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It is desirable for complex engineered systems to perform missions efficiently and economically, even

when these missions’ complex, variable, long-term operational profiles make it likely for hazards

to arise. It is thus important to design these systems to be resilient so that they will actively

prevent and recover from hazards when they occur. To most effectively design a system to be

resilient, the resilience of each design alternative should be quantified and valued so that it can

be incorporated in the decision-making process. However, considering resilience in early design is

challenging because resilience is a dynamic and stochastic property characterizing how the system

performs over time in a set of unlikely-but-salient hazardous scenarios. Quantifying these properties

thus requires a model to simulate the system’s dynamic behavior and performance over the set of

hazardous scenarios. Thus, to be able to incorporate resilience in the design process, there is a need

to develop a framework which implements and integrates these models with design exploration and

decision-making. This dissertation fulfills this need by defining resilience to enable fault simulations

to be incorporated in decision-making, devising and implementing a modelling framework for early

assessment of system resilience attributes, and exploring optimization architectures to efficiently

structure the design exploration of resilience variables. Additionally, this dissertation provides a

validity testing framework to determine when the resilient design process has been effective given

the uncertainties present in the design problem. When each of these parts are used together, they



comprise an overall framework that can be used to consider and incorporate system resilience in the

early design process.



©Copyright by Daniel Hulse
December 7, 2020

All Rights Reserved



A Computational Framework for Resilience-Informed Design

by

Daniel Hulse

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented December 7, 2020

Commencement June 2021



Doctor of Philosophy dissertation of Daniel Hulse presented on December 7, 2020.

APPROVED:

Co-Major Professor, representing Mechanical Engineering

Co-Major Professor, representing Mechanical Engineering

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my dissertation to any reader upon
request.

Daniel Hulse, Author



ACKNOWLEDGEMENTS

Many people helped support this work at different points during the conceptualization, development,

and writing process, and they deserve acknowledgement. Below I attempt to credit the people who

helped support this work in ways big and small.

First I would like to express gratitude to my advisors. Thank you to Dr. Christopher Hoyle for

being consistently available and willing to discuss the research approach, agenda, details, and plan.

His timely feedback on the work when needed has helped the project move forward. Thanks also to

Dr. Irem Tumer for her sharp guidance and help with both planning out this dissertation and my

Ph.D work in general. She has been fantastic at helping me keep the high-level plan and goals in

mind as I have progressed through the research.

Second, I would like to recognize the help of my project collaborators. Thank you to Kai Goebel

for you detailed, critical feedback and for help with understanding how this work fits into the broader

PHM field. It has helped each paper achieve a crucial level of quality prior to submission. Additional

thanks to Chetan Kulkarni, for engaging with this work and giving helpful comments.

Third, I would like to especially acknowledge the help of my lab-mates who contributed to this

work. Hannah Walsh deserves both thanks and credit for her expertise with network models and

her ability and willingness to discuss research in a way that has been generative. Thanks also to

the other NASA smart-stereo project members, Sequoia Andrade and Eleni Spirakis, for helping

me test, workshop, and demonstrate the fmdtools toolkit, which has been helpful for understanding

some of the usage considerations to be addressed in future work. I would additionally like to thank

and credit Arpan Biswas for his code contributions and help understanding bi-level optimization

architectures and conceptualization of the optimization approaches and comparisons used in this

work.

Fourth, I would like to extend thanks to my NASA collaborators, including Guillaume Brat and

Misty Davies, for supporting this work. This support has helped me workshop ideas and develop

the resilience modelling framework–the key contribution which enables the rest of this work–into a



rich environment for expressing fault behaviors, and will help it continue to become an increasingly

useful and relevant tool going forward.

Finally, I would like to thank my current and former lab-mates, including Lukman Irshad,

Hongyang Zhang, Nico Soria, Trung Pham for their willingness to talk about research and interest

in the project at various times throughout the program. Hongyang Zhang especially deserves credit

for his contributions to the the pandemic model in the fmdtools examples repository.



CONTRIBUTION OF AUTHORS

This work was largely adapted from previously published and submitted manuscripts which were

written from the start of Spring 2018 to present collaboratively with a number of different co-authors

who contributed in both directly to the work (i.e. through coding and writing) and in an advisory

capacity (i.e., through conceptualization, feedback, revision, etc.). This section provides a short

research narrative which traces these contributions to their corresponding sections of the dissertation

and notes the direct contribution of authors, if present (unless otherwise noted, coauthors can be

assumed to have served in an advisory capacity).

• Daniel Hulse, Christopher Hoyle, Kai Goebel, and Irem Y Tumer. Quantifying the resilience-

informed scenario cost sum: A value-driven design approach for functional hazard assessment.

Journal of Mechanical Design, 141(2), 2019

Work on this dissertation started with this journal article, which conceptualized the original

idea of a combined design-modelling-optimization framework for resilience using expected cost

scoring based on fault simulations. This work was adapted for use in:

– Section 5.4, the monopropellant system design problem used to exemplify resilience opti-

mization and concept selection;

– Section 5.2, an exploration of considerations specific to formulating and solving resilience

optimization problems using function-based fault models;

– Section 3.3, the formulation of the expected-cost based resilience function for IBFM mod-

els;

– Section 3.5, a simple design problem used to exemplify the framework (the validation

section was added afterward);

– Section 2.1, the background section about resilience definitions, and

– Section 2.2.3, background section about function-based fault modelling approaches;



– Sections 3.7 and 5.6, the conclusions for the resilience metric and optimization chapters.

Much of this work was previously presented in the conference publication:

– Daniel Hulse, Christopher Hoyle, Kai Goebel, and Irem Y Tumer. Optimizing function-

based fault propagation model resilience using expected cost scoring. In ASME 2018

International Design Engineering Technical Conferences and Computers and Information

in Engineering Conference, pages V02AT03A052–V02AT03A052. American Society of

Mechanical Engineers, 2018

• Daniel Hulse, Christopher Hoyle, Irem Y Tumer, and Kai Goebel. How uncertain is too uncer-

tain? Validity tests for early resilient and risk-based design processes. Journal of Mechanical

Design, pages 1–23, 2020

To consider the validity of the overall proposed design framework, the work in this journal

article developed a testing approach to consider how uncertainty can affect the design process.

Chapter 6 is heavily based on this work, with a few revisions, as was the background in

Section 2.1.2 regarding the consideration of uncertainty in the design process. This journal

article itself built on previous work that was presented in the conference papers:

– Daniel Hulse, Christopher Hoyle, Kai Goebel, and Irem Tumer. Using value assessment to

drive phm system development in early design. In Proceedings of the Annual Conference

of the PHM Society, volume 11, 2019

This conference paper helped conceptualize the design of resilience as a decision-making

process that could be used for early Prognostics and Health Management system develop-

ment and began to conceptualize the effect of discrete uncertainty on the design process.

Some text and figures were adapted for use in Section 3.1 and this paper featured an

early version of the aircraft PHM design problem in Section 6.3

– Daniel Hulse, Christopher Hoyle, Irem Y Tumer, and Kai Goebel. Decomposing incen-

tives for early resilient design: Method and validation. In International Design Engineer-

ing Technical Conferences and Computers and Information in Engineering Conference,



volume 59193, page V02BT03A015. American Society of Mechanical Engineers, 2019

This conference paper produced the original conception of the continuous validity-testing

approach in Section 6.2.2.2 as well as the continuous-uncertainty EPS redundancy exam-

ple in Section 6.4.

• Daniel Hulse, Christopher Hoyle, Irem Tumer, Chetan Kulkarni, and Kai Goebel. Temporal

fault injection considerations in resilience quantification. In International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference. American

Society of Mechanical Engineers, 2020. IDETC2020-19287

During the development of the fmdtools modelling framework, this conference paper developed

a corresponding sampling approach for resilience quantification for use with dynamic fmdtools

models. This paper additionally explored the effect of different sampling approaches in re-

silience quantification, and discussed the the considerations for using these approaches in the

design process. In this dissertation, this work was adapted to:

– Section 3.4, the description of the resilience sampling approach for use in dynamic models,

– Section 3.6, the pump example, which is used both to demonstrate resilience quantification

and study the effect of different sampling approaches on accuracy, and

– Section 2.2.4, which has relevant background on representing fault scenarios in risk quan-

tification.

– The second paragraph of the conclusions in Section 3.7 regarding the temporal fault

sampling approach.

• Daniel Hulse, Hannah Walsh, Andy Dong, Christopher Hoyle, Irem Tumer, Chetan Kulkarni,

and Kai Goebel. fmdtools: A fault propagation toolkit for resilience assessment in early design.

2020

Work on the fmdtools modelling framework was ongoing began in the Summer of 2018, after

it was determined that the IBFM framework used in the initial paper limited the expression



of dynamic fault behaviors and made it difficult to parameterize models for optimization. De-

velopment of this tool went through a number of prototyping phases before taking the form

used in this work around the Fall of 2019. This codebase was then developed into the overall

modelling, simulation, and visualization environment described in this paper, which was sub-

mitted in Spring 2020 and is currently in review at the International Journal of Prognostics and

Health Management (IJPHM). Hannah Walsh contributed directly both to the development

of this tool (developing network analysis codes that could be used in fmdtools models) and by

writing the corresponding sections in the paper (Sections 4.2.2.1 and 4.3.1). This manuscript

has been adapted to:

– Chapter 4, except for Section 4.4, which describes the fault modelling toolkit, and

– Section 2.2, the background on previously-developed fault simulators

• Daniel Hulse, Sequoia Andrade, Eleni Spirakis, Hannah Walsh, and Misty Davies. Smart-

stereo: Preliminary model description. Technical Report 20205007481, NASA Ames Research

Center, September 2020. https://ntrs.nasa.gov/citations/20205007481

This Technical Memo describes an fmdtools model that was collaboratively developed with

Sequoia Andrade, Eleni Spirakis and Hannah Walsh at NASA Ames Research Center in the

Summer of 2020. This work was included here because it exemplified the ability of the fmdtools

modelling framework to simulate complex dynamic interactions and to be extended to express

and represent specialized behaviors. This work was summarized for use in Section 4.4 with

this end in mind.

• Daniel Hulse, Arpan Biswas, Christopher Hoyle, Irem Tumer, Chetan Kulkarni, and Kai

Goebel. Exploring architectures for integrated resilience optimization

Once the simulation framework was in place, the ultimate goal of formalizing the problem

and exploring potential solution architectures was pursued, resulting in the manuscript above,

which was submitted in the Fall of 2020 and is currently in review at the AIAA Journal of

Aircraft Information Systems (JAIS). Arpan Biswas contributed both to the conceptualization



and implementation of the optimization optimization architectures and to the resulting writing

used in this work (see Sections 2.3, 5.2, and 5.5). This manuscript has been adapted to the

following sections:

– the background about optimization architectures and resilience optimization approaches

in Section 2.3 and Section 2.1.1

– Section 5.2, the description of the integrated resilience optimization problem and elabo-

ration of optimization architectures for this problem

– Section 5.5, the example integrated optimization on a drone problem and the comparison

of optimization architectures.

– Section 5.6, the conclusions about the use of the optimization architectures presented in

the examples.

These works were compiled, placed in the dissertation structure, revised to fit this overall work, and

supplemented with an overall narrative (i.e., introduction, conclusions, missing fragments in each

chapter) over the course of 2020.



TABLE OF CONTENTS

Page

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Research Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Research Objective 1: A definition of resilience that enables the trading of

resilience with other desirable attributes in design. . . . . . . . . . . . . . . 5

1.1.2 Research Objective 2: A modelling approach and toolkit to simulate the

resilience of a system and enable design. . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Research Objective 3: Architectures to efficiently structure the optimization

of resilience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Research Objective 4: A validity testing framework for the resilient design

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.5 Overall Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Resilience in Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Previous Resilience-based Design Approaches . . . . . . . . . . . . . . . . . 17

2.1.2 Design Decision-making and Consideration of Uncertainty . . . . . . . . . . 19

2.2 Modelling Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Resilience Modelling Toolkits . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Related Fault Modelling Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Function-based Fault Models . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Fault Modelling in Probabilistic Risk Assessment . . . . . . . . . . . . . . . 29

2.3 Optimization Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Defining Resilience as a Decision-Theoretic Objective . . . . . . . . . . . . . . . . . . . . . 35

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 General Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 RISCS - Expected Cost Modelling for Static Fault Models . . . . . . . . . . . . . . . . 39

3.3.1 Design Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Operation Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Fault Scenario Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.4 Cost Model Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



TABLE OF CONTENTS (Continued)

Page

3.4 Generalization for Dynamic fault models . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Fault Injection Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Example: Wire Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.4 Validity Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.5 Wire Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Example: Verification of Expected Resilience Quantification in Pump System . . . . . 57

3.6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 A Dynamic, Object-Oriented Fault Propagation Framework for Resilience Assessment . . 68

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Methods and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Model Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Resilience Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.3 Resilience Analysis and Visualization . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Example: Drone Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Network Representation and Analysis . . . . . . . . . . . . . . . . . . . . . . 85

4.3.2 Static Representation and Analysis . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.3 Dynamic Representation and Analysis . . . . . . . . . . . . . . . . . . . . . 88

4.3.4 Hierarchical Representation and Analysis . . . . . . . . . . . . . . . . . . . 89

4.4 Example: Wildfire Response Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 SMARt-STEReO Model Overview . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.2 Integration Demonstration and Parameters . . . . . . . . . . . . . . . . . . 94

4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Optimizing Model Resilience in a Value-based Framework . . . . . . . . . . . . . . . . . . 101

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Problem formulation and statement of architectures . . . . . . . . . . . . . . . . . . . 104

5.2.1 Sequential Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.2 Bilevel Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2.3 Lower-level decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



TABLE OF CONTENTS (Continued)

Page

5.3 Decomposition Approach for Preventative Measures . . . . . . . . . . . . . . . . . . . 113

5.3.1 Optimization Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Example: Design and Optimization of Monopropellant System . . . . . . . . . . . . . 116

5.4.1 Optimization of Controlling Functions . . . . . . . . . . . . . . . . . . . . . 118

5.4.2 Comparing Model Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.5 Example: Drone Optimization and Architecture Comparison . . . . . . . . . . . . . . 122

5.5.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Validating the Design of Resilience using Uncertainty Quantification . . . . . . . . . . . . 141

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.1.1 Aims, Contributions, and Organization . . . . . . . . . . . . . . . . . . . . . 142

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2.1 Design Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.2 Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.3 Process Acceptance Conditions and Recommendations . . . . . . . . . . . . 150

6.3 Example: Early Choice of Health Management Approach . . . . . . . . . . . . . . . . 153

6.3.1 Value Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3.2 Design Process and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3.3 Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3.4 Validity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4 Example: EPS System Redundancy Allocation . . . . . . . . . . . . . . . . . . . . . . 162

6.4.1 Value Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.4.2 Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.3 Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4.4 Validity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2 Assessment of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175



TABLE OF CONTENTS (Continued)

Page

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



LIST OF FIGURES

Figure Page

1.1 Definition of resilience used in this work: the expected lost performance over a set

of scenarios, which captures the effect of both pre-fault prevention and post-fault

recovery strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Design and design validation process enabled by this work . . . . . . . . . . . . . . . 9

1.3 Resilience-related design variables and considerations in a multirotor drone design

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Embodiment of research objectives in paper. . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Decomposing the functions of an EVTOL Aircraft from the high level tasks which

must be performed to the sub-functions needed to perform those tasks. Decomposition

occurs after one step of design is completed to motivate the next step, starting with

the task clarification model (upper-left) which motivates the conceptual design (lower-

left) and then the embodiment design (lower and upper right). As such, the final level

of decomposition (seen in the upper-right corner) maps directly to the components of

the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 The early design process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Generic consideration of resilience in an overall value model used in early system design. 38

3.3 Costs associated with a failure event in a resilient system. . . . . . . . . . . . . . . 41

3.4 Illustration of fault re-simulation required to capture the costs of partial recovery Cr. 44

3.5 Resilience models determine the expectation of metrics over the set of fault scenarios

through dynamic simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Functional model of a signal-carrying medium, with modes, conditions, costs, and

probabilities associated to each function. . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Considered Pump System with resulting degraded functions and flows. . . . . . . . . 57

3.8 Behavior of Pump System Resulting from a Blockage at t=10 minutes . . . . . . . . 58

3.9 Cost responses over fault injection times for the blockage fault. (Delay = 20 M) . . . 59

3.10 Error of sampling approaches over the number of samples used. . . . . . . . . . . . . 60

3.11 Ability of sampling approaches to approximate the full integral . . . . . . . . . . . . 63



LIST OF FIGURES (Continued)

Figure Page

3.12 Robustness of a posteriori approaches to design changes. . . . . . . . . . . . . . . . . 64

4.1 fmdtools is intended specifically to provide fault analysis methods that enable the

consideration of risk in early conceptual design processes . . . . . . . . . . . . . . . . 69

4.2 The fmdtools design, simulation, and analysis environment. . . . . . . . . . . . . . . 71

4.3 Fault model types and analyses enabled by fmdtools. Note that since model types

build on each other, the analyses from less detailed model types (e.g. static propaga-

tion models, network models) can apply to more detailed model types (e.g. dynamic

propagation models, hierarchical propagation models). . . . . . . . . . . . . . . . . . 72

4.4 Example model representation. A Model is composed of function objects with internal

states and faults, (optional) instantiating component objects and relationships to flow

objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Illustration of static fault propagation. Function behavior methods are iteratively run

in a list until the states of the system no longer change. . . . . . . . . . . . . . . . . 79

4.6 Dynamic fault propagation. A model is iteratively updated at each discrete time-step

from fault injection to the end of simulation. . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Injecting faults according to a fault sampling approach. . . . . . . . . . . . . . . . . 82

4.8 Visualization of high degree nodes in default (function) network representation of

example drone model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.9 Degree distribution of default (function) network representation of example drone

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.10 SFF model applied to function network representation of example drone model. . . . 87

4.11 Static fault effects to the motor breaking: the drone crashes. . . . . . . . . . . . . . 87

4.12 Dynamic behaviors of a motor breaking. . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.13 Modelled cost over time of the motor breaking over the operational interval. . . . . . 89

4.14 Fault behavior of drone with an octorotor architecture . . . . . . . . . . . . . . . . . 90

4.15 SMARt-STEReO model structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.16 Nominal Simulation of stereo model . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



LIST OF FIGURES (Continued)

Figure Page

4.17 Example SMARt-STEReO simulation results. . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Overall framework of using optimization to achieve resilience in design. . . . . . . . . 102

5.2 Integrated Resilience Optimization framework pursued in this work where design,

operational, and resilience variables are jointly optimized. . . . . . . . . . . . . . . . 104

5.3 Extended Design Structure Matrix of the All-in-One optimization architecture. . . . 108

5.4 Extended Design Structure Matrix of the sequential optimization architecture. . . . 110

5.5 Extended Design Structure Matrix of the bilevel optimization architecture. . . . . . 111

5.6 Detail of Design Structure Matrix of the Bilevel approach with a Lower-level decom-

position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 Decomposed optimization framework. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8 Functional Model of Base Monopropellant System . . . . . . . . . . . . . . . . . . . 116

5.9 Example controlling function conditions and modes. . . . . . . . . . . . . . . . . . . 118

5.10 Cost optimization of the functional model using the evolutionary algorithm, showing

how value can be increased using the presented optimization framework. . . . . . . . 119

5.11 Differential costs of design variants based on fault simulation. . . . . . . . . . . . . . 120

5.12 Design Variants 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.13 Design Variants 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.14 Design Variant 5: Optimized Control Features. . . . . . . . . . . . . . . . . . . . . . 124

5.15 Representation of multirotor drone (left) in an model simulation (right). The Battery

(StoreEE) powers the system while the rotor lines (AffectDOF) use the system control

commands (Ctl1 and Dir1) to change the position of the aircraft (DOFs). . . . . . . 124

5.16 Flight Plans of Multirotor at Different Operational Altitudes. A higher operational

altitude leads to a shorter flight but results in lower-quality imagery. . . . . . . . . . 128

5.17 Plots of the Pareto front of Design, Operational, and Resilience Costs in different

flight scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



LIST OF FIGURES (Continued)

Figure Page

6.1 Proposed testing framework within a larger design process. . . . . . . . . . . . . . . 144

6.2 Considering a design problem under uncertain discrete assumptions may lead to dif-

fering preferred design options in each case. . . . . . . . . . . . . . . . . . . . . . . 147

6.3 Comparing the value of fault mitigation features under different design situations.

The first column is the design results generated using point-estimates while the last

column is the design results generated when the uncertainty of being in each situation

is considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.4 Functional model of electrical power distribution system with allocated redundancies

noted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.5 The distribution of value from choosing the point-estimate design compared to the

baseline no-redundancy design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.6 Distribution of loss of value from choosing the point-estimate design over a design

generated with perfect information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.1 Context and purpose of cost-based resilience objectives in Chapter 3. . . . . . . . . . 172

7.2 Context and purpose of the modelling framework in Chapter 4 in an overall design

process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3 Context and purpose of the optimization frameworks in Chapter 5 in a design process. 174

7.4 Context and purpose of the validation framework in Chapter 6 in a design process. . 174



LIST OF TABLES

Table Page

1.1 Design and operational approaches that can be used to achieve system resilience. . . 3

1.2 How examples in this work demonstrate the presented methods. . . . . . . . . . . . . 14

2.1 Comparison of Model-based Fault Simulation Toolkits for Design . . . . . . . . . . . 21

3.1 Cost rate of an individual flow state for flow l based on combination of rate and effort

health states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Cost comparison of Design 1, as shown in Figure 3.6, and Design 2, with the condition

removed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Validity determination of the decision in Table 3.2 to an uncertain scenario. . . . . . 56

3.4 Average Error Over All Points for each sampling method . . . . . . . . . . . . . . . 59

3.5 Tested Quadrature Weights and Node Locations . . . . . . . . . . . . . . . . . . . . 61

3.6 Average Error of Quadratures Over Delays and Points . . . . . . . . . . . . . . . . . 62

4.1 Network metrics for default (function) network representation of example drone model. 85

4.2 Automatically-Generated Scenario-Based Static FMEA from model . . . . . . . . . . 88

4.3 Cost of rotor faults in each architecture . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Baseline Input Response Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Additional Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Random Map Generation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Design , operational, and resilience variables which may be considered to optimize

resilience, their related costs, difficulties to optimization, and value. . . . . . . . . . . 105

5.2 Cost flow state matrix for the monopropellant thrust function, in billions. . . . . . . 117

5.3 Generated Monopropellant Designs over Different Mission Utilities. . . . . . . . . . . 117

5.4 Lookup Tables for Design Architecture Costs and Properties . . . . . . . . . . . . . 126

5.5 Safety cost schedule ($USD) for model effects in different design scenarios. . . . . . . 130



LIST OF TABLES (Continued)

Table Page

5.6 Drone faults to be mitigated by recovery variables in quadcopter architecture with no

recovery in the urban scenario flying at 30 m. . . . . . . . . . . . . . . . . . . . . . . 130

5.7 Multirotor design problem variable names and values. . . . . . . . . . . . . . . . . . 131

5.8 Comparison of optimization effectiveness and computational cost of optimization ar-

chitectures. Note that negative cost is net profit/revenue (i.e., larger negative numbers

are better and larger positive numbers are worse). . . . . . . . . . . . . . . . . . . . 135

6.1 Comparison of Design Options Using Cost Model for Resilient Features in Baseline

Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.2 Validity tests for the health management design problem considering a variety of

different design scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.3 Design problem parameters and results . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4 Expected costs of redundancies in each function (and the optimal design) considering

uncertainty in parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166



Chapter 1: Introduction

For a system to be viable, it needs to respond well to disruptions. When a system operates in an

uncertain, uncharacterized, variable, or dynamic environment with hazards to safety and economy,

it is important for the system to be able to adapt and recover the behaviors needed to achieve its

overall function. This property is especially relevant to complex engineered systems, which must be

operate sustainably over a desired lifecycle to achieve a mission–even in the possibility of internal

or externally-caused hazards and faults. The following examples of the Galileo spacecraft and Mars

Surveyor 98’ program illustrate how a system’s response to hazards can determine whether a mission

ultimately succeeds or fails.

The NASA Galileo spacecraft was launched in 1989 to study Jupiter and its moons [1]. However,

in April 1991 when the main antennae was scheduled to deploy, operators determined that the ribs of

the antennae were stuck and the antennae could not be deployed [129]. Nevertheless, the spacecraft

still had functioning low-gain antennas which could be used to send small amounts of data. The

operators were able to reconfigure these antennas to send data at a higher throughput by arraying

the antennaes, improving modulation efficiency, using more efficient channel coding, changing the

telemetry to a telemetry-based packeting scheme, using compression algorithms to reduce file size,

and giving the spacecraft more time on the Deep Space Network antennae network used to send

files [129]. As a result, it completed its mission in 2003, with a majority of its original science goals

complete and three mission extensions which enabled researchers to achieve more scientific goals

than originally envisioned, despite this and other faults [1]. This has been noted as a case where

the system was resilient–the reconfigurability in the system enabled the operators to continue the

mission of the system despite faults [58].

The Mars Surveyor 98’ program, on the other hand, was launched in 1999 to study the Martian

climate, polar ice cap and soil [65]. However, upon reaching the Martian atmosphere, contact was
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lost with the Mars Polar lander, Deep Space 2, and Mars Climate Orbiter (which was meant to act

as a relay to the Mars Polar Lander) [65]. While it was determined that a unit conversion led to a

failure in the Mars Climate Orbiter–causing it to descend too low [31]–there was not enough evidence

to conclude the definitive cause of the lander and probe failures, though premature engine shutdown

due to improper sensor readings from the lander legs is considered the likeliest cause [5, 30]. In this

case, the system was not resilient to faults: it failed immediately and catastrophically. This was

not only because of the loss of communication and short course of events, but also because of a lack

of reconfigurability and fragility in the system design (sensitivity of the descent process to sensor

readings).

These examples illustrate how resilience is a desirable property to incorporate in the design of

a system: when a system is resilient to faults, it succeeds, when it is not resilient to faults, it fails.

However, while resilience can define the success or failure of complex engineered systems, it can also

be difficult to define. Early theories of resilience emerged from the study of natural systems [230]

(and later complexity science [237]), where it was observed that ecosystems can maintain their over-

all “function”–or high-level behavior–even when individual species are removed [98]. Furthermore,

natural systems often can also self-recover after disruptions without outside intervention. This con-

ception of responding to hazards is different from the risk mitigation approaches often pursued in

engineering, where the goal is merely to prevent known failures [100], often at the expense of perfor-

mance and economy. Thus, truly seeking resilience in an engineered system means considering not

just the risk typically considered in traditional reliability engineering, but also the ways flexibility

can be used to achieve system recovery post-fault [105, 54]. Finally, recent technological develop-

ments in Prognostics and Health Management have led engineers not only to be able to design the

system to recover from faults, but to proactively predict and mitigate faults before they occur [145].

To consider these new technologies, considering resilience in engineering must additionally take into

account the active fault prevention strategies they enable.

Resilience in engineering has, as a result, come to include not just post-fault reconfiguration and

recovery, but pre-fault prediction and prevention [304, 255]. To enable this broad consideration of



3

Nominal Scenario

Resilience

Re
co

ve
ry

No Recovery

Nominal Performance

Loss
Faulty Performance

P=0.99

P=0.01

Expected
Resilience

Hazardous
Scenario

Fault Time

Pre-fault Prevention Post-fault Recovery

Figure 1.1: Definition of resilience used in this work: the expected lost performance over a set of
scenarios, which captures the effect of both pre-fault prevention and post-fault recovery strategies.

Table 1.1: Design and operational approaches that can be used to achieve system resilience.

Prevention Recovery
Approach Reliability Prognostics & Health Management Safety

Control Maintenance Predictive Diagnostics & Emergency
Actions Schedule Maintenance Reconfiguration Procedures
Design Reliability, Sensors & Sensors & Redundancies

Features Fault-free Design Hardware Flexibility Fail-safes

resilience, this work adopts the definition of expected resilience shown in Figure 1.1. In this definition,

resilience is the dynamic deviation of performance which occurs as a result of entering a hazardous

scenario. This captures both the robustness of the system to faults and the ability of the system to

recover post-fault. Expected resilience is then the statistical expectation of this lost performance over

the set of hazardous scenarios considered over the lifecycle of the system. This definition enables

one to additionally consider the inherent reliability of the system (that is, the susceptibility of the

system to hazardous scenarios) and the ability of the system to proactively mitigate faults before

they occur through maintenance.

To ensure that complex engineered systems are resilient, resilience needs to be considered and

incorporated in the decision-making process, both for the design of the system and the resulting op-
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erations, as shown in Table 1.1. As shown, ensuring resilience can involve both traditional reliability

and safety techniques for fault prevention and recovery and Prognostics and Health Management

(PHM) approaches which use specialized sensors and diagnosis/prognosis hardware and software to

prevent the fault beforehand or mitigate the fault afterward. Because these systems rely on designed

features of the system, they require more attention in the design process to function well. Ideally,

this should be present at each stage of the design process–starting at the earliest stages–to take the

most advantage of design effort (see: [273]). However, incorporating resilience in design is challeng-

ing because one must model the behaviors in the system post-fault and trade this resilience against

other design considerations (e.g. performance) over a wide and uncertain space of potential design

solutions. Over a large set of design solutions and considered failure scenario, performing this sort

of analysis by hand is intractable, especially when one needs to iteratively change design solutions.

Thus, to be able to consider different resilient design solutions (especially for PHM systems), there is

a need to for there to be a unified computational framework that enables one to tractably represent

and explore different design alternatives, simulate faults and their resulting behaviors, and use these

fault responses and resulting resilience metrics to select the optimal design.

1.1 Research Objectives and Contributions

The intent for this dissertation was to understand how to use computation to aid the consideration

of resilience in early stages of design. Broadly, this meant pursuing the following aims:

• studying the decision-theoretic aspects of resilience to understand how resilience can be traded

with other desirable design attributes and how uncertainties in this understanding can affect

the preferability of designs and validity of the resulting design process;

• determining how the defining attributes of resilience–the dynamic effects of faults–can best be

modelled in the early design phase to best represent the real physical behaviors while enabling

fast iterative evaluations in the design process; and

• investigating the use of mathematical optimization to automatically explore and evaluate large
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spaces of designs by developing optimization architectures that best structure the problem to

achieve desired solution quality while reducing iteration time.

Thus, the overall goal of this work is a unified computational framework to enable the consid-

eration of system resilience in the early design phase. To achieve this, this framework pursues the

four main research objectives described in the next subsections.

1.1.1 Research Objective 1: A definition of resilience that enables the

trading of resilience with other desirable attributes in design.

Research Objective 1 studies how to make decisions that consider a variety of resilient design alter-

natives. The challenge of making decisions based on resilience is considering the effects of design

features which may mitigate a large number of faults while adding new hazards, changing perfor-

mance attributes, and/or increasing overall system complexity. To approach this challenge, this

work develops a decision-theoretic definition of resilience and investigate its use in the design pro-

cess. Previous work has shown that expected cost has a number of advantages compared to the

traditionally-used Risk Priority Number, including consistent risk prioritization and the ability to

trade it one-to-one with design and operational costs [147].

As described previously, using the expected resilience enables one to consider both prevention and

recovery approaches to achieve resilience. However, even with this definition it may still be difficult

to justify design features based on resilience alone when they also effect the implementation and

operations of the system. In design, it is desirable to choose concepts based on their cost, value [50],

or utility [90] in a holistic model that takes into account all desirable and undesirable attributes

of the concept [259]. Thus, to account for resilience in design decision-making, this work develops

an expected cost of resilience model that enables one to trade system resilience against design and

operational costs in early design. Specifically, the contributions of this work are:

• A generic decision-theoretic definition of expected resilience for use in design. Presented in

Section 3.2, this work identifies and quantifies the sources of cost that result from different
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fault scenarios: disruptions, loss of performance, and repairs.

• Adaptation of this definition to static fault models developed in the IBFM fault modelling

toolkit presented in previous work [185]. Presented in Section 3.3, this work creates an expected

resilience cost model specifically for this previous fault modelling methodology to enable the

consideration of resilience in this modelling paradigm.

• Adaptation of this definition to the dynamic fault simulation modelling methodology developed

for Research Objective 2 (Chapter 4). Presented in Section 3.4, this work creates an expected

resilience cost model for the fmdtools simulation toolkit and explores how to sample fault

modes in time for accurate and efficient quantification of expected resilience measures.

