists. 

There is no classification stronger than a Category 5, but because hurricane categories are based 

mostly on wind speed, they do not reflect the precipitation level in the affected area. Wind speed 

can fluctuate as hurricanes travel, and storms like Florence ultimately tend to weaken as they pass 

over land, but that does not guarantee freedom from life-threatening flooding caused by severe 

precipitation. Therefore, in this case study, the performance of the prediction model proposed in 

this study is compared to the forecast results derived from hurricane forecast models to reveal the 

strength of the prediction model for reflecting the path of severe precipitation. To apply the right 

before model, the reference time was set to September 14, 2018 at 6 a.m. GMT when Hurricane 

Florence made its way toward the coast of the Carolinas. Prediction time lags of 12h and 24h are 

applied to determine the precipitation path for 12h and 24h later than the reference time. Figures 

5-17 (a) and 5-17 (b) demonstrate the prediction results using the right before prediction model 

corresponding to 12h and 24h prediction time lags, respectively. Figures 5-18 (a) and 5-18 (b) 

represent the magnitude of the residuals for the corresponding models. 

 

https://www.nytimes.com/2017/09/06/us/hurricane-irma-category-six.html
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Figure 5-17: Predicted residuals related to Hurricane Florence over the study area 

corresponding to the right before model in 12h and 24h prediction lead times in the upper 

panel (Figure 5-17 [a]) and lower panel (Figure 5-17 [b]), respectively. Hurricane Florence 

hit the ocean on September 14, 2018 at 6 a.m. GMT. The red mark shows the reported time 

and location of the hurricane provided by NHC 
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As Figure 5-17 (a) shows, the severe precipitation path is toward North Carolina after 12h 

from the reference time. Figure 5-17 (b) shows that after 24h from the reference time, while large 

portions of North Carolina still experience intense rainfall, the storm also affects the South 

Carolina coastline with severe precipitation. Figures 5-18 (a) and 5-18 (b) show the numerical 

comparison of the magnitude of the prediction models’ residuals. Comparing the location of red 

cells and corresponding magnitude of the residuals in these figures reveals that even after 24h from 

the reference time, almost exactly the same area is affected by severe precipitation with almost the 

same intensity.   

 

 

Figure 5-18: Residuals and their standard deviation in parenthesis (in mm) for the grids 

inside Hurricane Florence (red cell) and outside Hurricane Florence (white cell). The results 

in the left panel (Figure 5-18 [a]) and right panel (Figure 5-18 [b]) are attributed to the right 

before prediction model at 6 a.m. GMT on September 14, 2018 (reference time) to predict 

the PWV after 12h and 24h from the reference time, respectively 

 

Though in both cases the red grid cell contains the NHC-reported hurricane center at the 

prediction time, the direction of the precipitation path during the hurricane’s lifespan is slightly 

different from the NHC-projected path. Figures 5-19 (a) and 5-19 (b) demonstrate the comparison 

of the prediction results with respect to two other sources: NHC-reported hurricane path and radar 
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base reflectivity image. Both figures show that the red cells within the study area are located in the 

most intense precipitation projected by the radar base reflectivity image. However, the NHC-

predicted path does not pass through the parts with the intense rainfall and therefore cannot fully 

project the severe precipitation path. For example, in Figure 5-19 (a), NCSL is the CORS station 

closed by the NHC-predicted hurricane center 12h after the reference time. This station shows the 

minimum magnitude of the prediction residuals and is also located in the high precipitation 

intensity reflected by the radar image. Meanwhile, 24h after the reference time, as Figure 5-19 (b) 

shows, KNS6 is the closest station to the NHC hurricane center and is along the NHC-predicted 

path at the prediction time. This station falls within the area with lower intensity of precipitation 

as shown by the radar reflectivity map. However, the NHC hurricane path does not project the 

precipitation path; referring to Figure 5-4, the NHC-predicted path shows clearly that the storm 

was downgraded from the category of hurricane at 6 p.m. on September 14, 2018 to tropical storm 

at 6 a.m. on September 15, 2018, which is similar to what the radar intensity map shows for the 

aforementioned prediction times.   
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Figure 5-19: The most probable precipitation path during Hurricane Florence. Hurricane 

Florence hit the ocean on September 14, 2018 at 6 a.m. GMT (reference time). The results in 

the upper figure (Figure 5-16 [a]) and lower figure (Figure 5-16 [b]) are attributed to the 

right before prediction model at the reference time to predict the precipitation path after 

12h and 24h from the reference time, respectively. The red mark shows the reported time 

and location of the hurricane provided by NHC. Radar reflectivity shows the precipitation 

over the area at the prediction time 
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Figure 5-20 demonstrates the observed PWV variation at sample CORSs during the 

Hurricane Florence observation time. Among the listed stations in Figure 5-20, ZTLA, GAAE, 

and NCSW are examples of CORSs in the study area with the consistent PWV variations below 

the threshold. Considering Figure 5-19, these stations are not located either along the hurricane 

path or in the precipitation area. Figure 5-20 also shows that, despite the distance between the 

NCWA location and the reported hurricane path, PWV fluctuates above the threshold mostly 

during September 14 and 15, 2018, which is an indication of precipitation in this area during that 

time. This is also confirmed by Figure 5-19 showing the relative intense rainfall over NCWA at 

that time. 

