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Chapter 1: Introduction

One of the primary purposes of publishing academic research is to objectively communi-

cate the results of research efforts to other practitioners. This allows them understand

the properties of the works being presented without having to perform that research

effort themselves. A collection of publications from different authors proposing novel

advancements in a field should ideally present a coherent, consistent view of the current

state of the field when read as a whole. However, this ideal vision of academic pub-

lishing does not always play out in practice. The incentives and pressures for authors

surrounding the publishing process can result in research being developed and presented

in such a way that maximizes its publishability rather than maximizing the work’s util-

ity to readers. This persistent issue shows that there a need for ‘stake-free’ evaluations

of families of algorithms. A ‘stake-free’ evaluation is one in which the goal is to fairly

examine the relevant algorithms’ relative performance and characteristics across many

different settings, rather than demonstrate that one specific algorithm dominates the

others. In this thesis, we discuss our encounters with misunderstandings which may

have been caused by these research publishing incentive issues and perform thorough

‘stake-free’ evaluations of two different classes of algorithms. Our evaluations revealed

interesting and sometimes surprising results that could not have been inferred from the

publications presenting the original algorithms. To enable others to build on our work

in this direction, we release the software platform we developed for our most recent

evaluation. This platform is explicitly meant to enable designing, running, and evaluat-

ing repeatable experiments, including training every model and reproducing every plot

included in Chapter 3 with minimal user effort.

1.1 Publishing Incentives

The competitive nature of the modern publication process imposes a strong incentive

for authors to present their work in the best possible light. Most high-profile venues

have very limited space to present publications compared to the number of viable sub-
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missions, requiring that they be very selective when deciding on which submitted works

to accept. As a result, most works that are accepted are ones that appear to be ‘high

impact’, usually meaning it clearly demonstrates a significant advance in methodology or

raw performance over other state-of-the-art or well-regarded approaches in the relevant

field. Authors also have limited space with which to present their work. As a result, they

tend to focus on demonstrating their proposed ideas in the specific settings where those

proposals appear the most impressive compared to the state of the art. This is an appro-

priate and effective way to show the strengths of a given approach or algorithm, which is

necessary considering the constraints and incentives described above. Regardless, works

that exclusively focus on the strengths of the proposed algorithm or technique can hin-

der readers from gaining an understanding of for which settings the proposed technique

is appropriate (or inappropriate) to apply. This potential for misunderstanding may be

amplified if readers look at multiple works proposing new algorithms within a given area,

and transitively compare their performance to each other based on their reported results

relative to well-established baseline algorithms.

We encountered this issue when attempting to learn about the space of recently-

proposed black-box optimization algorithms. A recently proposed family of algorithms

based on space partitioning techniques reported promising results when compared to

much more computationally expensive Bayesian optimization algorithms. Specifically,

the partitioning-based optimization algorithms were demonstrated to be competitive

with the state of the art Bayesian optimization algorithms despite running with orders

of magnitude less resources. From reading the papers, one would assume that this

line of work demonstrates that Bayesian approaches must be ‘wasting effort’ since the

partitioning approaches produce better results in less time and space. We investigated

this topic by performing an evaluation of each type of algorithm in question across a wide,

varied range of objective functions, as described in Chapter 2. Our results conflicted with

the intuition we had gained by reading the works proposing partitioning algorithms: we

found that the partitioning approaches were dominated by the best-performing Bayesian

approach in almost every case. This discrepancy between the findings of our stake-free

evaluation and those inferred from reading the papers present the partitioning methods in

the best possible light shows the confusion that this issue can cause to those attempting

to follow the literature.
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1.2 Hyperparameter Optimization

Many machine learning algorithms’ (especially deep learning models’) performance is in-

fluenced by the hyperparameters used to train the model or otherwise define its behavior.

In some cases, the effect of selecting a good or bad hyperparameter configuration on the

model’s observed performance can dominate the performance characteristics that are due

to the proposed algorithm’s structure and operation. However, hyperparameter selec-

tion processes are rarely explicitly recorded in publications which evaluate these models.

Commonly, the authors will describe the method used to search for a performant hyper-

parameter setting for their model (e.g. ‘hyperparemeter optimization was performed via

grid search’) and list the final values each hyperparameter was set to. This omits the

crucial information of how much effort was put into the grid search for each model. If

the authors’ proposed model received hundreds of hours of hyperparameter search time

over months of development, while the models they compare against were only given a

brief hyperparameter search shortly before the submission deadline, this could have a

significant impact on the results they report.

To address this issue, in the evaluation in Chapter 3 we explicitly describe a repeat-

able hyperparameter search procedure which is used to determine the training hyperpa-

rameters for each instance of each model on each problem type. This procedure quickly

experimentally determines a range of effective values for the hyperparameter in question.

While the approach is less thorough than a full grid search, it is orders of magnitude

faster which enables us to tune the hyperparameters for each model on each problem

automatically with little effort. Most importantly, this procedure ensures that all mod-

els included in the evaluation receive approximately equal amounts of hyperparameter

tuning effort. This ensures that observed differences in the models’ performance is due

to the structural differences between the models rather than the amount of tuning effort

they received.

1.3 Reproducability

Both of these potential pitfalls could be worked around if the publications provided

usable code that allowed others to easily reproduce their reported results. This would

allow interested parties to observe details about the training or evaluation process that
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may not have been fully included in the publication, such as exact hyperparameter search

details. Additionally, providing a working evaluation platform allows interested parties

to build on and extend it, potentially to evaluate the proposed algorithm on a different

set of domains than was emphasized in its paper.

Unfortunately, many publications do not provide any usable code at all, making it

nearly impossible to independently validate their claims. Works that do provide code

frequently only provide a handful of python scripts which define the models being evalu-

ated and the dataset implementation. While this is helpful to those wishing to build on

the core aspect of the work in some other way, a handful of python scripts is usually not

sufficient to validate all the results presented in the paper the code is associated with.

We intentionally take the opposite approach to make our work as reproducible and

approachable as possible. To perform the evaluation in Chapter 3, we developed a

software platform which explicitly defines and controls every aspect of the evaluation.

The software platform includes: generic implementations of all models and datasets used

in the evaluation; experiment definition files which configure the datasets and models

and define how they should be trained; scripts to recreate the automated hyperparameter

search procedure; scripts to produce the plots and tables included in Chapter 3; and

documentation to explicitly instruct users on how to use the provided tools to recreate the

results shown in the evaluation. This allows practitioners to run the same experiments

we did, and hopefully fully reproduce our results with minimal effort. Additionally, we

hope that the software platform developed for this evaluation will be extended to further

develop this line of fully-reproducible research.
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Chapter 2: An Empirical Study of Bayesian Optimization:

Acquisition Versus Partition

2.1 Abstract

Bayesian optimization (BO) is a popular framework for black-box optimization. Two

classes of BO approaches have shown promising empirical performance while providing

strong theoretical guarantees. The first class optimizes an acquisition function to select

points, which is typically computationally expensive and can only be done approximately.

The second class of algorithms use systematic space partitioning, which is much cheaper

computationally but the selection is typically less informed. This points to a potential

trade-off between the computational complexity and empirical performance of these al-

gorithms. The current literature, however, only provides a sparse sampling of empirical

comparison points, giving little insight into this trade-off. The primary contribution of

this work is to conduct a comprehensive, repeatable evaluation within a common soft-

ware framework, which we provide as an open-source package. Our results give strong

evidence about the relative performance of these methods and reveal a consistent top

performer, even when accounting for overall computation time.

2.2 Introduction

We consider the problem of optimizing an unknown function f by selecting experiments

that each specify an input x and return a response f(x). Given an experimental budget,

the goal is to select a sequence of experiments in order to find an input that approximately

maximizes f . An effective approach to this problem is Bayesian optimization (BO)

[Brochu et al., 2010], which assumes a Bayesian prior in order to quantify the uncertainty

over f via posterior inference. This posterior can then be used to bias the experiment

selection in a variety of ways.

Perhaps the most traditional and widely used BO approach is acquisition-based BO

(ABO) [Kushner, 1964, Jones, 2001]. The key idea is to define an acquisition func-
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tion in terms of the posterior, which is then optimized at each iteration to select the

next experiment. Two commonly used acquisition functions are Expected Improvement

(EI) [Mockus, 1994] and Upper Confidence Bound (UCB) [Srinivas et al., 2010], which

have both been shown to be practically effective. In addition, UCB has been shown to

have probabilistic guarantees on performance under the assumption that the acquisition

function can be perfectly optimized at each iteration. However, both UCB and EI are

non-convex, making optimization costly and inexact for higher dimensional functions.

Thus, in practice, the theoretical results for ABO do not hold and the selection of each

experiment can be computationally expensive.

A recent alternative approach to ABO completely avoids the optimization of acqui-

sition functions. These approaches are inspired by the simultaneous optimistic opti-

mization [Munos et al., 2014] (SOO) algorithm, which is a non-Bayesian approach that

intelligently partitions the space based on observed experiments to effectively balance

exploration and exploitation of the objective. We will refer to SOO and algorithms de-

rived from it as partition-based global optimization (PGO) algorithms. A key feature of

SOO is that it provides finite time performance guarantees with minimal assumptions

about the objective function’s properties. SOO does not, however, exploit the poten-

tial benefits of posterior inference. This has led to variants of SOO, such as BaMSOO

[Wang et al., 2014] and IMGPO [Kawaguchi et al., 2015], that integrate posterior infer-

ence to better direct SOO’s exploration. We will refer to these alternative approaches

that integrate posterior inference with PGO approaches as partitioning-based BO (PBO)

algorithms. Importantly, the PBO algorithms are able to select each experiments us-

ing significantly less computation compared to ABO. At the same time, they maintain

probabilistic variants of SOO’s performance guarantees.

ABO uses more computation per experiment selection than the partition-based ap-

proaches, so one might expect ABO to make higher quality decisions and outperform

partition-based methods given the same number of experiments. Thus, ABO may have

an advantage for application where the number of experiments is fixed and not limited

by the runtime of experiment selection. For example, when experiments involve lengthy

wet lab trials or expensive simulations, the computation time required for selecting ex-

periments may be negligible. Alternatively, there are applications where the expense of

ABO can limit the number of experiments compared to partition-based methods. For

example, if experiments correspond to running fast physics simulations, then the higher
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computational cost of ABO may be a bottleneck that will lead to running fewer experi-

ments in a fixed time horizon and potentially perform worse than partitioning methods.

The above intuitions suggest a potential trade-off between acquisition-based and

partition-based methods, however, the literature provides little guidance regarding this

trade-off. Most comparisons between ABO, PBO, and PGO have been either indirect

or on a sparse set of problems. For example, the PBO algorithm BaMSOO was shown

[Wang et al., 2014] to outperform both SOO and selected ABO algorithms. However,

this was on a modest number of problems and for Bayesian hyper-parameters that were

selected on a per problem basis, which is not always a realistic real-world use scenario.

Later, a non-Bayesian PGO algorithm, LOGO [Kawaguchi et al., 2016], was shown to

outperform SOO and BaMSOO, which combined with the prior BaMSOO results was

taken as evidence for preferring LOGO over ABO approaches. More recent work on

IMGPO [Kawaguchi et al., 2015] shows further benefits of PBO over ABO on a small

set of problems. However, the ABO implementations used in those evaluations appear

to yield inferior performance to the experience of others. If taken at face value, these

prior results suggest that PBO approaches dominate ABO approaches despite their much

lower computational cost. Yet most applications of BO are still using ABO approaches.

The primary contribution of this paper is to conduct a more thorough evaluation of

these approaches with the aim of understanding when and if one should be preferred. We

conduct this investigation using a common software framework, which will be publicly

available and allow for complete reproducibility. Importantly, we do not introduce new

algorithms or variants of existing algorithms in order to avoid the potential appearance

of bias in our evaluation. Our results yield fairly consistent observations across a variety

of test problems, shedding light on the relative performance of some of key representative

acquisition-based and partition-based algorithms.

2.3 Problem Setup and Background

We consider optimizing an unknown function f : X → R where X is a compact d-

dimensional subset of Rd. The black box function f does not necessarily have a closed

form but can be evaluated at any point in the domain. Running an experiment x allows

us to observe the outcome y = f(x) at some cost. Given a budget that constrains the

number of experiments, the goal is to find a input x that approximately maximizes f .
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Without any constraints on f , there is no way to guarantee a near optimal value will

be found. Thus, prior theoretical and practical work on this black-box optimization

problem typically makes some form of smoothness assumption on f [Munos et al., 2014].

Under such assumptions it is possible to design more intelligent optimization procedures

that prune away and prioritize parts of the input space based on previously observed

experiments.

Bayesian optimization (BO) formalizes smoothness via a Bayesian prior over f , which

is often represented by a Gaussian Process (GP) [Williams and Rasmussen, 2006]. In

this work, we will focus on BO using GP priors. A GP is a collection of possibly infinite

random variables where any subset is multivariate Gaussian distributed. One advantage

of using a GP prior over f is that for any experiment x there is a closed form for

the mean and standard deviation of its response f(x), conditioned on the previously

observed experiments. A GP is completely specified by its mean function, m(x) and its

covariance function, k(x1, x2). A common choice in the BO literature, which we follow

in our experiments, is to select the prior mean to be zero; that is, m(x) = 0 for all x ∈ X .

In addition, we will use the squared-exponential kernel with a width hyper-parameter θi

for each input dimension, which is a widely used kernel in the BO and more generally

GP literature. Given a set of observed experiments, we select the hyper-parameters

via automatic relevance determination (SE-ARD) [MacKay, 1998], which optimizes the

marginal likelihood with respect to the hyper-parameters.

To evaluate the performance of each algorithm on each objective function, we calcu-

late its regret after t objective observations rt = f(x∗)−f(x+t ), where x∗ is the optimum

point and x+t is the best point the algorithm has observed so far after making t obser-

vations. Note that regret for ABO methods is frequently calculated by setting x+t to

the point that maximizes its GP’s mean function after making t observations. Since

partitioning-based methods cannot provide a similar prediction, to ensure a fair com-

parison between the different results we exclusively consider points that the algorithms

have observed directly when calculating their regret.

2.4 Description of Algorithms

This section describes the algorithms that are included in our empirical study, which

covers three algorithmic classes. First, we describe two widely used algorithms from the
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class of acquisition-based BO (ABO) algorithms. Second, we describe two partitioning-

based global optimization (PGO) algorithms, which do not use a Bayesian prior, but

have strong theoretical guarantees on regret. Third, we describe two partitioning-based

Bayesian optimization (PBO) algorithms, which incorporate a Bayesian prior into the

PGO approaches. A comparison of the most relevant properties of all the algorithms is

provided in Table 2.1.

2.4.1 Acquisition-Based BO

Assume we have the observations Dt = {x1:t, y1:t} and we are interested in the distribu-

tion of the output y∗ of a test point (another experiment) x∗. Since we have a GP with

prior mean zero, the joint distribution of y1:t and y∗ can be written as:[
y1:t

y∗

]
∼ N

(
0,

[
K(x1:t, x1:t) K(x1:t, x∗)

K(x∗, x1:t) K(x∗, x∗)

])

where K(·, ·) is the corresponding covariance matrix using the covariance function

element-wise. Having the joint distribution, the conditional distribution of y∗ given the

observed data can be derived as:

y∗|Dt, x∗ ∼ N
(
µ(x∗), σ

2(x∗)
)

µ(x∗) = K(x∗, x1:t)[K(x1:t, x1:t)]
−1y1:t

σ2(x∗) = K(x∗, x∗)−K(x∗, x1:t)[K(x1:t, x1:t)]
−1K(x1:t, x∗)

ABO uses an acquisition function as a selection heuristic that evaluates each candi-

date point based on its mean and variance. Acquisition functions are generally designed

so that their high values correspond to potentially high values of the objective function.

Starting with some initial observed data points, the covariance matrix of the GP is cal-

culated. Using the posterior mean and variance of each candidate data point, the value

of the acquisition function can be obtained. The point that maximizes this value is then

selected for observation. The experiment and its observed output get added to the data

set and this process can be repeated until a specified horizon or budget is exhausted.

Since optimizing the hyperparameters of the kernel function helps fit a more accurate

GP model to the data, the kernel parameters are tuned periodically during the iterative

process. Pseudocode for the ABO algorithm is provided in Algorithm 1.
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In this paper, we consider two of the most popular acquisition functions, namely Ex-

pected Improvement (EI) [Mockus et al., 1978] and Gaussian Process Upper Confidence

Bound (GP-UCB) [Srinivas et al., 2010]. At any time step t + 1 with prior experiments

x1:t, the acquisition function EI measures the expected improvement with respect to the

current best previously observed objective value f(x+t ), where x+t = arg maxxi∈x1:t
f(xi).

Under Gaussian Processes, EI can be analytically computed as follows:

AEI(x) = (µ(x)− f(x+))Φ(µ(x)−f(x+)
σ(x) ) + σ(x)ϕ(µ(x)−f(x+)

σ(x) )

where µ(x) and σ2(x) are the predicted mean and variance of point x. And, Φ and ϕ

are the CDF and PDF of the standard normal distribution, respectively.

More recently, GP-UCB with provable cumulative regret bounds with high proba-

bility was proposed as a BO algorithm [Srinivas et al., 2010]. Formally, the algorithm

defines the following acquisition function:

AUCB(x) = µ(x) + β
1/2
t σ(x)

where βt are appropriate coefficients that balance exploitation against exploration.

The regret bounds provided by Srinivas et al. [2010] depend on the assumptions on

the kernel spectrum and their correspondingly defined βt. In practice, the researchers

choose the form of βt based on their domain knowledge. For instance, although different

from βt used in their theoretical results, Kandasamy et al. [2015b] use βt = 0.2d log 2t

in their experiments where d is the number of dimensions. Since we wish to evaluate

the performance of these algorithms in a setting where we have no pre-existing domain

knowledge that can be used to effectively set these values, we chose to instead select a

value for βt that others had reported experimental success with. In this work, we use

βt = 2 log(|X |t2π2/6δ) which was found to be effective by Srinivas et al. [2010] with

δ = 0.1, where the smaller value of δ provides a higher probability of achieving the

regret bound. The size of X is obtained assuming each dimension is discretized into

1000 points.