Using this approach, designers will be able to make choices systematically: balancing the value of

resilient features against the cost of operation and implementation to make the best overall decision.

1.1.2 Research Objective 2: A modelling approach and toolkit to sim-

ulate the resilience of a system and enable design.

Research Objective 2 develops an approach to model resilience in the early design process using dy-

namic fault simulation. The challenge to modelling resilience in early design is balancing simulation

cost (both in terms of setting up and running the model), level of abstraction (the ability to inform

high-level choices without getting into details) and accuracy. Current methodologies for modelling

faults in systems are not suitable for representing expected resilience in design because they foccus

on the immediate effects of hazards (e.g., [185, 39]) or because they are are based on late-design

representations of the system (e.g., [104, 136]) that are difficult to leverage in early design [80]. Thus,

this work develops a method to simulate a system’s fault response to enable resilience quantification

and early conceptual design, providing these two contributions:

• A modelling methodology and toolkit for simulating the resilience behaviors of a system over

a set of fault scenarios to quantify the expected resilience of a system. This implementation,
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presented in Section 4.2, further enables early design by allowing the system to be modelled

at different levels of fidelity through the design process, visualization of resilience metrics on

model structures, and parameterization/optimization;

• Verification and study of dynamic resilience scenario sampling approaches, which is performed

in Section 3.6 in the context of expected cost modelling.

With these contributions, designers will be able to simulate the dynamic fault responses of a system

over time to understand and quantify resilience early in the design process. Because the resulting

toolkit is developed specifically for the early design process, designers will be able to use it build

resilience into a system without being slowed down by inefficient model specification or computa-

tionally expensive simulations.

1.1.3 Research Objective 3: Architectures to efficiently structure the

optimization of resilience.

Research Objective 3 studies how mathematical optimization can be used to explore the solution

space to achieve optimal system resilience in the early design phase. The optimization of resilience

requires one to consider both design features and the operations of the system over the set of

possible contingencies. To approach these challenges, this work will investigate multidisciplinary

design optimization architectures to efficiently and effectively structure the optimization problem.

Multidisciplinary design optimization–a way of structuring an optimization problem into individual

sub-problems to be solved at different levels–has a number of benefits, including the ability to choose

the best algorithm for each sub-problem, the ability to exploit parallelism in model execution, the

ability to federate models, and the ability to reduce the dimensionality to solve the problem more

efficiently [97]. To adapt these architectures to the resilient design problem, this work provides the

following contributions:

• A formalization of the integrated resilience optimization problem, in which the design features,
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operational policy, and resilience policies are optimized in a unified framework, in Section 5.2;

• Exploration (Section 5.2) and comparison (Section 5.5.2.2) of optimization architectures to

solve this problem in the most efficient and effective way, including bi-level, sequential, and

all-in-one formulations as well as problem decomposition approaches which can be used to

manage and reduce the complexity of the optimization problem.

Using these approaches, designers will be able to automatically explore the space design solutions

to find the most resilient system without artificially limiting the design space to a particular set of

variables. As a result, designers will be able to measure the full value of resilience-affecting early

design stage choices (e.g., redundancy) with an overall health management approach by determining

how each impacts the resulting operations (e.g., performance effects of weight) and recovery actions

(e.g., reconfiguration and contingency management).

1.1.4 Research Objective 4: A validity testing framework for the re-

silient design process.

While the framework resulting from Research Objectives 1-3 can be adapted to many different design

contexts, it may not be clear that a given instantiation of the resulting design process is valid given

the underlying uncertainties in the model and parameter values [236, 19]. This is especially true

in the early design process, when the space of uncertainty is very high and there is a wide space

of potential solutions. To make sense of the validity of resilience-based design processes in these

contexts, this work provides a testing framework (in Chapter 6) based on uncertainty propagation

that helps the designer determine when a resilient design and analysis process was valid given the

choice-affecting uncertainties present in design assumptions. Using this validity testing framework,

designers will be able to understand when a given resilient design procedure provides meaningful

results given the uncertainties in input parameters so that they can know when to proceed and when

to seek more information.
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Figure 1.2: Design and design validation process enabled by this work

1.1.5 Overall Framework

This computational framework gives one the ability to consider and incorporate resilience in system

design process, enabling one to carry out the procedure shown in Figure 1.2. In this process, one

first defines the design problem using a high-level model characterizing the system faults, behavioral

propagation, and the costs of hazardous or faulty states. Then, the design model is varied either

through parameterization, developing model variants, or creating different models (a process that

can occur iteratively as the designs become more detailed). Then the chosen design is selected

based on the expected cost of resilience determined via fault simulation and modelled design and

operational costs (a process that can also occur iteratively in an optimization loop). If one then

has questions about the validity of this process, the tests can then be performed by quantifying

uncertainty in the problem inputs and checking how it affects the results.

1.2 Motivating Example

To motivate the need for a computational framework for resilience-informed design, consider the

design of a multirotor drone used for short aerial surveillance missions. This design problem has
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Figure 1.3: Resilience-related design variables and considerations in a multirotor drone design prob-
lem

a number of interconnected design, operational, and resilience-related considerations, as shown in

Figure 1.3. For example, a multirotor drone could be used to surveil crowds or sensitive areas, but

its ability to do so safely would rely on the resilience of the system afforded by its design (e.g.,

rotor architecture), operational profile (e.g., height and flight time over the area), and contingency

management (i.e., how it would change the mission if a fault occurred). Some of these variables may

have counter-intuitive effects. For example, an overly heavy redundancy architecture may make it

less effective at pursuing its mission and may even make it less resilient by introducing faults and

lowering the available flight time. Effectively designing a system like this is difficult because one

must consider the complex trade-offs resulting from the interactions between design, operational,

and resilience variables.

To effectively make sense of these interactions to inform design, it is first important to be able to

understand the value of the different considerations so that resilience considerations can be balanced

with design and operational considerations. In the drone design problem, one must balance the

safety considerations of the drone losing stability in certain fault scenarios against the design and

operational cost of using heavy redundancy architectures that reduce mission length. While creating

models of design and operational costs for problems like this has been covered in previous work,

similar cost metrics of resilience need to be quantified so that it can be taken into account in the
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same decision. To solve this problem, Chapter 3 presents expected cost of resilience metrics which

quantify the value of fault simulation results so it can be traded against design and operational costs

in design.

While creating a cost model of resilience enables one to trade the resilience and design and

operational costs of the drone, to inform these metrics one must first quantify the resilience of the

design under consideration. To do this, one must consider how the drone operates under a number

of different fault scenarios (e.g., if the battery has a short or a rotor jams). While one could perform

this process manually (e.g., by creating FMEAs for each design variant), doing so would be tedious

and difficult to perform in a consistent way for each design. To perform this process in a consistent

way that expresses resilience (the dynamic behavior of the system post-fault) through the design

process, one needs a dynamic simulation that enables one create a low-detail simulation in early

design and increase fidelity as the design process progresses. To solve this problem, Chapter 4

presents a modelling toolkit and framework to model the system and simulate the effects of faults

in it that supports modelling the system at different levels of fidelity.

Given that one has a model of the drone and a metric to trade resilience with design and

operational considerations, one can then use them to compare different variants (e.g., different rotor

architectures). While this can be done in a manual process (e.g., comparing each architecture),

considering a wide space of variables requires a more systematic and exhaustive computational

process, especially when the variables are coupled (e.g., each rotor architecture leads to different

potential recovery actions). To perform this design exploration, Chapter 5 presents architectures to

effectively structure the optimization of resilience.

Finally, given the uncertainties in modelling assumptions about failure rates and safety effects,

it may be unclear that the design decisions made were valid. While one may have fairly good

information about drone component reliability from previous operational data, there may be less data

about the effectiveness of recovery systems under hazards, or the risk in the operational environment.

This sort of data would be difficult to gather–especially if the system design is novel–and would result

in a considerable amount of uncertainty regarding whether or not to choose one of these systems. As a
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RO1:A definition of resilience
that enables trading it with other
desirable attributes in design.

RO2: A modelling approach and
toolkit to simulate the resilience
of a system and enable design.

RO3: Architectures to efficiently
structure the optimization of
resilience.

RO4: A validity testing
framework for the resilient design
process.

Chapter 3: Defining Resilience as a
Decision-Theoretic Objective
- Introduction ofcost functions for
resilience-based design
- Adaptation of cost function for
static IBFM fault models
- General approach and sampling
strategies for dynamic models
- Verification of sampling approach
error

Chapter 4: A Dynamic, Object-
Oriented Fault Propagation
Framework for Resilience
Assessment
- Representation of model behaviors
using object-oriented programming
- Un-directed static and dynamic
propagation of fault behaviors
- Visualization and analysis of fault
simulation results

Chapter 5: Optimizing Model
Resilience in a Value-based
Framework
- Decomposition architectures to
reduce computational time in
independent problems
- Bilevel architectures to improve
solution quality in combined design,
operations, and resilience policy
formulations

Chapter 6: Validating the Design of
Resilience using Uncertainty
Quantification
- Framework for considering validity
of design processes based on
undercertainty quantification
- Validity tests for design processes
with discrete and continuous
uncertain assumptions

Wire Example: Simple
demonstrative example of overall
resilience-based design and
validation framework.

Health Management Example:
Simple demonstrative example of
discrete uncertainty tests in overall
resilience-based design and
validation framework,

EPS Redundancy Allocation:
Simple demonstrative example of
continuous uncertainty tests in
decomposed optimization
framework using IBFM-adapted cost
function

Monopropellant System Example:
Demonstration of optimization and
general design comparison using
the IBFM-adapted cost function 

Drone Example 2: Demonstration
of bi-level optimization framework
applied to the optimization of a
dynamic multirotor drone model

Monopropellant System Example:
Demonstration of optimization and
general design comparison using
the IBFM-adapted cost function 

Drone Example 1: Demonstration
of modelling a multirotor drone at
different levels of detail and
simulating the model for analysis
and design comparisons

Fire Response Model: Showcase
of dynamic modelling capabilities in
complex, system-of-systems
environment for performance and
resilience assessment.

Pump Example: Verification of the
effectiveness of fault injection
strategies for resilience
quantification.

Figure 1.4: Embodiment of research objectives in paper.

result, it may not be clear whether a decision made using this data is valid, given the uncertainty. To

consider this problem, Chapter 6 provides a framework to consider the effects of these uncertainties

on the validity of the decision being made.

This example demonstrates how the methods and overall framework presented in this work inform

the design of a real system. Further examples are provided throughout the work (see Table 1.2)

which apply this work to system design problems. Specifically, more detailed drone design examples

are provided in Section 4.3 and 5.5, which show how models can be used to represent a drone and

how optimization and value modelling can be used to find an optimal design, respectively.

1.3 Organization

Before proceeding, this section describes the structure of the dissertation. Chapter 2 provides context

into the methods provided, including how resilience has been incorporated in design previously

and related considerations (Section 2.1), previously-used models for risk and resilience assessment

(Section 2.2), and optimization architectures used in complex systems design problems (Section 2.3).
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The framework and contributions of this work are then shown in 1.4. As shown, each research ob-

jective discussed in Section 1.1 is presented in Chapters 3-6. These objectives are then demonstrated

with examples, which are provided at the end of each chapter. To summarize:

• Chapter 3 provides the definition of resilience as an expected cost used to make decisions in the

overall design framework, with adaptations to the IBFM fault modelling framework provided in

previous work [185], a general approach for quantifying these costs in the modelling framework

in Chapter 4, and a comparison of the error of different sampling methods which can be used

in this general approach.

• Chapter 4 presents a modelling toolkit and approach to represent faulty behaviors in engineered

systems that enables a high-level representation and analysis of faults in the system in early

design. This python toolkit enables the dynamic propagation of faults through an object-

oriented model as well as the visualization and analysis of the resulting fault responses.

• Chapter 5 studies the optimization of resilience in the value-based frameworks and models

presented in Chapters 3 and 4. In Section 5.2 it formalizes the joint optimization of de-

sign, operational, and resilience costs and presents architectures to efficiently and effectively

structure the optimization of resilience, including a decomposition architecture to reduce com-

putational time in uncoupled, independent risk-based design, and a bilevel architecture to

improve solution quality in coupled design, operations, and resilience policy optimization. It

then compares these architectures in terms of computational performance and optimization

effectiveness (Section 5.5.2.2) and discusses their use in design (Section 5.5.3).

• Chapter 6 provides a framework for testing the validity of resilience-based design processes

(such as those in Chapter 5 and those used in the examples throughout) based on quantifying

the effects of the uncertainty underlying the assumptions used to make decisions. Sections 6.3

and 6.4 then show examples of where a design process fails and passes these tests, respectively,

to show how this framework works in practice.

Finally, Chapter 7 discusses the use of the methods in the case study, reflects on the usefulness and
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Table 1.2: How examples in this work demonstrate the presented methods.

Wire Pump Drone 1 Fire Response Monopropellant Sys. Drone 2 PHM Sys. EPS Red.

Chapter/Section 3.5 3.6 4.3 4.4 5.4 5.5 6.3 6.4
Resilience Quantifica-
tion Methods
Cost Modelling X X X X X X X
IBFM Cost Adaptation
(RISCS)

X X

Resilience model cost
sampling

X X X

Modelling Methods
Fmdtools fault propa-
gation/visualization

X X X X

Design/Optimization
Methods
Design comparison X X X X X X
Optimization X X X X
Decomposed optimiza-
tion approach

X

Optimization architec-
tures

X

Validation Methods
Discrete-uncertainty
validity testing

X X

Continuous-
uncertainty validity
testing

X

limitations of the work, and identifies possible research directions for future work.

Examples are provided throughout chapters 3-6 to show the application of each part of this frame-

work. While these examples demonstrate the contributions of their respective sections, because each

successive chapter builds on the previous chapters, each example demonstrates multiple contribu-

tions and methods presented throughout. Table 1.2 summarizes how different methods presented

in this work are demonstrated. As shown, while each example has as specific purpose described in

Figure 1.4 (and no single example represents every provided method), as a whole the examples cover

the set of methods provided in this work adequately to not only exemplify specific contributions,

but the framework as a whole.
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Chapter 2: Background

This chapter presents the background necessary to understand the research context, contribution,

and theoretical basis of the computational design framework presented in this disseration. First,

Section 2.1 presents previous in resilience-based design, including the definitions of resilience in the

literature, previous resilience-based design and optimization frameworks, and work considering un-

certainty in design. Then, Section 2.2 presents previous modelling approaches used for risk, reliabil-

ity, and resilience-based design, including previous resilience modelling toolkits, related probabilistic

risk assessment tools, previous function-based fault modelling methodologies which influenced the

overall system representation used in the modelling framework in Chapter 4, and the types of fault

models are used in risk assessment. Finally, Section 2.3 presents existing (bi-level, two-stage, multi-

disciplinary design optimization) approaches for structuring complex optimization problems like the

ones persued in Chapter 5.

2.1 Resilience in Design

Broadly, resilience is the ability of a system to prevent and mitigate failure events [53], though quan-

titative and qualitative definitions are used across the fields of ecology, economics and management,

and engineering [106]. A number of definitions of resilience have been introduced across a variety

of fields, first emerging from ecology [99, 101, 230], where it was observed that ecological systems

have the tendency to remain overall “function,” even when specific species are removed [99]. This

concept has further been adapted to the social sciences [173, 228, 228], network science [49, 14], and

management [165, 234] (particularly the management and design of supply chains [42]).

As opposed to risk management, which focuses on failure prevention, strategies to achieve re-

silience in a system often focus on recovery from failures instead [169]. However, definitions and
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metrics for measuring resilience vary across and within fields, with both qualitative and quantitative

metrics [106]. Within the literature, distinctions have been made between these definitions:

• Engineering resilience and ecological resilience: In engineering resilience, the perfor-

mance and stability of the system state is recovered to the original system state while in

ecological resilience the function of the system is recovered from a static failure state to a new

dynamic state, potentially as a result of a change in components (e.g. similar species taking

the role of a newly-extinct species) [101].

• Deterministic and probabilistic measures: To summarize Hosseini et al. [106], proba-

bilistic measures, such as passive and proactive survival rates [306] and expected displacement

[71] incorporate uncertainty in system behavior while deterministic measures such as the value

of resilience [95] and maximum disturbance [211] do not.

• Dynamic and static measures: Dynamic measures, such as the resilience triangle [36],

recovery time, dynamic economic resilience [245], and similar definitions incorporate the time-

based behavior of the system while static measures, such as static economic resilience and

network structure resilience (e.g. [146]) do not.

Within the engineering discipline, resilience assessment has been considered a special case of

risk assessment, where resilience is the expected time-based response of the system to faults: a

combination of reliability and recoverability [304], or, as has been presented more recently, reliability,

recovery, robustness, and reconfigurability [255]. Design for resilience often focuses on recoverability,

defined as a product of the diagnosis capability, resource availability, and repair capability of the

system [167], since prevention is already considered in traditional reliability approaches. Recent

developments in resilience quantification have defined resilience as a statistical expectation over a

set of simulations, such as the resilience index and fraction of simulations with resilient, failed, or

recovered operations [56, 180], the loss of performance due to the fault behavior [201, 212], or, most

commonly, the loss of value [195, 67, 174, 115].

This work takes the broad view that resilience is a comprehensive understanding of system
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risk that necessarily incorporates the dynamic response of the system to faults but also includes

its inherent reliability and active fault prevention. In prior work, risk and resilience have been

considered competing or complementary approaches to understanding the susceptibility of a system

to hazards [17], with risk generally quantified as failure probability and resilience quantified through

a number of metrics (e.g., recovery time) [180]. This work unifies both by adopting a decision-

theoretic definition that unifies both: risk is the expected cost of a set of hazards and resilience

specifies that this model is dynamic such that consequences (and their mitigation strategies) unfold

over time.

The next subsections discuss previous resilience-based design approaches and approaches to con-

sider uncertainty in design used as the basis of the cost-based resilience definition and validity testing

approach presented in this work.

2.1.1 Previous Resilience-based Design Approaches

Incorporating resilience in the design of a system is beneficial to ensure it operates as safely,

sustainably, and economically as possible when there are hazardous events [169, 106, 53]. Op-

timizing resilience can involve the physical design of the system (e.g., redundancy and sensors)

and the contingency management of the system (how it responds to hazardous events). Prior

work [182, 240, 20, 202, 303] has shown both of these resilience optimization strategies in the design

of aerospace systems. For example, the resilience optimization of a health management system in a

power balance model of the Space Shuttle Main Engine involved the allocation of sensors needed to

detect a hazard [182]–an instance of optimizing a design for resilience. Other work has focused on

optimizing the resilience of in-flight aircraft fault accommodation (e.g., trim, throttle, and switch

adjustments for various hazards) [240]–one of many instances (see: [20, 202, 303]) of optimizing the

contingency management for resilience. These approaches complement each other, since contingency

management must have some inherent flexibility afforded to it from the design features to operate

effectively and resilient design features must likewise be leveraged effectively by contingency manage-
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ment to effectively mitigate hazards. Designing resilience into a system thus can and should involve

optimizing both its high-level design and operational features and its contingency management.

As discussed in Section 3.2, there are a number of competing definitions for resilience in the

literature, which in turn effect how that resilience is incorporated in design. To enable the trading

of resilience with performance and other considerations, many design frameworks have been put

forward which quantify the value of resilience in the overall cost function used to assess the merit of

designs [174, 306, 115] (though other approaches exist, see: [265, 260, 177]). Value-of-resilience design

frameworks are advantageous because they, as value-driven design frameworks, provide an objective

which can be used by an optimization method to find the most resilient set of parameters for a

system and can incorporate the designer’s valuation of uncertainty [300]. Thus, many optimization

frameworks and applications use an overall life-cycle cost function as the overall objective, which

incorporates both the cost of resilience and the cost of performance and design considerations [293,

108, 307, 138, 176].

There have been some previous efforts in resilience-based design to optimize the contingency

management policy of a system together with its physical design and operations. Mehr et al. [187]

proposed the unified optimization of a mission’s prognostic and health management, asset design, and

asset management as three disciplines in a multi-objective multi-disciplinary optimization of mission

price, vehicle weight, and launch availability. Since then, major works in resilience-based design

have theorized the general early-stage resilience allocation problem as a sequential problem: first

allocating resilience targets to subsystems and then optimizing the reliability and health management

of those systems to achieve the targetted resilience [306, 305]. Additionally, in a prognostics and

health management application, Niu and Jiang used a sequential approach, first optimizing the

“local” usage profile of a braking system to reduce maintenance and then optimizing the “global”

maintenance policy for the brake to minimize the maintenance cost-per-braking-distance, finding

that optimizing both resulted in less overall cost than only optimizing one or the other [206].

Finally, there have also been examples of bilevel and two-stage (a related architecture, see Sec-

tion 2.3) architectures for use in resilience optimization. Two-stage approaches are often used in
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the resilience-based design of infrastructure networks [67, 195, 184], though they have recently been

introduced in a general systems design context [300]. Similar to the bilevel approach, the two-stage

approach optimizes the system to prepare for adverse events in the first stage (upper level) and opti-

mizes the system to mitigate and recover from adverse events in the second stage (lower level). The

difference between the two-stage approach and the integrated resilience optimization formulation

pursued in this work is that a two-stage formulation assumes that one can optimize the second-stage

variables after the hazard has occurred, rather than relying on a predetermined policy (as is done

in this work). More recently, Zhang et al. have used a bilevel optimization approach to determine

the optimal construction and capacities of service centers that maximizes resilience in the case of

service center disruptions [308]. One goal of this work is to compare the merit of bilevel approaches

like this (e.g.,[308, 229]) with the sequential approaches previously (i.e., [306, 305]) presented for the

general design of resilience.

2.1.2 Design Decision-making and Consideration of Uncertainty

The framework presented in this dissertation uses the principles of decision theory to systematically

consider the choice of design approaches to achieve resilience. Decision-based design views engineer-

ing as a decision-making process and uses the principles of decision theory to structure and inform

this process [90]. These frameworks often rely on the axiomatic definition of utility presented by Von

Neumann and Morgenstern in Theory of Games and Economic Behavior [285]–seeking to maximize

the statistical expectation of the utility of a design [278, 90, 91]. This utility is often calculated

directly as a profit value (as in [81]), but may also be a function of a profit value, when different

profit levels result in different marginal utilities [285]. One of the major advantages of value-based

design frameworks is that they produce an objective which can be used to optimize a design, rather

than relying on fixed requirements, thus avoiding cost growth due to missed requirements [50].

Decision-based design approaches risk in design as a lottery. To illustrate, if a design x could

lead to only two mutually-exclusive outcomes, 1 and 2, with utilities u1(x) and u2(x), and outcome
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1 has probability p(x), the expected utility U(x) of that design is:

U(x) = p(x) ∗ u1(x) + (1− p(x)) ∗ u2(x) (2.1)

For example, a design where p(x) = 0.5, u1 = 200, and u2 = 0 is equivalent to a design where p(x) =

1.0, u1 = 100, and u2 = 0, since both have the same expected utility of U = 100. Alternatively, a

design where p(x) = 1.0, u1 = 100, and u2 = 0 would be preferred to a design where p(x) = 0.9,

u1 = 100, and u2 = 10, since it has a higher total utility (100 > 91).

In the decision-theoretic understanding of the design process, the designer progresses through

a successive set of choices to either analyze designs or select the best design based on current

information [248]. The value of analyses (e.g., of resilience) is to reduce the preference uncertainty

between different design options associated with low information. A variety of approaches have

been presented to value this uncertainty to aid decision-making. Bradley and Agogino [34] first

introduced Expected Value of Perfect Information (EVPI) (see Eq. 6.5) to the design field as a

metric to decide whether or not to reduce uncertainty or make a given component choice decision in

the Intelligent Real Time Design methodology (IRTD), which was later incorporated in the Decision-

Based Conceptual Design framework [298]. In this context, a low EVPI would mean there is little

value to be gained by waiting to make a particular decision because knowing more information

would not lead one to choose a better design, while a high EVPI would mean the design should be

characterized better before making that decision. Takai and Ishii [272] subsequently used EVPI to

determine how to allocate resources to reduce uncertainty in concept selection, and Hsiao et al. [109]

extended the EVPI using a risk attitude transformation to account for the designer’s preference

for more or less uncertainty. The main problem with using EVPI to value analyses is that it

assumes the designer eliminates uncertainty entirely, which is the upper bound on the value of

seeking more information. Nevertheless, it is an appropriate method of determining the value of

analyses in early design, since the metrics that correct for this issue, such as the process performance

indicator [193, 192, 191], expected value of sample information [87], and expected value of imperfect

information [277, 276] assume a certain level of uncertainty reduction from the information which may
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not be known. In these situations, where the largest contributor to uncertainty is reducible epistemic

uncertainty and one wishes to keep analysis simple, EVPI is considered most appropriate [62] since

the efficiency of information is high.

2.2 Modelling Approaches

Table 2.1: Comparison of Model-based Fault Simulation Toolkits for Design

Toolkit Behavioral/Causality Rep-
resentation

Model Input/Platform Availability Use in design

HiP-Hops
[220]

Dynamic simulation with
failure logic

Simulink, SimulationX,
AADL, etc.

Commercial Functional Hazard Assessment,
Design Optimization
[221]

Rodon
[37]

Behavioral constraint net-
work with failure logic

Modelica-like Rodelica
model

Commercial Model-based engineering pro-
cess
[172]

Modelica fault li-
braries
[282, 196, 82]

Undirected behavioral/fail-
ure logic

Modelica Open Source Design exploration
[163]

OpenErrorPro
[198]

Probabilistic markov chain Simulink/Stateflow, UM-
L/SysML, and AADL

Open Source Model-based reliable system de-
sign
[199]

SHyFTOO
[44]

Dynamic simulation with
probabilistic hybrid fault
tree

Simulink and toolkit-
defined model

Open Source Model-based design
[45]

OpenCossan
[227]

Probabalistic semi-markov
transitions, external simula-
tion

MATLAB toolkit-defined
model

Open Source Resilient, reliable, robust design
under uncertainty [226]

IBFM [185] Bond graph with failure
logic

Text-based model, Python Open Source Functional decomposition and
design optimization
[115]

fmdtools Dynamic un-directed be-
havioral simulation with
failure logic

Python toolkit-defined
model

Open Source Early resilience-based design,
analysis, visualization and opti-
mization

Fault propagation is widely used in a number of domains to assess the safety and resilience of a

system of interest. As shown in Figure 4.1 in Chapter 4, while most current tools focus on modelling

the system in the later design stages and in the verification and validation process, when there are

detailed models of the system, fmdtools–the simulation framework presented in this work–is meant

to support early design processes. To do this, it provides analyses that support each phase of the

function-behavior-structure design process commonly used in engineering design![107]. In this pro-

cess, one creates a functional decomposition of the tasks the system is to perform, finds solution

principles to achieve those tasks, and then synthesizes those principles into a realized design con-

cept [217]. These design processes are supported by static failure-logic functional hazard assessment
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and network models, dynamic behavioral models, and hierarchical fault models, respectively.

Additionally, a number of other modelling formalisms have been developed to assess the risk of

hazards in engineered systems, including fault trees, bayesian networks, and stochastic petri nets (a

type of discrete event simulation) [39]. While the simpler methods (fault trees, bayesian networks)

enable stronger proofs of system dependability [39], they do not express the system resilience–the

behavior over time resulting from a fault. In these situations, a discrete event simulation or con-

tinuous dynamic model is used. Discrete event simulation (e.g. [181]) has been used to assess

and design resilience into systems, including maintenance [295] and recovery aspects [194]. Simi-

larly, Monte Carlo techniques are often used with continuous simulation models to quantify risk of

hazardous states [110]. While these approaches describe the underlying general approaches to sim-

ulating faulty behaviors in a system, the following sections describe specific toolkits that use these

approaches to quantify resilience (2.2.1), related safety and reliability-oriented fault modelling toolk-

its (2.2.2), work regarding function-based fault models used as inspiration for the fault modelling

class structures used here (2.2.3), and types of fault models used in probabilistic risk assessment

(2.2.4).

2.2.1 Resilience Modelling Toolkits

As shown in Table 2.1, there have been some prior efforts to develop generally-applicable toolkits

for the design of resilience in a model-based engineering process. One major difference between

toolkits is the way they represent causality in the system to determine the effects and propagation

of faults, which has a number of potential aspects, including the types of failure paths able to be

represented (through the system behavior, failure logic, state transitions or a hybrid) [104], and the

nature of causality (probabilistic or deterministic). To integrate with design activities, currently-

available frameworks are built around either a standardized modelling language (e.g. AADL), or

an existing systems modelling tool such as Simulink or Modelica. While this enables one to use

a single unified model for multiple analyses through the process, it can also be limiting if certain
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aspects of fault propagation are difficult to represent in the given formalism. Finally, while each of

these toolkits are claimed to support different design processes, the design being performed is later

stage embodiment design–not the early conceptual design shown in Figures 4.1 and 3.1. The main

exception to this is Hip-Hops (Hierarchically Performed Hazard Origin and Propagation Studies)

and IBFM (Inherent Behaviors of Functional Models), which both target early design processes. As

a result, the implementation of early functional risk assessment tools has been cited as a necessity

to bridge the gap between model-based hazard assessment methods in literature and their adoption

in industry [80].

Development of the fmdtools toolkit presented in Chapter 4 was initiated to address limitations

with the previously-developed IBFM simulator [185]. While IBFM was developed for the early, high-

level functional design of engineered systems and was able to determine the end-states of large sets of

system faults, the behavioral representation was restricted to a few given states (Zero to Highest), a

set of given possible operations on input and output flows, event-based dynamic propagation, and a

given syntax for specifying failure logic. This limited its ability to express all possible behaviors that

could occur in a system as a result of a given fault. Additionally, the text-based model representation

made it difficult to parameterize models and simulate them iteratively in an optimization algorithm.

In Section 4.2.1, these limitations are addressed by defining the model as a set of interacting Python

classes with possible faults and (nominal or faulty) behaviors to simulate over a set of discrete time-

steps. With this model representation, one can easily express and optimize the dynamic behavior of

the system without being limited by expressiveness of the underlying modelling tool. The fmdtools

toolkit has additionally since expanded in scope to include not just fault propagation tools but the

necessary analysis and visualization tools needed to interpret simulation results. In doing so, it

comprises an early resilience-based design environment that enables quick, iterative analysis over a

design model.
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2.2.2 Related Fault Modelling Tools

In addition to the fault propagation toolkits mentioned above, there are additionally a number

of toolkits used for fault propagation in safety assessment and for resilience assessment in specific

applications (e.g., circuits, infrastructure) that merit a specialized simulation framework.

Safety assessment toolkits are used to verify that a given design meets desired safety and reliabil-

ity criteria [104, 136]. Typically, these tools take a design model specified in a formal language (e.g.,

Simulink [134], Lustre [135], Modelica [282], AADL [268], UML [52]) and apply a model checker to

the system description to find cases where the system does not work as intended. While this pro-

cess can be performed in a nominal system model, model-based safety assessment tools extend this

process to assess safety by including failure modes and faulty behaviors in the system description

[134, 135]. However, because the intended purpose of these tools is to verify safety requirements

post-design (see the right side of the V-model in Figure 4.1), they typically rely on detailed, fully-

specified models of the design that are not available early in the design process [80]. Furthermore,

these tools are not intended to assess resilience–the dynamic effects of failures due to faults, but

instead assess the safety or reliability of the system (i.e., an overall fault tree or failure probability).

As a result, they are not applicable to the design of resilience in the early design process when the

system has not been fully specified and the designer is interested in assessing the system’s dynamic

response to faults.

Fault injection is used widely in software and hardware engineering to assess a computer system’s

ability to manage the different types of faults. Existing simulators vary by domain (e.g., distributed

systems [179], servers [149], stand-alone systems) and type of faults (hardware-originated [76, 246]

or software components/algorithms [78, 13]), though generic simulators also exist [296]. One of

the advantages of software (as opposed to hardware/systems) engineering is that there is little

comparative cost to implementing software prototypes, and as a result, these tools do not operate

on models of the system as is needed in engineering design but real prototypes.