 

Figure 5-20: Observed PWV variations during Hurricane Florence over the study area. 

Time series are associated with selected GNSS CORS inside and outside the hurricane’s 

path. The red dashed line shows the applied threshold for PWV forecast, which is set to 55 

mm for the Hurricane Harvey case study 
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On the other hand, for NCCH and KBS6, the PWV fluctuations are above the threshold 

during the hurricane’s reported time. Compared to KNS, NCCH shows the higher PWV values 

during the same time period of September 14–16 2018, which can be an indicator of more severe 

rainfall at NCCH at that time. The more severe precipitation at NCCH compared to other stations 

is also shown in Figure 5-19 using the radar images. 
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5.3. Summary of the results and comparison    

Because various hurricanes have their own spatial and temporal characteristics, the 

prediction model was applied to several hurricane events to validate the model’s performance. In 

this section, the results for all case studies are compared and discussed. Table 5-2 shows the 

comparison of hurricane characteristics at the reference and prediction times. The reference time 

is the time for which the hurricane exists in the area, and the input data used in the prediction 

model is associated with the reference time. In this study the prediction times are 12h and 24h after 

the reference time. According to the table for all hurricane cases, the intensity was downgraded 

over time. The hurricane’s intensity is shown by the storm scale in the table. Except for Hurricane 

Matthew, all other hurricanes were degraded to tropical storms after 24h from the associated 

reference time. In the table the major difference between the predicted location of the severe 

precipitation and reported NHC hurricane landfall centers are associated with a time when the 

storm was downgraded to a tropical storm. As discussed earlier in Figures 5-13 and 5-16, for these 

cases the NHC-reported hurricane centers are not aligned with the intense part of precipitation 

reflected by the radar reflectivity map, while the predicted locations from the right before model 

are well matched with the most intense rainfall. This can be considered as the model’s strength 

point to predict the path of most intense precipitation during the hurricanes. The table also shows 

the probability of the minimum residuals for each case study. It shows that predicted locations 

(cells) are contained at maximums less than 25% and 32% of total residuals in the area for 12h and 

24h prediction time lags, respectively. Among all hurricane case studies, the predicted location 

during Hurricanes Irma and Florence for the 12h prediction time lag shows the lowest rate of 

residuals that can be related to the lower hurricane scale for said hurricanes at that time. As the 

table shows for the 12h prediction time lag, the minimum residual percentage is 5% and 19% of 
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total residuals for Hurricanes Irma and Florence respectively, and the storm scale at that time is 

hurricane category 1. Meanwhile, for other cases in the 12h prediction time lag, the predicted 

locations fall into the area with the higher storm scale, and therefore the percentage of minimum 

residual with respect to the total residuals is higher. 

 

 

 

 

 
 

Table 5-2: Comparison of the hurricane characteristics and prediction results 
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CHAPTER 6 

 

6. Conclusion 
 

Highly accurate atmospheric water vapor measurements are important in monitoring the 

Earth’s weather system. Different methods and techniques are used to measure the water content 

in the atmosphere, and GNSS is one of them. While the primary use of a GNSS is PNT, various 

GNSS applications have emerged over recent decades that include GNSS meteorology. GNSS 

meteorology remotely senses the atmospheric constituents in the neutral atmosphere—mostly in 

the troposphere—using GNSS to deliver information about the state of the atmosphere. The 

troposphere is the densest and heaviest layer in the atmosphere, holding almost all atmospheric 

water vapor. PWV is the total amount of water vapor in a column of air above the earth’s surface 

that varies rapidly with short temporal and spatial scale during severe meteorological phenomena. 

The amount of PWV contained in the neutral atmosphere can be retrieved from GNSS signals 

received by ground-based GNSS observations. GNSS is an excellent tool in that it is not affected 

by weather conditions (e.g., presence of clouds, which pose a challenge to traditional weather 

monitoring technologies). Another benefit of GNSS is the data availability and accessibility. 

Currently, the densely distributed CORS network provides seamless observations with a high 

temporal resolution as well as a continuously improving spatial resolution up to a few kilometers 

for some local networks. 

