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The National Park Service has a dual mission of providing public access to 

exceptional natural resources, but in a manner such that these resources are left 

“unimpaired for the enjoyment of future generations.” Human activities in parks 

undoubtedly affect wildlife, but the degree to which such activities cause impairment is 

often unclear and difficult to assess. It is the task of park administrators to take actions 

and impose restrictions to prevent impairment based on park values and the information 

provided through research and monitoring programs. Finding an appropriate balance 

between wildlife protection and visitor access is difficult because decision makers must 

consider numerous interrelated factors, many of which are not known with certainty. In 

light of these challenges, scientific approaches that allow decision makers to incorporate 

uncertainty and evaluate trade-offs between human access and resource protection are 

greatly needed. Glacier Bay National Park (the “Park” hereafter) contends with the 

challenge of managing visitors in an area containing many species of conservation 

concern. Therefore, the Park seeks a systematic and data-driven process for evaluating 

the tradeoffs that current and potential restrictions represent, in terms of protecting 

sensitive resources versus enabling full access to the public. The goal of my dissertation 



 

 

was to assist administrators and biologists at the Park with the development of an 

integrated decision tool for the Park through a structured decision making process.  

This task entailed first identifying and structuring objectives, then coordinating 

with subject-matter experts on the development of biological sub-models for informing 

the future decision tool. Park Service administrators and staff drew on fundamental 

purposes of the Park to define measurable attributes that characterize the Park’s values 

and inform management decisions. This process also identified focal species whose 

conservation status was viewed as a priority and had motivated management actions in 

the past. Focal species included Steller sea lions (Eumetopias jubatus), harbor seals 

(Phoca vitulina richardsi), humpback whales (Megaptera novaeangliae), and several 

species of ground-nesting coastal waterbirds. Much of the work described here involved 

collaborating with subject-matter experts to develop biological models. These models 

served three main purposes: (1) characterize the state of focal species by incorporating 

available research and on-going monitoring; (2) respond interactively to changes in the 

value of population parameters (e.g., population size, distribution), whose influence 

decision makers would want to assess; and (3) generate estimates that would serve as 

valuable inputs in subsequent models of visitor-wildlife encounters.  

Biological models provide data-driven descriptions of the state of populations. 

The structured decision-making process places emphasis on models that are as explicit as 

possible. To this end, I formulated biological sub-models in a manner that would permit 

estimation of actual population parameters for focal species rather than raw counts or 

indices. Survey data were modeled as a function of these key parameters, but also as 

filtered through an imperfect detection process affected by survey effort and 



 

 

uncontrollable variables, such as weather conditions. The Steller sea lion sub-model 

estimated abundance, spatial distribution, and the proportion of time spent on land 

(attendance probability) using counts at terrestrial sites and sightings-at-sea. I used a 

similar approach to model abundance for a sub-population of harbor seals, but with 

modifications meant to account for the excessive number of zero counts in the data set. 

The sub-model describing the condition of ground-nesting coastal waterbirds estimated 

probabilities of survey sites being occupied, of the species being abundant at the site, and 

of the nesting status for nine different species across 20 key concentration sites that are 

surveyed in the Park. Finally, the humpback whale sub-model used sightings of whales 

from active surveys and observers onboard cruise ships to estimate whale abundance and, 

for the first time, fine-scale spatial distribution in the Park. 

Structuring objectives and developing biological sub-models was a key step in an 

ongoing process of decision tool development. The Park is now in the position to move 

forward with combining biological sub-models with information on visitor usage. I 

describe pathways for accomplishing this task, and assess the capacity of each biological 

sub-model for generating the measurable attributes that decision makers care about. 

Although decision tool development is ongoing, the work herein is a valuable 

contribution to the fields of ecology and resource management for several reasons. At the 

level of individual studies, population parameter estimates from sub-models contribute to 

conservation efforts for those species, and the novel modeling techniques described are 

readily generalizable to other systems. The broader contribution of this body of work, 

however, is in illustrating the value of adopting a structured decision-making approach to 

resource management in parks. Specifically, this work shows that the process of 



 

 

connecting fundamental objectives to monitoring information can be used identify 

information gaps and reveal creative ways of using available information to inform 

management.  
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  GENERAL INTRODUCTION 

The growth and spread of human populations has had an indelible impact on 

ecosystems throughout the world, particularly since the rise of industrialization 

(Ramankutty and Foley 1999; Nelson et al. 2006). In response to these changes, many 

governments have deemed it necessary to create parks which preserve, and hold in public 

trust, areas of aesthetic and ecological significance for the use and enjoyment of future 

generations (Groombridge 1992; Eagles and McCool 2002; Chape et al. 2005). In many 

cases, these areas are intended to be minimally affected by human development, but also 

to provide opportunities for recreation and wilderness experiences. The task of preventing 

anthropogenic alteration while providing access is often daunting for resource managers 

(Boyle and Samson 1985; Loomis 1993; Marion et al. 2016), particularly considering that 

knowledge of natural resources and ecological processes is always imperfect (Ascher 

2001; DeFries and Nagendra 2017). In light of these challenges, scientific approaches 

that allow decision makers to incorporate uncertainty and evaluate trade-offs between 

human access and resource protection are greatly needed. 

Administrators of protected areas traditionally arrive at decisions in the same 

manner as all natural resource managers. They examine the available scientific 

information, consider the social and political situation, and draw on personal experience. 

In essence, administrators apply their own “mental models” to the decision situation. 

Alternative actions have anticipated outcomes based on the decision maker’s 

understanding of relevant mechanisms. This approach to decision making is problematic 

for several reasons (Fleischman and Briske 2016). The process by which decisions are 
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arrived at is often convoluted and difficult to explain, which can make decisions appear 

arbitrary to members of the public. In addition, this practice also limits the transference of 

institutional knowledge, because when an administrator leaves so does the “mental 

model” (Conroy and Peterson 2013). There is a larger issue with this approach, however, 

beyond just a lack of transparency. When humans approach decisions subjectively, 

regardless of their experience, they tend to predictably make irrational choices (Ariely 

2008; Kahneman 2011). This happens because humans are beset by a number of 

cognitive biases which can lead to mismanagement of natural resources (Patt and 

Zeckhauser 2000; Iftekhar and Pannell 2015). The best way to improve the manner in 

which decisions are made and avoid pitfalls is through the application of a structured and 

formal approach to decision making.  

Over the last thirty years, frameworks and techniques have been developed to 

address the challenges of decision making in the field of natural resource management 

(Walters 1986; Conroy and Peterson 2013). The terms that commonly denote these 

approaches in the ecological literature are structured decision making (SDM) and 

adaptive resource management (ARM), and the products produced by applying these 

approaches can be referred to as decision models, decision support systems, or decision 

tools. Structured decision making is defined as a formal method for connecting decisions 

to objectives (Conroy and Peterson 2013). Adaptive resource management is a 

subcategory of SDM in which decisions are revisited and information from ongoing 

monitoring is used to resolve uncertainties regarding how a system operates (i.e., 

structural uncertainty; Nichols and Williams 2006; Williams and Brown 2014). The SDM 

process makes use of techniques from fields that are outside the training that most 
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managers and scientists receive (Sit and Taylor 1998). The process draws on the field of 

decision science in stressing the importance of identifying values and objectives (Keeney 

1996), and makes use of techniques from the fields of operations research and computer 

science in integrating quantitative information and identifying optimal decisions 

(Schreiber et al. 2004). 

The specific steps of the SDM process are to: (1) identify the decision problem; 

(2) structure objectives; (3) define decision alternatives; and (4) link decisions to 

measureable attributes through the use of models. Identification of the decision problem 

sets the boundaries within which actions will be considered. Structuring objectives is a 

process that is intended to separate the objectives that are valuable in and of themselves 

(e.g., persistence of a species; fulfillment of a legal mandate), from those that are thought 

to be necessary or useful for achieving something more fundamental (e.g., increasing 

habitat availability). Identifying decision alternatives and linking them to measurable 

attributes exposes the reasoning and assumptions within the minds of decision makers. 

Models are an important component because they provide explicit descriptions of how 

decision makers think the system functions and would respond to potential management 

actions and outside influences. Mathematical models are beneficial because their 

structure and assumptions can be clearly examined and tested, as opposed to narrative 

descriptions which are inherently vague (Regan et al. 2002). When all of the components 

have been integrated the performance of resulting decision tools are evaluated and 

modified through a process known as sensitivity analysis. Once this process is completed, 

decision makers can evaluate the trade-offs of various management alternatives and, if 
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warranted, use a solution algorithm to identify the optimal or satisficing set(s) of 

decisions (Williams and Nichols 2014). 

The goal of my dissertation was to assemble components of an integrated decision 

tool for managing visitor restrictions in Glacier Bay National Park, and in so doing, 

develop novel methods for characterizing the state of focal species groups (pinnipeds, 

whales, ground-nesting waterbirds). These models were structured in a manner such that 

the Park could, in the near future, begin to quantify interactions between wildlife and 

visitors. In addition to providing an important sub-component to the future decision 

model, each chapter also stands alone as a valuable research study. Chapters 2-5 focus on 

developing population models for each of the target species groups. Chapter 6 provides 

illustrations of how the biological models will be connected to visitor usage patterns. I 

devote the remainder of this introduction to a description of the decision situation in 

Glacier Bay National Park and the initial phases of the structured decision making 

process. 

Description of Glacier Bay National Park (GBNP)  

Glacier Bay National Park is located in Southeast Alaska and encompasses 

approximately 1.3 million hectares of terrestrial and marine areas. Glacier Bay National 

Park (“Park” hereafter) encompasses of the Glacier Bay basin, the southern portion of the 

Fairweather Range to the west, and the shoreline stretching from the west entrance of the 

bay to the mouth of the Alsek River to the north. Many of the most significant landmarks 

in the Park are located within Glacier Bay proper, and include islands, lagoons, and 

tidewater glaciers. The waters of Glacier Bay are highly productive and support a 

diversity of waterbirds, as well as terrestrial and marine mammal species (Etherington et 
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al. 2007), most notably harbor seals (Phoca vitulina richardsi), Steller sea lions 

(Eumetopias jubatus), and humpback whales (Megaptera novaeangliae). The 

environment of the bay is also extremely dynamic because of the relatively recent glacial 

retreat in the area. Most of the east arm of Glacier Bay was covered by Muir Glacier less 

than 120 years ago and the entire bay was covered by ice during the period of the Little 

Ice Age (Catton 1995). Glacial retreat over the last several centuries has led to a cascade 

of physical and ecological processes that are ongoing. For example, isostatic rebound 

from glacial retreat influences the elevation and connectivity of islands which, in turn 

affects successional processes and the distribution of wildlife (Chapin et al. 1994). 

Management practices of GBNP standout relative to other units in the National 

Park System. The first major difference between GBNP and other parks is the emphasis 

placed on research of both the physical and ecological characteristics of the area. 

Allowing for research of the dynamic tidewater glacial environment is part of the 

foundation statement (NPS 2010), and the Park demonstrates its commitment to this 

purpose by issuing many research permits and providing logistical support. The Park also 

supports on-going monitoring and research programs either directly or in conjunction 

with other agencies and programs, including  the “Vital Signs” program and the 

Southeast Alaska Network (SEAN; Fancy et al. 2009). The second distinguishing 

characteristic of GBNP is that, unlike most other units in the National Park system, 

administrators of GBNP have the authority to regulate vessels within Park waters. Vessel 

management consists of establishing quotas, issuing permits, and restricting the speed 

and access of vessels in specific areas. Having authority over Park waters is significant 

because visitors rely on vessels (motorized or nonmotorized) to enjoy virtually all of the 
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main attractions (e.g., tidewater glaciers, marine wildlife viewing) in the Park. The most 

strictly regulated vessels are cruise ships that are responsible for bringing more than 90% 

of the annual visitors to the Park (Gende 2007). Of course, Park administrators do not 

have absolute control over vessels and are required to uphold restrictions mandated 

through laws such as the Marine Mammal Protection Act (MMPA) and the Endangered 

Species Act (ESA), and must also grant limited commercial fishing access to several 

areas of Glacier Bay (Mackovjak 2010). 

Structured Decision Making Process for Area Closures and Vessel Management in GLBA 

Administrators and scientists associated with GBNP partnered with the Oregon 

Cooperative Fish and Wildlife Research Unit in 2016 with the goal of developing a 

decision tool for managing area closures and vessel restrictions within the Park. The 

following sections describe the motivation for pursuing the project and summarize the 

discussions and choices made during an initial planning workshop and subsequent 

meetings that occurred. 

Motivation 

Administrators and resource specialists with the Park were motivated to engage in 

the SDM process for several reasons. The primary reason was due to newly proposed rule 

changes to the coded federal regulations (CFR) for the GBNP, which greatly increased 

the flexibility with which the superintendent can impose and remove area closures and 

vessel restrictions. In the past, the superintendent’s decisions had to be explicitly added to 

the CFR, but the new regulations allow the superintendent to impose closures and 

restrictions at will. The greater flexibility to manage closures and restrictions has led to 

an increased interest in developing a science- and values-based approach for prescribing 
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closures and restrictions that is both consistent and transparent. Developing a decision 

support tool was believed beneficial because it would provide an opportunity for 

managers and scientists to reexamine closures and restrictions that are presently in the 

CFR, but which may no longer be necessary for preventing the impairment of Park 

resources. In addition to ensuring that closures and restrictions are appropriate given Park 

values, there was also interest in engaging in the SDM process as a way to strengthen the 

justification for Park policies in the event of legal disputes. 

Initial steps of the SDM process 

A workshop was conducted in 2016 for the purpose of initiating and carrying out 

the first several steps of the SDM process. The goals of this workshop were to identify 

objectives, define the decision context concerning vessel restrictions within the park, and 

sketch out a framework for developing the decision tool. A large portion of the meeting 

involved structuring objectives, identifying decision alternatives, and linking objectives 

and measurable attributes to candidate decision alternatives. The meeting was attended by 

Park administrators including the superintendent, and chiefs of resources, concessions, 

and law enforcement. Also in attendance were research staff, composed of those stationed 

at Park headquarters as well as those affiliated with SEAN. Together the group involved 

in the workshop had significant knowledge and experience concerning the state of the 

Park’s ecological resources and the experience of different user groups.  

The first task of the meeting was the definition of the problem statement, the 

purpose of which was to ensure that group members agreed about the proposed actions 

and how they are intended to fulfill objectives. The mutually agreed upon problem 

statement for the decision situation was: 
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“Implement annual area closures and use restrictions only when necessary to 

ensure that park resources and values are unimpaired for the enjoyment of future 

generations, recognizing that greater levels of closures/restrictions should be 

associated with a greater magnitude and certainty of benefits.” 

The phrase “only when necessary” implies that restrictions and closures should be chosen 

conservatively. Furthermore, the focus on “future generations” and “certainty of benefits” 

further indicated that closures and restrictions should be implemented in cases where the 

long-term sustainability of a Park resource is directly affected by humans. 

The second task that the group performed was to define and structure objectives. 

During this process, attendees drew on the founding legislation of the National Park 

Service (i.e., The Organic Act) and on the Foundation Statement for the Park itself ( NPS 

2010). The group decided that the decision tool’s fundamental objective was to uphold 

the original mission of the National Park Service. This objective was decomposed into 

two competing means objectives of minimizing impairment of resources and maximizing 

visitor experience (Figure 1.1). The visitor experience objective was more explicitly 

defined using another hierarchy with daughter nodes of visitor opportunity and safety 

(Figure 1.2). These nodes were further subdivided into values and specific measures that 

characterize the limitations that would be imposed on visitors by the various decision 

alternatives. Similarly, the objective to minimize impairment of Park resources was 

decomposed into means objectives concerned with avoiding the impairment of three 

groups of target species: humpback whales, pinnipeds (harbor seals and Steller sea lions), 

and ground-nesting waterbirds. The reason for selecting these target species groups was 

because of their ecological importance, value in terms of enhancing visitor experiences, 
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and their potential to be negatively impacted by humans. The fundamental objective 

hierarchy for focal species was changed from its original 2016 version (

 

Figure 1.3). The updated hierarchy from 2018 put greater emphasis on 

minimizing “human-caused” disturbances and also redefined pinniped disturbances in 

relation disturbing pups rather than take (Figure 1.4). 

After discussing components of these hierarchies the group proceeded to defining 

the potential management actions that should be considered within the decision tool. 

Some of the following information, especially regarding the spatial grain of decisions, 

was contributed in subsequent meetings. Potential vessel restrictions that the group 

decided to consider within the decision tool were speed limits and shoreline buffers. The 

two alternative speed limits for areas of the Park were 13 versus 20 nautical miles per 

hour (kn). Shoreline buffer restrictions refer to the rules that prohibit motorized vessels 

from traveling within 1 nautical mile (nm) of the shoreline. At present, both buffers and 

speed restrictions are seasonally implemented at the mouth of Glacier Bay as measures 

for reducing the likelihood of whale-ship collisions; these combined regulations are 

known as “seasonal whale waters” (Figure 1.5; Jelinski et al. 2002; Gende et al. 2011). 
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The spatial grain within which to consider alternative speeds was roughly defined as a 

manageable number (<100) zones of water of similar size and defined using recognizable 

landmarks and minutes of latitude and longitude. The presence or absence of buffers was 

also to be considered within the same water zones, but only those zones adjacent to 

shorelines. 

Potential closure decisions were placed into two categories: water closures and 

land closures. The decision alternatives concerning water closures were simply whether 

or not to allow vessels to access Johns Hopkins Inlet, which is both a major attraction and 

the area of the Park with the highest concentration of harbor seals. Potential land closure 

decisions were to be considered for both island and shoreline areas of the Park. Five 

alternatives were defined for each land closure: closed to overnight camping, closed to 

foot traffic, and closed with a minimum approach distance from water of 50 yards, 100 

yards, or 0.25 nm. Participants determined that islands should be managed as a whole, 

with the exception of large islands (e.g., Willoughby Island), which could be subdivided 

using recognizable landmarks. Discussions following the initial meeting indicated that 

shoreline segments should be no smaller than 1 mile in length and should be clearly 

definable in terms of shoreline features, but that the minimum shoreline segment length 

for closure would ideally be based on the probable movement patterns of the species 

whose presence prompted the closure (i.e., smaller for nesting waterbirds than for a bear).  

There were several aspects of current vessel and area closure management that the 

group was uninterested in altering or examining within the decision tool. For example, 

the group did not wish to consider altering regulations that seasonally or permanently 

prevent motorized vessels from entering certain areas of the Park (e.g., Rendu Inlet). The 
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group was also uninterested in considering management actions that would differentially 

apply to user groups (e.g., prohibition of charter vessels, but not kayaks, from camping 

on an island). The group also decided that it was unnecessary to integrate shoreline 

closures into the decision tool except in areas with known concentrations of ground-

nesting waterbirds. Shoreline closures were removed from consideration because these 

decisions are made automatically for safety reasons and do not relate to resource 

impairment concerns. 
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Figures 

 

Figure 1.1. Fundamental objective hierarchy for Glacier Bay National Park. The fundamental objective (achievement of Park 

mission) is shown at the top of the hierarchy and mean objectives, which would indicate achievement of the fundamental 

objective, are shown below. 
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Figure 1.2. Hierarchy for the means objective of providing for safe and unimpeded visitor experiences. 
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Figure 1.3.  Initial means-objective hierarchy for minimizing impairment of Park resources. 
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Figure 1.4.  Updated means-objectives for minimizing impairment of Park resources. 
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Figure 1.5. An official map of Glacier Bay National Park depicting the various seasonal 
and permanent vessel restrictions used to prevent the impairment of wildlife. 
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  MODELLING PINNIPED ABUNDANCE AND DISTRIBUTION 

USING COUNTS AT TERRESTRIAL SITES AND IN-WATER SIGHTINGS  

(At time of submission, this chapter was under review by the journal Ecological 

Modelling) 

Abstract 

Pinnipeds are commonly monitored using aerial photographic surveys at land- or 

ice-based sites, where animals come ashore for resting, pupping, molting, and to avoid 

predators. Although these counts form the basis for monitoring population change over 

time, they do not provide information regarding where animals occur in the water, which 

is often of management and conservation interest. In this study, we developed a 

hierarchical model that links counts of pinnipeds at terrestrial sites to sightings-at-sea and 

estimates abundance, spatial distribution, and the proportion of time spent on land 

(attendance probability). The structure of the model also allows for the inclusion of 

predictors that may explain variation in ecological and observation processes. We applied 

the model to Steller sea lions (Eumetopias jubatus) in Glacier Bay, Alaska using counts 

of sea lions from aerial photographic surveys and opportunistic in-water sightings from 

vessel surveys. Glacier Bay provided an ideal test and application of the model because 

data are available on attendance probability based on long-term monitoring. We found 

that occurrence in the water was positively related to proximity to terrestrial sites, as 

would be expected for a species that engages in central-place foraging behavior. The 

proportion of sea lions in attendance at terrestrial sites and overall abundance estimates 

were consistent with reports from the literature and monitoring programs. The model we 
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describe has immediate utility for park managers who wish to better understand the 

overlap between pinnipeds and visitors, and the framework that we present has potential 

for application across a variety of study systems and taxa. 

Introduction 

Characterizing the abundance and spatial distribution of animal populations is a 

fundamental challenge in ecology (Scott et al. 2002; Krebs 2009). The task typically 

involves fitting a model that relates counts or detections of animals to environmental 

variables to make inferences about the state of a population and the location of 

individuals belonging to the population (Hegel et al. 2010). Unfortunately, there are 

common sources of sampling bias that can produce inaccurate inferences from this basic 

model, including nondetection of animals that are actually present in the survey area (Gu 

and Swihart 2004; Kellner and Swihart 2014), and temporary emigration of animals 

during periods of assumed geographic closure (Valente et al. 2017; Yamaura and Royle 

2017). Accounting for non-detection and temporary emigration is particularly important 

for species that are cryptic or highly mobile within the study area (MacKenzie et al. 2002; 

Chandler et al. 2011). 

Pinnipeds are a group of animals that typify these sampling-related challenges. 

These species are difficult to study because they are highly mobile and occupy the 

boundary between marine and terrestrial environments. Locating and enumerating 

animals while in the water is often considered infeasible; thus, population monitoring is 

generally carried out by counting animals at terrestrial or sea-ice sites where animals 

come ashore for resting, pupping, molting, and to avoid predators (Boyd et al. 2010). 
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Although counts at locations on ice platforms and on land are sufficient for monitoring 

broad-scale population change (Small et al. 2003; Mathews et al. 2011), they 

communicate no information about the distribution of animals in the water. For the cases 

in which in-water sighting or remote tracking data are available, they are often analyzed 

separately from spatially implicit count data gathered at fixed sites (Herr et al. 2009; 

Himes Boor and Small 2012; Vincent et al. 2017). The ability to assess factors that 

influence the in-water distribution of pinnipeds is especially relevant to management and 

conservation because of the potential for interactions between pinnipeds and fishery 

operations (Read 2008; Kovacs et al. 2012).  

Many of the challenges associated with surveying pinnipeds and synthesizing 

information from different data sources can be addressed by adopting a hierarchical 

modelling approach (Ver Hoef and Frost 2003; Ver Hoef et al. 2014; Williams et al. 

2017). Hierarchical models represent ecological processes as latent state variables and the 

data obtained from surveys as a function of the true state and an incomplete and 

potentially misleading observation process (Royle and Dorazio 2008; Kery and Schaub 

2011). This approach allows parameters to be separately related to predictor variables 

(e.g., sampling effort, environmental attributes), and facilitates the integration of multiple 

sources of data into a single model (Kery and Royle 2015). Integrated models use 

different sources of information to inform a shared set of parameters, which can improve 

the precision of estimates, fill important gaps in information, and more realistically 

represent ecological processes (Schaub et al. 2007; Abadi et al. 2010; Cole and McCrea 

2016). Previous developments in integrated modelling have focused on estimating 

demographic rates from survey and mark-recapture data (Buckland et al. 2004; Besbeas 
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et al. 2009), but there has also been recent progress in the development of models that 

incorporate different types of spatially explicit data (Chandler and Clark 2014; Nadeem et 

al. 2016). 

