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Abstract 

The modern world has presented many threats to the health and stability of ecosystems 

worldwide. One of the most biodiverse ecosystems, coral reefs, faces particularly strong 

pressures, and is already declining rapidly in complexity and area. Although the stressors 

that affect reefs are diverse, ranging from nutrient pollution to overfishing, invasive 

species to climate change, the impact of many of these stressors is ultimately mediated 

through interactions between the coral animal and its microbial associates, or 

microbiome. Some such interactions are readily apparent and have been studied for 

decades. For instance, coral bleaching, which is caused in part by increases in water 

temperature due to climate change, has devastated large swaths of reefs in recent years. 

The visual ‘bleaching’ that characterizes this phenomenon is the result of a breakdown in 

the symbiosis of the coral with photosynthetic algae of the family Symbiodiniaceae that 

normally live within its tissue. These algae provide the coral with essential energy, 

nutrients, and other services, but under temperature stress, they are expelled from the 

transparent tissue, leaving the white underlying coral skeleton visible and the animal 

without its food source.  

However, other interactions between the coral and its microbiome are less well-defined. 

Many coral diseases, for instance, may be caused by the opportunistic overgrowth of 

fungi and bacteria in nutrient-rich water or under conditions of general stress. Even less 

clear is how bacteria may act as mutualists in the coral ‘holobiont’. Other cnidarians have 

been shown to require developmental stimulation from particular bacterial species, and 



 

non-Symbiodiniaceae microbes have also been hypothesized to act as nutritional 

symbionts or as defense against other, pathogenic microbes. 

Scleractinian corals are diverse; having been evolving for more than 450 million years 

and including over 1,500 species. Because of this, they are likely to have many different 

modes of interaction with their microbiomes. To begin to better understand the 

similarities and differences among the microbiomes of corals, I conducted during my 

PhD the Global Coral Microbiome Project (GCMP), which sampled thousands of coral 

colonies from dozens of phylogenetically diverse species. Through the course of my 

work, I identified the similarities and differences between the microbiomes of these many 

species, showed the importance of considering shared evolutionary history in the analysis 

of such datasets, and developed new, rigorous methods of microbiome analysis that 

separate the effects of distinct evolutionary and ecological processes. 
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 1 
General Introduction 

Corals and coral reefs 
Coral reefs are one of the most biodiverse ecosystems on Earth. They are home to around 

one third of the Earth’s fish diversity despite covering less than 0.1% of the Earth’s 

surface (Bowen et al. 2013). Corals themselves, animals within the phylum Cnidaria, are 

largely responsible for the existence and complex structure of reefs. As corals grow, they 

lay down layers of calcium carbonate and serve as ecosystem engineers. The rate of 

corals’ growth has been fast enough on average that they can compensate for the erosion 

and subsidence of islands and continental margins, creating shallow-water fringing 

habitats and even isolated atolls where there would otherwise be only deep water (Darwin 

1889, Grigg 1982). When reefs form near land they also provide essential services to 

nearby human populations, including food resources and physical protection from storm 

surge. 

Unfortunately, coral ecosystems are highly threatened by anthropogenic impacts. Climate 

change, pollution, disease, and other stressors are all contributing to a rapid decline in the 

complexity and cover of coral reefs worldwide (Pandolfi et al. 2003, Van Oppen & Gates 

2006, Lesser et al. 2007, Barnosky et al. 2011, Hughes et al. 2017a, Hughes et al. 2018). 

In the face of this, there is an urgent need to learn more about the forces that contribute to 

corals’ resilience and resistance to stressors. However, Scleractinian corals comprise over 

1,500 different species that have been evolving for more than 450 million years (Huang 

& Roy 2015, Figure 0.1). This length of time is longer than that since the origin of 

mammals (Groussin et al. 2017), and similar to the time since the origin of all terrestrial 

plants (Werner et al. 2014, Figure 0.1). Thus it might be that we should expect an 

extremely diverse array mechanisms by which each species interacts with its 

environment, and it may be difficult to find characteristics that apply to all or even most 

species. On the other hand, a comparison to other lineages of only evolutionary time may 

not be fair. For instance, because modern terrestrial plant species number at almost 

400,000 (Paton et al. 2008), they represent far more diversity than is represented by 

corals and their rate of evolution and of adaptation has likely been much faster. 

Therefore, relative to plants, corals may indeed retain considerable ecological similarities 
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among their diverse species. The relative influence of divergence time and rate of 

evolution are unknown for many traits, so studying these relationships is an important 

step in predicting how the group will fare in the future, and in devising solutions to avoid 

their loss. 

The influence of the microbiome on host health 
There is an increasing recognition of the important roles that microbes may play in the 

health of multicellular organisms. In addition to the classical examples of obligate 

symbionts and disease-causing pathogens, less intimate associations such as the dynamic 

communities of microbes in the human gut have been shown to be correlated with shifts 

in health state such as Crohn’s disease (Medzhitov 2007). The realization that these more 

nuanced relationships are both ubiquitous and medically important has led to a movement 

to conceptualize all multicellular organisms not as individuals, but as holobionts, which 

straddle a blurry line between discrete biological entities and ecological systems of 

complex interactions (Gilbert et al. 2012). 

Given the potential for aspects of the microbiome to influence host health, my PhD has 

focused on the study of microbes associated with Scleractinian corals. My early 

contributions to the field include involvement with a study that found that anthropogenic 

impacts such as nutrient pollution and overfishing cause the microbiome of the coral 

mucus layer to change (Zaneveld et al. 2016). During that study, we noticed that the 

changes in the microbiome were not always deterministic, but instead reflected decreased 

microbial consistency among stressed corals. This led to a review of the existing 

literature that argued that such destabilizing effects may in fact be generally characteristic 

of the microbiomes of stressed hosts (Zaneveld et al. 2017). This work may imply 

reduced capabilities for active regulation of microbial communities, which supports the 

idea that the host ‘trait’ of microbiome composition is not neutral. If a host must expend 

energy to regulate its microbiome, it has likely been evolutionarily selected to do so. 

In my first co-first-author study (Chapter 1; Pollock, McMinds et al. 2018), I lay the 

groundwork for more functional analyses of coral microbiomes by broadly describing 

how they vary among diverse Australian corals. In Chapter 2, I use these data to address 

the relationships between the microbiome and coral disease susceptibility. In the progress 
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of this analysis, I discovered that although some aspects of the coral microbiome do have 

raw correlations with host species’ disease susceptibility, these correlations were not 

statistically significant after incorporating the host phylogeny into the analysis. Because 

disease susceptibility itself is strongly patterned phylogenetically, it is difficult to 

disentangle the effects of shared evolutionary history from the effects of the evolution of 

a particular host trait. Realizing this, I explore in Chapter 3 a more rigorous and powerful 

method of investigation, and apply it to the analysis of the distributional patterns of 

corals’ algal symbionts. 

The importance of being earnest (about how phylogenetic history 
contributes to microbiome structure) 
Organisms evolve due to drift and due to selection by the environment. Early in the 

development of Darwin’s theories, he realized that ‘the environment’ also included other, 

evolving organisms, and that interactions with those organisms played an outsized role in 

selective processes (Darwin 1859). This has led to the recognition that population and 

community ecology are inseparable from the study of evolution, and that it is essential to 

understand the communities among which an organism’s ancestors lived in order to 

understand the roots of its extant traits. As this realization developed, the communities 

that were studied were naturally composed of multicellular organisms, with the 

occasional recognition of the importance of disease and of essential microbial 

mutualisms. However, as technological developments over the last few decades have 

allowed us to explore the microbial world around us, we have begun to better appreciate 

the ubiquity and importance to multicellular organisms of interactions with our microbial 

counterparts.  

Because interactions between hosts and microbes are in part governed by heritable traits 

in each, and because microbes can often be inherited vertically between generations of 

evolving hosts, it is natural that closely related hosts will tend to associate with similar 

communities of microbes. Such a pattern has been dubbed phylosymbiosis (Brucker & 

Bordenstein 2013). When the microbes whose identities differ between closely related 

hosts are at least themselves closely related, the pattern is also characterized by 

cophylogeny (Hafner & Nadler 1988). The implications of these present-day patterns 
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have been the subject of much debate, in part because there has been disagreement about 

the degree to which they help inform us about the historical associations between hosts 

and microbes (Moran & Sloan 2015, Douglas & Werren 2016). The term phylosymbiosis 

emphasizes interpretations of the pattern as the result of the intimate relationships 

between the host and its microbiome that are more characteristic of a discrete holobiont 

than a complex ecological system. Similarly, patterns of cophylogeny have been 

interpreted as evidence for coevolution or codiversification, with the various terms 

sometimes used interchangeably despite their distinct biological meanings. Given these 

disagreements in interpretation and emphasis, there has also been disagreement about the 

way we analyze microbiome data in the context of evolution and adaptation. 

In A Tale of Two Phylogenies (Hadfield et al. 2014), an updated model-based approach 

for the analysis of host-symbiont relationships was introduced that incorporated the 

evolutionary relationships of both groups and assessed the ways each was influenced by 

various interacting phylogenetic scales. Hadfield et al. intended for the model to test for 

patterns in the data that are characteristic coevolution and demonstrated that such a 

process could indeed be detected with the method. Interestingly, the patterns that they 

describe as ‘coevolution’ and ‘host phylogenetic interactions’ are in fact more nuanced 

subsets of the patterns of phylosymbiosis and cophylogeny because, if applied to an 

entire microbiome, both explain more variance when related hosts have more similar 

microbiome compositions. The additional terms ‘non-phylogenetic interaction’ and 

‘parasite phylogenetic interaction’ incorporate other distinct patterns of host-microbe 

specificity that are meant to represent a complete lack of host phylogenetic signal in 

microbiome composition, and their inclusion in the model allows them to serve as a null 

hypothesis to test for the presence of host phylogenetic signal. This framework provides a 

theoretical advantage over many existing tests for phylosymbiosis, such as topological 

congruence tests or simple Mantel tests, because it comprehensively addresses nuances 

involving the microbial phylogeny, controls for nonspecific evolution of alpha diversity 

and microbe prevalence, and can control for and simultaneously analyze the influence of 

arbitrary other factors. 

Because of these theoretical advantages, I explored the possibility of applying the 
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Hadfield model to a study of the bacterial microbiome of Scleractinian corals, and came 

across a number of problems with the idea. One was immediately apparent: the 

MCMCglmm implementation of the model does not scale beyond a few dozen species of 

microbes or hosts, at which point runtime and memory usage started to become 

prohibitive. I thus decided to select a small number of potentially interesting subsets of 

the microbiome for analysis, and another problem was revealed: what arbitrary point in a 

phylogeny of bacteria should I choose for analysis of its descendants? At these smaller 

scales, a signal of cophylogeny is at least consistent with coevolution or codivergence of 

the entire group with its hosts, but that signal could be lost if bacterial relatives are 

included in the analysis that diverged prior to initiation of the group’s more intimate 

relationship. Ultimately, as recounted in Chapter 1, I showed that one subset (based on 

the Greengenes taxonomic name Endozoicimonaceae) had a strong signal of 

cophylogeny, but that if the mechanism of codivergence was at all responsible for the 

pattern, it was likely limited to a small subclade of Endozoicimonaceae codiverging with 

just one subclade of the hosts (Chapter 1; Pollock, McMinds et al. 2018). This 

determination, however, was necessarily somewhat subjective, because I did not have a 

formal framework to detect whether specific subclades demonstrated patterns that were 

distinct from the microbiome as a whole or from other potential slices of the phylogenetic 

tree. I also found in that chapter that 20 out of 24 other bacterial families did not show 

signs of cophylogeny. However, I recognized that there was room for methodological 

improvement in part because the Hadfield model and other existing methods have no way 

to deal with uncertainty in phylogenetic reconstructions. Lack of a strong signal at higher 

levels in the other bacterial families analyzed could simply have been the result of an 

incorrect topology in one or both of the host and microbial trees.  

With these issues in mind, I began developing a new model that had the potential for 

greater scaling, the flexibility to detect sub-cladal changes in patterns of cophylogeny or 

phylosymbiosis, and the ability to incorporate phylogenetic uncertainty. In doing so, I 

also discovered potential for improvement in the conceptual framework of the Hadfield 

model and of the idea of phylosymbiosis more generally. I reasoned that if one of the 

goals of analyses of cophylogeny is to estimate the degree of intimacy between two 

groups of organisms, then any such analysis requires a biologically meaningful reference 
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for comparison. Since most analyses of phylosymbiosis are not comparative in nature, 

they instead test their patterns against a null model that is interpreted as a complete lack 

of phylogenetic signal. However, the practical definition of ‘zero’ phylogenetic signal is 

entirely dependent on the scale at which the tips of the host and microbial phylogenies 

are defined or sampled (e.g. see Groussin et al. 2017). This scale often must be either 

chosen subjectively or results from an essentially arbitrary limit of resolution in the data. 

For instance, as I report in Chapter 1, of 25 bacterial families tested for cophylogeny with 

the Hadfield model, only four had significant signal in the cophylogeny term. However, 

23 out of 25 families had some form of host specificity, such that particular bacterial 

types were consistently associated with some coral taxa, but not others. Most of these 

families did not have significant cophylogeny terms because the observed host specificity 

did not involve groups of hosts above the genus level resolution of the host phylogeny 

used in the analysis. In fact, however, even these effects can be interpreted as interactions 

between phylogenies, because all samples within a host genus are of course 

phylogenetically related to one another, and every observation of a bacterial sequence 

variant derives from individual cells that are phylogenetically related to one another 

below the resolution of the sequenced marker gene. Thus, all four ‘host specificity’ 

effects in the Hadfield model can be thought of as terms representing phylosymbiosis or 

cophylogeny, each at a different combination of discretized scales. Similarly, the original 

tests for phylosymbiosis, based on topological measures such as the Robinson-Foulds 

metric (Brooks et al. 2016), can often be arbitrarily coerced into a significant positive 

result. One method would be by increasing the resolution of the host phylogeny; e.g. by 

transforming the tips of the host phylogeny into multichotomies where each new tip 

corresponds to a sample rather than a species or individual. If I may partake in some 

reductio ad absurdum, I will note that even two ‘independent’ samples from the same 

individual host could be considered ‘phylogenetically related’: if the host cells in the 

immediate surroundings of each sample were different, then the microbes in each sample 

were interacting with clonally derived, but still distinct, biological host entities. Thus, any 

effect that is consistent within an individual could be considered evidence for 

phylosymbiosis. Although there is clearly a more precise biological interpretation for 

tests conducted with pools of observations at the species level (does phylogenetic history 
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at a scale greater than species influence the microbiome?), there would be an even more 

precise interpretation if host species are pooled into family-level groups, and then each 

family is analyzed comparatively (‘does phylogenetic history at a scale greater than 

family influence the microbiome?’, and ‘does phylogenetic history at a scale greater than 

species but less than family influence the microbiome in family X more than in family 

Y?’). I use extreme examples only to illustrate that explicit consideration of scale is 

essential to understanding the results of a test for phylosymbiosis, or phylogenetic signal 

more broadly. Using more precise terminology and framework for interpretation allows 

us to better understand the scales, and potentially mechanisms, under consideration. 

The field’s recent discussions of phylosymbiosis have productively heightened awareness 

of how important it is to consider shared evolutionary history when conducting 

microbiome studies. However, of the many ways that evolutionary history may be 

manifest in a dataset, the patterns referred to as phylosymbiosis are neither all-inclusive 

(e.g. they do not inherently consider the history of the microbial partners) nor diagnostic 

(patterns that result from many distinct processes fall under its broad definition). Because 

of this, and because nuances of interpretability and scale are already a frequent subject in 

the discussion of phylogenetic signal more generally, I ultimately came to agree with 

critics of the holobiont framework, like Douglas & Werren (2016) and Moran & Sloan 

(2015), that rather than emphasize the detection of phylosymbiotic patterns broadly, a 

better focus would be the development of models with parameters that can be more 

directly associated with biological processes or mechanisms. 

Thus, in my third chapter I explore a method of microbiome analysis that focuses less on 

hypothesis testing for the presence of phylosymbiosis, and more on controlling for 

phylosymbiosis and other forms of phylogenetic signal while testing for more nuanced 

patterns and processes. For example, I decided not to incorporate the Hadfield model’s 

use of ‘non-phylogenetic’ effects, because they assumed a mechanism of a single, 

discrete increase in variance, at a potentially arbitrary point in time, uniformly across all 

tips on a phylogeny. In most cases I have considered, this does not seem like a 

biologically reasonable process. It does seem reasonable in the case where the tips of the 

tree correspond to discrete entities—such as individuals or some species—that may be 
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influenced by a large number of random latent effects. However, corals are known to 

have very blurry species boundaries, and they are often subject to large amounts of gene 

flow and morphological gradients between nominally different species. Bacterial species 

are even less well-defined as discrete entities. Even when relatively discrete species exist, 

the data we generate to describe them (such as 16S sequence variants or pools of similar 

variants) certainly do not consistently represent such discrete entities—some lineages of 

bacteria have extremely different metabolic capabilities among cells that share identical 

16S sequences, whereas other lineages have extremely consistent genomic content even 

as their 16S sequences are highly diverged. Therefore, I decided to more flexibly model 

the deviations from strict Brownian evolution that are captured by the Hadfield model’s 

‘non-phylogenetic effects’. I instead include other biological processes that reduce 

phylogenetic signal, such as a total-variance–stabilizing Ornstein-Uhlenbeck effect (Ives 

& Godfray 2006), variation in the rate of evolution along branches, and discrete 

evolutionary leaps associated with divergence events. 

Although correlations between host and microbiome characteristics that are detected with 

the model still cannot definitively address questions of causation, accounting for shared 

evolutionary history can at least place a vote against the phylogenetically structured 

lurking variables that frequently confound such analyses. The development of this 

framework is an important step towards a more rigorous analysis of the associations 

among traits of the microbiome and other host traits such as disease susceptibility. 
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Figures and Figure Legends 

 
Figure 0.1. Divergence times in the Scleractinia relative to significant events in the 

evolution of terrestrial plants. 

A time-calibrated coral phylogeny, simplified from Huang & Roy 2015 and Fukami 

2008, shows that the origin of modern stony corals (Scleractinians) occurred around the 

same time as the origin of all terrestrial plants (from Zanne et al. 2013). Two other 

ecologically important events in the evolution of plants, the origin of flowering plants and 

the origin of nitrogen-fixing plants, occurred after the divergence of the two modern coral 

clades and after the origin of many individual coral families, respectively (see Werner et 

al. 2014). Numbers at nodes within the phylogeny represent estimated millions of years 

before present of each divergence event (from Huang & Roy). Numbers following 

taxonomic names at the tips correspond to the numbered clades from Fukami 2008. 

Dashed lines are taxonomic relationships to outgroups not included in the molecular 
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phylogenies of Huang & Roy or Fukami. Photos demonstrating the morphological 

diversity of corals are on the right. All photos were taken by author except the third, 

which was taken by Dr. Jesse Zaneveld.  
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Abstract 
Scleractinian corals’ microbial symbionts influence host health, yet how coral 

microbiomes assembled over evolution is not well understood. We survey bacterial and 

archaeal communities in phylogenetically diverse Australian corals representing more 

than 425 million years of diversification. We show that coral microbiomes are  

anatomically compartmentalized in both modern microbial ecology and evolutionary 

assembly. Coral mucus, tissue, and skeleton microbiomes differ in microbial community 

composition, richness, and response to host vs. environmental drivers. We also find 

evidence of coral-microbe phylosymbiosis, in which coral microbiome composition and 

richness reflect coral phylogeny. Surprisingly, the coral skeleton represents the most 

biodiverse coral microbiome, and also shows the strongest evidence of phylosymbiosis. 

Interactions between bacterial and coral phylogeny significantly influence the abundance 

of 4 groups of bacteria– including Endozoicomonas-like bacteria, which divide into host-

generalist and host-specific subclades. Together these results trace microbial symbiosis 

across anatomy during the evolution of a basal animal lineage.  

Introduction 
Since their first appearance around 425 million years ago, scleractinian (‘stony’) corals 

(Cnidaria: Hexacorallia: Scleractinia) have radiated into more than 1,500 species, many 

of which serve as the major architects of coral reef ecosystems worldwide1. Modern 

corals harbor complex communities of microorganisms, including dinoflagellates, fungi, 

bacteria, and archaea which are collectively termed the coral microbiome2. Shifts in the 

composition of the coral microbiome and virome are linked to changes in coral health, 

disease, and resistance to stressors3–6. It is likely that ancestral corals also harbored 

complex and functionally important microbial communities. Yet much remains to be 

understood about how these coral-microbe symbioses evolved, and which key factors 

influence microbial communities in modern corals. Coral diversity is too great to 

individually assess the biotic and abiotic factors that maintain the microbiome of every 

coral species. The present challenge is thus to uncover general rules for the assembly of 

coral microbiomes that inform estimates of the effects of microorganisms in understudied 

portions of the coral tree. However, disentangling the many host and environmental 
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features that influence the microbiome requires large and methodologically consistent 

surveys of phylogenetically diverse corals across geography. 

Many host-microbial symbiosis studies find correlations between host phylogenetic 

relationships and microbial community composition, a pattern known as 

phylosymbiosis7. Phylosymbiosis has been reported for the root microbiome of flowering 

plants8; the mesohyl of marine sponges9; insect microbiomes7,10; and the gut microbiome 

of terrestrial mammals11 (including Peromyscus deer mice7 and wild hominids7). 

Phylosymbiotic patterns can be explained by several mechanisms, including 

codiversification of abundant microbial lineages with their hosts, filtering of microbial 

communities by host traits, or coupling between host phylogeography and environmental 

effects on the microbiome7,10,12. We are only beginning to differentiate these 

alternatives10, and studies accounting for the joint effects of phylogeny, geography, and 

host traits are sorely needed. Moreover, different animal secretions, tissues and organs 

typically harbor distinct microbiomes (e.g. 13) that may also show different patterns of 

phylosymbiosis, although this possibility has not yet been fully explored. 

The phylum Cnidaria diverged prior to the bilaterian radiation. Thus, scleractinian coral 

microbiomes represent a key piece in the broader puzzle of how animal microbiomes 

arose. Coral mucus, tissue, and skeleton show distinct microbial community composition 

(e.g. 14,15), affording the opportunity to test whether they also show different patterns of 

phylosymbiosis. Additionally, the high diversity and wide geographic distribution of reef-

building corals presents a natural experiment for testing how host traits and 

environmental context influence the microbiome, and are invaluable resources for 

understanding how modern host-microbial symbioses evolved.  

Scleractinian corals have been diversifying for longer than some more commonly studied 

symbiotic systems such as flowering plants and placental mammals16. Their microbiomes 

are known to be partially species-specific (e.g. 14), and reports from other Cnidaria, such 

as gorgonians, suggest potential codiversification with Endozoicomonas symbionts17,18. 

Yet comparisons of six species of coral and an octocoral outgroup found microbiome 

similarities that seemed to better align with morphology than phylogeny19, suggesting a 

strong influence of host traits on the microbiome. Whether scleractinian corals show 
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phylosymbiosis in overall community composition or cophylogeny with specific bacteria 

or archaea has not yet been definitively established. 