There are additionally a number of application-specific resilience assessment toolkits that inter-

face with specific system simulators to model the resilience-related attributes for that domain. For
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example, integrated circuits have well-defined properties that have led to a number of specialized

fault simulation algorithms, which have since been implemented in software [183, 205]. Infrastruc-

ture often has specific hazards to assess, which has resulted in tools to consider natural disasters

for cities [72, 186] and cyber-physical threats in smart grids [287]. Finally, assessing the hazards

of autonomous vehicles in a real system is both costly and hazardous [74], which has led to the

development of a number of simulators that enable one to try different policies to approaching haz-

ards which the vehicle will encounter [132, 133]. While these toolkits can assess resilience in specific

design contexts with high fidelity, they are not applicable to a generic systems design context. The

fmdtools framework presented in Chapter 4, on the other hand, is meant to for early design stage

resilience modelling, where it is more advantageous to use a general-purpose framework to prototype

a large space of potential systems at a high level.

2.2.3 Function-based Fault Models

As discussed in the previous sub-sections, most existing fault/failure modelling tools and approaches

have been developed around late-stage design models. Thus, previous work involving the use of fault

models in early design have developed function-based fault models which use the functional model

of the system to represent the system interactions. Functional modelling is a way of representing

the concept of purpose in a system which has been described as a language for conceptual design

intention, a bridge between high-level decision-making and implementation [64], and a “blueprint”

for the future system which is agnostic of any particular form [270]. While a variety of modelling

conventions have been presented in general, function modelling represents a system as a set of func-

tions which act on flows of energy, material, and signal to accomplish a given task [64]. This specific

representation of functionality is one of many potential system representations, but is uniquely use-

ful for its lack of ambiguity and ability to be reused and transformed to simulate behavior [153]. It

is also a major part of engineering design curriculum [280, 217, 281] and has been standardized as

a part of the systems design process [297, 128].
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Functional decomposition is meant to abstract the system in such a way that allows the designer

to consider a variety of creative solutions that provide the necessary functions required by the

system [217]. In general, functions are operations stated as noun-verb pairs which are performed

temporally on the material, energy, and signal flows that pass through the system. Decomposition

follows the following process:

• Developing an overall black-box model of the main function of the product

• Determining the primary set of functions required to achieve the overall function, and con-

necting the flows of energy, material, and signal proceeding from one task to another

• Adding the supporting functions needed to provide the flows needed by the main set of func-

tions

Often, functional decomposition follows a hierarchical process and representation as shown in

Figure 2.1 for an evtol aircraft. That is, this decomposition continues throughout the design process

from a high-level representation of the tasks performed by the system determined at the outset to

lower level decompositions determined based on the concept and configuration chosen for the system.

For example, in this system, the high-level task “Manipulate Environment” is performed by (in the

horizontal flight mode shown) achieving forward velocity and using that velocity to achieve lift and

control the direction of movement and (in vertical flight mode) by varying the torque and thrust

generated by several vertical propellers.

In the functional decomposition process illustrated in Figure 2.1, fault models can be developed

which determine the effect of functional failures on the overall system. These models constitute a

model-based Functional Hazard Assessment and can be used to then compare different functional

architectures and individual function requirements using assumptions (to be given as requirements)

about fault rates. A variety of approaches can be used to develop function-based fault models,

including using graph-based models [158], hierarchical dynamic system models [220], dimensionless

behavioral models [48], and state-based models [130]. In each approach, behaviors are associated

with each function and a list of scenarios is simulated in which faults are injected into model in
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Figure 2.1: Decomposing the functions of an EVTOL Aircraft from the high level tasks which must
be performed to the sub-functions needed to perform those tasks. Decomposition occurs after one
step of design is completed to motivate the next step, starting with the task clarification model
(upper-left) which motivates the conceptual design (lower-left) and then the embodiment design
(lower and upper right). As such, the final level of decomposition (seen in the upper-right corner)
maps directly to the components of the system.

each function (or a set of functions) and propagated through the model to observe the consequences.

Depending on the depth of insight desired from a function-based fault model, behaviors may be

coded as states in the function (nominal, degraded, or failed) or from the dynamic equations related

to each function.

To incorporate functional hazard information in design, prior work introduced formal method-

ologies to enable designers’ use and understanding of the information. The function-failure design

method (FFDM) to predict likely failure modes due to the loss of functions using past data to show

which functions require more design attention [269]. This was extended in the risk in early design

method (RED) using likelihood and consequence estimates to better inform designers [171] [170],

which has since been shown to better allow students to assess risk [124]. To analyze social and

organizational hazards in engineering systems, the Functional Resonance Analysis Method (FRAM)

was developed to analyze hazards within socio-technical systems based on high-level functional re-
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lationships [102], such as air traffic management [59]. This socio-technical interaction has also been

analyzed using a hierarchical functional decomposition of a system to identify hazards within process

plants [239] and food processing [238]. These tools are based on building tables or databases of pre-

vious faults which occurred within functions, as well as their effects concurrently with a functional

model.

Other approaches use function-based computational models to encode risks. Hierarchically Per-

formed Hazard Origin and Propagation Studies (HiP-HOPS) was developed as a tool to assess risk

throughout a hierarchical system model by integrating functional and classical techniques into a

single consistent model [220]. Rather than modeling failures within engineered systems as a result

of component failures, the Systems-Theoretic Accident Model and Processes (STAMP) models the

dynamics of the organizational environment to find and redesign inadequate control processes that

lead to failure [203] [162] [61] [127]. The function failure identification and propagation method

(FFIP) informs assessment by constructing a graph-based behavioral model to take into account the

function interactions, dynamics, and joint fault scenarios [156] which has since been extended using

flow-state logic to model undesired flow states [130] and dimensional analysis to incorporate more

detailed information about component behavior [48] and adapted for large-scale complex systems

[223] and mechatronics [258]. Inherent Behavior of Functional Models (IBFM), which is used in Sec-

tions 3.3,6.4, and 5.4, provided a method to automate the creation of a state-based behavior model

from the functional model itself [185]. Approaches have additionally been presented which associate

the functional model with a fault tree [168] [208] [190], and other methods have been created to

focus on the propagation of failures through a functional model [152].

Attempts have in turn been made to show how to generate, improve, or change the design based

on these function-based failure frameworks. Initially in developing these frameworks, the resulting

information was simply used to show designers where attention should be paid in making design

choices [269]. Approaches have subsequently been presented to use graph grammars to change the

structure of the model, and/or use a cost-risk analysis scoring function to compare between design

alternatives [143] [142]. Additionally, an approach has been presented for designing the operational
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decision-making in the model to determine when to, for example, route degraded flows to sacrificial

subsystems [256]. While these approaches show many of the design changes that can be made within

a functional model, and can be used to compare between design alternatives, they do not use this

knowledge to formally optimize a design problem.

This work is somewhat novel in that only a few approaches for formal optimization of risk within

functional models have additionally been presented. Using the HiP-HOPS risk modelling method-

ology, design optimization [221] and optimization of fault tolerance [3] has been demonstrated.

Additionally, using functional-failure-matrix approaches, the Risk and Uncertainty Based Concur-

rent Integrated Design Methodology (RUBIC) first introduced the concept of using failure scenarios,

probabilities, and costs to optimize risk within a functional model to show where to allocate resources

based on function-failure matrices used in FFDM [188]. Additionally, objectives been formed for

the allocation of health management within a functional model informed by the effect of adding

sensors, reducing failure probabilities, and changing inspection intervals on reducing overall design

risk [108]. While these approaches show that some optimization has been performed in the context

of function-failure methodologies, no approaches have yet been presented for the graph-based fault

models, such as IBFM and FFIP.

2.2.4 Fault Modelling in Probabilistic Risk Assessment

Fault models are used in Probabilistic Risk Assessment to calculate or simulate the probabili-

ties and/or severities of hazards [16]. However, not all fault modelling approaches can be used

for resilience quantification using the definition used in Section 3.4, since it relies on a specific

representation of time and probability. A review of fault modelling approaches is provided in

Refs. [4, 83, 104, 39, 137]. Generally, time representations in fault models vary between completely

static simulations (where faults result in immediate effects with no consideration of time e.g. [218]),

discrete time simulations (where time is incremented by a set timestep e.g. [6, 43, 110, 86]), and

continuous dynamic simulations (where faults propagate through a model with the dynamics of the
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system fully incorporated e.g. in a Simulink model [23, 301, 93]).

Fault modelling approaches can additionally be placed into probabilistic and deterministic cate-

gories. In a deterministic model, the fault-induced behavior of the system (which may be modelled

in a finite state machine, a series of logic gates, or a physics model) is considered a direct result of the

fault and thus the same fault scenario always produces the same result. In a probabilistic model, the

dynamics of failure incorporates behavioral stochasticity, and thus the outcome of a given scenario

is a distribution or event tree [110] of fault effects [7]. Modelling uncertain behavior in system fault

models is an open research area, but common approaches include creating a markov model of the

probabilities of transitions between different system states [6], querying the model with an event

tree [110], creating uncertain distributions for failure parameters for use in Monte Carlo sampling

[195], and similar approaches [160, 309].

Finally, fault modelling approaches can be categorized as inductive or deductive based on the

way they represent the set of fault scenarios and consequences [301]. Fault models are often used for

safety assessment to quantify the overall probability of a given top event that constitutes a safety

risk. In this deductive approach, called backtracking, a tree of scenarios is searched to find the

probable scenarios that lead to the top event–creating the fault tree for that event [301]. This is

contrasted with an inductive approach, where the list of fault scenarios is simulated to determine

the set of effects that occur for those faults–creating what is essentially an FMEA [80]. For safety

assessment, the deductive approach is preferred because it gives one a comprehensive quantification

of safety risk from all identified sources [267, Sec. 4.8].

2.3 Optimization Architectures

The complexity inherent to optimizing large-scale and multi-disciplinary systems has lead to the

study of distributed optimization architectures in the field of multidisciplinary design optimization

(MDO) [178]. Multidisciplinary Design Optimization (MDO) as a field emerged from the challenge of

designing multidisciplinary aerospace systems, where the many subsystems and disciplinary analyses
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make it advantageous to use local incentives to optimize subsystems in a way that aligns with high-

level objectives [261]. While initial approaches focused on aligning these objectives, early tests of

these approaches found that it is also necessary to coordinate the subsystem interactions, otherwise

the system will not be fully optimized [252]. Thus, multidisciplinary design optimization approaches

focus not just on the alignment of incentives but the coordination of subsystem optimizations [35].

Because aircraft design is a multidisciplinary design problem like this, with multiple models and

coupled objectives, interest in the area has resulted in application tools for real problems [92, 79, 47]

and frameworks for integrating MDO in design [231, 222].

Multidisciplinary design optimization approaches can be classified based on their problem formu-

lations and decomposition strategies [178]. In distributed formulations of the multidisciplinary design

optimization problem, the optimization problem is divided into several interacting optimization prob-

lems to be solved by individual algorithms, while in monolithic formulations one single optimization

algorithm is used on the entire problem. Distributed formulations are additionally categorized as dis-

tributed individual-discipline-feasible (IDF), where individual sub-problem optimizations must op-

timize coupling variable consistency in addition to sub-system objectives, or multidiscipline-feasible

(MDF), where consistency constraints are enforced between subsystems through the statement of

the problem [178]. Optimization architectures are also put into hierarchical and non-hierarchical

categories, where hierarchical architectures, such as Analytical Target Cascading, have a number of

“levels” at which the optimization is decomposed (system, subsystem, sub-sub-system, etc.) while

non-hierarchical architectures such as Collaborative Optimization have only two levels: a system-

level and disciplinary-level optimization [9].

Unfortunately, the development of a distributed optimization architecture that consistently con-

verges across a wide range of problems is still an open problem, and distributed approaches often

have increased computational cost compared to monolithic formulations [178]. Nevertheless, there

are differences between each architecture that may make each more or less favorable for a particular

problem. For monolithic architectures, IDF formulations can make optimization more difficult by in-

creasing problem dimensionality but faster overall by enabling parallel execution of models [9]. IDF
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architectures may also find parts of the design space that would have been inaccessible in an MDF

formulation, which may lead to increased solution quality depending on the given problem [274].

Finally, while architectures can increase solution difficulty, the heterogeneous design spaces often

approached in complex systems design make it necessary to break the problem into components for

ease of solution [9].

Bilevel optimization architectures are often used in multidisciplinary design optimization for

large scale complex systems when the optimal decision in one model depends on the optimal decision

in another model.

Bilevel optimization was first realized in the field of game theory by economist Heinrich Freiherr

von Stackelberg in 1934 [286] that described this hierarchical problem, where one problem–the lower

level-level problem–is embedded (nested) within another problem, called the upper-level problem,

acting as a constraint. To solve the problem, each iteration of the optimization of the upper level

corresponds to a full optimization of the lower-level problem at a specific set of values used in the

upper level problem [28]. While these approaches are applicable to certain classes of problems such

as competitive games where one wants to know the best strategy to defeat the opponent’s best

strategy [51], computational cost is an issue when they are used on traditional problems instead of

a monolithic approach [28]. Nevertheless, Stackelberg games have been used to represent complex

robust design problems where one wishes to design the system to be as robust as possible to adverse

events, because these events are analogous to the lower-level “adversaries” in traditional Stackelberg

games [243].

Papers have been published attempting bilevel programming in various complex design problems.

This approach has been extensively applied in the field of transportation and defense strategy. Labbe,

Marcotte and Savard in 1998 proposed a bilevel model of taxation and its application in toll-setting

problem in highways. In this bilevel model the leader wants to maximize revenue from taxation

schemes, while the follower rationally reacts to those tax levels [159]. Chen and Subprasom [40]

formulated a stochastic bilevel programming model for a Build-Operate-Transfer (BOT) road pricing

problem under demand uncertainty. Braken and McGill [33] proposed a bilevel optimization model
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in defense applications which includes strategic force planning problems and two general purpose

force planning problems. In recent years, this approach has been accepted and is being widely used in

strategic bomber force structure and allocation of tactical aircraft to missions. Roghanian, Sadjadi

and Aryanezhad [244] presented a bilevel multi-objective programming model in enterprise-wide

supply chain planning problems considering uncertainties on market demand, production capacity

and resource availability. Recently, Biswas et. al. [26, 27] developed a bilevel flexible robust design

on complex large scale multi-reservoir system under risk of future shortage of energy, which provides

better optimal decision (higher revenue) than a standalone framework. Since bilevel optimization is

computationally expensive, mathematical and dimension reduction approaches have also been taken

in [26] to reduce the computational cost at minimal loss of information.

Two-stage Optimization is an architecture used in mathematical optimization to consider

uncertainty in decision-making [139]. Two-stage optimization was introduced by Dantzig [57] and

Beale [22] as a way of solving linear programming problems with stochastic variables. In these formu-

lations, the first stage optimizes the decisions available before the uncertain variable is known, while

the second stage optimizes the decisions available after the uncertain variable is realized. However,

since taking the uncertainty into account in the first stage requires taking into account the second-

stage actions, a recourse function for the optimal second-stage response must be provided. This

recourse function is the optimal resilience cost given realized values of the uncertain variables, which

can either be derived analytically and/or approximated using a discrete set of scenarios (stochastic

programming problems of this type are usually formulated to be linear) [235, 253]. Thus, where

a bilevel approaches might find the optimal policy over a space of uncertainty (e.g. finding the

best design and operational policy over the set), two-stage approaches find the best policy before

and after uncertain variables have been realized. However, inherent to this framework is the idea

that the second-stage variables can or will be optimized after the fact. For engineered systems, this

may not necessarily be the case: while a PHM system might be able to identify a fault, it may not

necessarily be able to optimize the response to the fault in real time, instead using a predetermined

contingency management scheme. Thus, Chapter 5 focuses on the optimization of that policy before
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the uncertainty is realized (where all variables are optimized together), rather than after (where

two-stage approaches are applied).

Recent developments in the field of multidisciplinary design optimization have additionally con-

sidered the unique situation of combined plant and control design [10]. Codesign is the special

application of multidisciplinary design optimization to the simultaneous design of the plant (or de-

sign) of a system and its dynamic control policy or architecture which is used when control and design

considerations are coupled. Codesign can be performed in a nested (bilevel) or simultaneous (all-at-

once) architecture [96], and has been used in a number of applications for combined plant, control

system, and architecture optimization [97]. For example, codesign has previously been applied in

aircraft design to the aerodynamics and control of tail-fin controlled supersonic missiles, where the

choice of optimal tail planform is coupled with the choice of optimal tail control profile [164]. This

situation is similar to the resilience optimization problem, except that in the resilience optimization

problem the control of the system must be optimal not only over the nominal scenario, but over the

set of fault scenarios. As a result, this Chapter 5 considers an optimization problem where not only

is the optimization the system design and operational profile considered, but also the optimization

of resilience policy variables.
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Chapter 3: Defining Resilience as a Decision-Theoretic Objective

3.1 Motivation

Reducing the impacts of hazards is a key part of the design process. When the consequences of

hazards are salient, it becomes important to proactively avoid them through good design, rather

than attempting to mitigate them post-design, since a hazardous design outcome constitutes project

risk [242]. Up-front early-stage design decisions lead to large increases in project cost if made poorly,

since they require more effort to correct later in the design process [273]. As a result, it is important

for early high-level decisions to be made strategically to prevent the rest of the design process from

being stifled by poorly-considered early design commitments [70].

Thus, the design of resilience in the system needs to occur in the early design phase, when analysis

can have the most influence over the final design. In order for the analysis of resilience to be taken

into account in early design, it must factor into design decision-making processes, as described in

Section 2.1 and summarized in Figure 3.2. In this process, the design problem is defined, concepts

investigated and refined, and then a decision is made between the different concepts which defines

the requirements and specification that guides the rest of the design. While many frameworks to

conduct this early design decision-making exist, as described in Section 2.1.2, cost and utility-based
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Figure 3.1: The early design process.
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design processes have been adopted by the design community because of their decision-theoretic

properties (i.e., internally consistent axiomatic basis) and intuitive salience. Thus, in the design of

complex prognostics and health management systems used to increase resilience, a financial “case”

is often provided where the up-front design costs are weighed against the operational, maintenance,

and safety benefits they will provide in the final design [68, 154].

The objective of this chapter is to develop expected cost metrics which quantify the cost of fault

simulation results so that the benefit of resilience can be used to inform design. As a single, holistic

design measure, these metrics (along with design and operational costs) can then be used as the sole

value consideration both to guide early design processes and to be used as an objective in optimiza-

tion procedures. Using expected cost in typical systematic design process (such as that described

in [217, see Chapter 2] and Chapter 2), designers can compare a variety of early functional design

concepts and determine how best to make key design decisions about function structure, high-level

functional requirements, and solution working principles. Using the cost metric for optimization,

solution procedures may be developed and leveraged which allow designers to explore large spaces of

design concepts in a way that would be difficult or impractical without computational support (see

Chapter 5). For example, using expected cost as the objective, an algorithm could search extensive

design catalogues for compatible solutions for each of the given functions of a model, a process that

would be painstakingly tedious for a team of designers to perform. Since the assessment of resilience

is often performed in a model (see Chapter 4), this work additionally aims to quantify benefits from

simulation results. To advance these goals, this chapter presents:

• in Section 3.2, a general decision-theoretic definition of resilience as an expected cost;

• in Section 3.3, an adaptation of expected cost to quantify resilience using simulations developed

in the IBFM [185] modeling framework; and

• in Section 3.4, an adaptation of expected cost to quantify resilience based on dynamic simula-

tions developed in the fmdtools fault modelling framework presented in Chapter 4.

To demonstrate these methods, Section 3.5 first shows an simple example of how expected cost can
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be used as a part of the overall early design framework of this dissertation in a design problem

considering the selection of a wire. Section 3.6 then demonstrates the adaptation of expected cost

within the fmdtools modelling framework presented in Chapter 4 and compares the expected cost

injection error of a variety of fault sampling approaches which may be used in this framework.

Demonstration of the IBFM RISCS scoring in 3.3 is additionally provided in the examples in Sections

5.4 and 6.4. A brief conclusion is then provided in Section 3.7.

The reason multiple adaptations of expected cost scoring are provided here is that different

modelling frameworks (or no modelling framework) may be chosen to represent system resilience,

depending on the needs of the problem under consideration. While models encourage design consis-

tency and rigor in specifying assumptions, they also take significant resources to set up. Additionally,

while the fmdtools fault modelling framework developed in Chapter 4 was meant to address limita-

tions in the IBFM toolkit [185], there are certain use-cases where the IBFM toolkit has an advantage,

such as if one wishes to specify a model in text or run simulations without installing the fmdtools

dependencies. Since there is still a need in each situation to have a metric which quantifies the cost

of resilience for use in decision-making, cost metrics are provided for both.

Finally, rather than just exemplifying the use of the cost model for fmdtools dynamic fault

simulations, Section 3.6 additionally assesses the error from using different fault injection strategies

for expected resilience quantification. To aid the application of expected cost modelling in fmdtools

simulation, where it is intractable to sample every single fault scenario due to computational cost.

Computational cost is a major obstacle to designing a resilient system, because the dynamic models

used to assess resilience are often computationally expensive [213, 310] and a large set of faults

must be simulated to adequately quantify risk [310]. From a decision-theoretic perspective, there is

a trade-off between running competing computationally expensive simulations and generating and

selecting designs [277, 241]: the increased accuracy of running computationally-expensive simulations

may not be worth the opportunity cost of not exploring the design space [87]. Thus, to best inform

design where simulations need to be computationally cheap enough to enable quick design iterations

while remaining accurate enough to make meaningful decisions, Section 3.6 provides a comparison of
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Figure 3.2: Generic consideration of resilience in an overall value model used in early system design.

different injection approaches with differing computational costs which can be chosen by the designer

to most efficiently represent the expected cost of faults in the system.

3.2 General Definition

In this work, value assessment is used to consider the trade-offs between the increased resilience of

fault-mitigation features such as redundancy, fail-safes, or prognostics and health management and

the design and operational costs needed to implement and operate those features. In a generic sense,

an overall cost function that considers resilience is:

C = CD + CO + E
s∈S
{C(s)} (3.1)

where CD is the design cost (e.g., research and development, manufacturing and integration costs,

etc.), CO is the operational cost (e.g., energy/performance and maintenance costs) and the cost of

resilience is the expected value of the cost function C(s) over the set of fault scenarios S. While the

respective costs of a system depend on the particularities of the design problem, a generic example
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of a value model is shown in Figure 3.2. In this model, all of the positive and negative attributes

of resilience (false alarms, unmitigated failures, mitigated failures), productivity (maintenance and

operational profit) and implementability (development and manufacturing difficulty) are quantified

in terms of their respective overall costs. A cost of a fault scenario C(s) is a result of repairs,

performance losses, and disruptions that occur as a result of the fault, essentially:

C(s) = CR(s) + CP (s) + CD(s) (3.2)

where cost of repair CR(s) results from damage in the system–the sum of repair costs cf over the

set of faults to repair F ,

CR(s) =
∑
f∈F

cf (3.3)

cost of performance CP (s) results from the loss of performance Pn(t)−Pf (t) from the fault simulation

time tf to the end of the simulation tE ,

CP (s) =

∫ tE

tf

C(Pn(t)− Pf (t))dt (3.4)

and the cost of disruption CD(s) is the immediate cost of the system leaving the nominal state and

entering a risky or unsafe condition. Sections 3.3 and 3.4 now show how this metric adapted within

different modelling frameworks to quantify the expected cost of faults.

3.3 RISCS - Expected Cost Modelling for Static Fault Models

To aid decision-making between different functional models based on fault simulation information

in the IBFM fault modelling framework presented in previous work [185], this section introduces

the Resilience-Informed Scenario Cost Sum (RISCS), a scoring function which adapts the general

definition of expected cost in Section 3.2 to these models. Of particular interest is this function’s

approach to modeling failure behavior, which is built on IBFM’s conception of a fault scenario–a set

of faults which yield an end-state. The basic form of this function is a sum of the design costs CD,
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operating costs CO, and fault event costs CE as shown in the following equation:

C = CD + CO + CE (3.5)

This scoring is quite similar in form to that devised by Keshavarzi et al. [143] in that it considers

trade-offs between design and operation costs, and the response of the system to various failure

events. However, the main difference is the applicability to design factors and integration with

function-based fault model definitions. While the scoring function devised previously merely con-

sidered the cost of mitigating factors which reduced the probability of end-states [143], the function

introduced here is generally-applicable to all mitigating actions and design changes, and is more

closely integrated with the results of IBFM simulations, as will be shown in the following sections.

3.3.1 Design Cost

Design costs resulting from design changes depend on the considered design problem. This is because,

in general, design costs come from a variety of sources, including research and development, required

materials, procurement, manufacturing, and integration. For design purposes, this paper considers

that the design costs of a given functional model can be represented as individual costs within each

function. As is the approach with risk and failure modes [269], these costs can in turn be estimated

based on an organization’s past costs for those functions. In this case, the resulting equation for

design cost CD is then:

CD =
∑
n∈N

Cn (3.6)

where Cn is the cost of a given function n in the set of all function instances in the model N .

3.3.2 Operation Cost

As with design costs, operating costs must be estimated based on an expectation of the system which

may result from past performance or a designer-created parametric model specific to the problem.
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Figure 3.3: Costs associated with a failure event in a resilient system.

While the method for determining the operating costs will vary depending on the considered problem,

in general they relate to the individual flows going in and out of the black-box form of the model.

Flows going into the model can result in costs (such as those having to do with raw materials and

energy) and revenues (such as those that take in waste material), as do flows going out of the model,

with costs potentially resulting from waste streams and revenues resulting from useful goods created.

In general, the operational cost CO then follows the form:

CO =
∑
l∈L

Cl −Rl (3.7)

where Cl and Rl are the respective costs and revenues associated with the flow l in the set of inflows

L entering and leaving the black box model.

It should be noted that, as will be the case in the case studies, these Cl and Rl terms need not

stand for explicit costs and revenue in dollars generated, but can also stand for the normative goods,

utility, or externalities created and destroyed by the organization. That is, if the organization has

a normative goal (e.g., generate science, provide public infrastructure, etc) that does not explicitly

lead to more or less revenue, the goods created or destroyed by the organization by pursuing this

goal can be quantified and incorprated as if it were a direct cost or revenue.
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3.3.3 Fault Scenario Cost

Key to representing resilience in a system is the time-based response to a large number of disruptions

or threat vectors [85]. The RISC approach’s incorporation of these disruptions is based around

IBFM’s ability to simulate large numbers of fault events, which are created by initiating a set of

fault modes which propagate through the model until an end-state is reached. These events have

costs, which are determined from the system’s response to the events in terms of end-state flow-

states and modes, and probabilities, which are determined by the probabilities of the initiating fault

modes. The cost of fault events is calculated as an expected cost–the cost of each event is weighted

by its probability. The resulting fault event cost CE follows the general form:

CE =
∑
e∈E

Pe ∗ Ce (3.8)

where Pe and Ce are the respective probabilities and costs of fault event e in the set of considered

events E. Assuming the probability of individual fault modes in a scenario are independent, the

probability of a given scenario is simply the product of the probability of the specific combination

of originating faults occurring multiplied by the probability that the rest of the system remains

nominal as follows:

Pe =
∏
m∈e

Pm ∗
∏
n 6∈e

(1−
∑
m∈n

Pm) (3.9)

where Pe is the probability of a given fault event e, Pm is the probability of a given initiating fault

mode m in event e occurring, and n is a function that does not have a fault in the event e.

As an expected cost metric, this fault scenario cost bears structural similarities to the Risk

Priority Number (RPN) used in Failure Modes and Effects Analysis (FMEA), in that it multiplies

the probability of a fault with the severity of the consequences of the fault. Aside from that basic

similarity, there are a number of differences between an expected cost metric and an RPN [148].

Unlike the RPN, expected cost uses real probabilities and costs, making it a consistent metric for

risk prioritization, and a valid metric to trade off with with design and operational costs. While the

criticality rating used in Failure Modes, Effects, and Criticality Analysis is in general a consistent
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risk prioritization metric [148], it still lacks the key property of allowing trade-offs with design and

operational costs.

To further consider resilience in the IBFM framework, the RISCS approach extends the definitions

of expected cost by considering three distinct stages in the system’s failure and recovery which in

turn map to three distinct costs. These costs are, as shown in Figure 3.3: the cost of failure state

Cf , the cost of mitigating or repairing the failure Cf→r, and the cost of partial recovery Cr. This

definition lines up with common definitions of resilience, in which the system starts at a nominal

stable condition, enters an unstable state due to a disruption, and then settles in a new recovered

stable condition [95]. The resulting fault event cost follows the form:

Ce = Cf + Cf→r + Cr (3.10)

These cost definitions integrate with IBFM simulations as follows:

• Cf results from the scenario end-state of the associated initiating fault event e,

• Cr results from the scenario end-state of a new fault event simulation, with a chosen set of

modes repaired, and

• Cf→r results from the cost of repairing the modes present in the end-state of the associated

fault event e not used as fault modes in the recovered fault event simulation.

This process of running a failure scenario, selecting modes to repair, and running a new fault

simulation based on the unrepaired modes is shown in Figure 3.4. It should be noted that this

fault re-simulation (and resulting cost) is only necessary for the special case in which only a partial

recovery is attempted or possible. When all of the modes are recovered (i.e. a full recovery), no

new fault simulation is needed since the end-state will be nominal, resulting in zero partial recovery

cost Cr. Alternatively, if it is impossible to repair the modes and/or no recovery is attempted, no

additional cost results from recovery or partial repair–instead the costs merely result from the failure

state. Calculating each of these costs is discussed in the following sections.



44

Figure 3.4: Illustration of fault re-simulation required to capture the costs of partial recovery Cr.

3.3.3.1 Failure Cost

Failures result in costs because they degrade the important flows leading in and out of the system,

resulting in higher costs, less revenue, or less utility. To determine the costs of specific failure events,

specific costs must be associated with the flow health states present in the end-state of the fault

event. These flow states are defined as the quality (zero, low, nominal, high, or highest) of a flow’s

rate and effort components. The general form of a specific matrix c̄l for flow l is shown in Table

3.1. Note that these, as specific costs, are the cost per unit time until the failure is mitigated, as the

total cost of a failure depends both on both the severity of the failure state and the amount of time

the system is in the failure state. As was discussed in Section 3.3.2, these important flows must be
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Table 3.1: Cost rate of an individual flow state for flow l based on combination of rate and effort health
states.

Effort Rate Health
Health Zero Low Nominal High Highest

Zero c̄l[00] c̄l[01] c̄l[02] c̄l[03] c̄l[04]
Low c̄l[10] c̄l[11] c̄l[12] c̄l[13] c̄l[14]

Nominal c̄l[20] c̄l[21] c̄l[22] c̄l[23] c̄l[24]
High c̄l[30] c̄l[31] c̄l[32] c̄l[33] c̄l[34]

Highest c̄l[40] c̄l[41] c̄l[42] c̄l[43] c̄l[44]

identified by the designer with costs included.

The cost of the failure part of the fault event can then be calculated using the state of the flows

going in and out of the model and the time taken to mitigate the failure as follows:

Cf = tf ∗
∑
l∈L

c̄l[~sf,l] (3.11)

where Cf is the cost of the failure scenario end-state f that is the direct result of the simulation of

fault event e, tf is the time taken between the failure and the recovery, l is a given flow in the set

of input and output flows L, c̄l is the specific cost matrix for that flow, and ~sf,l is the end-state of

that flow l in the given scenario f .

The recovery time is the time necessary to repair the individual failure modes which are in the

failure scenario but not in the recovered scenario. Considering that the repairs may be done in

parallel, this time can be calculated as the maximum of the times tm needed to repair each failure

mode m in the failure scenario end-state f but not in the recovered scenario r.

tf = max
m∈f∩6∈r

(tm) (3.12)

3.3.3.2 Mitigation Cost

The cost of mitigation is a result of repairing the failure modes in the failed system scenario that

are not present in the recovered system. This cost Cf→r is calculated as the sum of the cost Cm of
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recovering each mode m which is present in the failure scenario end-state f but not in the recovered

scenario r, per the following equation:

Cf→r =
∑

m∈f∩6∈r

Cm (3.13)

As with the other costs, this mode recovery cost Cm can be estimated based on past data or

assumptions about the future system regarding the repair/replacement processes required for each

function.

3.3.3.3 Partial Recovery Cost

Finally, the cost associated with the recovered system is the cost of the degraded flows still present

in the end-state recovered system due to unrepaired or unrecoverable failure modes. This may be

calculated similarly to the failure cost, by running a new fault scenario using the failure modes in

the recovered state, as shown in Figure 3.4. This partial recovery cost Cr is a result of the time left

in the recovered state (i.e., for the remaining life of the system) tr and the specific costs c̄l of the

state ~sr,l in the recovered end-state r of the flow l in the set of input and output flows L. This is

shown in the equation:

Cr,R = tr ∗
∑
l∈L

~cl[s̄r,l] (3.14)

These costs are calculated over the rest of the life of the system. If the system is meant to operate

for a long time, a discount factor should be applied based on the time value of money for the

organization.