The objective of this paper is to develop a hierarchical model for pinnipeds and 

similar species and to use this model to broadly characterize the abundance and 

distribution of Steller sea lions (Eumetopias jubatus) in Glacier Bay National Park in 

southeastern Alaska. Our approach integrates counts from aerial photographic surveys at 

terrestrial sites and in-water sightings from vessel surveys, and combines elements of N-

mixture models (Royle 2004; Dail and Madsen 2011) and models that use unstructured 

sampling approaches (Thompson et al. 2012; Russell et al. 2012; Broekhuis and 

Gopalaswamy 2016). Replicated counts of sea lions at terrestrial sites inform estimates of 

site-level abundance and the probability that an individual is out of the water, which we 

term “probability of attendance”. In-water sightings and abundance parameters are then 

used to estimate sighting intensity and the spatial distribution of animals.  

We fit the model to counts from aerial photographic surveys at a terrestrial haul-

out site (Womble et al. 2005, 2009; Mathews et al. 2011), and in-water sightings gathered 

opportunistically during vessels surveys for humpback whales (Megaptera novaeangliae; 

Gabriele and Lewis 2012; Keller et al. 2016). We evaluated the performance of the model 

using a simple sensitivity analysis and by comparing model predictions of abundance and 

attendance to those reported by monitoring programs and from results derived using 

different methods (e.g., tagged animals) reported in the scientific literature. This model is 

intended to form part of a larger decision tool for managing wildlife and visitor 

restrictions within the Park. 
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Methods 

Our model is composed of two sub-models that describe the abundance of 

pinnipeds at particular terrestrial sites and their distribution in the water, based on 

sightings from vessels. The first sub-model, which we term the “count portion” informs 

several key parameters: (1) overall abundance of pinnipeds in the study area and (2) the 

probability that an animal is out of the water, and thus available to be counted. The 

second sub-model, which we refer to as the “sighting portion” uses sightings of pinnipeds 

in the water to describe their spatial distribution while accounting for imperfect detection 

and non-uniform survey effort. The model assumes that pinnipeds not available to be 

counted at terrestrial sites during aerial surveys, are in the water. The number of 

individuals in the water at a given time is derived from the count model and combined 

with data on in-water sightings to make inferences about spatial distribution. In the 

following sections we outline the data sets involved in the Steller sea lion case study, then 

define the structure of the model and its attributes. Finally, we describe our procedures 

for fitting the model and evaluating its performance. 

Steller sea lions in Glacier Bay National Park 

Steller sea lions are distributed along the North Pacific rim from Japan to 

California, USA (Loughlin et al. 1987). The species exhibits central-place foraging 

behavior and typically aggregates at rocky sites and islands, from which they radiate and 

feed primarily on marine fishes and invertebrates (Womble and Sigler 2006). Sites may 

be occupied throughout the year or seasonally (Sease and York 2003), with seasonal 

movements driven by life-history events (e.g., pupping, breeding) and shifts in prey 

resources (Womble et al. 2005, 2009). In Alaska, Steller sea lions give birth to pups from 
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mid-June to early July. Steller sea lions have garnered considerable conservation 

attention in the last several decades due to population declines (Trites and Donnelly 

2003). The species occurs in two distinct population segments: the western distinct 

population segment, west of 144° W, which is listed as endangered and the eastern 

distinct population segment, which was delisted in 2013 (National Marine Fisheries 

Service 2013; Allen and Angliss 2015). The Glacier Bay region represents a mixing zone 

between the endangered western Distinct Population Segment (wDPS) of Steller sea lions 

and the recently delisted eastern Distinct Population Segment (eDPS; Jemison et al. 2013; 

O’Corry-Crowe et al. 2014; Rehberg et al. 2018). 

We confined our analysis of count data to terrestrial sites in Glacier Bay proper 

that were occupied consistently from May – September and where aerial photographic 

counts were performed regularly. This decision excluded a rookery at Graves Rocks 

along the outer coast of Glacier Bay and several sites that are commonly occupied during 

other periods of the year (Tarr Inlet, Gloomy Knob, Harbor Point, Cape Fairweather, and 

Point Carolus), leaving only South Marble Island (Figure 2.1). South Marble Island was 

initially colonized by sea lions around 1985 and was initially occupied only seasonally; 

however, since approximately 2001 Steller sea lions have been present at South Marble 

Island throughout the year (Womble et al. 2005; Womble et al. 2009, Mathews et al. 

2011). From 2001 to 2004, the number of Steller sea lions at terrestrial sites in Glacier 

Bay were monitored during monthly aerial photographic surveys (Womble et al. 2005, 

Womble et al. 2009). Beginning in 2005, sea lions were only monitored during June and 

August in conjunction with harbor seal aerial photographic surveys (Womble et al. 2010). 

We assembled the aerial photographic counts data set by compiling 101 observations 
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made by National Park Service personnel with 5 observations from the National Marine 

Fisheries Service - Marine Mammal Laboratory Steller Sea Lion Count Database (2009-

2013; Fritz et al. 2015). The data set included vertical aerial photographic counts of non-

pups during the years 2001-2017, with the exception of 2006 (Figure 2.2). 

Aerial surveys coincided with opportunistic sightings of Steller sea lions recorded 

during vessel surveys for humpback whales, which occur in park annually from April 

through October. During these surveys, a small vessel (4.9-6.7 m) actively searched for 

whales using prior knowledge of preferred habitat, and visual and auditory signals, from 

whales (e.g., breaching and spouting). There is a protocol for recording sightings of non-

target marine mammal species during surveys that has remained relatively consistent 

through time (Gabriele and Lewis 2000, 2012; Keller et al. 2016). Observers record the 

location and estimated group size of marine mammals that pass within 100 m of the 

survey vessel and make efforts to avoid double counting. The study area for the spatial 

component of our analysis encompassed a 1,332 km2 area, including the entirety of 

Glacier Bay and extending slightly into Icy Strait to the south (Figure 2.3). We compiled 

sighting and track point data from 610 survey days that occured between May and 

September, 2006-2016. The mismatch of temporal overlap between this data set and that 

of the aerial counts did not pose a problem, because the in-water sighting data set still 

included 10 years and our specific objective was to estimate the average in-water 

distribution of sea lions. We omitted sightings of sea lions with >20 individuals, due to 

concerns about miscounting; these sightings accounted for ~0.4% of the total.  

Model description 

Basic structure 
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The abundance of sea lions during year ! were assumed to be Poisson distributed 

with mean and variance ("#) 

$#~&'!(("#). 

We modeled "# as a log-linear function of the annual site abundance parameters (,#) 

-'.( "#) = ,# 

which were treated as fixed effects in the model (i.e., log abundance for each year was 

estimated separately). We linked counts of sea lions to abundance with a binomial 

distribution: 

0#1~2!3($#, 5#1), 

where 5#1 is the probability of a sea lion being in attendance at the terrestrial site 

on day 6 of year ! (Figure 2.4). By adopting this parameterization, we assumed that 

variation in counts at sites was driven solely by changes in attendance probability, and 

that the probability of detecting an individual sea lion given presence was equal to one. 

We believed this assumption to be reasonable because counts were determined by 

scrutinizing aerial photographs rather than counting from plane or water (Snyder et al. 

2001; Boyd et al. 2010). We used abundance and attendance probabilities to derive the 

expected number of sea lions not in attendance at the terrestrial site, and therefore present 

in the water on a given day (7#1): 

7#1 = "# ∙ (1 − 5#1). 

We assumed that the population of animals in the water at a given time were 

distributed across ; non-overlaping sections, each with probability of occurrence <= 

(∑ 	<=
@
=AB = 1). We partitioned the study area into 60 non-overlapping sections, by 
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overlaying a 500 m grid on the study area, and then merging cells with an area less than 

12.5 km2 with their neighbors. Eleven of the sections were not visited by the whale 

survey vessel and included areas that are closed to vessels from May 1 to September 15 

(Beardslee Islands, Hugh Miller Inlet, Rendu Inlet, and Adams Inlet), and areas in the 

East and upper West Arms of Glacier Bay. Finally, we assumed that in-water sightings of 

sea lions in each section were linked to the expected in-water abundance by a Poisson 

distribution:  

C#=1D~&'!(E7#1 ∙ <= ∙ &#=1DF, 

where C#=1D is the number of sea lions sighted in year !, in section G, on day 6, and 

during time-interval H; &#=1D is the probability of detecting an individual sea lion. We 

include the subscript H to signify that sections can be, and often are, visited multiple 

times in a day. We represented sightings as a Poisson process because they are rare 

events that occur with a frequency proportional to the expected number of sea lions 

expected to be present and that detection probability was tied to a measure of survey 

effort. Sea lions are highly mobile within the study area and constantly transitioning 

between land and water, thus modeling sightings in terms of a rate of encounter was more 

suitable than, for example, apportioning the in-water population at a given time across all 

sections using a multinomial distribution. 

Incorporating predictor variables 

The basic model structure provided a framework for evaluating relevant 

predictors of ecological and observation processes. Additional information were included 

by defining parameters using linear combinations of predictors and applying appropriate 

link functions. All linear predictors may also contain random error terms (random effects) 



29 

 

 

at different levels, however, care should be taken to ensure that chosen combinations of 

error terms and parameters are identifiable (Cole and McCrea 2016). We defined mean 

annual abundance using fixed effects via a log link function, however, many alternative 

parameterizations for mean abundance are also possible. For example, it would be 

relatively simple to represent mean abundance using a trend line or random intercept 

terms, as in a formal N-mixture model. 

We modelled attendance probability (5) via a logit link function, defined as. 

-'.!6(I) =
1

1 + KL(M)
,		 

where η is a linear predictor (e.g., NO + NBP). Hereafter we denote this transformation 

using the left-hand expression logit(η). To identify an appropriate model for 

interpretation, we fit and evaluated six alternative linear predictors for attendance 

probability and used a model selection procedure to identify a top model. Candidate 

models included combinations linear and quadratic effects for the day of year (QRS), a 

linear effect for the number of hours before or after the nearest high tide (T!UKV'WH), as 

well as a null model. All linear predictor also included a daily normal random error term 

meant to account for extra-binomial variation (X1) which may be the result of behavioral 

heterogeneity (Dorazio et al. 2013). The global model with the full set of predictors was:  

-'.!6( 5#1) = NO + NBQRS1 + NYQRS1
Y + NZT!UKV'WH#1 + X1,	 

	X1~$'H[(0, ]^11_`a), 

with Ns denoting coefficients. We hypothesized that more sea lions would be attendance 

at lower tide (i.e., positive relationship with the number of hours to closest high tide), as 

this would relate to there being more space on land on which to haul out. It should be 
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noted that the T!UKV'WH is measured at a finer scale than QRS and known for all aerial 

counts and all survey intervals indexed by H, thus inclusion of this predictor would result 

in sub-daily predictions of in-water abundance. Attendance probability was the only 

parameter for which we compared alternative sets of predictors.  

We related the distribution of sea lions across sections to several predictors using 

a multinomial logit link function (Agresti 2013; Royle and Converse 2014), where 

probability of occurrence for all but one of the sections (; − 1) is defined as:  

	<= =
K(bcd)

1 + ∑ K(bcd)@LB
=AB

; 	G = {1,2,3, … , ; − 1}, 

and <@ serves as a reference category. Section-specific probability of occurrence is 

defined by a linear combination with one or more coefficients (k) and section-specific 

variables (l). Similar to above, we denote this transformation using the left-hand 

expression [-'.!6(I=), where I= is the section-specific linear predictor. Given that 

Steller sea lions are central-place foragers, we hypothesized that probability of 

occurrence in the study area was inversely related to the distance to sites where sea lions 

are known to haul-out of the water. We used distance to South Marble Island as a 

predictor of probability of occurrence in the water. In addition to including a site that is 

occupied throughout the year, we included distance to a seasonally occupied terrestrial 

site at Point Carolus, near the mouth of Glacier Bay (Figure 2). The function used to 

describe section-specific occurrence probability (<=) was as follows: 

[-'.!6( <=) = kBQESouth	Marble	Island=F + kYQEPoint	Carolus=F, 
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where ks are slope coefficients, and Q() is a function describes the distance, in 

kilometers, between the centroid of a survey cell and each of the two sites. The section 

nearest to Point Carolus served as the reference category in the model. 

We modeled the probability of the survey vessel detecting a sea lion using a logit-

linear regression with search time (T![K) in each section as a predictor 

-'.!6( &#=1D) = �O + �BT![K#=1D + Ä#=1D, Ä#=1D~$'H[(0, ]a_1_Å1#Ç`), 

where �s are coefficients and Ä1D is a random error term meant to account for additional 

observation error. We computed the time spent in each section by summarizing time-

stamped vessel tracking data. 

Model fitting  

We fit the model using a likelihood-based approach, which entailed using 

optimization to identify the set of parameters that jointly maximize the likelihood of the 

observed data. A Bayesian approach could also be used to estimate parameters, as with 

all hierarchical models (Cressie et al. 2009). We calculated the joint likelihood for all 

data and parameters in the integrated model by combining the likelihood contributions of 

the count and in-water sighting portions of the model into a single objective function. We 

accomplished this by defining the objective function to be minimized as the sum of the 

negative log-likelihood contributions of the two portions of the model (ℓB and ℓY): 

ℓ1Ç1^Ñ = ℓB + ℓY, 

where ℓ1Ç1^Ñ is the joint likelihood to be minimized using an optimization procedure. We 

carried out the analysis in the R statistical platform using the Template Model Builder 

(TMB) package, a tool that interprets user-defined C++ model templates and uses 
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automatic differentiation to efficiently compute the derivatives of a joint likelihood 

function while also enabling random effects to be estimated via the Laplace 

approximation (Kristensen et al. 2015; R Core Team 2017). For clarity, and because they 

are integrated out during model fitting, we ignore the random effects in the notation. 

To compute the likelihood contribution of the count portion of the model we 

marginalized over the joint Binomial-Poisson likelihood. This process entailed summing 

the likelihood values over a wide range of possible abundances for each year in the 

manner shown below: 

ℓB = −-'. ÖÜ á Ü2!3(0#1|$#, 51) ∙ &'!(($#|"#)

âä

1AB

ã

åäAçéè(êä)

ë

#AB

í, 

where ℓB is negative log likelihood component for the count portion of the model, ì is the 

number of years, î is the upper bound used for $, T# is the number of replicate counts on 

the !th year. We examined the influence of our choice of î by comparing joint likelihood 

values and abundance estimates over a range of values, ultimately deciding that a value 

of 15,000 was suitably large (Dennis et al. 2014). We computed the negative log 

likelihood component for the in-water sighting portion of the model, more simply, as the 

product of likelihood of all sighting records assuming a Poisson distribution 

ℓY = −log ÖÜÜÜÜ&'!(EC#=1Dñ7#1 ∙ <= ∙ &#=1DF

ó

DAB

â

1AB

@

=AB

ë

#AB

í. 

Minimization of the objective function, was performed using the base non-linear 

optimization function nlminb(). To facilitate convergence, we normalized predictor 
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variables for attendance probability and detection effort and estimated ] parameters on 

the log scale. 

Attendance Probability (5) Model Selection 

As noted above, we were interested in identifying a top model or models on 

which to base inferences about the sea lion population in Glacier Bay. We ranked six 

different candidate models using Akaike’ information criterion. These models 

represented six alternative sets of predictors defining attendance probability; all other sets 

of predictors were held constant. We based our determination of a suitable top model on 

recommendations of Burnham and Anderson (2002), and we considered models within 

the 2.0 AIC of the top model as competitive. 

Model Evaluation 

After identifying a top model for interpretation, we evaluated its performance 

using a simple sensitivity analysis and by comparing model predictions of abundance and 

attendance probability to those reported in the literature. We were interested in examining 

the effect that inclusion of sighting data would have on predictions of abundance and 

attendance, so we compared predictions from the final model with those of a reduced 

version of the model, in which we omitted in-water sighting data. This comparison 

enabled us to examine the influence of the in-water sighting data on both the estimated 

relationships and the precision of estimates. We compared model estimates of abundance 

to indices of abundance from monitoring surveys. Past studies estimated attendance 

probabilities by making detailed observations at haulouts or by affixing tags to sea lions, 

some of which were equipped to record the time spent in the water (Merrick and 

Loughlin 1997; Milette 1999; Rehberg, et al. 2009; Rehberg et al. 2018). Although, many 
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of these studies focused on the foraging behavior primarily from postpartum or lactating 

females at breeding sites, we assumed that attendance estimates of this age-sex class 

would provide an indication of the model’s realism. The estimated coefficients and 

associated uncertainty were also used in determining the degree to which the model 

reasonably reflected abundance, distribution, and sighting processes.  

Results 

We successfully fitted the pinniped abundance and distribution model to the 

Glacier Bay sea lion data set to the six different candidate models. Model selection using 

AIC suggested substantial support for the two models containing quadratic day-of-year 

effects, including the global model and a model with only a quadratic day-of-year effect 

(Table 2.2). We chose to interpret the model ranked second, which described only the 

quadratic day-of-year effect: 

-'.!6( 5#1) = NO + NBQRS1 + NYQRS1
Y + X1	. 

We based this decision on the recommendation of Burnham and Anderson (2002) 

that if two competing models differ by one parameter and difference in likelihoods is 

minimal, then the model with fewer parameters is preferred. This decision was further 

justified by the observation that the 95% confidence interval for the T!UKV'WH 

coefficient in the global model overlapped zero and was in the direction opposite that 

which we had hypothesized.  

Our selected model produced parameter estimates that appeared to reasonably 

describe the population trend at terrestrial sites and in-water distribution of Steller sea 

lions. The model indicated that sea lion abundance at South Marble Island increased over 
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the study period from 2001 to 2017 (Table 2.2; Figure 2.5). The overall abundance and 

attendance patterns were similar for the fully integrated model compared to the reduced 

version that relied solely on aerial counts. Abundance estimates were more precise for the 

reduced version model; however, the fully integrated model was able to estimate the 

annual abundance for 2006, based on in-water sighting data alone. Attendance probability 

predictions were comparable for the models with and without in-water sighting data, 

although predictions from the fully integrated model were more precise (Figure 2.6). 

Estimated attendance probability began at 30% in May, peaked at the end of June at 73%, 

and then declined to 31% by the end of August (Figure 2.6). There was considerable 

uncertainty in these estimates, however, with the 95% confidence interval for attendance 

probability spanning values from 37% to 67% for the entire season (May-August). 

Estimates for attendance coefficients were also more precise for the combined model 

(Table 2.2).
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Time that a survey vessel spent in the section was found to be positively related to 

the probability of detection of an individual sea lion (Table 2.3). The coefficient for the 

effect of search time indicated that odds of sighting an individual sea lion increased by 

51% (32%, 73% [95% LCL, UCL]) for every 30 minutes that the survey vessel was 

present. The estimated effect of predictor variables on occurrence and detection 

probability matched our hypotheses and were consistent with central-place foraging 

behavior. Coefficients for the effect of distance to South Marble Island and secondary 

sites were both significantly less than zero, suggesting that the geographic location of the 

site influenced the in-water distribution of sea lions (Table 2.3). However, the effect of 

proximity to Point Carolus was greater and more precisely estimated than at South 

Marble Island. Interpretation of distribution coefficients is somewhat difficult considering 

that the two predictor variables are based on the distance to two different sites and are 

thus non-independent. The clearest possible interpretation of the coefficients comes from 

computing an odds ratio for the slope terms separately and expressing changes in the 

odds of occurrence as a percentage (100% × ö1 − Kbõ). Based on this approach, odds of 

a sea lion being present in a cell diminish by 3.5% and 5.6% with every kilometer 

traveled from South Marble Island and Point Carolus, respectively. The influence of these 

parameters on prediction is more easily interpretable, however, by examining a map of 

in-water occurrence probability (ú) across the study area (Figure 2.7). This map 

describes the probabilities that a given sea lion in the water would be found in each cell; 

those not in the water are assumed to be present at South Marble Island. 

The abundance and attendance probability estimates were comparable to those 

reported in the literature. The pattern of increasing abundance at South Marble Island was 
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consistent with the findings of Mathews et al. (2011) during the period when the two 

studies overlapped; however, there were decreases in estimated abundance in 2016 and 

2017 that differed from the trend line reported by Mathews et al. (2011). Attendance 

probabilities reported in previous studies fell within the range estimated by our model. 

For example, Merrick and Loughlin (1997), Rehberg et al. (2009), and Milette (1999) 

reported that female Steller sea lions spent on average 47%, 52%, and 59% of their time 

on land, respectively. The main discrepancies between our model predictions and 

previous work were related to seasonal patterns in attendance. Several studies that 

analyzed counts of Steller sea lions at South Marble Island in the early 2000s described a 

bimodal pattern with peaks in the spring and fall (Womble et al. 2009; Mathews et al. 

2011). In contrast, our model estimated a mid-season peak in attendance (mid-June to 

mid-July). 

Discussion 

The objective of this study was to develop a pinniped abundance and distribution 

model for situations in which both in-water sighting information and counts at terrestrial 

sites are available. We used a hierarchical modelling framework to accomplish this task, 

which consisted of separating ecological and sampling-related processes into separate 

tiers of a model and then specifying intuitive connections between data sets and a shared 

set of parameters (Royle and Dorazio 2008; Cressie et al. 2009). The key assumption 

linking these data sets was that attendance at a terrestrial site and availability to be 

sighted in the water were mutually exclusive states. We demonstrated the utility of this 

framework by applying it to Steller sea lions in Glacier Bay, Alaska. The clearest benefits 



38 

 

 

of our approach were improved precision in attendance predictions, the ability to estimate 

abundance for 2006 in lieu of any aerial count data, and the ability to characterize in-

water density of sea lions in the bay over the course of the spring and summer. 

Model predictions of abundance and attendance probabilities showed general 

agreement with the range of estimates reported in the literature. It bears mentioning, 

however, that the attendance probability estimates to which we compared our model 

outputs were obtained from studies that took place at different times of year, different 

geographic areas, and a limited sex and age range of sea lions (Merrick and Loughlin 

1997; Milette 1999; Rehberg, et al. 2009). The greatest inconsistency between our 

findings and previous research was with respect to seasonal attendance patterns at South 

Marble Island (Womble et al. 2009; Mathews et al. 2011). Our model identified a convex 

seasonal attendance relationship for the time span from 2001 to 2017, whereas these other 

studies described patterns with relatively low mid-season attendance at the same location 

from 2001 to 2004. The inconsistency was somewhat surprising considering that all 

analyses shared at least some of the same aerial count data. We did not regard the 

difference between our model and these other studies as indicative of poor performance, 

considering that our model included counts from thirteen additional years. It is possible 

that the attendance pattern identified for the early 2000s has since shifted and that our 

model instead detected a prevailing pattern with a mid-season peak. 

The abundance and distribution model that we describe in this paper combines 

elements from several modelling approaches, specifically N-mixture and spatial capture-

recapture models and may be applied to other taxa. The count portion of the model 

broadly resembles an N-mixture model in that counts at terrestrial sites are viewed as a 
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binomial random variable and a function of the underlying abundance parameter. The 

traditional N-mixture model uses replicated counts to simultaneously estimate detection 

probability and abundance, assuming that nondetection is the sole explanation for the 

variation in observed counts. In contrast, our model assumes perfect detection and 

attributes variation in counts to changes in the availability of individuals to be counted by 

an aerial survey (i.e., temporary emigration). Availability and its compliment, temporary 

emigration, are sometimes viewed as nuisance parameters in hierarchical models because 

they can be used to account for transitions of individuals into unobservable states 

(Kendall and Nichols 2002; Kery and Royle 2015). We thought it more appropriate to 

apply the term “attendance probability” for this model because transitions occur between 

two observable states, water and land, and the term “attendance” is commonly used in the 

pinniped literature to refer to occurrence at a terrestrial site (Milette and Trites 2003; 

Meise et al. 2014). Although this study focuses on developing a model for monitoring 

pinnipeds, this or a similar framework could also be applied to other species. Seabird 

species are one such candidate for this type of model, because they aggregate at terrestrial 

breeding colony sites, where they may be easily counted, but are also sightable from 

vessels during foraging trips at-sea. 