The abundance of overlapping factors that affect the coral microbiome is difficult to 

disentangle. Many host traits are highly correlated with one another due to phylogenetic 

constraints, and many environmental variables are correlated due to large-scale patterns 

of climate and geography. Thus, analyses of these variables cannot be conducted in 

isolation. 

We designed a comprehensive sampling and analysis strategy that asked how the 

microbial communities residing in the mucus, tissue, and skeleton of diverse Australian 

corals were shaped by host phylogeny, host functional traits, geography and 

environmental variables. We collected DNA samples from the mucus, tissue, and 

skeleton of phylogenetically diverse scleractinian species, as well as selected outgroups 

and environmental references. We sequenced 691 16S rRNA gene libraries from these 

samples, primarily targeting bacterial and archaeal members of the microbiome. We 

paired these microbiome data with a multigene molecular phylogeny of scleractinian 

corals20, coral functional traits from the Coral Trait Database21, and extensive in-situ 

metadata (Methods)22. For questions that were sensitive to host phylogeny, we integrated 

these diverse datasets using phylogenetic Generalized Linear Mixed Models (pGLMMs). 

This approach provided a unified Bayesian framework in which to test hypotheses in 

coral-microbe coevolution and the influence of various environmental factors on coral-

microbe symbiosis. 

We show that coral microbiomes differ in richness, composition, and consistency across 

anatomy. In all anatomical compartments, both host and environment influence the 

microbiome. However, the relative influence of host vs. environmental parameters varies 

strongly across anatomy. We confirm phylosymbiosis in coral tissue and skeleton 

microbiomes, yet also present evidence that host-microbial cophylogeny influences 

microbial abundance for only a select subset of bacterial taxa associated with corals. 

Notably, that subset includes certain host-specific subclades of the prominent coral 

symbiont Endozoicomonas. Together, these results help to clarify how the evolution and 

ecology of the coral microbiome varies across anatomy. 
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Results 
Data collection and workflow 
Coral, water, and sediment samples were collected from 21 sites around Australia 

spanning 17° of latitude. A total of 236 coral colonies were sampled from 32 

scleractinian and 4 cnidarian outgroup taxa representing both the Hexacorallia and 

Octocorallia (Supplementary Data 1). Hexacorallia (anemones, corallimorpharians, 

zoanthids and scleractinian corals) and Octocorallia (gorgonians) are both monophyletic 

groups within class Anthozoa. A subset of corals was resampled at Lizard Island in 

summer and winter to assess seasonal effects. Up to 162 host and environmental metadata 

parameters were recorded or calculated for each sample (Supplementary Data 2). 

Combined, these data represent more than 425 million years of coral evolution20. 

A workflow summarizing the major analytical steps is presented in Supplementary Fig. 

1.1. Coral samples were partitioned into mucus, tissue, and skeleton compartments 

(Methods), and sequenced alongside water and sediment samples from the same reefs, 

yielding a total of 691 samples for small subunit ribosomal RNA (16S rRNA) gene 

sequencing. These included 227 mucus samples, 223 tissue samples, 230 skeleton 

samples, and 11 additional reference samples (e.g. sediment and water; Supplementary 

Data S1). All samples were subjected to identical DNA extraction, PCR amplification 

using 515f/806r primers specific to the V4 region of the 16S rRNA gene of bacteria and 

archaea23, and Illumina MiSeq sequencing. We note that despite the utility of 16S rRNA 

gene surveys, they are estimated to miss ~10% of environmental microbes24, including 

certain archaea and the newly uncovered bacterial candidate phylum radiation25. 

Corals are regarded as challenging targets for DNA extraction. However, we found that 

the Earth Microbiome Project DNA extraction protocol provided sufficient DNA for 

analysis in most samples. After quality control, sequencing resulted in a total of 

9,441,738 microbial reads (per sample median: 14,010; per sample mean: 13,664) 

partitioned across 129,305 unique OTUs (Methods, 97% similarity cutoff).  

To avoid biases due to sequencing depth, we rarefied to even read depth (1000 sequences 

per sample) for most analyses (Supplementary Note 1). This strategy is conservative, in 

that it trades minimization of false positives for some loss of power. We also tested 



 16 
alternative rarefaction depths for characterization of core microbiomes (Supplementary 

Data 3), comparison of multivariate dissimilarities (Supplementary Data 4) and α-

diversity across compartments (Supplementary Data 5). In the specific case of differential 

abundance testing, we either rarefied at 1000 reads/sample or used a parametric model 

without rarefaction (i.e. all pGLMMs, Methods) to maximize power from read depth in 

each sample. In total, we detected 69 microbial phyla associated with scleractinian corals 

(i.e. excluding outgroups), with 56.5% of the sequenced microbes in an average sample 

represented by Proteobacteria, while all Archaea represented just 2% of observed 

sequences (Supplementary Note 2). 

To compare microbial community structure to host trees, we inferred a coral phylogeny 

using coral mitochondrial 12S rRNA gene sequences identified in our amplicon libraries 

(Methods), but constrained to match the topology of the multigene molecular phylogeny 

of corals published by Huang and Roy20. Typically, these unique mitochondrial 

sequences (mitotypes) had a resolution of around the coral genus level (but in some cases 

resolved species and intra-specific lineages), and were consistent with visual taxonomic 

identifications of the host. This had the effect of mapping this study’s samples to the 

multigene Huang and Roy phylogeny wherever possible, while also estimating branch 

lengths among additional outgroup taxa and allowing for inclusion of samples that were 

not visually identifiable to the species level. A conceptually similar procedure (Methods) 

mapped microbial reads to the Greengenes 13_8 reference phylogeny26.   

Anatomical variation in drivers of coral microbiome structure 
Coral tissue, mucus, and skeleton microbiomes differed in richness (Fig. 1.1a) and 

microbiome composition (Fig. 1.1b). Surprisingly, the coral endolithic skeleton was 

richer in microbial diversity than the tissue microbiome (Fig. 1.1a; Supplementary Note 

3). Differences in microbiome composition between compartments were robust to choice 

of multivariate dissimilarity measures (Adonis permutational p for Weighted UniFrac, 

Unweighted UniFrac and Bray-Curtis distance matrices < 0.001; Supplementary Note 4).  

Compartments differed in core microbiome membership (Supplementary Note 5), the 

fraction of the microbiome that was core (Supplementary Figure 1.2a) and inter-colony 

variability (Supplementary Figure 1.2b). Observed core microbiomes were consistent 
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with past reports of the coral mucus core microbiome (Supplementary Note 6). Core 

microbiome analysis also confirmed the presence of Candidatus Amoebophilus (an 

intracellular symbiont of eukaryotes) as present in >50% of tissue microbiomes 

(consistent with 14; see Supplementary Note 7).  Overall, mucus microbiomes were 

notable for their relative stability between colonies and their high abundance of core vs. 

variable microbes (Supplementary Note 8).  

Across all compartments, host species was the single most important variable structuring 

the coral microbiome in our data (Fig. 1.3, Supplementary Note 9, Supplementary Data 

4). Broader taxonomic levels were also associated with microbiome composition, with 

more specific taxonomic levels always explaining more microbiome variance than more 

general taxonomic levels. This finding held across several dissimilarity metrics and 

rarefaction depths, and in all 3 compartments (Supplementary Note 10, Supplementary 

Data 4). The influence of the coral host was thus a commonality of coral mucus, tissue, 

and skeleton microbiomes.  

However, microbiomes associated with the three portions of coral anatomy differed in the 

extent of their relative responsiveness to host vs. environmental factors (Fig. 1.1c; 

Supplementary Fig. 1.3; Supplementary Data 6; additional discussion in Supplementary 

Note 11). For each environmental and host parameter, we tested its relative influence on 

coral mucus, tissue, and skeletal microbiomes (Fig. 1.1c). We then clustered host and 

environmental parameters in terms of their effects on the microbiome across 

compartments. Intrinsic host-based traits clustered separately from environmental traits. 

This was driven by the fact that environmental factors (e.g., season, temperature and turf 

algal competition) had a stronger influence on mucus microbiomes than tissue or skeleton 

microbiomes; whereas the coral species and its functional traits (e.g., growth form and 

disease susceptibility; Fig. 1.1c) had a stronger influence on tissue and skeletal 

microbiomes than mucus. Intriguingly, the diverse endolithic skeletal microbiomes were 

nearly as responsive to many host traits as the tissue microbiome (Fig. 1.1c), and showed 

the strongest response to the divide between Robust and Complex clade corals.  

The finding that coral anatomical compartments differ in overall community composition 

raises the possibility that one could predict a given sample’s compartment from 
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knowledge of its microbial community. To quantify the accuracy with which a sample’s 

compartment can be predicted from bacterial community membership at the genus level, 

a supervised classification model was developed using random forest analysis (a machine 

learning method). This model was 74.3% accurate – a 2.58-fold improvement on error 

rates compared to random guessing -- demonstrating that a predictable set of bacteria are 

shared within compartments but differ among them. 

We also used machine learning methods to quantify how much information the microbial 

community of each compartment conveyed about a suite of categorical host and 

environmental traits and host physiological and phylogenetic parameters (Supplementary 

Data 7). Consistent with our dissimilarity analysis (i.e., Fig. 1.1c), tissue microbiomes 

were better predictors of host factors like host genus (34% accuracy, 1.35x lower error 

rates than random guessing) and vertical transmission of Symbiodinium (86% prediction 

accuracy; 3.41-fold more accurate than random guessing) than were mucus microbiomes 

(Supplementary Data 7). Exploration of anatomical differences in coral microbiomes 

using machine-learning methods also revealed that the coral skeleton microbiome could 

better predict the deep phylogeny of the coral host (i.e. membership in the ‘Complex’ or 

‘Robust’ clade) than could the microbiome of the coral tissue (Supplementary Results, 

Supplementary Data 7). Conversely, mucus communities were much better predictors of 

environmental features like contact with turf algae (82% accuracy; 2.14x lower error 

rates than random guessing) and sampling location (53% accuracy; 1.46x lower error 

rates than random guessing). 

Together these multivariate and machine learning results clarify that while host species 

influences the microbiome across anatomy, the extent of host vs. environmental influence 

on coral microbiomes is not consistent in coral mucus, tissue, and skeleton. They further 

suggest that mucus microbiomes are useful for detecting environmental perturbations and 

that skeleton communities warrant greater attention as a diverse community strongly 

structured by host traits. Because coral compartments differed in both their composition 

and responsiveness to host and environmental variables, we report results of all 

subsequent analyses separately for each.  
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Latitude and colony size influence the coral microbiome 
In addition to these general observations, two specific findings emerged that bear 

mentioning (Fig. 1.2). First, the latitude of the sampling location significantly influenced 

the richness and composition of coral microbiomes. Moving away from the equator, coral 

microbiomes became less rich (Fig. 1.2a). This effect was significant for coral mucus and 

tissue, but not skeleton microbiomes, even after accounting for the uneven distribution of 

species across locations (Fig 1.2a and legend). In addition to its effects on richness, 

latitude had a small but significant influence on microbiome composition, accounting for 

between 1-4% of variance in microbiome composition (Weighted UniFrac adjusted 

Adonis R2), depending on the compartment (Fig. 1.1c). Phylogenetic GLMMs were fit 

separately to each compartment and showed that more bacterial genera were positively 

than negatively correlated with latitude (11%, 13%, and 9% of genera positively 

correlated with latitude in mucus, tissue, and skeleton, compared to 4%, 1%, and 4% 

negatively correlated with latitude in these compartments) (Fig. 1.2; Supplementary Data 

6). Together these results suggest that patterns of diversity in coral microbiomes may 

mirror latitudinal diversity gradients seen in free-living communities27.  

We also found that proportionally larger corals (those closer to their species’ maximum 

recorded size) showed differential microbiome composition and richness relative to 

smaller specimens (Fig. 1.2b). Effects of coral relative size on microbiome richness were 

significant in coral tissue and skeleton, but not mucus, after accounting for phylogeny 

(Fig. 1.2b). Coral size also had minor but statistically significant effects on microbiome 

composition in coral skeleton (Supplementary Note 12; Supplementary Data 4). Two 

bacterial genera, Aurantimonas and Balneola, were significantly reduced in larger corals 

(Supplementary Data 6). Aurantimonas has been proposed as the causative agent of 

White Plague Type II28 and Balneola was previously identified as an indicator of sewage 

pollution in the Red Sea29. These trends may reflect increased vulnerability of smaller 

corals to opportunistic pathogens or may simply reflect normal shifts in microbiome 

composition over the course of coral development30. 
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Coral phylogeny structures microbiome richness and composition 
Phylosymbiosis refers to the evolutionary pattern in which the phylogeny of a related 

group of host organisms correlates with changes in multivariate community 

dissimilarities among their microbiomes31. Mantel tests assessed phylosymbiosis in the 

coral microbiome (Supplementary Data 8). These tests quantify the correlation between 

matrices of coral host phylogenetic distances and multivariate dissimilarity as measured 

by the Bray-Curtis or Weighted UniFrac measures. Using Bray-Curtis dissimilarities, 

more closely related corals had more similar microbiomes in both tissue (Mantel r = 0.16, 

p = 0.0001; Supplementary Fig. 1.4a, dashed red regression line) and skeleton 

compartments (Mantel r = 0.18, p = 0.0001), but not mucus (Mantel r = 0.02, p = 0.18). 

Using the phylogenetically-aware Weighted UniFrac method deemphasized fine variation 

at the tips of the microbial tree, resulting in a significant signal of phylosymbiosis in 

skeleton, but not tissue or mucus microbiomes (Supplementary Data 8). 

Our Mantel test results demonstrate patterns consistent with phylosymbiosis in skeleton 

and perhaps tissue microbiomes, but do not clarify the evolutionary scales over which 

these patterns emerged. Therefore, we used Mantel correlograms to assess how these 

correlations varied across multiple scales of phylogenetic divergence. Across all 

compartments and dissimilarity measures, microbiomes of the most closely related coral 

hosts were significantly more similar than expected by chance (Mantel r > 0; p < 0.05). In 

general, tissue and skeletal microbiomes became gradually more dissimilar throughout 

the entire range of host phylogenetic distances (Supplementary Fig. 1.4b, Supplementary 

Data 8). Mucus microbiomes, on the other hand, did not become more dissimilar as host 

phylogenetic distance increased past the second distance class (Supplementary Data 8). 

We employed a similar procedure to test the evolution of microbiome richness in corals. 

As richness is a univariate rather than multivariate quantity, we conducted these tests 

using Moran’s I as a measure of univariate autocorrelation. These phylogenetic 

correlograms demonstrated that, like community composition, richness was significantly 

more similar among closely related corals than expected by chance (Moran’s I 95% lower 

CI > 0; Supplementary Fig. 1.4c, red confidence intervals). Additionally, richness was 

more dissimilar than expected among samples that were separated by phylogenetic 



 21 
distances of approximately 0.2 to 0.25 (Moran’s I 95% CI < 0; Supplementary Fig. 1.4c; 

blue confidence intervals), which corresponded roughly to between-family distances in 

our tree. At greater phylogenetic distances, they were no more or less similar than 

expected. These trends were consistent across coral mucus, tissue, and skeleton 

microbiomes. Coral microbiome richness is therefore influenced by the evolutionary 

histories of host corals. Importantly, the scales of phylogenetic divergence at which these 

effects appear, suggest that the radiation of modern reef-building coral families (between 

roughly 25 and 65 mya) was accompanied by large changes in microbiome richness, with 

changes continuing to accumulate during more recent speciation events. What’s more, 

these results demonstrate that the phylogenetic histories of corals partially constrain the 

composition of their tissue and skeletal microbiomes and the richness of all coral 

compartments. In other words, corals and their microbiomes exhibit phylosymbiosis32.  

Limited phylogenetic signal in the distribution of bacterial genera  
Phylosymbiosis results from a number of different mechanisms: the steady evolution of 

host traits that directly influence the microbiome (e.g., by excluding certain microbes); 

spatial patterning of hosts that indirectly influence the microbiome via environmental or 

ecological interactions (e.g., dispersal to areas with intensive turf algae competition), or 

long-term codiversification between hosts and specific microbial symbionts12,41. 

To address these alternatives, we tested all microbial genera for associations with tips of 

the coral tree (host identity) or wider regions of the coral tree (host phylogeny). Genera 

were defined based on Greengenes taxonomic annotations, and therefore included some 

imprecise pools of unannotated taxa, but were deemed sufficient for our intended 

analyses (a complementary fine-scale approach is pursued below). Both host identity and 

host phylogeny were assessed using the genus-resolution 12S mitochondrial RNA gene 

markers extracted from amplicon libraries for each sample, and pGLMMs (see Methods) 

were used to separate the effects of environmental and physiological variables from host 

effects. 

Even after accounting for some of the most important environmental and physiological 

factors from the multivariate analysis (e.g., geographic region, turf algal contact, disease 

susceptibility, and maximum corallite width), most microbial genera showed host-
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specific abundance patterns (Supplementary Table 1.5). Yet most coral-associated 

microbes were correlated with host identity, not host phylogeny. Phylogenetic GLMMs 

estimated that the abundances of between 62% (tissue) and 75% (mucus) of microbial 

genera were significantly correlated with at least one host mitotype (host identity), 

depending on the compartment analyzed (Supplementary Data 6). For example, 100/446 

microbial genera detected in tissue microbiomes were significantly more abundant in the 

Acropora mitotype than in others. Overall, 276/446 (62%) of microbial genera were 

associated with a host mitotype, but only 13/446 (3%) of genera in coral tissue were 

associated with host phylogeny (Supplementary Data 6). Genera associated with host 

phylogeny include Candidatus Amoebophilus (Cytophagales: SGUS912), a taxon 

previously identified as a core coral microbiome member across three species15. 

Candidatus Amoebophilus was associated in the skeleton with the coral clade formed by 

both Seriatopora and Stylophora, rather than with individual ‘host identity’ mitotypes 

(for additional discussion see Supplementary Results). Mucus microbiomes showed 

fewer genera (1.6%) associated with host phylogeny than tissue, while skeletal 

microbiomes showed more (4.9%). Taken together, this analysis confirmed that while the 

coral microbiome is highly host-specific, only a restricted subset of the microbiome 

members show preferences for entire groups of related corals.  

Cophylogenetic analysis identifies coral-bacterial interactions 
The above GLMM analyses were conducted at the level of microbial genera, but finer-

scale taxonomic variation is likely to exist. Also, the previous analysis identified only the 

response of microbial genera to host phylogeny, rather than any potential interactions 

between microbial and coral phylogenies. Therefore, we ran pGLMMs incorporating both 

coral and microbial phylogeny on fine-scale microbial sequence variants using Minimum 

Entropy Decomposition (MED)33. These methods tested whether corals showed patterns 

of cophylogeny with any of their microbial associates, which in this context refers to the 

tendency for groups of related microbes to be associated with groups of related hosts. 

Such patterns can arise from coevolution or codiversification, and may thus be a sign of 

intimate symbiosis, mutualistic or otherwise. 
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Because these analyses are computationally intensive, only the most prevalent microbial 

taxa were tested. A total of 25 bacterial family-level groups present in >50% of samples 

from at least one coral compartment were selected for detailed analysis. All but two of 

the families tested had some form of host specificity, with members either associated 

with particular coral mitotypes (representing species or genera) or particular regions of 

the coral tree. More formally, each of these bacterial families showed one of the 

following interaction effects (Fig. 1.3): host identity by bacterial identity; host identity by 

bacterial phylogeny; host phylogeny by bacterial identity; or host phylogeny by bacterial 

phylogeny (i.e., cophylogeny). One-to-one associations between individual bacterial 

sequence variants and individual coral hosts (i.e., host identity by bacterial identity 

interaction effects) were only significant in three bacterial groups: Clostridiaceae 

(mucus), unclassified Myxococcales (mucus), and unclassified Kiloniellales (mucus and 

tissue). In 19 of 25 families, host identity interacted significantly with bacterial 

phylogeny, meaning individual coral mitotypes were significantly associated with clades 

of related bacteria. However, the converse pattern did not occur: no individual bacterial 

sequence variants were significantly associated with clades of related coral hosts. 

Four bacterial groups exhibited significant cophylogenetic effects (i.e. host phylogeny by 

bacterial phylogeny interaction): Clostridiaceae, Endozoicomonas-like bacteria 

(Endozoicimonaceae in Greengenes), unclassified Kiloniellales, and unclassified 

Myxococcales (Fig. 1.3, red box). Cophylogeny in Endozoicomonas-like bacteria was 

detected in both tissue and mucus (ICCs, 95% lower bounds: 0.20 and 0.17, respectively) 

(Fig. 1.3, 1.4). Cophylogeny in Clostridiaceae and unclassified Myxococcales was 

detected within the coral skeleton only (ICCs, 95% lower bounds: 0.06, and 0.29, 

respectively), and it was detected in unclassified Kiloniellales in only the tissue 

compartment (95% ICC lower bound: 0.03).  

Together, these results show that while overall coral microbiome composition and 

richness do track phylogeny, and the majority of microbial genera show significant host-

specificity, only a small subset of coral-associated microbial diversity shows larger-scale 

interactions between coral and bacterial phylogeny.  
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Endozoicomonas partition into host-generalist and host-specific clades 
Endozoicomonas-like bacteria are important coral symbionts34, and in our data showed 

the strongest signal of cophylogeny among bacteria found in coral tissues. We therefore 

analyzed this group in greater depth. Inspection of the phylogeny of Endozoicomonas-

like bacteria (Methods) revealed two major coral-associated divisions within the group 

(Fig. 1.4, Supplementary Fig. 1.4): one in which most strains were host-specific 

(hereafter ‘Clade HS’ for ‘Host-Specific’), and another where most strains had a 

cosmopolitan distribution across multiple hosts (hereafter, ‘Clade HG’ for ‘Host 

Generalist). 

Within the host-specific clade HS, two bacterial sub-clades were strongly associated with 

the two major lineages of corals (‘Complex’ or ‘Robust’ corals). We have termed these 

clades of Endozoicomonas-like bacteria ‘HS-R’ for ‘Host-Specific: Robust’ and ‘HS-C’ 

for ‘Host-Specific: Complex’. All of these clades and subclades were well-supported by 

posterior probabilities (posterior probabilities: Clade HG, 1.00; HS-R 0.92; HS-C 0.72) 

with the exception of Clade HS, which was only weakly supported (posterior probability 

0.33).  

To further assess the relationship between corals and Clade HS Endozoicomonas-like 

bacteria, we fitted a GLMM that included all corals but only clade HS bacteria, and 

another that included only the Robust clade corals and clade HS-R bacteria. The 

cophylogeny terms from both these tests were highly significant (ICCs, 95% lower 

bounds: 0.34 and 0.21, respectively). 