2.4.2 Partitioning-Based Optimization

Partitioning-based approaches attempt to use an implicit upper bound on the values

contained within cells of varying sizes of the objective function’s space. Once a proce-

dure has identified the cells with the most promising upper bound, the algorithms can
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Algorithm 1 Bayesian optimization Process

Input: D0, Nup ▷ D0 is the initial data; the hyperparameters get updated every Nup

iterations
1: for t = 1,2, . . . do
2: if Nup is a divisor of t then
3: Update the kernel hyperparameters
4: end if
5: Given Dt−1, specify the GP
6: Select xt by optimizing the acquisition function

xt = arg maxx∈X A(x|Dt−1)
7: Observe yt, the output of xt
8: Augment data Dt = {Dt−1, (xt, yt)}
9: end for

then direct their search focusing on those promising ones by refining them into smaller,

hopefully more informative cells. These newly created cells require additional objective

observations so that they can be assigned a value representative of the space each cell

encloses.

This loop of selecting promising cells and refining them with additional function eval-

uations is what drives the partitioning algorithms’ search, and the predictable behavior

of the growth of the partitioning tree is what permits the algorithms their theoretical

guarantees. In this section, we consider two PGO algorithms with strong theoretical

guarantees, one of which (LOGO) has claimed in prior work [Kawaguchi et al., 2016] to

be competitive with ABO.

2.4.2.1 Simultaneous Optimistic Optimization (SOO)

The simultaneous optimistic optimization algorithm is a partitioning-based global opti-

mization (PGO) algorithm introduced by Munos et al. [2014]. Two advantages of SOO

over other algorithms are its weak assumptions about the function being optimized and

its relative speed. To meet its preconditions SOO only requires that there exists some

semi-metric ℓ over the objective such that f(x∗) − f(x) ≤ ℓ(x∗, x)∀x (where x∗ is the

optimum point of the objective function) and that the space can be partitioned into

cells with monotonically decreasing ‘size’ according to ℓ. However, it is not required to

know or estimate this metric for the algorithm. Additionally, since SOO is computa-
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tionally very simple and does not require the optimization of any auxiliary functions to

operate, it can consistently select points for observation in a near-zero amount of time

when executed on modern computer hardware. A high-level pseudocode description of

the algorithm is provided at Algorithm 2.

SOO works by partitioning its objective function’s domain using a tree τ . Each node

in the tree represents a hyper-rectangle (cell) in the space and is assigned the observed

value of the objective function at the center point of the hyper-rectangle. This single

objective sample and the size of the cell is used to reason about the potential function

values that could be contained within the cell’s region. We use xh,i to represent the

center point of the ith node at depth h in τ , and g(xh,i) for its associated observed value

from the objective function f . In each iteration, SOO selects a set of promising cells for

refinement, where each selected cell is partitioned into three equal-sized sub-cells as its

children1. If a cell has not been refined, it is referred to as a leaf.

Initially, the partition tree contains only a single leaf node that covers the entire

input space. The center of the input space is sampled and the resultant function value

is assigned to this node. From that point onward, SOO iteratively selects the leaf node

at each depth in the tree with the highest upper bound according to the implied semi-

metric ℓ for further partitioning (refinement), as long as the selected leaf’s upper bound

is greater than the upper bound of any leaf of larger cell sizes in τ during that iteration.

Importantly, we do not need to explicitly compute the upper bounds in order to select

the leaf with the highest upper bound.

Specifically, since all leaves at a given depth of the tree have cells of the same size,

finding the leaf with the highest upper bound at a fixed depth h according to ℓ is

simply a matter of finding the leaf at that depth with the highest center value g(xh,i).

Furthermore, we know that if any larger-sized leaf has a greater center value than a

smaller-sized leaf, the larger one’s upper bound according to ℓ must be greater due to

its larger size and higher known value at its center. Therefore, we can safely ignore the

smaller-sized leaf. As such, as we iterate through each depth level of the partitioning tree

and select the leaf with the highest center value at each depth, we only need to consider

those leaves whose center value is higher than that of any larger-sized leaves. This will

guarantee that the leaf with the maximum upper bound according to ℓ is always selected

for expansion regardless of the true definition of ℓ.

1Tie breaking is discussed in Section 2.5.4.
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SOO takes as parameter a depth-limiting function hmax(n) that defines the maximum

depth to which the partitioning tree can be expanded after n cell refinements. In previous

work [Munos et al., 2014] [Kawaguchi et al., 2016], this function has always been defined

as hmax(n) =
√
n so we ignore this parameter and assume that this common setting of

hmax is a part of SOO itself.

At a high level, the SOO algorithm can be viewed as consisting of two parts: the

cell selection process (lines 8-15), and the cell expansion process (lines 16-23). Since the

remaining partitioning-based algorithms involve modifying one or both of these processes,

we define a simplified version of the algorithm at Algorithm 3, which is used to enable a

more clear definition of the derivative algorithms.

Algorithm 2 Simultaneous Optimistic Optimization

1: Initialize τh = ∅ ∀h ≥ 0 ▷ τh contains the set of leaves at depth h
2: τ0 = {x0,0} ▷ x0,0 is the center of the objective function f ’s domain
3: g(x0,0) = f(x0,0)
4: n = 1
5: loop
6: E = ∅
7: vmax = −∞
8: for h = 0 . . .min(depth (τ) , hmax (n)) do
9: (h, i) =arg maxxh,j∈Lh

g(xh,j), where Lh contains all leaves of τ at depth h
10: if g(xh,i) ≥ vmax then
11: E = E ∪ {xh,i}
12: vmax = g(xh,i)
13: n = n + 1
14: end if
15: end for
16: for each cell xh,i in E do
17: Subdivide xh,i into its three resultant children cells xh+1,j1 . . . xh+1,j3

18: for each child cell xh+1,j do
19: g(xh+1,j) = f(xh+1,j)
20: τh+1 = τh+1 ∪ xh+1,j

21: end for
22: end for
23: end loop
24: return arg maxxh,i∈τ g(xh,i)
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Algorithm 3 Simultaneous Optimistic Optimization (simplified)

1: Initialize the partitioning tree τ with an observation from the center
2: loop
3: E = SelectCellsSOO

4: ExpandCellsSOO(E)
5: end loop
6: return arg maxxh,i∈τ g(xh,i)

2.4.2.2 Locally Oriented Global Optimization (LOGO)

Locally Oriented Global Optimization (LOGO) [Kawaguchi et al., 2016], as described in

Algorithm 4, is a modification to SOO that introduces a local bias parameter w to achieve

a finer control of the exploration-exploitation behavior of the algorithm. In particular,

instead of selecting the best leaf in the partitioning tree that meets the refinement criteria

at each depth level for expansion, LOGO uses the same selection process across disjoint

sets of w adjacent depth levels. With this approach, when w is set to a high value LOGO

will be more inclined to spend its observation budget exploiting a smaller number of

the most attractive cells rather than exploring those in nearby depths that are not as

attractive, but would have been expanded by SOO. Note that when w = 1, the behavior

of LOGO and SOO are identical.

LOGO sets the value of w according to the local bias schedule hyperparameter W ,

which must be a list of positive integers and should be monotonically increasing. At

the end of each iteration of the algorithm, if the value of the best cell observed during

that step is greater than that of the previous step w is set to the next value in W .

Otherwise, w is set to the previous value in the schedule. The intuition behind this

design is that when the algorithm is succeeding (that is, successively observing higher

and higher objective values) it should continue exploiting, which is enabled by increasing

w. When the opposite situation occurs (that is, the algorithm repeatedly fails to find

values that improve on the previous step’s observations), the algorithm should instead

fall back to more exploration-focused behavior to attempt to more quickly locate the

next area that may offer further improvement. A fixed-size schedule is used to avoid

edge cases where the algorithm would frequently ‘get lucky’ early on, causing the value

of w to consistently increase to the point where the algorithm is then ‘stuck’ exhibiting

exploitative behavior for the remainder of the optimization.
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On some objective functions, this adaptive behavior leads to significantly better

performance than SOO’s static approach without violating any of the original algorithm’s

performance guarantees.

Algorithm 4 Locally Oriented Global Optimization

1: function SelectCellsLOGO

2: E = ∅
3: vmax = −∞
4: for k = 0 . . . ⌊min(depth (τ) , hmax (n))/w⌋ do
5: D = τkw ∪ τkw+1 ∪ . . . τkw+w−1

6: i = arg maxi:xh,i∈LD
g(xh,i), where LD contains all the leaves in D

7: if g(xh,i) ≥ vmax then
8: E = E ∪ {xh,i}
9: vmax = g(xh,i)

10: n = n + 1
11: end if
12: end for
13: return E
14: end function

2.4.2.3 Dividing Rectangles (DIRECT)

DIRECT [Jones et al., 1993] is a popular partitioning-based optimization algorithm

which, while very similar in structure to SOO, is meant to improve on Lipschitzian op-

timization rather than achieve certain theoretical regret bounds. Its primary differences

from SOO are modified cell selection conditions, the lack of the concept of a ‘depth

limit’, and a more thorough expansion procedure when expanding cells which are hyper-

rectangles for which all edges are of the same size.

We are considering DIRECT in this evaluation primarily as a benchmark for other

partitioning-based optimization algorithms due to its ubiquity and efficacy in practice,

so we will not provide a more detailed description of the DIRECT algorithm itself.
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2.4.3 Partition-Based Bayesian Optimization

While the PGO methods exhibit predictable average-case performance, they clearly have

room for improvement. Their treatment of the objective as a true black box results in the

PGO algorithms frequently observing regions of the objective that should seem obviously

unpromising. However, without any ability to predict the behavior of the objective at

a given point, the algorithm’s only choice is to spend a function evaluation to prove to

itself that the region in question is ‘bad’ and can be ignored. Even when a poor region is

ignored, though, it is still guaranteed to be expanded once it is the only remaining leaf at

its depth level, resulting in even more ‘unnecessary’ function observations in potentially

irrelevant areas of the objective.

Here we examine two methods that attempt to improve PGO optimization by in-

corporating a GP prior into the procedure to use past observations to better direct the

expansion and selection of cells.

2.4.3.1 Bayesian Multi-Scale Optimistic Optimization (BaMSOO)

The Bayesian Multi-Scale Optimistic Optimization [Wang et al., 2014] algorithm (Al-

gorithm 5) is a SOO-based algorithm that uses the same selection strategy, but avoids

evaluating a point during expansion if the point is deemed unpromising according to the

posterior. Specifically, this is done by comparing the upper confidence bound (UCB) de-

rived from the prior at the locations which are about to be observed to the best function

value observed in the tree. If the UCB of a cell’s center is smaller than the best value

observed, we know that the cell is unlikely to contain the optimum. Therefore, Instead

of using up a function observation assigning a value to a cell that is unlikely to be further

expanded, the cell is assigned the value of the lower confidence bound of its center point

according to the prior. This allows the algorithm to continue as expected by effectively

‘ignoring’ the unpromising cell instead of spending an objective evaluation to assign a

value to the probably-unimportant cell.

2.4.3.2 Infinite-Metric GP Optimization (IMGPO)

IMGPO (Algorithm 6) builds on BaMSOO by further taking advantage of the informa-

tion encoded in the prior by also using it to guide the cell selection process. In addition
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Algorithm 5 Bayesian Multi-Scale Optimistic Optimization

1: function ExpandCellsBaMSOO(E)
2: D = the observations in τ not marked as GP-based
3: for each cell xh,i in E do
4: Refine xh,i into its three resultant children cells xh+1,j1 . . . xh+1,j3

5: for each child cell xh+1,j do
6: if U(xh+1,j |D) ≥ f∗ then
7: g(xh+1,j) = f(xh+1,j)
8: else
9: g(xh+1,j) = L(xh+1,j |D)

10: Mark g(xh+1,j) as GP-based
11: end if
12: τh+1 = τh+1 ∪ xh+1,j

13: end for
14: end for
15: end function

to the requirement that any cell suitable for refinement must have a value greater than

the value of any larger cell, IMGPO also requires that the cell being considered must

contain a UCB greater than the value of any smaller (that is, deeper in the tree) cell.

To determine the UCBs that a cell contains, IMGPO builds a subtree within the cell

down to a fixed depth using the same node refinement rules. Instead of observing the

value of the function at the center of each cell in the subtree, the UCB of each cell’s

center point is calculated instead. The highest value in this temporary UCB subtree is

then considered to be the best UCB contained within the cell in question. With this

approach, IMGPO determines whether or not a cell is worth expanding based on the

prior information about the upper bound on the value of its potential children, further

allowing the algorithm to ignore areas of the objective that seem unpromising.

This change is also the most significant departure from SOO or any of the partitioning-

based algorithms. Every other partitioning algorithm’s expansion criteria for a leaf is

solely based on the properties of the cells above it in the tree. It follows that, for these

algorithms, the top-most leaf of the tree must be expanded regardless of its value, lead-

ing to predictable grid-search-like behavior as the minimum depth of any leaf in the tree

grows. Since IMGPO also evaluates cells for refinement based on how they compare

to smaller cells, a cell can remain unexpanded while being the only leaf at its depth
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Algorithm Sample Selection Fits GP Optimizes Acquisition Function Sample ‘depth limit’

SOO Grid-aligned No No Yes
LOGO Grid-aligned No No Yes
DIRECT Grid-aligned No No No
BaMSOO Grid-aligned Yes No Yes
IMGPO Grid-aligned Yes No No
BO Unrestricted Yes Yes N/A

Table 2.1: Comparison of several properties shared by the algorithms being compared.

level. This seemingly minor change prevents IMGPO from exhibiting the grid-search-

like behavior that can be seen in the PGO algorithms’ results. Accordingly, the depth

limit function hmax(n) that is used in every other SOO-derived algorithm is no longer

necessary for IMGPO.

Algorithm 6 Infinite-Metric GP Optimization

1: function SelectCellsIMGPO

2: E = ∅
3: D = the observations in τ not marked as GP-based
4: vmax = −∞
5: for h = 0 . . . depth (τ) do
6: (h, i) =arg maxxh,j∈Lh

g(xh,j), where Lh contains all leaves of τ at depth h
7: if xh,i would be selected by SelectCellsSOO then
8: Refine xh,i into a subtree S
9: U∗ = maxsh′,j∈S U(sh′,j |D)

10: f∗ = the greatest value among all non-GP-based cells at depths h′ > h
11: if U∗ ≥ f∗ then
12: E = E ∪ {xh,i}
13: n = n + 1
14: end if
15: end if
16: end for
17: end function

2.5 Experimental Setup

When reviewing the reported results of the algorithms evaluated in this paper, we found

that they were rarely evaluated in a true black-box setting. Instead, the algorithms’
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hyperparameters were tuned after the fact or alternatively the results were presented

with non-standard metrics to best demonstrate the strengths of the proposed approach.

These differences in procedure led to confusing and seemingly contradictory results

being presented, which spurred the development of this work. Our goal is to directly

compare the performance of each algorithm in a setting where they have minimal knowl-

edge of the objective being optimized with the hopes of resolving some of the confusion

one could suffer from trying to collectively reason about the previous works’ results.

2.5.1 Hyperparameter Selection

To avoid the issue of ex post facto algorithm tuning, we attempted to separate the process

of selecting values and settings for any algorithm’s hyperparameters from the evaluation

itself. To accomplish this, we looked to previous works that had used the algorithms or

the papers that had introduced the algorithms themselves and duplicated settings that

were suggested or reported as having good empirical performance. To accomplish this,

we selected all the hyperparameters for each algorithm before executing them on any

objective functions. The hyperparameter values were selected by duplicated them from

the paper that had introduced the algorithm or other works that reported good empirical

performance with certain settings. The specific values considered for this evaluation are

described in the algorithms descriptions in Section 2.4.

2.5.2 Software Platform

To perform these experiments, we built a custom, extendable C++ framework that

executes easily-repeatable evaluations of arbitrary black-box optimization algorithms.

The source code is publicly available at https://github.com/Eiii/opt_cmp.

Our framework includes C++ implementations of all partitioning-based algorithms

(SOO, LOGO, BaMSOO, IMGPO), while a modified2 version of the bayesopt library

[Martinez-Cantin, 2014] provides the implementation of BO that we use in our evaluation.

Although the authors of some partitioning-based algorithms provide implementations

of their algorithm, we chose to use custom implementations of the algorithms since each

2Modifications were made to expose previously purely internal functions and data structures as re-
quired for the BO-aware algorithms to function. The optimization behavior of the library itself is
unchanged.

https://github.com/Eiii/opt_cmp
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derivative PGO and PBO algorithm can be trivially implemented as a minor extension of

a simpler partitioning-based algorithm. This choice to define all the partitioning-based

algorithms from the same base behavior also prevents one algorithm from incorrectly

appearing more or less effective due to differing design decisions or assumptions made

by each author of an implementation.

To ensure a fair comparison between the ABO and PBO methods, the PBO imple-

mentations repurpose bayesopt’s internal GP functionality when they require the use of

a GP.

2.5.3 Black Box Functions

We chose to exclusively use synthetic benchmark functions as objectives for this eval-

uation to ensure that each benchmark could sufficiently evaluate each objective with

the time and resources available. The benchmark functions were selected with the goals

of including functions with a wide range of quantitative and qualitative properties and

including functions that the authors of the partitioning-based methods used to evaluate

their algorithms.

The LOGO paper evaluates its algorithm on the sin 2, branin, Rosenbrock, Hart-

mann3, Hartmann6, and Shekel (with m = 5, 7, 10) functions [Kawaguchi et al., 2016]

with varying dimensionality and parameterizations when possible. IMGPO and BaM-

SOO are also both evaluated on a subset of these objectives [Kawaguchi et al., 2015]

[Wang et al., 2014], so we chose to include all of them in our experiments to allow for a

more direct comparison between results. Additionally, we chose to include the Rastrigin,

Schwefel, and Ackley test functions [Molga and Smutnicki, 2005] in our evaluation to

provide more variety among the objectives.

The Rastrigin, Schwefel, Ackley, and Rosenbrock objective functions [Molga and

Smutnicki, 2005] can be defined with arbitrary dimensionality D. Functions with this

property are useful in allowing us to better determine the effect that the dimensionality

of the objective has on each algorithm’s performance. For these objectives, we evaluated

each algorithm on each function with D =2, 4, 6, and 10.

A summary of the properties of each objective function can be found in Table 2.2.
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Function Name Dimensionality Description/Category Evaluated in Previous Works:

Sin 2 Simple SOO, LOGO, IMGPO
Branin 2 Simple LOGO, BaMSOO, IMGPO
Rastrigin 2, 4, 6, 10 Many local maxima
Schwefel 2, 4, 6, 10 Many local maxima
Ackley 2, 4, 6, 10 Many local maxima
Rosenbrock 2, 4, 6, 10 Valley shaped LOGO, BaMSOO, IMGPO
Hartmann 3, 6 LOGO, BaMSOO, IMGPO
Shekel (m = 5, 7, 10) 4 LOGO, BaMSOO, IMGPO

Table 2.2: Summary of the properties of each objective function used.