Although our model uses only counts of unmarked (unidentifiable) individuals, 

the sighting portion of the model bears some resemblance to spatial capture-recapture 

models. Spatial capture recapture models relate observations of animals to their distance 

from an estimated activity center, and derive abundance estimates by summing the 

number of such centers in the study area (Royle et al. 2013; Royle and Converse 2014). 

The sighting portion of the pinniped model can be parameterized in a manner that is 
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conceptually similar, specifically when distance to the terrestrial site is used as a 

predictor of distribution in water. In this case, the location of activity centers is fixed at 

terrestrial sites rather than estimated, and the number of such centers is also informed by 

the count sub-model. Another way in which our model broadly relates to spatial capture-

recapture approaches is in its reliance on unstructured spatial sampling, in which 

surveyors roam the study area recording animal sightings or scats (Thompson et al. 2012; 

Broekhuis and Gopalaswamy 2016). Some models that rely on unstructured surveys are 

also defined using spatial capture-recapture terminology, even referring to grid cells as 

“conceptual traps” (Russell et al. 2012). Our approach does not build individual 

encounter histories from sightings in cells as these models do, but instead uses replicate 

visits and measures of effort within grid cells to provide information regarding detection 

and occurrence probability. 

The realism and utility of the model that we describe is predicated on assumptions 

regarding latent ecological and data collection processes, many of which it inherits from 

the approaches that we discussed above. The most significant assumption of the model is 

that the population remains closed during each season and that variation in counts only 

reflects changes in attendance probability and not, for example, imperfect detection or 

movement of individuals among sites (Dénes et al. 2015). Violation of this assumption is 

likely to result in additional heterogeneity in the attendance parameter, which could 

obscure relevant patterns in the attendance process and lead to positive bias in abundance 

estimates (Barker et al. 2017; Duarte et al. 2018). Another key assumption of the model is 

that the spatial extent of the study area encompasses the home range within which 

pinnipeds travel during each season and does not overlap with the home ranges of 
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populations at other terrestrial sites. If the second assumption is violated, then estimates 

of individual detection probability will be affected as well as abundance estimates. The 

sighting portion of the model assumes that counts of animals in cells are independent 

after adjusting for covariate effects, the pinniped species is not miscounted or 

misidentified by surveyors, and that pinnipeds are neither avoidant of or attracted to the 

survey vessel. An additional assumption of unstructured sampling approaches is that 

survey routes are independent of the density (Thompson et al. 2012). 

The data used in the Steller sea lion case study satisfied the model assumptions 

reasonably well, considering our objective of broadly characterizing trends in abundance 

and spatial distribution. There are several important aspects of sea lion ecology, however, 

that are not captured by the model, and some assumptions could not be assessed. We 

could not readily assess the geographic closure assumptions because of the paucity of 

detailed movement or demographic information on the South Marble Island population 

over the study period; however, some degree of within-season movement among nearby 

sites was likely, based on previous studies (Jemison et al. 2013, 2018; Rehberg et al. 

2018). We also assumed that sightings of individuals were independent although Steller 

sea lions are known to forage and are sighted in groups (Fiscus and Baines 1966; Gende 

et al. 2001; Sigler et al. 2004). The greater estimated effect of proximity to Point Carolus 

relative to that of South Marble Island was another unexpected result from the model. 

This was surprising considering that substantially fewer sea lions have been observed 

hauled-out at Point Carolus, relative to South Marble Island. The most likely explanation 

is that distance to Point Carolus is correlated with a latent variable that also predicts the 

in-water occurrence of sea lions, most likely having to do with prey availability. Sea lions 
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have been observed in the vicinity Point Carolus in late summer and autumn, which 

coincides with the migration of Pacific salmon (Oncorhynchus spp.) through Cross Sound 

and Icy Strait from the Gulf of Alaska (Womble et al. 2009). In addition, a shallow 

glacial sill at the mouth of Glacier Bay promotes localized upwelling and increased 

productivity in the Sitkaday Narrows, an area of intense tidal currents and mixing 

(Etherington et al. 2007). In addition, most of the water that is entrained into Glacier Bay 

comes in on the west side of the mouth, producing a headland wake system that has been 

positively related to quality of foraging habitat for whales (Chenoweth et al. 2011), and 

fish schools are commonly observed near Point Carolus during aerial surveys (Jamie 

Womble, personal observation).  

A major advantage of hierarchical models is that there are a number of extensions 

to the model that can be made to improve estimates and confront potential assumption 

violations. With respect to the sea lion case study, there are additional sources of 

information that could be leveraged to improve the model. For example, uncertainties 

regarding inter-seasonal movement among sites could be reduced by incorporating 

transition probability estimates obtained via telemetry (Rehberg et al. 2018) or mark-

resight studies (Jemison et al., 2013). The precision of the model could also be improved 

by incorporating additional types of data, including counts of pups or observations 

gathered using more error-prone methods (e.g., counts from vessels), provided that an 

additional detection parameter be included in the model. The issue of non-independent 

sightings could be addressed by directly modeling the process that determines group size 

(Martin et al. 20011; Schmidt and Rattenbury 2018). 



43 

 

 

This study illustrates the value of a hierarchical modelling approach for 

characterizing abundance and spatial distribution when multiple data sources are 

available. This approach is particularly useful for pinniped monitoring programs because 

of the behavioral complexity of these animals and the expense and logistical challenges 

associated with conducting population surveys (Ver Hoef and Frost 2003; Boyd et al. 

2010). The modeling framework presented in this paper, provides a method for 

supplementing these surveys with spatially explicit in-water sighting data and for creating 

model-based predictions that provide a full accounting of where populations of pinnipeds 

occur on land and in the water. Without the integrated model for Steller sea lion in 

Glacier Bay it would not have been possible abundance estimate for 2006 or to have 

identified a seasonal attendance pattern that will be instrumental for reconstructing in-

water density patterns across all study years. Other possible management application for 

this type of model would be for estimating the degree of overlap between pinnipeds and 

commercial fishing operations, based on the location and occupancy status at terrestrial 

haul-out sites. Furthermore, species with similar ecology and types of monitoring data 

available (e.g., sea birds) may also benefit from the application of this framework.
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Tables 

 
Table 2.1 Ranking of integrated abundance and distribution models for Steller sea lions in the vicinity of Glacier Bay, Alaska 
based on AIC. The top model, interpreted in the remainder of the analysis, is shown in bold. 
 

Model AIC ΔAIC ℓ#$#%& k 

'())	,(-./)0123)	4(-567 + 9.:3;<=>)	?(9.@3) 9496.4 0 4721.2 27 

A(B)	C(DEFBGHIJ)	K(DLMN)	O(PEQJ) 9496.7 0.31 4722.3 26 

'())	,(-./)0123)	4(-56 + 9.:3;<=>)	?(9.@3) 9538.2 41.85 4743.1 26 

'())	,(-./)0123)	4(9.:3;<=>)	?(9.@3) 9539.7 43.29 4744.8 25 

'())	,(-./)0123)	4(-56)	?(9.@3) 9539.9 43.49 4744.9 25 

'())	,(-./)0123)	4(. )	?(9.@3) 9542.9 46.48 4747.4 24 
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Table 2.2 Abundance estimates from an integrated abundance and distribution model for 
Steller sea lions in the vicinity of Glacier Bay, Alaska. LCL and UCL denote the lower 
and upper 95% confidence limits, respectively. The asterisk in 2006 denotes the only year 
for which no aerial count data were available. 

    
Year Abundance LCL UCL 

2001 511 465 557 
2002 673 630 716 
2003 861 648 1,074 
2004 1,046 681 1,412 
2005 908 622 1,194 

 2006* 345 133 557 
2007 445 270 619 
2008 915 806 1,024 
2009 1,312 1,178 1,446 
2010 2,183 2,062 2,303 
2011 1,341 1,193 1,490 
2012 1,284 1,079 1,489 
2013 865 747 983 
2014 2,527 2,273 2,781 
2015 2,471 2,277 2,666 
2016 1,447 1,192 1,701 
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Table 2.3 Selected parameter estimates from an integrated abundance and distribution model for Steller sea lions in the vicinity 
of Glacier Bay, Alaska. LCL and UCL denote the lower and upper 95% confidence limits, respectively. 
 

Parameter Description Estimate Standard Error LCL UCL 

Integrated Model 
Attendance (!) 
"# Intercept 1.04 0.17 0.71 1.38 
"$ Day of year linear effect -0.37 0.09 -0.56 -0.19 
"% Day of year quadratic effect -0.70 0.10 -0.90 -0.50 
&'(()*+ Attendance standard deviation 0.88 0.06 0.76 1.00 

Occurrence (,) 
-$ Distance South Marble Island -0.035 0.010 -0.055 -0.016 
-% Distance to Point Carolus -0.058 0.007 -0.072 -0.044 

Detection (.) 
/# Intercept -10.5 0.165 -10.9 -10.2 
/$ Time in area 0.29 0.07 0.15 0.42 
&+)()0(12* Detection standard deviation 6.78 0.30 6.20 7.37 

Reduced Model (Aerial counts only) 
Attendance (!) 
"# Intercept 1.36 0.22 0.92 1.79 
"$ Day of year linear effect -0.59 0.13 -0.85 -0.32 
"% Day of year quadratic effect -0.86 0.15 -1.16 -0.56 
&'(()*+ Attendance standard deviation 1.27 0.12 1.04 1.49 
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Figures 

 

 

Figure 2.1. Glacier Bay National Park, Alaska, and the study area for an example 
application of a pinniped abundance and distribution model involving Steller sea lions. 
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Figure 2.2. Counts of non-pup Steller sea lions at South Marble Island in Glacier Bay National Park, Alaska, from vertical 
aerial photographic surveys. Sample size noted in the upper right corner of each panel.
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Figure 2.3. Steller sea lion sightings recorded during whale surveys in the vicinity of 
Glacier Bay National Park, Alaska (2007-2017). 
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Figure 2.4. Directed acyclic graph describing relationships between parameters (circles) 
and data sources (boxes) in the pinniped abundance and distribution model applied to 
Steller sea lions in Glacier Bay National Park, Alaska. The count portion of the model is 
shown on the left side of the graph with abundance of pinnipeds in the study area denoted 
by N, the probability of attendance at a terrestrial site by !, the number of pinnipeds 
counted at a terrestrial site by C, and the number of pinnipeds in the water by W. The 
sighting portion of the model is shown on the right side of the graph, with the probability 
of occurrence in each survey area denoted by ", the number of pinnipeds sighted in a 
section on a given day by S, and the individual probability of detection by P.
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Figure 2.5. Estimates of Steller sea lion abundance at South Marble Island in Glacier Bay, Alaska, with 95% prediction 

intervals, based on models fitted using only an aerial count data set (gray) and both aerial counts and in-water sighting data set 

(black). There is no estimate for 2006 because only in-water sighting data were available that year. 
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Figure 2.6. Predicted probability of attendance for Steller sea lion at South Marble Island 
in Glacier Bay, Alaska, with 95% prediction intervals based on models fitted using only 
an aerial count data set (dashed gray) and both aerial counts and an in-water sighting data 
set (black).
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Figure 2.7. Estimated Steller sea lion occurrence probability in the vicinity of Glacier Bay 
National Park. Probabilities of occurrence sum to 1, and should be interpreted as the 
probability that a given sea lion in the water is contained within a cell; sea lions that are 
out of the water are assumed to be present at South Marble Island.
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  MODELING HARBOR SEAL ABUNDANCE AND ATTENDANCE 

AT TERRESTRIAL SITES AND MCBRIDE INLET IN GLACIER BAY, 

ALASKA 

Abstract 

Harbor seals are a key resource in Glacier Bay National Park because of their 

conservation importance and the experiential value that they provide to visitors. The 

species is monitored using aerial photographic surveys conducted at land or ice-based 

sites using aerial photographic surveys. Raw counts at these locations have been used in 

the past to monitor population and distribution changes over time; however estimating 

actual abundance requires methodologies that properly account for the portion of the 

population that is in the water, and thus not available to be counted. Much of the survey 

attention is focused in Johns Hopkins Inlet, a glacial fjord where the majority of harbor 

seals in Glacier Bay rest out of the water. A recent analysis of counts at this location has 

been used to retroactively produce abundance estimates, however a technique for 

estimating abundance at other locations is needed. In this chapter, I developed a model 

for estimating abundance and attendance of harbor seals at nine terrestrial sites and one 

glacial area in the Park. The model produced estimates that were comparable to previous 

studies and its structure allowed for the inclusion of predictors of abundance, attendance, 

and excessive zero-counts. Model outputs from this study and the previous analysis in 

Johns Hopkins Inlet will be useful for informing a decision model for managing vessel 

restrictions in the Park. Furthermore, the modeling framework that I developed 



63 

 

 

contributes to an existing body of research on estimation techniques for semiaquatic 

animals. 

Introduction 

Harbor seals (Phoca vitulina richardsi) are an important resource within Glacier 

Bay National Park (the “Park” hereafter) because of their key role in the ecosystem and 

the added value they provide to visitor experiences. The species may be found in the 

waters throughout the Park, as well as out of the water (“hauled-out”) on ice platforms 

near calving tidewater glaciers and at terrestrial sites (Calambokidis et al. 1987, Blundell 

et al. 2011). Harbor seals are sensitive to the presence of humans and their ubiquity 

makes human-seal encounters unavoidable (Henry and Hammill 2001, Jansen et al. 2010, 

Young et al. 2014). The National Park Service has a dual mission of providing public 

access while preventing impairment of biological resources. The degree to which an 

encounter between a visitor and a harbor seal could be viewed as impairment varies 

widely (Suryan and Harvey 1999). For example, if a harbor seal encounters a vessel in 

the water this may only slightly alter its behavior. In the worst case, seals resting out of 

water flush in response to an approaching vessel, leading to energy expenditure that could 

affect the fitness of adults and decrease the survival rate of pups (Bowen et al. 2001, 

Harding et al. 2005, Jansen et al. 2010). The Park’s policies focus on limiting these 

events by imposing vessel restrictions to protect harbor seals that are hauled-out during 

sensitive periods of the year (pupping and molting; Young et al. 2014); these include 

mandatory approach distances and seasonal closure of Johns Hopkins Inlet to vessels 

(Figure 3.1).  
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Park administrators seek a quantitative decision tool for rigorously evaluating 

tradeoffs between visitor restrictions and conservation benefits to harbor seals. An 

intuitive way to quantify the extent to which visitors disturb this species is to estimate the 

frequency of encounters between vessels and the locations where seals rest out of the 

water. Estimating encounters requires knowledge of harbor seal abundance at these 

locations and attendance probability. Attendance probability is defined as the probability 

that a given seal is out of the water, and thus capable of being disturbed by a visitor. 

Fortunately, there is significant research and monitoring focused on harbor seals in the 

Park that can be brought to bear for this task.  

Research and monitoring of harbor seals in Glacier Bay dates back to the 1970s; 

however, a more standardized annual survey protocol has been in place since 2006. The 

monitoring program consists of aerial photographic surveys at terrestrial sites and areas 

near tidewater glaciers where seals rest on ice platforms (Womble et al. 2010). Survey 

effort is concentrated in the area of Johns Hopkins Inlet, where the majority of harbor 

seals in the Park occur (Figure 3.1; Womble et al. 2010). Recent modeling efforts have 

provided estimates of abundance and attendance at Johns Hopkins Inlet and been used to 

retrospectively estimate abundances in this area during 1992-2017 (Womble et al. In 

review). While this work provides information necessary for informing the quantitative 

decision tool, estimates of abundance and attendance at other locations used by harbor 

seals are needed.  

The goal of this chapter is to describe an approach for characterizing the 

abundance and attendance probability of harbor seals at locations outside of Johns 

Hopkins Inlet. These locations include terrestrial sites distributed throughout Glacier Bay 
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and also glacial areas with less significant numbers of hauled-out seals. I describe a 

model that produces estimates by leveraging replicated aerial photographic counts of 

harbor seals over more than 10 years. Specific objectives of this chapter were to (1) 

describe the structure of the model, and (2) evaluate its accuracy using a model checking 

procedure and by comparing with estimated parameter values reported in previous 

studies.  

Methods 

Data description 

Aerial surveys for harbor seals involved using fixed-wing aircraft to fly above 

sites where harbor seals were known to occur and taking multiple photographs so that the 

number of individuals could be later counted. Surveys were conducted primarily during 

pupping and molting periods in June and August, respectively. Photographs were taken 

within 2 hours of low tide, when a greater proportion of the seal population is thought to 

be hauled-out (Womble et al. 2010). In the months following surveys, images were 

reviewed with the aid of ArcGIS mapping software, and the number of seals at each 

location was counted twice by experienced observers. Additional details on the survey 

and counting methods can be found in (Womble et al. 2015). 

Not all locations were surveyed every year, or within the same timeframe; 

therefore, it was necessary to limit the analysis to periods and locations that were 

surveyed consistently. I confined the analysis to aerial surveys carried out between May 1 

and August 31, 2004-2014. Nearly 70 unique locations were surveyed during this period, 

but most of these locations were surveyed infrequently or were often absent of seals. My 



66 

 

 

criteria for including locations was that they were surveyed at least once per year and 

appeared to represent relatively significant or stable numbers of seals. The nine locations 

that I included were (1) Adams Inlet, (2) Flapjack Island, (3) Geikie Rock, (4) Kidney 

Reef, (5) Leland Reef, (6) Lone Island, (7) Spider Island, (8) Spider Reef, and (9) 

McBride Inlet. All these sites met the specified criteria except Spider Island, which was 

not surveyed in 2004 and 2005, but was otherwise similar to the other eight sites. 

McBride Inlet was unique in that counts were based on seals hauled out on ice platforms, 

rather than on land. As in past studies (Womble et al. 2010), I treated McBride Inlet the 

same as terrestrial sites, because the portion of this area that was occupied by seals was 

relatively small and could be completely captured in a small number of aerial 

photographs. Hereafter I refer to all locations as sites. 

Modeling approach 

The model I developed borrowed significantly from that which I developed for 

Steller sea lions in Chapter 2, but differed in several important respects. One significant 

difference between the two datasets was the much higher prevalence of zero counts in the 

harbor seal data, which had to be addressed by changing the structure of the model. The 

change in model structure further led me to change the inferential approach from 

frequentist (maximum likelihood estimation) to Bayesian. This transition was motivated 

by the differing capabilities of the available software, rather than a deliberate decision to 

take advantage of a particular facet of the Bayesian framework. Another significant 

difference between the sea lion model and the seal model was that I used only counts of 

harbor seals at terrestrial sites to inform the model, and not a combination of aerial 

photographic counts and in-water sightings. 
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I applied an extension of the traditional N-mixture model (Royle 2004, Dail and 

Madsen 2011) in which I substituted an attendance probability parameter for that of 

detection. A key assumption of N-mixture models is that the population is closed during 

the period that repeated surveys are conducted. This assumption can be relaxed in cases 

where the probability that an animal temporarily emigrates from the site is estimated 

within the model, typically with additional data (Chandler et al. 2011, Johnson et al. 

2014). As in the sea lion model, I assumed that detection was perfect (p = 1) and that 

variation in counts across surveys was driven entirely by an attendance parameter (!). 

This assumption was based on the fact that counts were made by scrutinizing aerial 

photographs, and seals are relatively easy to enumerate in photography against the 

background. 

A challenge unique to modeling harbor seal counts was the relatively high 

frequency of zeroes in the dataset. Excessive zeros in count data is a common and poses a 

significant challenge for ecologists (Martin et al. 2005, Wenger and Freeman 2008). I 

dealt with this by modeling abundance using a Bernoulli-Poisson mixture distribution. A 

site-level Bernoulli process determined whether abundance was zero or a positive integer, 

and a site-year-specific process determined the abundance value. I assumed that some 

zeros emerged from a Bernoulli process:  

 "#$%~'()*(θ#),   

where θ# is the probability that the .th site will have zero seals at the time of counting and 

"#$% is a binary latent variable describing whether or not seals are present on day / during 

year 0. The probability of zero count at a given site was modeled using a logit-normally 

distributed random effect  
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logit(θ#%) = 7#%, 7#%~89):(;<, =<). 

I assumed that the abundance of harbor seals at a particular site and year (8#$), followed 

a Poisson distribution 

8#$	~@9.AB"#% × D#$%E, 

where D#$%. An important aspect of this parameterization is that counting zero harbor seals 

at a site may come about either from a low expected mean abundance or the zero-

inflation process. Mean abundance was modeled on the log scale as: 

logBD#$%E = F# + H$ + I#$%,		 

where Fs are site-level log abundances, Hs are error terms describing inter-annual 

variability, and Is are observation-level error terms for explaining extra-Poisson 

variability in counts (overdispersion; Warton and Hui 2011). Both random effects in the 

abundance regression equation were modeled using normal distributions 

H$~89):B0, =[L]E		; 	I#$%~89):B0, =[O]E.	 

Finally, I connected latent variables to the observed counts using a binomial distribution  

							P#$%~'.*BQ#$%, !#$%E, 

where P#$% is the observed count of harbor seals and !#$% is the predicted probability of 

attendance at the site. Attendance probability was modeled on the logit scale with a 

normally distributed observation-level random effect  

logitB!#$%E = R + S#$%, S#$%~89):B0, =[T]E. 

The S error terms helped accommodated extra-binomial variability not otherwise 

characterized in the abundance and zero-inflation tiers of the model. 

Derived estimates 
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After estimating all parameters in the model I derived posterior distributions for 

quantities related to abundance and attendance probability. I derived estimates of mean 

site-level abundance by simulating values for the F parameter and the two associated 

error terms and then exponentiating these values. I used the same approach to estimate 

posteriors for the total abundance across all sites for each of the 11 years. Finally, I 

combined abundance estimates from the nine sites in the study with those from the recent 

modeling in Johns Hopkins Inlet to provide a sense of the bay-wide abundance of harbor 

seals and the proportion of the population using each of the habitat types (Womble et al. 

in review). 

I derived two posterior estimates for quantities related to attendance probability. 

These estimates were generated by simulating parameters describing the !s and applying 

an inverse-logit transformation: 

logitUV(W) = X
1

[1 + (UZ]
[, 

The first derived value was a posterior for the mean attendance probability (!̅), which I 

computed by inverse-logit transforming simulated values of the R parameter. I then 

derived a predicted attendance posterior (!∗), which combined uncertainty at both the 

parameter and observation level. I did this by simulating variability in the R parameter 

and adding additional error based on the model-estimated =[T] parameter, producing 

another posterior on the logit scale with the same mean, but lower precision	(R∗). I 

calculated the posterior for !∗ by inverse-logit transforming simulated values of R∗. The 

mean attendance posterior described the probable value of the attendance parameter 

itself, whereas the predicted attendance posterior described the distribution of attendance 
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probabilities that would be expected based on the variability of the data included in the 

model.  

Model fitting and evaluation 

I fit the model using Bayesian inference with non-informative prior distributions. 