The coral-associated members of Clade HS from this study were more closely related to 

Endozoicomonas strains previously reported to live in symbiosis with diverse non-

scleractinian hosts (gorgonians, mollusks, sponges, and other marine invertebrates) than 

they were to members of Clade HG. Thus it appears that Endozoicomonas-like bacteria 

have formed novel associations with scleractinian corals multiple times throughout their 

evolution, but that such host-swapping has been a relatively rare occurrence.  
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Discussion 
Scleractinia have been diversifying for almost half a billion years20. In about half that 

timespan, flowering plants appeared, diversified and evolved important specialized 

microbial symbioses in specific lineages35. Here we demonstrate that a phylogenetic 

framework for analysis of coral microbes can reveal how scleractinian corals’ 

evolutionary history, host traits and the local environment interact to shape coral 

microbiomes. Our results test longstanding hypotheses that bear on potential coral-

microbe coevolution, and add quantitative details and taxonomic breadth to several 

previously explored patterns in coral microbiology.  

We originally hypothesized that corals would show signs of phylosymbiosis throughout 

their entire phylogenetic history. While our results are in accord with this hypothesis in 

coral skeleton and tissue, the same is not true for the coral mucus microbiome. Despite 

documented variability in the chemical composition of coral mucus between species32, 

and significant host-specificity in the mucus microbiome, host specificity in the mucus 

microbiome was limited to relatively recent divergences and was not significantly 

structured by larger scales of host phylogeny. Importantly, because this analysis focused 

on the entire Scleractinian order, it did not test whether patterns of phylosymbiosis occur 

in the mucus within specific coral lineages or at intrageneric timescales generally. In 

contrast to the patterns in the mucus, the coral skeleton, which has been less intensively 

studied than mucus and tissue, showed both the greatest microbiome richness and the 

strongest signal of long-term phylosymbiosis. These findings emphasize that different 

anatomical regions of animal hosts may show distinct evolutionary patterns. This 

observation will be relevant for studies in other systems (e.g. mammals) where most 

studies of host-microbe coevolution have emphasized a single body site (e.g. the distal 

gut).  

Phylosymbiosis can emerge as a consequence of multiple mechanisms, including 

codiversification of many lineages, microbial habitat filtering by host traits, or the 

interaction of host and microbial biogeography12. We tested whether the most prevalent 

coral-associated bacteria demonstrated cophylogenetic patterns with their hosts. We used 

pGLMMs to compare the prevalence of individual sequence variants within particular 
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bacterial families among diverse coral hosts. This approach allowed us to disentangle the 

effects of geographic area, cophylogeny, and distinct associations between individual 

hosts and microbes. Of the 25 bacterial families tested, cophylogentic interactions 

significantly influenced the abundance of only 4. Thus, although many coral-associated 

bacteria are host-specific, and the overall composition of coral microbiomes tracks 

phylogeny (i.e., phylosymbiosis), only a select minority of coral-associated bacterial 

families show cophylogenetic signals consistent with long-term host-microbe 

codiversification. This result emphasizes that while host-microbe cophylogeny likely 

contributes to phylosymbiosis, other factors, such as biogeographic effects and 

phylogenetically patterned host traits are likely very important in producing this pattern.  

That coral microbes differ in their extent of cophylogeny with their host also emphasizes 

that the microbiome is not a single unit of selection, but instead contains diverse players 

that vary greatly in the extent of their history of association with the host and one 

another12.  Host specificity of certain microbes with extant coral species, community-

level phylosymbiosis across the coral microbiome, and cophylogeny of certain microbial 

lineages with their host are all distinct concepts that should be distinguished. We 

recommend that observations of phylosymbiosis be accompanied by finer-scale tests of 

host-microbe cophylogeny in order to identify specific microbial lineages that may have 

coevolved or codiversified with their hosts. These may warrant additional investigation as 

potential ‘key players’ in the microbiome, but a time-calibrated microbial phylogeny 

would be necessary to test for it. 

The microbial families that show signs of cophylogeny may be associated with important 

host functions that have led to stable symbiotic relationships across extended 

evolutionary time. The pGLMM methods used here allow identification of such taxa 

from a broader symbiotic community, even in the absence of strict one-to-one 

associations between hosts and symbionts, and will be relevant to other study systems. 

We identified four bacterial lineages displaying signs of cophylogeny with their coral 

hosts, all of which represent important targets for future study. One lineage, the 

Endozoicomonas-like bacteria, has previously been hypothesized to have codiversified 

with their coral hosts throughout the evolution of Scleractinia36. These results are 



 27 
relatively consistent with this hypothesis for one subclade of Endozoicomonas, but 

suggest that the abundant variants found in well-studied Porites corals are more 

cosmopolitan in their distribution. A greater geographic breadth of samples and 

representatives of the many azooxanthellate scleractinians will help inform this notion 

further, and a test of codiversification specifically will require a better-resolved and time-

calibrated Endozoicomonas phylogeny.  

In addition to the Endozoicomonas, three other groups of functionally distinct bacteria 

showed significant patterns of cophylogeny: the proposed mutualist Kilioniellales37, the 

predatory ‘wolf pack’ bacteria Myxococcales, and a group of organisms generally 

hypothesized to be pathogens of corals, the Clostridiaceae4,37-39. Future work on these 

taxa may provide insight into their broader roles in coral evolution and health.  

Our survey of Australian coral microbial diversity provides the most conclusive evidence 

to date that phylosymbiosis has occurred between corals and their microbiomes. Despite 

this, cophylogeny between scleractinian corals and their microbial symbionts is likely 

restricted to a small subset of bacterial families. The results of this survey further 

quantify the relative influence of host and environmental drivers on the microbial 

diversity of coral mucus, tissue and skeleton. A still more comprehensive picture of coral 

microbiology will be gained with future efforts that expand analyses to global sample 

datasets (including potentially informative samples from deep-water or Caribbean corals), 

development of improved statistical models (e.g. by relying less on arbitrary taxonomic 

thresholds; see for instance the emerging ‘ClaaTU’ method40), and connection of these 

patterns of microbial diversity to other members of the coral microbiome such as 

Symbiodinium. In particular, the addition of deep-water, azooxanthellate corals could fill 

in important gaps in the phylogeny and help test the generality of phylosymbiosis in coral 

microbiomes.  

Data Availability 
Raw sequence data, metadata, OTU and MED representative sequences are publicly 

available at https://doi.org/10.6084/m9.figshare.c.3855466.v2. Raw sequence data are 

also deposited at the European Nucleotide Archive under accession number 
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PRJEB28183.  Analysis code is available on GitHub: 

https://github.com/zaneveld/GCMP_Australia_Coevolution 
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Methods 
Selection of target sites 
We aimed to collect coral specimens spanning coral phylogenetic diversity from a variety 

of Australian reefs. We targeted collection based on the 21 major coral clades defined in 

one of the most recent molecular phylogenies available at the start of the project41. Many 

of these monophyletic groups have since been defined as family-level taxa. Corals were 

collected at several sites on the east and west coast of Australia. These included Ningaloo 

Reef (Western Australia), Lizard Island, multiple reefs along the northern Great Barrier 

Reef, and Lorde Howe Island. Samples at Lizard Island were collected in both Summer 

and Winter, allowing for comparison of seasonal effects at one site across diverse corals. 
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Collection of metadata 
During sampling, each coral, outgroup species, water, and sediment sample was 

associated with MIxS metadata42. This was accomplished by recording standardized 

metadata about each site prior to dives, and using an underwater metadata sheet 

(available at https://doi.org/10.6084/m9.figshare.5326870.v1). These metadata included 

basic features of coral species (as identified in the field), location, depth, water 

temperature, but also diver annotation of contact with macroalgae, turf algae or 

cyanobacteria (and the percent of the coral in contact); the presence of any visible tissue 

loss or disease signs; and coral color (using the Coral Reef Watch color charts43. 

Additionally, photographs of each coral were taken and released via openly accessible 

third party websites. They are easy to browse and thoroughly keyworded with taxonomy, 

location, and sample ID metadata on Flickr: https://flic.kr/s/aHsk9mjb54, and 

permanently archived in raw camera format with a spreadsheet linking filenames to 

colony names on FigShare at https://doi.org/10.6084/m9.figshare.5318236.v2. 

Coral sampling 
All coral samples were collected by AAUS-certified scientific divers, in accordance with 

local regulations. Relevant permit numbers are: CITES (PWS2014-AU-002155, 

12US784243/9), Great Barrier Reef Marine Park Authority (G12/35236.1, G14/36788.1), 

Lord Howe Island Marine Park (LHIMP/R/2015/005), New South Wales Department of 

Primary Industries (P15/0072-1.0, OUT 15/11450), US Fish and Wildlife Service 

(2015LA1632527, 2015LA1703560), and Western Australia Department of Parks and 

Wildlife (SF010348, CE004874, ES002315). Only healthy corals were collected.  

One goal of the project was to compare microbial diversity associated with the coral 

mucus, tissues and skeletons across many coral colonies. Each of these compartments 

represents a simplification of more complex structure, and much work remains to be done 

on the finer-scale distribution and dynamics of microorganisms across coral anatomy. For 

this project, we felt that a consistent reporting of these compartments across diverse 

corals represented a tractable step forward, given the scale of the project. Mucus was 

collected by gently agitating the surface of corals for ~30 seconds with a blunt 10 mL 

syringe. Exuded mucus or surface water (if no visible mucus was exuded) was then 
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collected by suction. On the surface, settled mucus typically formed a distinct visible 

layer within the syringe. This was expelled into a cryogenic vial and stored in a dry 

shipper charged with liquid nitrogen for subsequent processing. 

Tissue and skeletal samples were collected from each colony by hammer and chisel, or 

(for branching corals) by bone shears. These fragments were placed in sterile WhirlPaks 

and returned to the surface where they were snap frozen in a liquid nitrogen dry shipper 

until processing. In the laboratory, tissue was washed with sterile seawater (which 

removed visible mucus and detritus), then separated from skeleton using pressurized air 

of between approximately 800 and 2,000 PSI (an ‘air gun’). Skeleton was sampled using 

a sterile chisel to isolate a ~1 cm3 region of skeleton that was not in direct contact with 

coral tissue. Skeleton samples were collected without regard to endolithic algae presence 

or absence (i.e., endolithic algae were neither specifically targeted nor excluded). Tissue 

slurries and skeleton samples were added directly to a MoBio PowerSoil Kit (MoBio 

Laboratories, Carlsbad, California) bead tube (which contains, among other things, a 

solution of guanidinium preservative) and stored at -80 °C until DNA extraction. 

Sampling of reference samples 
Because reef water and adjacent sediment might have an effect on the microbiota of 

corals from the same reef (especially in coral mucus), reef water and sediment were 

sampled at multiple sites. Surface seawater samples (1 L) were filtered through 0.22 μm 

Millipore Sterivex filters (Sigma-Aldrich, St. Louis, MO, USA) and reef sediment 

samples (2 mL) were collected in sterile cryogenic vials. Samples were snap frozen in a 

liquid nitrogen dry shipper, and subsequently stored at -80 °C until DNA extraction. 

For comparison with corals from the same reef, we also opportunistically sampled non-

scleractinian cnidarians from the genera Millepora (fire corals), Palythoa (zoanthids), 

Heliopora (blue corals), and Lobophytum (soft corals). 

16S library preparation, sequencing, and initial quality control 
DNA was extracted from skeleton, tissue, mucus, and environmental samples using the 

MoBio Powersoil DNA Isolation Kit. Two-stage amplicon PCR was performed on the 

V4 region of the 16S rRNA gene using the 515F/806R primer pair that targets bacterial 
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and archaeal communities23. Extraction blank controls were also included in 

amplification and sequencing for quality assurance. The average concentration of 

extracted DNA used for PCR was 10.8 with a standard error of 1.2. First, 30 PCR cycles 

were performed using 515F and 806R primers (underlined) with linker sequences at the 

5’ ends: 515F_link (5’-ACA CTG ACG ACA TGG TTC TAC AGT GCC AGC MGC 

CGC GGT AA-3’) and 806R_link (5’-TAC GGT AGC AGA GAC TTG GTC TGG ACT 

ACH VGG GTW TCT AAT-3’). Each 20 µL PCR reaction was prepared with 9 µL 

5Prime HotMaster Mix (VWR International), 1 µL forward primer (10 µM), 1 µL reverse 

primer (10 µM), 1 µL template DNA, and 8 µL PCR-grade water. PCR amplifications 

consisted of a 3min denaturation at 94 °C; 30 cycles of 45 s at 94 °C, 60 s at 50 °C and 90 

s at 72 °C; and 10 min at 72 °C. Next, amplicons were barcoded with Fluidigm barcoded 

Illumina primers (8 cycles) and pooled in equal concentrations for sequencing. The 

amplicon pool was purified with AMPure XP beads and sequenced on the Illumina 

MiSeq sequencing platform (using V3 chemistry) at the DNA Services Facility at the 

University of Illinois at Chicago.  

QIIME (v1.9)44 was used to process all 16S sequence libraries. Primer sequences were 

trimmed, paired-end reads merged, and QIIME’s default quality-control parameters used 

when splitting libraries. Chimeras were removed and 97%-similarity OTUs picked using 

USEARCH 7.045, QIIME’s subsampled open-reference OTU-picking protocol46, and the 

97% Greengenes 13_8 reference database26. Taxonomy was assigned using UCLUST, 

and reads were aligned against the Greengenes database using PyNAST47. FastTreeMP48 

was used to create a bacterial phylogeny with constraints defined by the Greengenes 

reference phylogeny. Following quality control, 9,441,738 usable reads remained. The 

number of per sample reads ranged from 2 to 38,523 with a median of 14,010, mean of 

13,644, and standard deviation of 7,565. Reads were partitioned across 129,305 unique 

OTUs (97% similarity cutoff). Sequencing success did not show any obvious trends with 

regards to host taxonomy or geographic location. 

A ‘canonical’ rarefied OTU table was created and used for all downstream analyses 

except the linear model analyses. To create this table, OTUs were filtered out of the 

starting table if their representative sequences failed to align with PyNAST to the 
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Greengenes database or if they were annotated as mitochondrial or chloroplast sequences. 

The beta_diversity_through_plots.py script was then used to rarefy the resulting table to 

exactly 1000 sequences per sample, and to calculate from this rarefied table multivariate 

dissimilarity measures including Bray-Curtis, Binary Jaccard, Weighted UniFrac, and 

Unweighted UniFrac. Also from this table, α-diversity statistics were calculated using 

alpha_rarefaction.py, including the number of OTUs observed, evenness, and Faith’s 

Phylogenetic Diversity. 

Mitochondrial annotation and quality control 
The primers used in this study were designed to selectively amplify the V4 region of 

bacterial and archaeal 16S rRNA gene, but we have noticed in many of our studies that 

they (and other standard primer sets) tend to strongly amplify corals’ mitochondrial 12S 

rRNA gene, which is the homolog of the bacterial 16S rRNA gene. Because our samples 

included species that were not used in the Huang and Roy 201520 phylogeny (including, 

critically, all outgroup taxa), these ‘off-target’ host mitochondrial reads were used to 

inform phylogenetic analyses and for an additional layer of quality-control. First, 

split_libraries_fastq.py was run on the raw forward reads without any quality trimming. 

Then, primers and adaptor sequences were removed, and USEARCH used to de-replicate 

100% identical sequences. A frequency table was created and the data were filtered to 

contain only sequence variants with a total count of at least 100. Greengenes taxonomy 

was assigned to the remaining sequence variants with UCLUST as before, and sequence 

variants that had no match in the Greengenes database (e.g. putative non-bacterial or 

archaeal sequences) were isolated. For each host species, sequence variants were 

manually submitted to NCBI’s BLASTn web interface in order of their total abundance, 

comparing against the entire nr database. If a variant’s top 20 hits were annotated as coral 

mitochondria of any species, the sequence was copied to a FASTA file of host sequences. 

If all three compartments of a single coral individual of the same putative species still had 

unclassified variants that were more abundant, then manual annotation of those variants 

continued until either another coral mitochondrial sequence variant was found or there 

were no more variants in those samples that were more abundant than the previously 

annotated mitochondria. Using this method, no host sequences were found for some 
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species of coral. The process was repeated for these species individually, without first 

discarding sequences that had counts of less than 100. In this way, mitochondrial 

sequences were eventually identified for every sample in the study. 

Once all host species mitochondrial sequences were identified, the original frequency 

table of all unique sequence variants was filtered to contain only the identified host 

sequences. For each individual sample, the most abundant mitochondrial type was 

determined, and this information was then added to the sample’s metadata as its ‘12S 

genotype’. Then, all selected host sequences were aligned using MAFFT49 and de novo 

phylogenies were constructed in BEAST 2.4.250, with a chain length of 10 million, 

thinning interval of 1000, a log-normal relaxed clock model, and the site model selected 

using bModelTest51. The maximum clade credibility tree was selected using 

TreeAnnotator with a burn-in of 25% and common ancestor heights. This tree was 

compared to the expected topology (monophyletic Anthozoa, Hexacorallia, and 

Scleractinia, and otherwise matching the Huang and Roy 201520 molecular tree) to 

identify potential mismatches among the observed sequences and the field species 

identification. Regions of the tree with topology that differed from expectation were 

manually inspected. 

Using this strategy, two coral individuals were noted whose field identifications placed 

them in the family Merulinidae, but whose sequence variants were strongly indicative of 

a relationship with the family Lobophylliidae. In these instances, further analyses verified 

that the same mitotype was detected in all three compartments of the same individual. 

Photos from collections in the field were consulted, and both were ultimately determined 

to have been misidentified in the field and in fact belonged to the genus Echinophyllia. 

Their metadata and annotations were updated to reflect this.  

Aside from these two taxa, it was determined that unexpected topology in the de novo 

phylogeny was a result of imprecise resolution of the 12S V4 marker. For example, 

sequences from Millepora, Palythoa, and both octocoral species were placed in a 

monophyletic clade including the Complex corals, though they properly belong as 

outgroups to all Scleractinia. These errors emphasized the limitations of our opportunistic 

host sequence data to build a de novo phylogeny. Thus, having confirmed identifications 
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of host species to within the resolution of the 12S marker, a new phylogeny was 

constructed with the topology constrained to exactly match the Huang and Roy 201520 

molecular phylogeny and the known relationships of outgroup taxa. In cases where a 

single 12S genotype belonged to members of a polyphyletic group of taxa, we created 

separate tips for each monophyletic group. The mitochondrial sequence alignment and 

BEAST 2.4.2 were used to estimate relative branch lengths on this tree by supplying the 

starting tree and turning off all topology operators. The resulting tree was used for all 

phylogenetic analyses. As the branch lengths in this tree are derived from a relaxed clock 

model and limited sequence data, they are likely to represent some average between 

divergence times and degree of molecular evolution. Thus, analysis using these branch 

lengths represents a compromise between assuming correlation of traits is proportional to 

time since divergence and assuming that correlation of traits is proportional to overall 

evolutionary change since divergence.  

Annotation of coral life history strategy 
To assess connections between coral traits and microbiome structure, coral species 

sampled in this study were mapped to functional traits. These host features were added to 

the microbial mapping file, and used for tests of microbiome structure vs. host traits. 

Coral life history strategies from Darling et al.52 (‘weedy’, ‘competitive’, ‘stress-

tolerant’, and ‘generalist’) were digitized and associated with coral species. Some species 

have recently been moved between genera based on updated phylogenetic evidence53. In 

these cases, both the original species name and the revised name are noted in the 

metadata. In some cases, species sampled were not annotated in Darling et al.52. These 

were not assigned an annotation if annotated members of the same genus had mixed life-

histories, or if only a single species of the same genus had been annotated. In cases where 

at least two members of the genus had been annotated and all annotated members shared 

the same life-history strategy, the same annotation was assigned to other members 

sampled from the genus. 

Annotation of coral functional traits 
Metadata associated with each species sampled was annotated with 28 reproductive, 

biogeographic, and morphological traits from the Coral Trait Database (CTDB) v. 
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1.1.123. These traits included basic details on coral distribution (abundance worldwide 

and on the Great Barrier Reef, range size, northerly and southerly limits, upper and lower 

depth limits), reproduction (sexual system, mode of larval development, propagule size, 

presence of Symbiodinium in propagules), phylogeny (genus and species ages), 

morphology (growth form, skeletal density, corallite maximum width, maximum growth 

rate) and conservation (IUCN Red List Category). 

Adonis analysis of factors affecting microbial composition 
We tested the influence of multiple host and environmental factors on the microbial 

community of each compartment. These results are presented in Fig. 1.1c 

and Supplementary Fig. 1.2, while the raw underlying data is presented in Supplementary 

Data S3. Throughout the analysis care was taken to account for the effects of rarefaction 

depth (we tested the robustness of the results at rarefaction depths of 1000 or 10000 

sequences/sample), β-diversity distance measure (we tested three distance measures), the 

degrees of freedom in each parameter (we used adjusted R2 values to account for 

differences in degrees of freedom), and to stringently control for the number of 

comparisons performed (using Bonferroni correction). 

β-diversity distance matrices were calculated from separate OTU tables for coral mucus, 

tissue, and skeleton (outgroups and environmental samples were not included in this 

analysis). We calculated distance matrices using Weighted UniFrac distances, 

Unweighted UniFrac distances or Bray-Curtis dissimilarities. Then, for each host or 

environmental factor, the distance matrix was filtered to just those samples for which 

metadata were available (i.e. excluding 'Unknown' values). This prevented 'Unknown' 

values from being treated as a bona fide category in downstream statistical tests. The 

filtered distance matrix was then tested for clustering by factor using permutational tests 

(as implemented in Adonis in QIIME 1.9.1; 999 permutations per test). Because 

categories that can take on more values (e.g. species) are biased upwards in raw 

R2 values, we calculated adjusted R2 values for each category. These adjusted R2 values 

are primarily useful in that they allow for fair comparison between factors with differing 

degrees of freedom. Therefore, we present adjusted R2 values when comparing factors, 

but raw R2 values when discussing the percentage of variance explained (adjusted 
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R2 values can no longer be interpreted as percent of variance explained).  Importantly, we 

took care to separately filter the QIIME mapping file to exclude ‘Unknown’ values for 

each parameter under consideration. Failure to do so can lead to continuous variables 

(columns containing only numbers) being treated as categorical in QIIME, due to the 

presence of text values. This in turn can strongly influence inferred R2 values. 

Summary of Adonis analysis of microbial Beta-diversity 
To present a summarized view of the Adonis analysis of microbial community beta-

diversity, we compiled the R2 and p value obtained from each individual Adonis analysis. 

In Supplementary Fig. 1.1 the compiled adjusted R2 are presented in a heatmap. In Fig. 

1.1c, we compared the relative influence of each host or environmental parameter on 

different host compartments by Z-score normalizing Adonis R2 values within columns. 

This has the effect of showing which compartments are most strongly influenced by a 

particular factor, independent of how influential that factor was overall. We present both 

views into the data because the unnormalized Adonis R2 values better emphasize the 

absolute magnitude of the microbiome response to each factor, whereas the Z-score 

normalized values better illustrate common patterns across compartments in host vs. 

environmental parameters. We emphasize that in both Fig 1.1c. and Supplementary Fig. 

1.2, clustering of rows and columns was performed without any prior specification of 

which factors were host vs. environmental. Thus, observed clustering of host vs. 

environmental factors emerges from features of the microbial communities themselves. 