2.5.4 Evaluation Process

To evaluate the set of algorithms we ran 70 iterations consisting of executing each op-

timization algorithm on each function to a horizon of at least 500 samples. For further

comparisons, we extended the horizon for SOO, LOGO, DIRECT, and Random to 10,000

samples and configured BaMSOO and IMGPO to run for the average amount of wall-

clock time the ABO algorithms expended across all their runs on each objective. These

extended horizons were chosen considering the cost to run experiments and the runtime

of each algorithm. Each individual evaluation of one algorithm on one objective function

was run on one core of a c4.4xlarge Amazon EC2 instance. The decision to run 70 itera-

tions in total was made beforehand by estimating what was feasible within the compute

time available for these experiments.

2.5.4.1 Objective Function Randomization

Since SOO and LOGO are deterministic algorithms, it is possible that the algorithm

could get unusually lucky or unlucky on some objective functions. This luck could man-

ifest as making a series of observations and resultant partitioning decisions that happen

to result in exceptional behavior that is not representative of the algorithm’s average-

case performance on objective functions with similar properties. Additionally, since any

SOO-derived algorithm must first observe the exact center of the hyper-rectangle that

defines the objective function’s domain, they are all guaranteed to trivially and imme-

diately achieve zero regret on any objective function whose maximum is at its center.

Since neither of these difficulties of evaluating SOO-derived algorithms is relevant to the
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algorithms’ performance on real-world problems, we chose to avoid them by randomizing

certain properties of the objective functions used in our evaluation.

The cell refinement procedure shared by SOO and its derived algorithms simply splits

evenly along the dimension along which the cell has the longest edge. This approach

frequently results in ties between dimensions which must be resolved using a tie breaking

procedure. The tie breaking procedure used by the partitioning algorithms is simply to

assign a fixed priority order to the dimensions and split the higher-priority dimensions

first in the case of a tie. It is plausible that this approach could lead to situations where

the assignment of this arbitrary ordering could have a significant impact on the algo-

rithms’ performance on some objective functions. To mitigate the possibility that this

behavior causes certain algorithms to exhibit non-representative behavior, we randomize

the tie break dimension ordering at the beginning of each run of each algorithm.

To allow us to evaluate the performance of the partitioning algorithms on objective

functions in which the optimum point is in its center, we randomly shrink the bounds

of the hyper-rectangle that define the objective’s domain such that the optimum point

is still guaranteed to be contained within the new bounds.

These methods of randomizing objective functions are applied to every algorithm in

a predictable and repeatable way identical to all algorithms so that, for example, one

algorithm will not be advantaged by getting ‘easier’ domains on certain functions than

another algorithm.

2.5.4.2 Hyperparameter Settings

To evaluate the algorithms in a true black-box setting, we use one set of hyperparam-

eters for each algorithm across every objective function. To avoid manually tuning the

algorithms with the goal of maximizing their performance on our specific problem set,

when possible we use the same hyperparameter settings the authors of each method used

during their evaluation process.

We use the implementation of BO from the bayesopt [Martinez-Cantin, 2014] library.

For our evaluations, we use the squared exponential kernel with automatic relevance

detection in which the parameters are estimated using maximum total likelihood. Each

ABO run is started with three randomly chosen initial points (which count against the

algorithm’s budget), and the GP’s parameters are re-estimated from the observed data
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every second ABO iteration.

The EI criteria is parameter-free, but UCB requires us to define a value for β. This

value is frequently tuned per-objective, but we instead set it to βt = 2 log
(
|D|t2π2/6δ

)
,

which Srinivas et al. [2010] found to be effective. In this case, t is the number of function

observations made so far and δ is a constant set to 0.5.

SOO has no parameters to set. LOGO only requires a list of integers to use as the

adaptive schedule W for its local bias parameter. In this work, we set W = 3, 4, 5, 6, 8, 30

to duplicate the value chosen by Kawaguchi et al. [2016] in their work that introduced

the LOGO algorithm.

BaMSOO and IMGPO both require the use of a GP prior to estimate the upper

bound on the objective function’s value at certain nodes’ locations. Using the GP’s

estimated mean function µ and standard deviation function σ, we define the LCB and

UCB as µ(x)±BNσ(x). For BaMSOO we define BN =
√

2 log (π2N2/6η) as suggested

by Wang et al. [2014], and for IMGPO we define BN =
√

2 log (π2N2/12η) as suggested

by Kawaguchi et al. [2015]. In both cases, N is the total number of times the GP was

used to evaluate a node, and the constant η is set to 0.05 to duplicate the value used in

the experimental results included by Kawaguchi et al. [2015] and Wang et al. [2014].

2.6 Empirical Results

In this section we present the results of our experiments using simple regret as our

primary performance metric. In particular, after each run of an optimization algorithm,

the simple regret is the difference between the best observed outcome and the optimal

value. The reported regrets are averages over 70 independent trials.

2.6.1 General Trends of Regret Curves

We first consider the performance of the algorithms when given the same experimental

budget. Figure 2.1 shows the average regret curves for each algorithm on the Ackley, Ras-

trigin, Rosenbrock, and Schwefel functions with dimensionality D = {4, 6, 10}, as well

as the 2D functions Sin2, Branin, and Rosenbrock2. For all but the two-dimensional

functions, there appears to be a clear ordering of the different classes of algorithms:

ABO-EI overwhelmingly dominates the remaining algorithms at most sample counts
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Figure 2.1: Regret curves for each algorithm on a variety of functions. Each curve shows
the regret at each time step averaged across 70 randomized runs. Error bars have been
omitted for readability. Statistical significance is considered in Section 2.6.2.
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Figure 2.2: Worst-case regret curves for each algorithm. Each curve shows the maximum
regret at each time step across 70 randomized runs.

with only a few exceptions. The PBO methods are consistently the next closest algo-

rithm class to ABO-EI’s performance but are rarely able to achieve the same regret.

The PGO algorithms keep up with the best-performing algorithms initially, but their

performance quickly seems to ‘flat line’ and they have difficulty significantly improving

further throughout the remainder of the sample budget.

In practice, it is important to understand the worst case performance that we may

expect to encounter. Figure 2.2 shows the worst-case regret for each algorithm observed

across the 70 trials at each sample size. Results are shown for three objective functions

that are representative of the overall results. Overall, we found that the ordering of

the worst-case performance of the algorithms was approximately similar to their relative

average-case performances. Most notably, the PGO methods consistently have an inferior

worst-case performance than Random on higher dimensional functions.

One difference compared to the average case results is that PBO methods occasionally

have significantly poorer worst-case performance than the PGO methods. This is likely

due to behavior we have observed in which the GP prior used in PBO methods can be

‘tricked’ by a few unlucky unappealing function samples near the optimum value that

causes the algorithm to ignore what should ideally be seen as a promising region of the

function. Since the PGO methods are ‘dumber’ in that they do not take advantage of

a prior and are more likely to fall back to grid-search-like behavior, they do not suffer

from this failure case.
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ABO-EI ABO-UCB PBO-BaMSOO PBO-IMGPO PGO-LOGO PGO-SOO DIRECT Random

ABO-EI 12 - 3 - 8 12 - 0 - 11 10 - 1 - 12 18 - 1 - 4 18 - 1 - 4 3 - 1 - 19 23 - 0 - 0
ABO-UCB 3 - 12 - 8 0 - 2 - 21 0 - 4 - 19 12 - 1 - 10 11 - 1 - 11 0 - 6 - 17 20 - 0 - 3

PBO-BaMSOO 0 - 12 - 11 2 - 0 - 21 0 - 2 - 21 9 - 1 - 13 10 - 1 - 12 0 - 4 - 19 23 - 0 - 0
PBO-IMGPO 1 - 10 - 12 4 - 0 - 19 2 - 0 - 21 10 - 1 - 12 10 - 1 - 12 0 - 2 - 21 22 - 0 - 1
PGO-LOGO 1 - 18 - 4 1 - 12 - 10 1 - 9 - 13 1 - 10 - 12 1 - 2 - 20 0 - 13 - 10 12 - 1 - 10
PGO-SOO 1 - 18 - 4 1 - 11 - 11 1 - 10 - 12 1 - 10 - 12 2 - 1 - 20 0 - 13 - 10 14 - 0 - 9
DIRECT 1 - 3 - 19 6 - 0 - 17 4 - 0 - 19 2 - 0 - 21 13 - 0 - 10 13 - 0 - 10 22 - 0 - 1
Random 0 - 23 - 0 0 - 20 - 3 0 - 23 - 0 0 - 22 - 1 1 - 12 - 10 0 - 14 - 9 0 - 22 - 1

Table 2.3: Pairwise comparison of each algorithm across all objective functions at t = 500
samples. Each cell displays the number of ‘wins’, ‘losses’, and ‘ties’ between the algorithm
in the row and the algorithm algorithm in the column (for example, the bottom-left-most
cell shows that Random beat ABO-EI 0 times, lost 23 times, and tied 0 times).

2.6.2 Pairwise Comparisons

To gain a better understanding of how the algorithms compare to one another across

all the objective functions, we compiled Table 2.3 which shows a pairwise comparison

of all the algorithms across every objective after 500 samples. To generate the table,

we calculated the 95% confidence interval of the mean regret of each algorithm on each

objective function at the specified sample size. We considered one algorithm to beat

another on a given function if the upper bound of the confidence interval of the mean of

its regret was less than the lower bound of the ‘challenger’ algorithm. If the confidence

intervals of the two algorithms’ performance overlapped, then they were considered to tie.

We use this information to examine differences between different classes of algorithms,

across different types of objective functions, and different sample budgets.

ABO-UCB versus ABO-EI. ABO-EI and ABO-UCB, despite being similar algo-

rithms, performed very differently from one another compared to other algorithm pairs

in the same class. EI wins over UCB over half of the time, and loses only 3 times. While

EI consistently beats every other algorithm, UCB seems to be able to at best tie with

the PBO algorithms, and could only beat the PGO algorithms approximately half of the

time.

Note that this result is based on our selected method for updating the UCB hyperpa-

rameter β. It is important to recall that this choice was based on our best effort to select

from the variety of β selection methods considered in previous work during a preliminary

validation period—we know of no better overall method for β selection.

It is very likely that one could tune β on a per problem basis to outperform EI,

however, this tuning methodology would not result in algorithm behavior that is repre-
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Figure 2.3: Regret curves for a variety of different β values for the UCB algorithm.
ABO-EI and Random are provided as benchmarks.

sentative of its efficacy in many real-world scenarios. To test this possibility, we selected

a number of additional settings for the β parameter and compared UCB’s performance

using these settings to our previous results and ABO-EI’s. Selected results from these

experiments are shown in Figure 2.3.

We compared a variety of constant values for β (labeled as UCB-x, where x is the

constant value), another suggested schedule that was used by Kandasamy et al. [2015a]

(labeled as UCB-K), an annealing schedule provided by the Bayesopt library [Martinez-

Cantin, 2014] (labeled as UCB-Annealed), the original schedule we used in the previous

results (labeled as UCB-Krause), and ABO-EI.

The results show that no one β setting appears to be able to match EI’s performance

more than occasionally. The UCB-K setting does appear to generally do better than

the UCB-Krause setting we evaluated, but not to the extent that it would significantly

change our results had we selected that schedule instead.

Simple constant values of β perform surprisingly well on some objectives, with 0.1

and 1.0 occasionally beating EI. However, the lack of a consistent winner suggests that

the β value needs to be manually tuned to perform well on each objective function.

It’s unclear what knowledge about the objective’s properties is required to determine

which β values will be effective or if it’s feasible to make that determination during the

optimization of an unknown objective function.

On the other hand, EI is parameter free and therefore does not require such a se-

lection process. Thus, these results suggest that ABO-EI is more appropriate to use in

a true black-box setting where the objective’s properties are unknown, or that further

work should be done on determining how to adaptively set ABO-UCB’s β parameter to
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improve its black-box performance.

Acquisition Functions versus Partitioning. If we consider ABO-EI as the rep-

resentative of the ABO class of algorithms, it appears that ABO approaches dominate

partitioning-based approaches across the board. PBO methods frequently seem to tie

with EI’s performance, but the fact that they are almost never able to actually outper-

form EI when given an equal number of objective function observations suggests that EI

is the more effective approach in this study.

PBO versus PGO. As should be expected, augmenting SOO to enable it to take

advantage of Bayesian inference significantly improves the PBO methods’ performance

over that of the PGO algorithms. While PBO and PGO methods frequently tie with

each other in our comparison, both PBO methods only lose once to SOO and LOGO.

Comparison to Random. The ABO and PBO algorithms are consistently able to

beat Random, with only UCB and IMGPO ever tying with it. PGO methods are not

as dominant versus Random, with both SOO and LOGO winning over Random only

slightly more often than they’re able to tie, and LOGO losing on 1 function.

Comparison to DIRECT. DIRECT clearly performs significantly better than ei-

ther SOO or LOGO in our results. It ties with ABO-EI approximately as often as the

other PGO methods lose to ABO-EI, and most notably never loses to either SOO or

LOGO while consistently outperforming them.

This is surprising, considering how similar DIRECT is to SOO in its structure and

operation. The most notable differences are DIRECT’s lack of a ‘depth limit’ when re-

fining its partitioning tree over the objective’s domain, and its lack of a uniform selection

of cells to refine among all depths of its partitioning tree.

While these properties are what give SOO its theoretical guarantees, the former may

prevent SOO from quickly exploiting an area of the objective that’s known to be good

while the latter forces it to ‘waste’ observations exploring areas that might otherwise

seem unappealing.

In practice, this appears to suggest that DIRECT’s lack of these potential limitations

allows it to significantly outperform the PGO algorithms. Since DIRECT’s runtime is

comparable to SOO and LOGO’s, our results do not suggest a potential use case for

which SOO or LOGO would be more appropriate to select as an optimization algorithm

over DIRECT.
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2.6.3 Other Results and Discussion

Large Numbers of Experiments. Since PGO algorithms are orders of magnitude

faster than ABO and PBO algorithms, and PBO algorithms can be at least an order

of magnitude faster than ABO algorithms, it is interesting to consider the performance

of each algorithm when the limiting factor is time rather than a sample budget. We

present the performance of the algorithms when run for the maximum number of samples

considered in this study in Table 2.4. This simulates the extra objective observations

that the faster methods would be able to collect within a fixed time budget, assuming the

evaluation of the objective is fast and cheap. These sample sizes were selected based on

computational feasibility of conducting the 70 trials for each algorithm on each function.

We allowed the PGO algorithms 10K samples, the ABO algorithms 500 samples, and

the PBO algorithms were allowed to run for the same average wall clock run time as

the ABO algorithms. This approach resulted in approximately 25k samples on average

per problem for BaMSOO, and 4k samples for IMGPO. We empirically observe that

both SOO and LOGO improve in comparison to the lower-sample-size ABO and PBO

approaches, contrasting the pairwise comparisons in Table 2.3 and Table 2.4 reveals that

the difference is less significant than would be expected considering the PGO methods are

allowed ten to twenty times as many samples as the others. On the other hand, DIRECT

seems to be able to take advantage of the extra samples—whereas at 500 samples it was

beaten handily by ABO-EI, after 10,000 samples it never loses to ABO-EI and wins

against it more than any other algorithm.

This suggests that the depth-limiting behavior, which is necessary to maintain SOO

and LOGO’s exploration behavior in earlier stages of the optimization, may be hurting

their ability to take advantage of large numbers of objective samples. The resulting coarse

grid new samples are restrained to by the limited depth of the refinement tree may be

limiting the extent to which the partitioning algorithms are able to quickly ‘hone in’ on

promising regions of the function once they’ve been identified. Modifying the algorithms’

depth limiting hmax function to allow for greater tree expansion at very large number

of samples could prevent this behavior, although it may also reduce performance by

allowing PGO to spend too many samples exploiting attractive-looking regions earlier

on. Investigations during our validation period did not reveal a superior choice for hmax

overall.
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Comparing PBO versus ABO, we see that both PBO algorithms reduce the number

of losses to ABO-EI at the larger sample size, they do not improve the number of wins

over ABO-EI. The performance of the PBO algorithms improves slightly against ABO-

UCB, however, ABO-UCB was already not very competitive when PBO was allowed

only 500 samples.

To more directly compare the performance of PBO and ABO algorithms, we removed

the sample budget and applied a time horizon to the PBO methods that allows them to

execute for the same average runtime as the ABO method would on the same objective.

Due to ABO’s need to optimize its increasingly expensive to evaluate acquisition function

to select each point, at large numbers of observations ABO runs slowly enough that the

PBO methods which are not burdened by this responsibility are able to achieve up to

thousands of extra samples of the objective in the same amount of time. We show a

sample of representative results obtained with varying time horizon in Figure 2.4. As

our previous results indicate, despite being allowed up to thousands of extra samples of

the objective over ABO, the PBO methods are unable to translate those extra samples

into a better final regret.

We also evaluated the algorithms’ relative performance when the objective function

takes more or less time to execute. Our data set contains the wall clock execution time (e)

and sample count (t) for each step in each optimization. Since we know the benchmark

functions take near-zero time to evaluate, we assume that the wall clock time represents

the amount of time the algorithm itself has consumed up until that point. We can then

derive a data set simulating the algorithms’ performance on objective functions that

takes time o to evaluate by replacing each wall clock time/sample count pair (e, t) in the

data set with an updated pair (e + ot, t). We hoped to discover that by adjusting the

‘objective complexity’ we would could find a trade-off where the rapid sampling pace of

the partitioning algorithms would outperform the slower optimization-bound approach

of the acquisition algorithms. However, we did not follow through on this analysis

once we observed that the partitioning methods were unable to reliably outperform the

acquisition methods even when given orders of magnitude more samples.

‘Flexibility’ of ABO. Although we’re using one set of hyperparameters on one

implementation of ABO for our evaluation, it’s important to consider that ABO has

many implicit and explicit parameters that can be modified to achieve a desired per-

formance/computation trade off. For example, by tweaking the time allowed by the
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Figure 2.4: Regret curves for PBO and ABO methods in terms of wall clock time rather
than number of function evaluations executed. Each curve shows the regret at each time
step averaged across 70 randomized runs.

inner optimization algorithm that optimizes the GP’s parameters or the algorithm that

optimizes the acquisition function, ABO can be made to run much faster with some

unknown penalty to its performance that depends on the objective’s sensitivity to the

underlying GP’s accuracy or the accuracy of the acquisition function optimization. We

do not explicitly explore the details of those minor tweaks to ABO in this work. Instead,

to examine the impact on ABO’s performance when it is not allowed the same amount

of wall clock execution time, we adjust the number of samples in-between GP parameter

optimizations.