I assigned diffuse normal priors to all log-abundance parameters, Jeffreys priors to logit-

linear regression coefficients (Lunn et al. 2012), and diffuse uniform priors to all = 

parameters. Posterior parameter distributions were estimated using Markov Chain Monte 

Carlo (MCMC) simulation within the JAGS software package (Version 4.2.0; Plummer 

2003). I ran four Markov chains simultaneously and determined a suitable burn-in 

number of iterations using the Gelman-Rubin statistic B _̂E and by examining trace plots 

(Gelman et al. 2014). Following model fitting, I evaluated the performance of the model 

using a standard posterior predictive checking procedure and computing a Bayesian P 

value (Gelman et al. 2014). Bayesian P value estimates between 0.05 and 0.95 are 

generally regarded as evidence that the model is reasonably specified (Conn et al. 2018).  

Results 

I succeeded in fitting a zero-inflated N-mixture model to a data set containing 701 

counts of harbor seals from aerial surveys. A similar number of counts were made during 

the pupping (n=324) and molting (n=377) periods (Figure 3.2). The number of visits per 

site-year combination ranged from one to 12 with 91% surveyed three or more times. The 

proportion of zeros within counts ranged from 1% to 83% across the nine sites. I used 

traceplots to determine that a burnin of 100,000 iterations was sufficient for reaching 

stationarity for parameters in the model. I estimated posterior distributions of parameters 
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by summarizing an additional 1.9 million iterations, which I thinned by a factor of 10 to 

conserve memory and reduce autocorrelation. Thinned chains appeared to be well mixed 

and _̂ values for all parameters were less than 1.1. The model estimated a Bayesian P 

value of 0.71, indicating that it was reasonably described the data. 

The probability of a zero-inflated counts (`#) varied considerably among the nine 

sites. McBride Inlet and Spider Reef were among the sites with the lowest probability of 

unexplained zeroes (≤ 95%), whereas Spider Island and Leland Reef had the highest 

frequency (≥ 73%; Table 3.1). Mean abundance estimates varied considerably across 

sites as well, from 24 seals at Lone Island to 440 seals at Spider Reef. Point-estimates of 

total abundance across sites ranged from a low of 916 in 2008 to a high of 1,156 in 2013. 

Overlap in 95% credible intervals over study period suggested that there was no clear 

temporal trend over the study period (Table 3.2; Figure 3.3). Random effects within 

abundance log-linear regression suggested that temporal variability in abundance	(=L) 

was somewhat lower than the observation-level error (=O; Table 3.3). Combined 

abundance estimates from this model and those reported in Womble et al. (In review) 

suggested that 72-80% of the harbor seals population in Glacier Bay occupy Johns 

Hopkins Inlet during pupping and molting periods (Figure 3.3).  

Posterior distributions describing mean attendance and predicted attendance both 

indicated that greater than half of the harbor seals at each site were counted during 

surveys (Figure 3.3). Mean attendance probability (!̅) was estimated as 0.77 with a 95% 

credible intervals between from 0.47 to 0.94 (Figure 3.4). The posterior was somewhat 

skewed, as evidenced by the greater values for the median (0.79) and mode (0.84) of the 

distribution. The predicted attendance posterior (!∗) was spread much more broadly 
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across the 0-1 scale and exhibited more significant left skew. The mean of the predicted 

attendance was 0.68, with a 95% credible interval from 0.07 to 0.99. However, the mean 

and credible intervals of this distribution alone did not fully capture the pattern in 

attendance that the model suggested. For example, the medians of the two attendance-

related posteriors were nearly equal (0.79), but the mode of the predicted attendance was 

substantially greater (0.98). 

Discussion 

I achieved the goal of estimating harbor seal attendance probability and 

abundance at important terrestrial sites in Glacier Bay and at McBride inlet. be found in 

the waters throughout the park or removed from the water (“hauled-out”) on ice 

platforms near calving tidewater glaciers and at terrestrial sites Harbor seal populations 

are commonly monitored by counting animals at sites on land or ice where they have 

removed themselves from the water for resting and other behaviors (Thompson and 

Harwood 1990, Bengston et al. 2007, Boyd et al. 2010). This chapter contributes to an 

existing body of research on techniques for estimating trends in thestatus of semi-aquatic 

marine mammals (Ver Hoef and Frost 2003, Ver Hoef and Jansen 2007), specifically by 

describing an additional method for making inference about abundance and attendance in 

the presence of significant zero-inflation.  

The model described abundance and attendance rates that were reasonable 

compared to past studies; however, comparisons were complicated by differences in 

methodologies. A recent report by researchers in Glacier Bay used some of the same data 

as this study to describe trends in mean counts at terrestrial sites, as an index of 
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abundance (Womble et al. 2015). Estimates from Womble et al. (2015) were not directly 

comparable to this study, because their analysis included additional sites and estimated 

adjusted mean counts as opposed to abundances. Nonetheless, total abundance estimates 

from my model aligned with their findings in that abundance estimates were greater than 

mean counts across the overlapping years. Also, the difference between estimates was not 

so high as to suggest severe overestimation. With regards to attendance probability, point 

estimates from the model appeared to align with Simpkins et al. (2003), who reported 

0.82 for harbor seals in glacial fjords. Attendance probabilities for seals on ice platforms 

are usually considered to be higher than those at terrestrial sites (Blundell et al. 2011), 

suggesting that my model may have overestimated attendance. Womble et al. (In review) 

estimated abundance in Johns Hopkins Inlet by adjusting counts based on an attendance 

probability between 0.5 and 0.55, much lower than Simpkins et al. (2003).  

The model described in this chapter had several deficiencies of varying 

significance, the greatest of which was the high observation-level variability in 

abundance and attendance processes. The relatively large error term in the abundance tier 

of the model was undesirable in that it obscured any meaningful temporal variation 

among years. The large error term for attendance (=[T]) combined with the nonlinear 

inverse-logit transformation to produce a posterior with probability density “piled up” 

mostly near the upper extreme. I suspect that excessive variability in attendance and 

abundance can be explained, in part, by a small number of counts that were very low 

compared to others of the same site-year combination, but still greater than zero. These 

observations occurred at Adams Inlet in 2007 and 2008, Flapjack Island in 2012, and 

Lone Island in 2014 (Figure 3.2). Counts of this type contributed to imprecision in 
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attendance and abundance because they were low outliers that could not be explained by 

the zero-inflation processes. Omitting these problematic points is unlikely to fully resolve 

the issue of large error terms because there was another pattern in the dataset mostly 

unexplained by the model, positive outlying counts. These outliers all occurred in 2004 at 

Lone Island, Geike Rock, and Flapjack Island. A possible explanation for these patterns 

is temporary movement of individuals from the area of John Hopkins Inlet to various 

terrestrial sites. Past studies have described evidence for individual movements between 

glacial areas and terrestrial sites in Glacier Bay (Blundell et al. 2011). Temporary 

movement out of Johns Hopkins Inlet may be a satisfactory explanation for positive 

outliers at Lone Island and Geike Rock, because these terrestrial sites are nearest the 

glacial area. Another limitation of this model was the omission of harbor seals counts 

from other survey locations throughout the Park. I mainly excluded these locations due to 

concerns that sparse data would destabilize estimates, and I assumed that their removal 

would not dramatically affect abundance predictions. To examine the validity of this 

assumption, I summed the maximum counts of seals across these excluded sites in each 

year (a proxy for minimum abundance) and compared these value to my abundance 

totals. On average, pooled maximum counts for excluded sites were equivalent to 12% of 

the total abundances estimated by my model (study sites), and 3% of the total Bay-wide 

abundance estimate (study sites plus Johns Hopkins Inlet). Based on this evaluation I 

concluded that the omitted sites did not substantially affect the abundance patterns that I 

described. 

Although the model met the goals of the analysis, there are a number of potential 

refinements and decisions that could be made to increase its utility. The sizeable 
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observation-level error terms in attendance and abundance processes suggested that there 

is the potential for covariates to explain variation in counts and increase the precision of 

estimates. Inclusion of date, time, and environmental covariates can be used as a 

technique for improving precision in estimates of mean counts and abundance. I did not 

include covariates in my model for several reasons. I wanted to validate that a simplified 

(null) version of the model would perform reasonably well before adding complexity. I 

also assumed that the standardization built into the survey methods buffered against 

temporal and environmental variation. I am skeptical that problems of imprecision in the 

model will be eliminated only by the inclusion of explanatory variables, because a post 

hoc examination of the outliers described above did not reveal any obvious 

environmental cause for their deviations (e.g., tidal pattern).
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Tables 

 

Table 3.1. Mean site-level abundance estimates and probabilities of zero counts for harbor seals in Glacier Bay, Alaska (2004-
2014). Summary statistics include standard error (SE), and lower (LCL) and upper (UCL) 95% credible intervals. 
Site Estimate   SE LCL UCL  Estimate   SE LCL UCL 
 Mean Abundance  Probability of Zero 
Adams Inlet 144.4 76.7 48.2 340.2  0.33 0.16 0.09 0.67 
Flapjack Island 173.3 92.4 57.1 405.7  0.24 0.14 0.05 0.57 
Geikie Rock 23.0 12.8 7.3 55.5  0.72 0.14 0.40 0.93 
Kidney Reef 40.0 23.0 12.2 98.2  0.81 0.11 0.53 0.96 
Leland Reef 27.6 15.3 8.8 66.6  0.82 0.11 0.56 0.96 
Lone Island 23.5 12.7 7.6 56.1  0.37 0.16 0.10 0.71 
McBride Inlet 120.0 65.1 39.1 286.1  0.06 0.08 0.00 0.28 
Spider Island 63.4 36.6 19.3 156.8  0.89 0.08 0.68 0.98 
Spider Reef 438.2 233.1 145.4 1034.7  0.12 0.09 0.02 0.36 
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Table 3.2. Total abundance estimates for harbor seals in Glacier Bay, Alaska (2004-
2014). Summary statistics include standard error (SE), and lower (LCL) and upper (UCL) 
95% credible intervals. 

     
Year Estimate SE LCL UCL 
2004 1092.0 293.4 654.4 1791.3 
2005 1061.3 283.8 636.0 1738.3 
2006 958.6 274.3 551.5 1608.4 
2007 937.4 250.2 560.7 1530.0 
2008 915.9 244.3 549.6 1494.1 
2009 993.2 262.6 600.0 1619.9 
2010 1059.2 278.9 640.4 1722.3 
2011 1193.6 323.0 710.4 1964.9 
2012 1111.1 294.1 671.5 1808.0 
2013 1156.4 310.5 691.7 1894.8 
2014 1088.8 293.0 651.5 1794.9 

 

Table 3.3. Parameter estimates from a harbor seal count model. Columns describes the 
scale on which parameters were estimated (Scale), standard error (SE), and lower (LCL) 
and upper (UCL) 95% credible intervals. 

       
Parameter Description Scale Estimate SE LCL UCL 

![#] Zero-inflation mean Logit 0.74 0.74 -0.75 2.20 

%[#] 
Zero-inflation error 
(year-level) Logit 2.43 0.82 1.36 4.48 

%[&] 
Abundance error 
(year-level) Log 0.14 0.07 0.03 0.28 

%['] 
Abundance error 
(observation-level) Log 0.46 0.06 0.33 0.57 

( Attendance mean Logit 1.32 0.73 0.11 2.99 
		(∗ Predicted attendance  Logit 1.32 2.05 -2.70 5.34 

%[+] 
Attendance error 
(observation-level) 

Logit 1.92 0.39 1.33 2.83 
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Figures 

 

Figure 3.1. Map of prominent terrestrial sites and tidewater glacial areas where harbor 
seals haul-out in Glacier Bay, Alaska (2004-2014).
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Figure 3.2. Counts from aerial photographic surveys of harbor seals hauled-out at 
terrestrial sites and tidewater glacial areas in Glacier Bay, Alaska (2004-2014). Boxplots 
described the distribution of non-zero data and the size of gray points corresponds to the 
number of surveys in which the count was zero. Sites are ordered by maximum counts.
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Figure 3.3. Abundance estimates for harbor seals in Glacier Bay, Alaska (2004-2014), 
separated by habitat association. 
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Figure 3.4. Posterior densities of mean attendance probability (,̅) and predicted 
attendance probability (,∗) for harbor seals occupying nine locations in Glacier Bay, 
Alaska (2004-2014). 
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  USING A BAYESIAN MULTISTATE OCCUPANCY MODEL TO 

ASSESS SEABIRD AND SHOREBIRD STATUS IN GLACIER BAY, ALASKA 

(At time of submission, this chapter was under review by the journal Wildlife Society 

Bulletin) 

Abstract 

The National Park Service is charged with both monitoring avian communities 

and evaluating the influence of visitors to National Parks on sensitive species; however, 

this task is challenging because sampling programs often involve multiple species, each 

with differing behavior, habitat requirements, and detectability. The objectives of this 

study were to build a model to describe the status of waterbirds in Glacier Bay National 

Park, Alaska and assess the effects of area closures on these species. We used a Bayesian 

multistate occupancy model to describe the status of multiple species and to make the 

best possible use of existing survey data. We modeled up to five states per species and 

evaluated predictors of occupancy, nesting, and abundance, as well as survey-related 

predictors of state-dependent detection probability. We found that occupancy probability 

varied across species and habitats (islands versus glacial outwashes). For most species, 

occupancy probability was substantially higher at sites occupied in the year previous (site 

persistence). We found weak evidence that area closures affected the occurrence of 

species in the study, but this was largely because most sites were closed for the entirety 

of the study period. The probability of detecting occurrence, nesting, and abundance 

varied across species and survey methods (ground vs. vessel). Detection parameters 
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provided valuable information for enhancing the efficiency of future surveys, by 

identifying preferred survey methods and sampling periods for specific waterbird species. 

Introduction 

The National Park Service is obligated to monitor species and evaluate effects of 

visitor activities on resources in the National Park System (National Park Service 2006). 

Avian communities are monitored widely within the system (Stohlgren et al. 1995, Fancy 

et al. 2009); however, many of these programs are ill-equipped for assessing the effects 

of visitors on wildlife for both ecological and sampling-related reasons (Hill et al. 1997, 

Nichols et al. 1998, Nisbet 2000). Designing and implementing such programs is difficult 

because there are often many species involved, each with different behaviors and habitat 

requirements (Thompson 2002, Purcell et al. 2005, Kéry and Schmid 2006). Moreover, 

non-detection of a particular bird species during a survey can rarely be considered as 

proof of absence, and detectability can vary substantially depending on the species and 

survey method (MacKenzie et al. 2002, Gu and Swihart 2004). Surveyors may fail to 

detect species that occupy but have temporarily left the site, or surveys may not coincide 

with the nesting season. Without a method for properly accounting for these biases, one 

cannot clearly ascribe causes for change in community structure or manage ecosystems 

effectively (Nichols and Williams 2006, McCarthy and Possingham 2007). Multispecies 

monitoring efforts are further encumbered by the logistics associated with surveying 

species in protected areas. The frequency of surveys at some sites may be limited by 

remoteness or wilderness protections that require reaching sites using nonmotorized 

modes of transport. 
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Many of these challenges pertain to the monitoring and management of avian 

communities in Glacier Bay National Park (hereafter the “Park”). The Park monitors 

ground-nesting waterbirds because they occupy and nest in shoreline areas that are 

susceptible to disturbance by visitors (Verhulst et al. 2001, Chatwin et al. 2013). Many 

sensitive species cluster at a relatively small number of islands and glacial outwash areas 

throughout the Park where they nest (Figure 4.1); thus, visitor access may be temporarily 

or permanently restricted in many of these areas to avoid causing nest failure or colony 

abandonment. Glaucous-winged gulls (Larus glaucescens) are especially important 

members of the waterbird guild in the Park because they nest colonially in the Park and 

their eggs are harvested for cultural and subsistence purposes (Zador et al. 2006). 

Many short-term research studies have been conducted on breeding waterbirds in 

the Park over past decades (Patten 1974, Arimitsu et al. 2007); however, sustained 

monitoring of waterbird nesting concentrations only began in 2012, largely because of 

the resumption of gull egg harvest in the Park (Lewis et al. 2017). Surveys entail 

counting individuals and/or nests from land or vessel, with active nests either observed 

directly or inferred from parental behavior. Sites containing gull colonies are surveyed 

multiple times per year, whereas other sites may be surveyed only once in a year or 

passed over for sampling in multiple years. Park resource managers want to gain a better 

understanding of waterbird population dynamics and potential impacts on nesting success 

if visitors could access currently restricted sites. 

We aimed to develop an approach for monitoring and modeling the state of 

waterbird breeding populations at locations throughout the Park. Specific objectives 

included defining and evaluating a model that could (1) provide a means to predict 
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patterns in occupancy, abundance, and nesting; (2) accommodate irregular sampling data; 

and (3) provide a basis for assessing the effect that opening sites to visitors would have 

on the occurrence and nesting of target waterbird species. The focal species and grouping 

for the analysis included arctic terns (Sterna paradisaea), black oystercatchers 

(Haematopus bachmani), black-legged kittiwakes (Rissa tridactyla), Caspian terns 

(Hydroprogne caspia), glaucous-winged gulls, mew gulls (Larus canus), pigeon 

guillemots (Cepphus columba), semipalmated plovers (Charadrius semipalmatus), and 

unidentified cormorants (Phalacrocorax spp.). Unidentified cormorants could have 

included double-crested cormorants (Phalacrocorax auritus), but were most likely 

pelagic cormorants (P. pelagicus). The two species of cormorant were not distinguished 

during surveys and exhibit similar behaviors and nesting habitats, so we deemed it 

appropriate to group them. 

Methods 

Study Area 

Glacier Bay National Park is located in Southeast Alaska and encompasses 

approximately 1.3 million hectares of terrestrial and marine areas (Figure 4.1). The Park 

is made up of the Glacier Bay basin, the southern portion of the Fairweather Range to the 

west, and the shoreline stretching from the west entrance of the bay to the mouth of the 

Alsek River to the north. The Park contains a broad range of terrestrial and marine 

habitats, which support a variety of resident and migratory waterbirds species that nest in 

the Park, including seabirds (gulls, terns, alcids), waterfowl (ducks, geese), and 
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shorebirds (sandpipers, plovers, oystercatchers), as well as great blue herons (Ardea 

herodias) and bald eagles (Haliaeetus leucocephalus; Arimitsu et al. 2007). 

Data Collection 

We analyzed ground and vessel survey data collected between 1 May and 31 

August during 2012-2017 (Figure 4.2). The purpose of these surveys was to count 

individuals, nests, and nesting adults present at each site. Surveyors classified adults as 

nesting if they exhibited any of the following behaviors: alarm calls, broken-wing 

distraction displays, dive bombing, nest-building, apparent incubation, or chick-rearing 

(Lewis et al. 2017). Two experienced observers conducted ground surveys by walking 

adjacent transects within suitable nesting and loafing habitats. Surveyors performed 

vessel-based surveys using both motorized and nonmotorized vessels, depending on 

whether sites were within wilderness areas. Surveys occurred within two hours of high 

tide to maximize detection of birds using the islands for nesting as opposed to non-

breeders using the intertidal zone for foraging. Surveys from motorized vessels consisted 

of traveling parallel to shore at a relatively slow speed (<5 knots) and scanning the area 

from a distance of approximately 100 m from shore using binoculars. Nonmotorized 

vessel surveys occurred in a similar manner, only from kayaks. Observers counted birds 

on sections of the shoreline independently and then compared counts with each other, 

with multiple observers recounting in the case of significant disagreement (i.e. >10%; 

Lewis et al. 2017). We surveyed sites with nesting colonies of glaucous-winged gulls 

multiple times per year and during all years (Table 4.1). We surveyed glacial outwash 

areas and islands without glaucous-winged gull colonies less frequently. 

Multistate Occupancy Models 
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Occupancy modeling is an approach for assessing the status and distribution of 

avian species while also accounting for detection bias during surveys (Hoeting et al. 

2000, MacKenzie et al. 2002, Thompson 2002, Tyre et al. 2003). This approach uses 

replicated surveys to simultaneously estimate a species’ probability of occurrence and 

probability of detection given occurrence. The tiered structure of these models can 

account for imperfect detection, and allows ecological and detection-related parameters 

to be defined as a function of predictor variables and information to be shared across sites 

and years. Multistate models are an extension of occupancy models, which recast counts 

or observations made during surveys into categories known as states (MacKenzie et al. 

2009). Possible states in a multistate model can include absent, occupied, nesting, 

abundant, or combinations of occupied, nesting, and abundant (Royle and Nichols 2003, 

Nichols et al. 2007, MacKenzie et al. 2018).  

Base Model Structure 

To meet the objectives of our study we constructed a multistate occupancy model 

with a maximum of five states for a given waterbird species/group: (1) absent, (2) 

occupied, (3) nesting, (4) abundant, and (5) both abundant and nesting. We considered 

birds to be nesting if nests with eggs or chicks were sighted, or if adults exhibited 

behaviors associated with nesting. We classified species as abundant using thresholds 

defined by Park personnel, which we discuss later. We estimated the state of a given 

species for each location and year, and state-dependent detection probabilities by treating 

replicate visits within each season as primary sampling occasions. By “detection 

probability” we refer to the probability of observing a species in a particular state, given 

that the species was in that state at some time during each survey period. Our definition 
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differs from that of a traditional occupancy model (i.e. probability of detection given 

presence) in that failure to correctly characterize the status of a species at a site may be 

the result of their status going undetected by observers or their status being unobservable 

at the time of the survey (temporary dispersal or colony abandonment). For example, we 

assumed that nesting at a site might go undetected because surveyors visited the site 

before or after the nesting season, or a species may not be classified as abundant because 

a site was surveyed when breeding aggregations were not at their seasonal maximum. 

We begin our description of the model by broadly outlining its structure, then 

describe the subcomponents of detection processes, the definition of state probabilities, 

our approach for including temporal effects (persistence), and finally our approach for 

selecting useful predictor variables. We denoted the observed state of a species during a 

survey (.) using integers 1-5, corresponding to the numbered states above. We assumed 

that the observed state of a species during a particular visit to a site originates from a 

multinomial distribution with the number of trials (n) fixed at 1. We expressed the 

observed states as a categorical distribution: 

./,1,2~456789:;<5= >?@/,1A 

where ./,1,2 is an integer referencing states 1-5 for a given species on visit k at site 

i, during year t, and ?@/,1 is a state-dependent probability vector corresponding to each 

state, which sums to 1. The ?@/,1vector represents the probabilities of observing each of 

the five states conditional on the actual latent state (B/,1). We assumed that latent states 

also arise from a categorical distribution 

B/,1~456789:;<5=CD/,1E, 
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where B/,1 is an integer referencing states 1-5 and D/,1 is a vector of probabilities 

describing latent state probabilities.  

The probability of a surveyor detecting a species in a particular state depends on 

what the true state of the species is at that site. For example, if a species is absent at a site 

then it is only possible to observe absence. If a species occupies a site and is nesting, then 

the surveyor can possibly observe: absence; occupancy but not nesting; or both 

occupancy and nesting (MacKenzie et al. 2009). Likewise, if a species is abundant at a 

site and nesting, then the surveyor may observe any of the five possible states. We 

parameterized the state-dependent probability vectors according to the definitions of the 

various states in the model. Table 4.2 outlines the state-dependent detection probabilities 

as a 5 × 5 matrix. We defined state-dependent detection probabilities (Fs) for occurrence, 

nesting, and abundance using a conditional binomial structure, with probabilities of 

detecting nesting or abundance conditional on also detecting occupancy. We allowed 

these probabilities to vary depending on the underlying state and to be influenced by 

predictor variables, which we discuss later. We also assumed that observers made no 

false positive errors in the classification of states, meaning that observers did not 

misclassify absent species as present, or classify species as nesting or abundant in error. 

Because occupancy is a necessary condition for exhibiting nesting or abundance, 

we also chose to define state probabilities using a conditional binomial structure, in 

which the five state probabilities were derived from three easily interpretable parameters 

(MacKenzie et al. 2009). These parameters include the probability that a given site is 

occupied (ψ[IJJ]); the probability that the species is nesting, given that the site is 

occupied (ψ[LMN1|IJJ]); and the probability that the species is abundant ψ[PQR|IJJ], given 
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that the site is occupied. We denote the latent state probabilities using the parameter S, 

with the subscript within the square bracket corresponding to the states listed above. 