Machine learning analyses 
All machine learning analyses were conducted through the supervised_classification.py 

script in QIIME (v1.9)44. This script implements random forest classification, which is a 

machine learning method for supervised classification. We used default parameters, 

which classify samples using inferred forests of 500 decision trees. We applied random 

forest classifiers to two tasks: 1) testing whether we can predict if a DNA sample came 

from coral mucus, tissue, or skeleton using microbial 16S rRNA data alone and 2) 

predicting whether within each coral compartment we can predict certain categorical 

features of a sampled coral using its microbiome (contact with turf algae, reef name, 

complex vs. robust clade membership, etc.). The results from random forest analysis of 
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coral compartments are presented in the main text. The results for random forest analysis 

of host and environmental parameters are presented in Supplementary Data S6. Because 

error rates typically scale with both the number of categories - it is easier to predict the 

correct category for a binary category than one with 100 possibilities for example – we 

took care to consider the proportional increase in random classification relative to a 

baseline formed by random guessing. For both the compartment classification task and 

the trait classification task, we tested random forest classification on microbial phyla, 

orders or genera. For the compartment classification task we also tested random forest 

classification with 97% OTUs directly or predicted functional repertoires of coral 

microbiomes as inferred using the PICRUSt software. However, this was computationally 

expensive and yielded < 0.1% improvement in classification error rates over 

classification based on microbial genera, and was therefore not pursued further. 

Statistical analyses on the effect of phylogeny on the microbiome  
Phylogenetic analyses were conducted in R v3.3.154. The packages ape (v3.5)55 and 

paleotree (v2.7)56 were used to manipulate trees and to calculate cophenetic distances. 

Univariate phylogenetic correlograms of α-diversity and distance-to-centroid measures 

were implemented using the package phylosignal (v1.1)57. Mantel tests and mantel 

correlograms of multivariate dissimilarities vs. phylogenetic distances were implemented 

using vegan (v2.5-2)58. Size classes for the mantel correlograms were defined manually. 

Following Sturge’s rule, we created 11 distance classes. Due to the structure of the host 

phylogeny and the sampled species, four discrete phylogenetic distances greater than 

~0.3 existed, corresponding to (1) all comparisons between the two major coral clades, 

(2) all comparisons between scleractinians and Palythoa (Zoantharia), (3) all 

comparisons between hexacorals and octocorals, and (4) all comparisons between 

anthozoans and Millepora (Hydrozoa). We first created distance classes that 

corresponded to each of these four discrete comparisons, then created the remaining 

seven distance classes by spacing them evenly across the smaller phylogenetic distances. 

Phylogenetic Generalized Linear Mixed Models (pGLMMs) for analysis of the entire 

community were implemented using the package MCMC.OTU (1.0.10)59. MCMC.OTU 

wraps the package MCMCglmm (v2.24)60 to fit a model whereby sequencing depth is 
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accounted for by using a sample’s total read count as the base level of a fixed per-OTU 

effect. Compositionality is accounted for by the inclusion of a per-sample random effect, 

and a number of other parameters and priors are set with defaults that are sensible for 

microbiome studies, such as ‘global effects’ of each specified factor (which control for 

and test effects on α-diversity) and independent error variance for each OTU. Analysis of 

the entire set of 97% OTUs was computationally impractical, so OTUs were first 

collapsed from the pre-rarefaction OTU table into their annotated genera using QIIME’s 

summarize_taxonomy.py. The package phyloseq (1.18.1)61 was then used to import and 

manipulate this table and its associated metadata. Samples with total counts less than 

1000 or that were lacking relevant metadata were removed. The purgeOutliers command 

was applied to the data with an otu.cut value of 0.0001. For the first, more comprehensive 

GLMM, the command mcmc.otu was run with maximum corallite width, disease 

prevalence, and binary turf contact as fixed effects; geographic area, host phylogeny, and 

host identity as random effects; a chain length of 125000, thinning interval of 5, and 

burn-in of 25000; and with the inverse of the host phylogenetic covariance matrix 

supplied with the ginverse option. Subsequently, the command was run again with 

latitude and then coral colony size as the sole fixed effect, and with only host phylogeny 

as a random effect. Significance for each term was determined by calculating 95% 

credible intervals with HPDinterval and isolating those that did not include zero. 

Cophylogenetic analyses 
We reasoned that microbial groups that are most intimately associated with corals 

(whether commensal, mutualistic, or parasitic) are likely to have evolved in ways that led 

to patterns of cophylogeny with their hosts. A preliminary pipeline was developed to 

screen the microbiome for such groups. First, joined sequences were re-processed with 

the Minimum Entropy Decomposition (MED) pipeline33, discarding MED nodes with 

substantive abundances less than 100. Taxonomy was assigned to the resulting MED 

representative sequences as before with OTUs. Family-level groups of microbes were 

analyzed independently because higher taxonomic levels would be unlikely to have 

evolved within the same timescale as scleractinians, and lower taxonomic levels were 

more likely to contain misannotations. It was computationally impractical to analyze all 
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microbial families, so only the most prevalent in each compartment were tested. And 

arbitrary threshold of 50% prevalence was chosen. For each family in each compartment, 

all MED nodes were isolated that were the most abundant representative in at least one 

sample. This conservative approach was done partly out of concern that spurious 

sequences generated by sequencing error could influence the downstream phylogenetic 

analyses, and partly to reduce each dataset to a size that was practical for phylogenetic 

inference and GLMMs. The representative sequences were then combined from these 

nodes with reference sequences for each family. Reference sequences were randomly 

subsampled from the Greengenes 13_8 99% OTU database such that each dataset 

contained the MED nodes of interest, 75 random full-length 16S sequences belonging to 

the family of interest, plus 10 random ‘outgroup’ sequences belonging to any other 

family from the same order. 

Each collection of sequences was then aligned using MAFFT in QIIME. Phylogenetic 

trees were built using BEAST 2.4.2 with a chain length of 100 million, thinning interval 

of 1000, a log-normal relaxed clock model, and the site model selected using 

bModelTest. The maximum clade credibility tree for each group was selected using 

TreeAnnotator with a burn-in of 25% and common ancestor heights. 

A separate pGLMM was then fit for each microbial family in each tissue compartment. 

The raw MED table was imported into R using phyloseq and filtered to contain only 

samples with counts greater than 1000. The resulting table was merged with each 

microbial family’s phylogenetic tree using phyloseq, a process that automatically filters 

all sequences from the table that are not represented on the tree. Samples were further 

filtered from this table if they did not retain a count of least 10. Phylogenetic covariance 

matrices based on the bacterial and host phylogenies were then generated62. Phylogenetic 

covariance matrices based on the bacterial and host phylogenies were generated using the 

function inverseA on each host tree. The Kronecker product of the resulting matrices was 

then computed for use as the 'coevolutionary' covariance matrix. The Kronecker product 

of each phylogenetic covariance matrix and an identity matrix was computed for use as 

microbial identity x host phylogeny and microbial phylogeny x host identity interaction 

effects62 
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Binary models were fit with MCMCglmm using a single fixed effect of the log of the 

sequencing depth, ‘global’ random effects of host phylogeny, host identity, microbial 

phylogeny, and microbial identity, all combinations of host-by-microbe phylogenetic and 

identity random interaction effects, and a geographic area-by-microbial identity random 

interaction effect. Altogether this approach is similar to the models described in 

reference62. Our models were fit with a chain length of 1,250,000, thinning interval of 50, 

and burn-in of 250,000. After the model was fit, convergence was assessed by verifying 

that the Effective Sample Sizes (ESS) of all covariance terms were greater than 200. 

Intraclass correlation coefficients (ICCs) were calculated for each iteration, with 95% 

credible intervals calculated with HPDinterval. Factors with ICC lower credible bounds 

greater than 0.01 were considered significant. 

To independently analyze subclades of Endozoicomonas-like bacteria, a custom QIIME-

formatted taxonomy database was created with sequence annotations corresponding to 

clades C, HS, HS-R, and HS-C from the initial analysis. Taxonomy was then assigned to 

all MED nodes and Endozoicimonaceae Greengenes reference sequences using UCLUST 

with max-accepts set to 1. The above procedure of filtering, selecting reference 

sequences, building a phylogeny, and fitting pGLMMs, was then repeated based on each 

annotated subclade instead of each family. HS-R within only Robust clade corals was 

also analyzed by first filtering other samples from the dataset. 
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Figures and Figure Legends 

 
 
Figure 1.1. Anatomical differences in coral microbiomes.  

Coral mucus, tissue, and skeleton microbiomes differ in richness, composition, and 

response to host vs. environmental factors based on 16S rRNA gene sequence data. a) 

Microbial community richness (observed OTUs) in coral mucus (teal), tissue (orange) 

and skeleton (purple), assessed at an even depth of 1000 reads per sample. P-values 

reflect Tukey’s HSD. b) Principal coordinates plot of coral-associated microbial 

communities (Unweighted UniFrac; n = 614). Reads were rarefied to 1000 reads per 
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sample. Coral compartments show significant differences in community composition 

(Adonis R2 = 0.028; permutational p < 0.001). The percent variation explained by the 

principal coordinates is indicated at the axes. Boxplots of the second PC elucidate 

differences among compartments. P-values reflect Tukey’s HSD. c) Relative influence of 

host and environmental factors on microbiome composition (Weighted UniFrac, Adonis 

adjusted R2) in each compartment. Darker cells for a compartment indicate that it is more 

strongly influenced by that trait than the other compartments (Adonis adjusted R2 values 

z-score normalized within columns). Cell values reflect adjusted R2, which penalizes R2 

for each factor downward to allow for fair comparison among factors with varying 

degrees of freedom. Asterisks indicate a significant effect of that factor (Adonis 

permutational p < 0.05) on the microbiome in that compartment, following stringent 

Bonferroni correction across all traits and compartments. While both host and 

environmental factors influenced all compartments, host factors tended to influence coral 

tissue and skeleton more strongly than mucus, whereas host environment more influenced 

mucus microbiomes. All values in the table, plus other combinations of rarefaction depth 

and multivariate dissimilarity measure are presented in Supplementary Data 4.
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Figure 1.2. Effects of latitude and coral relative colony size on coral microbiomes.  

In all panels, we rely on phylogenetic Generalized Linear Mixed Models (pGLMMs; 

Methods), which account for potential confounding effects of coral phylogeny, for effect 

size and significance. a) Microbial community richness (observed OTUs) as a function of 

latitude and coral anatomy (teal, coral mucus; orange, tissue; purple, skeleton). For 

visualization of latitudinal effects on richness, linear correlations are shown with colored 

lines, and their 95% confidence intervals are shown by shaded areas. Associations 

between latitude and microbiome richness were significant in coral mucus and tissue, but 

not skeleton (pMCMC: mucus, 0.0018; tissue, 0.0004; skeleton 0.468; pGLMM effect 

sizes: mucus, 0.026; tissue, 0.035; skeleton, 0.007). b) Microbiome richness as a function 
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of coral colony size relative to the maximum recorded size for each species and coral 

anatomy. Relative colony size vs. microbiome richness was visualized with linear 

regression. A negative association between coral relative size and microbiome richness 

was significant in tissue and skeleton, but a positive association in mucus was not 

significant (pMCMC: mucus, 0.86; tissue, 0.0008; skeleton, 0.02; pGLMM effect sizes: 

mucus, 0.028; tissue, -0.591; skeleton, -0.392). c) Percent of tested microbial genera 

significantly associated with latitude and colony size in phylogenetically-controlled 

pGLMMs (Supplementary Data 6). 
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Figure 1.3. Effects of host identity, phylogeny, and cophylogeny on bacterial families.  

Results are derived from co-phylogenetic GLMM analysis within prevalent bacterial 

families, and incorporate geographic area, bacterial and coral host identity, and bacterial 

and coral host phylogeny (see Methods and workflow in Fig. 1). Each block of rows 

corresponds to a factor in the model (main effects are not shown). Each row within a 

block corresponds to a tissue compartment (teal = mucus, orange = tissue, and purple = 

skeleton; see coral polyp illustration), while each column corresponds to an independent 

model fit for the specified microbial group. Dots were plotted only for ‘significant’ 

factors (ICC lower bound > 0.01). The size of each dot represents the intra-class 

correlation coefficient (ICC) 95% credible lower bounds from co-phylogenetic linear 

model analysis. While coral host identity is associated with bacterial phylogeny for most 

prevalent bacterial families (top block of rows), only 4 bacterial families show co-

phylogeny with corals (middle block of rows). 
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Figure 1.4. Distribution of Endozoicomonas-like bacteria across coral hosts.  

The heatmap illustrates patterns of association between Endozoicomonas-like bacteria 

and coral hosts. Colored cells represent the relative abundance of Endozoicomonas-like 

bacterial sequences (out of the total abundance of Endozoicomonas-like bacteria) in each 

coral host, plotted on a scale from 0% (white) to 100% (dark blue). The x-axis is arranged 

by coral host phylogeny, which is shown at the top. The y-axis is arranged by the 
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phylogeny of the most abundant Endozoicomonas-like bacterial sequences observed in 

host tissues, which is shown to the left (Bayesian posterior support values are shown for 

clades of interest). Clade HG (Host Generalist; green box) is prevalent in diverse species 

spanning both the Complex and Robust clades. Clades HS-R (Host-specific: Robust; pink 

box) and HS-C (Host-specific: Complex; yellow box) are composed of host-specific 

Endozoicomonas-like lineages. On the right, the host organisms of each sequence 

variant’s perfect matches in NCBI’s nr database are shown. Cultured and named strains 

are identified with abbreviations (EE: Endozoicomonas elysicola, EM: Endozoicomonas 

montiporae, EG: Endozoicomonas gorgoniicola, EN: Endonucleobacter bathymodioli). 

Sequences in clades HS-R and HS-C are consistently associated with Robust and 

Complex clade corals, respectively (see Supplementary Figure 1.5 for more detail). 
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Abstract 
Global change is predicted to increasingly drive future outbreaks of diseases of animals. 

Scleractinian corals, the foundation species of tropical reefs, have already significantly 

declined due to massive disease epizootics that are linked to the individual and combined 

effects of overfishing, climate change induced sea-surface temperature anomalies, and 

pollution. Identifying the factors that lead to increased disease susceptibility has become 

a major target for conservation efforts. Yet identifying the proper alignment of host-

pathogen-environment factors leading to disease outbreaks has remained challenging due 

to a paucity of studies that can disentangle variation among the host phylogeny, the 

animal microbiome, and environmental parameters. We surveyed bacterial and archaeal 

communities in healthy Australian corals and compared them to their host species’ 

phylogeny, overall life-history strategy, and average disease susceptibility. We found that 

although the richness of the microbiome was highly correlated with the average disease 

susceptibility of the host genera, controlling for phylogenetic relatedness made this effect 

non-significant. However, the abundances of many individual microbial genera were 

significantly correlated disease susceptibility even when controlling for the hosts’ 

relatedness. Life history traits were also linked to disease susceptibility and microbiome 

compositionality and richness. Together, these findings connect microbial symbiosis to 

the evolution of disease susceptibility and life-history strategies in a basal animal lineage. 

Introduction 
Coral microbiome composition is thought to influence resistance to stress and disease 

(Lesser et al. 2007, Daszak et al. 2000), yet analyses of the associations among 

microbiome characteristics and disease resistance require data that spans diverse coral 

taxa and geographic range. We previously found that the average disease susceptibility of 

coral genera was one of several variables that explained a significant amount of variation 

in the composition of the coral microbiome (Pollock, McMinds et al. 2018). To test if 

there are systematic differences in the microbiomes of disease-resistant vs. disease-

susceptible coral taxa, microbial sequence data were paired with 10-year, genus-level 

surveys of coral disease on mid-shelf reefs on the northern Great Barrier Reef (Willis et 

al. 2004, Pollock, McMinds et al. 2018). Given that corals and their pathogens exhibit 
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complex coevolutionary dynamics, we used total disease prevalence as a proxy for 

corals’ investment in disease resistance. Because the vast majority of coral colonies 

(99.6%) sampled in this past survey were visibly healthy, our analysis assessed if and 

how healthy coral microbiomes vary between disease-susceptible and disease-resistant 

coral genera.  

Host traits such as investment in disease resistance do not evolve independently, and 

previous studies have described two to four relatively discrete coral life-history strategies 

that are composed of numerous highly correlated species traits. Although the original 

analyses that described these groups did not consider the species’ disease susceptibility, it 

is reasonable to assume that it is a trait that varies in tandem with those strategies. 

Therefore we also assessed the relationships between these life history strategies and 

microbiome composition and richness.  

We collected data from three anatomical coral compartments, mucus, tissue, and 

skeleton, and analyzed each separately. We compared naïve correlations of these data 

against microbiome traits to phylogenetically controlled linear model analyses. We show 

that strong phylogenetic patterning of traits precludes robust conclusions about the 

relationship between disease susceptibility and microbiome richness, but that more robust 

conclusions could be reached regarding the abundances of individual microbial genera. 

We also show that there are significant relationships between microbiome richness and 

certain life-history strategies. 

Results 
Convergent microbiome richness and disease susceptibility in two groups of 
corals 
In all compartments, microbiome richness was significantly negatively correlated with 

the disease susceptibility of coral species when tested with phylogenetically naïve 

Spearman correlations (Fig. 2.1b; tissue, R2 = 0.123, p < 0.001; skeleton: R2 = 0.137, p < 

0.001; mucus: R2 = 0.029, p = 0.016). However, these correlations were not significant 

after accounting for coral phylogeny with phylogenetic GLMMs (Fig. 2.1b; tissue, 

pMCMC = 0.8; skeleton: pMCMC = 0.4; mucus: pMCMC = 0.12). This observation 

suggests that the apparent connection between disease susceptibility and reduced 
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microbiome richness might be driven by strong trends in a few, closely related coral 

groups. We visualized the correspondences among disease susceptibility, microbiome 

richness, and phylogenetic relatedness by mapping each trait to the coral phylogeny as a 

continuous trait, then performing a maximum likelihood estimate of ancestral states (Fig. 

2.1a). This reveals the convergent increases in disease susceptibility and reductions in 

microbiome richness in two important coral groups: Acropora in the complex clade and 

the Pocilloporidae within the robust clade. 

Disease susceptibility correlates with microbiome composition  
Using phylogenetically naïve Adonis tests for compositional correlations, the long-term 

susceptibility of coral genera to disease on the Great Barrier Reef was strongly associated 

with microbiome structure in all compartments (all p < 0.05), accounting for 18-29% of 

the variation in overall microbial community composition. Despite the proposed role of 

coral mucus as a barrier against disease, we found that the correlation between disease 

susceptibility and microbiome structure was more pronounced in tissue (R2 = 0.289) and 

skeleton microbiomes (R2 = 0.250) than in mucus (R2 = 0.183). Although these high-

level multivariate summaries did not account for phylogenetic autocorrelation, univariate 

phylogenetic GLMMs generally supported these findings, showing that ~11, 18, and 16% 

of microbial genera in the tissue, skeleton, and mucus, respectively, are significantly 

correlated with disease susceptibility (Figure 2.1c).  

Coral life-history strategy correlates with microbiome structure 
The groups that converged on high disease susceptibility and low microbiome richness 

(the acroporids and Pocilloporidae) belong to distinct clusters of corals with similar life-

history strategies (‘competitive’ and ‘weedy’ in the classification of Darling et al. 2012). 

We therefore explored the idea that coral life-history strategy might drive convergence in 

microbiome richness and disease susceptibility. 

We characterized the influence of coral life-history strategy on microbiome composition 

and richness. Coral life-history strategy was significantly associated with 10-11% of 

variance in microbiome composition in the tissue and skeleton, but only 3% of variance 

in mucus (Fig. 2.2a-e; all Adonis p << 0.05). Using phylogenetic GLMMs, we contrasted 

each of the four Darling life history strategies serially (Figure 2.3), (1) fast vs. slow, or 
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‘competitive’ corals vs. all others; (2) ‘weedy’ vs. ‘generalist’ and ‘stress-tolerant’, and 

(3) ‘generalist’ vs. ‘stress-tolerant’. There was no difference in richness between fast- and 

slow-growing corals in any compartment (pMCMC, tissue: 0.28; skeleton: 0.13; mucus: 

0.83). Weedy corals were less rich than generalists or stress-tolerant corals in the tissue 

compartment, but not skeleton or mucus (pMCMC, tissue: 0.046; skeleton: 0.10; mucus: 

0.52). Generalists were less rich than stress-tolerant corals in the tissue and skeleton, but 

not mucus (pMCMC, tissue: 0.006; skeleton: 0.02; mucus: 0.5). 

Discussion 
In this analysis, we show that the combination of microbiome richness and disease 

susceptibility alone almost perfectly separated coral genera into life-history strategies 

defined by Darling et al. (Fig. 2.2f), even though neither factor was originally used in 

defining the groups (Darling et al. 2012). We also show that two independent lineages 

(Acropora and the Pocilloporidae) that have distinct life-history strategies are united by 

convergent reduced microbial symbiont richness. We thus explored the relationships 

among those groups, the phylogenetic history of corals, microbiome richness, and disease 

susceptibility. Although a trend is suggestive of a link between richness and disease 

susceptibility, low phylogenetic replication precludes confident conclusions about this 

relationship. Further global sampling of related species with different disease 

susceptibilities and life-history strategies will be needed to help disentangle these traits 

further, but these results raise the question of whether other animal taxa with well-defined 

life-history tradeoffs also show broad patterns of increased disease susceptibility and 

reduced microbiome diversity. 

Although convergence in microbiome richness remains to be clarified, corals with 

different life-history strategies and disease susceptibilities were shown to host distinct 

microbial communities, even when controlling for phylogenetic relatedness. Ultimately, 

determining whether there are causal links driving these patterns will require laboratory 

experiments involving the transfer of specific microbes or microbial communities among 

coral species. The observation that life-history strategy is correlated with microbiome 

structure and disease susceptibility highlights the intertwined nature of physiology and 

microbiology (Sunagawa et al. 2010).  
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This framework demonstrates the importance of controlling for shared evolutionary for 

analysis of the coral microbiomes of scleractinian corals’. Our results test longstanding 

hypotheses that bear on potential coral-microbe coevolution, and add quantitative detail 

and taxonomic breadth to several previously understood patterns in coral microbiology. 

However, lack of clear relationships among the measured traits also suggests the need for 

further development of analysis methods that deliver results with more precise 

interpretations.  

Data Deposition 
Raw sequence data, metadata, OTU and MED representative sequences, and analysis 

code are available at https://doi.org/10.6084/m9.figshare.c.3855466.v2. 
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Methods 
Selection of target sites 
The reefs alongside the continent of Australia represent ~435 million years of coral 

evolution. Thus to comprehensively target corals across their phylogenetic diversity we 

sampled representatives of a majority of the 21 major coral clades48. We collected 
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specimen from Ningaloo Reef, Lizard Island, multiple reefs along the northern Great 

Barrier Reef, and Lorde Howe Island (Extended Data Figure S1). Samples at Lizard 

Island were collected in the two major seasons to account for annual variation. 

Collection of metadata 
During sampling, each coral, outgroup species, water, and sediment sample was 

associated with MIxS metadata (Yilmaz et al. 2011; for details see Pollock, McMinds et 

al. 2018). Briefly metadata included basic features of coral species (as identified in the 

field), location, depth, water temperature, and any visual health cues. Additionally, 

photographs of each coral were taken and released via openly accessible third-party 

websites.  