Figure 2.5 compares the performance of the instance of ABO we present in this paper

to a ‘sparse’ instance that is identical to the implementation of ABO we used other than

that it re-learns GP parameters from the observed data one-eighth as frequently. That

is, it performs the GP optimization every sixteen observations instead of at every second

observation.

Despite an expected decrease in execution time by a factor of eight, the performance

of this ‘lighter’ instance of ABO does not appear to perform significantly differently than

our ‘standard’ ABO. If ABO-EI did not already appear to be the dominant algorithm

in this evaluation, instead presenting a version of it that achieves similar results in one-

eighth the time would make it appear even more attractive when compared to the other

methods. However, since making this change would not affect our conclusions, we do not

consider this ‘lighter’ ABO in our results other than to demonstrate how flexible ABO

approaches can be made to be.

Dependence on Dimensionality. Because ABO is known to be effective in prob-

lems with low dimensionality, we intentionally compared the algorithms on objective
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Figure 2.5: Regret curves for each instance of ABO on a representative selection of
functions. Each curve shows the regret at each time step averaged across 70 randomized
runs. Error bars have been omitted for readability.

ABO-EI ABO-UCB PBO-BaMSOO PBO-IMGPO PGO-LOGO PGO-SOO DIRECT Random

ABO-EI 12 - 3 - 8 15 - 0 - 8 6 - 1 - 16 13 - 3 - 7 13 - 4 - 6 0 - 9 - 14 23 - 0 - 0
ABO-UCB 3 - 12 - 8 9 - 0 - 14 1 - 6 - 16 4 - 2 - 17 4 - 2 - 17 0 - 12 - 11 14 - 2 - 7

PBO-BaMSOO 0 - 15 - 8 0 - 9 - 14 0 - 6 - 17 1 - 6 - 16 0 - 6 - 17 0 - 13 - 10 3 - 2 - 18
PBO-IMGPO 1 - 6 - 16 6 - 1 - 16 6 - 0 - 17 7 - 0 - 16 7 - 0 - 16 0 - 2 - 21 13 - 0 - 10
PGO-LOGO 3 - 13 - 7 2 - 4 - 17 6 - 1 - 16 0 - 7 - 16 1 - 0 - 22 1 - 10 - 12 11 - 3 - 9
PGO-SOO 4 - 13 - 6 2 - 4 - 17 6 - 0 - 17 0 - 7 - 16 0 - 1 - 22 1 - 10 - 12 12 - 3 - 8
DIRECT 9 - 0 - 14 12 - 0 - 11 13 - 0 - 10 2 - 0 - 21 10 - 1 - 12 10 - 1 - 12 23 - 0 - 0
Random 0 - 23 - 0 2 - 14 - 7 2 - 3 - 18 0 - 13 - 10 3 - 11 - 9 3 - 12 - 8 0 - 23 - 0

Table 2.4: Pairwise comparison of each algorithm across all objective functions when
algorithms are run for the maximum number of samples considered in this paper. PGO,
DIRECT, and Random are allowed 10, 000 samples, ABO is allowed 500 samples, and
PBO is allowed the same wall-clock run time as the ABO algorithms.
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ABO-EI ABO-UCB PBO-BaMSOO PBO-IMGPO PGO-LOGO PGO-SOO DIRECT Random

ABO-EI 1 - 1 - 4 1 - 0 - 5 2 - 0 - 4 3 - 1 - 2 3 - 1 - 2 0 - 1 - 5 6 - 0 - 0
ABO-UCB 1 - 1 - 4 0 - 0 - 6 0 - 0 - 6 2 - 1 - 3 3 - 1 - 2 0 - 1 - 5 6 - 0 - 0

PBO-BaMSOO 0 - 1 - 5 0 - 0 - 6 0 - 0 - 6 1 - 1 - 4 0 - 1 - 5 0 - 1 - 5 6 - 0 - 0
PBO-IMGPO 0 - 2 - 4 0 - 0 - 6 0 - 0 - 6 1 - 1 - 4 0 - 1 - 5 0 - 1 - 5 5 - 0 - 1
PGO-LOGO 1 - 3 - 2 1 - 2 - 3 1 - 1 - 4 1 - 1 - 4 1 - 2 - 3 0 - 3 - 3 4 - 1 - 1
PGO-SOO 1 - 3 - 2 1 - 3 - 2 1 - 0 - 5 1 - 0 - 5 2 - 1 - 3 0 - 3 - 3 6 - 0 - 0
DIRECT 1 - 0 - 5 1 - 0 - 5 1 - 0 - 5 1 - 0 - 5 3 - 0 - 3 3 - 0 - 3 6 - 0 - 0
Random 0 - 6 - 0 0 - 6 - 0 0 - 6 - 0 0 - 5 - 1 1 - 4 - 1 0 - 6 - 0 0 - 6 - 0

Table 2.5: Pairwise comparison of each algorithm across all objective functions with
dimension D = 2 at t = 500 samples.

functions with a wide range of dimensionality to better understand where and why the

partitioning methods’ performance differs from ABO’s. Table 2.5 shows the same com-

parison restricted to only two-dimensional objective functions, while Table 2.6 only shows

the results for the objectives with dimension greater than two.

For the two-dimensional functions we evaluated, it appears that the difference be-

tween the algorithms’ performance is not as pronounced. While ABO-EI still appears to

be the most effective, the PGO approaches frequently tie with its results and even beat

it on one occasion each.

For objectives with dimensions greater than two, ABO is much more dominant.

ABO-EI only loses to a partitioning method once, and wins against the other algorithms

much more frequently than it ties with them. Although we expect ABO’s performance

to degrade at higher dimensions, it seems that PGO’s performance is hit much harder by

the increase in objective dimensions. This may be because having more dimensions along

which to split the cells means the partitioning tree over the space would be much deeper

before PGO can start to refine its search towards promising areas (since each cell must

be split along each dimension in some order, regardless of the values observed). This

‘refinement’ shortcoming, combined with the depth-limiting behavior of PGO algorithms,

is likely what causes the performance of PGO algorithms to degrade so consistently on

high-dimensional functions.

Comparison to Previous Results. Several aspects of our results appear to differ

from some of those reported in previous works. The experimental results presented by

Wang et al. [2014] suggest that BaMSOO performs better than both SOO and ABO-

UCB while being significantly faster than ABO-UCB. Those presented by Kawaguchi

et al. [2015] suggest that IMGPO performs better than BaMSOO, SOO, and UCB-EI

while being significantly faster than BaMSOO. Later, Kawaguchi et al. [2016] report
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ABO-EI ABO-UCB PBO-BaMSOO PBO-IMGPO PGO-LOGO PGO-SOO DIRECT Random

ABO-EI 11 - 2 - 4 11 - 0 - 6 8 - 1 - 8 15 - 0 - 2 15 - 0 - 2 3 - 0 - 14 17 - 0 - 0
ABO-UCB 2 - 11 - 4 0 - 2 - 15 0 - 4 - 13 10 - 0 - 7 8 - 0 - 9 0 - 5 - 12 14 - 0 - 3

PBO-BaMSOO 0 - 11 - 6 2 - 0 - 15 0 - 2 - 15 8 - 0 - 9 10 - 0 - 7 0 - 3 - 14 17 - 0 - 0
PBO-IMGPO 1 - 8 - 8 4 - 0 - 13 2 - 0 - 15 9 - 0 - 8 10 - 0 - 7 0 - 1 - 16 17 - 0 - 0
PGO-LOGO 0 - 15 - 2 0 - 10 - 7 0 - 8 - 9 0 - 9 - 8 0 - 0 - 17 0 - 10 - 7 8 - 0 - 9
PGO-SOO 0 - 15 - 2 0 - 8 - 9 0 - 10 - 7 0 - 10 - 7 0 - 0 - 17 0 - 10 - 7 8 - 0 - 9
DIRECT 0 - 3 - 14 5 - 0 - 12 3 - 0 - 14 1 - 0 - 16 10 - 0 - 7 10 - 0 - 7 16 - 0 - 1
Random 0 - 17 - 0 0 - 14 - 3 0 - 17 - 0 0 - 17 - 0 0 - 8 - 9 0 - 8 - 9 0 - 16 - 1

Table 2.6: Pairwise comparison of each algorithm across all objective functions with
dimension D > 2 at t = 500 samples.

results that suggests that LOGO is more effective than BaMSOO and significantly more

so than SOO.

Taken as a whole, these results seem to suggest that LOGO and IMGPO are the

dominant optimization algorithms among those considered, both handily beating the

current state-of-the-art ABO methods. Our results contradict this implied ranking. Most

notably, we found that ABO-EI was a dominant algorithm and LOGO rarely performs

significantly better than SOO.

Of course, we need to be cautious about reasoning about prior results in a transitive

fashion. Each evaluation was performed on a different set of black-box functions, some-

times according to different metrics, and likely using different implementations of each

algorithm. Still, it’s surprising that there is such a discrepancy between our observed

relatively performances and those derived from previous work.

For LOGO, the code used to generate prior results was not available due to con-

tractual issues and we have not been able to replicate those results. However, we have

validated our implementation with the authors of LOGO. One potential source for the

discrepancy is that our evaluation employs randomization of the objective function, which

we found was important to avoid observing performance differences due to lucky initial-

izations or grid alignment.

ABO algorithms are necessarily ‘tuned’ by the authors of papers that use them in

comparisons—however, the parameters selected are rarely reported since they’re not

considered relevant to the paper itself. Although EI is parameter-free, the Gaussian

processes used in ABO methods have many parameters that can significantly effect

ABO’s performance. This may explain the unusually poor performance by ABO-EI in

previous work. Without any motivation to maximize the ABO methods’ performance in

the comparison, it’s unclear whether or not the parameters selected for the evaluation
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result in representative behavior from the algorithm.

2.7 Summary

We presented experimental results comparing PGO, PBO, and ABO methods within a

common open-source evaluation framework. The results demonstrate that acquisition-

based optimization approaches, specifically ABO-EI, outperform partitioning-based op-

timization methods when evaluated by the average regret achieved after a given number

of function observations in a strict black-box setting. Even when partitioning methods

are given significantly more samples of the objective function, they are frequently unable

to match the results that ABO-EI can achieve with much fewer samples.

The utility of an extremely computationally cheap black box optimization algorithm

is already questionable since the limiting factor in problems that apply these algorithms is

usually evaluating the black box function itself rather than the optimization algorithm’s

runtime. We demonstrate that fast partitioning-based methods tend to ‘flat-line’ on diffi-

cult problems even when given significantly more observations, or at least equal runtime,

than competing expensive algorithms. This suggests that there are fewer situations in

which PGO optimization should be chosen over BO-enabled methods than one might

otherwise assume.

This apparent weakness is described in our results, but not well explained. Follow-up

investigations into why or how the partitioning methods fail to improve as consistently

as ABO methods can after a large number of samples are warranted. If the algorithm’s

shortcomings are in fact due to the refinement issue we discuss above, it’s possible that

modifying the depth limiting function or making other small changes to the algorithm

could significantly improve its long-term performance compared to otherwise slower al-

gorithms. Still, the partitioning methods’ relative speed and efficiency make them a

promising target for future work.

Although UCB is commonly shown to perform well when evaluated on synthetic

objective functions, we found that without manually tuning its β parameter to maximize

its performance it regularly failed to outperform both PBO and PGO methods.
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Chapter 3: Stake-Free Evaluation of Graph Networks for

Spatio-Temporal Processes

3.1 Abstract

Spatio-temporal processes are a class of prediction problem that are poorly served by

traditional deep learning architectures owing to the problems’ frequently irregular struc-

tures. We propose a method for encoding such prediction problems as a graph which

describes both the relationship between input samples from the process and the de-

sired prediction targets requested of the model. However, it is difficult to determine

which graph neural network (GNN) architecture is appropriate to apply to these prob-

lem domains, as works proposing novel GNNs generally only evaluate them in settings

where they are expected to perform optimally rather than investigating their behavior

and properties in general. We aim to address this gap in knowledge by performing a

fair, stake-free evaluation of three different GNN architectures on three distinct spatio-

temporal problems. The goal of this stake-free evaluation is to examine the behavior

of each model on each problem type rather than demonstrate that one dominates the

other. We find that GNNs which cannot exploit edge features perform poorly in this

setting, and that GNNs which learn explicit interpretable weight functions are slightly

outperformed by their counterparts that employ black-box function for the same pur-

pose. Finally, we release the software platform used to perform this evaluation, which is

designed to enable practitioners to easily reproduce or extend our experiments.

3.2 Introduction

Many interesting real-world problems can be described as spatio-temporal processes. A

spatio-temporal process problem consists of a set of data samples for which each sample

has an associated timestamp and associated position in some shared space. Frequently,

these samples represent discrete observations of some underlying continuous process of

interest. Examples include a citizen science setting, in which a collection of data is gath-
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ered from a set of sensors distributed throughout some area that record environmental

conditions over time; and a military engagement, in which a changing set of allied units

periodically report their status and location, as well as any information available about

the enemy’s status and location. In both settings, the information of interest changes

continuously over time, but generally its associated data would only be recorded at a set

of instantaneous time points. In the environmental citizen science setting, the environ-

mental conditions of interest likely change continuously throughout space as well, but

we are only able to observe its state at the provided sensors’ locations which we may not

be able to control. Making useful inferences about the state of such processes requires

jointly reasoning about both the spatial and temporal relationships between its samples.

There are well-known deep learning network architectures designed to process spa-

tial and time series data: convolutional neural networks (CNNs) and recurrent neural

networks (RNNs) respectively. These building blocks have previously been combined in

various ways to construct models which are capable of reasoning about spatio-temporal

data, such as by Shi et al. [2015] or Li et al. [2017] However, these architectures are chal-

lenging to effectively apply to real-world spatio-temporal processes in general. These

architectures require that their input consists of a regular, discrete structure such as a

grid of pixels for CNNs, and a sequence of predictably-spaced observations for RNNs.

However, real-world spatio-temporal process data are unlikely to conform to this ‘grid

world’ paradigm. For example, in the citizen science setting the sensors’ positions can-

not be controlled and generally cannot be approximated with a regular grid structure,

making it difficult to effectively apply CNNs to reason about the data’s spatial rela-

tionships. Additionally these architectures require their input structure to be densely

populated with data, meaning they are unable to natively handle sparse structures with

‘missing’ data entries. For example, in the military setting information about enemy

activity may be extremely sparsely and irregularly distributed throughout the duration

of the encounter, making it difficult to apply RNNs to infer the enemy units’ complete

state at any given point in time.

One solution to these issues is to re-sample the data such that it is forced to conform

to the required grid structure. For example, one could re-sample a set of points in 2D

space by imposing a grid structure over the same space, and assigning each cell in the grid

a value based on the samples contained within its bounds. However, this approach has

significant drawbacks. Performing this resampling by discretizing continuously-valued
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locations as described requires the grid resolution to be specifically tuned for each prob-

lem. If the grid resolution is too small data samples with close neighbors may be ‘lost’

since each grid cell only represents one sample, likely making it impossible for the model

to have an accurate understanding of the state of the process. If the grid resolution is

too large the majority of the cells will not represent any data sample in the problem,

making it extremely difficult for the network to effectively reason about the relationships

between the relevant data samples.

Another possible solution for some domains is to use an imputation model to fill

in any data that is ‘missing’ from the required regular structure. However, in complex

processes where the data samples are very sparsely distributed, the imputed samples far

from any actual observations are unlikely to be informative. As before, the model will

struggle to make useful inferences about the process if the vast majority of the samples

in the sequence are ‘fake’ imputed samples. Additionally, generating and learning over

these imputed samples may itself be significantly expensive. In these complex processes,

computing a large number of imputed samples may impose an unacceptable performance

overhead just to determine their values. On top of that, the model itself may require

significantly more memory or other resources to process such large input data. Since

the only purpose of the imputation is to allow the data to conform to the model’s

prescribed regular structure, a model that does not require such a regular structure would

be more efficient since it is not required to generate this extra data, and presumably more

performant since it can exclusively reason about the most informative samples rather

than mostly working with the output of the imputation model.

These potential issues suggest that it would be preferable to employ a deep learning

architecture that can directly consume irregularly-distributed, continuously-valued data

such as that found in spatio-temporal processes. Graph neural networks (GNNs) are one

such suitable architecture. Rather than operating on input of a fixed, static structure,

graph networks directly exploit the relationships explicitly described by an arbitrary

graph provided as input. Their use of parameter-sharing schemes and set functions allows

them to consume graphs with arbitrary numbers of nodes, edges, and those with nodes of

differing numbers of attached edges. This is much more flexible than the traditional CNN

and RNN architectures, which are beholden to their discrete, fixed underlying structure.

As a result, representing spatio-temporal problem instances with a graph structure and

then processing them with a GNN model allows us to avoid the pitfalls describe above
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associated with applying CNN- and RNN-style models to real-world spatio-temporal

processes.

Given the potential for graphs to represent sparse spatio-temporal data, there is a

question of how effectively different GNN architectures will perform on graph repre-

sentations of such problems. As graphs can represent extremely diverse types of data,

different GNN architectures employ drastically different approaches to processing their

input, with drastically different corresponding inductive biases meant to exploit differ-

ent features of the provided graph structure. Each type of graph network is generally

inspired by certain types of problems and often evaluations are limited to just those prob-

lem types. While such evaluations highlight strengths each model, they fail to provide

insight into performance on other problem types. This makes it difficult for practitioners

to infer which GNN architecture may be most appropriate for a problem at hand. This,

for example, is the case for sparsely sampled spatio-temporal process. This lack of a use-

ful, neutral examination of GNN models’ capabilities suggests the need for a ‘stake-free’

evaluation of these models, in which the goal is not to prove dominance of one model

over the others. Rather, a ‘stake-free’ evaluation aims to examine the differing behavior

and capabilities of each type of model on different problems.

In this work, we aim to address this gap in knowledge by fairly evaluating three mean-

ingfully distinct GNN architectures on three different types of spatio-temporal problems.