Thus, the probability that site ; is unoccupied by a given species at time 6 is defined as 

S[TUVWXY],/,1 = C1 − ψ[IJJ]	/,1E. 

Only the occupancy probability is used in computing the probability of this state, 

because the other ψs are conditional on occupancy. The remaining state probabilities 

include all three ψ parameters: 

S[^__],/,1 = ψ[IJJ]	/,1	(1 − ψ[LMN1|IJJ]	/,1)	(1 − ψ[PQR|IJJ]	/,1) , 

S[`WVY],/,1 = ψ[IJJ]	/,1	ψ[LMN1|IJJ]	/,1	(1 − ψ[PQR|IJJ]	/,1) , 

S[TUX],/,1 = ψ[IJJ]	/,1	C1 − ψ[LMN1|IJJ]	/,1E		ψ[PQR|IJJ]	/,1 , 

S[`WVY	&	TUX],/,1 = ψ[IJJ]	/,1	ψ[LMN1|IJJ]	/,1	ψ[PQR|IJJ]	/,1. 

We defined the three ψ parameters as a function of habitat information and 

related the current status of species to their status in the previous year (temporal 

autologistic effect; MacKenzie et al. 2018). Relating the current state of species to past 

years enabled us to evaluate a species persistence in a given state at a site, in terms of 

occupancy, nesting, and abundance. These parameters also provided a means for 

interpolating states for years without surveys. To maximize the amount of data informing 

the temporal parameters, we initialized the model in the year prior to the beginning of the 

dataset (6 = 0) and defined the initial states using a categorical distribution with a site-

specific Dirichlet hyperprior (cd): 

B/,e~456789:;<5=(cd). 
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We derived three separate binary indicator variables based on the latent state for 

each site and year for use as predictors of future states within the model. The variable f 

described whether a species occurred at a site in a given year	

f/,1 = g	1,			if	B/,1 > 1
	0,			if	otherwise	r: 

whereas the variables t and u served as binary indicators for predicted 

occupancy, nesting, and abundance: 

t/,1 = g	1,			if	B/,1 = 3		OR	B/,1 = 5
	0,			if	otherwise	 r 

u/,1 = g	1,			if	B/,1 > 3
	0,			if	otherwise	r. 

These variables were updated dynamically within the model-fitting algorithm. 

We defined the parameters governing state probabilities using the following logit-

linear regression equations:  

=98;6Cψ[IJJ]	/,1E = 	z[IJJ] + |},/ + ,} ∙ f/,1�}, 

=98;6Cψ[LMN1|IJJ]	/.1E = 	z[LMN1] + |Ä,/ + ,Ä ∙ t/,1�}, 

=98;6Cψ[PQR|IJJ]	/,1E = 	z[PQR] + |Å,/ + ,Å ∙ u/,1�}; 

where ; and 6 index sites and years,	z denotes intercept terms, | denotes linear 

combinations with additive combinations of coefficients and habitat variables, and , 

describes the dependency of the state probabilities on the realized state in the previous 

time step. 

Variable Selection 

We used a variable selection procedure to improve the predictive performance of 

the model and test general hypotheses regarding the occupancy dynamics and detection 
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process for species in the study. The parameters used to derive the state-dependent 

detection probabilities (Fs) and latent state probabilities (ψs) were defined using a series 

of logit-linear regression equations with a set of candidate predictors. We used a 

Bayesian indicator variable procedure to identify a preferred set of these predictors and 

prevent overfitting (Kuo and Mallick 1998, Royle and Dorazio 2008, Hooten and Hobbs 

2015). This technique first entailed fitting a “global” model with all candidate predictor 

variables and coefficients multiplied by binary indicator variables, to which we assigned 

a vague prior [	É~Ñ7:Ö(0.5)], representing the probability of including a predictor in a 

given iteration of the model fitting algorithm. We then fit and interpreted a “final” 

version of the model without any indicator variable and containing only parameters for 

which the mean posterior of indicator variables exceeded 0.5.  

These candidate variables for detection parameters included the type of survey 

(SurveyType), and linear and quadratic effects of survey date (DayOfYear). We 

evaluated a survey method predictor because we hypothesized that the detectability of 

species would be influenced by survey method, owing to differing habitat preferences 

and behaviors among species. We allowed for a quadratic effect of day of year to 

evaluate evidence for seasonal patterns in detectability, and hypothesized that occupancy, 

nesting, and abundance may exhibit a linear or convex pattern over the course of the 

season for one or more species. We defined probabilities of detecting occupancy in the 

global model as: 

=98;6CF[IJJ],Ü,/,áE = 	à[IJJ],Ü + â},}SurveyType/,á ∙ ê},} + 	â},ÄDayOfYear ∙ ê},Ä 

+	â},ÅDayOfYearÄ ∙ ê},Å, 
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where F[IJJ],Ü,/,á is the probability of detecting species î at site i; à is a state-

specific intercept term; ℎ is an index from 1:4 corresponding to the four unique detection 

probability intercepts (); and É is a binary vector indicating whether a given â is included 

in an iteration of the model fitting algorithm. We evaluated the same predictor variables 

for conditional probabilities of detecting nesting and abundance: 

=98;6CF[LMN1],ñ,/,áE = 	à[LMN1],ñ + âÄ,} ∙ SurveyType/,á ∙ êÄ,} + 	âÄ,Ä ∙ DayOfYear ∙ êÄ,Ä 

+	âÄ,Å ∙ DayOfYearÄ ∙ êÄ,Å, 

=98;6CF[PQR],ñ,/,áE = 	à[PQR],ñ + âÅ,} ∙ SurveyType/,á ∙ êÅ,}; + 	âÅ,Ä ∙ DayOfYear ∙ êÅ,Ä 

+	âÅ,Å ∙ DayOfYearÄ ∙ êÅ,Å; 

where ó is an index from 1:2 corresponding to the probabilities of detecting 

nesting or the abundant state conditional on occupancy, and both nesting and abundance. 

Predictors we evaluated for latent state probabilities included an indicator variable 

for glacial vs. island sites (Glacial), and continuous predictors for survey area (Area), and 

an island site’s distance to shore (Distance): 

|},/,1 = ù},} ∙ Glacial/ ∙ êû,} + ù},Ä ∙ Aread ∙ êû,Ä + ù},Å ∙ (1 − Glacial/) ∙ Distance/ ∙ êû,Å, 

|Ä,/,1 = ùÄ,} ∙ Glacial/ ∙ êü,} + ùÄ,Ä ∙ Aread ∙ êü,Ä + ùÄ,Å ∙ (1 − Glacial/) ∙ Distance/ ∙ êü,Å, 

|Å,/,1 = +ùÅ,} ∙ Glacial/ ∙ ê†,} + ùÅ,Ä ∙ Aread ∙ ê†,Ä + ùÅ,Å ∙ (1 − Glacial/) ∙

Distance/.∙ ê†,Å; 

where |s describes linear combinations of predictor variables used in calculating 

state probabilities; and ês are binary indicator variables dictating whether a given ù is 

included in an iteration of the model fitting algorithm. We included a predictor for glacial 

vs. island sites to evaluate differences in habitat preferences (e.g., semipalmated plover 



97 

 

 

are known to preferentially select glacial outwash areas; Kessel 1979). We hypothesized 

that the area of a survey site would have a positive effect on the probability of occupancy, 

nesting, and abundance because larger sites are likely to include more space and habitat 

heterogeneity. The distance-to-shore variable was included to account for habitat 

preferences, but also as a proxy for a site’s accessibility to terrestrial predators (Warwick-

Evans et al. 2016).  

Assessing Effect of Site Closures 

One of the objectives of this study was to build a model capable of ascertaining 

the effect of area closures on the status of waterbird communities within the Park. 

Unfortunately, the extent to which we could address this question with this dataset was 

limited. The main issue was that of confounding, in that many of the survey sites were 

either closed or open to visitors throughout the study period (Figure 4.3). To avoid this 

confounding issue, we chose to evaluate the influence of closures for only sites that were 

both open and closed during the study period, which included N.W. Spider and S. Leland 

islands. We accomplished this by adding to the base logit-linear regression for 

occupancy:  

=98;6Cψ[IJJ]	/,1E = 	z[IJJ],/,ñ + ⋯+ ¢	TempClose/1, 

where the	TempClose/1 indicator variable describes whether or not either of the 

two sites were temporarily closed during year 6, and ¢ describes the species-specific 

effect of the closure. We restricted our assessment of closures to ψ[IJJ] and not 

ψ[LMN1|IJJ] or ψ[PQR|IJJ], due to the limited number of surveys and lack of recorded 
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nesting or abundance at the two sites with intermittent closures (Figure 4.3). We did not 

subject coefficients describing the effect of closures to the variable selection procedure. 

Models for Specific Species 

Although we have outlined the structure of a five-state model, we only used the 

full five state structure for two species, arctic terns and glaucous-winged gulls (Table 

4.3). We had both technical and biological reasons for omitting particular states for the 

seven other target groups. We modeled occupancy and nesting state for black 

oystercatchers, Caspian terns, mew gulls, and pigeon guillemots; occupancy and 

abundance for cormorants; and only occupancy states for black-legged kittiwakes and 

semipalmated plovers. We omitted the nesting state for species never or only seldom 

found to be nesting during surveys. Similarly, we omitted abundance states for species 

whose survey counts lacked natural breaks, or which occupied relatively few sites. In 

addition to the ecological and data-related reasons for excluding specific states for certain 

species, there were also technical considerations. The threshold we used for classifying 

abundance was 50 estimated adults for arctic terns and cormorants, and 100 estimated 

adults for glaucous-winged gulls. The number of estimated adults was calculated as either 

the number of adults counted at the site or twice the number of nests (assuming two 

parents were associated with each nest), whichever quantity was greater. Park personnel 

defined abundance thresholds of 50 and 100 nesting birds to be used as one of several 

criteria in establishing visitor restrictions. 

We made additional species-specific alterations to the base model to adjust for 

differences between black-legged kittiwake colonies and glaucous-winged gull colonies, 

relative to the other species. The cliff habitats that black-legged kittwakes occupy and 
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nest in make them virtually undetectable from ground surveys; thus, we only allowed the 

model to estimate detection for vessel surveys for this species and fixed the probability of 

detection for ground surveys at zero. For glaucous-winged gulls, we included a site-level 

predictor for whether or not the area contained an established colony within the linear 

predictor for both ψ[LMN1|IJJ] and ψ[PQR|IJJ], based on Lewis et al. (2017). The purpose 

of this alteration was to reduce the influence of intensive sampling that occurred at 

established glaucous-winged gull colony locations in conjunction with egg harvest. We 

did not subject coefficients describing the colony effects to the variable selection 

procedure. 

Model Fitting  

We estimated the parameters of our multistate model using Bayesian inference 

with a combination of noninformative and informative prior distributions. We assigned 

noninformative logit-normal Jefferys priors to all intercepts and coefficients in the model 

(Link and Barker 2009, Northrup and Gerber 2018). The only informative priors assigned 

were to parameters governing the state probabilities (D/,e) in the year prior to the start of 

the surveys (2011). We specified a categorical prior with hyperpriors for initial states 

arising from a Dirichlet distribution. We deviated from the common, noninformative, 

approach of setting Dirichlet hyperpriors in multistate models to a vector of 1s (i.e. a flat 

or multivariate uniform distribution; MacKenzie et al. 2009, Kery and Schaub 2011), and 

instead specified site- and species-specific Dirichlet priors based on an earlier study by 

Arimitsu et al. (2007). We accomplished this by reviewing the findings from this work 

and identifying the observed state of particular species at sites in Glacier Bay during the 
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period between 2003 and 2005 (Supplemental Figure 4.1). We then specified 

corresponding Dirichlet priors to specific species and locations such that the prior 

probability of a species being in the previously observed state was twice that of all other 

states combined. Specifically, this entailed assigning a prior of 2/3 to the previously 

observed state and 1/(3 + ß) to the priors for the remaining states, where ß is the number 

of states modeled for the species. We choose this scheme for assigning priors because it 

caused the previously observed state to be assigned twice as much weight as the other 

states, which provided a simple interpretation and was not a far departure from the typical 

noninformative assignment of 1 for hyperpriors((). The purpose of including these initial 

state probabilities was to incorporate existing knowledge concerning the distribution of 

target species.  

We estimated posterior distributions of parameters using Markov Chain Monte 

Carlo (MCMC) simulation (Kery and Schaub 2011), implemented using the JAGS 

software package (Version 4.2.0; Plummer 2003). We combined data for all focal species 

groups in a single model. All predictor variables were standardized prior to model fitting 

by subtracting the mean and dividing by the standard deviation to speed convergence and 

aid interpretation. We ran simulations using four Markov chains and determined suitable 

burn-in and iterations using the Gelman-Rubin statistic Ct®E and by examining trace plots 

(Gelman et al. 2014). 

Derived Variables  

After estimating the parameters discussed above, we derived several additional 

quantities of interest to assist in describing site-level differences and to inform future 
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monitoring efforts. We derived estimates of the probability of persistence using the 

intercept (z) and persistence parameters (,): 

=98;6(©7:ß;ß65Ö<7[IJJ]) = 	z[IJJ],á + ,}, 

=98;6(©7:ß;ß65Ö<7[LMN1]) = 	z[LMN1],á + ,Ä 

=98;6(©7:ß;ß65Ö<7[PQR]) = 	z[PQR],á + ,Å 

We also used detection probability estimates to derive functions describing the 

influence of the number of within-season surveys on the probability of observing the true 

state of a species at a site. We estimated these functions for the two species that we 

modeled using all five states (arctic tern and glaucous-winged gull). We calculated the 

within-season probability of detecting occupancy, given an occupied latent state as: 

™[IJJ|IJJ],/ = 1 − >1 − P	¨≠<<Æ≠<<Ø	A
/
, 

where	; is the number of visits and P	[IJJ|IJJ],á is the probability of detecting 

occupancy given that the species occupies the site, corresponding to row 2 and column 2 

of the estimated state-dependent detection probability matrix (Table 4.2). We computed 

the remaining within-season detection probability estimates using rows 3:5, and 

estimated the expected number of visits required to observe nesting in the same manner. 

We found these quantities to be useful for highlighting species-specific differences in 

detectability, comparing survey methods, and for providing practical survey 

recommendations (Royle and Dorazio 2008).  

We estimated the species richness of study sites by simulating states for all 

species and years using a categorical distribution, counting the number of species in 

states other than absent in each iteration, and then summarizing the sampling distribution 
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of the counts (Dorazio et al. 2006, Russell et al. 2009). We used the same procedure to 

derive estimates of the number of nesting species across sites, and to compute the 

proportion of sites where each species was present and nesting during the study period.  

Model Validation 

Following model fitting, we used a cross-validation procedure to assess the final 

model’s performance. We partitioned the data into five roughly equal size groups by 

randomly subsampling site-year combinations, then fit the model five times, making 

predictions for out-of-sample data in each fold. We repeated this process 25 times to 

assess the variation in the predictive ability. We summarized the frequency of correct and 

incorrect predictions by estimating species-specific confusion matrices, with rows and 

columns corresponding to predicted and observed states, respectively (Fielding and Bell 

1997, Guisan and Zimmermann 2000). 

We assessed the value of our variable selection procedure and informative 

Dirichlet hyperpriors by comparing the predictive performance of three alternative 

models, using the cross-validation procedure described above. We compared the global 

model with all possible coefficients, and non-informative priors for initial states and no 

indicator variables (Full—Uniform), to a model with predictors selected by the variable 

selection procedure and non-informative priors for initial states (Final—Uniform), and a 

model with selected coefficients and informative priors (Final—Informative). We 

compared alternative models using two criteria: the estimated correct classification rate 

and a likelihood-based scoring function. We computed the correct classification rate by 

dividing the number of correct predictions (diagonal of the confusion matrix) by the total 
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number of visits in the data set (n=170). The scoring function was calculated using a 

method similar to that described in Hooten and Hobbs (2015):  

ß<9:7 = −2∞±
∑ =98C456789:;<5=	¨≥¥|	≥�¥, ?@µ.∂

∗ ØE∑
1∏}

π ∫
ü

¥∏}

, 

where ≥¥ is a vector of observed states in the out-of-sample data, the likelihood of 

which is computed using predicted state-dependent probability vectors (?@µ.∂
∗ ) estimated 

using the within-sample data (≥�¥),	π is the total number of MCMC samples, and ª is an 

index for a particular fold of the data set. The lower the scoring function the greater the 

predictive performance of the model. 

Results 

We succeeded in fitting a multistate occupancy model to waterbird survey data in 

Glacier Bay National Park. The variable selection procedure retained approximately one 

quarter of the candidate predictors for both the state probability (15/54) and detection 

tiers of the model (15/54). We excluded one detection-related coefficient (âs) that the 

variable selection procedure selected, because we thought the effect was spurious. This 

coefficient was a quadratic term that produced an unreasonable, concave pattern in 

seasonal detection of glaucous-winged gulls. The final model with a selected predictors 

and informative priors (Final—Informative) showed superior predictive performance 

compared to alternative models, based on estimates of correct classification rate and 

model scores (Figure 4.4). The correct classification rate of all models exceeded 0.75, 

indicating that the models could correctly predict the majority of the out-of-sample 

observations. Confusion matrices indicated that the final model did not predict some of 
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the less commonly observed states (Supplemental Figure 4.2). For example, the final 

model did not predict any absent states for black oystercatchers or nesting states for 

pigeon guillemots, and only predicted absences for Caspian terns. The influence of the 

informative prior distribution varied by species (Supplemental Figures 4.3-4.6). The prior 

increased the frequency of predicted absences for artic terns and mew gulls, had the 

opposite effect on cormorants and glaucous-winged gulls, and did not appear to effect 

estimates for other species. 

Mean probability of occupancy and persistence varied across species and habitats, 

and all but two species showed clear evidence of site persistence (Table 4.4; Figure 4.5). 

Mew gulls and semipalmated plovers probabilities exhibited substantially higher 

occupancy at glacial outwashes than island sites. Site area and distance to shore were 

retained as predictors in the final model for several species, but coefficient estimates were 

relatively imprecise. Posteriors for coefficients describing the effect of area closures 

overlapped with zero considerably, suggesting that area closures did not substantially 

influence occupancy patterns at the two sites where closures were intermittent (Table 4.4). 

Habitat type did not substantially influence conditional probabilities of nesting and 

abundance (Table 4.5-4.6). The model revealed evidence of nesting persistence for 

glaucous-winged gulls and persistence in the abundant state for arctic terns and 

cormorants. The conditional probability of nesting glaucous-winged gulls was also 

greater at known colony sites. 

The detection coefficients indicated that both survey type (ground vs. vessel) and 

sampling date influenced detection for multiple species (Table 4.7). The probability of 

detecting occupancy differed by survey method for black oystercatchers, cormorants, 
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glaucous-winged gulls, and semipalmated plovers (Table 4.7). The model identified 

seasonal detection patterns for arctic terns, black-legged kittiwakes, and mew gulls 

(Figure 4.6; Supplemental Figure 7). The probability of detecting occurrence of arctic 

terns and mew gulls was greater in the earlier half of the season, whereas the probability 

of detecting occurrence of black-legged kittiwakes increased over the season.  We used 

detection probabilities to examine within-season detection probability estimates for arctic 

terns and glaucous-winged gulls for both survey methods and different survey periods 

(Figure 4.7). These estimates indicated that surveys in mid-June of sites where these 

species were both nesting and abundant were virtually guaranteed to detect occurrence of 

both species within three visits. The within-season probability of confirming nesting was 

significantly lower, particularly for arctic terns.  

Estimates of other derived variables were relatively consistent throughout the 

study period and their level of precision varied across sites and species. Distinguishable 

year-to-year differences in species richness or the number of nesting species were only 

present for the more frequently sampled sites (e.g., Boulder Island, Geike Rock, and 

Tlingit Islet; Figure 4.8). Estimates of species richness and the number of nesting species 

were especially imprecise at glacial outwash sites. The species with the greatest estimated 

proportion of occupied sites included black oystercatchers, black-legged kittiwakes, and 

glaucous-winged gulls, whereas semipalmated plovers were estimated to occupy the 

fewest sites (Figure 4.9). Estimates for the proportion of sites occupied by Caspian terns 

and cormorants were relatively imprecise. Variance in the proportion of sites occupied by 

arctic terns, mew gulls, and semipalmated plovers increased over time, likely a result of 

less widespread sampling effort during the latter half of the study period.  
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Discussion 

We generally succeeded in our objective of characterizing the dynamics of 

waterbird populations at survey sites in Glacier Bay National Park. The model identified 

patterns of occupancy, site persistence, and detection probability that corresponded with 

existing knowledge. For example, we detected relatively high site and nesting persistence 

(philopatry) among glaucous-winged gulls and mew gulls (Cramp 1993), and higher 

occupancy probability for semipalmated plovers and mew gulls in glacial outwash sites 

(Kessel 1979). Estimated detection probability was higher for cormorants encountered 

during vessel surveys, which was reasonable considering that these species roost and nest 

on cliff faces and can be more easily seen from the water (Robbins et al. 2001, Kotzerka 

et al. 2011). The higher early-season nesting detection probability that we documented 

for arctic terns and mew gulls was also consistent with previous studies in the region 

(Baird et al. 1983, Arimitsu et al. 2007). By relating occupancy, nesting, and abundance 

to prior states we were able to accommodate irregular survey effort and predict states at 

sites that were visited infrequently, albeit with lower precision. We were unable to detect 

an effect of closure to the public on species occupancy probability; however, this was 

likely the result of the low number of sites (n = 2) that transitioned between open and 

closed to visitors during the study period. 

The Bayesian multistate occupancy approach that we adopted for this study was 

beneficial because it provided a means of using data of varying quality across species and 

incorporating prior information from an earlier study, resulting in greater overall 

predictive performance. The utility of Bayesian modeling for incorporating a priori 

information has been covered extensively in the ecological literature (Martin et al. 2005, 
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McCarthy and Masters 2005, Morris et al. 2015). In our analysis, informative priors 

exerted greater influence on predictions at sites visited less frequently (S3-S6) and had 

different effects across species. We found that weighting Dirichlet priors with 

information from previous surveys was an intuitive approach for influencing the model, 

and noted that the data tended to readily “wash out” the prior in cases where the two were 

discordant. 

There were several ways in which the model predictions were imprecise or did 

not conform to expectations, which we largely attribute to the sparsity of data. Our 

analysis was unable to discover evidence of a convex seasonal pattern in the detection of 

glaucous-winged gulls despite the relatively high survey intensity at established colonies. 

Inability to detect a coherent seasonal nesting pattern could be attributable to the species’ 

relatively long breeding season or inter-annual variability in nesting chronology, which 

has been noted in previous studies (Zador et al. 2006, Lewis et al. 2017). Vessel-based 

surveys were more likely to detect occurrence and abundance for glaucous-winged gulls 

than land-based surveys. One possible explanation for this pattern is that the purpose of 

some early-season ground surveys was to determine whether nesting by glaucous-winged 

gulls had been initiated, and vessel surveys tended to occur later in the season when 

nesting colonies were more likely to have formed (Figure 4.2). This explanation suggests 

that the higher estimated detection probabilities for vessel surveys were due to the 

sampling design and that the model's findings regarding the higher detection probabilities 

for vessel surveys of glaucous-winged gulls should be viewed with skepticism. 