Coral sampling 
All samples were collected by AAUS-certified scientific divers, in accordance with local 

regulations. Relevant permit numbers are: CITES (PWS2014-AU-002155, 

12US784243/9), Great Barrier Reef Marine Park Authority (G12/35236.1, G14/36788.1), 

Lord Howe Island Marine Park (LHIMP/R/2015/005), New South Wales Department of 

Primary Industries (P15/0072-1.0, OUT 15/11450), US Fish and Wildlife Service 

(2015LA1632527, 2015LA1703560), and Western Australia Department of Parks and 

Wildlife (SF010348, CE004874, ES002315). 

Corals contain three main gross anatomical features which have distinct microbiomes: the 

surface mucus layer, the tissues (composed of two true tissue layers the gastroderm and 

epithelia along with an intermediate non-cellular layer, the mesophyll), and the skeleton 

which is laid down by the coral throughout its lifetime. We standardized the collection of 

these anatomical compartment. Briefly, mucus was collected by the agitation and 

negative pressure method while tissue and skeletal samples were collected from each 

colony by hammer and chisel, or (for branching corals) by bone shears, snap frozen and 

washed with sterile seawater prior to any downstream collections. Tissue was removed 

from skeleton using an air gun and ~1 cm3 region of skeleton not in direct contact with 

coral tissue was collected with a sterile chisel. Microbiome DNA was collected using the 

MoBio PowerSoil Kit (MoBio Laboratories, Carlsbad, California) bead tube method. 
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16S library preparation and sequencing, sequence quality control and initial 
data processing 
Two-stage amplicon PCR was performed on the V4 region of the 16S rRNA gene using 

the 515F/806R primer pair that targets bacterial and archaeal communities as previously 

described (Pollock, McMinds, et al, 2018). QIIME v1.9 (Caporaso et al. 2010a) was used 

to process all 16S sequence libraries. Primer sequences were trimmed, paired-end reads 

merged, and QIIME’s default quality-control parameters used when splitting libraries. 

Chimeras were removed and 97%-similarity OTUs picked using USEARCH 7.0 (Edgar 

2010), QIIME’s subsampled open-reference OTU-picking protocol (Rideout et al. 2014), 

and the 97% GreenGenes 13_8 reference database (McDonald et al. 2012). Taxonomy 

was assigned using UCLUST, and reads were aligned against the GreenGenes database 

using PyNAST (Caporaso et al. 2010b). FastTreeMP (Price et al. 2010) was used to 

create a bacterial phylogeny with constraints defined by the GreenGenes reference 

phylogeny. Following quality control, 9,441,738 usable reads remained.  

A ‘canonical’ rarefied OTU table was created and used for all downstream analyses 

except the linear model analyses. To create this table, OTUs were filtered out of the 

starting table if their representative sequences failed to align with PyNAST to the 

GreenGenes database or if they were annotated as mitochondrial or chloroplast 

sequences. The beta_diversity_through_plots.py script was then used to rarefy the 

resulting table to exactly 1000 sequences per sample, and to calculate from this rarefied 

table multivariate dissimilarity measures including Bray-Curtis, Binary Jaccard, 

Weighted UniFrac, and Unweighted UniFrac. Total numbers of observed OTUs per 

sample were calculated using this table and alpha_rarefaction.py. 

The V4 primers we used in this study were designed to amplify the bacterial and archaeal 

16S rRNA gene, but they also amplify the 12S rRNA gene of coral mitochondria. We 

used these additional data for quality control and for phylogenetic analysis of the host 

corals, as previously described (Pollock, McMinds et al. 2018). 

Annotation of coral life history strategy and functional traits 
Coral life history strategies from Darling et al. 2012 (‘weedy’, ‘competitive’, ‘stress-

tolerant’, and ‘generalist’) were added to the mapping file and used for tests of 
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microbiome structure vs. host traits. Species that did not exist in Darling et al. were 

assigned the same annotation as other member of the same genus if there were multiple 

species represented and all had the same life history strategy. 

Statistical analyses investigating the effect of phylogeny on microbiome 
traits 
Phylogenetic analyses were conducted in R v3.3.1 (R Development Core Team 2008). 

Beta diversity distance-to-centroid values were first calculated using the pairwise 

distance matrices generated in QIIME and the betadisper function in the package vegan 

v2.4-1 (Oksanen et al. 2008), with bias-adjustment. 

The packages ape v3.5 (Paradis et al. 2004) and paleotree v2.7 (Bapst 2012) were used to 

manipulate trees and to calculate cophenetic distances. Univariate phylogenetic 

correlograms of α-diversity and distance-to-centroid measures were implemented using 

the package phylosignal v1.1 (Keck et al. 2016). Phylogenetic Generalized Linear Mixed 

Models (pGLMMs) assessing the correlation between microbiome richness and disease 

susceptibility were conducted separately for each compartment using MCMCglmm with 

disease susceptibility as a fixed effect, host phylogeny as a random effect (with the 

inverse of the host phylogenetic covariance matrix supplied with the “ginverse” option), a 

chain length of 1,300,000 iterations, burn-in of 300,000, and thinning interval of 100. 

Significance was determined with the pMCMC output generated with the function 

HPDinterval. Assessment of the correlation of richness with life-history strategy was 

conducted equivalently, except that life-history strategy was treated as a nested 

categorical effect with contrasts defined as ‘fast vs. slow’ (the mean of weedy and 

competitive vs. the mean of generalist and stress-tolerant), ‘weedy vs. competitive’, and 

‘generalist vs. stress-tolerant’. 

Phylogenetic Generalized Linear Mixed Models (pGLMMs) assessing the abundance of 

individual microbial genera were implemented using the package MCMC.OTU 1.0.10 

(Green et al. 2014). MCMC.OTU wraps the package MCMCglmm v2.24 (Hadfield 2010) 

to fit a multivariate model whereby sequencing depth is accounted for by using a 

sample’s total read count as the base level of a fixed per-OTU effect, compositionality is 

accounted for by the inclusion of a per-sample random effect, and a number of other 
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parameters and priors are set with defaults that are sensible for microbiome studies, such 

as ‘global effects’ of each specified factor (which control for and test effects on α-

diversity) and independent error variance for each OTU. Analysis of the entire set of 97% 

OTUs was computationally impractical, so OTUs were first collapsed from the pre-

rarefaction OTU table into their annotated genera using QIIME’s 

summarize_taxonomy.py. The package phyloseq 1.18.1 (McMurdie & Holmes 2013) was 

then used to import and manipulate this table and its associated metadata. Samples with 

total counts less than 1000 were removed. The purgeOutliers command was applied to 

the data with an otu.cut value of 0.0001. The command mcmc.otu was run with disease 

prevalence as a fixed effect; host phylogeny as a random effect; a chain length of 125000, 

thinning interval of 5, and burn-in of 25000; and with the inverse of the host phylogenetic 

covariance matrix supplied with the “ginverse” option. Significance for each term was 

determined by calculating 95% credible intervals with HPDinterval and isolating those 

that did not include zero. 

Ancestral state reconstruction of coral disease prevalence and α-diversity. 
The R package phylocom was used to reconstruct ancestral coral disease susceptibility 

and α-diversity. First, trees and trait tables were filtered to include the same lineages, 

which excluded species on the coral tree not sampled in this analysis. Next, the fastAnc 

function was used to generate a maximum likelihood estimate of ancestral trait values for 

each trait under a Brownian motion model. These reconstructions were then mapped to 

the tree using the contmap function. Because some non-scleractinian outgroup taxa had 

microbiome richness data but not disease data, these are plotted only on the microbiome 

richness tree.  
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Figures and Figure Legends 
 

 
 
Figure 2.1. Coral microbiome richness correlates with disease susceptibility.  

a) Ancestral state reconstruction of genus-wide disease susceptibilities of northern Great 

Barrier Reef corals (left) and coral microbiome richness (observed OTUs; right). 

Asterisks indicate the node uniting the family Pocilloporidae (i.e., Pocillopora, 

Stylophora, and Seriatopora). b) Coral microbiome richness decreases with disease 

susceptibility. c) Percent of microbial genera associated with disease susceptibility using 

either phylogenetically-naive Spearman correlations or a phylogenetically-aware 
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generalized linear mixed model. Filled bars indicate significant positive correlations and 

empty bars indicate significant negative correlations in mucus (teal), tissue (orange) and 

skeleton (purple) compartments. 
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Figure 2.2. Coral life-history strategies influence microbiome composition and richness.  

a) PCoA plot of Weighted UniFrac distances between coral tissue microbiomes. Colors 

reflect coral life-history strategy (Darling et al. 2012). The legend indicates the number 

of tissue samples from corals in each functional group, and the specific coral species to 

which they belong. b-e) Panels show each functional group separately to allow easier 

visualization of overlapping samples. Functional group subsets are taken directly from, 

and share the same axes as, panel a. f) Scatter plot of tissue microbiome richness 

(observed OTUs) vs. disease prevalence for each species, colored by functional group 

(data from tissue compartment only). Corals with different life-history strategies show 

differences in microbial richness.  
 

 
 
Figure 2.3.  Coral life-history strategies influence tissue microbiome richness.  

Corals with different life-history strategies show differences in microbial richness (data 

from tissue compartment only).  
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Abstract 
Neutral evolutionary processes can introduce strong correlations between unrelated traits. 

In any analysis of the traits of evolving organisms, these neutral correlations should be 

explicitly considered and controlled for. Methods to do so are common for univariate 

analyses, but large multivariate datasets are often analyzed in a more abstract manner that 

makes phylogenetic analyses more complicated. Using the Stan modeling framework, we 

introduce here a model for the analysis of host-microbe prevalence data, which scales to 

larger datasets than a previously published generative model and incorporates more 

flexible patterns of evolution. We apply the model to analysis of coral endosymbionts of 

the family Symbiodiniaceae, and find that the rate of evolution has increased in two host-

specific lineages. One of these lineages is closely related to a clade of symbionts that is 

found only in coral skeletal samples, suggesting an interesting evolutionary transition 

either to or from indirect symbiosis with another eukaryotic coral symbiont. 

Introduction 
Under neutral processes of evolution, where traits evolve according to drift alone, shared 

evolutionary history can induce strong correlations among functionally independent traits 

(Grafen 1992, Kruuk & Hadfield 2007). The degree to which traits are affected by this 

phylogenetic autocorrelation is related to the rate at which those traits evolve – traits that 

evolve extremely rapidly (or even change within a lifetime, e.g. if they are completely 

uninheritable) contain very little phylogenetic autocorrelation, whereas traits that evolve 

slowly contain more phylogenetic autocorrelation. Given this, there has for decades been 

much research into the best ways to analyze biological data, whether and how to ‘control’ 

for phylogenetic autocorrelation, how to interpret the results of statistical tests, and how 

to define the most useful null hypothesis for given biological questions. Although there 

may be no perfect consensus, a number of authors have concluded that statistical models 

that incorporate phylogenetic information should be the default or null assumption for 

analyses of biological data (Grafen 1992, Moran & Sloan 2015, Douglas & Werner 

2016). 

As a result of multiple processes, such as vertical inheritance and environmental filtering, 

the microbiomes of host organisms should be expected to contain some amount of 
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phylogenetic signal just like any other trait (Mazel et al. 2018). Recognizing this, the 

term ‘phylosymbiosis’ has recently been coined to refer to phylogenetic signal in 

microbiome composition (Brucker & Bordenstein 2013), and the interpretation of such 

signal has been a frequent topic for discussion in recent literature (e.g. Moran & Sloan 

2015, Douglas & Werner 2016). Likewise, the phylogenetic relatedness of microbes often 

contains valuable information for understanding the factors that influence their 

distribution. For instance, early-diverging clades of Bacteria are associated with 

differences in mammalian diet, although individual bacterial species are not (Groussin et 

al. 2017). 

Despite the importance of phylogenetic relationships in microbiome research, many of 

the most commonly applied statistical methods do not explicitly consider them, and those 

that do tend to drastically simplify the dynamics of complex communities. For instance, 

use of the UniFrac community distance metric (Lozupone & Knight 2005) assumes strict 

Brownian evolution of microbes and reduces all the complicated abundance patterns 

among samples to a single abstract distance. Incorporating phylogenetic relationships of 

host organisms into distance metric analyses is difficult and often makes interpretation 

even more abstract (e.g. Revell 2009). For univariate analyses, a common way to 

incorporate different levels of microbial hierarchy is to analyze a dataset in the same way 

repeatedly, with microbial taxa aggregated at different phylogenetic or taxonomic scales 

each time (Mazel et al. 2018, Zaneveld et al. 2016, Pollock, McMinds et al. 2018). This 

procedure of course inflates type-I error until multiple testing corrections are applied, 

which then reduce the power of the analysis (Gaulke et al. 2018). 

In light of this, there is a need for the development of holistic methods of analysis that 

can assess factors that influence the composition and variability of host-associated 

microbiomes while incorporating both host and microbial phylogenies. One such method 

is through the use of phylogenetic generalized linear models, which have been frequently 

applied to both univariate and multivariate datasets in the context of phylogenetically 

structured data (Revell 2010), and that have recently been developed to extend to co-

phylogenetic datasets with interacting phylogenies (Ives & Godfray 2006, Hadfield et al. 

2014, Björk et al. 2017). In such models, the highest resolution of biological units can be 
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used as base data, but phylogenetic relatedness between the units allows information to 

be pooled hierarchically across scales. However, existing linear models for 

cophylogenetic analysis suffer from a number of drawbacks. The first is scalability: 

application of one model in a recent analysis of coral-associated bacteria required almost 

a week of runtime for a dataset with 66 microbial units, 72 host units, and ~200 samples 

(Pollock, McMinds et al. 2018). Another problem is the flexibility of evolutionary 

models that have been implemented. It has been shown, for example, that phylogenetic 

signal in microbiome composition often diminishes gradually over time, suggesting that 

Brownian evolution may not be an appropriate model for datasets that cover long 

evolutionary timescales (Groussin et al. 2017, Pollock, McMinds et al. 2018). The 

coestimation of ‘host phylogeny’ and ‘host identity’ effects a number of recent models 

accounts for host specificity that does not contain phylogenetic signal, but in a manner 

that assumes the addition of discrete effects layered on top of strict Brownian evolution 

(Hadfield et al. 2014, Björk et al. 2017). This framework does not match the data 

observed in mammals and corals (Groussin et al. 2017, Pollock, McMinds et al. 2018), 

which suggest gradual decrease in phylogenetic signal, and it does not lend itself to 

biologically interpretable analyses of scale. A previous model introduced by Ives and 

Godfray (2006), on the other hand, incorporates gradual decrease in signal through the 

estimation of an Ornstein Uhlenbeck (OU) effect (Butler & King 2004), but the model 

was not extended to cases where additional effects such as location or sampling effort 

should be estimated. Additionally, one of the more interesting questions in analysis of 

host associated microbiomes is not just whether particular microbes are conserved in 

particular hosts, but whether particular host or microbial groups change the rate at which 

they evolve to form new associations. Modeling rate shifts should allow us to detect 

subclades of hosts and microbes whose members are more sensitive to one another than 

to others. 

Toward these goals, we have developed a model using the Bayesian modeling framework 

Stan (Monnahan et al. 2017). Stan’s Hamiltonian Monte Carlo sampler and efficient 

compilation of C code allows it to handle models of much greater scale and complexity 

than other samplers such as MCMCglmm (Hadfield 2010) or JAGS (Plummer 2003). At 

its core, this model is a logistic linear model with phylogenetic interaction effects that 
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correspond to deviations in the probability that a given microbe will be observed in a 

given sample. However, we have incorporated parameters that (a) scale the expected 

phylogenetic variance according to estimates of the strength of an Ornstein-Uhlenbeck 

stabilizing effect; (b) model shifts in the overall rate of evolution; and (c) incorporate 

uncertainty in divergence times and topology. Summary of these parameters enables 

direct comparison of degrees of host specificity among different clades with the trees, 

robustly compares effects at multiple phylogenetic scales, and places the strength of host 

specificity into a biologically interpretable context through comparison with the strength 

of other effects such as geographic location. 

We use the model to analyze a novel dataset of associations between Scleractinian corals 

and their endosymbiotic dinoflagellates of the family Symbiodiniaceae (until recently 

genus Symbiodinium, LaJeunesse et al. 2018). The associations among corals and the 

Symbiodiniaceae have been studied in detail for decades. When associated with corals, 

Symbiodiniaceae are housed inside gastrodermal cells, where they photosynthesize and 

provide their hosts with energy and nutrients (Gates & Ainsworth 2011, Stat et al. 2008). 

Various environmental stressors, such as sustained periods of increased light levels and 

water temperatures, can lead to the breakdown of this symbiosis, wherein the 

endosymbiont is either expelled from the host tissue or broken down within it (Gates & 

Ainsworth 2011). The family Symbiodiniaceae is known to be composed of a diverse 

array of free-living forms, obligate symbionts, and facultative symbionts, and it is well 

established that its members are characterized by specificity to all of host, environmental, 

and geographic variables (Stat et al. 2008, Stat et al. 2009, Fay et al. 2012). Given the 

important role that this symbiosis plays for the health of entire coral reef ecosystems, 

there has been great interest in the dynamics that influence the success of a given pairing 

of host and symbiont in the environment (Lesser et al. 2013).  

However, the study of this symbiosis has been hampered by the lack of a reliable genetic 

marker for identification and phylogenetics of the Symbiodiniaceae (Fay et al. 2012). 

Much of the existing taxonomic work on the group has relied on sequences amplified 

from the nuclear ITS2 region of the genome, but the high intragenomic copy number of 

this gene makes it difficult to interpret amplicon data from DNA collected in the 
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environment (Santos et al. 2004, Fay et al. 2012). In the face of these complicated 

datasets, researchers have found that certain combinations of sequence variants, or 

profiles, can be used as diagnostic markers for Symbiodiniaceae ‘types’. Until recently, 

these profiles have been largely characterized using denaturing gradient gel 

electrophoresis (DGGE), which has low throughput, can miss rare but diagnostic 

intragenomic variants, and requires a separate step of gel excision and sequencing in 

order to get any sense of phylogenetic relationships among variants (Sampayo et al. 

2009, Silverstein et al. 2012). Newer high throughput sequencing (HTS) technologies 

have enabled the discovery of previously undescribed symbiont diversity, and deeper 

sequencing of amplicon pools has the potential to increase the resolution and 

phylogenetic relationships of Symbiodiniaceae types through profiling. Recently, a tool 

called SymPortal has been developed to infer these profiles from HTS amplicon datasets 

in a manner analogous to traditional DGGE profiling. 

The analysis presented in this paper represents a preliminary assessment of the 

Symbiodiniaceae in corals collected as part of the Global Coral Microbiome Project 

(GCMP), one of the first attempts to conduct Symbiodiniaceae sequence profiling using 

HTS amplicon data, and a proof-of-principle for the framework in which to assess the 

influence of other interesting factors, such as host disease susceptibility, when the full 

dataset (containing more thorough phylogenetic and geographic replication) becomes 

available. The analysis reveals the presence of weak phylogenetic signal in both microbes 

and hosts, and a surprising pattern of evolution within one subclade of Symbiodiniaceae: 

one clade of symbionts has some members that are unusually specific to particular hosts, 

and other members that are not host-specific but are found only in the skeletal 

compartment of corals. 

Results 
Data and model summaries 
After processing and filtering the data, 252 individual colonies from 72 species of 

cnidarians were analyzed. Although each colony was sampled three times (once for each 

of the skeletal, tissue, and mucus compartments), the samples from some compartments 

were excluded from the final dataset after quality control. Thus the 252 colonies were 
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represented by a total of 598 samples. Of these samples, the mean sequencing depth was 

6893 reads. Ninety-six ITS2 profiles were inferred by SymPortal and analyzed with the 

model. 

Sample characteristics, such as host species, are specified in the model using model 

matrices. ‘Main effects’ of each of sample characteristic and microbial type are included 

in addition to interaction effects between microbes and sample characteristics. Main 

effects of sample characteristics correspond to differences in non–microbe-specific alpha 

diversity (a given factor level may be associated with a greater number of microbial 

types, regardless of the identity of each microbe). Main effects of microbes correspond to 

differences in non–sample-specific prevalence or host range (a given microbial type may 

be generally more common than another, regardless of any sample characteristics such as 

host species). ‘Interaction effects’ correspond to specific associations between microbes 

and sample characteristics—e.g. if a given microbe is only found in samples that come 

from a given host species. Overall influence of sample characteristics is compared 

through partitioning of the estimated variance for each factor (Fig. 3.1). This partitioning 

is done in a hierarchical manner for nested factors such as individual reefs within larger 

geographic regions, so the combined influence of these factors is pooled and they can be 

compared to one another more directly (compare Figs. 3.1 & 3.2).  

Host species and geographic location explain the most variance in 
Symbiodiniaceae occurrence patterns  
In applying this model to the Symbiodiniaceae dataset, five samplewise factor groups 

were modeled in addition to the identity of the host: tissue compartment, sampling date, 

sequencing depth, colony identity, and location of sampling. Thus total variance was first 

partitioned among 13 factor groups corresponding to the main and interaction effects of 

each of these and of host, plus the main effect of microbes. Three of the 13 factor groups 

included in the GLM explained a median of 84.7% of the variance (69.0% - 91.9%, 95% 

credible interval, Fig. 3.1). Of them, host-microbe specificity explained the most, a 

median of 37.9% of the model variance (28.4% - 46.1%). Specificity of microbes to 

sampling location explained 28.1% (20.1% - 35.7%). Specificity to individual colonies 

(in some senses the ‘residual’ variance) explained 17.6% of the estimated variance 
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(12.8% - 23.1%). Sampling location was treated as a hierarchical variable subdivided into 

levels of ‘ocean’ (Pacific, Indian, or Atlantic), ‘ocean area’ (Coral Sea, Tasman Sea, 

South Pacific, Mediterranean, Red Sea, Caribbean, Eastern Indian, South China Sea, and 

Western Indian), and finally, individual reefs. Of the variance explained by specificity to 

location, ‘ocean area’ explained the most variance, at 68.5% (45.1% - 88.4%, Fig. 3.2). 

No alpha diversity factors had a median estimate of more than 2.2% of the model 

variance, although the 95% upper credible bounds for ‘tissue compartment’ and 

‘sequencing depth’ were 10.1% and 18.8%, suggesting that these factors could be 

considerably more influential than their medians (0.4% and 2.2%, respectively) would 

imply. 

Phylogenetic signal in Symbiodiniaceae occurrence patterns is weak 
The mean estimate for the strength of the mean-reverting Ornstein-Uhlenbeck (OU) 

effect on host evolution was 7.8 (3.5 - 13.1, 95% credible interval). This translates to a 

mean of just 20% (10% - 50%, 95% credible interval) of variance that is explained by the 

first 90% of the evolution of hosts (since the divergence of Hydrozoa and Anthozoa). The 

mean OU effect strength for microbes was 4.9 (2.6 – 8.6, 95% credible interval), 

translating to 40% (20% - 60%, 95% credible interval) of modern variance occurring in 

the first 90% of the evolution of microbes (since the divergence of Symbiodinium sensu 

stricto, former ‘Symbiodinium Clade A’, from the rest of the Symbiodiniaceae; Fig. 3.3). 