3.3.4 Cost Model Summary

The previous sub-sections discussed how to calculate the costs of a system considering the de-

sign, operational, and fault scenario costs using the IBFM simulator, with special consideration of

resilience–the ability to recover from failures. While this metric may be calculated differently de-
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C =
∑
n∈N

Cn + (3.15)∑
l∈L

Cl −Rl +∑
e∈E

(
∏
m∈e

Pm ∗
∏
l 6∈e

(1−
∑
m∈e

Pm) ∗ ( max
m∈f∩6∈r

(tm) ∗
∑
l∈L

c̄l[~sf,l] +
∑

m∈f∩6∈r

Cm + tr ∗
∑
l∈L

c̄l[~sr,l]))

pending on the considered design problem, when stated as a single expression using the constructions

developed in the previous sections, the equation for RISCS takes the form shown in Equation 3.15,

where:

• C is the total RISCS

• Cn is the cost associated with the design of a function

• n is a function

• N is the set of function instances in the model

• Cl is the cost associated with an input or output flow

• Rl is the revenue or utility associated with an input or output flow

• l is a flow

• L is the set of input or output flows

• e is a fault event, a combination of fault modes

• E is the set of considered fault events

• m is a fault mode

• Pm is the probability of a fault mode

• f is the resulting fault scenario end-state of the fault event e



48

Cost

Mode
Rate

Usage 
Loss

Repair 
Loss

Phase
2

Simulation
Time

Phase
1

Phase
3

modes

Sample
Times

Disruption
Loss

Fault Scenarios

Figure 3.5: Resilience models determine the expectation of metrics over the set of fault scenarios
through dynamic simulation.

• tm is the time taken to repair a mode

• r is the recovered scenario that is the result of repairing fault modes in f

• c̄l is the cost function of the flow based on its state

• ~sf,l is the state of the flow l in the scenario end-state f

• Cm is the cost associated with repairing a fault mode

• tr is the time remaining between recovery and the end of life of the system

• ~sr,l is the state of the flow in the recovered scenario

3.4 Generalization for Dynamic fault models

Fault injection-based resilience models, such as the fmdtools modelling toolkit described in Chapter

4, quantify the dynamic performance effects of a set of fault scenarios, as shown in Figure 3.5.

Scenarios are injected over each phase of operation in the model (in this case, Phase 1, 2, and 3)

as well as each mode, with a varying mode rate and time range for each phase. These faults are
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simulated at each time to determine the system behaviors and resulting scenario costs. Scenario

costs occur as a result of disruption losses (spikes to input/output flows that may cause damage or

increased risks outside the system), usage losses (the difference between the nominal performances

and the faulty performance), and repair losses (the cost of fixing the damage that occurs as a result

of the injected fault) that occur over a fault simulation. The corresponding risk (or expected cost)

of a fault is the result of multiplying the simulation cost response with its expected occurrence

over the lifecycle of the system. Since the system alternates between different operational modes,

both the rates of occurrence of faults and the resulting costs change depending on the time of fault

injection. Finally, the total expected value is the sum of the costs of faults. A general statement of

this resilience cost C in a dynamic model is

C = E
s∈S
{
∫
t∈ts

C(s, t)dt} (3.16)

where s is a scenario in the set of fault scenarios S, C(s, t) is the dynamic cost function (or state

of interest) of the system over time t for scenario s, and ts is the time range of the fault scenario.

This definition of resilience integrates with dynamic probabilistic risk assessment process rather

than competing with it (as proposed by [18, 224]) because it quantifies resilience (recoverability

and robustness of a system over time) in a way that also quantifies risk (expected cost of faults).

Thus, to incorporate rate information for a specified set of fault modes, a more detailed statement

of resilience cost for this modelling situation is,

C ≈
∑
m

nl

∫ TE

tF=0

λm(t) ∗ (

∫ tE

t=tF

cm(t)dt)dtF (3.17)

where:

• nl is the number of operations over the course of the system’s life

• m is a mode

• λm(t) is the rate density function of a fault mode over the modelled time
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• t is time

• tF is the fault injection time

• tE is the end of the simulation

• cm(t) is the cost rate of a scenario per unit time

This equation makes a few assumptions: first, that the reliability is high enough that the rate

can be extrapolated out over the life-cycle of the system, second, that all faults are repairable, and

third, that the rate density function is constant over the life of the system.

To calculate the cost measure in Equation 3.17 from failure data, a few adaptations need to be

made based on what is known by engineers. Often, failure data is presented as a base failure rate

for a component λc (e.g. from NPRD [60]) which is then distributed between modes (e.g. from

FMD [197]) according to the probability distribution [p1 . . . pm . . . p3], as is done in [216]. The rate

for each mode is then: [λ1 . . . λm . . . λw] = [p1 . . . pm . . . pw] ∗ λc. Additionally, the fault rate of

different modes changes based on the operation of the system (e.g. if a component is being used or

not, and the amount of use). To account for this, an opportunity vector [sm1
. . . smt

. . . smT
] (where∑

t∈T smt
= 1) defines the relative likelihood of a fault occurring in a given phase of operation for

each fault. The resulting rates over time are



λ11 λ21 . . . λw1

λ12 λ22 . . . λw2

...
. . .

λ1T λ2T . . . λwT


= λc



p1

p2
...

pw



> 

s11 s21 . . . sw1

s12 s22 . . . s22
...

. . .

s1T s2T . . . swT


(3.18)

where λmjt
is an individual rate for mode j ∈ w for a given phase of time t ∈ T . By representing

the rate as constant between operational phases, the integral in Equation 3.17 can be written as

C =
∑
m∈w

nl
∑
t∈T

λmt

∫ tt+1

t=tt

(

∫ tE

t=tF

cm(t)dt)dtF (3.19)
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3.4.1 Fault Injection Approaches

To efficiently approximate Eq. 3.19 without simulating every distinct time, a subset of available

times is simulated and a weighted average is taken over the set of times in a numerical integration

approach, making the resulting cost

C =
∑
m∈w

nl
∑
t∈T

λmt ∗ (tt+1 − tt) ∗
1

n

∑
n

wnCmn (3.20)

where (tt+1 − tt) is the time in the phase t, n points to use in the quadrature, wn is the weighting

of a point, and and Cmn is the cost of the mode at point n. A variety of approaches that give

these weights are presented and tested in Section 5.5.2, however the following subsections define

specialized approaches used in this paper and provide some theoretical justification for their use.

3.4.1.1 A Note on Evenly-Spaced Quadratures

Given Equation 3.17 is linear, there may be a good case to sample evenly, rather than use a specialized

quadrature. Suppose the cost rate of each mode cm(t) is a constant function over time. Then

cm(t) = cmi
, making the integral

∫ tt+1

t=tt

(

∫ tE

t=tF

cmidt)dtF = (tt+1 − tt) ∗ cmi ∗ (tE − tF ) (3.21)

Since tF is the time the fault is injected and the fault rate is constant over this interval, tF =

(tt+1− tt)/2, the midpoint of the interval, is the average simulation time and the average simulation

cost is cmt
= c((tt+1 − tt)/2), the cost simulated at that point. Thus the full integral is

C =
∑
m

nl
∑
i

λmt ∗ (tt+1 − tt) ∗ cmt (3.22)

Therefore, provided the underlying cost function is constant over the interval, the expected cost of

a mode injected over a phase is the same as the cost simulated in the middle of the phase, or the
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average of n modes simulated symmetrically about the center.

3.4.1.2 A Note on Likeliest Phase Sampling

The approach with the lowest possible computational expense uses a single point in a single interval

to represent all intervals. One approach for this would be to sample the likeliest phase, selecting the

phase t∗ = argmax(λmt
(tt+1 − tt)). The cost would then be calculated

C =
∑
m∈w

Cmt∗ ∗ nl ∗
∑
t∈T

λmt
∗ (tt+1 − tt) (3.23)

As explained previously, if the cost function is linear, the ideal time to inject a fault (used here) is

in the center of the interval.

3.5 Example: Wire Design

To understand how expected cost modelling enables the overall framework of design exploration,

modelling, decision-making, and validity testing shown in Figure 1.2 (that is, the overall contribution

of this dissertation), consider the following elementary example. In this problem the goal is to design

a signal-carrying medium (such as a wire) in a way that minimizes the losses due to faults through

resilience.

3.5.1 Modelling

This problem is shown in Figure 3.6, with the functions to embody in the design (Import, Guide,

and Export Signal), possible failure modes (with rates and costs), and conditions that lead to

failure modes. As represented in this model, there are two initiating failure modes in the Import

Signal function–no input signal and an infinite (shock) signal–and one condition and resulting

conditional mode in the Guide Signal function: a condition which specifies that the function should
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Figure 3.6: Functional model of a signal-carrying medium, with modes, conditions, costs, and prob-
abilities associated to each function.

enter the failed mode when a shock signal is received, and a failed mode which makes the output

signal zero if it receives a shock signal. The resulting failure costs are shown in the Export Signal

function, based on the system exporting a zero, nominal, or shock signal. While the resulting fault

behaviors of this system are simple enough to derive by hand, the first step using this framework

would be to represent this system in a model and propagate the dynamic behaviors through it to

determine the costs of each failure scenario.

3.5.2 Design

The second step in this framework is considering possible design variants which would lead to more

or less resilience overall. In this problem there are two design variants: one in which the Guide

Signal condition exists (Design 1), and one in which it does not (Design 2). These designs each

have two scenarios resulting from the initiation fault modes: the scenario in which the incoming

signal is failed with a value of zero, and one in which a shock enters the signal (e.g. from a short

circuit). In the first scenario, the expected cost is the same for both designs. The zero signal state
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propagates from the Import Signal function to the Export Signal function, resulting in a cost of

failure resulting from the cost rate of the failed flow state, the time needed to repair the fault, and

the cost of repairing the fault:

CS1 = Pf1 ∗ (Cf ∗ tr + Cr)

= 0.01 ∗ (−100 ∗ 5− 100) = −6

In the second scenario, the expected cost is different for each design, due to the differences in fault

propagation. In the first design, the shock causes a failure mode in the Guide Signal function,

resulting in a zero flow state in the Export Signal function, and costs from the failed (zero) flow

state and the times and costs needed to repair the Import Signal and Guide Signal functions. In

the second design, the shock propagates through the Guide Signal function, resulting in costs from

a failed (inf) flow state and the time needed to repair the function. These costs are tabulated for

each design below:

CS2 = Pf2 ∗ (Cf ∗ tr + Cr)

= 0.001 ∗ (1000 + 100 + 100 ∗ 10) = −2.1

= 0.001 ∗ (1000 + 500 ∗ 10) = −6

3.5.3 Selection

The final step in this design framework is to select a the best design based on resilience attributes.

In this case, the costs of resilience for each design based on the fault scenarios has already been

tabulated, which enables one compare it with operational costs in an overall value assessment. In

this example problem, it is assumed that the designs had the same operational costs and design

costs of −2 and −1, respectively. The resulting overall cost score is tabulated in Table 3.2. As

can be seen, while Design 1 has slightly more design cost, the lower expected cost resulting from

not propagating the shock flow results in a better overall cost score. Given different numbers for
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Table 3.2: Cost comparison of Design 1, as shown in Figure 3.6, and Design 2, with the condition
removed.

Costs Design 1 Design 2
Design -2 -1

Operational 20 20
Scenario 1 -6 -6
Scenario 2 -2.1 -6

Total 9.9 7

probabilities, repair times, and costs, however, this result would change. For example, if the Guide

Signal function had a repair time of 100, the resulting repair time would make the expected cost of

failure of Scenario 1 for Design 1 −11.1, making the overall cost score worst than that of Design 2.

Alternatively, if said design had commensurately lower design or operational costs, this design would

still be superior using this method. This demonstrates how expected cost can be used to trade off

the modeled dynamic failure response, failure costs and probabilities, and design and operational

costs to determine if a resilient feature should be added to a design.

3.5.4 Validity Determination

To determine the validity of this design process, the affect of uncertainty on the design choice is

considered. In this simple problem, we consider there to be one uncertain assumption: the probability

of Scenario 2, which has a probability of 0.9 that the assumption used was correct, and a probability

of 0.1 that it was incorrect. The resulting cost for scenario 2 is:

CS2 = Pf2 ∗ (Cf ∗ tr + Cr)

= 0.01 ∗ (1000 + 100 + 100 ∗ 10) = −21

= 0.01 ∗ (1000 + 500 ∗ 10) = −60

To test the effect of this scenario on the design process, we can see how the assumption scenarios

affect the overall tabulation of expected design cost and see how the designs compare over the
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Table 3.3: Validity determination of the decision in Table 3.2 to an uncertain scenario.

Scenarios Nominal Poor Assumption Expected
Costs D1 - Nom. D2 - Nom. D1 - Scen. D2 - Scen. D1 - Exp. D2 - Exp.

Design -2 -1 -2 -1 -2 -1
Operational 20 20 20 20 20 20

Scenario 1 -6 -6 -6 -6 -6 -6
Scenario 2 -2.1 -6 -21 - 60 -3.99 -11.4

Total 9.9 7 -9 -47 8.01 1.6
Probability 0.9 .9 0.1 0.1

expected cost over these scenarios. As shown, in the scenario with the different assumption, the

design choice of Design 1 is still justified over Design 1. Thus, when the expected cost of uncertain

scenarios is considered, Design 1 is still preferable, meaning that the design process is valid over this

assumption.

3.5.5 Wire Conclusion

This problem illustrates how the overal resilience-based design framework presented in this disser-

tation operates at a high level. However, most problems are more complicated than this very simple

example and are thus difficult or tedious to solve by hand. In practice, engineered systems often

have multiple functions with complex behavioral interactions that affect how failures will propagate

over time. While this problem only took a few calculations to solve, in the design of a complex

engineered system the design considers more functions, each of which with several modes and com-

plex dynamic behaviors, and the choices to consider are more complex than a simple choice of two

options. In these situations, it becomes necessary to use a computational framework to organize and

model these complexities, rather than perform every analysis by hand. To enabling this process to

be performed in more realistic, complex engineered systems, Chapter 4 and 5 leverage computation

to enable efficient and rigorous resilience modelling and exploration.
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Figure 3.7: Considered Pump System with resulting degraded functions and flows.

3.6 Example: Verification of Expected Resilience Quantification in

Pump System

This section demonstrates the dynamic expected cost modelling approach of Section 3.4 and com-

pares different sampling methods based on their error over various cost functions. This is done in a

model of a blockage faults in the pump system model shown in Figure 3.7. This model consists of five

functions–ImportSignal, ImportWater, MoveWater, ImportEE, and ExportWater, where MoveWater

is the pump itself and the rest of the functions represent sources or sinks for the flows, which are

Sig 1, the signal to turn the pump on or off; EE 1, the electrical source powering the pump; Wat 1,

the flow of water into the pump; and Wat 2, the flow of water out of the pump. This model was

implemented in the fmdtools software package presented in Chapter 4, and is available at Ref.

[121]. The modelled behavior of the system is shown in Figure 3.8 with and without faults. When

the system behaves nominally, it turns on at t = 5 minutes, causing water to flow and current to be

drawn until t = 50 minutes, when it shuts down. In the modelled fault scenario, a blockage in the

pipe is injected at t = 10 minutes, causing the water flow rate to decrease, the pressure to increase,

and motor current to increase. After a delay (e.g., resulting from an off-flow tank or the ability of

the pump housing to sustain leaks for a given amount of time), the motor breaks (resulting in a new

fault), the flow of water decreases to zero, and the current decreases also. This fault behavior has

three modelled cost functions:
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Figure 3.8: Behavior of Pump System Resulting from a Blockage at t=10 minutes

• Repair costs cm(t)r, where t is time in minutes:

cm(t)r =


5000 if new fault

0 otherwise

(3.24)

• Cost of decreased water flow cm(t)w, which follows the following equation, where wn(t) is the

rate of flow in the nominal state and wf (t) is the rate of flow in the faulty state:

cm(t)w = 750(wn(t)− wf (t)) (3.25)

• Cost of increased current draw cm(t)e, which follows the following equation, where ef (t) is the

faulty current draw and en(t) is the nominal current draw:

cm(t)e = 14
∑
t∈E

(ef (t)− en(t)) (3.26)

where E = {i|ef (i)− en(i) > 1.0, i ≤ t} is the set of fault times with the increased current.

Simulating the fault over each time-step of the model with each cost function results in the total

cost responses in Figure 3.9. This cost is different than the individual values of each of cost function

for each metric shown in Figure 3.8; it instead shows the total cost of simulation at each injection

time, not the values of the cost functions over a single simulation. As shown, repair cost responses
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Figure 3.9: Cost responses over fault injection times for the blockage fault. (Delay = 20 M)

Table 3.4: Average Error Over All Points for each sampling method

MC (Std.) MC (AV) Evenly-Spaced Likeliest Gauss-Legend.
0.0742 0.0201 0.01901 0.3893 0.0069

are a step function, where the pump breaks when the fault is injected on the left side of the step,

and does not break when the fault is injected on the right side of the step because the pump is

turned off first. The cost of low water flow is a linear decrease over the interval the pump operates,

since it results from the constant water loss over the interval. Finally, the cost of increased current

is a constant function up until a point, after which it has an exponential decrease, since it results

from the accumulated damage on the electric system, a process that only occurs during the delay

between the blockage and the pump breaking.

The following comparisons test two overall approaches to sampling a resilience model in a design

process–sampling a priori without knowing the form of the underlying cost function (e.g. where a

discontinuity is), and sampling a posteriori given full knowledge of it.
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Figure 3.10: Error of sampling approaches over the number of samples used.

3.6.0.1 A Priori Approaches

In the a priori situation, the designer uses the sampling strategy to approximate the expected value

of resilience without knowing the underlying form of the resilience function. A variety of methods

can be used to to this, including placing a single sample in the likeliest phase, using the Monte

Carlo technique (where samples are chosen randomly), using the Monte Carlo technique with the

method of antithetic variates (which chooses an additional sample symmetric to the randomly-

taken sample–see [77, Sec. 6.4.2]), sampling the interval evenly, or by sampling using a quadrature.

Figure 3.10 compares the error and efficiency of these sampling approaches over the number of

points used (averaged over 20 samples for the Monte-Carlo approaches), using Gauss-Legendre as

the comparison quadrature, and Table 3.4 shows an average of sampling error over all points used.

As shown, increasing the number of points reduces error for all approaches, however, the Gauss-

Legendre reaches acceptable error (< 1%) for all n ≥ 2 points. While the Monte Carlo method

performs poorly, average error improves to parity with the evenly-spaced quadrature when using

the method of antithetic variates. However, because of the performance variance when using the

antithetic variates approach, one would still prefer using the evenly-spaced quadrature in practice.

This comparison demonstrates the advantage of using numerical integration for resilience sampling

compared to the commonly-used Monte Carlo method–when the underlying model is deterministic

(that is, there is no underlying modelled stochastic process to quantify), Monte Carlo methods
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Table 3.5: Tested Quadrature Weights and Node Locations

Name Source Weights Node Location
Gauss-
Legendre

25.4.29,
[2]

wi = 2

(1−x2i )[P
′
n(xi)]2

x 3 Pn(x) = 0

Fejér 1 [289, 262] wi = 1
n

(γ0 + 2
∑n−1
m=1 γmcos(mθi)) xi = cos(θi), θi = (2i−1)π

2n

Fejér 2 [289, 262] wi = 2sin(θi)
n+1

∑n−1
s=0 λssin((s+ 1)θk) xi = cos(θi), θi = iπ

n+1

Gauss-
Lobatto

25.4.32,
[2]

wi = [ 2
n(n−1)

, 2

n(n−1)[P
′
n−1(xi)]

2
, 2
n(n−1)

] x ∈ {−1, 1} ∪ {x 3 P
′
n−1(x) = 0}

Even Spac-
ing

NA wi = 1
n

xi = −1 + i( 2
n+1

)

introduce unnecessary sampling error because the points are randomly selected.

Now that the advantage of numerical approaches for sampling resilience models has been shown

in general, the following demonstrates the performance of several commonly-used quadrature ap-

proaches on the same pump resilience quantification problem. The quadrature approaches used

are Gauss-Legendre, Fejér 1 and 2, Gauss-Lobatto, and a simple uniformly-weighted evenly-spaced

quadrature. The weightings and nodes for each of these quadratures is given in Table 3.5 for n points,

where the index i = [1, ..., n], Pn(x) is the Legendre polynomial of order n, γn is the weighted mo-

ment of the Chebyshev polynomial of order n, the interval the quadrature is spaced over is [−1, 1],

and the weights as implemented are scaled such that
∑
wi = 1. The quadpy Python package [247]

was used to implement these approaches, which provided the node locations and weightings for

each quadrature at a given number of points. To sample the discrete-times in the model, the node

locations were rounded to the nearest time-step. To best show how each approach approximates

different cost functions, they are compared over differing cost functions, numbers of points used (1

to 14), and the delay time between the blockage of the pump outlet and the pump breaking.

Figure 3.11 shows the resulting comparison of quadrature accuracy and simulation cost. As

shown, the integration error depends on the number of points used and the underlying cost function.

Generally, none of the quadratures perform very well over the (step function) repair costs, with

error decreasing erratically with the number of points used. On the other hand, nearly all of the

quadratures perform well at approximating the linear flow costs, which is expected for all symmetric

quadratures, as explained in Section 3.4.1.1. As a function of number of points, the error of the
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approaches when approximating current costs is nearly as variable as repair costs, but decreases

more quickly. When the costs are put together, these variable repair and current costs have a large

impact on the performance of different approaches, since both are difficult to reduce. The main

difficulty with a priori approaches is thus approximating discontinuous or non-smooth cost response

functions.

Table 3.6: Average Error of Quadratures Over Delays and Points

Gauss-Legendre Fejér Fejér 2 Gauss-Lobatto

Repair 0.034412 0.037347 0.032904 0.043741

Decreased Flow 0.000064 0.000102 0.000058 0.000218

Increased Current 0.016802 0.024868 0.014384 0.036042

Composite 0.014566 0.017100 0.010562 0.019561

Average 0.016461 0.019855 0.014477 0.024891

Table 3.6 summarizes these results using the average error of each quadrature approach over the

set of numbers tested. As shown, the Fejér 2 quadrature rule outperforms the other quadratures over

all costs. This is somewhat unexpected, because Gauss-Legendre has been shown both theoretically

and empirically to have less error for a given set of points on smooth functions (Fejér is typically

used because calculating the nodes and weights is faster computationally) [279]. This may be for

a number of reasons, including the cost function being discontinuous/non-smooth, the particular

delay times chosen being more favorable to Fejér, and error introduced from discretization. Of these

possible explanations, error induced from discretization seems most likely because it also explains the

error from approximating the water costs, which as shown in Section 3.4.1.1, should be zero because

the underlying cost function is linear (see Fig 3.9). However, there is still error because the exact

locations of points cannot be used (points are instead rounded to the nearest discrete time-step),

and because the range itself has a finite number of possible points (which is especially relevant for

the beginning and end-phases, which only have five time-steps total). These results would seem to

show, then, that the Fejér 2 quadrature is more robust to discretization, however a more detailed
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Figure 3.11: Ability of sampling approaches to approximate the full integral

study should investigate whether that is true for all problems (and provide the mechanism) or if a

particular aspect of this problem and implementation is favorable to Fejér 2.

3.6.0.2 A Posteriori Approaches

In the a posteriori approach one seeks to minimize the error of the sampling quadrature given an

already-known cost function. This section compares two a posteriori approaches over the composite

cost function in Figure 3.9:

• a “best point” approach where the interval is approximated by the single point that minimizes

error between the actual value and the point value
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Figure 3.12: Robustness of a posteriori approaches to design changes.

• a “piecewise” approach where the interval is further split into sub-intervals approximated by

a quadrature (in this case a single point) based on discontinuities in the cost function

To evaluate the error and robustness of each approach to model changes, the error in the cost func-

tion was compared over the set of possible delay parameters over four different possible values for

the initial delay parameter used to form the initial quadrature. As shown in Figure 3.12, for most

delays each approach has a fairly low amount of error at the initial delay, however the approximation

is not perfect because for the “best point” approach there either is not a single point that represents

the interval, and for the “piece-wise” approach the sub-intervals functions are nonlinear, increas-

ing center-point approximation error. However, if the intervals in the piecewise approach were in

turn approximated with a quadrature, this error would be reduced at the expense of more sample

points. Additionally, while error increases for both approaches as the delay parameter deviates

from the initial delay, the upper bound using the “piecewise” approach is much lower because it is

approximating the function with two points instead of one. Nevertheless, this shows that even if

one finds the best possible quadrature to approximate the cost function given there is an underlying

discontinuity, design changes that shift the discontinuity will increase the error of the quadrature

significantly.
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3.6.1 Discussion

Considering resilience to be a statistical expectation has a number of implications for resilience-

informed design processes. In this situation, it is desirable to reduce simulation cost as much as

possible so that iterations can occur quickly while keeping accuracy high enough that the decisions

being made are still valid. When working with a deterministic model, numerical integration ap-

proaches are the ideal solution to this problem, however the best approach depends on the following

characteristics of the considered problem:

• Simulation Cost Desirability: If the model is relatively expensive to simulate, using fewer

points is desirable to speed up iterations. On the other hand, if the model is inexpensive it

may be unnecessary to use an efficient quadrature. Additionally, an inexpensive model makes

it relatively easy to perform the a posteriori quadrature approaches, since the start-up cost to

running the full set of simulations is not insurmountable.

• Needed Simulation Fidelity: If a high level of fidelity is needed, one might prefer using

more points in a quadrature, while otherwise one might be more willing to approximate the cost

with as few points as possible. For example, the model presented and used here is very high-

level and there are many uncertainties not taken into account, such as behavioral parameters,

rates, costs, and model abstraction. In a situation with these uncertainties, it may be a better

use of computational and design resources to increase the fidelity of model inputs rather than

spend more time increasing quadrature accuracy.

• Cost Function Form: As discussed in Section 3.4.1.1, if the cost response function is linear,

it can be approximated with a single point. If it is nonlinear, on the other hand, it may be

desirable to use a quadrature instead. Finally, if there are significant discontinuities due to

conditional faults, it may be more desirable to run an initial set of simulations to find the

location of the discontinuity to form the quadrature before proceeding–otherwise one would

be forced to increase the number of points.

• Design Changes Pursued: Finally, it is important to consider how the design changes
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pursued change the cost function. If the form of the cost function changes as a result of the

design change, the quadrature approach will need to remain accurate over the change while

quantifying a difference, if present, between design variants. As shown in Figure 3.12, if there

is a step function cost of repairs, changing the location of a discontinuity will increase the error

of a sampling approach, and, unless the delay crosses the points, there will be no change in

approximated value of repairs, making it impossible to detect the effect of a design change to

repair costs. On the other hand, if the design change solely increases the costs and rates (and

not the intervals), the quadrature should remain effective and accurate.

3.7 Conclusions

This chapter presented a framework for considering resilience in early design using an expected cost

function to trade-off between the expected design, operational, and fault response costs. This cost

function is constructed to integrate with a scenario-based fault simulations which determine the

cost of each failure event based on its effects: in Section 3.3 to a timeless simulation in the IBFM

toolkit, and in Section 3.4 to a model of dynamic effects over time. Expected cost-based modelling is

then demonstrated in two examples. The first example of a wire design in Section 3.5 demonstrated

how expected cost enables the overall design framework presented here by allowing one to use

fault scenario results to trade resilience with design and operational costs to enable decisions. The

second example of quantifying costs in a simple pump model, provided in Section 3.6, demonstrated

and compared different fault sampling approaches for use in dynamic models (e.g., in the fmdtools

models in Chapter 4) to quantify the expected cost functions in Section 3.4. This was done because

resilience metrics based on fault injection responses in a dynamic model are sensitive to injection

time, and to most efficiently represent the statistical expectation of fault responses for these metrics.

While some methods were shown to reduce error compared to others, choosing the best numerical

integration approach depends on a number of design considerations, including the computational

expense of simulations, needed simulation accuracy, underlying cost model form, and the effect of
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design changes to be evaluated in the model. In summary, this chapter presented an expected cost

metric for resilient design, provided two adaptations of this metric to different simulation modelling

paradigms, and presented examples demonstrating and studying how this metric enables the overall

resilience quantification and decision-making in the context of a fault simulation of the system.
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Chapter 4: A Dynamic, Object-Oriented Fault Propagation

Framework for Resilience Assessment

4.1 Motivation

Modelling hazards in early design involves representing the system in a high-level function structure

to identify hazards and develop resulting design requirements [269]. In the design of aircraft, this

process is called functional hazard assessment and follows the ARP4761 guideline [12, 8]. Model-

based functional hazard assessment has been an active research area [152, 157, 207], with many

new methods focusing on how to model different aspects of the system, such as human errors

[125], dynamic behaviors, new flows resulting from failures [131], and operational decision-making

[257]. However, there has been less demonstration of how to use this information to compare design

alternatives, and the research codes underlying these methods have not been shared within the

research community. To enable this resilience-based design, then, there is an opportunity to develop

a tool that enables one to assess the resilience of a model without re-implementing underlying data

structures and fault propagation methods.

The goal of the fmdtools project is to aid in the application of risk and resilience-based design

frameworks by providing an open-source environment for modelling, simulation, and analysis of a

new system in early design process, as shown in Figure 4.1. In doing so, it seeks to enable the

practical application of early model-based functional hazard assessment frameworks while explicitly

enabling the consideration of resilience. This toolkit has a number of potential applications to

considering PHM in aerospace systems by supporting cost-benefit analysis (e.g., [103]), which can

used to allocate resources for PHM [306] and assess design alternatives (e.g., prevention or recovery

schemes) [113]. While most traditional risk assessment methods focus on how faults lead to system-

level failures, the goal of the fmdtools project is to represent the full set of dynamic effects that
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Figure 4.1: fmdtools is intended specifically to provide fault analysis methods that enable the
consideration of risk in early conceptual design processes

result from a given fault scenario, so that one can compare the effect of different recovery actions.

This requires advancing the modelling paradigm often used in early design.

For instance, one major difficulty in modelling failure propagation is representing the system in

a way that captures the full set of effects which would be caused by a fault [104]. While a number

of formalisms have been developed that enable this (e.g., modelica [37], simulink/lustre [135], etc),

these models are often computationally expensive and are more applicable for later design stages

when one has the complete set of system behaviors, as shown in Figure 4.1. As a result, model-based

functional hazard assessment methods used in early design (i.e., on the left side of the V-model in

Figure 4.1) are often coded directly in a base language (e.g., MATLAB/Python). In this setting,

it is convenient to express the system using a procedural, directed-graph representation of system

behaviors where each function is defined in a method and where the output flows of each function

are used as inputs to the next function in the graph. The main problem with this representation

is that it can only represent flow propagation that occurs in a single direction–from the source

functions where flows originate to the sink functions where flows terminate. Defining a model in a

base language also makes it difficult to then structure the model in a way that logically organizes
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faults, states, and behaviors of functions to be be easily understood, visualized, and modified. To

improve on this approach, fmdtools uses a object-oriented, undirected-graph representation of system

behaviors, where each function’s states, behaviors, and faults are defined in a function class and a

model class is used to connect adjacent functions so that behaviors can propagate in any direction

through the model graph and one can easily parse the structure of the system model.

The rest of the chapter first outlines the outlines the general modelling framework and methods

provided in the fmdtools project in Section 4.2 and then provides two examples of modelling case

studies: a multirotor drone model in Section 4.3 and a wildfire response model in Section 4.4. The

multirotor drone model provides a cross-section of the methods across different levels of model fidelity

as well as the methods described in Section 4.2–demonstrating its use in a typical design process.

The fire response model, on the other hand, demonstrates the versatility of the fault propagation

toolkit to modelling complex scenarios by showing its use in a dynamic system-of-systems context

with specialized assets and behaviors.