Each architecture is evaluated by defining three instantiations of each network type of

varying sizes (i.e. Small, Medium, Large) such that every model of a given size has sim-

ilar parameter count. To ensure that all models are trained and evaluated fairly we also

propose a procedure for determining appropriate training hyperparameters for any given

model instantiation, modified from the learning rate test proposed by Smith [2017].

We find that the edge-feature-aware graph networks significantly outperform the

graph network architecture which exclusively relies on graph adjacency information to

reason about the relationship between nodes. Of the edge-aware networks, some archi-

tecture learn explicit weight functions to filter the values of neighboring nodes. These

weight functions can be visualized to demonstrate the model’s understanding of the prob-

lem domain. However, the architectures that instead reason about each node’s neighbors

using a black-box function seem to generally perform better and exhibit better gener-

alization performance despite their lack of explicit interpretability. Finally, we publicly

release the software platform developed to perform all the experiments in this evaluation
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to allow others to reproduce or extend our work.

3.3 Spatio-Temporal Processes

Each instance of a spatio-temporal problem consists of a set of observations (or samples)

from distinct entities that change over time while occupying some shared space, and a set

of domain-specific queries which describe the desired predictions within that same space.

It is important to note that there are no constraints on how an observation’s associated

position and time are described. Whereas most deep learning architectures require spatial

and temporal data to conform to some regular structure (such as a 2D grid representing

an image, or an ordered sequence representing regularly-spaced observations throughout

time), in our setting all observations’ spatial and temporal locations are represented by

unconstrained continuous values. Consequently, the number of input observations and

target queries in a problem instance is not fixed. Any problem instance may include

any number of entities, each of which may have any number of representative samples

included in the set of input observations.

Just as instances of such spatio-temporal problems consist of a dynamic number of

samples in the input set, the number of queries associated with each problem instance

is also not fixed. For example, the problem’s goal may be to predict the state of each

entity at some future time, or it may be to predict the state of some unobserved location

in space and time from the provided input samples. In either case, the number of desired

predictions and their relationship to the input samples is not fixed. This is in contrast to

most deep models, which generally produce a constant-size output or produce outputs

of varying length but over a fixed structure, such as a sequence.

We observe a problem instance via a set of input samples X which describes the state

of the process’ entities at certain locations and time points. Specifically, each sample

x ∈ X describes an entity uniquely identified by Ent(x) located at position Pos(x) at

time Time(x). The domain-specific information for each sample needed for inference is

represented by the sample’s feature vector Feat(x). To represent the semantic meaning

of the desired predictions, we also define a set of ‘query targets’ Q. Each domain-specific

query q ∈ Q describes the relationship between the desired prediction target and the

samples represented in X. For example, in a domain in which the goal is to predict the

future state of an entity in the process, each query q would specify the entity in question,



44

Expression Meaning

X Set of all input samples that make up a problem instance
x An individual sample within the process
Q Set of all query targets that describe the problem instance’s requested predictions
Q∗ Ground truth for queries Q

Pos(x) The spatial location of the sample
Time(x) The temporal location of the sample
Feat(x) The sample’s feature values, excluding positional information
Ent(x) The sample’s associated entity ID

DistP (x, x′) The difference vector between two samples’ spatial locations
DistT (x, x′) The difference between samples’ locations in time
GNN(G,X) Calling a GNN to calculate latent encodings for the set of nodes X in graph G

Table 3.1: Spatio-Temporal Process Notation

Ent(q), and the desired time point of the prediction, Time(q). In a domain in which

the goal is to predict the state of the process at some location rather than the prediction

being associated with a specific entity, such as predicting the current weather conditions

at an unobserved location, q would instead be defined by Pos(q) and Time(q).

An individual spatio-temporal problem instance is then defined by the tuple (X,Q)

describing the input samples and desired queries. Models are trained on a labeled dataset

D = {⟨(Xi, Qi), Q
∗
i ⟩|i ∈ {1, . . . , N}}, where each Q∗

i is the ground truths for the set of

queries Qi on the observed input data Xi. The models are evaluated on their ability to

accurately predict the correct Q∗ when provided with a problem instance (X,Q). This

problem structure allows us to train models on spatio-temporal problems consisting of a

dynamic number of input samples and a dynamic number of domain-defined prediction

targets. Such models are expected to reason about the spatial and temporal relationships

within the input samples X, as well as the domain-specific relationships between those

encoded input samples and the desired query targets Q.

3.4 Benchmark Domains

We consider three spatio-temporal problem domains to support our evaluation: Star-

craft II battle unit state prediction, weather nowcasting, and traffic forecasting. These

problem domains demonstrate the models’ ability to understand qualitatively different
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types of processes and queries. For example, observations from the Starcraft II domain

describe the state of each individual unit present in the scene, whereas observations

from the weather nowcasting and traffic forecasting domains represent point samples of

the underlying process in question from fixed observation stations (that is, the atmo-

spheric conditions recorded by weather stations and the traffic information recorded by

road sensors). Queries in the Starcraft II and traffic forecasting domains task the model

with predicting the future state of a specific entity described in the input observations,

whereas the goal of the weather nowcasting problem is to use recent samples of nearby

weather conditions to predict the current weather conditions at some unobserved loca-

tion. Despite the significant differences in the underlying semantics of the input data

and the structure of the queries, all problem instances are described as a spatio-temporal

process as defined above. Specific information about each problem domain and how they

are translated into a spatio-temporal problem instance is described below.

3.4.1 Starcraft II

The video game Starcraft II is a popular, challenging domain for evaluating machine

learning models, most notably used by [Vinyals et al., 2019] as a challenge problem for

reinforcement learning. It is interesting for our purposes primarily due to the dynamic

nature of the military encounters represented by the game. These encounters may consist

of just a couple of opposing units fighting one-on-one, or an entire battle with dozens of

units on each side interacting with the others, making it a good platform to demonstrate

how models can handle problems consisting of differing numbers of entities. Additionally,

since the game engine reports the units’ state at a high frequency, we can sample a subset

of the recorded timesteps as input to the models to examine their ability to handle

samples which are irregularly spaced in time.

The dataset is generated from a custom Starcraft II scenario in which two opposing

armies fight each other on a featureless play field. Each scenario begins with a random

number of three distinct unit types placed in random locations on the play field for

both teams. The game then runs without any input, so the units perform their ‘default’

behavior of attacking any enemy units until they die or there are no enemies nearby.

The scenario ends once all the units for one team have been defeated. Figure 3.1 shows

an example of what a small encounter in this scenario looks like in-game.
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Figure 3.1: Example SC2 scene

We use the PySC2 API interface provided by DeepMind [Vinyals et al., 2017] to record

the state of each unit at each timestep across 1000 runs of the scenario. See Table 3.2

for a complete description of the feature vector representation for each unit. Individual

problem instances are derived from this dataset by first selecting one individual timestep

from one of the scenarios. We then choose a subset of the recorded game states before

that timestep to use as ‘input frames’, and choose a subset of the timesteps after the

selected timestep to use as ‘query times’. The models are then evaluated based on their

ability to use the unit information provided from the input frames to correctly predict

the state of each unit at each query time.

Specifically, when evaluating models on this domain we select the ‘input frames’ by

randomly selecting up to five timestep frames within the previous ten before the timestep

in question. All entities in each selected frame are included in the set of input samples

X. We fixed the set of target ‘query times’ when training and evaluating models on this

domain unless otherwise specified. Specifically, for problem instance at time t we task

the model with predicting each unit’s state at all of the timesteps t+ 1, t+ 2, t+ 4, and

t + 7 that exist. Each timestep is approximately half a second of in-game time, so the

models are asked to predict the future state of each unit in the scene at 0.5, 1, 2, and
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Name Type Size Target? Description

Owner Onehot 1 Binary representation of the team the unit belongs to
Type Onehot 3 Onehot encoding of the unit type (marine, zergling, zealot)
Heath Real 1 ✓ Current health value of the unit
Shields Real 1 ✓ Current shield value of the unit
Orientation Onehot 7 ✓ Direction the unit is facing
Position Real 2 ✓ Cartesian position of the unit on the game field

Table 3.2: Description of feature vector representation of each unit in the Starcraft
domain. The variable is used as a prediction query target if the Target? column is
checked.

3.5 seconds into the future.

3.4.2 Weather Nowcasting

Predicting the current atmospheric conditions at a target location given a set of current

or prior weather observations from nearby areas (‘nowcasting’) requires jointly reasoning

about the spatial and temporal relationships between the target location of interest

and the provided historic weather observations. We use a dataset of weather conditions

recorded by a group of weather stations distributed throughout Oklahoma to derive such

a weather nowcasting problem to evaluate the models.

The dataset consists of the atmospheric conditions and associated quality metrics

recorded by each weather station in five-minute intervals throughout the entirety of 2008,

as well as metadata describing each station’s static properties (e.g. location, elevation,

soil type). See Table 3.3 for a complete description of the feature vector representation

for each station reading. Any samples with quality metrics that report their readings

may not be accurate are removed from the dataset entirely. No imputation is performed

to ‘fill in’ these missing data points, since our models are expected to be able to process

such sparse data on their own. 90% of the stations are selected to be used as training

data, while the remaining 10% are used for testing.

To derive a training problem instance from this dataset, we select a timestep t from

the dataset and a subset of the training stations to use as ‘target’ stations. The set

of input samples X consists of all weather station observations from the hour prior to

the selected timestep t which do not come from a selected ‘target’ station. The set of
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Name Metadata? Target? Description

RELH ✓ Relative Humidity
TAIR ✓ Air Temperature
WSPD ✓ Average Wind Speed
WVEC Vector Average Wind Speed
WDIR Wind Direction (heading)
WDSD Standard Dev. of Wind Direction
WSSD Standard Dev. of Wind Speed
WMAX Maximum Wind Speed
RAIN Liquid precipitation since 00 UTC
PRES ✓ Station Pressure
SRAD Solar Radiation
TA9M Air Temperature at 9m
WS2M Wind Speed at 2m
TS10 Sod Soil Temp at 10cm
TB10 Bare Soil Temp at 10cm
TS05 Sod Soil Temp at 5cm
TB05 Bare Soil Temp at 5cm

ELEV ✓ Elevation
LAT ✓ Latitude of station
LON ✓ Longitude of station
Soil Info ✓ A vector of length 18 describing soil properties

Table 3.3: Description of feature vector representation of each station in the weather
domain. The variable is used as a prediction query target if the Target? column is
checked. Metadata? is checked if the value is static and associated with the weather
station in question.
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queries Q describes the locations of each desired nowcasting prediction, which are the

locations of all of the selected ‘target’ stations. The ground truth Q∗ is then set to be

the recorded observation by each target station at time t. Test problems are generated

similarly, except that all the training stations’ samples are included in the input to X,

and the model is tasked with predicting the state of the held out test stations at the

selected timestep t.

3.4.3 Traffic Prediction

Predicting traffic flow is a common problem to demonstrate the performance of spatio-

temporal GNN models (such as by Yu et al. [2017] and Zhang et al. [2020]), as the signals

of interest are highly periodic in time and exhibit significant spatial locality throughout

the road network. We use the publicly available METR-LA dataset [Li et al., 2017],

which consists of 206 sensors distributed through the LA highway system. The sensors

report the average speed of the highway traffic at their location every five minutes. The

dataset consists of all readings between between March 2012 and June 2012.

An individual problem instance is derived from this dataset by first selecting a

timestep t in the dataset. The traffic network’s sensor readings from the previous hour

(that is, timesteps t− 11 through t) are collected to use as the set of input samples X.

The set of queries Q is defined to request the state of each sensor in the traffic network

one hour in the future (that is, timestep t+ 12), and Q∗ is set to be the observed traffic

conditions at each sensor at that time. The models are evaluated on their ability to use

the provided recent traffic data to predict the speed of traffic flow at each sensor’s posi-

tion in the road network at the selected target timestep. Note that the are no held out

‘target sensors’ that are hidden from the input data, unlike in the weather nowcasting

domain. The goal of each problem instance is to use the historic data from all sensors

to predict the future state of all sensors. Instead, we select the data from every tenth

week from the dataset to use as test data, while the remaining 90% of the data is used

for training.

Note that the input and query structures for this domain are fixed, unlike in the

other domains. For Starcraft, the relative position of the units is always changing, and

units may disappear at any time. For weather nowcasting, some stations’ observations

may not be present in each input timestep and the requested queries may change with
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each problem instance. In comparison, the input to each traffic prediction problem is a

fixed size, as each traffic sensor is present at every timestep. Additionally, the queries

always represent the same relationship– requesting the state of each sensor one hour

in the future. This enables this specific problem formulation to be fully compatible

with classic temporal models, such as RNNs. However, the spatial component of the

problem is still incompatible with classic spatial models, as spatial gridding would still

be necessary and CNNs would be unable to exploit the explicitly-defined graph structure

of the road network’s spatial layout.

3.5 Models

Graph networks are a class of artificial neural networks which operate on graph-structured

data. These graphs consist of a set of nodes with associated feature vectors, and at least

one set of edges describing the connectivity of the nodes. In our settings, edges also have

associated feature vectors describing the relative information between the two nodes they

connect.

Message-passing GNNs are a class of GNN that generally operate by using their input

graph’s adjacency information described by its edges and the attached nodes’ feature

values to calculate a latent ‘neighborhood representation’ for some (usually all) nodes

in the graph. Note that the structure of the input graph in not constrained, so a node

may have any number of neighbors and associated edges which contribute to its latent

neighborhood representation. The resulting fixed-sized neighborhood representation is

then combined with the node’s feature vector to determine a new latent representation

for each node which is meant to describe the ‘context’ from its immediate neighbors as

it relates to the node in question itself. This process can be performed for any subset

of nodes in the graph to calculate latent feature vector for those specific nodes. When

performed on all nodes X present in the graph, the output of this encoding process is a set

of latent feature vectors which correspond to all of the provided input nodes. By setting

the graph’s node features to be the corresponding latent feature vectors calculated by this

application of the GNN, we get an updated latent graph with identical structure as the

input but with latent feature vectors which hopefully represent useful information about

each node’s neighbors. This encoding process can then be repeated with any number

of layers, similar to other DNN architectures, which effectively increases the ‘range’ at



51

Expression Meaning

X Set of nodes
E Set of edges

G(X,E) Graph consisting of nodes X and edges E
exy Edge connecting nodes x and y

EdgeFeat(x, y) Feature value of exy

Table 3.4: Graph Encoding Notation

which information can propagate throughout the graph. We represent this process of

using a GNN to calculate feature representations for a subset of nodes X in the graph

G with GNN(G,X).

In contrast, calculating the latent feature vectors for the query nodes Q is done with

GNN(G,Q). Note that the output of this GNN does not directly correspond with the

nodes in the input graph G, since Q is a strict subset of the input nodes X. As a result,

this process is not repeatable or layerable as the input encoding process is. Since the

output of GNN(G,Q) correspond to the queries Q, we finally pass each latent encoding

of a query node through an MLP to calculate the final prediction for each query based

on the input graph.

3.5.1 Graph Encoding

Since the models we examine operate exclusively on graphs, the process of deriving a

graph representation of each problem instance is crucially important in enabling the

models to effectively reason about the problem. We propose a simple technique for

converting such spatio-temporal prediction problems into a multi-relational graph which

captures the spatial and temporal relationships between relevant samples in the problem

instance. See Table 3.4 for a description of the notation used in describing this process.

The core idea is to define three different sets of edges between the samples X described

in the input spatio-temporal process instance:

• Es to represent the spatial relationships between samples on each individual timestep,

such as the distance vector between two interacting units in a Starcraft battle; and

• Et to represent the temporal relationships between samples of each individual entity
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across all timesteps in which it is present, usually the difference in timestamps

between ; and

• Eq to represent the domain-appropriate relationship between the problem’s input

samples and the specified query targets. For example, in the Starcraft domain

in which the goal is to predict the future state of a specific unit, Eq is defined

identically to Et. In the weather domain, where our goal is to predict the weather

conditions at a unobserved location at an observed timestep, Eq is defined identi-

cally to Es.

Specifically, the set of temporal edges Et and their values is defined as follows:

EdgeFeatt(x, y) = Time(y)− Time(x) (3.1)

Et = {∀x∈X∀y∈X,x̸=y exy if Ent(x) = Ent(y)} (3.2)

The spatial edges are defined similarly. Due to the potentially large number of

entities within a given timestep, spatial edges are only created between samples within

some specified maximum interaction distance. Specifically, the set of spatial edges Es

and their values is defined as follows:

EdgeFeats(x, y) = Pos(y)− Pos(x) (3.3)

Es = {∀x∈X∀y∈X,x ̸=y exy if |EdgeFeats(x, y)| < ∆max} (3.4)

With these two disjoint sets of edges, we can realize two different graphs that share the

same set of nodes but use the two sets of edges to represent both types of relationships:

the spatial relationship graph Gs = G(X,Es), and the temporal relationship graph

Gt = G(X,Et).

Encoding an input graph G by calculating a latent feature vector for each node X in

the graph requires employing the spatial and temporal GNN on their respective graph

representations, as well as MLP applied in parallel to each latent node representation

to combine the output from each GNN into a latent representation for each node that

combines information from its spatial and temporal neighborhoods.
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Algorithm 7

function SpatioTemporalEncoder(X, Es, Et, GNNs, GNNt, NodeMLP )
Gs ← G(X,Es)
Y ← GNNs(Gs, X)
Gt ← G(X,Et)
Z ← GNNt(Gt, X)
X ′ ← NodeMLP (X||Y ||Z)
return X ′

end function

Algorithm 8

function SpatioTemporalQuery(X, Eq, GNNq, QueryMLP )
Gs ← G(X,Eq)
Y ← GNNq(Gs, X)
P ← QueryMLP (Y )
return P

end function

The resultant latent encoding of the samples X ′ can then be fed into the next layer of

spatial/temporal GNN pairs. See Algorithm ?? for a description of how one such layer

is executed. Note that Es and Et are constant across all layers, and therefore only need

to be determined once per problem.

Finally, we must use the resulting latent encoding of each sample to derive a latent

encoding of each desired query target q ∈ Q. As before, we define a set of edges Eq

that describes the relationship between the encoded samples X and the desired queries

Q. The specific procedure for defining Eq is domain specific, as it depends on the type

of relationship between the samples and the queries. Note that Eq must be a bijection

between X and Q, representing the fact that the result of each query q is exclusively

dependent on the latent encoding of the input samples, and not dependent on the other

contents of Q itself. See Algorithm ?? for a description of how the query predictions P

are derived from the graph from the encoding layers.
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Expression Meaning

Xℓ Input node features at layer ℓ
A Adjacency matrix
D Degree matrix
W ℓ Per-layer trainable parameter matrix for layer ℓ

Table 3.5: GraphConv notation

3.5.2 GraphConv

GraphConv [Kipf and Welling, 2016] is a simple message-passing GNN model designed

to approximate a full spectral convolution of the input graph. This approach exclusively

uses adjacency information from the graph’s set of edges to determine how nearby nodes’

features should be combined.