Two instances of increased evolutionary rates in coral-Symbiodiniaceae 
specificity  
When considering the summed effects of all ancestral nodes (the contrast between each 

node and the grand mean), there were two microbial clades with significant changes in 

their rate of evolution within distinct host clades (Figure 3.4). A subset of the C15 

radiation (containing DIVs C15, C22b, C15l, C15n, C15.8, and C15s) had significantly 

higher variance among the massive Porites corals P. lobata and P. lutea (logit 0.08, 95% 

credible lower bound). Another Cladocopium subclade (containing DIVs C1, C1l, C42.2, 

C42a, C1d, C8, C8d, C42e, C1z, C1b, and C1ab) had significantly higher variance among 

the Indo-Pacific Pocilloporidae (logit 0.004, 95% credible lower bound). The timing of 
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these rate increases could not be ascertained with 95% confidence, in part because the 

effective sample sizes were low for contrasts between internal nodes. 

Numerous specific associations between microbial types and sample 
characteristics 
There were 314 significant host-microbe associations. These consisted of 50 out of 62 

reliably identified host coral species associated with 77 out of 96 Symbiodiniaceae ITS2 

profiles. Nine entire clades of Symbiodiniaceae were positively associated with ten 

groups of hosts: i112 (four profiles containing C116 variants) with the clade containing 

all Pavona; i139 (four profiles containing C3 and C50 variants) with the clade containing 

all Acropora; i142 (four more profiles containing C50 variants) with the clade containing 

all Acropora and independently with Favites abdita; i149 (two profiles containing C40 

variants) with all Echinopora and independently with Hydnophora exesa; i155 (three 

profiles containing C1 variants) with all Leptastrea; i156 (two of the variants within 

i155) with Pocillopora grandis, Pocillopora damicornis, Pavona varians, and all 

Cyphastrea; i167 (two profiles containing C123 & C1 variants) with Seriatopora hystrix; 

i175 (two profiles containing D2.2 variants) with Diploastrea heliopora; i177 (two 

profiles containing other D2 variants) with Echinopora mammiformis; i181 (six profiles 

containing Durusdinium variants) with Stylophora pistillata; and i189 (four profiles 

containing A3 variants) with Millepora. In addition, numerous other entire host clades 

were positively associated with individual Symbiodiniaceae profiles. For instance, profile 

13312 (C40-C3-C115-C40c-C40e) was separately associated with five distinct host 

clades: the clade uniting Diploastreidae, Lobophyllidae, and Merulinidae, and the clades 

corresponding to each of the genera Physogyra, Turbinaria, Pachyseris, and Galaxea. 

There were 25 Symbiodiniaceae profiles significantly associated with specific ocean 

areas, four associated with particular sampling days, one associated with a specific reef, 

and one profile (C15h) plus a closely related clade of four profiles (all C116 variants) 

associated with the coral skeleton (Table 3.1). Two profiles (including 13312) were 

additionally associated with higher sequencing depths, and there were 189 associations 

between Symbiodiniaceae profiles and individual coral colonies. Negative effects were 

limited to nine profiles that were more likely to be found with lower sequencing depths. 



 74 
There were no microbial clades or profiles associated with changes in nonspecific 

prevalence across all samples, and no sample characteristics, host clades, or host species 

that were associated with changes in nonspecific alpha diversity. 

Rare occurrence of mixed infections 
There were 115 samples (19.2% of samples) that were predicted to have multiple 

Symbiodiniaceae type profiles. However, we suspected that profiles significantly 

associated with lower sequences depths were artifacts of the SymPortal type profiling 

algorithm because eight of them were single-DIV profiles and all occurrences of them 

were in samples that also contained a superset profile. Therefore we removed them from 

data matrix before further assessing the prevalence of mixed infections. After doing so, 

mixed infections of corals occurred in 94 samples (15.7% of samples). Only 22 (3.6% of 

samples) contained three or more profiles, and three (0.5% of samples) contained four or 

more. 

Computational performance of the model 
Useful effective sample sizes for most parameters were gained from the model by 

running it for only 2,048 iterations and sampling only 1,024 draws per chain, although 

some evolutionary rate shift parameters did not have enough effective samples for 

posterior inference. Although each chain was run using a different draw from the 

posterior host phylogeny, almost all comparable parameters converged on similar values 

across chains (Rhats < 1.1). There were no divergent transitions or iterations that hit the 

maximum tree depth after warmup. The model took 22 hours to run with very little 

variation among chains and consumed ~3.2 gigabytes of memory per chain. All effects 

are listed in Supplementary Data 3.1. 

Discussion 
In this study, we have introduced a method for estimating and controlling for 

phylogenetic signal in microbiome composition (phylosymbiosis) using a model-based 

approach with biologically interpretable parameters and summaries. A single analysis 

with this model enables inferences often attained through many separate analyses, such as 

multivariate tests like PERMANOVA and univariate regressions of microbial abundances 

or alpha diversity statistics. Co-estimating all these effects allows each to be controlled 



 75 
for in the interpretation of the others, and can provide clearer insight into the biological 

processes that produce the patterns. 

For instance, a common paradigm in the study of coral-algal symbiosis is that both hosts 

and symbionts can be generally divided into categories of ‘generalists’ vs. ‘specialists’ 

(Fabina et al. 2012). However, in analysis of this dataset, no significant differences were 

found in the main effects of either host or microbe, which would correspond to 

differences in overall degree of specialization. Instead, many significant interactions were 

found between tips and clades of each group, indicating varying degrees of specificity at 

multiple phylogenetic scales. This reflects the fact that the terms generalist and specialist 

are ill-defined without reference to the phylogenetic scales being considered (Stat et al. 

2006). A given coral species may have generalist qualities in that it can associate with 

Symbiodiniaceae of all of clades A, C, and D, but simultaneously be a specialist in that it 

only associates with particular species within each of those clades. Another coral species 

could display the opposite pattern, associating with any number of clade C symbionts (a 

generalist in terms of the absolute number of potential partners), but never with 

symbionts of clades A or D (a specialist in terms of phylogenetic range). In this analysis, 

an interaction effect between a tip on the host tree and an internal node on the microbial 

tree indicates a ‘specialist’ type association with that microbial clade, but a ‘generalist’ 

type of association among the members of that microbial clade. A lack of significant 

effects with internal nodes accompanied by the presence of significant effects between 

tips indicates finer-scale specificity. This model-based framework thus helps avoid 

oversimplification of generalist/specialist patterns. 

In addition to assessments of present-day patterns of association, there is interest in the 

rate at which such patterns may change through the evolution of both host and symbiont. 

Multiple studies have now demonstrated that assumptions of uniform rates of evolution 

lead to inaccurate reconstruction of phylogenies from nucleotide sequence data 

(Drummond & Suchard 2010, Wertheim et al. 2010, Revell et al. 2012). Although the 

assumption has not been thoroughly assessed with traits other than nucleotide sequences, 

it seems prudent to assume that rates of evolution of most traits are variable, and to allow 

for such variation more broadly in phylogenetic analyses. Models that have been 
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developed to incorporate rate variation in phylogenetic inference should find natural 

translations in the analysis of other traits. For this analysis, we included parameters for 

rate variation equivalent to the lognormal correlated relaxed molecular clocks frequently 

used in phylogenetics. We chose not to scale the prior for magnitude of rate shifts in 

according the branch lengths because doing so would assume very gradual change over 

time, whereas it has been demonstrated that changes in rate can occur very abruptly 

(Drummond et al. 2006). One process that could contribute to abrupt changes in rate is 

the initialization of codivergence, where branch lengths should become irrelevant and 

each speciation event should be accompanied by an increase in total variance. Modeling 

rate shifts as we did, with correlation to ancestral rates but without consideration of 

branch lengths, can be seen as a compromise model. Although this suggests the need for 

continued development of the model, the current implementation was able to lend 

valuable insight into two interactions between clades of hosts and symbionts, which may 

be evolving at increased rates relative to one another due to codivergent or 

coevolutionary mechanisms, or due unidirectional evolutionary responses by one party to 

the other. 

A surprising finding of this study was the specific association of a group of symbionts 

nested within the C15 radiation with the skeletal compartment of corals (Table 3.1; 

Figure 3.5). We did not expect the composition of the compartments within a single coral 

to be different; the tissue compartment effect was included in this study partly for the 

simple reason that the samples existed. The separate compartment samples were collected 

more for the study of their bacterial communities than for analysis of Symbiodiniaceae 

(Pollock, McMinds et al. 2018). Regardless, inclusion of both the microbial phylogeny 

and the tissue compartment factor enabled the discovery this association, which would 

probably have been missed if each profile were analyzed as independent units. Each 

individual variant of C116 was only found in a single sample, or at most two samples, so 

statistical support would not have existed for the association. However, the incorporation 

of the phylogeny in the analysis allowed pooling of information and revealed the clade’s 

overall greater prevalence in skeletal samples. Given the relative rarity of C15 type 

Symbiodiniaceae in non-Porites corals (Krueger & Gates 2012), it is tempting to 

speculate that many of the records that do exist reflect the presence of the one of the 
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skeleton-specific ecotypes observed here rather than one of the otherwise Porites-specific 

ecotypes. Indeed, a number of such reports are either unclear about the anatomical 

compartments analyzed or used methods that clearly include skeletal material (e.g. Gong 

et al. 2018). In light of this, care should be taken in interpretation of the presence of this 

type of Symbiodinium in coral samples. It would seem most likely that its association 

with corals is indirect; that it is a symbiont of another eukaryotic denizen of coral 

skeletons. Previous work has shown, for instance, that a Symbiodiniaceae type related to 

the C15 radiation (C66; see Figure 3.5b) is a symbiont of the coral-associated acoel worm 

Waminoa (Barneah et al. 2007), and that C15 types are found in foraminifera and on the 

surface of macroalgae (Venera-Ponton et al. 2010). Alternatively, there is the possibility 

that the skeleton specific C15/C116 ecotypes are located in different tissue sections of the 

coral animal, or that they live extracellularly in the skeleton. Distinguishing among these 

possibilities could be accomplished without more sampling in the field by an analysis of 

Waminoa or other eukaryotic sequences in metagenomic or other amplicon data from the 

existing GCMP samples. To understand the direction of evolution within this group (i.e. 

whether the ancestor of the group was located in diverse coral skeletons and evolved a 

specific association with Porites host tissue, or if the opposite transition occurred, or if 

switches between the ecotypes have occurred multiple times) a more robust phylogenetic 

analysis should be performed on this group of Symbiodiniaceae (Figure 3.5). 

A number of improvements can be made to this modeling framework. Importantly, 

alternate models should be explored for the evolution of rate shifts. For the analysis of the 

evolution of nucleic acid sequences, uncorrelated models for rate variation such as 

random local clocks have been shown to be more reliable (Drummond & Suchard 2010), 

but many of these models incorporate discrete parameters that do not translate well into 

models in Stan. Stan requires continuously differentiable posterior gradients or else must 

marginalize over all discrete combinations of possibilities, which can be computationally 

expensive. It may be important to consider whether gradual evolution of rates should be 

modeled, similar to the way location effects are modeled, rather than the current shifts at 

each node that have priors that are not proportional to branch lengths (Drummond et al. 

2006, Ronquist et al. 2012, Jhwueng & Maroulas 2015). The exact opposite pattern, 

where each divergence event is associated with a sudden and discrete increase in 
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variance, could be co-estimated to account for processes such as the start of strict 

codiversification, as discussed above. While the currently implemented compromise 

model allows for both processes to occur, it cannot distinguish between them. 

Incorporating both of these processes of rate variation separately into a model could help 

reveal the processes that lead to rate shifts such as those observed in the current study. 

Additionally, the model could be improved by handling phylogenetic uncertainty better in 

a number of ways. The current model does so in part by allowing input node heights to 

vary prior to the layering on of OU effects and evolutionary rate shifts, but the prior 

confidence in all node heights is estimated with a single parameter. It should instead be 

feasible to incorporate summary statistics such as the standard deviation of each node’s 

height from a set of posterior phylogenies, which could be used to individually calibrate 

the priors for each node. To sample more phylogenies of both host and symbiont and 

incorporate more topological uncertainties, significant speed or memory improvements 

would be needed. However, the current model ran in 1/6 of the time of one alternative, 

even though it incorporated ~3X the number of samples and ~1.5X the number of 

microbial taxa. Additionally, there is a strong potential to increase the speed of model 

fitting through reparameterization because Stan’s performance is highly dependent on the 

geometry of raw parameter space. Summaries across chains could also be improved by 

weighting the draws from each chain according to the posterior probability of the 

phylogeny used for that chain, or even after updating the posterior support for each 

topology using the microbiological data through the use of bridge sampling (Gronau 

2017). 

Finally, it should be noted that, given the scaling of branch lengths using an Ornstein-

Uhlenbeck process, the current contrasts involving deeper nodes in the phylogeny do not 

necessarily represent contrasts with ancestral states, but rather contrasts between modern 

mean values for each hierarchical set of species. The calculation of ancestral states would 

provide additional insight into the evolution of these groups, and would require relatively 

simple reparameterizations in the model. These improvements are all ideal subjects of 

research for the future development of comprehensive analyses of host-microbe 

interactions. 
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of reefs across the globe. We targeted collection based on the 21 major coral clades 
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defined in one of the most recent molecular phylogenies available at the start of the 

project (Fukami et al. 2008). Many of these monophyletic groups have since been 

defined as family-level taxa. A majority of this diverse set of coral samples were 

collected at several sites on the east and west coast of Australia. These included Ningaloo 

Reef (Western Australia), Lizard Island, multiple reefs along the northern Great Barrier 

Reef, and Lorde Howe Island. Samples at Lizard Island were collected in both Summer 

and Winter, allowing for comparison of seasonal effects at one site across diverse corals. 

Additional coral samples were collected from reefs in Saudi Arabia, Israel, Réunion, 

Curaçao, Singapore, and Mo’orea (Supplementary Table 3.1). As of this analysis, only 

the samples belonging to Porites and Pocillopora corals were sequenced from Curaçao, 

Singapore, Réunion, and Saudi Arabia. These two genera were selected for initial 

analyses due to their extensive ranges and their large sample size within our collection.  

Coral sampling 
All coral samples were collected by AAUS-certified scientific divers, in accordance with 

local regulations. Relevant permit numbers are: CITES (PWS2014-AU-002155, 

12US784243/9), Great Barrier Reef Marine Park Authority (G12/35236.1, G14/36788.1), 

Lord Howe Island Marine Park (LHIMP/R/2015/005), New South Wales Department of 

Primary Industries (P15/0072-1.0, OUT 15/11450), US Fish and Wildlife Service 

(2015LA1632527, 2015LA1703560), and Western Australia Department of Parks and 

Wildlife (SF010348, CE004874, ES002315). Only healthy corals were collected.  

One goal of the project was to compare microbial diversity associated with the coral 

mucus, tissues and skeletons across many coral colonies. Each of these compartments 

represents a simplification of more complex structure, but for this project, we felt that a 

consistent reporting of these compartments across diverse corals represented a tractable 

step forward. Mucus was collected by gently agitating the surface of corals for ~30 

seconds with a blunt 10 mL syringe. Exuded mucus or surface water (if no visible mucus 

was exuded) was then collected by suction. On the surface, settled mucus typically 

formed a distinct visible layer within the syringe. This was expelled into a cryogenic vial 

and stored in a dry shipper charged with liquid nitrogen for subsequent processing. 
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Tissue and skeletal samples were collected from each colony by hammer and chisel or 

with bone shears. These fragments were placed in sterile WhirlPaks and returned to the 

surface where they were snap frozen in a liquid nitrogen dry shipper until processing. In 

the laboratory, tissue was washed with sterile seawater (which removed visible mucus 

and detritus), then separated from skeleton using pressurized air of between 

approximately 800 and 2,000 PSI (an ‘air gun’). Skeleton was sampled using a sterile 

chisel to isolate a ~1 cm3 region of skeleton that was not in direct contact with coral 

tissue. Skeleton samples were collected without regard to endolithic algae presence or 

absence (i.e., endolithic algae were neither specifically targeted nor excluded). Tissue 

slurries and skeleton samples were added directly to a MoBio PowerSoil Kit (MoBio 

Laboratories, Carlsbad, California) bead tube (which contains, among other things, a 

solution of guanidinium preservative) and stored at -80 °C until DNA extraction. 

ITS2 library preparation and sequencing 
DNA was extracted from skeleton, tissue, and mucus using the MoBio Powersoil DNA 

Isolation Kit. Two-stage amplicon PCR was performed to amplify the Symbiodiniaceae 

ITS2 region. First, 35 PCR cycles were performed using ITS2 primers (underlined) with 

adaptor sequences at the 5’ ends: ITS_Dino-forward_MAf (5’- TCG TCG GCA GCG 

TCA GAT GTG TAT AAG AGA CAG GTG AAT TGC AGA ACT CCG TG-3’) 

(Pochon et al. 2001) and its2rev2-reverse_MAr (5’-GTC TCG TGG GCT CGG AGA 

TGT GTA TAA GAG ACAG CCT CCG CTT ACT TAT ATG CTT-3’) (Stat et al. 

2009). Each 12.5 µL PCR reaction was prepared with 6.25 µL AccuStart II ToughMix, 

0.25 µL forward primer (10 µM), 0.25 µL reverse primer (10 µM), 0.5 µL template 

DNA, and 5.25 µL MilliQ water. PCR cycles consisted of a 5 min denaturation at 94 °C; 

35 cycles of 40 s at 94 °C, 120 s at 59 °C and 60 s at 72 °C; and 5 min at 72 °C. Next, 

amplicons were barcoded with a second PCR using primers consisting of Nextera 

adaptors and indices from Schloss et al. (2011). The second PCR reaction consisted of 

12.5 µL ToughMix, 1 µL of each primer, 9.5 µL MilliQ water, and 1 µL of the PCR 

product from the first step, and a cycle of 5 min denaturation at 94 °C and 12 cycles of 30 

s at 94 °C, 30 s at 63 °C, and 30 s at 72 °C, and a final 10 min extension at 72 °C. 

Products of this reaction were purified with AMPure XP beads, pooled in equimolar 
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concentrations, and sequenced on the Illumina MiSeq sequencing platform (using 350 bp 

V3 chemistry) at the Center for Genome Research and Biocomputing (CGRB) at Oregon 

State University.  

SymPortal ITS2 type profiling, initial quality control, and phylogenetics 
Raw ITS2 sequence reads were demultiplexed with fastq-multx (Aronesty 2013) and 

submitted to the SymPortal pipeline to generate a table of profiles. Briefly, the SymPortal 

pipeline uses Mothur (Schloss et al. 2009) to trim adaptor sequences, merge paired-end 

reads, and filter low-quality sequences from the data. It then performs minimum entropy 

decomposition with the decompose script (Eren et al. 2014). Then, it separates the 

sequence variants into bins corresponding to their genus (formerly lettered major clade), 

and searches for groups of variants within each bin that co-occur frequently among all 

samples in the database. The theory is similar to that traditionally used in Symbiodinium 

taxonomy, which relied on ITS2 DGGE profiles to identify unique types. The output of 

the SymPortal pipeline is one table with counts corresponding to the number of sequence 

reads in a sample that are inferred to belong to each profile, and another table with counts 

for each defining intragenomic variant (DIV) of which profiles are composed.  

A phylogeny of Symbiodiniaceae ITS2 profiles was generated by first combining DIV 

sequences with a database of ITS2 sequence database composed of all the sequences in 

the file ‘mec12869-sup-0001-FileS1.fasta’ from Arif et al. 2014 plus four outgroup ITS2 

sequences retrieved from NCBI (accessions KT389903: Gyrodiniellum shiwhaense, 

DQ195357: Gymnodinium beii, JN558110: Polarella glacialis, and LC068842: 

Biecheleria brevisulcata). Sequences were aligned using mafft (Katoh & Standley) with 

options “--adjustdirectionaccurately”, “--ep 0”, “--maxiterate 1000”, and “--genafpair”. A 

phylogenetic gene tree was created using FastTree (Price et al. 2010) with a GTR model 

and four rate categories. This tree was rooted in R using the outgroups, then all non-DIV 

sequences were trimmed from the tree. The pairwise unweighted UniFrac distances 

between profiles was calculated using this tree and a matrix that related the profiles (as if 

they were samples in a community data matrix) to the DIVs that identify them. The 

resulting distance matrix was provided to ape’s (Paradis et al. 2004) function fastme.bal 

to produce a minimum evolution ‘species’ phylogeny, which was rooted and then made 
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ultrametric with the default parameters (including correlated rates of evolution) of the ape 

function chronos. 

Host phylogenetics 
Host phylogenies were randomly sampled from the set of posterior draws provided by 

Huang & Roy 2015. Outgroup taxa that were not included in that study were added by 

first generating posterior draws of a phylogeny that included only the outgroup taxa, 

Acropora palmata and Pocillopora damicornis. This phylogeny was created by 

combining the multigene protein alignments from Pratlong et al. 2016 with 12S 

mitochondrial data generated by our lab and downloaded from NCBI. An analysis was 

conducted using BEAST2 v2.4 (Bouckaert et al. 2014) with bModelTest v0.3.2 

(Bouckaert & Drummond 2017) as a site model for mitochondrial evolution, a gamma 

site model with 4 rate categories and an LG substitution model for the Pratlong 

alignments, a relaxed log normal clock, a single linked tree, monophyly constraints on 

Scleractinia, and 100 million iterations. After a burn-in of 25 million samples, samples 

were saved every 5,000 iterations, for a total of 15,000 posterior samples saved. From 

these samples, ten were randomly selected, and ten trees from the Huang and Roy 

collection were also randomly selected. Each outgroup tree was scaled such that the age 

of the Scleractinian-Corallimorpharian split matched the age of that split in the paired 

Huang and Roy tree, then the two trees were concatenated together.  

Bayesian species distribution model 
The distributions of the various Symbiodiniaceae species among samples were analyzed 

using a novel logistic linear model implemented in Stan. The model incorporates the 

phylogenetic relatedness of both hosts and symbionts and can incorporate phylogenetic 

uncertainty both by allowing node heights to vary during model fitting and by combining 

draws from chains run with independent draws from a posterior sample of phylogenies. 

Node height adjustment is accomplished by first calculating for each node in each input 

phylogeny the logit of the proportion of the distance between its parent node and the tips 

of the tree. This value is then adjusted during model fitting by adding to it an offset 

drawn from a normal distribution (with standard deviation drawn from an exponential 

distribution of mean 1.0) and recalculating node heights starting at the root. Rather than 
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requiring an a priori assumption of a strict and stationary Brownian model, the model 

dynamically estimates both the strength of an Ornstein-Uhlenbeck attraction toward the 

mean (Butler & King 2004; drawn from an exponential distribution,with mean 1.0), and 

changes in the rate of evolution. Changes in rate of evolution are incorporated by drawing 

variance scaling parameters for each subclade from a lognormal distribution of median 

one and (log) standard deviation of 1.0. Interactions between subclades of the two trees 

are also incorporated using lognormal scaling parameters, in a way that can be viewed as 

allowing the rate of evolution of the host to be different from the perspective of each 

microbial clade, while shrinkage draws them toward the global means. The variance of 

the lognormal scaling parameters is estimated by partitioning a total ‘meta variance’ into 

three categories: global host modifiers, global microbial modifiers, and host-microbe 

interaction modifiers. A flat, symmetric Dirichlet prior is placed on the proportions of 

total meta variance, and the total meta variance itself is the square of a parameter drawn 

from an exponential distribution (with a mean of 0.1 × √3). 