There are a number of steps that could be taken to improve the utility of the 

model, and these fall into two main categories: (1) inclusion of additional habitat 



108 

 

 

information, (2) alteration of the survey protocol. Our variable selection procedure 

excluded nearly all of the survey area and distance-to-shore variables from the final 

model, indicating that these data were insufficient for characterizing site-to-site 

differences in species composition and nesting. Inclusion of additional habitat 

information would likely improve the precision of the model by better resolving site-to-

site variation in state probabilities. For example, knowledge of the area of cliff habitat 

and treeless vegetated habitat across sites would be useful for predicting cormorant and 

gull occupancy, respectively (Baird et al. 1983). Another way to improve the realism of 

the model is to increase the resolution of the analysis by subdividing sites according to 

habitat type. Provided that the spatial dependence among sub-sites was accounted for, 

this alteration might improve estimates of detection, especially if there are portions of 

sites that are only visible from either land or water. One such location is South Marble 

Island, which cannot be fully surveyed from land due to the presence of Steller sea lions 

(Eumetopias jubatus), a species protected by the Endangered Species Act. Finally, simple 

alterations to the survey protocol could improve the model predictions. One potentially 

useful method is using double independent observers, where surveyors conduct 

independent counts and do not exchange information (Nichols et al. 2000). This 

technique would be advantageous for surveys in remote areas of Glacier Bay because 

different individual surveyors serve as replicates. This approach is likely to be ineffective 

for ground surveys, however, because some birds may disperse as soon as the first 

surveyor enters an area. Several other promising approaches include recording the time 

until detection of various species within the study area (Alldredge et al. 2007), or 
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employing newly developed dependent double-observer survey techniques (Golding et al. 

2017).  

One of the objectives of this study was to develop a model with the capacity to 

measure the responses of waterbird populations to encounters with Park visitors. While 

our model could be used for this purpose, the low number of closure management actions 

taken during the study period and the relatively limited information available on habitat 

prevented us from measuring such an effect. The two sites where we could evaluate 

changes in closure status (NW Spider and S. Leland islands) were surveyed across 

comparatively few years before and after the closure management action. In addition, the 

ability to properly assess disturbance effects can only be accomplished by including 

relevant site-specific habitat information. This information would not only improve the 

precision of estimates, but would be key for establishing evidence of disturbance 

independent of habitat and behavioral factors (Nisbet 2000).  

One objection to assessing wildlife closures as we did in this analysis is that we 

assumed that decisions to open or close sites were independent, rather than prompted by 

observations by Park personnel during the previous year. One approach for incorporating 

the lag in implementing closures would be to reformulate the multi-state model in a 

manner that would enable managers to assess the influence of site closures or openings 

on the probability of local colonization or abandonment by specific species, rather than 

annual mean occupancy (Royle and Kéry 2007, MacKenzie et al. 2018). The most 

rigorous approach for assessing the effect of area closures would be to continue 

monitoring and randomly assign closures, although this approach may not be feasible. If 

Park managers choose to open more islands in the future, it may be helpful to incorporate 
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more detailed visitor information into analyses. Sites made open to the public receive 

unequal levels of visitation; thus, it would be valuable to incorporate information 

regarding the intensity of usage of different areas. Webber et al. (2013) used counts of 

human tracks as a proxy for human intrusion into snowy plover (Charadrius nivosus) 

habitats in Florida. This measure or something similar could be taken during land-based 

surveys. Alternatively, campsite reports or visitor surveys could also be used to quantify 

the relative intensity of visitation across sites, as well as the desirability of visiting 

presently closed areas.  

Management Implications 

Findings from this study suggested pathways for improving the efficiency of 

future surveys for waterbird concentrations in Glacier Bay National Park. Our model 

suggests that surveys in June are ideal for documenting nesting by arctic terns and mew 

gulls, and that late season vessel surveys are ideal for detecting nesting black-legged 

kittiwakes. We also generated estimates that can be used to determine the number of 

within-season visits required to confirm the absence of nests or adults with a particular 

degree of certainty. A higher frequency of surveys at newly opened or closed sites, 

additional habitat information, and a greater effort to determine whether birds detected in 

surveys are nesting or not would greatly enhance the capacity to assess the influence of 

Park visitors on the occupancy and nesting of species at important aggregation and 

nesting sites. 
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Tables 

Table 4.1. Summary of waterbird surveys in Glacier Bay National Park, Alaska (2012-
2017). Asterisks denote glacial outwash sites and the remaining sites are all islands. 
      

Site 
Survey Area 

(km2) 
Years 

Surveyed 
# Surveys 
(Ground) 

# Surveys 
(Vessel) 

Unique 
Species 

Adams Inlet* 2.33 2 2 3 7 
Boulder Island 0.06 6 14 11 7 
Eider Island 0.08 3 3 2 4 
Flapjack Island 0.09 6 10 0 4 
Flapjack Islets 1.58 3 3 1 3 
Geikie Rock 0.01 6 8 11 7 
Grand Pacific 
Glacier* 0.29 2 2 0 3 
Hugh Miller 
Complex 0.05 3 3 4 6 
Leland Island 0.88 4 4 2 4 
Lone Island 0.02 5 6 9 5 
McBride 
Glacier* 0.06 3 4 0 4 
Muir Glacier* 1.50 2 2 2 6 
NW Spider 
Island 0.05 3 5 3 3 
Reid Inlet* 0.14 2 2 1 5 
Russell Islets 1.94 6 3 7 7 
Sealers Island 0.06 4 3 2 7 
S. Marble Island 0.17 6 4 11 6 
Sturgess Island 0.11 2 1 4 1 
Tlingit Islet 0.07 6 2 0 8 
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Table 4.2. Probability of detection assigned to the five observable states (OBSERVED) as a function of the estimated true 
underlying state (TRUE), where “Occ”,“Nest”, and “Abn” denote the status of the site vis a vis occupancy, nesting, and 
abundance, respectively. Indices for particular sites, species, and survey occasions are omitted to improve readability. 

   

  OBSERVED 

  Absent Occ Occ + Nest Occ + Abn Occ + Nest +Abn 

TR
U

E 

Absent 1 − − − − 

Occ (1 − $%&&,() $%&&,( − − − 

Occ + Nest (1 − $%&&,*) $%&&,*(1 − $+,-.,() $%&&,*	$+,-.,( − − 

Occ + Abn (1 − $%&&,0) $%&&,0(1 − $123,() − $%&&,0	$123,( − 

Occ + Nest + Abn (1 − $%&&,4) $%&&,4(1 − $+,-.)(1 −	$123,*) $%&&,4	$+,-.,*	(1 −	$123,*) $%&&,4(1 − $+,-.,*)	$123,* $%&&,4	$+,-.,*	$123,* 
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Table 4.3. Shading indicates modeled states for waterbird species at islands and glacial outwash areas in Glacier Bay National 
Park. Species include arctic tern (ARTE), black oystercatcher (BLOY), black-legged kittiwake (BLKI), unidentified 
cormorants (Cormorant), Caspian tern (CATE), glaucous-winged gull (GWGU), mew gull (MEGU), pigeon guillemot (PIGU), 
and semipalmated plover (SEPL).  

 
  STATES 
 

 Absent Occupied Occupied & 
Nesting 

Occupied & 
Abundant 

Occupied & Nesting 
& Abundant 

SP
EC

IE
S 

ARTE      

BLKI      

BLOY      

CATE      

Cormorant      

GWGU      

MEGU      

PIGU      

SEPL      
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 Table 4.4 Parameters affecting the probability of occupancy by arctic terns (ARTE), black oystercatchers (BLOY), black-legged 
kittiwakes (BLKI), Caspian terns (CATE), unidentified cormorants (Cormorant), glaucous-winged gulls (GWGU), mew gulls (MEGU), 
pigeon guillemots (PIGU), and semipalmated plovers (SEPL) at islands and glacial outwash areas in Glacier Bay National Park. Estimates 
are shown with lower (LCL) and upper (UCL) 95% credible intervals; coefficients with intervals not overlapping zero are shown in bold. 

           
Species Estimate SE LCL UCL  Species Estimate SE LCL UCL 

Intercept (5[%&&])  Persistence (8() 
ARTE -1.13 0.93 -2.68 1.06  ARTE 2.65 1.05 0.52 4.69 
BLKI -0.31 1.19 -2.5 2.19  BLKI 1.79 1.29 -0.92 4.19 
BLOY 1.76 1.11 -0.31 4.02  BLOY 3.09 1.23 0.61 5.44 
CATE -0.79 0.68 -1.92 0.83  CATE 2.11 1.08 0.15 4.37 
Cormorant -0.93 0.56 -2.02 0.2  Cormorant 2.30 0.97 0.56 4.33 
GWGU 1.64 1.5 -1.11 4.47  GWGU 2.23 1.35 -0.32 4.90 
MEGU -2.15 0.52 -3.25 -1.21  MEGU 3.62 0.71 2.31 5.10 
PIGU -2.24 0.56 -3.4 -1.23  PIGU 3.90 0.73 2.54 5.39 
SEPL -3.23 0.64 -4.6 -2.08  SEPL 1.03 1.18 -1.37 3.25 

Glacial (9(,()  Closure (:) 
BLKI -0.53 1.63 -3.72 2.65 

 
ARTE -0.42 1.08 -2.46 1.83 

BLOY -1.37 1.24 -3.6 1.45 
 

BLKI -0.66 1.73 -3.9 2.8 

GWGU -0.21 1.59 -3.09 3.07 
 

BLOY 0.31 1.52 -2.49 3.45 

MEGU 1.92 1.04 0.03 4.12 
 

CATE -1.16 1.42 -3.89 1.6 

PIGU -1.44 1.04 -3.48 0.58 
 

Cormorant -1.47 1.25 -4.1 0.87 

SEPL 3.44 0.99 1.54 5.42 
 

GWGU -0.23 1.5 -3.01 2.9 

Area (9(,*)  MEGU 0.1 1.07 -1.91 2.28 

BLKI -1.66 1.24 -4.24 0.65 
 

PIGU -1.03 1.3 -3.7 1.42 

SEPL 0.83 0.46 -0.05 1.77 
 

SEPL -0.47 1.42 -3.38 2.17 

Distance (9(,0)       

BLKI -1.13 1.33 -3.84 1.49       
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Table 4.5. Parameters affecting the probability of nesting conditional on occupancy for arctic terns (ARTE), black 
oystercatchers (BLOY), Caspian terns (CATE), unidentified cormorants (Cormorant), glaucous-winged gulls (GWGU), mew 
gulls (MEGU), and pigeon guillemots (PIGU) at islands and glacial outwash areas in Glacier Bay National Park, Alaska. 
Estimates are shown with standard error (SE) and lower (LCL) and upper (UCL) 95% credible intervals; coefficients with 
intervals not overlapping zero are shown in bold. 

            
Species Estimate SE LCL UCL  Species  Estimate SE LCL UCL 

Intercept (5[+,-.])   Persistence (8*) 
ARTE 0.45 1.65 -2.72 3.61  ARTE  1.35 1.44 -1.45 4.21 
BLOY 2.37 1.02 0.57 4.52  BLOY  1.09 1.32 -1.43 3.74 
CATE -0.81 1.47 -3.31 2.42  CATE  0.07 1.67 -3.19 3.32 
GWGU -0.45 1.04 -2.02 2.38  GWGU  2.94 1.22 0.49 5.36 
MEGU 0.12 0.89 -1.51 2.09  MEGU  1.24 1.45 -1.72 4.00 
PIGU 1.27 1.07 -0.63 3.69  PIGU  1.58 1.35 -1.09 4.24 

Glacial (9*,()   Colony 
CATE -0.31 1.56 -3.38 2.80  GWGU  1.98 1.20 -0.35 4.42 
GWGU -1.73 1.46 -4.40 1.56        
MEGU -1.31 1.11 -3.44 0.93        
PIGU -0.13 1.69 -3.39 3.23        

Distance (9*,0)        
ARTE -0.72 1.49 -3.50 2.54        
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Table 4.6. Parameters affecting the probability of abundance conditional on occupancy 
for arctic terns (ARTE), unidentified cormorants (Cormorant), and glaucous-winged gulls 
(GWGU) at sites in Glacier Bay National Park, Alaska. Estimates are shown with 
standard errors (SE) and lower (LCL) and upper (UCL) 95% credible intervals; 
coefficients with intervals not overlapping zero are shown in bold. 
     
Species Estimate SE LCL UCL 

Intercept (![#$%]) 
ARTE -2.13 0.77 -3.59 -0.58 
Cormorant -1.61 0.64 -2.84 -0.35 
GWGU -0.34 0.69 -1.65 1.08 

Glacial ((),+) 
GWGU -0.74 1.43 -3.62 2.03 

Persistence (,)) 
ARTE 2.97 1.05 0.93 5.10 
Cormorant 2.46 0.98 0.62 4.50 
GWGU 0.75 1.22 -1.49 3.31 

Colony 
GWGU 3.14 1.08 1.07 5.29 
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Table 4.7. State-dependent probabilities of detecting occupancy for arctic terns (ARTE), black oystercatchers (BLOY), black-
legged kittiwakes (BLKI), Caspian terns (CATE), unidentified cormorants (Cormorant), glaucous-winged gulls (GWGU), 
mew gulls (MEGU), pigeon guillemots (PIGU), and semipalmated plovers (SEPL) at islands and glacial outwash areas in the 
Glacier Bay National Park. Survey method is shown in parentheses for species with differing detection probabilities based on 
survey method. Asterisks denote species with seasonal detection effects; mid-season detection estimates are provided for these 
species (calculation based on mean DayOfYear). Estimates are shown with standard errors (SE) and lower (LCL) and upper 
(UCL) 95% credible intervals. 

Parameter Estimate SE LCL UCL  Parameter Estimate SE LCL  UCL 
ARTE*   GWGU (Ground) 

P[OCC] 0.45 0.19 0.13 0.81  P[OCC] 0.39 0.21 0.07  0.83 
P[OCC|OCC+R] 0.36 0.25 0.03 0.88  P[OCC|OCC+R] 0.32 0.25 0.02  0.88 
P[OCC|OCC+ABN] 0.52 0.32 0.02 0.98  P[OCC|OCC+ABN] 0.47 0.32 0.01  0.98 
P[OCC|OCC+R+ABN] 0.84 0.17 0.36 0.99  P[OCC|OCC+R+ABN] 0.80 0.21 0.24  0.99 

BLKI*   GWGU (Vessel) 
P[OCC] 0.39 0.10 0.21 0.59  P[OCC] 0.71 0.16 0.36  0.94 

BLOY (Ground)  P[OCC|OCC+R] 0.59 0.26 0.10  0.96 
P[OCC] 0.91 0.11 0.59 1.00  P[OCC|OCC+ABN] 0.70 0.28 0.08  1.00 
P[OCC|OCC+R] 0.83 0.20 0.29 1.00  P[OCC|OCC+R+ABN] 0.94 0.09 0.69  1.00 

BLOY (Vessel)   MEGU* 
P[OCC] 0.76 0.16 0.39 0.96  P[OCC] 0.68 0.12 0.41  0.88 
P[OCC|OCC+R] 0.64 0.25 0.11 0.98  P[OCC|OCC+R] 0.55 0.24 0.10  0.94 

CATE   PIGU 
P[OCC] 0.30 0.14 0.09 0.61  P[OCC] 0.64 0.19 0.24  0.93 
P[OCC|OCC+R] 0.24 0.20 0.02 0.75  P[OCC|OCC+R] 0.53 0.27 0.06  0.96 

Cormorant (Ground)   SEPL (Ground) 
P[OCC] 0.25 0.14 0.06 0.58  P[OCC] 0.83 0.18 0.34  0.99 
P[OCC|OCC+ABN] 0.37 0.30 0.01 0.96   SEPL (Vessel) 

Cormorant (Vessel)  P[OCC] 0.50 0.18 0.17  0.82 
P[OCC] 0.62 0.10 0.41 0.80        
P[OCC|OCC+ABN] 0.63 0.29 0.06 0.99        
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Table 4.8. State-dependent probabilities of detecting occupancy for arctic terns (ARTE), black oystercatchers (BLOY), 
Caspian terns (CATE), unidentified cormorants (Cormorant), glaucous-winged gulls (GWGU), mew gulls (MEGU), and 
pigeon guillemots (PIGU) at islands and glacial outwash areas in the Glacier Bay National Park. Survey method is shown in 
parentheses for species with differing detection based on survey method. Asterisks denote species with seasonal detection 
effects; mid-season detection estimates are provided for these species calculation based on mean DayOfYear). Estimates are 
shown with standard errors (SE) and lower (LCL) and upper (UCL) 95% credible intervals. 

           
Parameter Estimate SE LCL UCL  Parameter Estimate SE LCL UCL 

ARTE*  GWGU (Ground) 
P[R|OCC+R] 0.07 0.07 0.00 0.27  P[R|OCC+R] 0.10 0.10 0.00 0.36 
P[R|OCC+R+ABN] 0.24 0.19 0.02 0.72  P[R|OCC+R+ABN] 0.34 0.21 0.04 0.78 
P[ABN|OCC+ABN] 0.33 0.24 0.01 0.84  P[ABN|OCC+ABN] 0.26 0.25 0.00 0.86 
P[ABN|OCC+R+ABN] 0.60 0.26 0.08 0.96  P[ABN|OCC+R+ABN] 0.50 0.30 0.02 0.96 

BLOY (Ground)  GWGU (Vessel) 
P[R|OCC+R] 0.37 0.11 0.12 0.56  P[R|OCC+R] 0.19 0.12 0.02 0.46 

BLOY (Vessel)  P[R|OCC+R+ABN] 0.40 0.22 0.06 0.83 
P[R|OCC+R] 0.28 0.13 0.05 0.52  P[ABN|OCC+ABN] 0.40 0.24 0.03 0.86 

CATE  P[ABN|OCC+R+ABN] 0.62 0.27 0.08 0.97 
P[R|OCC+R] 0.09 0.10 0.00 0.38  MEGU* 

Cormorant (Ground)  P[R|OCC+R] 0.33 0.17 0.06 0.67 
P[ABN|OCC+ABN] 0.26 0.22 0.01 0.73  PIGU 

Cormorant (Vessel)  P[R|OCC+R] 0.17 0.10 0.02 0.39 
P[ABN|OCC+ABN] 0.44 0.22 0.04 0.80       
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Figures 

 

 
Figure 4.1. Waterbird survey sites in Glacier Bay National Park, Alaska. Asterisks denote 
glacial outwash areas. 
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Figure 4.2. Temporal distribution of ground and vessel surveys for waterbirds at islands and glacial outwash areas in Glacier 
Bay National Park, Alaska. 
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Figure 4.3. Detections of waterbird species in various states (OCC = occupied; ABN = 

abundant; R = nesting) in Glacier Bay National Park, Alaska. Gray shading in the 
background denotes years when sites were closed to Park visitors. 
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Figure 4.4. Measures of predictive performance for three Bayesian multistate occupancy 
models based on a five-fold cross-validation procedure. The Full—Uniform model 

included all possible predictor variables and uniform Dirichlet hyperpriors, whereas 
Final—Uniform and Final—Informative models contained a subset of predictors and 

uniform and informative hyperpriors, respectively. Score is computed by summing the 
log likelihood of out-of-sample data across folds (lower is better), and Correct 

Classification Rate is the estimated proportion of out-of-sample observations correctly 
predicted by the model (higher is better). 
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Figure 4.5. Estimated probability of occupancy and persistence for arctic terns (ARTE), black oystercatchers (BLOY), black-
legged kittiwakes (BLKI), glaucous-winged gulls (GWGU), unidentified cormorants (Cormorant), mew gulls (MEGU), pigeon 
guillemots (PIGU), and semipalmated plovers (SEPL) across two habitat types (island and glacial outwash). in Glacier Bay 
National Park, Alaska. Estimates are shown with 95% credible intervals. Estimates for glaucous-winged gulls are for non-
colony sites.  
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Figure 4.6. Seasonal patterns in probabilities of detecting occupancy (top) and nesting or the state of abundance (bottom) of 
waterbird species in Glacier Bay National Park, Alaska, conditional on the true underlying state. Species include: arctic tern 
(ARTE), black-legged kittiwake (BLKI), and mew gull (MEGU). Estimates shown represent detection probabilities averaged 
over the two survey methods (ground- and vessel-based). 
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Figure 4.7. Probability of detecting the occurrence (left) or nesting (right) of arctic terns (ARTE) and glaucous-winged gulls 
(GWGU) at a given site in Glacier Bay National Park, Alaska as a function of the number of repeated visits within a season, 
survey type, and survey period. The three survey periods included: early (May 1), mid (June 15), and late (August 1). Only the 
mid survey period is shown for glaucous-winged gulls because the final model did not include a seasonal detection effect for 
this species.
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Figure 4.8.  Predicted species richness and number of nesting species of waterbirds at 
islands and glacial outwash sites in Glacier Bay National Park, Alaska. Error bars 
describe 95% credible intervals and background shading denotes years when sites were 
closed to visitors. 
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Figure 4.9. Estimated proportion of sites in Glacier Bay National Park, Alaska, occupied by arctic terns (ARTE), black 
oystercatchers (BLOY), black-legged kittiwakes (BLKI), Caspian terns (CATE), unidentified cormorants (Cormorant), 
glaucous-winged gulls (GWGU), mew gulls (MEGU), pigeon guillemots (PIGU), and semipalmated plovers (SEPL) are 
denoted by closed circles. Open circles denote sites where species were both present and nesting and error bars denote 95% 
credible intervals. 
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Supplemental Figures 

Supplemental Figure 4.1. Table of initial states for focal species groups at the 20 sites in 

the study based on previous vessel based surveys described in Arimitsu et al. (2007). 

Numbers 1-5 correspond to the five states in the model: (1) absent, (2) occupied, (3) 

nesting, (4) abundant, and (5) both abundant and nesting. Focal species groups include 

arctic tern (ARTE), black oystercatcher (BLOY), black-legged kittiwake (BLKI), 

Caspian tern (CATE), unidentified cormorant (Cormorant), glaucous-winged gull 

(GWGU), mew gull (MEGU), pigeon guillemot (PIGU), and semipalmated plover 

(SEPL). We assigned site- and species-specific Dirichlet hyperpriors based on these 

initial states, specifying a value of 2/3 for initial state and.	1/(3 + ') for the remaining 

states, where ' is the number of states modeled for the species.  

 

 

 

 1 

 Species 
Site ARTE BLKI BLOY CATE Cormorant GWGU MEGU PIGU SEPL 
Adams Inlet 5 1 3 1 1 1 3 1 2 
Boulder Island 2 1 3 1 1 5 1 1 1 
Eider Island 1 1 3 1 1 1 2 1 1 
Flapjack Island 1 2 3 1 1 5 1 1 1 
Flapjack Islets 1 1 2 1 1 1 1 1 1 
Geikie Rock 1 2 3 1 2 5 1 2 1 
Grand Pacific Glacier 5 1 1 1 1 1 3 1 2 
Hugh Miller Complex 3 1 3 1 1 1 3 1 1 
N. Leland Island 3 1 3 1 1 4 1 1 1 
Lone Island 1 2 3 1 2 5 1 2 1 
McBride Glacier 3 1 3 1 1 1 2 1 2 
Muir Glacier 3 1 3 1 1 3 3 1 2 
NW Spider Island 3 1 3 1 1 2 1 1 1 
Reid Inlet 3 1 3 1 1 1 2 1 2 
Russell Islets 5 1 3 2 1 2 2 2 1 
Sealers Island 5 1 3 1 1 3 3 1 1 
S. Marble Island 2 2 3 1 4 5 1 2 1 
S. Leland 3 1 3 1 1 2 1 1 1 
Sturgess Island 3 1 3 1 1 2 1 1 1 
Tlingit Islet 5 1 3 1 1 3 3 1 1 
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Supplementary Figure 4.2. Confusion matrices describing estimated frequency of 

correctly and incorrectly predicted states. Focal species groups include arctic tern 

(ARTE), black oystercatcher (BLOY), black-legged kittiwake (BLKI), Caspian tern 

(CATE), unidentified cormorant (Cormorant), glaucous-winged gull (GWGU), mew gull 

(MEGU), pigeon guillemot (PIGU), and semipalmated plover (SEPL). Expected 

frequencies were estimated by averaging over out-of-sample predictions made from 

replicated five-fold cross-validation. Predicted states were based on the maximum value 

in the state-probability vector, any ties were assigned at random. Values in each matrix 

sum to 170, corresponding to the total number of site visits in the data set. Column sums 

describe the sample sizes of observed states in the data set. 
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Supplementary Figure 4.3-4.4. Plots of state probabilities predicted by the final multistate 

model (background color) versus detections obtained during ground (points) and vessel 

(triangles) surveys. Focal species groups include arctic tern (ARTE), black oystercatcher 

(BLOY), black-legged kittiwake (BLKI), Caspian tern (CATE), unidentified cormorant 

(Cormorant), glaucous-winged gull (GWGU), mew gull (MEGU), pigeon guillemot 

(PIGU), and semipalmated plover (SEPL).The 20 sites in the dataset are divided into two 

separate figures.
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Supplementary Figure 4.5-4.6. Plots of the difference in state probabilities predicted by 

the final multistate model and a model with the same predictor variables but a 

noninformative prior (background color). Focal species groups include arctic tern 

(ARTE), black oystercatcher (BLOY), black-legged kittiwake (BLKI), Caspian tern 

(CATE), unidentified cormorant (Cormorant), glaucous-winged gull (GWGU), mew gull 

(MEGU), pigeon guillemot (PIGU), and semipalmated plover (SEPL).The 20 sites in the 

dataset are divided into two separate figures.  