The GraphConv update rule is defined as follows:

Xℓ+1 = σ
(
D̃− 1

2 ÃD̃− 1
2XℓW ℓ

)
(3.5)

Where X is a n × f1 matrix of the nodes’ feature values. Ã is the n × n adjacency

matrix A with added self-connections, that is Ã = A+ IN . D̃ is the n×n degree matrix,

defined as Dii =
∑

j Aij . W ℓ is the n× f2 weight matrix for layer ℓ.

Notably this approach completely ignores any features associated with the graph’s

edges. In our setting, these edges are assigned feature values that explicitly describe

the spatial or temporal relationship between the two samples. Therefore, GraphConv

cannot take advantage of this information directly. It must be inferred via some implicit

pairwise comparison between a node and its neighbors’ features. However, since the

neighbors’ features are collected purely via the operation multiplying the normalized

adjacency matrix D̃− 1
2 ÃD̃− 1

2 by the nodes’ feature values, there is no mechanism by

which individual neighbors’ features can be processed differently based on their relation

to the ‘central’ node. Any such logic must therefore be expressed by the effects of the

weight matrices W on the weighted combination of neighborhood and node features,

which is unlikely to be an efficient or effective way to express those functions.
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Expression Meaning

Xℓ Node features at layer ℓ
a Aggregation function – combines effects with their associ-

ated objects
ϕO Object model – determines the future state of each object

and its associated interactions
ϕR Relational model – determines the effect of each interaction
m Neighborhood/marshalling function – determines interac-

tions and relative distances

Table 3.6: Interaction network notation

3.5.3 Interaction Networks

Interaction networks [Battaglia et al., 2016] are a general class of GNN designed to

operate on problems involving many individual interacting entities. A single Interaction

Network layer is described as follows (see Table 3.6 for notation):

Xℓ+1 = ϕO

(
a
(
Gℓ, ϕR

(
m
(
Gℓ
))))

(3.6)

In our setting, each function is defined as follows:

• m, the marshalling/neighborhood function, which operates on the provided graph

G(X,E). E is one of Es, Et, or Eq depending on the context in which the layer is

being applied. The output of m represents each edge (or relation) in the graph with

a tuple consisting of the source node’s feature vector, the destination node’s feature

vector, and the edge feature itself describing the relative information between those

two nodes. Specifically, m(G(X,E)) = {[x, y, EdgeFeat(x, y)] | ∀x∈X∀y∈X,y ̸=x, s.t.exy ∈
E}.

• ϕR, the relational model, which transforms each relation tuple from m into a fixed-

length latent representation of that relation’s ‘effects’. Specifically, ϕR is imple-

mented with a MLP that is applied in parallel to each relation tuple.

• a(G(X,E), R), the aggregation function, performs two tasks: combining the vari-

able number of latent relational effect vectors associated with each node into a

single fixed-size ‘neighborhood effect’ vector, and combining this ‘neighborhood
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effect’ vector with the node’s own latent feature representation. Specifically, for

each node x ∈ X, Nx =
∑

r∈Rx
r, where Rx is the set of relations in R which are

associated with edges in E directed towards node x. The output of the aggregation

function is then a(G(X,E), R) = {[x,Nx] | ∀x∈X}, a set of pairs consisting of each

node’s feature representation and its aggregated relation latent vectors describing

all its neighbors.

• ϕO, the object function, which transforms the pairs of node features and associated

aggregated neighborhood features into a final latent representation for that node

to be provided to the next layer. Specifically, ϕO is implemented with an MLP

that is applied in parallel to each object-neighborhood pair.

At a high level, applying one layer of an interaction network performs the following

steps:

• use the edge information provided by the input graph to determine all the neigh-

boring nodes for each node in the graph;

• transform each neighbor relation into a latent feature vector based on the main

node’s value, the neighboring node’s value, and the connecting edge’s value;

• sum together all latent neighbor relations associated with each node into a single

fixed-size neighborhood representation;

• finally, combine each node’s latent feature representation with its neighborhood

representation to produce an encoded latent feature representation for each node.

3.5.4 PointConv

PointConv [Wu et al., 2019] is a convolutional neural network designed to operate on

point clouds rather than the image or voxel data that would be consumed by a traditional

CNN. Whereas CNNs learn a set of discrete filters to apply over regularly-structured

hyper-rectangles (usually 2D/3D images), PointConv instead learns a filter function rep-

resented by an MLP which transforms a distance vector between two points into the filter

value for that location. The authors prove that PointConv is equivalent to traditional

pixel-based image convolution
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At a high level, PointConv performs the following steps:

• determine the ‘neighborhood’ of each point in the cloud by collecting all other

points within a certain distance;

• calculate the relative distance between each point and each point in its neighbor-

hood;

• transform each relative distance vector into a filter vector using a MLP;

• perform a matrix multiplication between the filter vector and its associated neigh-

bor’s feature vector;

• sum all resulting filtered neighbor vectors into a single fixed-size neighborhood

representation;

• finally, combine each point’s latent feature representation with its neighborhood

representation to produce an encoded latent feature representation of each point.

Although it isn’t presented as such in the paper, PointConv can also be described in

terms of being a graph network. The only significant difference between the PointConv

and Interaction Network algorithms is how the neighborhood feature vector is calculated

by the relational model ϕR. While the interaction network simply calculates each neigh-

bor representation with a MLP such that r = MLP (x||y||EdgeFeat(x, y)), PointConv

calculates each neighbor representation as r = F (yTW (EdgeFeat(x, y))), where W is a

MLP that transforms an edge feature vector into a fixed-size filter vector, and F is a

‘flattening’ function that reshapes an n×m matrix into a 1× (n×m) vector.

Notably, this filtering-based approach removes the neighbor vector’s dependency on

the feature value of the point (or node) for which the neighborhood is being calculated.

As the filter value is only dependent on the relative distance between two samples,

any pair of samples with the same relative distance will also have the same filter value

returned by W .

3.5.5 PointConv with Attention

As described above, the filters calculated by PointConv do not depend on the feature

value of the node x or its neighbor x′. While this allows us to explicitly calculate filter
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weights for each neighbor, it seems reasonable to expect that in some domains these

neighbors should be filtered differently depending on both their feature descriptions.

We can extend PointConv to have such capabilities by applying a simple attention

mechanism to the weight calculation, as described by Horn et al. [2019]. Instead of cal-

culating the weights exclusively with W (EdgeFeat(x, y)), we first calculate an attention

vector a = softmax(A(Feat(x)||Feat(y))), which uses an MLP A to calculate a vector

of a small number of normalized scalar weights depending on the comparison between

the node x and its neighbor y. We then multiply the filters by each value in the attention

weights as follows: r = F (x′TF (aTW (EdgeFeat(x, y)))).

Note that now our neighbor representation r for a given node x and neighbor y is now

dependent on the values of x, y, and the relative distance between them, EdgeFeat(x, y).

However, instead of accomplishing this by simply concatenating these values together

and applying an MLP as Interaction Networks do, we explicitly learn a set of spatial

filters that depend exclusively on the relative distance between the samples, and a set of

weights that depend exclusively on the two samples’ feature values.

3.6 Hyperparameter Selection and Training

The performance of deep learning models, is highly dependent on the hyperparameter

configuration used for training. In some cases, the effect of thorough hyperparameter

optimization on a model’s observed performance may dominate the performance impact

of that model’s structural or procedural differences from the other models it is being

compared to. As a result, when comparing different models’ performance it is necessary

to ensure that each model receives similar amounts of hyperparameter tuning effort to

ensure that the comparison’s results represent the differences in the models’ inherent

properties rather than the differences in their high-level training procedures. This can

be problematic since many works presenting novel models do not make an attempt to

quantify how much time or effort was put into determining the hyperparameters for

training the model being evaluated. Future works that then use such reported results as

comparison points cannot guarantee that the models being evaluated in the comparison

are ‘evenly matched’ in terms of hyperparameter optimization effort. The widespread

assumption is then that any presented results are from a hyperparameter configuration

which ‘maximizes’ the performance of the model in question. This assumption incen-
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tivizes authors to commit significant time and resources to optimizing hyperparameters

to improve their proposed model’s performance without necessarily recording or describ-

ing that optimization process, since it is generally assumed that the comparison models

(whose performance frequently must be matched for the work to appear relevant) also

had significant time and resources committed to maximizing their performance.

We intentionally take a different approach for our ‘stake-free’ setting by defining a

single hyperparameter selection procedure to be applied to each instantiation of each

model in the evaluation. Explicitly making the hyperparameter selection process part of

the evaluation procedure allows us to guarantee that each model received a fair amount

of hyperparameter tuning ‘effort’ since we can demonstrate that the selection process

and resources used were the same for all models. The simplest common approach for

hyperparameter optimization is grid search or random search [Bergstra and Bengio,

2012], in which every hyperparameter is enumerated and regular or random samples

drawn from the resulting hyperparameter configuration space are evaluated with an

auxiliary training procedure. The hyperparameter configuration with the best empirical

performance demonstrated by the auxiliary training procedure is then selected to be

the representative hyperparameter setting for the model in question. This approach can

be very expensive due to the massive number of training runs that must be executed

to ensure good coverage of the hyperparameter configuration space. Since we need to

perform the hyperparameter selection for each size, for each model, for each domain,

performing a complete grid search is infeasible.

To determine a reasonable hyperparameter settings within a reasonable amount of

time, we fix most training hyperparameter values to commonly-used defaults, and fo-

cus exclusively on determining an appropriate learning rate schedule for each model

instantiation, as the learning rate has been shown to generally be the most impactful

hyperparameter in determining model performance [Smith, 2017]. Specifically, for all

experiments we use the ADAM optimizer [Kingma and Ba, 2014] as implemented by Py-

Torch [Paszke et al., 2019], using its default parameters of a weight decay of 0, β1 = 0.9,

and β2 = 0.999. We use a cyclic cosine annealing learning rate schedule as described by

Loshchilov and Hutter [2016], with Tmult set to 2 and T0 set to 1
7th of the total number of

epochs to ensure that the schedule can complete three periods during each training run.

The cosine annealing schedule’s minimum and maximum learning rates are determined

experimentally for each model instantiation using a modified learning rate test described
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below.

3.6.1 Checkpoint Learning Rate Test

Smith [2017] describes a procedure for quickly determining a range of usable learning

rates for training any given network. The key idea is to perform an auxiliary training

run on a randomly initialized network using the intended optimizer, while exponentially

interpolating the optimizer’s learning rate from a low value known to have no meaningful

impact on the network’s performance to a high value known to cause the network to

‘explode’ and lose performance. This is in opposition to the usual approach for training

a deep network, in which we would start with an appropriately large learning rate to allow

the optimizer to find a promising parameter region, then gradually lower the learning

rate to ‘refine’ its behavior with smaller parameter updates. Instead, the goal of a

learning rate test is to quickly ‘scan’ through a wide range of plausible learning rates

and examine the resulting effect on the performance behavior on the model being tested.

The expectation is that there will be three regions which can be identified from these

results:

• a ‘too cold’ region in which the learning rate is too low to impact the model’s

parameters, and the observed training loss ‘flatlines’;

• a ‘just right’ region in which the learning rate is effective and enables the model

to improve, causing the observed training loss to fall;

• and a ‘too hot’ region in which the high learning rate causes the parameter updates

to ‘explode’ the model, causing the observed training loss to quickly increase.

One can then assume that any learning rate from the ‘just right’ region is appropriate

to use when training the final model.

This simple learning rate test procedure ignores some crucial facts about training deep

networks. Specifically, the concept of a learning rate schedule is validated by the observed

evidence that the most effective learning rate for an optimizer can change significantly

over time as the model moves into effectively different regions of its parameter space.

However, the learning rate test seems to make the opposite assumption– that the most

effective learning rate does not change even as we update the model’s parameters. By
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constantly updating the model’s parameters as the learning rate is varied throughout the

test, the test is essentially modifying its underlying problem domain while simultaneously

searching for a solution within it. This calls into question the general utility of the results

of such a test.

Fortunately this shortcoming is easy to address. We propose a simple modification

to the learning rate test, the ‘checkpoint learning rate test’, in which the network’s

parameters are reset to a fixed state after each reported training loss. This change

significantly reduces the ‘domain shift’ effect imparted by constantly updating a single

model throughout the test. Instead, by constantly resetting to a checkpoint the ob-

served model’s parameters are never able to get too ‘far’ from the checkpoint model’s

parameters, increasing the chance that the test’s results represent the expected behavior

of the checkpoint model. Algorithm 9 describes our proposed algorithm for performing

the checkpoint learning rate test, while Algorithm 11 describes the procedure used to

determine the appropriate minimum and maximum learning rate from the output of a

learning rate test.

Adding a checkpoint addresses the learning rate test’s ‘domain shift’ problem, but still

does not change the fact that effective learning rates generally change over time as a deep

model is trained. If the checkpointing learning test is run with a randomly initialized

parameter configuration as the checkpoint, then its results will represent the training

characteristics of a randomly initialized network, such as one at the very beginning of

a training run. However, the learning rate test is intended to determine an appropriate

learning rate range to use throughout the entire training procedure, not just the very

beginning. In fact, since networks tend to become more sensitive to the learning rate

being used as they are trained, exclusively using the network’s random initial conditions

to determine acceptable learning rates for the entire training procedure may be of limited

value.

To ensure the results of the learning rate test are useful for training across more of

the training phase, we first apply a common auxiliary training procedure to produce a

‘poorly-trained’ network. Using this ‘poorly-trained’ network as the checkpoint results in

an estimated learning rate range which is much more appropriate for the entire training

process, since its parameter configuration is much closer to the state the network will be

in during training compared to the initial random state. We found that networks trained

with the learning rate range derived from this ‘poorly trained’ network were much more
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Figure 3.2: The results of three styles of learning rate test applied to the same network
architecture. Old is the classic learning rate test, Random is the random checkpoint test,
and Demo is the ‘poorly trained’ checkpoint test. Note the clear area of improvement
for the Old and Random tests, while Demo has a much less clear area of improvement
and ‘explodes’ at a much lower learning rate.

likely to converge in some domains than networks trained with the learning rate range

derived from the random checkpoint or classic learning rate test. Figure 3.2 demonstrates

this by showing the results of a learning rate test with three different approaches: the

classic learning rate test, the test with random checkpointing, and the test with ‘poorly

trained’ checkpointing.

This demonstrates that the effective learning rate range for a model changes as the

model’s parameters are updated during training. From this evidence, seems reasonable

to then conclude that a single learning rate test is unlikely to be able to determine an

appropriate learning rate for the entirety of the training procedure. However, since our

modified learning rate test does not suffer from the same failures as the original learning

rate test, we employ it to determine the learning rate ranges for every model instantiation

across all domains. Further examining and developing this style of hyperparameter test

is left to future works.

3.7 Results

In this section we present the results of our empirical investigation. We first, present an

overall summary of the main observations. Next we provide additional details for each

of the benchmark problems.
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Algorithm 9 Checkpoint LR Test

function CheckpointLRTest(net, θ, dataset)
SetNetworkParams(net , θ)
batchCount ← 0
losses ← empty list
nextReport ← reportEvery
for batch in dataset do

batchCount ← batchCount + 1
pred ← Predict(net, batch)
loss ← CalculateLoss(pred, batch)
lr ← LRSchedule(batchCount)
UpdateParams(net, loss, lr)
Append loss to losses
if batchCount ≥ nextReport then

nextReport ← nextReport + reportEvery
SetNetworkParams(net, θ)
RecordLoss(lr, mean(losses))
losses ← empty list

end if
end for

end function
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Algorithm 11 Learing Rate Calculation

function CalculateLRRange(lrs, losses, margin)
baseline ← losses[0]
highThresh ← baseline × margin
highIdx ← min i such that losses[i] ¿ highThresh
lrs ← lrs[0:highIdx]
losses ← losses[0:highIdx]
lowScores ← [Score(i, lrs, losses, baseline) for i in 0..length(losses)]
lowIdx ← argmaxi lowScores[i]
lowLR ← lrs[lowIdx]
highLR ← lrs[highIdx]
return (lowLR, highLR)

end function
function Score(idx, lrs, losses, threshold)

target ← [loss ¡ threshold for loss in losses]
pred ← [i ≥ idx for i in 0..length(losses)]
score ← F1Score(pred, target)
return score

end function

3.7.1 Overall Performance

Table 3.7 shows the loss statistics for all network architectures and sizes on all domains.

In it, and all other figures in this paper, the PointConv-based network is abbreviated as

‘PC’, PointConv with attention is abbreviated as ‘PCA’, GraphConv is abbreviated as

‘GC’, and Interaction Network is abbreviated is ‘Int’. Rather than report mean test loss,

to avoid sensitivity to outlier predictions, we report the 25%, 50%, and 75% percentiles

of loss values among all individual predictions each model made on each domain, in

columns labeled P25, P50, and P75. We then identify ‘bad’ predictions by identifying all

predictions with a loss 100x higher than the 75% percentile of the loss values. These

predictions are labeled as failures, and the column labeled %Fail shows the percentage

of all predictions for that model that were identified as bad. Finally, we report the mean

of all losses not identified as bad in the column labeled Mean.

GraphConv is clearly not competitive with the edge-aware GNN models overall. Its

performance is especially poor on the Starcraft 2 domain, in which being able to differ-

entiate near and far units is critical to predicting what action each unit will take. This
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supports the idea that edge-aware GNN models should be applied to graph problems

with highly dynamic structures, whereas GraphConv may be better suited for graphs

which always have the same or similar structures.

Accordingly, Interaction Networks dominate the Starcraft 2 domain, suggesting that

their black box MLP relational model is significantly more performant that the decom-

posed versions used by PointConv. The Interaction network based models seemed to

perform best at their largest size, dominating both the Starcraft 2 and Weather Nowcast-

ing domains among large models. This may suggest that the black box relational model

approach is more efficient at higher parameter counts than the biased convolution-style

approach employed by PointConv, but more research would be necessary to investigate

this effect in detail.