The probability of observing a given microbe in each sample is calculated by adding 

predictor terms corresponding to the interactions between a model matrix that maps 

samples to their hosts, ancestral nodes, and arbitrary other factors; and a matrix that maps 

microbial identities to their ancestral nodes. In other words, in a dataset with 𝑇(microbial 

species, 𝐴( microbial ancestral nodes, 𝑇* host species, 𝐴* host ancestral nodes, and 𝐸, 

estimated samplewise effects, the model uses 𝑁. = (𝑇( + 𝐴() × (𝑇* + 𝐴* + 𝐸,)	total 

predictors. Each predictor has a normal prior with location zero and a variance estimated 

as described below. Samplewise effects are grouped into Fs <= Es factors that have shared 

variance parameters, and hierarchically related factors are assigned to Gs <= Fs groups. In 

the case of factors designed with sum-to-zero contrasts, the reference level is calculated 

as the negative sum of all other levels, this value is also given the same normal prior as 

all the other levels, and to preserve their marginal variance, it is scaled by 4
45 6

78

, where 𝑁: 

is the total number of levels.  

Each factor’s variance is partitioned out of an estimated total variance, which is the 

square of a parameter drawn from an exponential distribution (with an expectation of 
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;3 + 2 × 𝐺, in this study). Each of 𝐾 = 3 + 2	 × 𝐺, categories gets a proportion of the 

total variance, with proportions assigned even prior probabilities (a flat symmetric 

Dirichlet prior). This is a similar method to the DECOV prior used in the package 

rstanarm (Goodrich et al. 2018). The number of categories is derived by recognizing the 

inherent three factors of host alpha diversity (the ‘main effects’ of each host node), 

microbial prevalence (the ‘main effects’ of each microbial node), and host-microbe 

specificity (the ‘interactions’ between host and microbial nodes), and allowing each 

samplewise factor to have separate variances for their influence on alpha diversity (their 

‘main effects’) and specificity (their ‘interactions’ with each microbial node). The 

variance assigned to each group is then further subdivided among the factors that belong 

to that group with another flat Dirichlet prior. 

Within each category that interacts with a phylogeny, variance is further partitioned in 

proportion to branch lengths. For samplewise factors, the modified microbial tree is 

scaled so that the mean root-to-tip distance is one, and the variance of each node’s 

interaction with the factor is the product of its leading branch length with the factor’s 

total variance. Variance for interactions between nodes in the host and microbial 

phylogeny is calculated by taking the product of each node’s modified global branch 

length, multiplying it by the lognormal scaling parameter specific to that pair of nodes, 

and then scaling the resulting matrix such that the mean root-to-tip distance is equal to 

that of the ‘host specificity’ factor. 

Location effects are parameterized in a non-centered manner, such that the raw 

parameters are drawn from a standard Normal distribution, then scaled, and finally 

combined through multiplication with model matrices. Although it is possible to generate 

a model matrix that relates a single vector of parameters to all interactions between hosts 

and microbes via the Kronecker product of a samplewise model matrix and a microbial 

ancestry matrix, this approach was found to be computationally impractical. In raw form, 

such a matrix is extremely large, and consumes excessive memory. Stan’s sparse matrix 

utilities reduced the memory load, but the runtime was still impractically slow. The 

practical solution was to organize the raw parameters in a matrix indexed by each 

samplewise effect and each microbial ancestral node. This matrix is multiplied first by a 
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samplewise model matrix, and subsequently by the microbial ancestry matrix on the 

second dimension. 

This model was run using samplewise factors corresponding to the ocean, ocean 

subregion, and reef from which a sample was taken (all collected into a ‘location’ group), 

the date on which it was taken, the name of the colony, the tissue compartment, and the 

sample’s total sequencing depth. The sequencing depth was log transformed, centered, 

and scaled to have a standard deviation of 1.0. A model matrix was constructed using 

sum-to-zero contrasts for all other factors. Samples of whole corals including all three 

compartments were included by fixing their tissue compartment effects to zero. The 

model was run separately for each of ten randomly sampled host phylogenies using rstan 

v2.17.3 (Monnahan et al. 2017), 2048 iterations, default parameters for adapt_delta, 

max_treedepth, and warmup, to retain 1024 post-warmup samples per tree. 

Model result summaries and hypothesis testing 
After model fitting, the draws from each tree were combined into a single ‘stanfit’ object 

that treated each tree as a separate chain. The significance of both location and (log-scale) 

variance effects was assessed by determining whether A) 95% of draws across all chains 

were either positive or negative, B) the effective sample size was greater than 200, and C) 

the corresponding Rhat was less than 1.1. Host node effects were only tested if an 

equivalent contrast existed across all ten sampled phylogenies. A number of different 

contrasts were considered. The contrast between the value of a given node and its 

parental node corresponds directly to the scaled parameters. Contrasts between the value 

of a given node and its ‘grandparent’ can be calculated by adding the value indexed by 

the node to the value indexed by its parent, and contrasts with more basal nodes can be 

calculated similarly. To compare a given node’s value to the grand mean, all ancestral 

values are summed. Assessing multiple such contrasts can be useful because each 

parameter may in itself have a wide confidence interval, while deeper contrasts combine 

the information of more observations and may be estimated with more confidence. 
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Assessment of potential biases induced by the model or by sampling strategy 
Model biases were checked by two methods: sampling without data (i.e. ‘sampling from 

the prior’), and sampling with the samples shuffled. There were no parameters estimated 

to significantly differ from zero in either case. 

Figures and Figure Legends 

 
Figure 3.1. Host specificity and location specificity explain a majority of variance in the 

distribution of Symbiodiniaceae. 
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All draws of the relative influence of each factor in the model are plotted, with median 

estimates as horizontal lines and boxes ranging from the 25th to the 75th percentiles. 

Effects of specificity were generally much stronger than effects of alpha diversity or 

prevalence, and the majority of variance could be explained by specificity to hosts, 

locations, and individual colonies. 

 
 
Figure 3.2. Intermediate geographic scales explain the majority of location-specific 

patterns.  
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The variance explained by specificity to location is subdivided into levels of geographic 

hierarchy. Intermediate geographic scales explained more variance than either differences 

between oceans or differences between individual reefs, suggesting that local 

environmental variables may have a strong influence on the composition of communities 

of Symbiodiniaceae. 

 
Figure 3.3. Partitioning of variance at different scales of the host and microbial 

phylogenetic history. 

Given an Ornstein-Uhlenbeck (OU) process of evolution, phylogenetic signal decreases 

throughout time. The branch lengths of an ultrametric phylogeny can be scaled to 
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parameter into a more interpretable scale, an arbitrary temporal threshold of 90% of 

evolution since the root was chosen, and the amount of variance explained prior to that 

time was calculated. A large amount of variance explained by historical host evolution 

can be interpreted as a signal of phylosymbiosis. The low values observed in this system 

indicate that phylogenetic signal is present but not strong, and demonstrate that using a 

Brownian model of evolution (with variance exactly proportional to time) would not be 

appropriate for analysis of these data. Note that the values for the host and microbe are 

not comparable to one another because the ages of their roots are different. 
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Figure 3.4. Variation in evolutionary rates.  

The combined rate of evolution for each host-microbe pair is the product of the mean rate 

and the rate multipliers of all ancestral nodes. Plotted is the mean of all draws of the sum 

of all log-scale rate multipliers for the tips of each tree. Red squares correspond to higher 

rates of modern evolution, and blue to lower rates. Black boxes mark regions of the 

interacting phylogenies with significantly increased rates of historical evolution of host 

specificity compared to the grand mean. The two regions correspond to the evolution of 

the C15 radiation in Porites corals, and the evolution of the C8/C42 radiation in the 

Pocilloporidae. The host phylogeny plotted is the first random draw used in the analysis; 
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13443: C116b
13409: C116c
13408: C116
13358: C116a
13391: C116-C15-C1
13311: C15
13337: C22b-C15
13313: C15-C15l-C15n-C15.8
13353: C15-C15s
13352: C15h
13426: C3ab
13433: C1j
13421: C21b
13339: C1o-C1-C1h-C1ad
13548: C1o
13441: C7
13420: C26
13440: C21c
13303: C75a-C3ay-C75b-C75c-C75d
13437: C75a
13350: C17-C21-C17b-C17c
13444: C3u
13407: C21
13300: C21-C3-C3at-C3b-C3av
13309: C3-C3b
13285: C3
13287: C16-C3
13389: C27-C3
13318: C3k-C50a-C3ah-C3bd
13320: C3ae-C3bj
13422: C3k
13343: C3k-C50a-C3-C3ba
13436: C50d
13348: C50e
13428: C50a
13547: C50c
13307: C50b-C50d-C3-C50f
13326: C50b-C3-C3bm-C50f
13346: C50a-C3-C3ad-C50f
13297: C50c-C50a-C3-C50f
13349: C50a-C3-C40-C3ad-C50f
13305: C40-C50c-C50a-C3
13312: C40-C3-C115-C40c-C40e
13296: C40-C3-C115-C40c
13310: C40-C1-C3-C115
13334: C40-C3-C40d-C40c
13298: C40
13323: C1n-C3-C3v-C1q-C89-C1-C3bc-C1aa
13317: C3v-C1n-C1q-C3-C1-C89-C3az
13331: C3-C1n-C3v-C1
13411: C42a
13423: C1d
13338: C42.2
13315: C1l-C1-C42.2
13301: C8-C8d-C42e-C42.2-C1
13418: C8d
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13316: C1-C1c-C1b-C42.2
13283: C3-C1-C1c
13253: C1-C1c-C1b
13280: C1
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13427: C1y
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13330: C1p-C3
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13442: C123
13314: C3n-C3-C3be-C3bf
13325: C21b-C21f-C21g-C21i-C21h-C3-C21e-C21j
13236: B2
13449: D1-D6-D4-D2.2-D2
13471: D1-D6-D4-D2.2
13524: D1-D6-D4-D2.2-D2-D6a
13523: D1-D4-D6-D2.2-D1d-D2
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the branch lengths of both phylogenies are the mean posterior chronological branch 

lengths estimated during model fitting. 

 

 
Figure 3.5. Phylogenetic placement of distinct members of the C15 radiation. 
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(a) C15/C116 profile distribution among coral skeletal samples. Profiles highlighted in 

red were not found in any tissue or mucus samples, while profiles in blue were found to 

have a higher degree of host specificity within Porites corals. The rough ‘species tree’ of 

Symbiodiniaceae profiles generated in this study suggests that C15 types that are highly 

specific to Porites corals are nested within a clade with skeleton-specific associations. 

The skeleton-specific profiles were found in a somewhat diverse assortment of host 

species (Porites and Pavona in Complex clade corals, and Lobophyllia, Diploastrea, 

Seriatopora, Psammocora, Hydnophora, and Goniastrea in Robust clade corals). 

However, the discriminating intergenomic sequence variants that define the profiles are 

less clearly assorted (b). 

 

 Skeleton Tissue Mucus Whole Total 
samples 

Samples with 
C116 / C15h 

11 0 0 0 11 

Samples 
without C116 
/ C15h 

212 204 164 7 587 

Total 
samples 

223 204 164 7 598 

Table 3.1. Cladocopium C116 and C15h are associated with coral skeletal 
samples, but not tissue or mucus samples.  
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General Conclusion 

The importance of microbes to the health of multicellular organisms has been recognized 

since they were first linked to disease as many as 500 years ago (Fracastoro 1961), and 

identified as the source of nitrogen fixation in legumes more than 100 years ago 

(Beijerinck 1961).  However, only recently have technological developments begun to 

shed light on the ubiquity of host-microbe interactions, and the subtler ways in which the 

vast majority of the microbes in the environment affect the health of their macrobial 

counterparts. Most interactions between hosts and microbes are far less intimate than the 

textbook examples of pathogens and symbionts, but dynamic microbial communities, or 

microbiomes, are still hypothesized to provide a variety of services to their host, 

including processing of metabolites and defense against predators and pathogens 

(Zaneveld et al. 2016, Knowlton & Rohwer 2003). Even microbes that are mostly 

commensal in terms of their immediate effects on health are likely to influence the 

evolution of their hosts, as their natural diversity and ubiquitous presence create both 

risks and opportunities that constrain or enhance their hosts’ evolutionary potential 

(Lesser et al. 2007). These dynamics are similar to those of the ecology of macrobial 

communities, as host-associated microbiomes are composed of a wide variety of 

organisms with diverse levels of specificity, interdependence, and coadaptation. 

However, the processes that shape host-associated microbiomes also share characteristics 

with those that shape genomes. In part this is because the transmission of microbiome 

members may be more strongly constrained by vertical inheritance than most 

communities of plants and animals. But because hosts act as ecosystem engineers and are 

themselves subject to gradual evolutionary change, horizontally acquired members of the 

microbiome are more likely to successfully colonize the ecosystems of hosts that are 

closely related to those from which they came (Mazel et al. 2018). As a result of both 

processes (barriers to dispersal and environmental filtering), the microbiomes of closely 

related hosts tend to have similar compositions; or, in other words, their microbiomes 

display phylogenetic signal. Although there is a rich history of studying the phylogenetic 

signal of traits (e.g. see Zheng et al. 2009), the term phylosymbiosis has been coined to 

describe this pattern in microbiomes, recognizing that a host’s interactions with microbial 
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communities straddles a blurry boundary between phylogenomics and ecology (Brucker 

& Bordenstein 2013). 

There is an ongoing debate about the relatively newly coined terms holobiont, 

hologenome, and phylosymbiosis. These terms all encompass a growing appreciation for 

the ubiquity of intimate associations between multicellular organisms and the 

communities of microbes that live with them (Margulis 1993, Rohwer et al. 2002, Gilbert 

et al. 2012). The first two terms refer respectively to the combination of a host and its 

microbiome, and to the entirety of the genomes of all members of the holobiont. The 

third refers to the pattern where the composition of the microbiome reflects the 

phylogeny of its host (Brucker & Bordenstein 2014). The utility of these concepts has 

been questioned, in part because their use seems to encourage misconceptions about the 

degree of reciprocal influence each member of the community has on the fitness and 

evolution of the others (Moran & Sloan 2015, Douglas & Werner 2016). In fact, these 

patterns do not require any influence of the microbiome on the fitness or evolution of 

their host, and are consistent with both neutral (physical or geographic barriers to 

dispersal) and selective (environmental filtering) effects of hosts on the fitness of their 

microbes (Mazel et al. 2018). In reality, there is a spectrum of interactions among 

macrobial and microbial organisms, and the concept of a holobiont can be seen as an 

attempt to discretize this spectrum into categories: does a microbe interact meaningfully 

with a host, or does it not? Whether such a discretization is warranted may depend on 

whether the spectrum shows a gradual range of host association strength, or if there is a 

steep drop-off in interaction strength where a boundary could be drawn between 

‘meaningful’ and ‘non-meaningful’ microbial interactions.  

In my dissertation, I first established that phylosymbiotic patterns exist in corals, 

discovered the many caveats of interpretation of these patterns, and developed a new 

statistical method to help get around some of those caveats. I provide a framework that 

can combine many separate processes into a single holistic model. Thus many separate 

analyses, such as of beta-diversity (e.g. with PERMANOVA using separate distance 

matrices for ‘phylogenetic’ and ‘non-phylogenetic’ effects), alpha-diversity (e.g. through 

independent regressions of metrics such as Faith’s Phylogenetic Diversity, total richness, 
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and total evenness), and separate univariate regressions of microbial taxa at numerous 

scales, can be reduced to a single analysis with many forms of summary; each of which 

controls for the effects of the others. This framework provides clearer and more precise 

interpretations for each effect, and can help tease apart the many processes that contribute 

to shaping the microbiome. 
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Appendices 

Supplementary text for chapter 2: Coral-associated bacteria 
demonstrate phylosymbiosis and cophylogeny 
Supplementary Note 1 
Sequencing depths Following quality control, removal of chimeras and singleton 

sequences, and exclusion of environmental and outgroup libraries from the main analysis 

(except where otherwise noted), 649 scleractinian coral 16S rRNA gene amplicon 

libraries remained. Of these, 30 samples had fewer than 1000 sequences/sample, 80 

samples had 1000-5000 sequences/sample; 112 samples had 5000-10000 sequences; 141 

samples had 10000-15000 sequences; 294 samples had 15000-20000 sequences; 131 

samples had >20000 sequences. To prevent unequal sequencing depths from influencing 

the analysis, we rarified to 1000/sequences per sample, which gave 619 total coral mucus, 

tissue, and skeleton samples. However, we also tested 5000, 10000, 15000, or 20000 

sequences per sample for alpha-diversity and core-microbiome analysis. For differential 

abundance testing, we used 1000 sequences/sample rarefaction, or a parametric method 

within the phylogenetic GLMMs to account for sequencing depth variation. 

Supplementary Note 2 
A brief overview: dominant phyla in the coral microbiome Before comparing 

differences between compartments at more detailed taxonomic levels, we summarized the 

proportional representation of bacterial and archaeal phyla in the coral microbiome, 

averaged across all samples. At the coarsest scale, Proteobacteria were by far the most 

abundant bacterial or archaeal phylum in the dataset (56.5% of total reads), ~4-fold more 

abundant than the next most abundant phylum (Bacteroidetes, 14.2%), and ~45-fold more 

abundant than the most abundant archaeal phylum (Crenarchaeota, 1.3%). Like many 

host-associated microbial communities, coral microbiomes were highly uneven: 10 phyla 

accounted for 90% of the microbiome, averaging across all samples (Proteobacteria, 

56.5%; Bacteroidetes, 14.2%; Firmicutes, 5.7%; Cyanobacteria, 4.4%; Actinobacteria, 

3.5%; Planctomycetes, 1.7%; Crenarchaeota, 1.3%; Chlamydiae, 1.1%; Chloroflexi, 

1.1%; Verrucomicrobia, 0.8%), with 59 other phyla, each at <1% mean abundance, 

making up the remainder. Even after removing identifiable mitochondria and 
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chloroplasts, an average of ~4.9% of reads in each sample could not be assigned to a 

phylum. 

Supplementary Note 3 
Microbiome richness differs between coral mucus, tissue, and skeleton Microbiomes 

from distinct anatomical compartments differed significantly in OTU richness (i.e., 

observed OTUs per 1000 reads) (df = 2, F-value = 19.55, p < 0.001; Fig. 1a). The coral 

mucus layer hosted significantly lower richness (119.6 ± 6.8l OTUs per 1000 reads) than 

coral tissue (166.5 ± 11.1; p = 0.0015) and skeleton (208.7 ± 11.9; p < 0.001) (Fig. 1a). 

OTU richness of endolithic communities within coral skeletons was 75% higher than 

coral mucus (p < 0.001) and 25% higher than tissue (p = 0.010) (Fig. 1a). These 

differences were also significant at rarefaction depths of 5000, 10000, or 15000. At 

20000 sequences per sample, all compartment differences were significant except mucus 

vs. tissue, likely due to removal of most tissue samples at this depth (n = 17 vs. n = 199 at 

1000 sequences per sample). 

Supplementary Note 4 
Compositional differences between compartments are robust to choice of distance 

metric As expected, given the complexity of underlying variation in coral phylogeny, 

environment, and anatomy, the first 3 PC axes captured only a small fraction of overall 

variation in community distances (PC1 8.9%; PC2 4.3%; PC3 2.1%). However, statistical 

analyses of all multivariate dissimilarity measures examined (Bray-Curtis, Weighted 

UniFrac and Unweighted UniFrac) revealed significant differences in microbial 

community composition among coral compartments (all Adonis p < 0.001, Fig. 1b). 

Microbial communities from different compartments separated along the second principal 

coordinates axis, with mucus samples clustering towards the positive end of this axis, 

transitioning to tissue and then to skeleton microbiomes near the negative end of the axis 

(Fig. 1b). 

Supplementary Note 5 
Coral mucus, tissue, and skeleton host distinct core microbiomes 16S rRNA V4 

amplicons sequenced from scleractinian coral mucus, tissue and skeleton (n = 614) were 
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evaluated for differences in ‘core’ microbiome membership, community composition and 

diversity, and the influence of environmental and host conditions on these parameters. 

Core microbiome membership was assessed at multiple taxonomic levels by identifying 

taxa that were present in more than 70% of rarefied samples within a given compartment. 

At the OTU level, no specific bacterial or archaeal OTUs were core members of any 

compartment at 1000 reads per sample, with the exception of a single OTU of water-

column Synechococcus consistently associated with mucus microbiomes. Note that at 

1000 reads per sample, a relatively rare microbe with 0.5% abundance will be sequenced 

in 2 or more reads ~95.9% of the time (cumulative binomial, p=0.005, n=2, trials=1000). 

Microbes that are biologically part of the core microbiome, but not observed here are thus 

likely to have low abundances. This shallow depth, which includes the greatest number of 

biological samples, was therefore deemed sufficient for most of our analyses (which 

interrogate the ecology and evolution of the main lineages of bacteria and archaea in each 

compartment).  

We also calculated core microbiomes at higher read depths. At 5000 seqs/sample, a 

microbe with an abundance of 0.05% will be detected with 2 reads in ~71.3% of samples 

(cumulative binomial p=0.0005, n=2, trials=5000). At this depth, results were identical as 

at 1000 seqs/sample, except that Endozoicomonas OTU 739464 was consistently 

associated with tissue microbiomes.To test whether broader taxonomic ranks were 

conserved, we also calculated which bacterial orders were prevalent across all samples 

with 1000 reads or more. All compartments shared 6 core microbiome members: 

Bacteroidetes from the order Flavobacteriales; unclassified a-Proteobacteria and a-

Proteobacteria from orders Rhizobiales and Rhodobacterales; and g-Proteobacteria from 

the orders Oceanospirallales and Alteromonadales. In addition, compartments had unique 

core microbial orders: the Cyanobacteria order Synechococcales and the a-Proteobacteria 

order Rickettsiales (both common in coastal waters) were core in mucus; Clostridiales 

and Rhodospirillales were core in skeleton; and Cytophagales were core in both tissue 

and skeleton.  

Together, these results indicate a pattern of conservation in the orders of bacteria present 

in coral microbiomes, but variability at finer taxonomic scales. While the core 
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microbiome (i.e. OTUs with >70% prevalence) of coral mucus and tissue held only 

Synechococcus in mucus and Endozoicomonas OTU 739464 in tissue, several bacterial 

orders were consistently present in coral mucus, tissue, and skeleton, even across very 

diverse coral hosts spanning large geographic ranges. Greater consistency of microbial 

orders than OTUs could be due to partial niche overlap between OTUs within the same 

order, or may reflect co-diversification of some strains of bacteria with their host. 