139 

 

 



140 

 

 



141 

 

 

Supplementary Figure 4.7. Seasonal patterns in probabilities of detecting occupancy (top) 

and nesting or the state of abundance (bottom) of waterbird species in Glacier Bay 

National Park, Alaska, conditional on the true underlying state. Species include: arctic 

tern (ARTE), black-legged kittiwake (BLKI), and mew gull (MEGU). Estimates shown 

represent detection probabilities averaged over the two survey methods (ground and 

vessel).
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  AN INTEGRATED DISTRIBUTION AND ABUNDANCE MODEL 

FOR HUMPBACK WHALES IN GLACIER BAY, ALASKA 

Abstract 

The waters of Glacier Bay National Park provide valuable summer foraging 

habitat for humpback whales. Most visitors experience the park by traveling aboard 

motorized vessels, which have the potential to strike whales, possibly resulting in injuries 

and death. Park administrators seek to minimize these negative encounters by imposing 

vessel restrictions and have shown recent interest in better quantifying the tradeoffs that 

these restrictions represent. A crucial step towards this goal lies in developing a technique 

for estimating the density of whales in the Park, so that the frequency of encounters 

between vessels and whales may be enumerated. In this chapter, I developed an 

integrated model for estimating whale density based on sightings recorded during active 

whale surveys and by observers aboard cruise ships. The model generally succeeded in 

producing annual abundance estimates and describing density dynamics at the finest 

spatial scale to date. The trend in abundance estimates was comparable to an annual 

abundance index currently in use; however there was an indication of negative bias in 

abundance estimates. I identified several pathways for improving the performance of the 

model, particularly with regard to more appropriately incorporating data from shipboard 

observer surveys. Beyond the main objective of the study, techniques developed in this 

chapter contributed to the broader literature on modeling whale densities, by providing a 

framework for consolidating information from multiple survey programs. 
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Introduction 

Characterizing the spatial distribution of whale populations is a significant 

challenge because many species have global distributions and engage in long-distance 

seasonal migrations (Jaquet 1996, Edwards et al. 2015). Even during non-migratory 

periods, howver, whale distribution can be difficult to estimate because species move in 

response to dynamic shifts in prey availability (Friedlaender et al. 2006, Cotté et al. 2009, 

Hazen et al. 2009). Despite these difficulties, estimating densities at fine scales is 

important for reducing negative interactions between whales and humans. Whales are 

indirectly affected by activities that generate underwater noise such as motorized vessel 

traffic and industrial activities (Erbe 2012, Todd et al. 2015), and risk injury or death 

from vessel-whale collisions and entanglement in fishing gear (Laist et al. 2001, Robbins 

and Mattila 2004, Brown et al. 2019).  

Understanding the density and distribution of whales is especially important in 

Glacier Bay National Park (the “Park” hereafter; Figure 5.1), a marine protected area that 

overlaps an important summer feeding ground for humpback whales (Megaptera 

novaeangliae; Etherington et al. 2007). Glacier Bay is considered a “hot spot” for vessel-

whale collisions in Southeast Alaska (Neilson et al. 2012), and the Park implements 

vessel speed restrictions as a tool for decreasing collision risk in areas with elevated 

whale density and vessel traffic. The National Park Service mission dictates that 

administrators take actions to prevent “impairment” of Park resources; however, the 

precise standard on which to base regulations is poorly defined (Gende et al. 2018). 

Administrators seek a systematic and data-driven approach for evaluating tradeoffs that 
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potential restrictions represent, in terms of reducing collision risk versus allowing visitors 

full access to the Park. Characterizing the density of whales is a critical step towards 

quantifying the degree of interaction among whales and vessels (McClellan et al. 2014). 

Fortunately, there are two whale monitoring programs in the Park on which to draw for 

this task. 

Park personnel monitored humpback whales using two long-term survey 

programs designed to locate humpback whales in the bay: (1) a whale survey program in 

which a vessel actively searched for whales while traversing the vicinity of the bay 

(1985-2019); and (2) a shipboard observer program (2006-2018) in which surveyors, 

situated on the bow of cruise ships, recorded whale sightings from a distance. In this 

chapter, I present an integrated model for estimating the density of humpback whales in 

Glacier Bay, which draws on both survey programs. Specific objectives of this study 

were to (1) describe the construction of the model, (2) interpret parameter estimates and 

predictor relationships, and (3) evaluate the model’s accuracy using statistical procedures 

and by comparing abundance estimates to counts and metrics from earlier studies. 

Methods 

The whale density model was constructed to inform the Glacier Bay quantitative 

decision tool, and therefore needed to produce specific outputs for use by other sub-

models. Model predictions also needed to be responsive to changes in the value of 

specific parameters that decision makers might be interested in manipulating to help 

guide their decisions. The requirements of the model included the ability to: (1) predict 

actual whale densities (not a density index) and (2) generate spatially explicit predictions 
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as a direct function of abundance and distribution. The first of these requirements was 

necessary because the whale density model supplies critical input to another sub-model of 

the decision tool, a future vessel-whale encounter model. This encounter model will 

generate vessel-whale encounters as a function of whale density, vessel traffic, and the 

speed of vessels. An index of density, such as “whales-sighted-per-unit-effort” would not 

be meaningful input to the encounter model. The second requirement was important 

because administrators seek to examine how the tradeoffs surrounding speed restriction 

decisions are influenced by underlying population parameters, such as whale abundance 

and space use. The model needed to allow administrators to consider hypothetical 

situations, such as a doubling or halving of abundance or a shift in whale distribution. 

To meet these requirements and effectively integrate the two data sources, I 

applied a hierarchical modeling approach as described by Royle and Dorazio (2009). The 

definition of a hierarchical model given by these authors is more specific than what is 

used in the statistical literature and implies that models have a particular conditional 

structure. Hierarchical models define population parameters (e.g., abundance, survival 

probability) as latent variables on which observations in the data set are conditional. 

Observed data are a function of the “true” ecological state filtered through an observation 

process that is imperfect and affected by sampling effort and uncontrollable factors (e.g., 

weather conditions). These models facilitate the integration of multiple information 

sources by enabling different data sets to inform a shared set of parameters, provided that 

the detection processes are properly represented. 

Integrating information from the active whale survey and shipboard observer 

programs was possible because these programs surveyed the same population 
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concurrently and advantageous because they were complimentary in terms of the spatial 

distribution of survey effort. The lower bay was visited more frequently during active 

surveys, because observers typically did not board cruise ships until they had reached the 

waters immediately west of Bartlett Cove (Figure 5.2). In contrast, shipboard observers 

more frequently surveyed the west arm of Glacier Bay because virtually all cruise ships 

travel through this area to view the Park’s scenic tidewater glaciers in Johns Hopkins and 

Tarr inlets. 

In the following sections, I provide an overview of my approach for combining 

the two data sets into a cohesive modeling framework. I first summarize methods of the 

two survey programs. I then describe my framework for partitioning sighting data across 

space and time and the process for estimating survey effort and detection-related 

predictors. Finally, I describe the construction of the model as well as the process for 

validating the model using a model checking procedure and by making comparisons to 

past metrics. 

Survey Programs 

Active Whale Surveys 

Vessel surveys for humpback whales were conducted annually from April through 

October in Glacier Bay and adjacent Icy Strait. The objectives of the program were to 

monitor whale demography and index annual abundance (Gabriele et al. 2017). 

Demographic information was obtained by identifying individual humpback whales from 

photographs and tracking them over time, whereas abundance was indexed by taking the 

number of unique whales observed and standardizing by a measure of survey effort 

(Neilson et al. 2018). During surveys, a small, motorized vessel (4.9-6.7 m) actively 
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searched for whales by traveling at a moderate speed and pausing periodically to watch 

and listen for indicators of whale presence (e.g., breaching and spouting). Surveyors 

recorded GPS tracklines of the vessel location each day and noted time intervals in which 

they were actively searching for whales (“on-effort” time). When an individual or group 

of whales was sighted, surveyors carefully approached individuals to take photographs of 

distinguishing marks, and sometimes collect tissue samples. The monitoring program 

focused on identifying as many unique individuals as possible, while spreading search 

effort across all portions of Glacier Bay and Icy Strait. To this end, surveyors typically 

alternated survey effort between six regions in the vicinity of the Park, including the west 

arm, east arm, east and west sides of the middle bay, the lower bay, and east and west 

portions of Icy strait (Saracco et al. 2013). Surveyors sometimes delayed visiting a region 

or revisited a region consecutively. Deviations from the survey rotation were made 

because surveyors needed to assess evidence of a persistent aggregation in a high traffic 

area or investigate a credible report of whales in an atypical location. Additional details 

on the survey program can be found in Gabriele et al. (2017). 

Shipboard Observer Surveys 

The shipboard observer program differed from the active whale survey program 

in several important respects. The program was passive in the sense that paths of travel 

were independent of whale density. In addition, sightings were made at a distance with no 

attention given to capturing individualized markings. Observers boarded cruise ships in 

the lower bay or at the previous port of call. Once aboard, observers set-up a tripod at the 

bow of the ship from which they surveyed a 180º arc in the direction of travel. Cruise 

ships travel a similar path each day from the lower bay to the west arm, where ships 
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pause for several hours in the vicinity of tidewater glaciers near Johns Hopkins and Tarr 

inlets. When sightings occurred, surveyors marked the location of the ship using a GPS 

unit and measured the position of the target relative to the ship using a compass and 

rangefinder. When possible, observers made multiple distance measurements of targets 

(individual or groups of whales), tracking the diving and resurfacing behaviors until 

whales passed outside of the survey arc. Details on this survey protocol can be found in 

Gende et al. (2011) and Williams et al. (2016). 

Data Compilation 

The two data sources obtained for the analysis were spatially referenced point 

layers of whale sighting locations and GPS trackpoints, which marked the time and 

location of surveyors from both programs. Point layers included information about the 

counts of whales associated with each sighting, time of the sighting, and information on 

whether the observation was independent or part of a series for the same target. For cases 

in which multiple locations were recorded for the same target, I used only the sighting 

record for the whale location nearest to the ship (known as the “closest point of 

approach”). I only included sightings information for surveys for which there was a 

corresponding and apparently complete set of trackpoints. I further subdivided the dataset 

spatially and temporally, to ensure that the model would appropriately address objectives. 

Only surveys conducted from June 1 through August 31, 2007-2015 were included. 

These seasonal boundaries included the majority of the surveys and spanned the period in 

which nearly all humpback whales arrive in the area (Saracco et al. 2013), prior to their 

winter migration to southern latitudes (Baker et al. 1985, Dahlheim et al. 2009). To 

remain focused on the area affected by the decision tool, I included only sightings and 
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trackline segments within the waters of Glacier Bay proper (1255 km2
 area). The southern 

boundary line for the study was drawn between Point Carolous and Point Gustavus 

(Figure 5.2). 

My procedure for estimating humpback whale density relied upon obtaining 

replicate counts of whales sighted within discrete spatial units. To this end, I subdivided 

Glacier Bay into sections systematically by overlaying a grid of hexagons with a side-to-

side diameter of 7000 m onto a map of the study area. After laying down the grid, I 

clipped the areas of the map where land was present and consolidated fragments with an 

area less than 1/3 of that of a full hexagon with neighboring cells. This resulted in a map 

with a total of 43 polygons, ranging in area from 11 to 54 km2. Subject-matter experts 

selected the size of the hexagons size in an effort to obtain the highest possible spatial 

resolution, while not making polygons so small or numerous as to create numerical issues 

(e.g., zero-inflation) or a significant computational burden. Biological considerations also 

went into the selection of the cell size. The range of polygons sizes represented the area 

that whales could conceivable occupy for a multi-day period. 

Track-line data was central to estimating the spatial and temporal distribution of 

survey effort. I used times-tamped GPS track-points from both survey programs to 

generate a spatially referenced line feature layers. I then estimated vessel speed within 

segments as a means to identify and discard points with poor GPS fixes. Track-points for 

both methods were recorded at different frequencies. Active survey points were gathered 

on average every 30 seconds and shipboard observer points every 5 seconds. I thinned the 

track-lines for the observer data by a factor of 10 to conserve computer memory. After 

omitting poor fixes, I estimated the time interval that vessels spent in each section for 
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each survey by intersecting track-point segments with sections. I split segments that 

crossed section boundaries, and partitioned the time increment associated with the 

original segment in proportion to the degree of overlap. For the active surveys, I used 

estimated vessel speeds to identify periods in which the vessel traveling at relatively low 

velocities (< 2 kts) and confined to the same area 0.5 km2 area. I considered these events 

to be “pauses” and was interested in estimating their frequency and location as a way to 

inform detection process in the model. 

I created the final dataset by identifying intervals in which vessels were present in 

a given section and then summing the time spent within the area and the number of 

whales sighted. Each row of the data set represented a continuous interval of time in 

which the vessel was present in a section. The model treated repeat visits to the same 

section in a day as replicates. I only summed whale sighting counts that occurred within 

the same section in which the survey vessel was present. Due to the nature of the active 

survey method, the vessel was always present in the same section as the sighting for the 

active surveys; however, this was not the case for sightings made by cruise shipboard 

observers. I omitted approximately 1/3 of the whale sightings from the cruise ship survey 

program because the closest point of approach was outside of the section where the vessel 

was present. Prior to fitting the model, I queried both aggregated data sets and omitted 

intervals that were suspect. I removed several extended time intervals (>2 hours) that 

took place when the cruise ship was in the vicinity of tidewater glaciers in the upper west 

arm of the bay, based on my suspicion that the observer was not actively surveying 

during that period.  

Model Construction 
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Thus far, I have provided only a conceptual description of the hierarchical 

modeling approach and will now provide a more technical description of the model’s 

construction. Hierarchical models are linked generalized linear models that define rate 

and probability parameters using regression equations (Kery and Royle 2015). These 

models are fitted by constructing a joint likelihood function and estimating parameters 

via maximum likelihood estimation or Bayesian inference (Cressie et al. 2009). 

Abundance and distribution 

I parameterized the humpback whale abundance and distribution model in a 

manner similar to both the harbor seal and sea lion models (see Chapters 2 and 3). The 

annual abundance of whales !" were assumed to be Poisson distributed with mean and 

variance (#") 

!"~%&'((#"), 

 where ' is an index for the year. 

In an effort to improve precision and borrow information across years, the mean 

annual abundance parameters were modeled as random effects (Royle and Link 2002). I 

assumed that the log of the annual abundance parameters were normally distributed, 

log( #")~!&/012[456], 8[456]9, 

with the natural log of annual abundances distributed normally according to a grand mean 

(2[456]) and standard deviation (8[456]). I assumed that the population of whales at a 

given time was distributed across sections of the bay according to a vector of occurrence 

probabilities (:), which summed to one (Figure 5.3). Known abundance and occurrence 
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probability combined to produce the expected whale intensity in the ;th section and 'th 

year (<",=): 

<",= = #" ∙ @",=. 

The separability of abundance and occurrence inherent in this parameterization was 

desirable because it enables me to easily and intuitively manipulate parameters to 

produce spatially explicit density estimates with desired properties.  

I modeled occurrence probabilities as a function of predictor variables and error 

terms using a multinomial logit link function (Agresti 2013, Royle and Converse 2014), 

with probability of occurrence for all but one of the sections (B − 1) defined as:  

	@",= =
F(GH,I)

1 + ∑ F(GH,I)LMN
=ON

; 	; = {1,2,3, … , B − 1}, 

where V",= is a linear combination of predictors and error terms. The last section indexed 

in each year (	@",L) served as a reference category and was computed by subtraction 

(@",L = 1 − ∑ @",=
LMN
= ). The regression equation defining section-specific probability of 

occurrence was as follows: 

V",= = WN ∙ X1Entrance=9 + W` ∙ Area= + b[cdef"g6],= + b[cdef"g6:idjk]",=	; 	;

= {1,2,3, … , B − 1}, 

where Ws are coefficients describing the effect of section-level predictor variables and bs 

are random error terms. Section-specific predictors of occurrence included the distance 

between the centroid of each section to the Park entrance (as defined by the X()	 

function), and the area of the section (km2).  
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I included predictors in the occurrence regression model, primarily to improve the 

precision of estimates. I hypothesized that distance to the park entrance would be 

negatively related to whale occurrence probability, based on the long-established pattern 

of more frequent whale sightings in the lower bay versus the east and west arms of the 

bay (Gabriele et al. 2017). I included area as a predictor because I hypothesized that there 

would be a positive relationship between the size of the section and the number of whales 

that could be supported by prey there. I included error terms in the equation to glean 

information about the degree of spatiotemporal variation in occurrence probability and to 

compensate for sections with observed occurrences that were incongruent with 

relationships described by predictor variables. The two error terms in the regression 

described unexplained section-specific variation, b[lde],=, and unexplained variation at the 

scale of both section and year (b[cdef"g6:idjk]",=). Error terms were modeled as normal 

random effects with means of zero and corresponding standard deviations 8[cdef"g6] and 

8[cdef"g6:idjk]. 

Detection processes 

The event of detecting a whale within a survey interval is conditional on at least 

one whale being present in the section, regardless of survey method. Furthermore, I 

expected the probability of detecting whales to increase with whale abundance in a 

section. I defined the probability of detecting presence of an individual whale in a section 

for an active surveyor and a shipboard observer as m[cnko] and m[p5l], respectively. 

Assuming that sightings of individual whales are independent, the expected count of 

whales detected in a section was the product of the expected density and an interval-
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specific detection probability. Based on this reasoning, I assumed that the total sightings 

made by active surveyor (q) and a shipboard observer (r) could be approximated by a 

Poisson distribution:  

q",=,f,k~%&'(1<"=f ∙ m[cnko],",=,f9, 

r",=,f,k~%&'(1<"=f ∙ m[p5l],",=,f9, 

where ms are the probability of detecting an individual whale in year ', in section ;, and 

during interval s. The Poisson distribution serves as an approximation of the binomial 

distribution in this case. The use of replicated counts across space and time as a means 

for estimating abundance placed the model in the category of so-called N-mixture models 

(Royle 2004, Kery and Royle 2015). 

The individual detection probability in a given interval depended on survey effort 

plus additional factors that influence the sampling process. Interval-specific detection 

probability was estimated using separate regression equations for the two survey 

programs via a logit link function. The logit link function is a transformation, 

recognizable from logistic regression models, that maps values from the real number line 

to a scale from 0 to 1 (Hosmer et al. 2013) as: 

logit(x) =
N

Nvdwx
. 

I endeavored to define detection functions that accounted for differences in the sampling 

processes. 

I modeled the detection probability for active whale surveys on time spent in 

section and two other predictors connected with putative pauses. Active survey detection 

probability was estimated using the following linear model: 
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logit( m[cnko]",=,f) = yz + yNTime",=,f + y`PauseInSec",=,f + 

yÇPauseInLastSec",=,f + Ñ[cnko]",=,f, 

where ys are coefficients describing the effect predictors, and Ñ[cnko]",=,f,k denotes a 

random error term. Predictor variables included the total time that the survey vessel 

remained in the section (Time), and binary variables describing whether the survey 

vessel paused in the current section (PauseInSec) or if the vessel had paused in the 

section surveyed most recently (PauseInLastSec). Error terms were meant to account for 

unexplained observation error and were assumed to be normally distributed with mean 

zero and standard deviation 8[cnko]. I included the PauseInSec and PauseInLastSec 

predictors because I hypothesized that whales would be more likely to be detected in 

sections where surveyors paused and in sections visited immediately after a pause 

occurred in another section. I based these hypotheses on the knowledge that during some 

pauses, surveyors turn off the boat engine to look and listen for whales, potentially 

extending their survey range.  

I modeled the probability of the survey vessel detecting an individual whale based 

on the time that the vessel spent in each section as well as predictors related to visibility 

conditions. The detection probability function was as follows: 

logit( m[p5l]",=,f) = Öz + ÖNÜ'0F",=,f + Ö`á'(àâäFããF<s",f + ÖÇá'(å&&ç",f 

+Öéá'(%&&/",f + Öèá'(ê&ë",f + Ñ[p5l]",=,f, 

where Öz is an intercept term, ÖN is a coefficient describing the effect of time-in-section, 

and Ö`:è describes the effect of three different visibility conditions, with good/unknown 

visibility serving as a baseline. Visibility categories were assigned at a daily time scale, 
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based on the reported visibility at the time of whale sightings. The baseline category of 

good/unknown was assigned as unknown for days in which no whales were sighted. 

I fitted the humpback whale density model using Bayesian inference with non-

informative prior distributions. Coefficients for the occurrence linear combination were 

assigned diffuse normal priors, logit-linear regression were assigned Jeffreys priors 

(Lunn et al. 2012), and 8 parameters for error terms were assigned diffuse uniform priors. 

Posterior parameter distributions were approximated using Markov Chain Monte Carlo 

(MCMC) simulation (Kery and Schaub 2011). I performed the simulation using the 

JAGS software package (Version 4.2.0; Plummer 2003) within the R statistical platform 

(R Core Team 2017). Prior to model fitting, I standardized all continuous predictor 

variables by subtracting the mean and dividing by the standard deviation to speed 

convergence and aid interpretation. I ran seven Markov chains simultaneously and 

determined a suitable burn-in number of iterations using the Gelman-Rubin statistic 1íì9 

and by examining trace plots (Gelman et al. 2014).  

Model Evaluation 

I evaluated the performance of the model using a posterior predictive checking 

procedure, which is recommended for Bayesian analyses (Conn et al. 2018). Posterior 

predictive checking most commonly measures the frequency at which the model under- 

and over-estimates the data to which it was fitted (Gelman et al. 2014). I estimated the 

frequency of underestimation, known as a “Bayesian P value”, for the two data sets in the 

model separately. Bayesian P value estimates below 0.05 or above 0.95 are generally 

considered as evidence of a poorly specified model.  
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I further evaluated the performance of the model by comparing abundance 

estimates to values reported in previous work. Several recent studies have estimated 

whale abundances in the vicinity of Glacier Bay. Hendrix et al. (2012) modeled whale 

abundance and movement rates in multiple locations in Southeast Alaska and Saracco et 

al. (2013) estimated abundance and site fidelity of whales in the Glacier Bay and Icy 

Straits region. Unfortunately, these studies reported only the abundance of whales in both 

Icy Bay and Glacier Bay combined and were not directly comparable to the more limited 

spatial scale of my model. Instead, I compared abundance estimates from the model to 

counts of uniquely identified individuals, which the active survey program reports 

annually (Neilson et al. 2018). Although the counts of unique whales are not a substitute 

for measures of abundance, I nonetheless found this comparison useful for evaluating the 

model, because the count of unique individuals describes the lower bound for abundance 

of whales. I also compared trends in the estimated abundance of whales to that of the 

annual whale abundance index, which is also reported by the active survey program. The 

whale abundance index was calculated as the number of unique whales identified per 

year in Glacier Bay divided by the total number of “on-effort” hours that active surveyors 

spent searching that area. I made this comparison to determine if the temporal pattern in 

abundance depicted by my model departed substantially from that of the index.  