PointConv with Attention significantly outperforms PointConv in the Starcraft 2

domain, but appears to have completely failed on the weather problem. With a 25th

percentile loss more than 10x higher than the other models for the small and medium

sizes without any extreme prediction errors resulting in failures, it’s clear that almost all

of the PointConvAttention’s predictions in this domain are useless. It’s unclear why the

addition of an attention mechanism may have caused this, considering that the extremely

similar PointConv model performs well on the same domain.

The PointConv models seem to perform their best in the Traffic domain and the

Weather domain (other than the large size). This may be related to the fact that these

domains both have static graph structures, which may favor PointConv’s approach of

explicitly learning spatial filters, whereas in the Starcraft 2 domain which has extremely

dynamic graph structures and entity interactions the Interaction Networks, with their

explicit pairwise comparisons between samples, are much more performant.

Overall the results confirm our suspicion that when trained with equal amounts of

hyperparameter tuning and training effort, no one GNN model dominates the others

across all domains. Instead, the most important thing is to select the model with the

inductive bias that best matches the properties of the problem instances that the model

will be tasked with. The evaluation results suggest that PointConv-style, convolution-

inspried architectures may be preferable when the graph structure is fixed, while the

more entity-focused Interaction Networks may be a better fit for problems with highly

dynamic graph structures.
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Domain SC2 Weather Traffic
Network P25 P50 P75 Mean %Fail P25 P50 P75 Mean %Fail P25 P50 P75 Mean %Fail
GC-Small 1.37 5.85 14.76 9.48 0.0 2.38 5.85 13.05 10.07 0.2 0.77 3.07 14.06 45.92 0.0
Int-Small 0.20 2.43 9.61 6.50 0.0 4.89 9.64 18.31 14.09 0.4 0.70 2.73 11.03 43.95 ¡0.1
PC-Small 0.63 4.18 12.15 7.97 0.0 2.77 5.69 11.22 9.00 ¡0.1 0.77 2.81 11.24 45.17 ¡0.1
PCA-Small 0.33 3.04 10.64 7.10 0.0 21.48 34.05 53.13 41.76 0.4 0.51 2.17 10.69 42.26 0.2
GC-Med 0.84 4.81 13.15 8.51 0.0 1.26 2.63 5.49 4.72 ¡0.1 0.83 3.22 13.78 45.79 ¡0.1
Int-Med 0.14 2.01 8.79 6.06 0.0 0.61 1.42 3.40 3.16 0.0 0.68 2.86 13.69 45.39 0.0
PC-Med 0.36 3.26 10.78 7.17 0.0 0.43 0.89 1.98 1.94 0.0 0.40 1.88 9.68 36.44 0.9
PCA-Med 0.25 2.68 10.02 6.73 0.0 20.67 34.40 53.49 41.74 0.3 0.41 1.96 9.89 37.57 0.8
GC-Large 0.74 4.52 12.71 8.26 ¡0.1 5.43 9.11 17.06 20.98 8.7 0.39 2.08 13.55 46.75 0.0
Int-Large 0.14 1.85 8.40 5.85 0.0 0.91 1.91 3.95 3.54 0.0 1.76 5.63 19.08 47.16 0.0
PC-Large 0.27 2.81 10.10 6.79 0.0 1.32 2.79 5.85 4.84 0.8 0.42 1.97 9.86 38.44 0.8
PCA-Large 0.21 2.45 9.48 6.44 0.0 7.58 14.06 24.30 18.11 0.2 0.54 2.38 10.45 43.05 0.4

Table 3.7: Loss Table
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Figure 3.3: Average training loss plots for all instances of each model trained on the SC2
dataset.

3.7.2 Starcraft II

Training Curves. Figure 3.3 shows the average training loss across all training runs for

each architecture instantiation on the Starcraft 2 dataset. The models’ ordering is iden-

tical to that observed when evaluating them on the test data, suggesting no overfitting

is occurring. PointConv with Attention is noticeably unstable during training, however.

This may be due to the learning rate test failing for this architecture and calculating

too high of an initial learning rate, since the loss spikes seem to occur shortly after the

cyclic learning rate schedule returns to its highest learning rates.
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3.7.2.1 Spatial Filter Visualization

Figure 3.4 shows several of the continuous spatial filters learned by a PointConv model

trained on the Starcraft 2 dataset. The filters seem to focus on the area in a tight

radius around the unit in question with the further positions generally being constant,

especially in the early layers where sufficiently far units will not have any impact on the

unit in question’s future state. This shows that the network is learning meaningful filters

to gather information about the nearby units. If the learned filters were uninformative,

the filters would appear to be a random projection– instead, we can clearly identify

shapes that we know are directly relevant to the underlying spatio-temporal process’

behavior. Note that the PointConv architectures are the only ones capable of producing

such visualizations, since GraphConv and Interaction Networks do not learn a explicit

weight function.

Attention. As with PointConv’s learned weights, PointConv with Attention’s atten-

tion mechanism can also be demonstrated by visualizing the attention weights assigned

to each unit in a neighborhood. We select a random timestep and three random units,

then highlight all the other units in its neighborhood with a color corresponding to their

attention weights. As our attention mechanism learns three different weights, each of

which ranges between 0 and 1, we just display each triple of attention weights as its

corresponding RGB color.

Figure 3.5 demonstrates that PointConv with Attention learns meaningful domain-

specific attention weights. Specifically, the nearby enemy units clearly receive a lot of

attention, while more distant units and friendly units tend to be less active. This lines

up perfectly with what we expect, as the default behavior of all units in Starcraft 2 is to

run towards and attack any enemy unit within close range. The significant performance

gain over vanilla PointConv as well as the attention mechanism’s clear understanding of

the dynamics of the domain clearly demonstrate that this architecture is a good fit for

the Starcraft 2 domain.

3.7.2.2 Query Timestep Distribution

One of the most notable features about our spatio-temporal problem setting is that the

input and query target timesteps are not fixed. Rather, the model’s capabilities and
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(d) Layer 2 - Filter 1 (e) Layer 2 - Filter 2 (f) Layer 2 - Filter 3

(g) Layer 2 - Filter 1 (h) Layer 2 - Filter 2 (i) Layer 2 - Filter 3

Figure 3.4: Filters learned by a PointConv model trained on the Starcraft 2 prediction
problem.
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Figure 3.5: PointConv Attention visualization. The ‘main’ unit is circled in pink. Each
unit in the neighborhood is highlighted with a solid circle colored according to its atten-
tion weights. Each unit icon’s shape indicates its unit type, while its color indicates its
team.

performance depend on the distribution of inputs and queries it was trained on.

We examine the ‘out-of-bounds’ behavior of these models by evaluating them on a

modified Starcraft II dataset in which they must predict the future state of timestep

offsets that were not present in the training dataset. Specifically, we show their average

prediction loss for each query target timestep from T + 1 to T + 12, despite the fact that

the networks were only trained on targets T + [1, 2, 4, 7].

Additionally, we train these models in two addition settings: ‘TwoPred’, in which

they are trained on a modified dataset where the query target offsets are set to T +[2, 7];

and ‘OnePred’, in which the query target offset is only T + 7. Figure 3.6 shows a bar

chart demonstrating the loss for each model trained on each query distribution on these

out-of-bounds query target timesteps.

GraphConv. The GraphConv model appears to be least affected by being trained

or evaluated on differing query timesteps. Despite no GraphConv having never observed

any query timesteps above T + 7, they do not exhibit any extreme prediction errors that

are indicative of overfitting. However, the performance of GraphConv models seems to

increase when trained on smaller number of query target timestep offsets. This is not

desirable behavior, since we would hope that giving the models more information on how

the units change over time would lead to a better model of the units’ behavior. Instead,

the ‘OnePred’ model has clearly specialized to only focus on the specific timestep it
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was trained on (T + 7), and performs slightly worse on any other timestep. One would

expect that ‘TwoPred’ should out-perform ‘OnePred’ on timestep T + 2, as ‘OnePred’

never been trained on targets at T + 2. Instead, ‘TwoPred’ preforms worse at almost

all timesteps. Similarly, the ‘default’ setting (training on T + [1, 2, 4, 7]) performs worse

than its more restricted counterparts despite effectively receiving more training data.

This suggests that GraphConv is not able to effectively distinguish between the dif-

ferent query targets it is trying to predict. This aligns with our intuition that GraphConv

is significantly hampered by being unable to explicitly exploit edge features in a graph.

Instead, the GraphConv model seems to have fallen back to underfitting behavior, in

which it is unable to distinguish between the different query timestep offsets it must pre-

dict. In this mode of operation the loss would be expected to decrease as the diversity

between the training targets decreases, which is exactly what we observe. This result

shows that GraphConv is not an effective model to employ in this setting, and likely is

ineffective on most graph problems with meaningful edge features.

Interaction Networks. The interaction networks’ performance is nearly indistin-

guishable across all timesteps when trained on the default and ‘TwoPred’ settings. This

suggests that both networks are able to learn similar, meaningful unit state transition

models despite being trained on different query target timesteps.

However, the interaction network trained on the ‘OnePred’ setting has clearly overfit.

It is effectively useless at predicting unit states at any timestep other than T + 7, and

only performs slightly better than the other models at its one training target T +7 itself.

Note that adding just one additional query target during training (that is, query target

offsets T + [2, 7] instead of just T + 7) causes the model to go from overfitting on a

single timestep to learning a general transition model which performs reasonably well

across all timesteps. This seems to validate that applying graph models to this kind of

graph realization of a spatio-temporal process is an effective way to enable the models

to understand the process’ dynamics in general.

PointConv. The PointConv networks’ behavior is similar to the interaction net-

works’ behavior, but PointConv appears to be more prone to overfitting behavior on

unseen timesteps. The model trained on the default setting performs well up until T +8,

the first timestep it has never encountered during training, after which the prediction

error rapidly increases. Alternatively, the model trained on the ‘TwoPred’ setting (that

is, only on T + [2, 7]) exhibits overfitting behavior at the very earliest timestep it’s never



71

2 4 6 8 10 12
Time Delta

0.0

0.5

1.0

1.5

2.0

Av
g.

 L
os

s

OnePred
TwoPred
Default

(a) GraphConv

2 4 6 8 10 12
Time Delta

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
g.

 L
os

s

(b) Interaction Networks

2 4 6 8 10 12
Time Delta

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
g.

 L
os

s

(c) PointConv

Figure 3.6: Plots showing the average prediction loss for each model type for each
timestep offset between T+1 and T+12.
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Figure 3.7: Average training loss plots for all instances of each model trained on the
traffic prediction dataset.

seen before (T + 1), but appears to do a better job at making coherent predictions for

more distant targets compared to the default setting. Finally, the model trained on the

‘OnePred’ setting has completely failed to train and produces erroneous predictions at

all timesteps on the test problem instances despite achieving reasonable performance

during training.

Both these behaviors – a discrepancy between training and test performance, and

training on more data resulting in worse general-case performance – are indicators of

overfitting. This suggests that PointConv’s learned filters, that it must rely on to reason

about relationship between queries, is not as effective at generalization as the interaction

network approach of replacing the filtering mechanism with a black-box MLP.
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Network P25 P50 P75 Mean

Nearest 0.75 2.10 5.88 7.59

GC-Small 1.78 3.55 7.60 7.54
Int-Small 1.69 3.35 6.73 7.15
PC-Small 1.77 3.40 6.79 7.26

PCA-Small 1.44 2.99 6.62 7.02

GC-Med 1.85 3.64 7.52 7.57
Int-Med 1.67 3.43 7.50 7.43
PC-Med 1.28 2.77 6.30 6.90

PCA-Med 1.30 2.83 6.37 6.92

GC-Large 1.26 2.92 7.46 7.31
Int-Large 2.69 4.81 8.85 8.45
PC-Large 1.31 2.84 6.36 6.99

PCA-Large 1.50 3.13 6.55 7.14

Table 3.8: Table showing the 25%, 50%, 75% percentile, and mean prediction error for
each model in MPH. Bolded entries indicate the model beat the baseline’s performance.

3.7.3 Traffic Prediction

Training Curves. Figure 3.7 shows the average training loss across all training runs

for each architecture instantiation on the traffic prediction dataset. Based on the lack

of clear convergence among any of the models trained, it seems likely that the models

could be significantly further improved with additional training time.

Baseline Comparison. To evaluate the models’ usefulness, we compare its average

performance to a simple baseline. Specifically, we use the baseline which simply predicts

that the traffic speed at any given sensor in one hour will be the same as the sensor’s

current recorded speed. Interestingly, while this baseline model significantly outperforms

all deep models in its first, second, and third quantile performance, the deep models

significantly outperform the dumb baseline on average.

Individual Sensor Predictions. To gain a better understanding of the deep mod-

els’ behavior and performance, we plot the predictions of each medium-sized network for

a single sensor throughout one entire day. By comparing the predicted traffic speed to

the actual signal, we may be able to gain some insight into how or why each model is

failing.

Figure 3.8 shows an entire day’s worth of predictions from each model for three
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(c) Sensor 773869

Figure 3.8: Each model’s predicted traffic speed throughout an entire day for individual
sensors. Black line is the target signal.

different sensors. The one-hour delay from the baseline model is clearly visible, causing it

to always miss quick changes in traffic speed by an hour. However, the deep models aren’t

much better at this. For example, in Figure 3.8a, while they seem to start predicting a

declining speed well before the baseline is able to, indicating they’re using information

from surrounding sensors to detect the oncoming traffic jam before it can be observed at

the sensor, the prediction is still far off from the actual speed at that time and the model

clearly ‘follows’ the baseline model’s plunge in predicted speed as soon as it has access

to sensor readings showing that traffic is stopped now. Additionally, the deep models

seem to constantly predict slightly too low of a speed, as if they are hedging their bets

expecting a traffic jam to materialize. These two observations may be a demonstration

of the commonly observed phenomenon in which graph networks tend to ‘underfit’ or

produce decent but clearly biased results in this style of prediction problem. It’s unclear

whether this issue may disappear with more training or if it is inherent to the GNN

architecture itself.

3.7.4 Weather Nowcasting

Training Curves. Figure 3.9 shows the average training loss across all training runs for

each architecture instantiation on the weather prediction dataset. However, these train-

ing plots clearly indicate there’s significant training instability. This suggests a failure
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Figure 3.9: Average training loss plots for all instances of each model trained on the
weather dataset.

in the learning rate test’s ability to consistently determine appropriate hyperparameters

for training. Clearly the learning rate is significantly too high for much of the training–

but once it lowers towards the end, the networks’ behavior seem to recover.

Station Dropout. In domains such as Starcraft II each observation directly repre-

sents an individual unit’s state. Adding or removing a unit and its corresponding ob-

servations from a Starcraft II prediction problem will significantly change the expected

dynamics of the process, since the units’ behavior is highly dependent on the presence of

other units in the scene. In contrast, in the weather problem domain each observation

from a station is a point sample of the underlying continuous process of interest, the

atmospheric conditions within the area. Since we cannot directly observe the entire the

process, models must instead infer its overall state from these individual point samples.

Ensembling is a common technique to increase prediction performance by aggregating

several predictions from multiple models instead of relying on a single model’s prediction.

Usually this is accomplished by training multiple models and averaging their predictions

together. The graph structure of our problem and our understanding of the semantics

of the domain suggest a different approach. We can instead provide a single model with

several augmented problem instances whose input data has been modified while the

queries are fixed. This single model’s predictions on different realizations of the original

input data can then be averaged together to perform ‘self-ensembling’.

In this domain, we can augment a problem instance by randomly removing a per-

centage of the input samples while keeping queries unmodified. We demonstrate this

self-ensembling approach by having each model produce prediction for five augmented

problems derived from the original problem instance, and average the model’s predic-
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Test-time Dropout 0% 10% 20% 50%

Network P50 Mean P50 Mean P50 Mean P50 Mean

GC-Med 2.57 4.64 2.55 4.59 2.72 4.87 3.47 7.54
Int-Med 1.46 3.23 1.85 3.76 2.30 4.45 5.61 9.13
PC-Med 0.78 1.89 1.21 2.56 1.99 3.62 11.02 24.82

GC-Med-Drop20 2.93 5.18 2.72 4.92 2.68 5.06 3.30 8.51
Int-Med-Drop20 1.22 2.90 1.40 3.09 1.61 3.37 2.40 4.61
PC-Med-Drop20 0.90 1.97 1.03 2.21 1.21 2.54 2.17 4.10

Table 3.9: Table demonstrating the change in each model’s test loss as station dropout
is increased. Columns show the median and mean loss as the test-time station dropout
is raised from 0% to 50%. Models with Drop20 appended to their name were trained
with 20% station dropout.

tions together to produce the final prediction. Table 3.9 shows the mean and median

performance of each model architecture as the percentage of dropped input samples is

set to values between 0% (no augmentation) and 50%. We also show the performance

of each architecture when trained with a 20% drop rate (models in the table postfixed

with Drop20).

Among all models, increasing the amount of test-time station dropout generally de-

creases the model’s prediction performance. However, the interaction network mod-

els trained in the 20% dropout setting significantly outperform the interaction net-

work model trained on the un-augmented dataset regardless of the amount of test-time

dropout. PointConv trained with dropout performs slightly worse than its default setting

at 0% test-time dropout, but as the amount of test-time dropout increases it demon-

strates a significant advantage over the model trained in the default setting. This is most

obvious at 50% dropout where the default PointConv appears to be exhibiting overfitting

behavior and producing erroneous predictions, while the model trained with dropout is

able to outperform every other model.

These results show how applying appropriate graph data augmentation during train-

ing and evaluation effects the performance of these graph models. The models’ overall

performance did not significantly improve when only test-time data augmentation was

applied. However, training with this data augmentation does not significantly negatively

impact the models’ best-case performance while greatly increasing their ability to make

effective predictions as the characteristics of the input data changes.
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3.8 Evaluation Platform

One of the main goals of this work is to provide an approachable software platform

to allow others to fully reproduce the experiments run for this paper, or modify and

extend them if desired. In contrast to some other research codebases, we define gen-

eral implementations of each model type and problem domain. Our training engine

loads human-readable configuration files which describe the desired configurations for

the model, problem, and training hyperparameters for the experiment it represents. This

approach of separating the model and problem implementations from the specification

of each experiment or training run reduces the barriers to running large sets of diverse

experiments, such as those examined in this paper. Specifically, we have published a

codebase which includes:

• Scripts to fetch each dataset used in the evaluation;

• Implementations of dataset loaders which derive graph representations of spatio-

temporal problems from the raw datasets;

• Implementations of GraphConv, PointConv, Interaction Networks, and all of their

components;

• Experiment definition files which configure the datasets and networks to train all

the models used in this evaluation;

• Scripts to collect the results from training and produce all the plots and tables

included in this paper;

• Instructive documentation on how to set up and run the code.