Supplementary Note 6 
Overlapping prevalent microbial orders in Australian and Florida Keys Coral 

Mucus We tested whether the microbial orders identified as highly consistent in this 

study were consistent with past results. In a time-series study of the mucus microbiome 

of corals exposed to simulated overfishing or nutrient pollution, Zaneveld et al. 

calculated core orders in the coral mucus of three genera of corals in plots in the Florida 

Keys2. 100% of the 8 orders of bacteria found in >70% of coral mucus samples in this 

study were also found to be prevalent (>95% of samples) in coral mucus from Zaneveld 

et al., 2016. (The converse was not true: only 8/11 orders with >95% prevalence in 

control corals from Zaneveld et al., 2016 were highly prevalent here). Similarly, OTUs 

belonging to 7/8 of these named orders (Synechococcales, Oceanospirallales, 

Alteromonadales, Rickettsiales, Rhodobacterales, Rhizobiales, and Flavobacterales, but 

not unclassified a-Proteobacteria) were part of the core microbiome in Apprill et al., 

20171. 

Supplementary Note 7 
Confirmation of Candidatus Amoebophilus as a common coral associate  

Apprill et al.,1 previously identified Candidatus Amoebophilus as a core member of the 

microbiome of three coral species. This finding was intriguing because Candidatus 

Amoebophilus are intracellular symbionts of microbial eukaryotes, so we decided to look 

for it in our data. Using the same definition of ‘consistent’ association (presence in >50% 

of samples) and when rarefying at an equal read depth (10,000 sequences/sample) we 

also find Candidatus Amoeobophilus (specifically Greengenes OTU 321533 with 

taxonomy string 'k__Bacteria; p__Bacteroidetes; c__Cytophagia; o__Cytophagales; 
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f__[Amoebophilaceae]; g__SGUS912;s__’) to be one of 11 OTUs present in the 50% 

tissue ‘core microbiome’ at 10000 sequences/sample.  

Supplementary Note 8 
Coral compartments differ in consistency. We calculated two measures of the 

consistency of coral compartments: the proportion of reads that were part of ‘core’ 

microbial orders (present in 70% of samples), and inter-colony variation in beta-diversity. 

The proportion of reads belonging to core microbial orders differed significantly among 

compartments (df = 2, F-value = 27.2, p < 0.001; Supplementary Figure 2a). The 

microbiome of coral mucus, which is in closest proximity to surrounding seawater, had 

higher core microbiome abundance than tissue or skeleton. Microbes belonging to core 

orders accounted for 64.5 ± 1.7% of reads within mucus microbiomes, 30% more than in 

tissue (49.7 ± 2.0%; p < 0.0001) and 38% more than in skeleton (46.7 ± 1.8%; p < 

0.0001; Supplementary Figure 2a). Similarly, overall community composition was least 

variable in mucus across samples (Weighted UniFrac distance, p < 0.001; Supplementary 

Figure 2b). Thus, on both measures, mucus microbiomes were more consistent in 

composition than tissue or skeleton microbiomes. This may reflect that, despite some 

species differences, variation in mucus microbiomes between coral species is lower than 

tissue or skeleton microbiomes. 

Supplementary Note 9 
In healthy corals, host species has a stronger influence on the microbiome than 

geography. To assess the relative influence of host and environmental factors on coral 

microbiomes, the impacts of host (e.g. host genus and disease susceptibility) and 

environmental (e.g. collection season, reef, and latitude) variables were quantified for 

mucus (n = 207), tissue (n = 199), and skeleton (n = 208) microbiomes (OTU level) 

across scleractinian coral genera. Several host and environmental factors significantly 

influenced microbial community composition in each of the three coral compartments (all 

Weighted UniFrac Adonis p < 0.05 in all compartments; Fig. 1c). Across all 

compartments, host species had the greatest influence on microbial community 

composition (raw R2 0.37-0.48), and in tissue explained nearly half the variance in 

community composition. Host species was still the most influential variable after 
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adjusting R2 values for the degrees of freedom in each variable (adjusted R2 0.15-0.24). In 

the context of this study, sampling location (reef name) explained less variance than host 

species (raw R2 0.16-0.20) and had consistently lower adjusted R2 values than host 

species. However, the relative influence of these and other measured parameters differed 

among compartments.  

Supplementary Note 10 
Across all compartments and multivariate dissimilarity measures, more specific 

taxonomic ranks explain more microbiome clustering. To test the explanatory power 

of various levels of coral taxonomy, we ranked the Adonis adjusted R2 value of coral 

species, genus, clade sensu Fukami (family-level group), and complex vs. robust clade 

membership (broadest division). A table of these values is reported in Supplementary 

Data 3. The absolute R2 values differed across compartments, metrics, and rarefaction 

depths (e.g. higher R2 values for host factors in tissue). However, their relative rank was 

remarkably consistent. Across all compartments, three dissimilarity measures (Weighted 

UniFrac distance, Unweighted UniFrac distance, and Bray Curtis dissimilarity) and two 

rarefaction depths (1000 sequences/sample or 10000 sequences/sample), more specific 

taxonomic levels always explained microbiome beta-diversity better than more general 

ones. The largest fall in explanatory power typically occurred between genus and family-

level group, and between family-level group and Complex vs. Robust clade membership. 

This analysis is largely consistent with signals of phylosymbiosis in Mantel test results, 

and also shows that the relative effect of coral taxonomy on microbiome membership is 

robust to common choices for rarefaction depth and dissimilarity measure. 
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Supplementary Note 11 
Host factors more strongly influence coral tissue and skeleton microbiomes while 

environmental conditions more strongly influence mucus communities. The influence 

of host factors on microbiome composition (i.e., Weighted UniFrac Adonis R2) was most 

pronounced in the tissue and skeleton compartments, whereas environmental factors 

tended to have the strongest influence on mucus communities (Fig. 1c). Similarly, host 

genus had the strongest influence on tissue microbiomes. The influence of host genus on 

tissue microbiome composition was 1.53-fold greater than on mucus microbiome 

composition (mucus raw Adonis R2 = 0.249; tissue raw R2 = 0.380) and 1.14-fold greater 

in skeleton microbiomes (raw R2 = 0.334; Adonis Bonferroni p < 0.05 in all 

compartments; Fig. 1c). Microbiome composition was also significantly correlated with 

disease susceptibility (i.e., 10-year genus-level disease prevalence on mid-shelf reefs of 

the northern Great Barrier Reef; Willis Great Barrier Reef Disease Database 

v201610163), and like other host-associated factors species-wide disease prevalence was 

most strongly correlated with microbiome composition in tissue and skeleton (Adonis 

Bonferroni p < 0.05; Fig. 1c). Conversely, reef (i.e., collection site) also influenced coral 

mucus (R2 = 0.209) 1.15-fold more strongly than coral tissue (R2 = 0.184) and 1.28-fold 

more strongly than skeleton communities (R2 = 0.163) (Weighted UniFrac Adonis 

Bonferroni p < 0.05 in all compartments; Fig. 1c). Latitude had a small but consistent 

effect on community composition. Latitude was significantly correlated with microbiome 

structure in all compartments (all Adonis p < 0.05; Fig. 1c), and again this environmental 

factor had the strongest effect on communities in the mucus.  (mucus R2 = 0.045; tissue 

R2 = 0.020; skeleton R2 = 0.018; Fig. 1c; Supplementary Data S3). Finally, we conducted 

a separate analysis of the effects of sampling season (i.e., summer vs. winter) using only 

the subset of samples collected at Lizard Island. Like other environmental parameters, 

sampling season influenced mucus microbial communities (R2 = 0.108) 3.29-fold more 

strongly than tissue (R2 = 0.033) and 2.78-fold more strongly than skeleton communities 

(R2 = 0.039) (Adonis p < 0.05 in all compartments; data for the Lizard island subset used 

in this analysis not shown). 
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Together, these data show that for healthy Australian corals, host species tended to have a 

stronger influence than geography or measured environmental parameters in all 

compartments tested (i.e. including mucus). They also show that host traits tend to have a 

stronger relative influence on coral tissue and skeleton microbiomes relative to mucus, 

whereas environmental parameters have a stronger relative influence on mucus 

microbiomes compared to tissue or skeleton. 

Supplementary Note 12 
Putatively opportunistic bacteria associated with small corals We tested how relative 

coral size influenced the microbiome. Several measures of relative coral colony size 

showed significant correlations with microbiome composition. We tested both absolute 

coral dimensions as well as those sizes normalized by the largest dimensions recorded for 

that coral in this study (prop_Colony_maximum_GCMP_recorded) or in either this study 

or the coral traits database (prop_Colony_maximum_universal). Using either measure, 

tissue and skeleton microbiomes were significantly associated with coral size (raw 

Adonis p < 0.05). Following stringent Bonferroni correction across all factors and 

compartments, the association between coral colony size and microbiome composition 

was significant only in coral skeleton (Adonis permutational p < 0.05), though even there 

the magnitude of the effect was very small (raw R2 <= 0.022). Phylogenetic GLMMs 

showed that 14.9% (51/343, mucus), 47.6% (214/450, tissue), and 31.2% (151/483, 

skeleton) of genera were significantly associated with smaller corals; while 7.3% 

(25/343, mucus), 2.7% (12/450, tissue), and 7.5% (36/483, skeleton) were significantly 

associated with larger corals.  Additionally, pGLMMs showed that Balneola was 

significantly less abundant in large corals in both the tissue (upper 95% CI = -1.51) and 

skeleton (upper 95% CI = -0.22) microbial communities, and the abundance of 

unclassified Aurantimonadaceae was significantly lower in the skeletons of large colonies 

(upper 95% CI = -0.12), although its overall prevalence was too low in tissues to be 

tested. 
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Supplementary Figures 

 

 

Supplementary Figure 1.1. Data processing workflow.  

Several sampling procedures, bioinformatics, and analytical methods were combined and 

used to evaluate our microbiome and coral host phylogeny data.  All samples underwent 

collections in the field where corals were subjected to mucus, tissue and skeleton 

separation (see Methods for details). These samples were placed in MoBio PowerSoil 

kits, frozen, and shipped back to OSU or Penn State for processing. DNA was extracted 

according to the manufactures recommendations, and 16S V4 amplicon libraries 

generated (see Methods for details). All amplicon data then underwent quality control 

parsing (see Methods) prior to further downstream analysis. Amplicons were then 

subjected to several analytics to address different questions about the influence of the 

host and environment on coral microbiomes (see flow chart). 
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Supplementary Figure 1.2. Microbiome consistency among coral compartments.  

Compartments are denoted by color as mucus (teal), tissue (orange), and skeleton 

(purple). a) Core microbiome abundance. Bars show the proportion of sequence reads for 

each compartment that belonged to members of the core microbiome for that 

compartment. Microbial orders were deemed “core” if present in ≥ 70% of samples. b) 

Beta-diversity. Mucus compartments showed less microbiome variability than tissue and 

skeleton. All p-values reflect Tukey’s HSD. 
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Supplementary Figure 1.3. Influence of coral traits and local environment on microbial 

community composition.  

This figure is presented for comparison with Fig 1.1c. The heatmap visualizes the 

influence of several host and environmental factors on microbial community composition 

in coral mucus tissue or skeleton. This figure is identical to Fig. 1.1c in the main text, 

except that it presents raw R2 values, rather than R2 values that are Z-score normalized 

within each factor. Thus, this figure is more useful for seeing which factors are influential 

in an absolute sense (e.g. even in mucus different host species have different 

microbiomes), while Fig 1c highlights the relative influence of each parameter across 

compartments (e.g. host species has a much stronger relative influence on tissue and 

skeleton microbiomes than on mucus). All the results in the figure are based on results 

from the Weighted UniFrac multivariate dissimilarity measure on data tables rarified to 

1000 sequences/sample (see Supplementary Data S4 for alternative choices of 
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dissimilarity measure or rarefaction depth). Light cells represent lower Adonis adjusted 

R2 values for that factor (i.e. traits that have lesser influence on microbial community 

composition in a given compartment), whereas darker colors represent traits with a 

stronger influence. Traits were automatically clustered according to their R2 values across 

compartments, and compartments were clustered according to the similarity of R2 values 

within them. Host vs. environmental traits were manually colorized to highlight the split 

between host and environmental traits that emerged from clustering. Significance values 

for all trait x compartment combinations are available in Supplementary Data 4, and 

Bonferroni-corrected significance values for each combination are marked in Fig. 1c. 
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Supplementary Figure 1.4. Phylogenetic correlograms of tissue microbiome diversity.  

a) Scatterplot of phylogenetic distances versus Bray-Curtis dissimilarity. The grand mean 

of all pairwise community dissimilarities is shown as a dashed blue line, and the mean of 

community dissimilarities within each phylogenetic distance class is plotted as a 

horizontal black line throughout that class. A smoothed (loess) curve showing the overall 

trend in community dissimilarity is displayed as a dashed red line. b) Phylogenetic 
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Mantel correlogram is shown for Bray-Curtis microbiome dissimilarity, with Mantel r 

versus coral host phylogenetic distance. Solid black boxes indicate phylogenetic distance 

classes within which pairwise microbial community dissimilarities are significantly 

different (i.e., significantly more similar or significantly less similar) from dissimilarities 

in all other distance classes (Mantel’s r, p < 0.05), whereas open boxes indicate distance 

classes where dissimilarities are not significant. c) Correlogram showing autocorrelation 

in microbiome richness (Moran’s I calculated from observed OTU values) versus coral 

host phylogenetic distance. Small phylogenetic distances indicate coral species of recent 

divergence. Red bars on the x-axis correspond to phylogenetic distances where microbial 

community parameters are significantly more similar between samples at a given distance 

class than between samples at all other phylogenetic distances, and blue bars correspond 

to distances where parameters are significantly less similar. 
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Supplementary Figure 1.5. Distribution of Endozoicomonas-like bacteria across Robust 

vs. Complex corals.  

The abundances of each Endozoicomonas-like bacterial clade (i.e., Host Generalist, Host-

specific: Robust, and Host-specific: Complex, and others) in coral tissue samples are 

shown, relative to the total abundance of Endozoicomonas-like bacteria. Error bars 

indicate standard error (ncomplex = 90; nrobust = 124, noutgroups = 10). 
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Supplementary Data 
Supplementary Data 1. Sample Summary. This Excel file summarizes samples 

collected and reefs visited in this study. This information is also available from the 

QIIME mapping file for samples (Supplementary Data 2), but is summarized here for 

easier reference. a. Samples collected, subdivided by geographic region, coral species 

and coral compartment. b. Reefs visited as part of the study, along with longitude and 

latitude. 

Supplementary Data 2. Sample Metadata. This Excel file is the QIIME mapping file 

containing all metadata used throughout the analysis. 

Supplementary Data 3. Prevalent ‘Core’ Microbes. This Excel file summarizes 

prevalent microbes associated with coral microbiomes (e.g. ‘core microbiomes’, sensu 

lato) surveyed in this study, quantification of the effects of rarefaction depth on which 

OTUs are prevalent, and comparisons against two literature references. a. Graphical 

summary of microbial OTUs that had >70% prevalence at 1000, 5000, 10000, 15,000, or 

20,000 sequences per sample. b. Machine readable data table of the prevalence and 

taxonomy of OTUs from panel a. c. Prevalence of microbial orders in the coral 

microbiome at 1000 seqs/sample, and a comparison of prevalent microbes in coral mucus 

with Zaneveld et al., 2016. d. Comparison with results from Apprill et al., 2016, 

conducted under similar rarefaction depth (10,000 seqs/sample) and prevalence threshold 

(50%). 

Supplementary Data 4. Beta-diversity (multivariate dissimilarities). This Excel file 

provides a detailed accounting of factors influencing microbial β-diversity (multivariate 

dissimilarities or community composition) in each compartment according to several β-

diversity metrics, and across rarefaction depths. a. Factors influencing microbiome β-

diversity by compartment at 1,000 sequences per sample. b. Factors influencing 

microbiome β-diversity by compartment at 10,000 sequences per sample. c. Factors 

consistently and strongly associated with coral microbiome β-diversity by compartment 

at 1,000 sequences per sample. To find which factors were most consistently associated 

with microbiome beta-diversity, we calculated factors that were a) significant b) had 

adjusted R2 >= 0.05 for all distance metrics analyzed. d. Summary of how taxonomic 
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ranks structure beta-diversity. Data from a and b are combined to illustrate that more 

specific taxonomic ranks for corals provide more information about microbial beta-

diversity than more general ranks, regardless of distance metric and rarefaction depth 

chosen. 

Supplementary Data 5. Alpha-diversity or richness. This Excel file provides a detailed 

accounting of microbiome richness. a. Results for permutational T-tests comparing coral 

microbiome vs. environmental community richness. Bacterial and Archaeal Diversity of 

Corals vs. Water and Sediment. Data reflect richness per 1000 reads of coral mucus, 

tissue, or sediment vs. reef water or sediment. b. Results for permutational T-tests 

comparing microbiome richness of corals vs. outgroups surveyed (blue corals, matt 

anemones, hydrozoans, etc). 

Supplementary Data 6. Microbes correlated with host and environmental 

parameters. This Excel file summarizes microbes that were correlated with host and 

environmental parameters using either Spearman or Phylogenetic GLMM analysis. a. 

Spearman results summary. Summary of the number of bacterial genera significantly 

correlated with selected host or environmental metadata in each compartment, assessed 

by FDR-controlled Spearman regressions. For each factor, the Greeengenes taxonomy 

and R value for the top 3 genera positively or negatively correlated with that factor are 

listed. Additional statistical tests assess whether positive or negative associations are 

enriched for a given factor. b. Phylogenetic GLMM summary. Summary of numbers of 

genera associated with a subset of host and environmental factors, as identified in 

phylogenetic GLMMs. c. Full phylogenetic GLMM results. A comprehensive list of 

genera associated with a subset of host and environmental parameters, subdivided by 

tissue compartment, along with p values, estimated effect sizes, and 95% confidence 

intervals. For categorical data, the category value with which a microbial genus is 

associated is also reported. 

Supplementary Data 7. Random Forest results. This Excel file describes coral host 

features that can be predicted from the microbiome. To measure the strength of 

association between the microbiome and coral physiology, we attempted to build 

supervised classification models using Random Forests analysis, and then back-predict 
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certain host features. This addresses the question: "given microbial data alone, how much 

can you say about the coral host?". a. Results of Random Forest models of the coral 

microbiome, subdivided by compartment and the host trait predicted. b. Summary of host 

factors that can be accurately predicted from the coral microbiome, and which 

compartments predict them. Raw accuracies and error ratios are presented, and results 

with accuracy >70% and error ratios >1.0 are highlighted. 

Supplementary Data 8. Mantel test results. This Excel file summarizes results from 

Mantel tests and Mantel correlograms (Methods). These permutation-based tests assess 

the degree of correlation between two distance matrices (e.g. geographic distance and 

genetic distance, etc). Here they were applied to test the extent to which host evolutionary 

distances corresponded to differences in microbiome composition, as reflected by 

between-sample beta-diversity distances. We calculated this measure for both a non-

phylogenetic measure (Bray-Curtis divergences) and a phylogenetic beta-diversity 

distance metric (Weighted UniFrac distances). 
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Supplementary text for chapter 3: Novel generalized linear model 
framework identifies a clade of Symbiodiniaceae that is associated with 
coral skeletal samples, but not tissue or mucus 

Supplementary Table 3.1. Summary of coral colonies sampled by location 
and host genus 
 

Ocean  
    Ocean Area  
        Reef  
            Host Genus 

Number 
of 

colonies 
Pacific 183 

Coral Sea 133 
Big Vickie 7 

Echinopora 1 
Galaxea 1 
Hydnophora 1 
Isopora 1 
Lobophytum 1 
Pachyseris 1 
Pocillopora 1 

Broadhurst 8 
Acropora 1 
Diploastrea 1 
Echinopora 1 
Galaxea 1 
Lobophyllia 1 
Pavona 1 
Pocillopora 1 
Porites 1 

Day 2 
Acropora 1 
Diploastrea 1 

Fork  8 
Acropora 4 
Diploastrea 4 

Horseshoe 14 
Acropora 1 
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Diploastrea 1 
Galaxea 1 
Leptastrea 1 
Lobophyllia 2 
Millepora 2 
Pachyseris 1 
Palythoa 1 
Pavona 1 
Pocillopora 1 
Turbinaria 2 

Kelso  2 
Acropora 2 

Lagoon Bommie 3 
Echinopora 1 
Pachyseris 1 
Physogyra 1 

Lagoon entrance 2 
Lobophyllia 1 
Porites 1 

Linnett - Site 1 1 
Diploastrea 1 

Little Kelso  5 
Acropora 1 
Diploastrea 4 

Martin - Site 1 2 
Diploastrea 2 

Martin - Site 2 2 
Diploastrea 2 

Maxwell - Site 2 2 
Acropora 2 

Trawler 69 
Acropora 4 
Caulastraea 1 
Diploastrea 3 
Echinophyllia 1 
Echinopora 4 
Favites 2 
Fungid 5 
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Galaxea 3 
Heliopora 1 
Isopora 1 
Lobophyllia 5 
Millepora 2 
Montipora 1 
Pachyseris 5 
Palythoa 3 
Pavona 6 
Physogyra 4 
Porites 6 
Psammocora 2 
Stylophora 5 
Turbinaria 5 

Yonge - Site 1 3 
Acropora 1 
Diploastrea 2 

Yonge - Site 2 3 
Acropora 2 
Diploastrea 1 

South Pacific 16 
LTER_1_Backreef 7 

Acanthastrea 1 
Acropora 1 
Leptastrea 1 
Lobophyllia 1 
Montipora 1 
Pavona 1 
Pocillopora 1 

LTER_1_Fringing 9 
Acropora 1 
Discosoma 1 
Fungid 1 
Leptastrea 1 
Pavona 1 
Pocillopora 1 
Porites 2 
Psammocora 1 



 123 
Tasman Sea 34 

Comets Hole 3 
Alveopora 3 

Far Flats 13 
Astrea 3 
Dipsastraea 3 
Favites 3 
Goniastrea 3 
Homophyllia 1 

North Bay 18 
Acropora 3 
Cyphastrea 3 
Isopora 3 
Pocillopora 2 
Porites 3 
Seriatopora 3 
Stylophora 1 

Indian 61 
Eastern Indian 49 

Bills Bay 43 
Acropora 2 
Cyphastrea 3 
Dipsastraea 1 
Echinophyllia 1 
Echinopora 3 
Favites 5 
Galaxea 3 
Goniastrea 2 
Hydnophora 3 
Lobophyllia 1 
Merulina 3 
Montipora 4 
Pavona 3 
Platygyra 3 
Pocillopora 3 
Seriatopora 3 

Bills Bommie 6 
Lobophyllia 2 
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Porites 4 

Red Sea 2 
Al Fahal 2 

Pocillopora 1 
Porites 1 

South China Sea 1 
Raffles Lighthouse 1 

Pocillopora 1 
Western Indian 9 

Boucan Canot 2 
Pocillopora 1 
Porites 1 

Pass 2 
Pocillopora 1 
Porites 1 

Saint-Leu 1 
Pocillopora 1 

Trou d_Eau 3 
Pocillopora 1 
Porites 2 

Volcano 1 
Pocillopora 1 

Atlantic 8 
Caribbean 2 

West_of_channel 2 
Porites 2 

Mediterranean 6 
Michmoret 6 

Madracis 2 
Oculina 4 

Grand Total 252 

 