4.2 Methods and Algorithms

The fmdtools toolkit aims to provide a design, analysis, and simulation environment that enables

the incorporation of resilience into a system design. To accomplish this, it provides a number of tools

to represent, simulate, and analyze the system as it progresses through the design process, as shown

in Figure 4.2. As a result, it can accommodate a number of modelling and analysis use-cases to

progress from the early, abstract representations of the design (e.g., network and static propagation

models) to more detailed representations of the system structure (e.g., dynamic and hierarchical

propagation models) and behaviors in the same modelling environment, as shown in Figure 4.3.

The full implementation of this work is provided in a publicly-available repository, along with

examples and documentation at github.com/DesignEngrLab/fmdtools (or [121]). While an ex-

haustive description of every method and class is out of the scope of this work, it will discuss some

of the underlying concepts and structure of the toolkit. The fmdtools toolkit is organized into
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Figure 4.2: The fmdtools design, simulation, and analysis environment.

different modules used for model representation, simulation, and analysis. The modeldef module

provides the classes to define a system model from functions, flows, and components as well as a

fault sampling approach for resilience quantification. The faultsim module then provides methods

for propagating faults in a model and quantify network metrics. Finally, the resultdisp module

provides a number of methods to process and visualize simulations of the model, including behaviors

over time, FMEA tables, fault graphs, and heatmaps.

4.2.1 Model Representation

In this work a system consists of functions (modules that perform a task), components (specific

solutions to a function), and flows (variables) that are connected with each other in a bipartite
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graph. In a model (itself defined by a user-defined class), functions, flows, and components are

represented by objects instantiated from user-defined classes that are connected by a graph, as

shown in Figure 4.4 for a model of a wire. In this representation, each function (e.g., Transport

EE) consists of its associated flow objects (e.g., EE 1, EE 2), internal state variables, set of faults,

behavior methods, and constituent component objects (if a component representation is used). Flows

are in turn defined by dictionaries of states with corresponding values and components are defined

by internal state variables, a set of faults, and behavior methods. Model objects are then composed

of their constituent functions, flows, and components as well as a graph object used to track the
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connections between functions and flows and a classification method used to quantify the costs of a

fault scenario propagated in the model.

This model is constructed in fmdtools by defining a subclass that extends the Model class to

represent a system of interest. This model class is constructed by defining the simulation parameters

(e.g. units, timesteps, starting and ending simulation times, design parameters), adding each flow in

the model, adding each each function in the model and connecting them with flows to construct the

model graph, and creating a classification method which determines the rate, cost, and expected cost

of a given scenario given the results and parameters for that simulation–the end-state of functions

and flows (e.g. values and faults present), the scenario properties (e.g. rates, faults, etc.), and the

history of model states (values for flows over time). By instantiating this class, one can then use

the resulting object to model the evolution of system states over time for a given set of defining

parameters.

4.2.1.1 Functions

In design, functions represent the high-level tasks performed by the system [217], as describe in

Section 2.2.3. In fmdtools, the FxnBlock class is used to represent these functions, which constitute

the main building block of the system model defining faults and system behaviors. To use this

class, users define a subclass for each function which uses inherited FxnBlock attributes to represent

the properties of the function. At its most basic, a user-defined function class is defined by the

flows going in and out of the function, a behaviour method which relates values of input flows to

values of output flows, and a set of faults which modify the input-output relationship defined in the

behavior method. However, more attributes can be defined, including states (internal variables of

the function tracked in the model history), conditional fault methods defining input/output flows

or function states result in faults, timers that can be used to express delays in behaviors, and

components, as described in Section 4.2.1.3.

To enable expected resilience quantification, each fault to inject in the function can be associ-
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ated with a probability model that expresses the likelihood of the fault occurring, as decribed in

Section 3.4. This probability model is defined by a function-wide rate, the proportion (or rate/prob-

ability) of faults resulting from the mode, an opportunity vector expressing the relative likelihood

of a fault occurring at a specific phase of operation, and a specification of whether these values are

a rate (with units) or a probability. Each fault can additionally be given a cost of repair that can

be used to calculate the costs of fault scenarios.

4.2.1.2 Flows

Flows represent the states (e.g., energy, material, or signal) with which the functions interact to

achieve the overall goal of the system. In fmdtools, the Flow class is used to represent these states,

which can either be extended in a user-defined subclass (if there are special properties the designer

wishes to represent) or instantiated using a dictionary with the name of the flow, name of the values

characterizing the state of the flow, and initial quantity for each value. Because of the undirected

nature of the model graph and associative relationships between functions and flows, flows are

accessible (i.e., values can be changed) in all connected functions.

4.2.1.3 Components

While functions represent the task a system performs, components can be used to represent re-

alizations of that function. Often in risk or resilience-based design, one is interested in designing

component architectures which will fulfill an overall function, even when an individual component

fails [306]. To represent this, fmdtools uses the Component class, which also is composed of the main

attributes of the Function class, including internal states, a behavior method, and a set of fault

modes. Similarly, to use the Component class in a model, one must define a subclass for the modelled

component with its own states, fault modes, and behavior method. However, unlike the FxnBlock

behavior method (which acts on FxnBlock attributes and does not return anything), Component
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behavior methods explicitly take the inputs of the component behavior as input and return outputs

of the behavior as output. This is done to enable the designer to relate the inputs and outputs of

the components in the architecture fulfilling a function with each other and function states in the

behavior methods of its corresponding function.

4.2.2 Resilience Simulation

The fmdtools toolkit has two main approaches for assessing the resilience of a model: quantifying

network metrics of the system architecture and propogating faults in the system model. Network

metric quantification, described in Section 4.2.2.1 and implemented in the networks submodule,

enables consideration of the structural resilience of the system before specifying the fault logic in

the system. Fault propagation, described in Sections 4.2.2.2 and 4.2.2.3 can then be used to assess

the resilience of a model given the model has faults to propagate in each function (or the function

of interest) and the functions each have the necessary fault logic and/or behaviors.

4.2.2.1 Network Metric Quantification

The network metric quantification tools in fmdtools enable the early assessment of the failure

tolerance and resilience of a design. Network metric quantification is performed using the networks

submodule, relying on the internal networkx graph representation of the functions and flows of

the model. Network analysis is an emerging early design methodology for predicting the likely

failure tolerance of a design without the need for high fidelity models [88, 189]. In this approach,

engineered systems are represented as networks in which nodes represent functions, parameters, or

components depending on the specific network formalism. In short, network analysis enables analysis

of the topology that emerges from the connectivity between system elements. The representation

of connectivity between system elements is similar to that of a design structure matrix (DSM),

and network theory enables visualization and powerful analyses of emergent network properties.
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Networks are used for both a priori assessment of resilience properties as well as for quantifying the

network’s response to simulated faults.

Resilience Properties of Networks Known relationships between structure and failure toler-

ance [32] in complex networks enable the a priori assessment of a network’s resilience properties

prior to simulation. The structure of a network is intrinsically related to its functionality; structural

vulnerabilities are therefore relatable to loss of functionality. In networks, failure tolerance is typi-

cally studied by attacking or removing nodes and measuring the resultant degradation of the network

structure. That is, similarly to how a loss of functionality in one component in an engineered system

leads to decreased overall performance, degradation or removal of one node in a network leads to

an alteration of the network’s topology. In this way, a network’s resistance to failure is relatable to

an engineered system’s resistance to failure. Certain networks are more prone to degradation due

to node removal than others. Likewise, certain nodes are more prone to causing degradation than

others. In component networks, failure or removal of a component node implies loss of functionality

in that component, and the analysis therefore relates to the effects of the failure of that function.

A common method for characterizing a network is studying its degree distribution. In an undi-

rected network, the degree of a node is its the number of connections (edges). Nodes with high

degree (hubs) tend to be more critical in retaining a network’s functionality. A network’s degree

distribution is a histogram of the degrees of all nodes in the network. Degree distributions that fol-

low a bell-curve tend to be more vulnerable to random node removal, whereas degree distributions

that follow a power law tend to be more vulnerable to targeted node removal [21] (i.e., removal of a

hub). High degree nodes are identifiable using find high degree nodes. Degree distributions are

provided using degree dist.

The modularity and community structure of a network also have significant bearing on the

network’s failure tolerance. Modules, or communities, are tightly coupled groups of nodes. The

modularity of a network, the degree to which a network exhibits a modular structure, is typically

measured using Q-modularity [204]. Nodes that connect modules – bridging nodes – are functionally

important to a network’s failure tolerance [290]. This is comparable to, for example, identifying
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high severity failures in FMEA. Networks with high modularity have been found to be less robust

overall [291]. find bridging nodes is provided to identify bridging nodes in the network model.

calc modularity is provided to compute the modularity of the network model.

Average shortest path length (ASPL) is a measure of the efficiency of the spread of information

through a network. Under attack, networks with low ASPL are more likely to retain short to

moderate length paths between any given pair of nodes, whereas networks with high ASPL are more

likely to disintegrate significantly under attack. ASPL is defined as the mean of the sum of all

edge weights along the shortest path between each pair of nodes in a network and is available as

calc aspl.

Simulation-Based Analysis of Network Resilience In addition to using a network’s structure

to predict its response to failure, it is also possible to use simulation-based approaches for network

analysis. First, robustness coefficient simulates the effect of failure in the network. This approach,

implemented as calc robustness coefficient, measures the changing size of the largest connected

component of a network during successive node removal [284]. A second simulation-based approach

is an SFF (susceptible-failed-fixed) epidemic spreading model, which is able to explicitly represent

node recovery [189]. Rather than attacking or removing nodes as in the robustness coefficient, this

model considers nodes to be in a susceptible, failed, or fixed state. Failed nodes may cause susceptible

nodes to fail, similarly to infected persons spreading an epidemic. After a node is fixed, it is unable

to fail again by the same cause (immunity). The SFF model is available as sff model.

4.2.2.2 Fault Propagation

Propagating of faults in a model has two major aspects: static fault propagation and dynamic fault

propagation. Static fault propagation is the process of determining the immediate effects of a fault

in a system, as illustrated in Figure 4.5. First, all of the behavior methods are run. If a new

value occurs in one of the functions (e.g., because of fault injection) or its associated flows, that

function and functions adjacent to the changed flows are added to a list of functions to update. The
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Figure 4.5: Illustration of static fault propagation. Function behavior methods are iteratively run
in a list until the states of the system no longer change.

behavior functions for those functions are then run and new functions to update are again added

if they receive new input values. This process is run iteratively until the system reaches a stable

end-state, if a stable end-state is possible. Thus, one necessary property for fault models written

in this framework is stable fault behavior–behaviors in one function should not change behaviors

in other connected functions that will in turn change the original behaviors in the original function

repeatedly, indefinitely.

As shown in Figure 4.4, functions have associative relationship with flows, meaning functions

have full access to (and can change the values of) the states of both “input” and “output” flows.

Because the propagation of system states is undirected, functions have the ability to propagate new

system states to any other functions in the graph–not just the function that would be placed “next”

in the sequence of tasks to perform. However, because of the undirected system representation,

conflicts between function behaviors can occur when different functions specify different values for

the same flow state, resulting in a non-convergent system state at a given time-step. This must

be avoided in model setup, which can be achieved by representing flows with states that propagate
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Figure 4.6: Dynamic fault propagation. A model is iteratively updated at each discrete time-step
from fault injection to the end of simulation.

forward through the model graph (i.e. “effort” variables such as voltage or potential in a bond graph

representation) and states that propagate backwards through the model graph (i.e. “flow” variables

such as current or rate).

Dynamic fault propagation is the evolution of states in the model over time necessary to quantify

resilience as a time-dependent property of a system. The implementation of dynamic fault propaga-

tion used here is illustrated in Figure 4.6. As shown, the static propagation procedure is iteratively

run over a set of time-steps from fault injection time to the end of the simulation time. To fully

assess resilience, a history is kept of all of the states of the model (flow values, function state values,

faults in functions, etc.) over the set of time-steps. Based on a simulation like this, one can then

quantify metrics for the simulation such as dynamic costs, recovery time, or worst state over time.
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4.2.2.3 Fault Injection

Depending on the scope of the analysis, one might be interested in simulating faults in different

ways. Before injecting faults, it is important to determine that the model performs as expected by

simulating the system without any faults. Then, while setting up faults and fault behaviors (and in

systems with single faults), one can propagate a single fault at a given simulation time to verify that

the simulated behavior matches the expected behavior for that fault. Once faults are encoded, the

list of faults can be propagated in the system at times defined in the model. While this approach

lets one see the consequences of faults injected at set times, it may not be for calculating expected

resilience metrics, since it neglects joint fault scenarios and when in time faults are most probable.

To quantify the mathematical expectation of fault-injection based resilience models, the SampleApproach

class can be used to define the set of fault scenarios to propagate in the model, as illustrated in

Figure 4.7. This class uses the dynamic probability model set up in the model, functions, and com-

ponents, along with user-defined parameters to create a list of fault scenarios which will be used to

represent the statistical expectation of the defined faults. This approach can be defined over the

set of faults to include, the number of joint faults to inject, and the probability model for the joint

faults (e.g., assuming independence or a conditional probability), and the times to inject the faults

. The set of injection times is determined by two main parameters: the phases defined in the model

(and opportunity vectors for each fault in the probability model), and the set of times within each

phase. Within each phase, these times can be specified as every discrete timestep, an evenly-spaced

approach with a set number of points, a randomly-spaced approach with a set number of points, or

an approach using a given quadrature defined in the quadpy software package [249]. Additionally,

Sample Approaches can be refined post-hoc based on a set of simulation results to represent the

behaviors with a small set of sample points. Using these approaches, one quantify expected metrics

iteratively with as few fault simulations as possible.
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Figure 4.7: Injecting faults according to a fault sampling approach.

4.2.3 Resilience Analysis and Visualization

Using the models defined in Section 4.2.1 and simulations in Section 4.2.2, one can then perform

analyses on the results. The fmdtools toolkit provides a number of different convenience methods

using existing Python libraries, including matplotlib [123], networkx [84], and pandas [219] to

makes sense of the fault behaviors modelled in the system. To assist with this analysis and visual-

ization, the results of the simulations are processed to summarize the state of different aspects of the

system as nominal or faulty. This process results in three categorizations for functions, flows, and

components: nominal, when the data structure behaves as it does in the nominal state; degraded,

when the data structure has a different behavior than it does in the nominal state; and faulty, when

a component or function has a fault. This approach to result processing enables high-level visual-

ization of the status of model structures without the user defining bounds or conditions for each

variable to be listed as faulty or degraded. Using this representation, one can make a number of

plots of the model graph structure, system behaviors over time, and tabular summaries of results.
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4.2.3.1 System Graph Plots

To visualize the propagation of faults in the system, fmdtools provides a number of methods that

display a graph view of the system using matplotlib [123], networkx [84], and netgraph in the

graph sub-module. Graph views of the system enable one to see the structure of the model as well

as desired states or properties of the functions and flows. Two main graph representations can be

plotted: a default graph representation where the flows are plotted as edges between function (which

are nodes) and a bipartite graph representation where both functions and flows are nodes and edges

are the associative relationships between them. To visualize the model graph in an intuitive layout,

methods calling netgraph’s InteractiveGraph class are provided which enable one to place nodes

manually (rather than relying on an algorithmic layout). While the default representation is more

intuitive to interpret–especially for simple systems–the bipartite representation often makes a better

use of space–especially when a flow is connected to more than two functions–because there is less

more freedom to ensure that edges do not overlap. Using the graph view, one can then visualize

graph metrics as shown in Figure 4.8, the state of the model at the end-state or a particular time

(or set of times) in the model history as shown in Figure 4.11, and various model run statistics

defined by heatmaps (e.g. expected degradation time, maximum number of faults, etc.). These

visualizations give one a view of how faults and behaviors propagate at the system level.

4.2.3.2 Dynamic plots

When modelling a dynamic system, it is often important and necessary to plot particular states

over time in order to see how the behavior evolves over time. Methods in the plot sub-module

use matplotlib [123] to show the evolution of chosen states of the model over time, with (if the

simulation was a run of a fault scenario) faulty states overlaid over the nominal states over time

to aid assessment of the fault-induced behavior, as shown in Figure 4.12. In addition to modelling

system behavior in a particular modelling scenario, time-based plots also have the ability to visualize

the cost responses given by the simulations at each injection time. This plot, shown in Figure 4.13,
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can be used visualize how the sample approach defined in Section 4.2.2.3 approximates the expected

resilience costs by showing the rate over time for a particular fault, as well as the modelled cost and

quadrature weight for each sample point. Since these plots are plotted in matplotlib, well-known

commands and interfaces can be used to edit and save the plots.

4.2.3.3 Tables

Finally, it is often helpful to be able to view the results of fault simulations in tabular form. While

simulation results are typically returned as nested dictionaries, fmdtools provides convenience meth-

ods to view this information as a pandas [219] table to enable results processing and display. Based

on the processed results, one can also make tabular summaries of simulations, such as the number

of functions and flows degraded over time or in a particular simulation. Tables are most helpful for

summarizing the results of a set of simulations, where they can provide an FMEA-style assessment of

the functions and flows affected as well as the rate, cost, and expected cost of each fault simulation,

as shown in Table 4.2, which can be generated to delineate between or summarize fault effects over

each phase. Since these tables are implemented in pandas, existing interfaces can then be used to

display and/or save results (e.g., as a .csv).

4.3 Example: Drone Modelling

This section illustrates how one can use the fmdtools software package to aid the conceptual design

of a real system by providing analyses that increase in fidelity and detail with the design process.

A number of examples are provided in the repository, including a conceptual model of a pump, a

dynamic modelling of virus spreading, a human-operated tank system, and a static model of an

electric power system.

This example considers the design of a multi-rotor drone which must fly to a given location and

return to its destination. The functional model of this system is shown in Figure 4.11, which includes
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Table 4.1: Network metrics for default (function) network representation of example drone model.

ASPL Modularity Robustness Coefficient
1.44 0.12 95.85

StoreEE DistEE AffectDOF

CtlDOF

Planpath

Trajectory

EngageLandHoldPayload

ViewEnv

High Degree Nodes (90th Percentile)

Figure 4.8: Visualization of high degree nodes in default (function) network representation of exam-
ple drone model.

the rotor lines, structure, electrical power source and distribution, and path planning of the system.

In this example, we first quantify metrics about the system structure, then use a static representation

to generate a high-level FMEA and visualize fault propagation, then create a dynamic version of the

model to visualize fault behaviors over time and quantify the effects of injecting faults at different

simulation times, and finally use a hierarchical model to compare the dynamic fault responses and

resulting resilience of different component architectures.

4.3.1 Network Representation and Analysis

First, the model is analyzed using network metrics and algorithms. In fmdtools, it is possible to

analyze various network representations of the model, although only one network representation will

be shown in each step. Each network analysis function has options to analyze the default (function)

network, the bipartite (function-flow) network, the parameter network, or the component network.

The bipartite network is treated as a unipartite-like network for analysis [89]. Analysis of the various

network perspectives provides a more complete understanding of the model’s resistance to failure.

The network metrics for the function network are given in Table 4.1. Low (close to zero) mod-
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Figure 4.9: Degree distribution of default (function) network representation of example drone model.

ularity indicates a high degree of interconnectivity and has been correlated with high robustness

[291]. High robustness coefficient and low ASPL indicate high robustness to random node failure.

High degree nodes are highlighted in red in Fig. 4.8. Nodes with high degree, or hubs, are more

likely to cause significant performance degradation if in a fault state. Based on this analysis of

the system topology, we can conclude that the functions with the most opportunity to affect other

functions at a topological level are path planning, control systems, and the structure of the drone,

since these functions have the most connections with other subsystems. The degree distribution of

the function network is presented in Fig. 4.9. The relatively homogeneous degree distribution in

Fig. 4.9 indicates that the network is not particularly robust to failure of critical nodes. The SFF

model for the function network is provided in Fig. 4.10. This model demonstrates the system’s

topological robustness to a cascading failure, given a user defined failure rate, fix rate, and start

node (first node to fail). If various design alternatives are being considered, their relative resilience

can be compared using the SFF model.

4.3.2 Static Representation and Analysis

To identify how faults lead to failures and begin to quantify risk in the system, the model is elaborated

with flow attributes, function states, and failure logic, creating a static propagation model. As

modelled in this system, deviations in the input of the Trajectory function block lead to a crash,
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Figure 4.10: SFF model applied to function network representation of example drone model.

StoreEE DistEE

AffectDOF

CtlDOF

Planpath

Trajectory

EngageLandHoldPayload

ViewEnv

Force_ST

Force_Lin

Force_GRForce_LG

EE_1

EEmot

EEctl

Ctl1

DOFs

Env1

Dir1

 break 

 mechbreak 

 noctl 

 noloc 

 lost crash 

 break  break 

Propagation of faults to AffectDOF: Mechbreak at t=NA

Figure 4.11: Static fault effects to the motor breaking: the drone crashes.

which in turn propagates faults through the structure to initiate faults in the rest of the functions.

Using this model (and an underlying fault probability model), one can create a FMEA-like table of

fault effects, rates, and costs, as shown in Table 4.2, to show which faults have the highest impact

on the design. As shown, most faults in this model lead to a crash, making the chosen rate the

driving factor of expected cost. One of the faults under consideration in this model is a mechanical

break causing the AffectDOF function to lose the ability to control the degrees of freedom of the

drone. This fault is visualized in Figure 4.11, showing how fault leads to a crash and in turn faults

in the other functions. This fault will be used to motivate analysis and design through the rest of

this example.
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Table 4.2: Automatically-Generated Scenario-Based Static FMEA from model

Fault Degraded Functions Degraded Flows Rate Cost Exp. Cost

StoreEE nocharge StoreEE, DistEE, CtlDOF... Force ST, Force Lin, Force GR... 1e-05 183300 183300
Planpath degloc DistEE, CtlDOF, Planpath... Force ST, Force Lin, Force GR... 8e-06 193000 154400
DistEE short DistEE, CtlDOF, Planpath... Force ST, Force Lin, Force GR... 3e-06 186000 55800
AffectDOF ctlbreak DistEE, AffectDOF, CtlDOF... Force ST, Force Lin, Force GR... 2e-06 184000 36800
AffectDOF ctlup DistEE, AffectDOF, CtlDOF.. Force ST, Force Lin, Force GR... 2e-06 183500 36700
DistEE break DistEE, CtlDOF, Planpath... Force ST, Force Lin, Force GR... 2e-06 183000 36600
CtlDOF noctl DistEE, CtlDOF, Planpath... Force ST, Force Lin, Force GR... 2e-06 183000 36600
AffectDOF short DistEE, AffectDOF, CtlDOF... Force ST, Force Lin, Force GR... 1e-06 186200 18620
AffectDOF mechbreak DistEE, AffectDOF, CtlDOF... Force ST, Force Lin, Force GR... 1e-06 183500 18350
AffectDOF openc DistEE, AffectDOF, CtlDOF... Force ST, Force Lin, Force GR... 1e-06 183200 18320
Planpath noloc Planpath, Trajectory Ctl1, DOFs, Dir1 2e-06 60000 12000
CtlDOF degctl CtlDOF Force GR, Force LG, Ctl1, DOFs 8e-06 10000 8000
AffectDOF propbreak DistEE, AffectDOF, CtlDOF... Force ST, Force Lin, Force GR... 3e-07 183200 5496
AffectDOF propstuck DistEE, AffectDOF, CtlDOF... Force ST, Force Lin, Force GR... 2e-07 186200 3724
HoldPayload break DistEE, CtlDOF, Planpath... Force ST, Force Lin, Force GR... 2e-07 183000 3660
ViewEnv poorview ViewEnv 2e-06 10000 2000
EngageLand deform EngageLand 8e-06 1000 800
HoldPayload deform HoldPayload Force ST, Force Lin 8e-07 10000 800
DistEE degr DistEE Force GR, Force LG, EEmot... 5e-06 1000 500
EngageLand break EngageLand 2e-06 1000 200
AffectDOF ctldn AffectDOF Force GR, Force LG, DOFs 2e-06 500 100
AffectDOF mechfriction AffectDOF EE 1, EEmot 5e-07 500 25
AffectDOF propwarp AffectDOF Force GR, Force LG, DOFs 1e-07 200 2

4.3.3 Dynamic Representation and Analysis

In the dynamic model, the drone is given dynamic states and behaviors which iterate over time–in

this case the position, velocity, charge, and perceived location of the system. This can then be used

to model how the system behaves in faulty and nominal scenarios as shown in Figure 4.12 for the

mechanical break fault. In the nominal case, the drone flies out to a location and returns to land,

while in the faulty case the system crashes soon after the fault is injected, leaving it far from the
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Figure 4.12: Dynamic behaviors of a motor breaking.
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Figure 4.13: Modelled cost over time of the motor breaking over the operational interval.

landing location.

While this single-fault injection can help one understand how the system behaves, a fault injection

approach can be used to quantify the expected effects of a fault which could occur at different points

in the simulation. This is shown in Figure 4.13. As shown, the cost is high in the ascent and forward

flight phase ($134K-$184K) since the fault then leads to a crash, and low in the descent phase ($500),

since the drone has already landed. Additionally, the cost increases in the middle of the forward

flight phase since the system crashes far from its landing location, which incurs additional cost in

the model. While these results are consistent with the results of the static model at the point in

time considered in the model (forward flight), they also show how a higher-fidelity dynamic model

model can elicit a more nuanced consideration of fault effects.

4.3.4 Hierarchical Representation and Analysis

Given the effects of failures in this system, it is important to consider how they can be mitigated

through the component architecture. In the drone model, for example, one has the ability to consider

whether to realize the AffectDOF function with a quadrotor, hexarotor, or octorotor architecture

(a more complete exploration of these variables is provided in the example in Section 5.5.1). This

example considers the quadrotor and octorotor architectures.
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Figure 4.14: Fault behavior of drone with an octorotor architecture

To compare how each architecture adapts to faults, the dynamic behaviors over time can be

plotted. When considering the break fault, the quadrotor architecture reacts identically to the fault

as in Figure 4.6, since losing one motor causes the system to lose stability. However, when the drone

has an octorotor architecture, the system behaves as shown in Figure 4.14, faltering due to lost thrust

but ultimately recovering and landing in the desired location. Thus the octorotor architecture is

more resilient to this fault scenario.

However, to make a decision about component architectures on the basis of resilience, the ex-

pected cost of all fault scenarios for both architectures must be compared and weighted against

the operational and implementation costs. To quantify this cost, each of the faults associated with

the realized function (AffectDOF) are injected in the model according to a sampling approach. In

this case, while the octorotor component architecture mitigates a number of scenarios due to the

increased system redundancy, it does not mitigate every fault (e.g. control errors), and in fact in-

creases the chance of other faults (e.g., electrical problems that propagate to the battery) because

the larger number of components provides more opportunities for the fault to occur. Statistics from

this fault approach are shown in Table 4.3. As shown, while the number of scenarios increases in

the octorotor architecture, the number of scenarios which lead to a crash (and overall crash rate)

is much lower, resulting in a lower overall resilience cost. This shows how fmdtools can be used to

assist resilient design decision-making in the early design process.
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Table 4.3: Cost of rotor faults in each architecture

Quadrotor Octorotor
Number of Scenarios 104 208

Number of Crashes 46 24
Crash Ratio 0.44 0.12
Crash Rate 2.4e-6 0.8e-6

Resilience Cost 45565 19359

4.4 Example: Wildfire Response Model

This section illustrates how one can use the fmdtools software package in a complex modelling study

with interacting dynamic components, environmental and design input parameters, and specialized

analyses. One of the advantages of the fmdtools toolkit is that because its models are written in

base Python, it is easy to extend to develop complex simulations with specialized model structures

for the type of model being simulated. This case study exemplifies this through the simulation and

visualization of grid-based fire model, which were developed by extending the base model definitions

(enabling a grid matrix with properties for each grid point) and specialized analysis and visualization

modules. This section provides a summarized description of this model, which developed as a part

of the SMARt-STEReO (System Modeling and Analysis of Resiliency in STEReO) project at NASA

Ames Research Center to model the effect of increased technological capabilities to wildfire response.

Since the purpose of this section is merely to illustrate, the details have been truncated–full details are

provided in [111], including background/context, simulation animations, and extensive verification

of model behaviors under nominal and faulty conditions.

4.4.1 SMARt-STEReO Model Overview

The purpose of the SMARt-STEReO model is to simulate the performance and resilience of wildfire

response at a high level to understand the effect of different operational concepts and strategies.

Aerial support plays a major role in fighting wildfires. Airtankers, helicopters, and other aerial assets

support the construction of fire-lines, gather data, and transport crews and equipment. However,
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Figure 4.15: SMARt-STEReO model structure

without a model, it may not be clear how changes to the system (e.g., adding UAVs or more

sophisticated communication protocols) will improve the performance or resilience of the system.

The SMARt-STEReO model consists of a model of fire propagation and a number of interacting

models for the different response assets which work to fight the fire. This overall structure is shown

in Figure 4.15, which shows flow connections (i.e. data structures) between each function class (i.e.,

different behaviors which perform a task).

As shown, the model is made up of the:

• Fire model, which encompasses the Ground flow–which includes the fire-grid, a grid of points

with the state of the fire fuel, flammability and propagation at a given time and the locations

of assets on the ground (e.g., airports, ground bases, etc.)–and the FireSpread function, which

propagates the fire to new locations at each timestep. The resulting fire propagation is defined

by the given map and wind parameters, including the area (size of the map grid, number of

points to use) and grid attributes comprising:

– fuel (number of executions a fire is present on a pixel),
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– flammability (number of executions before an adjacent fire spreads to a pixel),

– altitude (which modifies fire propagation speed),

– fuel type (which modifies flame length),

– flame length (which modifies fire heat production), and

– obstacle (which determines where the fire cannot spread e.g. fire break)

Each of these attributes are assigned at the beginning of the simulation using pre-determined

patterns (uniform, uphill, downhill, etc.) or a random map generation (described in the next

section). At a single execution of the fire model, the flammability of all grid points next to

the fire is reduced by a certain amount until the attribute drops to zero, at which the point(s)

are added to the fire. Additionally, fuel is reduced from pixels where the fire is burning and

the fire is put out at pixels where the fuel has reached the threshold of zero. To enable fast

speeds, this model is executed four times per model time-step.

• Ground crews (GC1, GC2, GC3), which perform land cuts to create firebreak on the fire-grid.

The state of a particular ground crew is held in the corresponding GCstatus flow, which

enables UAVs and Helicopters to change the state of the ground crews. Ground crews com-

municate with the incident commander and their assigned helicopters using GCcomms to share

pickup/drop-off locations for constructing the fire-line.

• Engine Crews (EC1, EC2, EC3), which also perform land cuts to create firebreak. The differ-

ence between ground crews and engine crews is that ground crews are carried by helicopter

while engine crews move on their own but can only access certain sides of the map–the right

and lower sides in the baseline model. ECstatus is a flow which contains the state of the crew

(following the convention used for ground crews) while ECcomms is a flow used to communicate

cut locations with the Incident Commander.

• Helicopters (H1, H2), which deliver ground crews to specific locations on the ground, perform

water drops on/near the fire, and deliver supplies to ground crews. For each helicopter there
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is an HComms flow which is used by the aerial commander to communicate drop locations when

the helicopter is in drop mode.

• Supply UAVs (UAV1, UAV2), which re-supply groundcrews with supplies when they run out.

While UAVs have a flow which communicates with the aerial commander, it is currently unused.

• Tankers (T1, T2), which drop retardant near the fire to slow it down. TComms is used to com-

municate drop locations and tanker readiness between the aerial commander and the tanker.

• The aerial commander/supervisor/lead plane (AerialCommander), which detects the current

state of the ground in a particular part of the map and relays it back to the incident commander

and assigns drop locations to the tankers and helicopters. AerialComms is a flow used to

communicate the flight path of the aerial commander with the incident commander, as well as

to receive the highest-threat parts of the fire to slow down with drops. Perceived Ground is

a flow used to communicate the perceived state of the ground with the incident commander

• Surveillance planes/UAVs (e.g., UAV1), which also detect the current state of the map and

relay it to the incident commander, updating a different part of the Perceived Ground flow.

Scomms is used to communicate the desired flight path of the surveillance plane given the path

of the lead plane.

• Incident commander (IncidentCommander), which uses the state of the ground to determine

where to construct the fire-lines and send ground crews, and which edge of the fire the tankers

should focus on.