Results 

The humpback whale density model incorporated 455 active survey days and 481 

shipboard observer surveys. In some cases, multiple cruise shipboard observer surveys 

were conducted on the same day by multiple observers, but only two cruise ships per day 
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are permitted to entire Glacier Bay. Despite the comparable number of surveys for the 

two survey methods, there were more than three times as many rows for shipboard 

observers (n=16,439) compared to active surveys (n=4,596) because cruise ships 

traversed more sections each a day. The density model converged and generated stable 

estimates for all parameters. Stationarity appeared to be reached within the first 5,000 

iterations of the MCMC simulation, and posteriors distributions were estimated based on 

the subsequent 30,000 iterations. There was good mixing among chains and íì values for 

parameters were less than 1.1. 

Abundance estimates per year ranged from 62 to 156 whales and were relatively 

precise, with coefficients of variation less than 13% in all cases (Table 5.1). Estimates 

from the distribution portion of the model provided insights about the relative importance 

of predictors and components of variance in the whale distribution process. The distance 

to the entrance of the bay emerged as valuable predictors of occurrence as hypothesized. 

The section area predictor did not appear to explain a significant portion of variability in 

occurrence based on the posterior distribution’s considerable overlap with zero. The 

strength of the distance-to-entrance predictor was apparent in the estimates of section-

specific occurrence, which were lower than 4% of the total estimated abundance in all 

sections of both the east and west arms of the bay (Figure 5.4).  

The random effects associated with the occurrence model showed clear evidence 

of spatiotemporal variation in occurrence that was unexplained by the two predictors and 

allowed for the patchiness of the occurrence pattern in some portions of the study area. 

For example, random effects were responsible for the lower estimated occurrence 

probability in the section containing Bartlett Cove (Id: 2; Figure 5.4) and the section with 



159 

 

 

the highest probability of occurrence, Beartrack Cove (Id:10; Figure 5.4). The Beartrack 

Cove section was one of several sections with relatively high occurrence probability but 

which received relatively low survey effort (Figure 5.2); others included the section 

containing Berg Bay (Id:5; Figure 5.4) and immediately North of Geike Inlet (Id:19; 

Figure 5.4). Although point estimates for the mean expected abundance were relatively 

high in these sections, so too was the estimated error of the estimates (Figure 5.5). These 

sections contrasted with lower bay sections (Ids: 1, 3, 4, 6-8), which had moderate, but 

more precisely estimated mean expected abundances. 

The importance of detection predictors was variable for both survey methods 

(Table 5.2). Time-in-section was positively related to detection probability for both data 

sets. Neither of the predictors related to pauses made by the active survey vessel were 

clearly supported by the model. There was evidence that surveys with excellent visibility 

had substantially higher detection than the baseline good/unknown category. Somewhat 

surprisingly, the parameter estimates for poor and foggy visibility conditions were not 

substantially lower than the baseline, and the estimate for the foggy visibility was 

positive. Random error terms were substantially greater than zero for both detection 

functions; however, the shipboard observer error term was much greater than that of the 

active surveys.  

Posterior predictive checking indicated the model reasonably fit the data 

(Bayesian P values: 0.05-0.95), although there was some indication that patterns in 

shipboard observer data were not as well characterized by the model. The weighted 

average Bayesian P value for both datasets was 0.082, suggesting that the model 

sufficiently described the data to which it was fit. However, the Bayesian P value 



160 

 

 

associated with the shipboard observer data was 0.047, slightly below the acceptable 

threshold. This value indicated that the model systematically underestimated shipboard 

observer sightings. The Bayesian P value for just the active program was 0.205 and well 

within the accepted range. 

Comparison of abundance estimates to previously reported values yielded mixed 

impressions of the model’s performance. While the abundance pattern in the model 

appeared to align with the trend in the abundance index (Figure 5.6A), many of the 

estimates were below the minimum number of whales known to be in the population. The 

number of unique whales exceeded model estimates in all but two years (2012 and 2015), 

and exceeded the upper 95% credible interval for the model estimates in all but three 

years (2012, 2013, and 2015). The low value for abundance estimates relative to the 

number of uniquely identified whales may suggests that the model generated negatively 

biased estimates. Alternatively, the lower point-estimates for abundance could stem from 

the fact that whales in Glacier Bay take forays into Icy Strait to forage. If this is the case 

then seemingly low abundance estimate may reflect the average population size at a 

given time and not the season-wide total. The best evidence for the similarity in the 

temporal trend between abundance estimates and the abundance index was the fact that 

when the index was scaled to match the initial abundance estimate (a factor of 1:142), the 

transformed index value fell within the credible intervals of the abundance predictors for 

seven out of nine years (Figure 5.6.B)  

Discussion 
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The integrated whale density model generally succeeds in the objective of 

characterizing the numbers and distribution patterns of humpback whales in Glacier Bay. 

The model identified several valuable predictors of occurrence probabilities and 

estimated spatial and temporal variability in whale occurrence, which were both essential 

for informing the quantitative decision tool. Annual abundance estimates reflected a 

similar temporal trend as the active survey’s index but showed possible evidence of 

negative bias. Beyond the main study objectives, this analysis also contributed to the 

existing literature on whale distribution modeling by demonstrating a technique for 

integrating multiple whale sighting data sets into the estimation of abundance and 

occurrence. 

Shortcomings of the density model were made apparent in some parameter 

estimates and the unfavorable model-checking diagnostic for the shipboard observer data, 

and potential negative bias in estimated abundance. Although time-in-section was a key 

predictor of detection probability for both surveys, additional variables were not well 

supported by the model. There was no clear evidence that pause-related predictors 

influenced detection in active surveys. The model also suggested that detection 

probability for shipboard observers was similar across most visibility conditions. This 

was surprising considering these visibility categories were a key predictor in detection-

distance functions estimated for these surveys in the past (Williams et al. 2016). The 

shipboard observer data set was not well characterized by the model based on the low 

Bayesian P value and the relatively large standard deviation for the random error term in 

the detection function (8[p5l]). As for the potential underestimation of abundance, this 

discovery was fortunate in the sense that it was only possible to detect negative bias with 
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the type of comparison performed (i.e., there was no equally definitive way of detecting 

positive bias). Negatively biased abundance estimates were somewhat peculiar as well, 

because the N-mixture modeling approach that I employed is generally regarded as 

susceptible to overestimation of abundance (Dénes et al. 2015, Duarte et al. 2018). 

Potential underestimation of abundance poses a concern, but is not a hindrance to the 

functioning of quantitative decision tool, considering that decision makers will have the 

ability to examine the degree to which underestimation might otherwise influence 

management decisions. 

I suspect that the issues of possibly underestimated abundance and poor 

characterization of shipboard observer data share a common cause, having mostly to do 

with data compilation decisions. The model included only sightings that occurred within 

the same section in which the vessel was present. This decision could have introduced 

unforeseen negative bias in estimates because of so-called “edge effects.” Edge effects 

may arise when analysts attempt to make inferences about spatial point processes by 

imposing random or arbitrarily defined survey boundaries on continuous state spaces 

(Baddeley 1999). The model assumed that the same number of whales were distributed 

across all cells, meaning that concentration of whales in a section leads to a 

corresponding decrease elsewhere. By not crediting sightings to neighboring sections, the 

model was unable to account for the fact that fewer sightable whales would be present in 

remaining sections, instead suggesting that the density of whales was generally lower. 

Based on this reasoning, the Bayesian P value for the shipboard observer dataset was 

produced because the observed number of whales was incongruent with the 

underestimated abundance. A potential remedy for this issue would be to develop a 
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scheme for incorporating sightings of whales made outside of just the section through 

which vessels passed. This would consist of adding additional rows to the shipboard 

observer data set corresponding to the number of sightings in sections adjacent to those 

occupied by the survey vessel. The detection range of shipboard observers is well studied 

(Harris et al. 2012, Williams et al. 2016, Gende et al. 2019), and findings from previous 

work could guide the definition of a ruleset for dictating which neighboring sections 

should be classified as surveyed and to what degree. For example, the model would not 

need to include neighboring sections beyond a distance threshold or positioned behind the 

vessel.  

In addition to the alteration described above, there are additional changes to the 

model’s data compilation procedure and structure that could improve estimates. The 

simplest change would be to maintain the same model structure and test additional 

predictor variables in the abundance, occurrence, and detection portions of the model. 

The difference among variance components in the occurrence sub-model suggested that 

more of the unexplained variability in occurrence was due to unmodeled spatial patterns, 

rather than patterns that vary in both space and time. This suggests that the precision of 

estimates would likely be improved by incorporating additional section-specific variables 

(e.g., bathymetry, productivity metrics). Another potentially beneficial alteration to the 

model would be to broaden the study area to include Icy Strait. Although the quantitative 

decision tool does not apply to this area, its inclusion could improve estimates in Glacier 

Bay by providing additional observations with which to inform occurrence and detection 

coefficients. At present, the model does not account for within-season movements of 

whales between Glacier Bay and Icy Strait. Expanding the spatial extent would likely 
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improve estimates of abundance for the entire study area, because the model would better 

satisfy the spatial closure assumption. In addition, the inclusion of Icy Strait would be 

helpful in that it would facilitate a direct comparison of estimated abundance to past 

studies (Hendrix et al. 2012, Saracco et al. 2013). Although these refinements are 

possible, including additional data will come at a cost in terms of computation. The 

runtime of the model in its current form is nearly 70 hours using a modern CPU and 

parallel processing. However, it may be possible that an extended version of the current 

model would be more tenable if the model were fitted using software that employs an 

alternative estimation approach (e.g., maximum likelihood estimation, Hamiltonian 

Monte Carlo). 

Monitoring programs are designed to address specific objectives. Inevitably, 

however, new and important questions arise which cannot be easily answered with the 

information at hand. This often occurs because individual data sets may provide an 

incomplete picture of quantities or processes of interest. Hierarchical models provide a 

flexible framework with which to integrate multiple data sets and make inferences that 

may otherwise be impossible (Abadi et al. 2010). 

 In this study, I combined data from two humpback whale survey programs that 

differed in their purposes and survey methods and was able to generate density estimates 

in a manner not previously conceived. The model that I developed was not without 

deficiencies; however, I have identified pathways for its improvement in the future. The 

possible problem of negative bias in abundance estimates does not preclude the use of the 

model estimates in the quantitative decision-support tool, provided that decision makers 

are aware of this property. The model described here will fill a key role in the 



165 

 

 

quantitative decision tool by informing a function that will accept user-specified inputs of 

abundance and occurrence probabilities and generate spatially explicit whale density 

predictions, which may serve as inputs to additional sub-models.
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Tables 

Table 5.1. Annual abundance estimates of humpback whales summering in Glacier Bay, 
Alaska (2007-2015) based on an integrated density model. Summary statistics include 
standard error (SE), coefficient of variation (CV), and lower and upper 95% credible 
intervals (LCL and UCL). 

Year Estimate SE CV (%) LCL UCL 

2007 63.3 6.0 9.5 52 76 

2008 62.5 7.0 11.1 51 77 

2009 77.8 8.8 11.3 63 98 

2010 89.2 11.2 12.6 70 114 

2011 115.9 10.8 9.3 97 139 

2012 129.6 13.7 10.6 106 160 

2013 156.2 16.3 10.4 129 192 

2014 77.5 8.2 10.6 63 96 

2015 130.7 10.9 8.3 112 155 
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Table 5.2. Parameter estimates from an integrated humpback whale density model for 
Glacier Bay, Alaska. The LCL and UCL columns denote lower and upper 95% credible 
intervals. Bold text denotes coefficients with parameter estimates that do not overlap with 
zero. 

Parameter Description Estimate SE LCL UCL 
Abundance 

î[ïñó]  Mean log(Abundance) 4.55 0.16 4.21 4.85 

ò[ïñó]  SD log(Abundance) 0.40 0.15 0.21 0.78 

Distribution 

ôö  Distance to bay entrance -1.47 0.14 -1.78 -1.21 

ôõ  Section area -0.01 0.14 -0.29 0.30 
ò[úùûü†°ó]  Section-specific error 0.81 0.14 0.58 0.89 

ò[¢ù£§:úùûü†°ó]  Section-year- specific error 0.40 0.04 0.33 0.47 
Detection (Shipboard observer) 

•¶  Intercept -4.78 0.13 -5.03 -4.53 
•ö  Time effect 2.66 0.17 2.34 3.00 

•õ  Visibility (Excellent) 0.46 0.10 0.26 0.65 

•ß  Visibility (Poor) -0.07 0.17 -0.40 0.25 
•®  Visibility (Fog) 0.26 0.41 -0.58 1.06 
ò[©ñ™]  Detection error 2.31 0.09 2.13 2.49 

Detection (Active survey) 

´¶  Intercept -2.47 0.08 -2.61 -2.32 
´ö  Time effect 1.72 0.06 1.61 1.84 

´õ  Pause in section -0.02 0.01 -0.04 0.01 
´ß  Pause in last section 0.02 0.06 -0.10 0.15 
ò[ú¨§≠]  Detection error 0.30 0.07 0.20 0.44 
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Figures 

 

 

Figure 5.1. Map of the vicinity of Glacier Bay, Alaska, including boundaries of Glacier Bay 
National Park and labels of major zones of the bay.
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Figure 5.2. Vessel track-lines and whale sighting locations from the active whale survey and the cruise shipboard observer 
programs in Glacier Bay National Park, Alaska, recorded from June 1 through August 31, 2007-2015.



174 

 

 

 

 
 

Figure 5.3. Directed acyclic graph describing an integrated humpback whale density model in Glacier Bay, Alaska. 
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Figure 5.4. Mean population distribution of humpback whales in Glacier Bay, Alaska based on an integrated density model. 
Map shading indicates the expected proportion of the population found in each of the 43 sections (values for all sections sum 
to 1). The plot to the right also depicts estimated proportion of whales in the population found in each cell, along with 95% 
credible intervals. 
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Figure 5.5. Maps of overall estimated mean density (left) and standard errors in estimated density (right) for humpback whales 
in Glacier Bay, Alaska, during (2007-2015).
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Figure 5.6. Plots of estimated humpback whale abundance in Glacier Bay, Alaska (2007-
2015) versus the number of unique whales identified in active surveys (A) and an annual 
index of humpback whale abundance (B). The brackets surrounding solid points denote 
upper and lower 95% credible intervals. In the B plot, the secondary y-axis is scaled by a 
factor of 142, such that the that of the abundance estimate and whale abundance index 
were at the same vertical position at the start of the time series (2007).

A 

B 
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  THE FUTURE OF THE GLACIER BAY NATIONAL PARK 

DECISION TOOL 

The purpose of this final chapter is to discuss the role that biological sub-models 

for pinnipeds, ground-nesting waterbirds, and humpback whales will play in informing 

the decision tool as the structured decision making (SDM) process in Glacier Bay 

National Park continues to develop. Completion of biological sub-models marks an 

important stage in the process, one in which participants must now confront discrepancies 

between what they would like to know to manage resources effectively, and what 

available research and monitoring is capable of providing. This is also a stage in which 

connections among various sub-models and decision alternatives must be made explicit, 

if the process is to continue.  

The model development process offered an opportunity to appraise the extent to 

which existing monitoring could be used to assess measurable attributes. Measurable 

attributes are quantities that decision makers use to describe how well fundamental and 

means-objectives are being met (Conroy and Peterson 2013). These measures made up 

the lower tiers of the objective hierarchies described in Chapter 1 (Figures 1.2-1.4). All 

measurable attributes focused on impacts and disturbances caused by visitors. As of yet, 

Park-wide visitor activity patterns have not been comprehensively described. Therefore, I 

assumed that visitor activity patterns were precisely determined when carrying out the 

evaluation of biological sub-models below. 

In this chapter, I examine the utility of each of the four sub-models in terms of its 

ability to meet the needs of the decision tool, as described in the initial phase of the 
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project. Specifically, I evaluate whether outputs from these models map onto the 

measurable attributes initially defined by decision makers and resource specialists 

(Chapter 1). This evaluation also provides an explanation for why specific modeling 

decisions were made. For example, I frequently parameterized models in a manner such 

that population size could be easily manipulated, because decision makers were interested 

in examining how changes to the abundance and distribution of animals would influence 

outputs. I also insisted on explicitly estimating attendance probabilities for the two 

pinniped species, because these values are essential for estimating the number of seals or 

sea lions expected to be disturbed by a vessel that approaches a haul-out location. 

Discrepancies between measurable attributes and outputs from biological sub-

models should not be viewed as insurmountable or signs that the tool development 

process has failed. Rather they are impediments that can be overcome in several ways. 

Participants in the process may choose to eliminate or redefine some attributes to better 

match the available information. Alternatively, the current set of attributes can be 

maintained, and knowledge gaps temporally filled by judgments made by resource 

specialists or through a formalized expert elicitation process (O’Hagan et al. 2006). 

While substituting judgements for data may seem like “papering over” the issues to some, 

it is important to consider that the influence of all variables can be rigorously examined 

in the sensitivity analysis stage of the SDM process (Starfield et al. 1995, Clemen and 

Reilly 2013, Conroy and Peterson 2013). An awareness that all components of the model 

will be subject to this process can curb hesitation in taking the steps toward a fully 

interconnected decision tool.  
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Linking Biological Sub-Models to Measurable Attributes 

Pinnipeds 

Sea lion and harbor seal models (Chapters 2 and 3) provided a valuable means for 

tracking the status of the populations and estimating attendance probabilities. At the 

beginning of the project, measurable attributes for pinnipeds were broadly defined as 

“minimizing take” according to the Marine Mammal Protection Act definition (Figure 

1.3). Attributes later changed to minimizing human-caused disturbances during pupping 

and molting periods (Figure 1.4). Estimates produced by both pinniped models mostly 

align with measurable attributes. A minor concern is that abundances during pupping and 

molting periods were held constant in both models, due to the sparsity of the data. 

Another minor issue is that attendance probabilities described by both models only 

correspond to timeframes in which aerial surveys were conducted (i.e. within 2 hours of 

low tide). If attendance probabilities are to be used for estimating the frequency of 

disturbances between vessels and pinnipeds, it may be appropriate to add additional 

uncertainty or otherwise shift these parameters.   

Ground-nesting waterbirds 

Measurable attributes for ground-nesting waterbirds remained consistent 

throughout the model development process and included minimizing human-caused 

disturbances to vulnerable concentrations of coastal breeding waterbirds and causing nest 

failures. Preparation for the analysis in Chapter 4 revealed that coastal waterbirds were 

the most poorly suited focal species group identified for inclusion in the tool. The reason 

for this was that quantifying measurable attributes for this species group were more 
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demanding than those for whales or pinnipeds, because quantifying nest failures 

stemming from a particular cause would require intensive sampling effort. The available 

monitoring data was insufficient for providing information at that resolution, owing to the 

sparsity of surveys across space and time. Weaknesses in the data set were not indicative 

of ineffectiveness on the part of surveyors or researchers, but rather a reflection of 

resource limitations as well as the intrinsic uncertainty in the detectability of nesting for 

most species. The mismatch between the data available and the ability of the data to 

address the questions being asked is frequently encountered in SDM. When identified, 

these mismatches provide an opportunity to revise decision makers objectives to match 

the data limitations or refine data collection efforts so the resulting data can be used to 

better inform decision making. 

The sparseness and variability of survey data led to my decision to coarsen the 

model’s resolution. Rather than using counts of individuals or nests, I simplified the 

status of waterbird species at each location into one of up to five states. This decision 

eliminated the possibility of estimating the number of nest failures, much less the number 

of nests that failed due to humans. I was compelled to exclude the “nesting” state for both 

black-legged kittiwakes and cormorants due to data sparsity and issues with how 

observations of these species were recorded. I was further compelled to remove other 

species and sites from the analysis because there were too few observations with which to 

generate reasonable estimates. In many ways, the deficiencies of the data and monitoring 

program for informing measurable attributes were apparent before the multistate analysis 

began. The fitted model was hampered by low detection probabilities and unable to 

identify habitat relationships beyond the general categories of “island” versus “glacial 
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outwash.” I still attempted to assess the effect of humans on occurrence and nesting by 

comparing species persistence and probabilities of nesting across sites that were both 

closed and open to the public. Unsurprisingly, the model did not provide evidence of 

human-caused decreases in occupancy or site-level nesting probability. 

Another reason why current coastal waterbird monitoring is insufficient for 

addressing the measurable attributes was related to a broader concern that regularly 

monitored locations are not necessarily reflective of the status of a given species 

throughout the bay. It is reasonable to consider that species with a more confined nesting 

distribution may be more deserving of the protection provided by an island closure (e.g., 

arctic tern), as opposed to species with a broader distribution (black oystercatchers). 

Knowledge of the bay-wide distribution of coastal waterbirds is somewhat outdated, with 

the last bay-wide assessment conducted in the early 2000s (Arimitsu et al. 2007). These 

surveys were exhaustive and completed over a three year period, which would be 

infeasible to repeat. Furthermore, they are likely to have underestimated the nesting 

distribution, given my findings regarding site-level nesting detection probabilities. 

Despite the problems related to coastal waterbird monitoring, I believe that it is 

possible for the Park to meaningfully include this focal species group in the decision tool 

if the participants in the SDM process perform two actions: (1) redefine the coastal 

waterbird measurable attributes from “minimizing human-caused nest failures” to a 

measure that could be more realistically estimated, that of minimizing “disturbance to 

nesting habitats” (2) reconfigure the waterbird monitoring program to allow for an annual 

bay-wide assessment of nesting distribution. The Park need not invest in exhaustive 

survey of the bay, but instead estimate nest occurrence by implementing a multi-season 
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occupancy modelling framework (MacKenzie et al. 2018), focused on tracking the 

nesting distribution of coastal waterbirds. The Park could create a robust and efficient 

sampling design by drawing information from the analysis in Chapter 4 as well as the 

comprehensive spatially explicit information from Arimitsu et al. (2007). 

Humpback Whales 

Measurable attributes associated with humpback whale protection included 

minimizing human-caused injuries, deaths, and disturbances more broadly. The 

humpback whale sub-model (Chapter 5) produced density predictions that may, in 

conjunction with a vessel activity data, estimate the degree of overlap between vessels 

and whales. The ability to quantify overlapping distributions is essential for linking the 

sub-model output to both measurable attributes, because overlap is an obvious 

requirement for all types of encounters (e.g., minor disturbances, fatalities). Quantifying 

rates of whale injuries and deaths is a daunting task considering that these are rare events 

(Gende et al. 2018). A better course of action may instead be to estimate the rate of 

“close encounters” between vessels and whales, defined as instances in which whales are 

positioned in the path of a moving vessel. These events are an appropriate proxy, in that 

they are a necessary condition for a collision to occur, but not so rare as to create 

numerical issues or be difficult to comprehend at an annual timescale. 

Next Steps 

The development of the quantitative decision tool for managing wildlife and visitors in 

Glacier Bay National Park is an ongoing process and there is much work that remains to 

be done in terms of specific analyses, but also careful deliberation on the part of 
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participants. In the near term, work will be directed towards characterizing the activities 

of motorized and nonmotorized vessels in the Park, so that visitor-wildlife encounters can 

be estimated and incorporated into the tool. Work has already begun on modeling the rate 

of “close-encounters” between vessels and whales as a function of whale density, vessel 

traffic, and vessel speed. 
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