This dissertation was focused on developing a PWV prediction model using GNSS 

observations to monitor and forecast the path of severe precipitations induced by hurricanes. The 

dynamic perturbations of PWV as a result of hurricanes were detected from the tropospheric 

observations of GNSS signals. By analyzing GNSS-based PWV with the local atmospheric 
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elements that were temperature and pressure, the formation process of a severe precipitation was 

observed by assessing the correlation among atmospheric pressure, temperature, and PWV. The 

author of this study derived a PWV prediction model by numerically analyzing the meteorological 

constituents using a multivariate regression model. In developing the prediction model, the high 

correlation between variables can cause parameter estimates to be inaccurate and unreliable. To 

avoid the correlation effect between those variables, a PCR was performed. By using the GNSS-

derived PWV and meteorological variables, the trend of the water vapor distribution was 

determined for the time frames of before, during, and after the severe precipitation. For each time 

frame a unique prediction model was developed. The developed model can forecast the severe 

precipitation track induced by a hurricane up to 24 hours in advance. In this dissertation the 

prediction models were examined using a proposed statistical model for different types of 

hurricanes. The case studies were: 1) Hurricane Mathew in 2016, 2) Hurricane Harvey in 2017, 3) 

Hurricane Irma in 2017, and 4) Hurricane Florence in 2018. In each hurricane case study, the 

patterns of the GNSS-derived PWV fluctuations were analyzed. In particular, a sudden and sharp 

increment in the PWV, followed by sharp descending trends, was observed a few hours prior to 

the onset of precipitation. Furthermore, the predicted PWV rate of change was dramatically 

increased prior to a severe precipitation. Moreover, in each case study, the probability of 

precipitation rapidly increased when the PWV reached a threshold in the range of 50–55 mm. The 

threshold was determined by analyzing the correlation between PWV fluctuations and occurrence 

of rainfall during the hurricane’s lifetime. The threshold was applied for classification of prediction 

models into the right before, during, and right after models based on the hurricane development 

stage. It should be emphasized that this study was especially focused on the right before model, 

which was the most useful model to analyze the movement of the hurricane. 
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The proposed method was validated by analyzing the distribution pattern of the predicted 

PWV residual, its magnitude, and the actual observed PWV in the test site. For a robust analysis 

considering the uncertainty from the measurement noise and other error sources in the GNSS-

derived PWV, the prediction residual at multiple sites in a local area was evaluated within the grids 

in the test area. The grid size was determined with the consideration of the test site and the 

geometric distribution of available CORS. The highly probable location of heavy precipitation by 

the grid-based prediction was in good agreement with the observed rain pattern that can be used 

for predicting the hurricane path. In addition, the negative correlation between the residuals of 

PWV measurements with the prediction model and the magnitude of precipitation was revealed. 

This shows that the magnitude of the predicted model residuals can be used for hurricane tracking 

and potentially applies to evaluation of the storm intensity. The probability of the minimum 

residuals for each case study was provided. The study showed that predicted locations (cells) were 

contained at maximums of less than 25% and 32% of total residuals in the area for 12h and 24h 

prediction time lags, respectively. Among all hurricane case studies, the predicted location during 

Hurricanes Irma and Florence for the 12h prediction time lag showed the lowest rate of residuals, 

which can be related to lower hurricane scales for said hurricanes at that time. For the 12h 

prediction time lag, the minimum residual percentage was 5% and 19% of total residuals for 

Hurricanes Irma and Florence, respectively, and the storm scale for that time was hurricane 

category 1. Meanwhile, for other cases in the 12h prediction time lag, the predicted locations fell 

into the area with the higher storm scale, and therefore, the percentage of minimum residual with 

respect to the total residuals was higher. It should be noted that the quality and accuracy of 

meteorological observations and the level of uncertainty in GNSS-derived PWV can influence the 

prediction results. However, the results were validated by the radar reflectivity map and reported 
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NHC hurricane landfall centers. The results, showing a major difference between the predicted 

location of the severe precipitation and reported NHC hurricane landfall centers, were associated 

with a time when the storm was downgraded to a tropical storm. For these cases, the NHC-reported 

hurricane centers were not aligned to the intense part of precipitation reflected by the radar 

reflectivity map, while the predicted locations from the right before model were well matched with 

the most intense rainfall. This can be considered as the model’s strength point to predict the path 

of more intense precipitation during the hurricanes. The proposed prediction model can be 

improved by automation of residuals grouping through applying an automatic clustering approach 

and ML technique. In addition, because the processes responsible for the formation of the 

perceptible water suspended in the atmosphere are highly complex and nonlinear, determining a 

fixed value of threshold from GNSS-derived PWV may not be sufficient to predict the severe 

precipitation in different scenarios. Moreover, it can be dependent on the geographic locations. 

Therefore, more exploration is needed for the accurate threshold detection and is left for future 

investigation. The parametrization for a prediction model can be further expanded by considering 

the wind effect on the trace and intensity of the hurricane. Furthermore, owing to the complexity 

of the dynamics in the meteorological parameters’ behavior, the nonlinear characteristics of the 

atmospheric parameters in forming storms and hurricanes can be explored to refine the model. The 

current model considers a linear relationship between parameters, and any nonlinear behavior can 

be tested in the future. This study demonstrates the feasibility of GNSS for monitoring severe 

precipitations and proves the effectiveness of the statistical model for forecasting the precipitation 

path during the hurricane that is potentially applied to a hazard early warning system. 
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