4.4.2 Integration Demonstration and Parameters

When put together, these component models make up an integrated model of fire progression and

response. This response can be seen in Figure 4.16. As shown, ground crews (purple upside-down

triangles) and engine crews (purple right-side up triangles) attempt to enclose the fire on all sides
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(c) t=20 (d) t=40

Figure 4.16: Nominal Simulation of stereo model
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bycreating fire break while the tankers (each noted with a blue X) helicopters (blue stars) slow

down the fire by increasing the spread time of particular pixels between the fire and gaps in the

fire-line. However, while the main fire slowing and containment occurs because of the tankers and

ground/engine crews, these behaviors are enabled by the function of the other modelled assets,

specifically the surveillance of the fire by the lead plane and surveillance UAV (upside-down blue

triangles), the relaying of ground crew and supplies to given locations by the helicopters and supply

UAVs, the evaluation of threats to the fire-line by the incident commander, and the planning of

drops by the lead plane. The response ends when the fire is either completely enclosed or the fire

stops spreading.

However, this result only constitutes one output from the simulation at a single set of model

parameters. In order for the model to generalize to different situations, and to be able to test different

responses, the model must be parameterized over ranges of input scenario and response parameters.

The operational response parameters are given in Table 4.4, with their ranges and baseline values. As

shown, these parameters include both structural parameters (i.e., the number of assets used, which

results in a different number of functions and overall model structure), effectiveness parameters (e.g.,

tanker drop size, rest per timestep), and strategic parameters (e.g., state information used, fireline

priority). In the default setting, a small number of highly-effective tankers, helicopters, ground

crews, engine crews and other assets are used to contain the small fire on all sides.

In addition to response parameters, there are parameters which can be changed to change the

firefighting situation and conditions. These can be broken up into two kinds–parameters which

change the fire grid distributions (e.g., how the fuel is allotted over the gird) shown in Table 4.6 and

those which change the other input parameters in Table 4.5. While some of these parameters are

not changed (grid size, spacing, etc), in general the baseline parameters and uniform map (i.e., the

simulation in in Figure 4.16) are used to verify the model while the the parameters are varied over

many simulations in order to ensure that the behaviors and function of the system generalizes to

many scenarios. That is, a desirable response generalization would be for a capable set of aircraft

and ground crews to be able to contain the fire over a variety of different maps that are within their
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Table 4.4: Baseline Input Response Parameters

Parameter Ranges Baseline Value
Number of Tankers 0 or more 2
Tanker Drop Size 1 or more 3 pixels

Tanker Drops Per Refuel 1 or more 3
Tanker drop effectiveness 0 or more 22 execs
Number of Ground Crews 0 or more 3

Maximum Number of Supplies 1 or more 10 timesteps
Number of Engine Crews 0 or more 3

Rest Per Timestep 1 or more 5
Number of Helicopters 0 or more 2

Number of Supply UAVs 0 or more 1
Surveillance Lag 0 or more 0 timesteps

State Information Used ‘all’ or ‘dist’ all
Danger Fire-line priority 0-1 0

Table 4.5: Additional Model Parameters

Parameter Ranges Default
Windspeed 0 or more 0
Wind heading 0-2pi 0
Sides accessible by engine crews [] to [r, l, u, d] [r, d]
Sides which must be protected to
prevent imminent danger

[] to [r, l, u, d] Right side

Grid Size (any) 2000x2000
Grid Spacing 1+ 100 m
Grid type Uniform, random, uphill, downhill uniform
hline Fire-line 0-grid edge 900
Initial Fire Location Any valid grid point (0,0)

capacity.

While the full demonstration of these parameters is out of the scope of this work (and is both the

subject of further study and provided in more detail in [111]), some simulation results are provided

here for demonstrative purposes.

One major consideration in aerial firefighting for the smart-stereo project is the effect of in-

creased communication throughput (i.e. communicating the position and conditions of the fire on

the ground). Currently, there are limitations on communication throughput as a result of aircraft-to-

ground and aircraft-to-aircraft communications taking place over voice radios. To model the ability
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Table 4.6: Random Map Generation Parameters

Attribute Distribution Parameters
Fuel Uniform (0, 60)
Fire N/A Only at (0,0)

Flammability Uniform (1,16)
Flame Length Constant 0

Altitude Constant 0
Fuel Type Uniform (1,16)
Obstacle Binomial (0.9: 0, 0.1: 1)

to pass information between the ground and aircraft faster, the communications lag parameter can

be varied, which changes how quickly (in number of time-steps) the state of the fire grid is commu-

nicated between the surveillance aircraft and the incident commander on the ground. As shown in

Figure 4.17, more lag results in a slower, less effective fire response where the fireline is eventually

breached by the fire.

Another major consideration for aerial firefighting is the resilience of different responses to faults

or adverse events that may happen during a mission. Since wildfire response is a highly uncertain,

variable, and dangerous environment that nevertheless is very important to perform consistently

to protect people and property, it is important that the response continues or recovers in spite

of faults. Currently, in the SMARt-STEReO model, faults have been associated with each asset

to assess the resilience of the response in these scenarios. Figure 4.17 shows an example of fault

behavior propagation affecting a single Tanker’s ability to perform its mission. As shown, the failure

causes the tanker to no longer move, leading it to no longer be able to perform drops.

4.4.3 Discussion

The SMARt-STEReO model provides an integrated model of fire propagation and response. As with

any model, there are assumptions and limitations which prevent the model from exactly matching

real-life fire propagation. Nevertheless, this model can already provide some strategic insights for

understanding aerial firefighting. As presented, a variety of different effects can be represented in the
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Figure 4.17: Example SMARt-STEReO simulation results.

modelling framework, including increased communications capabilities (e.g., from increasing state

information or removing communications lag) and the response of the system to faults. Future work

will systematically show how these model effects generalize across a number of input scenarios.

Finally, the smart-stereo model shows the fmdtools modelling toolkit can be used to model a

highly complex, distributed system. The stereo model consists of over 1000 lines of code and has 9

unique interacting function classes (8 response functions and the fire model), communications and

decision-making between response assets, and a number of parameters which can be modified to

represent different firefighting situations. It is expected that complex use-cases like this will drive

future feature development of fmdtools to enable efficient specification and simulation of uncertain

parameters.

4.5 Conclusions

The fmdtools modelling framework presented in Section 4.2 enables the consideration of resilience

in the design process by providing a set of model classes, simulation methods, and analyses that

enable the consideration of risk through the functional, behavioral, and structural stages of the design

process. As demonstrated in the drone example in Section 4.3, this enables one to analyze the system
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as the design becomes more detailed. fmdtools additionally has a number of features that make

it relatively unique among fault simulation toolkits, including Python-based model definition, un-

directed fault propagation, and simple model parameterization. This environment not only conducive

to design, but may be easily modified and extended as needed to fulfill research needs, since all model

attributes and simulation/analysis methods are defined in open-source Python code. These features

are exemplified in the fire response model in Section 4.4, where the underlying model is built on the

fmdtools function/flow classes with a number of extension classes to model and visualize the assets

and fire propagation. This demonstrates how expressive and adaptable the fmdtools toolkit is to

future resilient design applications.

While the usefulness of this work is apparent from the demonstrations shown here, there are

a number of possible extensions that would increase its practicality in design. First, safety is an

important aspect of resilience that has specific requirements to consider not explicitly taken into

account in this work. That is, while this work is concerned with quantifying the costs of faults,

safety procedures require one to quantify the overall cost of the entire set of failure scenarios, which

often requires taking a deductive approach [12]. Future work should address this by providing an

approach to identify top-level failure events and quantify the risk of those events. Additionally,

while the models used in this work are deterministic, failures can often have probabilistic effects

that must be taken into account to accurately quantify overall risk. Future work should incorporate

probabilistic state transitions into the model to enable non-deterministic fault propagation. Finally,

while defining models directly in Python code increases model expressiveness, it forces one to use

a stand-alone model and may make the toolkit difficult to use without the relevant programming

knowledge. Future work should provide an interface for defining these models in an existing modelling

tool-chain or model formalism (e.g. AADL) so the same model used by other design and analysis

processes can be used to model resilience.



101

Chapter 5: Optimizing Model Resilience in a Value-based Framework

5.1 Motivation

There are a number of ways one could use the modelling framework and decision-making approach

in Chapters 3 and 4 to design a system to be resilient. The most simple approach would be to

simply use the cost score to compare a few different options, as has been shown in the examples

in Section 3.5 and 4.3. While this approach is suited to early design, when one typically has a

few concepts to compare, it limits the designer’s ability to explore the design space: one can only

explore so many concepts before the exploration and comparison becomes tedious. Since the fault

models presented in Chapter 4 already defined as easily-parameterizable software code, there is an

opportunity, then, to use computation to enable a more comprehensive search of the space.

The aim of this chapter is to enable the reader to leverage optimization in the design process

as shown in Figure 5.1. In this process, the designer defines an initial functional model and creates

a behavioral model by associating conditions, behaviors, and modes with the various functions as

presented in Chapter 4 using the fmdtools framework (or using IBFM, see: [185]). The designer

then associates a cost model with the various modes and model states and defines the changes to be

explored within the optimization problem. This expected cost-based objective is then optimized by

an appropriate algorithm by running the fault simulations (and design and/or operational models),

calculating the expected costs, and changing the parameters until an optimal design is found. This

enables the designer to explore a large space of design alternatives in a systematic, automated way

without a tedious investigation of every model variant.

However, deciding how to optimize a resilience-based optimization problem is difficult in early de-

sign because the design space is large, the variables to explore are heterogeneous, and there are com-

plicated interactions between the design and operational cost models of the system and the resilience
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Figure 5.1: Overall framework of using optimization to achieve resilience in design.
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model that make them difficult to optimize together. Consider the space of possible variables to

explore shown in Table 5.1, which compiles newly-identified model variables with variables identified

in previous function-based fault modelling and optimization approaches (see: [143, 256, 108, 188]).

Optimizing each variable will require different solution strategies depending on the variable type.

Structural design variables such as redundancy, function order, and flow paths will likely need to be

approached using a graph grammar-based computational synthesis framework, as has been shown

in [94, 266], since the function structure is fundamentally a graph. However, the internal-functional,

operational, or contingency parameters may require different algorithms depending on how the vari-

able is represented and parameterized. For example, a gradient-based search may be performed

over the parameters of the assumed realization of the function (e.g. sizing, quality, etc), while an

evolutionary or direct search method is used to determine the modes to recover or conditional logic.

Additionally, as shown on right side of the table, a key difficulty common to many different design

changes is predicting how a change will effect the design and operating costs of the functional model

given the different couplings which may occur, for example, due to the working, constructional, and

system interrelationships which are developed later in the design process. Such couplings are preva-

lent in the embodiment design stage of highly-coupled engineered systems, and provide significant

challenges to design coordination [119] and present challenges to the validity of optimizing over a

single variable type. As a result, it is desirable to optimize each (design, operational, and resilience)

set of variables in an integrated framework that enables each variable to be optimized with the most

effective corresponding solutions strategy.

While using optimization methods may make exploring the design space easier, it may be difficult

to understand how use them effectively in the early design of resilience. To remove this ambiguity and

clarify the problem, this chapter defines the resilience optimization problem, analyzes its attributes

and presents frameworks to solve it in a systematic manner. To better understand the resilience

optimization problem, this chapter formulates the integrated resilience optimization problem and

presents architectures which may be use to solve the resilience optimization problem in a systematic

way, considering the interacting design, operational, and resilience models in Section 5.2. Examples
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Figure 5.2: Integrated Resilience Optimization framework pursued in this work where design, oper-
ational, and resilience variables are jointly optimized.

then provide both a demonstration of the overall resilience optimization framework and a study of

the methods and architectures presented. The monopropellant system example in Section 5.4 first

demonstrates the use of resilience optimization in the context of an overall concept selection process

for a monopropellant system, showing the advantage of considering the optimization early in the

design process. The drone optimization example in Section 5.5 then demonstrates the integrated

design, operations, and resilience optimization framework and compares the architectures presented

for this in Section 5.2 in terms of effectiveness and computational cost. Section 5.6 then briefly

reflects on the contribution and examples presented in the chapter. The decomposition approach

presented in Section 5.3 is demonstrated in Section 6.4.

5.2 Problem formulation and statement of architectures

In the Integrated Resilience Optimization formulation of the resilience-based design problem shown

in Figure 5.2, the features and architecture, nominal control and operations, and contingency man-

agement of the system over a set of fault scenarios are optimized using a single cost function which
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Table 5.1: Design , operational, and resilience variables which may be considered to optimize resilience,
their related costs, difficulties to optimization, and value.

Variable
Type

Design Change Modelling Difficulties Value

Design-
Structural

New Structure Determining context and purpose,
necessary functional relationships,
behavior of functions in new con-
texts.

Most impact and ability to explore
novel solutions.

Redundancy/Number of Functions
[143]

Predicting the effect of potential per-
formance couplings on operational
costs.

Reduces impact of individual fail-
ures. Enables behavioral consider-
ation of entire redundant function
chains, rather than those internal to
a function.

Function Order [143] Predicting how function order might
change design and operating costs.
Determining behavioral impact of dif-
ferent function order.

Potentially inexpensive solution to
lowering risk or reducing failure ef-
fects.

Routing alternative flow paths (e.g.
unused waste flows as inputs) [143]

Determining if flow path’s effect on
function behavior given a function’s
flow input requirements.

Ability to create resilience with less
inherent cost increase than in other
strategies (e.g. redundancy, excess
capacity).

Design-
Functional

Component Redundancy Predicting effect of potential perfor-
mance couplings.

Easy to model and optimize in certain
situations. Enables consideration of
redundancy without changing model
structure.

Assumed Realization/ Function Re-
sources [188]

Potential internal and external com-
patibility couplings

Ability to represent trade-off between
cost and quality (mode probabilities
and costs as well as function costs).

Function Modes Couplings with assumed realization. Ability to represent differences in be-
haviors of functions.

Conditional Logic [256] Predicting design cost of flexibility re-
quired to allow different decisions to
be made.

Enables representing the response of
control systems and built-in robust-
ness compensating for failures as well
as sacrificial subsystems, etc.

Operations Mission Profile Representing profile in all scenarios
when there may be multiple possible
missions.

Ability to determine more or less risky
operational settings.

Operational Margin Modelling trade-off between margin
and performance/efficiency

Ability to determine how to operate
the system to be more or less prone
to hazards.

Contingency/
Resilience

Modes to recover Computational expense in determin-
ing recovery in every scenario.

Ability to represent resilient opera-
tional decision-making and repair.

Maintenance and Health Manage-
ment [143] [108]

Determining effect on failure proba-
bility given time representation. Dif-
ficult to model with fault propaga-
tion.

Ability to represent operational abil-
ity to lower fault probability.

Emergency procedures and recovery
policy

Predicting function of emergency
procedures in hazardous and uncer-
tain scenarios

Can reduce impacts of fault scenar-
ios. Often needed for a safe design.
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follows the form provided in Chapter 3. In a generic form, this may be stated as:

minxD,xO,xR
CD(xD) + CO(xD,xO) + CR(xD,xO,xR)

where CR =
∑
s∈S

n ∗ rs ∗ Cs(xD,xO,xR)

s.t. gD(xD), gO(xD,xO), gR(xD,xO,xR) ≤ 0

hD(xD), hO(xD,xO), hR(xD,xO,xR) = 0

where CD, hD, and gD are design cost objective and constraints (which are the result of the design

cost model in terms of design variables xD), CO, hO, and gO are the operational cost model in terms

of the design variables and operational variables xO, and CR, hR, and gR are the resilience cost

in terms of the design, operational, and resilience variables xR. Additionally, while the design and

operational cost models may be of arbitrary form, the resilience cost model is given as the expected

cost of the set of scenarios S with cost Cs and per-use rate rs over the number of uses of the system

n (n and rs may also be given as functions of design, operational, and resilience variables if needed).

This problem has a repeated and exploitable structure which can be used to organize the problem

in terms of optimization architectures. Since each subsequent model is a function of the variables in

the previous model, it is convenient to model each subsequently (design, then operations, and then

resilience). To describe these optimization architectures, this section will use the notation (e.g.,

for decision and response variables) and extended design structure matrix specification (see Fig-

ures 5.3-5.6) of Lambe and Martins [161, 178]. When using the multidiscipline-feasible optimization

architecture (see [178]), the equality constraints h are substituted into the model such that the set of

variables x may be considered in two sets–the decision variables x and the response variables y. This

enables one to easily leverage optimization in the context of a simulation, where there are defined

input parameters which can be changed in the simulation (e.g., lengths, widths, materials, etc.) and

output responses which result (e.g., mass, performance). Additionally, in this formulation there is no

feedback between the disciplines in terms of constraints (that is, hD does not depend on operational
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or resilience variables). As a result, achieving variable consistency with coupled analyses–the main

difficulty associated with using a multidiscipline-feasible optimization architecture [178]–is not an

issue. Thus, the exploration of architectures undertaken in this work starts by stating the problem

in this form:

minxD,xO,xR
CD(xD,yD) + CO(xD,xO,yD,yO) + CR(xD,xO,xR,yD,yO,yR))

where CR =
∑
s∈S

n ∗ rs ∗ Cs(xD,xO,xR,yD,yO,yR)

s.t. gD(xD,yD), gO(xD,xO,yD,yO), gR(xD,xO,xR,yD,yO,yR) ≤ 0

where yD, yO, and yR are all response variables of the design, operational, and resilience models.

This formulation, also referred to as the all-in-one optimization structure, is shown in Figure 5.3

using the extended design structure matrix notation. As shown, at each iteration of the optimization

a new set of design, operational, and resilience variables is provided and the design, operational, and

resilience analyses are each run in sequence such that the design responses feed into the operational

model and the operational responses feed into the resilience model. These models provide the design,

operational, and resilience costs which are then used as the objective and constraint values in the

optimization solver for each iteration.

The next sections describe additional architectures (sequential optimization, bilevel optimization,

and a lower-level decomposition strategy) which may be used to solve this problem by splitting the

optimization into an upper-level design and operational analysis optimization and a lower-level

resilience analysis optimization. While combined optimization of design and operations has been

explored previously in the co-design literature, the novel contribution to the optimization of resilience

provided here is the joint optimization of the resilience policy with other considerations.
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Figure 5.3: Extended Design Structure Matrix of the All-in-One optimization architecture.

5.2.1 Sequential Optimization

In the sequential optimization architecture, the optimization is split into two stages, as shown in

Figure 5.4. In the first stage, the design and operational costs are optimized in terms of design and

operational variables, using the same multidiscipline-feasible approach used in the all-in-one model.

After that optimization is completed, the lower-level optimization is performed on the resilience

variables using the optimal design and operational variables found in the upper-level optimization.

Stated mathematically, the top-level optimization solves the following optimization problem:

minxD,xO
CD(xD,yD) + CO(xD,xO,yD,yO)

s.t. gD(xD,yD), gO(xD,xO,yD,yO),
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which optimizes design and operations of the system concurrently in terms of design and operational

variables. The lower-level optimization is then:

minxR
CR =

∑
s∈S

n ∗ rs ∗ Cs(x∗D,x∗O,xR,y
∗
D,y

∗
O,yR)

s.t. gR(x∗D,x
∗
O,xR,y

∗
D,y

∗
O,yR) ≤ 0

which optimizes resilience costs in terms of resilience variables given the first-stage optimal design

and operational decision and response variables x∗D,x
∗
O,y

∗
D,y

∗
O

This problem formulation assumes that the design/operational and resilience costs are, in effect,

independent–that the design and operational variables have no effect on the resilience of the system.

As a result, one would not expect it to find a global optimum when upper-level variables effect

resilience costs, and if there are lower-level constraints which depend on the upper-level variables it

may not even converge to a feasible design. However, the fact that each level is only optimized once

results in much lower computational cost than in the other approaches.

5.2.2 Bilevel Optimization

In the bilevel approach, the optimization problem is again split into an upper-level design and opera-

tional optimization and a lower-level resilience optimization, as shown in Figure 5.5. However, unlike

the sequential approach, in the bilevel approach the lower-level resilience cost is used in the upper-

level optimization. As a result, each iteration of the upper level results in a lower-level optimization

of the resilience variables for that design and operational policy. Thus, at each value of design and

operational variable, the lower-level optimization is run over the resilience model to find the opti-

mal cost and feasibility that the resilience variables can achieve at that set of design/operational

variables. Stated mathematically, the upper-level optimization solves the following optimization
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Figure 5.4: Extended Design Structure Matrix of the sequential optimization architecture.

problem:

minxD,xO
CD(xD,yD) + CO(xD,xO,yD,yO) + C∗R(xD,xO,yD,yO)

s.t. gD(xD,yD), gO(xD,xO,yD,yO), g∗R(xD,xO,yD,yO) ≤ 0

where C∗R(xD,xO,yD,yO) and g∗R(xD,xO,yD,yO) are the responses of cost and constraint func-

tions which come from optimizing the lower-level model at each iteration. This lower-level optimiza-

tion is then:

minxR
CR =

∑
s∈S

n ∗ rs ∗ Cs(xD,xO,xR,yD,yO,yR)

s.t. gR(xD,xO,xR,yD,yO,yR) ≤ 0
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Figure 5.5: Extended Design Structure Matrix of the bilevel optimization architecture.

which optimizes the resilience costs in terms of resilience variables given values for the design and

operational decision and response variables. One of the difficulties with the bilevel approach is

computational cost. Because each upper-level iteration results in a full optimization of the lower-level

variables, it may be difficult to solve using traditional methods (e.g., the finite difference method

where finding a search direction requires taking at least one evaluation per variable). Another

property of the bilevel approach is that it enables one to cut out infeasible parts of the design space

by only conducting the lower-level optimization when the upper-level design is feasible. While a

similar approach is achievable in the all-in-one structure by not evaluating the resilience model if

the design/operational models are infeasible, in an exhaustive search the all-in-one structure must

still search the full set of lower-level variables for a design, leading to wasted iterations.

5.2.3 Lower-level decomposition

One property of the lower-level resilience model in the bilevel and sequential formulations is that the

scenario costs Cs are independent, since each scenario represents a separate model evaluation at a
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particular realization of uncertain variables. Thus, if the problem is truly unconstrained at the lower

level (i.e., no g’s relating simulation results, such as a reliability or failure probability requirement

and each decision variable xR is able to be mapped to a specific set of fault scenarios), each resilience

variable can be optimized independently in its own problem. Additionally, this approach can only be

used with the bilevel or sequential approaches where the upper-level design and operational variables

are held constant during the lower-level optimization. In this approach, shown in Figure 5.6, the

lower-level optimization of resilience variables is split into multiple sub-problems. Thus, the cost of

resilience is found by optimizing the problem:

C∗R(xD,xO,yD,yO) = CRr(xD,xO,yD,yO) +
∑
c∈r

minxRc
CRc(xRc,xD,xO,yD,yO)) (5.1)

where c is the index of the resilience variable xRc corresponding to the set of scenarios Sc and

resulting sum total cost CRc, and the cost CRr is the residual cost of scenarios not related any

resilience variables. While this term is not necessary to find the optimized set of lower-level variables,

it is necessary to give an accurate response from the lower-level model to the upper-level model for

the resilience costs. As such, it must be run at least once per optimization of the lower-level model.

This residual cost has the form CRr =
∑
s 6∈Sc∀c∈r Cs(xD,xO,yD,yO) while the resilience cost for

each variable has the form:

CRc(xRc,xD,xO,yD,yO) =
∑
s∈Sn

n ∗ rs ∗ Cs(xc,xD,xO,yD,yO) (5.2)

This decomposition reduces the space of the optimization problem since each sub-problem is of

much lower dimensionality than the combined problem. Additionally, because each optimization

only occurs over a subset of the full number of scenarios, there is a reduced iteration computational

cost. However, it can only be used in situations when the lower-level model is unconstrained. While

this is the case when one only considers the cost of scenarios in the optimization, it is not the case

when there are additional constraints (e.g., overall failure probability requirements).
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Figure 5.6: Detail of Design Structure Matrix of the Bilevel approach with a Lower-level decompo-
sition

5.3 Decomposition Approach for Preventative Measures

A decomposition strategy can also be leveraged at the design level, provided the resilience optimiza-

tion problem fulfills certain properties, when dealing specifically with fault prevention strategies.

Consider a version of the resilience optimization problem with the form:

minxnC = CD(xn) + CO(xn) + CR(xn) (5.3)

where the design vector xn is a vector of variables related specifically to the design and operations

of function n. To consider this cost sum at the local functional level, it needs re-written in terms of

the variables related for that function. This decomposed, parameterized cost sum has the form:

C =
∑
n∈N

(Cdn(xn) + Con(xn)) +
∑
n∈N

∑
s∈Sn

(Ns(xn~s) ∗ Cs) (5.4)

where n is a function in the set of functions N , Cdn is the design cost of that function, Con is the

operational cost of that function, xn are the variables in function n related to risk and cost, xn~s is a
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risk-related variable in function n associated with the scenario s in the set of all scenarios associated

with the function n, Ns is the expected number of times the scenario will occur of the life of the

product (or, if the event may only occur once, the probability) and Cs~m is the cost of the scenario.

This decomposed form relies on three assumptions about this future system, that:

• Design and operational cost may be parameterized in each function. For this to be true, there

should be no significant or sensitive cost-related design and operational parameter couplings.

While not true of many real-world systems, this assumption is appropriate to design in the

early design phase, where the design is relatively unconstrained and preliminary in nature.

However, if disciplinary coupling is a concern, approaches have been developed to incorporate

the cost of coupled component parameters to allow for optimal coordination of design work

[140] that could be used in conjunction this framework to determine the local design and

operational costs (although it would require more communication between disciplines).

• Scenarios only result from faults in single functional faults. This neglects all faults that orig-

inate in multiple functions simultaneously. The consideration of these faults must then take

place separately, or the function-based fault model must be developed in a way that allows

them to originate from a single function block.

• Either the design changes explored do not effect the cost of a given scenario, or local scenario

costs can be constructed for a function’s local failure effects that correlate with the overall

cost of failure in the system for that given scenario (functionality which may or may not be

provided, depending on risk modelling software used)

These assumptions limit the ability of Equation 5.4 to be used on all problems as a comprehensive

risk-based design metric, especially in resilience-based design scenarios where one wishes to change

the system’s fault response. However, the value this form of the equation is that it enables the

designer to make local design decisions with very little computational effort, which is important for

an efficient, parallelized design process. This will be further discussed in Section 5.5.3.

A further simplification may be used in the case where only single faults occur in each function
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(which may be more convenient to consider in early design):

C =
∑
n∈N

(Cdn(xn) + Con(xn)) +
∑
n∈N

∑
m∈Mn

(Nm(xn~m) ∗ Cs~m) (5.5)

where m is a fault mode in the set of fault modes Mn in function n, Nm is the expected number of

times the mode is to occur, xn~m a the risk-related variable associated with the mode m in function

n, and Cs~m is the cost of the scenario associated with that mode. This equation may be useful

when the toolkit can only inject single faults within functions, or when a simple preliminary analysis

is desired; however, Equation 5.4 should be used in the general case to allow for scenarios resulting

from multiple fault modes to be considered.

5.3.1 Optimization Approach

Since the overall objective has been decomposed such that each part of the sum is related only to a

single function, the optimization framework is shown in Figure 5.7. In this framework, the expected

cost of risk is associated entirely independently within each function. This cost Cn is:

Cn = Cdn(xn) + Con(xn) +
∑
s∈Sn

(Ns(xn~s) ∗ Cs) (5.6)

This can be optimized using a method applicable to the parameterization used (The same can be

performed for the single fault version (Equation 5.5) except with Cs~m instead of Cs). In practice,

these problems may be trivially simple or of low dimensionality, enabling exhaustive searches to be

used. Additionally, because all of the objectives occur at the local level, no subsequent runs of the

system-level risk model need to be performed, which enables quick computational performance if

needed. Alternatively, if this process is performed manually by a designer, it may prove to be a

simple heuristic to choose between different design options.
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Figure 5.7: Decomposed optimization framework.
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Figure 5.8: Functional Model of Base Monopropellant System

5.4 Example: Design and Optimization of Monopropellant System

To demonstrate the value of using optimization in the early design process, this section applies the

RISCS expected cost score (see Section 3.3) to the design of a monopropellant orbiter, using a concept

generation process to create design variants with different recovery features (see Figure 5.12a-5.14),

and an algorithm to optimize the controlling functions within one of the variants (see Figure 5.14).

Monopropellant system design was previously considered in [143] and introduced as an example

system in [267]. Monopropellant propulsion systems are named as such because they do not require

a separate oxidizer, and are commonly used in spacecraft for attitude control, and sometimes to

provide primary thrust. The functional model of the monopropellant system is shown in Figure 5.8.

Heat is applied to an inert gas to expand, and the gas is regulated to an appropriate temperature

and pressure. The expanded gas then pushes a propellant over the catalyst. As propellant passes

over the catalyst, it reacts, resulting in thrust.
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Table 5.2: Cost flow state matrix for the monopropellant thrust function, in billions.

Effort Rate Health
Health Zero Low Nominal High Highest

Zero 4.5 4 3.5 4.25 5
Low 4 2.5 1.0 0.75 5

Nominal 3.5 1.0 0 1.0 5
High 4.25 0.5 1.0 2.5 5.5

Highest 5 5 5 5.5 5.5

Table 5.3: Generated Monopropellant Designs over Different Mission Utilities.

Ctr1 Ctrl1 Ctrl2 Ctrl2 Ctrl3 Ctrl3 Ctrl4 Ctrl4
Low High Low High Low High Low High

Feature Used 0 0 1 1 1 1 0 1
Feature Cost 550000 5000 50000 50000 50000 50000 2050000 5000

The overall value generated by this system is a result of the quality of the thrust function,

and the costs are a result of any design costs incurred by each function. In the formulation of

the RISCS score considered in this application, only these trade-offs are considered for simplicity

to illustrate the approach. As a result, only a few components must be considered in the cost

function–design and failure state costs–since operational costs are assumed to be constant between

concepts. Additionally, because the operational context of the system is space, where there is no

ability to repair or maintain the system, the repair costs and future state costs are not included in

this function. The resulting cost function is:

∑
n∈N(~x)

Cn(~x) +
∑
e∈E

Pe ∗ (C̄l[~sf(~x),l]) (5.7)

where the notation is consistent with that outlined in Section 3.3, except Pe is the probability of an

event (which does not change with changes in condition), tm is an (assumed constant) mitigation

time, E is the set of single fault (and no-fault scenarios), C̄l is the cost matrix for the thrust function

(the only desired output flow) which has values shown in Table 5.2 which are again scaled to consider

different failure costs, and ~x is the given design.
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5.4.1 Optimization of Controlling Functions

To demonstrate the value of using optimization in the early design process, this section applies the

RISCS function (see Section 3.3) to the optimization of controlling functions within the functional

model of the variant of the monopropellant system shown in Figure 5.14. Controlling functions refer

to the functions in the model which change the response of the system based on a signal indicating a

change in flow. In this study they represent the high-level requirements for the control systems of the

regulating functions in case of a degradation or failure in the upstream flows. That is, they represent

whether the system should be designed to recover a flow (which would compensate for the failure

but increase initial design costs) or keep the flow state constant. In the model of the monopropel-

lant propulsion system, these functions are control gas rate, control gas pressure, control

propellant temp/pressure, and control propellant rate. When the system is realized, these

might be manifested as logic gates, control circuitry, or any system which takes actions based on an

input. This is represented in IBFM as changes in conditions which cause the system to enter modes

with different behavior.

Figure 5.9: Example controlling function conditions and modes.

To illustrate, in the function definition shown in Figure 5.9, the modes EqualControl, IncreaseControl,

and DecreaseControl each refer to behaviors in which the controller keeps the incoming flow state,

increases the incoming flow state, and decreases the incoming flow state, respectively. Similarly,

the conditions LowSignal, HighSignal, NominalSignal refer to a lower-than-nominal, higher-than-

nominal, and nominal flow state, respectively. Finally, the conditional logic specifies which mode

to enter based on the condition. For example, 1 3 to 2 means the function increases the flowstate

by entering mode 2 (IncreaseControl) when it was previously in mode 1 (EqualControl) or 3

(DecreaseControl).
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Figure 5.10: Cost optimization of the functional model using the evolutionary algorithm, showing
how value can be increased using the presented optimization framework.

This problem is readily encoded as an integer vector and can be solved using an evolutionary

algorithm following the general optimization framework shown in Figure 5.1. Although many integer

programming approaches are possible (indeed, a direct search method may be more efficient, and

the space of designs is small enough to be searched with a brute force method), the evolutionary

algorithm was used in this paper in which the initial population is initially seeded with the solution

of EqualControl for each state of each condition in each function to speed the solution process.