The repository for this project can be found at .

3.9 Conclusion

We proposed a simple procedure to encode a spatio-temporal problem using a graph

structure, including describing dynamic domain-specific queries. This graph approach

enables us to describe a variety of problem types in one common format. Additionally, the

graph structure allows for trivial data augmentation (when supported by the domain’s
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semantics) and the query structure allows one to define multiple simultaneous prediction

targets which force the models to learn the underlying process dynamics rather than a

single relationship between the input data and the desired prediction.

We extended the ‘learning rate test’ concept, showing how it can be modified to

more robustly identify an effective learning rate region for each individual model instan-

tiation. This effort allowed us to determine an effective training hyperparameter region

for each individual model instantiation on each problem type, which is a process that

would have otherwise been prohibitively expensive. However, we find that while this

approach was reasonably effective in practice it still has significant shortcomings that

caused undesirable training behavior in some cases.

Of the graph models we evaluated, we found that GraphConv consistently performed

the worst, seemingly underfitting to most problems as it was unable to demonstrate it had

learned the dynamics of the problems it was trained on. This is almost certainly owing to

the fact that our graph realization of spatio-temporal problems stores relative information

about neighboring nodes in edge features connecting them. Since GraphConv cannot

exploit these edge features, it cannot take advantage of this useful bias.

Interaction Networks and PointConv seem to make meaningful predictions on all

domains. This demonstrates that they are able to learn the dynamics of the problem

they are trained on in some useful way. As PointConv learns an explicit weight function

to filter neighboring nodes in the graph, we can visualize and interpret this weight

function to validate that it is appropriate for the domain. Interaction networks are

largely composed of black-box functions, and lack this interpretability. However, they

perform slightly better than PointConv on most tasks and seem to generalize better to

previously unseen queries. We show how PointConv can be augmented with an attention

mechanism to bring its performance closer to interaction networks’ performance without

sacrificing intrepretability. However, it seems that in general if this interpretability is

not needed, interaction networks are generally the most appropriate model architecture

to apply to the spatio-temporal problems we evaluated.

Finally, we provide the codebase used to implement, define, perform, and evaluate

every experiment presented in this work. The codebase is designed to be approachable

and extensible, to allow and encourage interested parties to validate our results or modify

and extend our experiments for further investigation.
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Chapter 4: Conclusion

In the work presented in Chapter 2, we evaluated several black box optimization al-

gorithms belonging to two different classes of approaches. Our goal was to validate

or examine the claims being made that the faster and yet ostensibly more performant

partitioning-based optimization algorithms could consistently out-perform the state of

the art Bayesian optimization approaches. We were surprised that our experimental

findings demonstrated that essentially the opposite was true. Our stake-free evaluation

instead demonstrated that despite being much faster, the partitioning based methods

were consistently unable to approach the performance of the state of the art approaches

even when given significant computational advantages.

This experience underlines how easy it can be to let this type of bias sneak into

our publications, especially when the incentive structures surrounding the publication

process generally do not reward researchers for thoroughly optimizing the performance

of the ‘baseline’ algorithms they are comparing against and hoping to beat. Most inter-

esting were the claims that the partitioning algorithms were able to beat the BO-UCB

algorithm, was widely presented as the most effective flavor of Bayesian optimization. In

our investigation, we found that BO-UCB’s performance was almost entirely dependent

on setting the value of its β hyperparameter correctly. ‘Good’ values would allow it to be

competitive with all other algorithms while ‘bad’ values caused it to fall behind almost

all other algorithms. However, the ‘good’ values seemed to significantly change as the

dynamics of the objective function being optimized changed, making it exceptionally

difficult to choose an effective value for β for an unknown objective function in a true

black-box setting.

The papers proposing partitioning-based optimization algorithms which used BO-

UCB as a comparison seemed to just use a value for β that had been suggested by other

works. They did not demonstrate that this selection was optimal or acknowledge the

potential impact that different β values could have on the performance of the algorithm.

This may be because they simply were not incentivized to devote space in their paper

describing this issue, or because they lacked the time or resources to perform such in-
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vestigations themselves. Regardless, it’s not clear how close to ‘state of the art’ their

instantiation of the BO-UCB algorithm really was. As these works explicitly did not

provide any implementation of their proposed algorithm, the only way we were able to

resolve this confusion was by re-implementing their algorithm ourselves and evaluating

it alongside other similar algorithms across a wider variety of settings. This experience

was a major influence on how we designed and implemented our research and evaluation

platforms for future works.

The software platform we used in the work presented in Chapter 3 is intended to

avoid these challenges to the greatest extent feasible. This is accomplished by ensuring

that every experiment we run is explicitly clearly defined in advance and repeatable with

minimal human intervention, making them cheap and easy to execute. This allowed us

to define an objective procedure for determining appropriate training hyperparameter

values for each model instance applied to each domain. As a result, rather than just stat-

ing the hyperparameter values we used we are able to justify their selection and allow

others to easily perform the same procedure themselves to validate our findings. Using

our learning rate test approach was crucial in enabling us to train a large number of net-

work architectures on several significantly different domains. Other common approaches

to optimizing hyperparameters, such as grid search, would have been computationally

infeasible for us to perform considering the large number of unique network/problem

pairs included in our work.

However, our modified learning rate test still had clear shortcomings. For example,

it did not seem to select an appropriate learning rate range for the weather datasets

especially. Figure 3.9 shows extremely unstable training behavior, suggesting that we

have not found an appropriate hyperparameter configuration for training these networks.

This shows that the learning rate test we employed cannot be a ‘one size fits all’ ap-

proach. While most of the domains and networks trained well under their experimentally

derived learning rate ranges, the fact that several networks’ prediction loss exploded dur-

ing training suggests that this approach is not stable in general. Specifically, it seems

that a procedure for determining training hyperparameters cannot take place entirely

independently from the training procedure itself. As the network is trained, its dynam-

ics change significantly, and therefore its effective ranges of hyperparameter values may

significantly change as well. This suggests that future approaches to automatically de-

termining training hyperparameters should be run concurrently with the training itself
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rather than exclusively beforehand, but we leave further investigation of these challenges

and ideas to future works.

After performing the evaluation of the graph network algorithms on our spatio-

temporal problems, we found that there were significant differences between the per-

formance and behavior of the algorithms we evaluated. GraphConv performed worst

across the board. This is not an extremely surprising result, since we expect that the

edge features explicitly describing the relationship between nodes in the graph are crucial

to effectively reasoning about the effects the nodes may have on each other.

Among the edge-aware graph architectures, interaction networks and PointConv seem

to exhibit similar median-case performance, with interaction networks slightly coming

out ahead. One key difference between them is their interpretability. While interaction

networks reason about nodes’ neighbors with black box functions, PointConv learns an

explicit weight function which is used to filter the values of the nearby nodes in the graph.

This weight function can generally be visualized to validate that the model is learning a

domain-appropriate way of reasoning about the relationship between neighbors.

However, PointConv is much more prone to overfitting behavior than interaction net-

works seem to be. Across multiple domains, we can observe PointConv making extremely

erroneous predictions, especially when reasoning about relationships that it had not seen

during training. In contrast, interaction networks generally did not exhibit overfitting

behavior. Interaction networks seem to perform better on average, and generalize bet-

ter without being more expensive computationally than PointConv. As a result, unless

it’s necessary to visualize on apply constraints to PointConv’s learned filter function, it

seems likely that interaction networks are generally the most correct choice for reasoning

about this kind of graph problem.

Our final key contribution from this work is to release the software platform used

to define the models, domains, and experiments presented in Chapter 3. Chapter 5

contains a brief tutorial describing the steps to take to extend the software platform to

support additional problem types and additional models. Our hope is that interested

practitioners are able to use this platform to validate our results or use it as a base for

their own experimental research can be similarly reproducible by taking advantage of

the tools we provide.
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Chapter 5: Tutorial

To facilitate the use of the software platform developed for the evaluation in Chapter

3, this chapter is a brief tutorial on how to extend the platform by adding additional

problem types and network types, creating experiment definition files to train a network,

and using the evaluation scripts plot their training performance.

There are x key modules to understand:

• Problem class

• Network class

• Experiment definition file

• Training engine

• Evaluation scripts

This chapter will step through implementing or using each one to allow the software

platform to train networks on the CIFAR10 and CIFAR100 datasets.

5.1 Problem Class

The first step is to define a Problem class for the prediction problem we want to train

the networks on. The problem class defines the training and validation datasets to use

during training, the loss function to use to evaluate networks’ predictions, and (for more

complex datasets) a collation function to gather individual training instances into a

batch.

Every class defining a problem must be derived from the base Problem class defined

at problem/base.py:Problem. This superclass registers the name of all its child Problem

classes so that they can be looked up via a string when defining an experiment later.

Each problem class must have these five functions/variables:
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• An init function, which will be provided arguments by the experiment definition

file.

• self.train dataset, an instance of torch.Dataset to use to train the network.

• self.valid dataset, an instance of torch.Dataset to use as validation data.

• self.collate fn, an optional function that define how to gather individual Dataset

elements into a batch. Usually set to None if the default collation logic is sufficient.

• loss(), a function which calculates the loss of the network’s predictions using the

ground truth from the dataset.

An implementation of a problem class for the CIFAR datasets is as follows:

# problem/cifar.py

from .base import Problem

import torch.nn.functional as F

from torchvision.transforms import ToTensor

from torchvision.datasets import CIFAR10 , CIFAR100

class CIFAR(Problem):

def __init__(self , data_path , classes):

assert classes in (10, 100)

cifar = CIFAR10 if classes == 10 else CIFAR100

cifar_args = {’root’: data_path , ’download ’: True ,

’transform ’: ToTensor ()}

self.train_dataset = cifar( ** cifar_args , train=True)

self.valid_dataset = cifar( ** cifar_args , train=False)

self.collate_fn = None

def loss(self , item , pred):

labels = item[1]

loss = F.cross_entropy(pred , labels)

return loss

This problem class has two parameters that will be specified by the experiment

configuration: data, defining the path where the CIFAR data is stored; and classes

which allows the user to choose between loading data from the CIFAR10 or CIFAR100
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datasets. More complex problems are likely to have more parameters that have a greater

impact on how data is loaded or presented.

Finally, the problem class has to be imported in problem/ init .py so that is it

loaded and available for lookup:

# problem/__init__.py

from . import base

from .cifar import CIFAR # <- Add this to enable the newly defined

problem!

def make_problem(problem_args):

problem_name = problem_args[’problem_type ’]

kwargs = {k: v for k, v in problem_args.items () if k != ’problem_type

’}

return base._problem_map[problem_name]( ** kwargs)

5.2 Network Class

Network classes must be derived from the Network class in nets/base.py. A network

class must have these three functions:

• an init function, which will be provided arguments by the experiment definition

file.

• get args(), a function which extracts the appropriate input data from a dataset

instance and returns them as a list of arguments.

• forward(), which is called with the list of arguments from get args() and should

return a prediction for the provided input data.

The network we implement will consist of some number of 2D convolution layers,

each with different kernel sizes and number of output channels. The encoded image will

then be flattened and passed to an MLP with some number of layers which will produce

the final prediction scores for each class. Since we want the exact size of each of these

components to be user-configurable, the parameters conv sizes, kernel sizes, mlp hidden,
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and pred size should all be parameters of the network class. The implementation then

would look as follows:

import torch

import torch.nn as nn

import torch.nn.functional as F

from .base import Network

class CIFARConv(Network):

def __init__(self , conv_sizes , kernel_sizes , mlp_hidden , pred_size):

super().__init__ ()

img_dim = 32

in_size = 3

layers = []

assert len(conv_sizes) == len(kernel_sizes)

for out_size , kernel_size in zip(conv_sizes , kernel_sizes):

layers.append(nn.Conv2d(in_size , out_size , kernel_size))

layers.append(nn.ReLU())

in_size = out_size

img_dim = img_dim - kernel_size + 1

self.conv = nn.Sequential(*layers)

in_size = in_size * img_dim ** 2

layers = []

for out_size in mlp_hidden:

layers.append(nn.Linear(in_size , out_size))

layers.append(nn.ReLU())

in_size = out_size

layers.append(nn.Linear(in_size , pred_size))

self.pred = nn.Sequential(*layers)

def get_args(self , item):

imgs = item[0]

return [imgs]

def forward(self , imgs):

latent_img = self.conv(imgs)

latent = latent_img.reshape(latent_img.size(0), -1)

preds = self.pred(latent)

return preds
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At a high level, the init function uses the user provided definition of the desired shape

of the network to construct individual layers which fit together. The get args function

gets the input data, and passes it along to forward() which finally executes the network

and returns a prediction.

5.3 Experiment Definition File

With the problem and networks implemented, we now need to define an experiment

which instantiates them with the desired arguments and then trains the network on the

defined problem. Experiment files are defined using JSON, as it is human-readable and

easy to load directly into python.

Here is an example of such an experiment definition file experiments/cifar10.json:

[experiments/cifar10.json]

{

"output_path": "./output/cifar",

"problem_args": {

"problem_type": "CIFAR",

"data_path": "./data/cifar10",

"classes": 10

},

"entries": [

{

"name": "Demo",

"train_args": {

"epochs": 1,

"report_every": 0.1,

"valid_every": 1,

"batch_size": 8

},

"net_args": {

"net_type": "CIFARConv",

"conv_sizes": [16, 32, 16],

"kernel_sizes": [7, 5, 3],

"mlp_hidden": [256, 64],

"pred_size": 10

}

}

]

}
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The experiment definition is a JSON document consisting of a single dictionary with

the following entries:

• output path, a string which describes where to output the trained network.

• probem args, a dictionary describes the problem to train the networks on. The

value of the problem type key is the name of the problem class to instantiate. All

other entries are provided directly to the problem class’ init function as a set of

keyword arguments.

• entries, a list of dictionaries where each entry defines a separate network to train.

The networks defined in the list are trained sequentially. Usually there will only

be one network in the list, unless you need to use the output of one training run

as an input to the next training run. Each dictionary in the entries list has the

following structure:

– name, a string to identify the network being trained

– train args, a dictionary which specifies how this network should be trained.

There are many different arguments that could be specified here, see section

5.4 for more information. However, the most common and important argu-

ments are:

∗ epochs, the number of epochs to train for before terminating.

∗ batch size, the batch size to use during training.

∗ report every, the period at which the training engine should calculate and

report recent cumulative training loss.

∗ valid every, the period at which the training engine should run the net-

work on the validation dataset and report the validation loss.

– net args, a dictionary that defines the network to instantiate. The net type

key describes which network class you want to instantiate, all other entries

are provided directly to the network class’ init function as a set of keyword

arguments.



87

5.4 Training Engine

Once the problem and network are defined, they are passed to the training engine to

start the training process. As would be expected, there are a large number of parameters

to modify here. Parameters such as the learning rate, learning rate schedule, reporting

frequency, gradient clipping, weight decay, and more can be set by adding their value to

the train args dictionary in the experiment file. This part of the platform especially is

intended to be modified and updated to meet the training needs of the project.

Finally, we have everything needed to perform a training run: the problem implemen-

tation, the network implementation, and an experiment file defining the desired instances

of each. To execute the experiment file and train the network as described, we simply

call the software platform’s entry point with the experiment file as its argument:

This will execute a training run as requested, and once it terminates the trained

network and statistics about the training process will be written to an output python

pickle (.pkl) file at the requested location.

5.5 Evaluation Scripts

Once the desired training runs are complete, each training run will have a corresponding

output file in the output folder specified by the experiment definition. These output

files contain the trained network’s final weights, the arguments used to instantiate the

network, and information about the network’s performance during training. These data

can then be loaded and processed by evaluation scripts to examine the networks’ perfor-

mance, their behavior during training, or other investigations into interesting properties

they may exhibit. For example, the eval.training script collects the training information

from all output files in the specified folder, groups them by network type, and plots the

average training and validation loss for each model type across their training runs. This

lets you easily compare the training behavior of several models with very little effort.

5.6 Performing Experiments

With all the pieces in place, we can now go through the steps of defining, running, and

evaluating experiments to test the properties of the problem domains and networks we’ve

defined. For example, we may be interested in how the networks’ behavior changes as we
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increase the depth of the convolution layers or the MLP prediction layers. We can easily

define these networks by modifying the experiment definition file we created earlier to

represent these different network instantiations:

[experiments/cifar10-conv.json]

{

"output_path": "./output/cifar",

"problem_args": {

"problem_type": "CIFAR",

"data_path": "./data/cifar10",

"classes": 10

},

"entries": [

{

"name": "Demo-BigConv",

"train_args": {

"epochs": 3,

"report_every": 0.1,

"valid_every": 0.5,

"batch_size": 256

},

"net_args": {

"net_type": "CIFARConv",

"conv_sizes": [16, 16, 32, 32, 16, 16],

"kernel_sizes": [7, 7, 5, 5, 3, 3],

"mlp_hidden": [256, 64],

"pred_size": 10

}

}

]

}

[experiments/cifar10-mlp.json]

{

"output_path": "./output/cifar",

"problem_args": {

"problem_type": "CIFAR",

"data_path": "./data/cifar10",

"classes": 10

},

"entries": [

{

"name": "Demo-BigMLP",

"train_args": {

"epochs": 3,

"report_every": 0.1,
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"valid_every": 0.5,

"batch_size": 256

},

"net_args": {

"net_type": "CIFARConv",

"conv_sizes": [16, 32, 16],

"kernel_sizes": [7, 5, 3],

"mlp_hidden": [256, 256, 128, 128, 64, 64],

"pred_size": 10

}

}

]

}

Then train the defined networks:

for f in $(seq 2); do

python -m pointnn experiments/cifar10.json

python -m pointnn experiments/cifar10-conv.json

python -m pointnn experiments/cifar10-mlp.json

done

Then visualize and evaluate the results of their training runs:

python -m pointnn.eval.training --out cifar-demo.png

This approach of explicitly defining and automatically instantiating networks and the

problems to train them on makes it exceptionally easy to execute large sets of experiments

that investigate the performance of different model structures, different model types,

different problem domain configurations, et cetera. This flexibility and ease of use was a

major factor in our ability to efficiently run a very large number of experiments for the

evaluation in Chapter 3. We provide this software platform so that any interested parties

have the opportunity to continue to build future research work within its framework. The

code repository can be found at https://github.com/Eiii/NNPlatform.

https://github.com/Eiii/NNPlatform
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