As can be seen in Figure 5.10, the use of this algorithm increases the overall RISCS significantly

from the baseline design cost. This results in a design shown in Table 5.3. As can be seen, while

expensive recovery options are avoided (such as attempting to increase the final flow of propellant in

Controller 4), less expensive recovery features are added in order to achieve the best RISCS score.

This demonstrates the ability of the RISCS score to integrate with an optimization framework to

systematically explore the space of design variants.
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Figure 5.11: Differential costs of design variants based on fault simulation.

5.4.2 Comparing Model Structures

This section applies the RISCS function to compare different design concepts for adding resilience

to the monopropellant system. Each of these variants are shown here, and were constructed by

adding additional functions, conditions, and behaviors to the baseline IBFM model to account for

the added resilient feature. The design variants considered were:

1. Redundant Gas Tanks: The Contain Inert Gas and Expand Gas functions are made re-

dundant, as shown in Figure 5.12a.

2. Redundant Thrusters: The Contain Catalyst and Catalyze Propellant functions are

made redundant, as shown in Figure 5.12b.

3. Auxiliary Heat-recovery system: An auxiliary system powered by the heat from the

combustion from the propellant is added to expand the gas in case the heat source is lost, as

shown in Figure 5.13a.

4. Redundant Pressure Regulators: An additional pressure regulator is added which acti-

vates when the operating pressure regulator fails, as shown in Figure 5.13a.
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5. Optimized Control Features: The control features optimized in Section 5.4.1 are used in

the design, as shown in Figure 5.13b.

As can be seen in the functional models for each design variant, each resilient features adds

initial design cost. In order to calculate the design scoring in Equation 5.7, however, each model

must be run to determine the resulting failure costs. The results for failure costs resulting from each

of these model runs is shown in Figure 5.11, along with the initial design costs and total costs. For

clarity, these are displayed as differential costs from the baseline, to show which features “pay off”

by reducing failure costs above their increase in design cost, and which do not.

As shown in Figure 5.11, as simulated in the model, Variant 1 and Variant 2 (redundant gas

tanks and redundant thrusters, respectively), are not worth their design cost because they negligibly

improve the overall failure cost. This is because, in the model, these systems have a low probability

of faults and relatively high design cost. On the other hand, the features in Variant 3, 4, and 5 do

pay for themselves in terms of failure cost. In Variant 3, because the Import Heat function was

modeled with a relatively high fault probability, the heat recovery feature was able to reduce the

impact of this fault substantially. In Variant 4, the redundant pressure sensor is able to increase the

scoring function simply because the design feature (a sensor) is relatively inexpensive, even though

the change in failure cost is low. Finally, in Variant 5, while the design feature is relatively expensive,

it is able to reduce a large amount of failure cost, allowing the feature to justify itself in terms of

the cost score.

5.4.3 Discussion

The previous sections showed the optimization of a monopropellant system’s recovery policy and

required flexibility (Section 5.4.1) and the elaboration and selection of design features (Section 5.4.2).

While this demonstrated the general usefulness of expected cost scoring for concept selection and

resilience optimization in design, it also highlights an important challenge for this process. As shown,

in the concept selection process, the design with optimized control and recovery features achieved
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(a) Design Variant 1: Redundant Gas Tanks.
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Figure 5.12: Design Variants 1 and 2.

better overall value than the other design concepts. Thus, it is important to recognize the potential

of contingency management in design, for two reasons. First, it may be that certain faults can be

prevented using contingency management without costly design features or operational effects, so

considering contingency management early can enable one to determine adding expensive design

features is necessary. Second, a fair comparison of the resilience of different design concepts requires

knowing how each can be reconfigured to adapt to faults, and while some concepts may not see

improvement from contingency management, others may become much more resilient. This is why

it is important to consider design, operations, and contingency management in a single optimization

framework.

5.5 Example: Drone Optimization and Architecture Comparison

To demonstrate the utility of using an integrated resilience optimization framework in design and

compare the optimization architectures introduced in Section 5.2, this section considers a multirotor

drone case study representative of a typical early resilience-based design scenario. This model has

been implemented in the fmdtools software package [120] and is publicly-available in the examples
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(a) Design Variant 3: Heat Recovery System.
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Figure 5.13: Design Variants 3 and 4

repository [122]. Note that this drone model, while similar in structure to the model in Section 4.3,

is both parameterized over more variables and has revised behaviors and a different cost model.

Thus, conclusions from one model (e.g., optimal architecture) may not apply from one model to

another.

5.5.1 Model Description

The structure of the multirotor model is shown in Figure 5.15. This case study focuses on the

design of the rotor line architecture (AffectDOF), battery pack architecture (StoreEE), flight plan-

ning (Planpath), and recovery (ManageHealth) functions, however, modes from all functions (see

Table 5.6 are included in the optimization. The objective is to design a resilient architecture, op-

erational profile, and resilience policy which will minimize the cost of failures while maximizing

operational revenue and minimizing design cost. As shown in Figure 5.15, the model consists of the

following functions:

• StoreEE, the battery system;

• DistEE, the circuitry supplying power from the battery to the lines and on-board electronics;

• AffectDOF, the architecture of EMAs, motors, and propellers used to propel the drone;
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Figure 5.15: Representation of multirotor drone (left) in an model simulation (right). The Battery
(StoreEE) powers the system while the rotor lines (AffectDOF) use the system control commands
(Ctl1 and Dir1) to change the position of the aircraft (DOFs).
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• PlanPath, the on-board navigation and path planning software and electronics;

• CtlDOF, the control system used to stabilize the drone;

• HoldPayload, the structure and landing gear of the drone; and

• ManageHealth, the health management system used to detect and reconfigure the flight in case

of faults.

as well as the flows:

• EE 1, the flow of electricity from the battery;

• EEmot, the (high-current) flow of electricity to the motors/EMAs;

• EEctl, the (low current) flow of electricity to the controllers and electronics;

• DOFs, the position and velocity of the drone;

• Dir1, the directional commands given from path planning to the controller;

• Ctl1, the throttle commands given from the controller to the motors/EMAs;

• Force Lin, the force from the landing gear to the motors;

• Force ST, the force from the landing gear to all the other subsystems;

• HSig Bat, the health signal for the battery;

• HSig DOFs, the health signal from the motors/EMAs; and

• RSig Traj, the reconfiguration signal used to change paths in case of faults.

The design of the battery and line architectures is motivated by minimizing design cost, min-

imizing weight (to increase operational performance), and enabling reconfiguration in case of the

individual battery and rotor failures in Table 5.6 (to increase resilience). To achieve this in the

battery, four structures are considered: monolithic, parallel, series, or series-parallel. When a bat-

tery fault occurs, a parallel architecture enables a reconfiguration which keeps the same voltage at



126

Table 5.4: Lookup Tables for Design Architecture Costs and Properties

monolithic series-split parallel-split split-both
cost ($) 0 50000 50000 100000

weight (kg) 0.4 0.5 0.6

quad-copter hexa-copter octo-copter
cost 0 100000 200000

weight (kg) 1.2 1.6 2.0
drag factor 0.95 0.85 0.75

a lower maximum current draw while a series architecture enables a reconfiguration which can keep

the same current draw at a lower voltage. Series-parallel enables both types of reconfiguration at

the expense of increased weight and cost. Three line architectures are also considered–a quad-copter

configuration with four rotors, a hexa-copter configuration with six rotors, and an octo-copter con-

figuration with eight rotors. While these line architectures increase resilience by enabling the system

to remain stable in the case of individual line faults, they also increase weight and design cost (which

can also harm resilience). The resulting design cost of the system is:

CD = cb(xB) + cl(xL) (5.8)

where the cost functions cb and cl, as well as the response variables of the design model yD are given

by lookup tables (see Table 5.4) for each value of design variables xD = [xB , xL]–the battery pack

architecture xB and line architecture xL, respectively.

The purpose of this drone is to surveil a given area. To perform this task, it must fly over the

area at a specific operational altitude and sense (e.g., photograph) the area below it at that altitude.

As shown in Figure 5.16, different operational altitudes lead to different flight-plans which cause

the drone to fly for a longer or shorter amount of time. When the drone flies lower, it must fly for

longer, but it also senses more information, yielding higher operational revenue. This relationship

is quadratic and related to the number of points viewed, according to the operational cost function:

CO(xh, xD, yD) = −n ∗
∑
p∈A

0.5 +
2

y(p)2h
(5.9)
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where CO is the operational cost (which, being negative, is a revenue in this case), n is the number

of flights, p is an individual viewed grid point in the set of viewed gridpoints shown in Figure 5.16,

the operational variable xO is the input flight altitude xh, and the resulting altitude at each point in

the simulation is y(p)h. In addition to costs, the design of the operations is subject to constraints:

• It must return to the starting location with at least 20% charge, or gO1 = (20−l(te) < 0, where

l is the life of the battery in the nominal simulation and te is the end-time of the simulation.

• It must return with no faults present, or gO2 =
∑
f∈N f ≤ 0, where f is a fault and N is the

nominal simulation

• It must stay within a feasible range of operational altitudes over the flight simulation, or

gO3 =
∑te
t=0max(0, (h(t) − 122)) ≤ 0, where t is the simulation time, te is the end-time for

the simulation, h(t) is the altitude, and 122 is the maximum allowable altitude in meters.

Finally, to mitigate failures in the drone, it may be helpful to have different recovery strategies

for specific detectable faults. In the multirotor case, two sets of faults are considered: faults in the

rotor lines and faults in the battery (see Table 5.6). When these faults are detected, the drone has a

number of options for flight recovery: continuing the mission, returning to base, flying to the closest

safe landing point, or landing immediately (options 0,1,2,3 in the model). The resilience costs of the

system depend on the performance of resilience policy, flight-plan, and design architectures over the

given set of fault scenarios:

CR(xD, yD, xO, yO, xbp, xlp) =
∑
s∈S

n ∗ rs ∗ Cs(xD, yD, xO, yO, xbp, xlp) (5.10)

where CR is the overall resilience cost, s is a scenario in the set of fault scenarios S, n is the number

of flights, rs is the per-flight scenario rate, Cs is the cost of a scenario, and the resilience variables

xR are xbp, the battery reconfiguration policy, and xbp, the line reconfiguration policy. The set of

scenarios S is shown in Table 5.6, which corresponds to the set of single-component fault scenarios

defined in the drone model which are initiated in the middle of the flight. It should be noted that this

is a subset of the full-set of fault scenarios, which would include both combinations of components



128

80 60 40 20 0 20 40 60 80

0

50

100

150

200

250
50 m

80 60 40 20 0 20 40 60 80

0

50

100

150

200

80 m

80 60 40 20 0 20 40 60 80

0

50

100

150

200

180 m

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Flightpath
Viewed
Unviewed
Target Area
Landing Area
Emergency Landing Area

Flight Paths at Varying Heights

Figure 5.16: Flight Plans of Multirotor at Different Operational Altitudes. A higher operational
altitude leads to a shorter flight but results in lower-quality imagery.
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and a set of fault injection times. This subset is used here to lower computational time in the

optimization for the purpose of demonstrating the architectures.

The cost of each scenario comes from the flight, landing, and repair costs of each modelled

simulation, as shown below. Note that the input parameters (xD, yD, xO, yO, xbp, xlp are all left out

for of the equations for clarity to demonstrate the form of the scenario model. These scenario costs

are:

Cs = Cf + Cl + Cr (5.11)

where Cr is the repair cost:

Cr = min(1500,
∑
m∈M

cm) (5.12)

which is the sum of the cost cm of the modes M present in the final scenario, with a cutoff of $1500

(the cost when the system is replaced rather than repaired). The flight costs Cf come from the

safety cost of flying with a fault and the viewed value of the mission:

Cf = cfs ∗ tf ∗ −10 ∗
∑
p∈A

0.5 +
2

y(p)2h
(5.13)

where cfs is the safety cost to the airspace of flying with a fault present (which is determined by

the schedule in Table 5.5 based on the location), tf is the amount of time flying with the fault,

and
∑
p∈A 0.5 + 2

y(p)2h
is the value of the viewed points in the scenario (which is the same as the

per-mission operational cost).

Finally, the landing costs Cl come from the impact to safety from landing in the target area ct

as well as the cost of landing in an area with property restrictions cp (which is anywhere but the

landing areas).

Cl = ct + cp (5.14)

where ct and cp are determined from the schedule based on the flight scenario in Table 5.5.
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Table 5.5: Safety cost schedule ($USD) for model effects in different design scenarios.

target cost outside target cost property cost flight cost
rural 960 960 1000 5
urban 4800 4800 10000 100

congested 7368000 4800 100000 1000

Table 5.6: Drone faults to be mitigated by recovery variables in quadcopter architecture with no recovery
in the urban scenario flying at 30 m.

fault scenario rate unsafe flight
time

landing location event cost (USD)

StoreEE no charge 2.8e-05 1 over target 14914.6
StoreEE low charge 9.8e-05 6 outside target 15461.4
StoreEE cell shortage 1.5e-05 1 over target 14914.6
StoreEE cell degradation 1.5e-05 1 over target 14914.6
StoreEE cell mechanical fault 1.5e-05 1 over target 14914.6
StoreEE cell lost charge 8.4e-05 1 over target 14914.6
AffectDOF rotor short 3.1e-06 1 over target 15514.6
AffectDOF rotor open circuit 3.1e-06 1 over target 15214.6
AffectDOF rotor lost control signal 6.2e-06 1 over target 15114.6
AffectDOF rotor mechanical fault 3.1e-06 1 over target 15514.6
DistEE short 2.33333e-06 1 over target 15114.6
DistEE degr 3.88889e-06 1 over target 15014.6
DistEE break 1.55556e-06 1 over target 15014.6
CtlDOF noctl 2.8e-06 1 over target 15814.6
CtlDOF degctl 1.12e-05 1 over target 16014.6
Planpath noloc 2.8e-06 18 over target 17714.6
Planpath degloc 1.12e-05 18 over target 17714.6
HoldPayload break 1.55556e-07 1 over target 16314.6
HoldPayload deform 6.22222e-07 1 over target 16314.6
ManageHealth falsemasking 1.16667e-07 8 nominal 1654.86
ManageHealth lostfunction 2.33333e-08 8 nominal 1654.86
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Table 5.7: Multirotor design problem variable names and values.

Variable Values Description
xB [0,1,2,3] Battery Architecture (monolithic, parallel, series, series-parallel)
xL [0, 1,2] Rotor Architecture (quadrotor, hexarotor, octorotor)
xh [20, 30 ... 120] Operational Altitude
xbp [0,1,2,3] Battery Fault Policy (continue, return, land safely, land immediately)
xlp [0,1,2,3] Line Fault Policy (continue, return, land safely, land immediately)

Thus, to summarize, the optimization problem may be stated as:

minx f(x) =CD(xB , xL) + CO(xB , xL, yB , yL, xh) + CR(xB , xL, yB , yL, xh, yO, xbp, xlp)

s.t. CD =cb(xB) + cl(xL)

CO =− n ∗
∑
p∈A

0.5 +
2

y(p)2h

CR =
∑
s∈S

n ∗ rs ∗ Cs(xB , xL, yB , yL, xh, yO, xbp, xlp)

gO1 =20− lN (te) < 0

gO2 =
∑
f∈N

f ≤ 0

gO3 =

te∑
t=0

max(0, (h(t)− 122)) ≤ 0

where xB ∈ [0, 1, 2, 3], xL ∈ [0, 1, 2], xh ∈ [20, 30...120]

xbp ∈ [0, 1, 2, 3], xlp ∈ [0, 1, 2, 3]

where CD(xB , xL) is the design cost (evaluated in a lookup table), CO(xB , xL, yB , yL, xh) is the op-

erational revenue (evaluated in a nominal run of the simulation), CR(xB , xL, yB , yL, xh, yO, xbp, xlp)

is the resilience cost which is taken over the set of fault simulations, and the inequality constraints

are all evaluated in a nominal run of the drone simulation with the operational model. Finally, the

decision variables x = [xB , xL, yB , yL, xh, yO, xbp, xlp]) are summarized in Table 5.7.



132

CD ($)

0
100

200
300

CR  ($)

1e7
1.450

1.448
1.446

C
O  ($)

10000

20000

30000

40000

(a) Rural Scenario

CD ($)

025050075010001250
CR  ($)

1e7
1.450

1.448
1.446

C
O  ($)

50000
100000
150000
200000
250000

(b) Urban Scenario

CD ($)

025050075010001250
CR  ($)

1e7
1.450

1.448
1.446

C
O  ($)

1e8
0.2
0.4
0.6
0.8
1.0
1.2

Equal-weight design

(c) Congested Scenario

Figure 5.17: Plots of the Pareto front of Design, Operational, and Resilience Costs in different flight
scenarios.

5.5.2 Results

To demonstrate and compare the optimization architectures described in Section 6.2, this section

applies each of them to the drone optimization problem in Section 5.5.1. This is performed in two

parts: First, the design space is explored to show how the drone optimization represents challenges

in integrated resilience optimization, having trade-offs between design/operational and resilience

costs and couplings between design/operational and resilience variables which make the problem

difficult to solve. Second, the different architectures are compared in terms of their optimization

effectiveness and efficiency. Based on this comparison at the chosen problem parameters, some of

the issues which influence the choice of optimization architectures in a particular design scenario are

discussed.

5.5.2.1 Trade-space Analysis

As discussed in the problem description in Section 5.5.1, the drone design model can be simulated

in different design scenarios which each have different failure costs because of the mission of the

drone. This trade-off changes the Pareto front of the design space shown in Figure 5.17. In all

three scenarios, the design cost is minimal and does not effectively influence the solution, which is



133

a result of the design cost assumptions (that R&D costs will be spread out over a large batch and

the primary costs thus come from the manufacturing). The different rows in the pareto plots are

from different optimal designs (combination of battery pack and rotor architecture) which result in

different optimal costs. As shown, only four costs are on the Pareto front, even in the congested

scenario, so some designs do not increase operational or resilience costs compared to the minimum

design-cost no-redundancy design–in this case the joint-split battery pack architecture and octorotor

line architecture.

However, the main effects of design features are different resilience costs (from increased re-

dundancy in failure scenarios) and different feasible operational altitudes. There is a very clear

relationship, for each design, however, between between the operational and resilience costs which

results from the operational altitude of the flightplan. This is because operational height increases

operational cost (because of less information detail), while decreasing resilience cost (because of the

remaining battery, ability to leave the target area in time, etc.). Because of the squared term in the

operational cost (Equation 5.9), the resulting relationship between operational and resilience costs

also follows inverse quadratic function, making the gradient of operational costs steeper than that

of resilience costs when the altitude is low.

These design trade-spaces lead to different optimal equal-weight designs, as shown in Figure 5.17.

In the rural scenario, the unplanned landing (i.e., crashing) costs are low, meaning the majority of the

resilience costs are repair costs, which are not enough to influence the solution significantly–resulting

in a solution (x∗ = [2, 0, 30, 1, 2]) which maximizes operational revenue. While this solution has some

redundancy in the battery, which reduces resilience costs without increasing operational costs, it also

flies as low as possible, which increases operational revenue at the expense of failure costs. When

there is a battery fault, it returns to base immediately to prevent a loss of power in flight. When

there is a rotor fault, on the other hand, it flies to the closest landing point to mitigate the resulting

crash. In the urban scenario, the crashing costs are much higher, resulting in an optimal solution

(x∗ = [2, 0, 40, 1, 1]) that is a compromise between resilience and operational costs. In this solution,

a slightly higher flight altitude is taken to reduce resilience costs at the expense of operational cost.
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The flight height in this design additionally makes returning to the base a viable strategy in the

case of a rotor fault. Finally, in the congested scenario (where the drone is flying over a crowd),

the resilience costs overwhelm the other objectives, resulting a solution (x∗ = [2, 1, 80, 1, 1]) which

effectively minimizes the costs of resilience over the design and operational costs. In this solution,

the drone incorporates a hexarotor architecture in addition to the battery redundancy, which results

in much more weight, meaning the drone can only fly at a much higher operational height. Returning

to base is still the preferred policy for both sets of faults for this design.

This exploration illustrates the system couplings present in the design problem between the upper

design and operational models and the resilience model. That is, different designs and operational

policies result in different optimal resilience policies and vice-versa–in this case, when the drone

flies low, it cannot return to base when a rotor fails, leading to a different optimal policy in the

rural scenario than the urban and congested scenario. Additionally, much of the operational cost

at the design and operational level (in terms of height and architecture) has major impacts on the

resulting resilience costs. Additionally, depending on the form of the design trade-space, different

optimization architectures could be preferable: in a situation where design and operational costs

dominate resilience costs, it may not be beneficial to use an all-in-one or bilevel framework as

opposed to a two-stage approach, because the resilience model does not affect the optimal decision

in that instance. Thus, the rest of the analyses continue use the urban scenario as an example, since

it is the scenario where the operational and resilience costs are on similar scales.

5.5.2.2 Architecture Comparison

To understand the relative performance of optimization architectures, this section assesses each in

terms of effectiveness and computational costs in the drone problem in the urban flight scenario. To

perform this comparison, each optimization architecture was applied to the drone design problem

using an exhaustive search at each level, recording the optimal solution, solution costs, number of

evaluations in each model levels, and total computational time of the search using an 3.20 GHz
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Table 5.8: Comparison of optimization effectiveness and computational cost of optimization architectures.
Note that negative cost is net profit/revenue (i.e., larger negative numbers are better and larger positive
numbers are worse).

Approach x∗ Total Cost($) D/O Cost($) Res. Cost($) D/O Evals Res. Evals Time (s)
All-in-one 2, 0, 40, 1, 1 -14,401K -14,485K 84K 2304 2304 2375.3

Sequential 0, 0, 30, 2, 2 -14,249K -14,514K 264K 144 16 27.5
Bilevel 2, 0, 40, 1, 1 -14,401K -14,485K 84K 144 1152 1062.1

Bilevel Dec. 2, 0, 40, 1, 1 -14,401K -14,485K 84K 144 576 245.6

Intel Core i5-6500 CPU. This comparison is shown in Table 5.8, where x∗ is the found optimal

solution, Total Cost is the combined design and resilience cost, D/O Cost ($) is the design and

operational cost, Res. Cost is the resilience cost, D/O Evals is the number of design and operational

model evaluations, Res. Evals is the number of resilience model evaluations, and Time (s) is the

computational time. As shown, each architecture finds the optimal design except for the sequential

architecture, which also has the least computational cost. Unlike the sequential approach, which

sacrifices design optimality for computational performance, the bilevel approaches find the same

design as the all-in-one approach with less computational cost. While some of this is due to the

fewer design/operational model evaluations (which are much less in the bilevel approaches), the

largest computational cost reduction comes from the fewer resilience model evaluations, since each

resilience model evaluation is 21 simulations (one simulation per fault scenario) compared to a single

simulation at the design/operational level.

As shown in Table 5.8, the bilevel frameworks result in a very large reduction of evaluations at

the upper level compared to the all-in-one. This is because in an exhaustive search, the all-in-one

architecture evaluates every model at each design x, even when many of the designs (designs with

the same design/operational polices) have the same design/operational cost. The main difference

between the bilevel approach and the all-in-one approach is that the bilevel approach does not

unnecessarily re-evaluate the upper level model to compare designs with the same design/operation

policies but different resilience policies. While this property is not relevant to this problem, since

the major driver of computational cost is the resilience model, it may become more salient in a

multidisciplinary design scenario in which there is a more expensive design model.

The major computational reductions of the bilevel and sequential methods used in this problem
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come from the reduction in lower-level evaluations. In the bilevel approach, this occurs because

designs/operational plans which are infeasible at the upper level are not searched at the lower-level,

resulting in fewer wasted iterations at the lower level (while not shown here, similar reductions can

occur in an all-in-one approach if model evaluation is halted when the design/operational models

are infeasible). When using the bilevel approach with the lower-level decomposition, there are even

fewer lower-level evaluations because of the reduction in problem space from (4 ∗ 4 = 16) discrete

combinations to 4 + 4 = 8 solutions to each sub-problem. Additionally, the bilevel approach with

the lower-level decomposition achieves lower computational cost because only the modes related to

a particular variable (7 for the battery and 6 for the lines, and 12 for those not related to either,

which is run once for each lower-level optimization) are evaluated for the search of that variable,

resulting in fewer simulations per-lower level iteration. Finally, the sequential approach reduces the

number of upper-level and lower-level iterations by only performing each optimization only once.

5.5.3 Discussion

While the results in Table 5.8 present a fairly clear story about the effectiveness and computational

costs of the different architectures in the optimization of resilience, the ideal choice of optimization

architecture flows out of the needs of the problem. For example, the all-in-one architecture is

inefficient but easy to set up, and, when using an exhaustive search, is guaranteed to find the global

minimum. Thus, in smaller problems, where there are not many variables or failure scenarios, there

may be no reason to use a more complicated bilevel or sequential framework, especially it would not

improve solution quality.

The case for using a sequential framework in the design of resilience is much more contextual

(see: [24]). While it is not particularly effective at maximizing the inherent resilience of design and

operational variables, it does enable one to find a design with optimal design/operational costs and

a contingency management scheme which maximizes resilience for that design. Thus, there are a

few scenarios where the sequential framework may be useful:
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• When the design and operational variables do not affect the inherent resilience of the design

(i.e., there is no constraint connecting the upper and lower levels of the optimization); in

this case one does not need a feedback loop between the upper and lower levels because the

upper-level variables do not effect the lower-level costs.

• When the costs in the upper-level model dominate the lower-level resilience costs (i.e., no mat-

ter the lower-level resilience cost of a particular design, the upper-level design and operational

costs have a greater magnitude). This could happen if the upper-level design and operational

costs are naturally at a higher magnitude than the lower-level resilience costs, or it could hap-

pen by design by including creating a surrogate of the lower-level resilience costs and including

it in the upper-level objective.

• Finally, when the computational cost of the models is high and/or the space of designs is very

large, it may be impracticable to conduct a full optimization of the design. Additionally, it is

sometimes helpful in the optimization process (especially with gradient-based approaches) to

find a feasible “starting point” design. In cases like this, when the goal is to find an acceptable

design with as little computation as possible, the two-stage approach may be a better fit to

the job than a bilevel or all-in-one approach.

Finally, as discussed in Section 5.5.2.2, the main advantage of the bilevel approach (both with

and without the decomposition) when using an exhaustive search is that it reduces the number of

evaluations which need to be performed at either level. However, this reduction (and its salience)

is dependent on the attributes of the problem–if the upper-level models are computationally cheap,

most of the reduction comes from not running the lower-level optimization over infeasible points.

This reduction can largely be accomplished in an all-in-one framework by not evaluating the lower-

level model when the design is infeasible, though the all-in-one framework will still explore the

infeasible lower-level variables. However, depending on the form and solution strategy for the upper-

level problem, this effect may be large or small. If the upper-level has no constraints, it will not

reduce the number of lower-level iterations, since every single upper-level design is feasible and will

be optimized in the lower level. Additionally, if one is using an optimization method other than
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exhaustive search, the number of iterations at each level (and in an all-in-one approach) other factors

will influence the convergence of the method, rather than just size of the design space, which will

change this comparison.

The use of the lower-level decomposition strategy is also contingent on the form of the problem.

While there is a clear case that the lower-level decomposition strategy reduces both the space of the

lower-level problem (and thus the number of iterations) and the computational cost per iteration

(since only a subset of the scenarios are run for each variable), it can only be used in specific

situations where the variables are independent and can be associated with specific sets of scenarios.

In the drone problem, this is resolved because each variable is a contingency plan for a specific

set of fault scenarios where one of the line or battery modes is present. However, if there was an

interaction or constraint relating these variables (e.g., an overall crash probability requirement or if

there were interactions between fault scenarios/contingency plans), one could not use this strategy

and be guaranteed an optimal solution. In this situation, one would either need to optimize the lower

level as one problem or use a more sophisticated multidisciplinary design optimization technique. It

should additionally be noted that this decomposition strategy becomes equivalent to the two-stage

approach when each each independent set of variables corresponds to a single set of fault scenarios

(rather than multiple).

5.6 Conclusions

This chapter covered the optimization of resilience in an integrated design framework, with a focus

on how to most effectively and efficiently structure the optimization of design, operational, and

resilience costs in an engineered system. There are many different variables which one may consider

to achieve more or less resilience. As demonstrated in Example 5.4, where the optimized control

of the monopropellant system was able to out-perform the other design variants, the resilience of a

system is dependent not just on the features a system uses, but also the control policy, which may

achieve comparable value to a dedicated recovery feature when optimized. Thus, optimization can
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play an important role in the early design of complex systems, by enabling the valuation of design

features, operational changes, and contingency management policies in a single decision.

However, when structuring an optimization problem like this–where the design, operations and

contingency management is optimized together–it is prudent to choose an architecture which ef-

fectively finds the optimum design at a satisfactory computational cost. To explore this problem,

Section 5.2 introduced the integrated resilience optimization formulation of the resilience-based de-

sign problem and presented optimization architectures to leverage this framework, and Section 5.3

showed a special decomposition strategy which can be used when design features are preventative

and can be associated with subsets of scenarios. These architectures were then compared on a

drone design problem in Section 5.5 where one must choose a design architecture and flight plan

which minimizes design and operational costs while maximizing the resilience of the contingency

management of the drone over a set of fault scenarios. On this problem, it was shown that a bilevel

approach finds the optimal design at comparatively low computational cost compared to an all-

in-one approach, especially when using a decomposition approach in the lower level problem that

decreases both simulation cost and problem complexity. Conversely, a sequential approach has even

less computational cost but does not find the optimal design because it does not factor resilience

costs into the design/operational problem. However, the ultimate choice of architecture depends on

the nature of the problem considered, including the computational cost at each level, the interacting

design constraints, and the size, scope, and form of the problem.

However, there were some limitations of the comparison in Section 5.5 which may affect how well

the results generalize to new problems. First, the variables the problem optimized in this work were

discrete and were searched using an exhaustive search strategy. This constitutes a limitation because

the results may not generalize to a gradient-based search or combinatorial optimization, since the

convergence of those methods depend on more than just the dimensionality of the problem. Second,

in this work, the design and operational costs were considered as a single model because of the

low computational cost of the design model (which was a lookup table), but in many problems the

design model and the operational model may each have significant computational expense. Finally,
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the study in this work focused on the reduction of failure costs function using recovery features

to improve the recoverability of the system. However, this is only one part of the resilience cost

function. Optimizing the other part, the mode rate model (e.g., as in Section 5.3) , would enable

one to consider the effect of preventative strategies such as maintenance, product quality or design

margin, and prognostics and health management [113]. Thus, to comprehensively consider resilience

in the integrated resilience optimization framework presented here, future work should additionally

investigate the optimization of preventative strategies in a single framework with recovery strategies.
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Chapter 6: Validating the Design of Resilience using Uncertainty

Quantification

6.1 Motivation

Taken together, Chapters 3-5 present an overall value-based framework for simulating faults and

quantifying the value of resilience to optimize a system in the early design phase. However,the

validity of applying this framework (or ones like it) to a given design problem cannot necessarily be

presumed, since design and analysis approaches are subject to error. The main difficulty with early

design processes is that models of design risk in the early design process are relatively high-level [8]

and risk quantification in this context is subject to both parametric (i.e., whether estimates used

for early decision-making will represent the real data) [11, 299] and structural (i.e., whether a fault

model’s constructions can represent all failure scenarios) [8] uncertainties [151]. This uncertainty is

epistemic (as opposed to aleatory) because it is a result of the designer’s lack of knowledge [144], not

an underlying variable process. As a result, while much literature has asserted the value of early risk-

based design processes, and there is support that early decisions have impact on project risk [273],

it may not be clear that using these methods will consistently and accurately identify the optimal

set of risk-reducing features to add to a system. This can be thought of as two interacting problems:

the ability of using the method to effectively explore the space of designs and the uncertainty present

in the model form and parameters used to justify the final decision.

Both the quantification of uncertainty in design methods and validation of design methods have

been identified as significant needs within design research [66]. From a design perspective, a major

challenge provided by the uncertainty in models used to inform decision-making is managing the

trade-off between modelling effort and decision improvement [41]. In early design processes, it

is often necessary to make assumptions about how the system will operate to make a decision.
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However, the optimal decision can be highly sensitive to assumptions [73], which is important when

the assumption is not easily knowable (e.g., is not necessarily based on long-established research or

experience). In fact, many cost models used to make high-level decisions have been shown to be

sensitive to subjective parameters [214]. Additionally, when the designer has poor judgement, it

would be better for them to follow established heuristics than to construct a utility model to justify

decisions [25]. Consequently, one might justifiably doubt if one can meaningfully proceed through

the design process using a traditional decision-making framework [236, 19]. However, these in design

cases with low information, better decisions can result when the designer considers the uncertainty

due to lack of evidence (the epistemic uncertainty) [15].

Previous work concerned with risk and resilience-based design under epistemic uncertainty has

focused on identifying the aspects of the model or design most affected by uncertainty so it can be

accounted for in design or reduced in the model. In the field of risk assessment, Khorsandi and

Aven [144] created an approach to quantify the risk of incorrect assumptions in a risk model and

Bjørnsen et al. [29] used an extended value of information analysis to account for poor information

fidelity in decision-making. In the design area, Owens et al. [215] provide an approach to account for

epistemic uncertainty in mission design through sensitivity analysis, using a probability of sufficiency

measure to determine how much design margin should be incorporated to account for uncertainty.

Similarly, Stone et al. [271] used conjoint analysis to determine when to refine models under uncer-

tainty. While these approaches enable designers to isolate and address the issue of uncertainty, they

do not determine whether a given design and modelling approach is valid given that uncertainty.

To address this, Malak and Paredis [175] proposed using value of information to validate models for

reuse, identifying it as a path for further research. This work builds on that idea.

6.1.1 Aims, Contributions, and Organization

The aim of this chapter is to provide and demonstrate processes that support validation of early risk

and resilience-based design approaches. In this work, design process validation is considered to be
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determining if a given design approach provides meaningful results for the problem it is supposed to

solve. It should be noted that other definitions of validation exist across related fields. Specifically,

in model development, the validation of a model refers to its ability to give accurate, credible results,

while the suitability of the results leading to the right decisions for a particular problem is referred to

as “accreditation” [63, 275]. We refer the process performed here as supporting validation because

we are interested in the validity of the combined design process, which is based not only on the

suitability of an underlying model, but on how that model is used for design.

To approach this challenge, this work focuses on answering the question: “Was a risk-based

or resilient design approach so sensitive to uncertain assumptions that one should not accept the

results?” While one might understand the importance of reducing risk early in the design process, it

may be difficult to tell if an approach gives good results when it is based on a relatively low-fidelity

model of the system based primarily on assumptions, rather than measurements from a real system.

The main contribution shown here is a testing framework that determines:

1. whether quantifying uncertainty is necessary within an approach,

2. whether the value of the design is significantly improved by the approach when uncertainty is

considered, and

3. whether a decision is too sensitive to epistemic uncertainty to justify a particular choice given

by the approach.

Based on these tests (as well as other tests, process information, and their judgement), a decision-

maker could then determine whether to accept a given risk-based design process as valid.

6.2 Method

Testing the validity of early risk and resilience-based design approaches in the framework presented

here follows the process illustrated in Figure 6.1. First, a variety of design variants are explored and

a value model is constructed with different parameters for each based on the results of the model,
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Figure 6.1: Proposed testing framework within a larger design process.
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giving a chosen design, as discussed in Section 6.2.1. Next, the uncertainty in the value model with

respect to the assumptions made (that is, the epistemic uncertainty resulting from the designer’s

lack of knowledge) is quantified in terms of continuous and discrete distributions, as applicable to

the type of uncertainty (parametric, structural, etc.) and desired level of detail, as presented in

Section 6.2.2. Based on this uncertainty model, tests are performed on the value model to determine

whether the process was valid, as presented in Section 6.2.3. The first test, T1, compares the chosen

design with the design that would have been chosen considering uncertainty to test the use of point

estimates in design. The second test, T2, uses the expected value improvement in the design process

to test whether the design process sufficiently explored the design. If it was sufficiently explored,

one might conclude that either the there was either too much uncertainty in the analysis or that the

design process was irrelevant to achieving the desired outcome. The third test, T3, uses the value of

information to determine if the analysis used was too uncertain to be relevant enough to make the

given decisions. As shown in Figure 6.1, based on the interpretation of these tests, the designer may

then either revise the design process by exploring further design alternatives and gathering more

information to inform analysis or declare the design or analysis process itself valid or invalid for the

considered problem.

6.2.1 Design Problem Formulation

In general, an expected cost model for risk or resilience-based design balances the design, operational,

and failure costs, following the form provided in Chapter 3:

C = CD + CO +
∑
f∈F

nf ∗ Cf (6.1)

where CD is the design cost, CO is the operational cost, and the failure cost is the sum of the

expected values of each failure f in the set of failures F , which is the expected number of failures

nf times the failure cost Cf . This failure cost Cf can result from the direct effects of failures (e.g.

safety and repair costs) in the case of a risk-based design process and from the dynamic operational
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losses resulting from a failure in the case of a resilience-based design process. Demonstration of

this value modelling process is provided for both examples in Section 6.3 and Section 6.4 (a simpler

example is provided in Section 3.5).

6.2.2 Uncertainty Quantification

Uncertainty quantification is used in this framework to determine how the designer’s epistemic

uncertainty with respect to the cost function affects the decision-making process. This involves

quantifying the single set of assumptions (e.g. chosen models, point estimate inputs, etc) used

for design in terms of their statistical distributions. Unfortunately, because the primary type of

uncertainty in early design is epistemic, the probability distributions must be specified from the

Bayesian (or subjective) point of view–where different levels of probability represent different levels

of the belief of the decision-maker– instead of the frequentist view–where probability is the considered

the distribution of outcomes over a large number of experiments [46, 288]. Thus, the uncertainty

must be elicited from the designer, which can be accomplished using a number of methods [75],

examples of which are presented below.

6.2.2.1 Discrete Assumptions

Often, assumptions must be made about exclusive, discrete options, such as the form of a model,

whether or not a condition is present in a system, or what sort of scenario the system will encounter.

Additionally, when one is already using a relatively simple design method (e.g. using a few simple

equations rather than detailed simulations because they take less time to evaluate), it may be

more convenient to express the uncertainty as discrete assumptions with each case given a discrete

probability, as shown in Figure 6.2. In this approach, the value of each design in each scenario must

be determined in each case (e.g., with different inputs to the model or a different chosen form of the

model), and probabilities must then be assigned for each scenario.
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Figure 6.2: Considering a design problem under uncertain discrete assumptions may lead to differing
preferred design options in each case.

6.2.2.2 Continuous Assumptions

When assumptions are made about the range of parameters, continuous distributions can be used

to represent the uncertainty inherent to assuming a particular set of values for input parameters.

In this process, one must quantify not just the uncertainty of a particular parameter estimate, but

the possibility of multiple poor estimates interacting due to systematic errors. Since the parameter

estimates used in early design are based on previous information and the intuition of the designer

(which is subject to biases) these sources of error must be considered in the uncertainty model.

This work uses a multiplicative model of error sources to account for possible compounding

interactions between estimation errors while maintaining a relatively simple uncertainty model. The

model used here considers possible biases at each level of system representation used in the case

study: system, component/function, and parameter type. This model is given in Equation 6.2,

where system-wide estimation bias is S, component (or function-related) bias is C, parameter type

bias is T , and individual instantiation error is ε, resulting in a distribution Y for the parameter that
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was previously given the point-estimate yest.

Y = yest ∗ S ∗ C ∗ T ∗ ε (6.2)

In this work, the Beta-PERT distribution is used for each source of error, centered around 1 and

varying between a maximum multiplier R and minimum multiplier 1/R. The Beta-PERT distribu-

tion is used for this because it is a traditionally-used distribution for representing the uncertainty

of the designer about precise parameter values [278]. In the model used here, the overall distribu-

tion for the variable Y has a most probable point at the estimate, with tails extending an order

of magnitude R above and below the estimate in the direction of each considered source of error–

a distribution which somewhat conservatively skews towards over-estimates–implicitly accounting

for theorized optimism biases [254] in yest, as proposed by Moskowitz and Bullers [200]. However,

alternative uncertainty models may be used to represent the specific problem at hand if different

estimation biases are considered to be affecting the estimate or if the error distribution for a bias is

considered to be uniform or multimodal, for instance.

6.2.2.3 Uncertainty Propagation

To make a decision given uncertain parameter values, the uncertainty must be propagated through

the value function to determine the expected value or utility of the designs. To perform the tests

required by this method, two uncertainty-based quantities need to be determined: the expected

value of a design and the expected value of information. The expected value of a design E{V (~x)}

given I discrete uncertain inputs ~zi with probabilities Pi is:

E{V (~x)} =
∑
i∈I

Pi ∗ V (~x, ~zi) (6.3)
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The expected value E{V (~x)} of a design given continuous uncertain variables is:

E{V (~x)} =

∫ ∞
−∞

V (~x, z) ∗ f(z)dz (6.4)

where V (~x, z) is the value of the design ~x with uncertain parameter z, and f(z) is the probability

density function for that parameter.

While a number of metrics for the value of information have been provided in previous work

(see Section 2.1.2), the expected value of perfect information is used here because it is relatively

simple to calculate (does not require specifying additional distributions), and because the uncertainty

distribution quantified is epistemic, not aleatory. This metric is the difference in expected value

between the design with the optimal expected value based on the quantified uncertainty, and the

designs that would be optimal if a given input scenario were to come to fruition. This is called

the value of perfect information because it represents how much value improvement one could get

if they knew the exact values of uncertain inputs (“perfect information”), rather than a range of

uncertainty. When uncertainty is discrete, the EV PI is:

EV PI =
∑
i∈I

Pi ∗ (V ( ~x∗i , ~zi)− V ( ~xc, ~zi)) (6.5)

where I is the set of scenarios, Pi is the probability of a given scenario with inputs ~zi, V ( ~x∗i , ~zi) is

the value of the optimal design ~x∗i for that scenario and V ( ~xc, ~zi) is the value of the chosen design

~xc. For continuous parameters, this similarly takes the form:

EV PI =

∫ ∞
−∞

(V ( ~x∗(z), z)− V ( ~xc, z))f(z) ∗ dz (6.6)

where ~x∗(z) is the optimal design vector at a specific value of the uncertain parameter z, V ( ~xc, z)

is the value of the chosen design, and f(z) is the probability density function for z.

In practice, calculating the expected value E{V (~x)} of the design (as well as the EV PI) may

well require a high-dimensional integration that may be difficult to derive analytically. In this work
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(see Example 2), this value is calculated using Monte Carlo sampling on the inputs of the model

because the underlying model and optimization process is computationally light-weight. In practice,

a variety of techniques can assist with the calculation of this integral (e.g. Taylor series expansion,

numerical integration, variance reduction, etc. [77]) depending on how the uncertainty is quantified.

For example, if the underlying quantified uncertainty is normally distributed and the value model is

linear, linear transformation rules can be used to calculate the expectation. On the other hand, if

the value model calls a black box simulation, it may be necessary to approximate the result instead.

6.2.3 Process Acceptance Conditions and Recommendations

Based on the metrics defined in Section 6.2.2, this framework performs validity tests on the design

process to determine whether it was appropriate for the given problem given the level of uncertainty.

The three tests considered here are an uncertainty check which determines if considering uncertainty

in the process was necessary, a value test which determines if the process improved the design, and

a meaningfulness test which determines if the process sufficiently justifies a given choice given the

uncertainty. Each are presented below.

6.2.3.1 T1: Uncertainty Check

The uncertainty check determines if there was a significant difference between the design chosen in

an uncertainty-based method and a method made using point-estimates with no uncertainty. If the

design does not change significantly when uncertainty is quantified in a specific problem, its use

may then be accepted because quantifying uncertainty is not necessary. On the other hand, if there

is a significant improvement in the design, then consideration of uncertainty is required and the

design process is not valid. For this condition to hold, the value of uncertainty quantification VUQ,

calculated as difference between the expected value of the uncertainty-based design E{V (x∗UQ)} and

the expected value of the point-estimate-based design E{V (x∗P )} (where the uncertainty has now
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been quantified) must be below some desired threshold VUQ,des, as shown:

VUQ = E{V (x∗UQ)} − E{V (x∗P )} < VUQ,des (6.7)

It should be noted that while it is generally expected that there will be a value difference between

the uncertainty-based design and the point estimate-based design, for some discrete problems there

may be no difference at all if the discrete options have a large enough difference in value compared

to the uncertainty range.

6.2.3.2 T2: Value Improvement Test

The value improvement test determines if the value of the design increased significantly from the

initial design before starting the design approach and the chosen design after the design approach.

If the design chosen by a given design-analysis procedure does not significantly improve the value of

the design, the procedure in that instance was not valuable. Based on this condition being violated,

one would conclude that either the design space has not been meaningfully explored, the analysis is

too uncertain to yield a significant difference in design value, or that the procedure was irrelevant

to the needs of the problem. This condition may be stated:

VDP = E{V (x0)} − E{V (xc)} > VDP,des (6.8)

where VDP is the value of the design approach, E{V (x0)} is the expected value of the starting or

input design x0, E{V (xc)} is the value of the design xc chosen by the design approach, and VDP,des

is the desired minimum value increase from the design process, which may be determined from the

cost of going through the process and the value increase given by alternative established processes

(that is, the opportunity cost).
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6.2.3.3 T3: Meaningfulness Test

The meaningfulness test determines if the design decisions given by the design approach are justifiable

given the uncertainty that could change the optimal design. The meaningfulness test is based on the

expected value of perfect information, which, as shown in Section 6.2.2 is the difference between the

value of the optimal design over the range of uncertainty and the optimal design with no consideration

of uncertainty in that scenario. If the expected value of information is too high, more certainty is

needed to make the decision than is provided in the given analyses. Ideally, this means more data

and analysis is needed before making the decision than is provided in the approach. However, there

could be other problems, such as the design space having adverse inherent variability or other factors

that make the problem as stated impossible to design towards. This condition is then:

EV PI < EV PIdes (6.9)

where EV PI is the expected value of perfect information of the chosen design and the EV PIdes

is the maximum allowable value of information, which is determined based on the the problem

considered.

A compelling threshold for the value of perfect information in the context of justifying individual

choices (rather than the entire process) is the difference in expected value between the optimal

design x∗ and the alternative non-optimal design x 6∗ under consideration. If the value of information

is greater than this difference, the choice is not justified based on the decision model–there is too

much choice-affecting uncertainty to consider this choice to be meaningful.

EV PI < E{V (x∗)} − E{V (x 6∗} (6.10)

It should be noted that this definition is only appropriate for integer problems or comparisons

between alternatives where there are significant value gaps between designs. When the problem is

continuous, applying this test generates a zone of invalidity xinv in which changes are not justified



153

from the model given the level of uncertainty:

xinv := x ∀E{V (x∗)} − E{V (x)} > EV PI (6.11)

It should be noted that while a violation of this criteria means that not enough is known to make a

decision, it does not mean that no decision should be made, for example, if the uncertainty is difficult

or expensive to reduce. Instead it means that the decision-making process does not sufficiently justify

the choice one way or another–the decision is arbitrary given known information. While one would

still expect to see the best payoff from the design with the highest expected value, the value difference

between designs is too small compared to the choice-affecting uncertainty to have confidence in the

results.

6.3 Example: Early Choice of Health Management Approach

The following example demonstrates how the discrete point-case uncertainty method presented in

Section 6.2.2.1 can be used to perform tests on a simple value-driven design process. In this process,

one considers a prognostics and health management (PHM) approach for a given system with a

simple value model with different inputs and resulting values of each design resulting from the

designer’s expected performance of each approach. The problem here is relatively simple and generic,

considering a single fault in a moderate-scale system over many years. The rest of this section

provides the details of the value model, considered design options, and possible design scenarios.

6.3.1 Value Model

The value model model considers the design, operational, and failure costs of the system, following

the form provided in Chapter 3. In the single-fault case, the fault costs CF are the sum of expected

failure scenario costs (6.12), mitigated fault scenario cost (6.13), and false alarm cost for the system
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(6.14):

CF = T ∗ rf ∗ Pfs|f ∗ Cfs (6.12)

+T ∗ rf ∗ Pms|f ∗ Cms (6.13)

+T ∗ ru ∗ Cu (6.14)

where T is the lifecycle usage time, rf is the fault rate, Pfs|f is the probability of the fault scenario

fs occurring unmitigated (or, 1 − E, where E is the effectiveness of the mitigating feature) with

cost Cfs, Pms|f is the probability of the mitigated scenario ms given the fault occurs (E) which

has cost Cms, ru is the false alarm rate, and Cu is the cost of a false alarm. Considering a model

at this level of detail, then, controllable PHM benchmarks include effectiveness E, mitigated fault

severities Cms, and false alarm rate ru, although other parameters may be controllable through the

design of the rest of the system (lifecycle time, false alarm costs, failure costs, etc) and may occur

at lower levels of a more detailed resilience-based cost model (e.g. critical prediction horizon, etc).

The operational costs CO is the result of costs and revenues from use (6.15) as well as the cost

of maintenance (6.16):

CO = T ∗ (co − ro) (6.15)

+(T/tm) ∗ Cm (6.16)

where co is the per-hour cost of operations, ro is the per-hour cost of revenue, tm is the maintenance

interval, and Cm is the cost per maintenance interval. For more detailed benchmark specification of

PHM systems, the cost of performance can result in benchmarks on hardware weight, volume, and

other performance-related parameters while the maintenance can be specified here using the average

intervals for each required operation and the costs of each of those operations.

The design costs CD are a function of the per-unit baseline manufacturing cost Cmb, feature

manufacturing costs Cmf and the overall baseline development costs Cdb and feature development
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costs Cdf that result from the expected time, cost, and risk of developing the technology:

CD = (Cdb + Cdf )/n+ (Cmb + Cmf ) (6.17)

where n is the total number of systems manufactured. The implementability of the system are

related as much to the project as to the technology, however a more detailed consideration could

result in benchmark plan for hardware and software costs, as well as the product schedule and

development resource use.

The overall value considered in this design uses the net present value (NPV) formula to balance

the future value of design and operational costs against the immediate value of design costs:

V = −NPV (CF , CO, CD, i, T ) (6.18)

where i is the yearly discount factor.

The baseline values and demonstration of the model is shown in Table 6.1. In this situation

the system is expected to run consistently at a moderate scale (n = 200 systems) over a long life

(T = 25000 hours over a 17 year life) at high reliability (rf = 5 ∗ 10−6 faults/hr) by an established

company (i = 5%). However, if the system fails there will be a large cost due to safety effects ($16M

dollars). This is typical of the design situation with safety impacts, such as low-scale aviation.

6.3.2 Design Process and Results

A variety of different potential functions are considered in the assessment in Table 6.1 to the system

to increase system resilience, including:

1. Baseline Design: The baseline design in which no risk-mitigation strategy is provided.

2. Increased Inspection: The baseline design in which risk is reduced through frequent inspec-

tion. This results in considerable operational costs due to the heavy maintenance schedule but

is given a low effectiveness (E = 0.5) since not all faults will be apparent to inspectors in the
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time immediately before the event occurs.

3. PHM System (CBM): A design with a PHM system implementing a condition-based main-

tenance strategy. This approach is given moderate effectiveness (E = 0.95) because while the

underlying model may characterize and track degradation of the system well, there are still

“random” errors that will occur unpredictably. This also has a minor effect on operational

costs due to weight and sensor maintenance.

4. Hot Redundancy: A design with a hot redundancy that is constantly running and managed

to activate immediately when a fault occurs in the active component. This has high effective-

ness (assuming total independence of faults) but results in higher operational costs since parts

must be replaced twice as often and there is a cost of weight. However, there is less up-front

design cost since redundancy circuits are well-developed technology.

5. PHM System (Recovery): A design with a diagnostic-based recovery system leveraging

flexibility or reconfigurability in the system. The implementation of such a system is contin-

gent on the rest of the system having functionality that can be reconfigured. In this demon-

stration it is considered that a high effectiveness can be achieved using this approach with

less maintenance and performance cost than a redundancy. However, the chance of partial

recovery makes the mitigated fault cost higher than it would be otherwise, and there is a high

up-front design cost to develop the system.

A comparison of the various systems using some example numbers is shown in Table 6.1. As

shown, in this design situation, the total NPV is greatly improved by the implementation of any

fault-mitigating feature due to the high failure cost, and the health management functions (CBM

System, Hot Redundancy, and Recovery System) each have a comparable overall NPV, with the

recovery system having the highest.
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Table 6.1: Comparison of Design Options Using Cost Model for Resilient Features in Baseline Scenario

Fault Costs Baseline Design Incr. Inspection PHM (CBM) Hot Redundancy PHM (Recovery)
New Fault Rate 5.00E-06 5.00E-06 5.00E-06 1.00E-05 5.00E-06
Effectiveness 0.5 0.95 0.999995 0.9999
False Alarm Rate 1.00E-05 1.00E-05 2.00E-05 1.00E-05
Unmitigated Failure Cost $16,000,000.00 $16,000,000.00 $16,000,000.00 $16,000,000.00 $16,000,000.00
Mitigated Fault Cost $0.00 $300.00 $400.00 $900.00 $100,000.00
False Alarm Cost $300.00 $400.00 $900.00 $100,000.00
Unmitigated Failure Rate 5.00E-06 2.50E-06 2.50E-07 2.50E-11 5.00E-10
Mitigated Fault Rate 2.50E-06 4.75E-06 1.00E-05 5.00E-06
Lifecycle Unmitigated 1.25E-01 6.25E-02 6.25E-03 6.25E-07 1.25E-05
Lifecycle Mitigated 0 6.25E-02 1.19E-01 2.50E-01 1.25E-01
Lifecycle False Alarms 0 2.50E-01 2.50E-01 5.00E-01 2.50E-01
Unmitigated Failure Costs $2,000,000.00 $1,000,000.00 $100,000.00 $10.00 $200.00
Mitigated Fault Costs $0.00 $18.75 $47.50 $225.00 $12,498.75
False Alarm Costs $0.00 $75.00 $100.00 $450.00 $25,000.00
Total Fault Costs $2,000,000.00 $1,000,093.75 $100,147.50 $685.00 $37,698.75
Total Fault Costs (NPV) $1,322,923.19 $661,523.61 $66,243.72 $453.10 $24,936.28
Operational Costs
Maintenance Int. (hrs) 100 1000 400 500
Per-interval cost $100.00 $120.00 $200.00 $200.00
Usage Cost ($/hr) $400.00 $400.00 $400.01 $402.00 $400.01
Usage Revenue ($/hr) $500.00 $500.00 $500.00 $499.00 $500.00
Usage Profig ($/hr) $100.00 $100.00 $99.99 $97.00 $99.99
Total Operations 250.00 25.00 62.50 50.00
Total Maintenance Cost $0.00 $25,000.00 $3,000.00 $12,500.00 $10,000.00
Total Usage Profit $2,500,000.00 $2,500,000.00 $2,499,750.00 $2,425,000.00 $2,499,750.00
Total Operational Profit $2,500,000.00 $2,475,000.00 $2,496,750.00 $2,412,500.00 $2,489,750.00
NPV Operational Profit $1,653,653.99 $1,637,117.45 $1,651,504.24 $1,595,776.10 $1,646,874.00
Des. & Manu. Costs
Baseline Dev. Costs $100,000,000.00 $100,000,000.00 $100,000,000.00 $100,000,000.00 $100,000,000.00
Feature Dev. Costs $0.00 $10,000.00 $3,000,000.00 $500,000.00 $3,000,000.00
Baseline Manu. Costs $80,000.00 $80,000.00 $80,000.00 $80,000.00 $80,000.00
Feature Manu. Costs $0.00 $0.00 $800.00 $4,000.00 $800.00
Single-Sys. Dev. Costs $500,000.00 $500,050.00 $515,000.00 $502,500.00 $515,000.00
Tot. Manu. Costs $80,000.00 $80,000.00 $80,800.00 $84,000.00 $80,800.00
Tot. Des. & Manu.Costs $580,000.00 $580,050.00 $595,800.00 $586,500.00 $595,800.00
Totals
Tot. Value -$80,000.00 $894,856.25 $1,800,802.50 $1,825,315.00 $1,856,251.25
Tot. NPV -$249,269.20 $395,543.84 $989,460.51 $1,008,823.00 $1,026,137.73

KEY: Input Response NPV

6.3.3 Uncertainty Quantification

To quantify the uncertainty effecting this process, a number of discrete scenarios are considered and

assigned probabilities based on the likelihood that they will occur. In this example the scenarios

are considered to be complete and mutually exclusive, meaning probabilities of each scenario sum to

one. These probabilities P for each scenario are provided below, along with the parameter values,

explanation, and discussion. The effect of these new parameter values on the optimal design is shown

in Figure 3 in the main paper for each scenario.

• Situation 1: Nominal Scenario
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(P = 0.35)

In the baseline case, high failure costs and moderate performance costs make the combination

recovery system preferable due to the low effect on performance and moderate effectiveness

compared to the redundancy scheme.

• Situation 2: High False Alarm Rate

(ru = 5 ∗ 10−4, P = 0.2)

When the rate of false alarms given by a system is high, the introduced cost has a significant

effect on the preferability of a recovery system, since the cost of accidental recovery is higher

than the cost of accidental prevention.

• Situation 3: High Effectiveness, Common Mode Errors

( CBM E = 0.99, Red. E = 0.9, P = 0.2 )

In the baseline case, the preferability of a redundancy is a result of higher effectiveness due to

assumptions about independence and prognostic effectiveness. However, when the fault rate

for each redundancy is not independent and a high effectiveness can be achieved, the prognostic

system becomes preferable.

• Situation 4: Low Mitigatability

( Red., Recovery E = 0.8, P = 0.1 )

When a fault is difficult to recover from, the effectiveness of fault masking and recovery options

is low. As a result, a prognostic approach becomes preferred.

• Situation 5: Low Cost of Recovery

( Recovery Cu, Cms = 1000, P = 0.1 )

The assumption for the recovery system in the baseline case is that there will be some additional

cost taken on by entering the recovery state (e.g. by triggering a safety system). When this

cost is low, the recovery system becomes preferred.
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• Situation 6: High Fault Rate

( rf = 1 ∗ 10−4, P = 0.05 )

In the high rate situation, expected failure costs become even more dominant, making less

effective features even less preferable. This reverses in low-rate situations, where maintenance,

performance, and manufacturing costs are more likely to be a consideration.

Table 6.2: Validity tests for the health management design problem considering a variety of different
design scenarios.

Baseline De-
sign

Increased In-
spection

PHM
System
(CBM)

Hot
Redun-
dancy

PHM
System
(Recov-
ery)

Scen.
Prob.

C∗ −
Cpoint

C∗ −
Cunc

1 Nominal Sce-
nario

-$249K $396K $989K $1009K $1026K 0.35 $0K -$17K

2 High False
Alarm Rate

-$249K $393K $986K $994K $216K 0.20 -$778K $0K

3 High Eff, Com-
mon Modes

-$249K $396K $1042K $877K $1026K 0.20 -$16K -$166K

4 Low Mitigatabil-
ity

-$249K $396K $989K $744K $763K 0.10 -$226K -$245K

5 Low Cost of Re-
covery

-$249K $396K $989K $1009K $1051K 0.10 $0K -$42K

6 High Fault Rate -$25385K -$12172K -$268K $1003K $867K 0.05 -$137K $0K

Expected Value -$1506K -$233K $937K $953K $832K 1.00 -$188K -$68K
Uncertainty
Check:

$120K

Point-design
(recov.)

Uncert. de-
sign (red.)

Value Improve-
ment:

$2338K $2459K

EVPI: $188K $68K
Threshold – Base-
line

$2338K $2459K

Threshold – In-
spection

$1066K $1186K

Threshold – PHM
System (CBM)

-$104K $16K

Threshold – Hot
Redundancy

-$120K X

Threshold –
PHM System
(Recovery)

X $120K

6.3.4 Validity Test

The uncertainty check T1 fails because the chosen design is significantly different (both the design

and the value of the design) when this uncertainty is considered, as shown in Figure 6.3. The
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Figure 6.3: Comparing the value of fault mitigation features under different design situations. The
first column is the design results generated using point-estimates while the last column is the design
results generated when the uncertainty of being in each situation is considered.

difference in value between the point-case design in the nominal scenario considered in the design

scenario and the optimal is VUQ = $120K, which makes the point case method invalid considering

a reasonable value threshold VUQ,des = $50K. While the recovery system was chosen as the best

in the nominal scenario, it becomes a much less favored option when the expected costs of the

uncertain scenarios are considered, with the hot redundancy becoming the favored option. Using

point estimates for this problem was therefore not valid because of the impact of uncertainties on

choice.

The value test T2 succeeds because the chosen design has a much higher value than the initial

design. Using the threshold of VDP,des = $250K, the design process passes, with an increase of

VDP = $2338K for the point-method design and VDP = $2459K for the design chosen under

uncertainty. The interpretation of this is that while the process would have been improved had

it involved uncertainty, it still significantly increased the value of the design. While there are no

counterfactual design processes to compare against to determine if this process was optimal, it still

delivers on the promise of increasing design value early by mitigating risk due to faults.
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Figure 6.4: Functional model of electrical power distribution system with allocated redundancies
noted.

The meaningfulness test T3 fails for both the point-estimate method and uncertainty-based

design. The point-case method fails because the value of perfect information of the chosen design

is EV PI = $188K, which is larger than the difference between it and the other two best designs

($104K and $−120K), which is expected since it failed the uncertainty check (making the differences

negative). However, even if uncertainty was considered, the test would still fail because the EV PI =

$68K is larger than the difference between the top two designs (EV PI = $16K). As a result, while

the design process can meaningfully justify using hot redundancy or a PHM system over a recovery

system, increasing inspections, or using the baseline design, it cannot meaningfully justify the choice

between a hot redundancy and PHM system. Given the magnitude of the difference in value for each

of these designs is still high at a large scale (and the uncertainty at this stage is mostly reducible),

further investigation of both options should be performed before making the decision.

To summarize, in this problem the choice of health management approach based on point-estimate

information is found to be invalid because of the high level of uncertainty in input estimates.
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6.4 Example: EPS System Redundancy Allocation

To demonstrate the continuous parametric uncertainty quantification and validation techniques, this

section considers a simple example of optimization of redundancy within an electric power system

using the decomposition strategy outlined in Section 5.3. This power system has been considered in

previous work studying function failure approaches [158, 130, 185] and draws inspiration from the

ADAPT power distribution system used to test diagnostic algorithms [232, 233, 155]. As shown in

the functional model in Figure 6.4, the purpose of this system is to store and supply electrical energy

to mechanical, heat, and optical loads using provided electrical energy and signal input. For the

purpose of this example, the value in the system is derived from the quality of these output flows.

6.4.1 Value Model

The value model for this system is based on the design cost of each redundancy, the operational costs

of replacing components, and the failure costs of a mode occurring in use. Failure costs in the system

are a result from modes occurring that result in degraded or lost output flows of mechanical, heat,

or optical energy in the Export Mechanical Energy, Export Heat Energy, and Export Optical

Energy functions. The failure cost CF over the whole system, considering all functions and modes

is then:

CF =
∑
n∈N

∑
m∈Mn

T ∗ −ln(1− (eλmt)(xn+1)) ∗ Cs~m (6.19)

where n is a given function in the set of functions N , m is a mode in the set Mn of modes for

function n, T is the life-cycle time (which was set to 43800 hours or 5 years in this example), λm is

the rate of failure over unit time t, xn is the number of redundancies for the function, and Cm is the

cost of the mode. Each function, mode, effect, rate, and cost is provided in Table 6.3. It should be

noted that this equation assumes that the failed redundant component will be replaced promptly,

since over the time the component is not replaced the probability of failure is the failure probability

of the remaining components.
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Operational costs result from replacing failed components over the life-cycle of the product. This

cost increases with redundancy, since more components are in use at any one time (assuming a

hot standby configuration). The resulting expected maintenance cost for an individual mode m in

function n is:

CO =
∑
n∈N

∑
m∈Mn

T ∗ −ln(1− (eλmt)) ∗ (xn + 1) ∗ Cn (6.20)

where the notation is consistent with Equation 6.20 and Cn is the cost of each redundancy provided

in Table 6.3

Finally, the design cost from redundancies comes from the initial installation of the component

for each function:

CD =
∑
n∈N

(xn + 1) ∗ Cn (6.21)

where notation is consistent with Equation 6.20 and 6.19.

6.4.2 Design Process

Since several decisions are made in this design problem (about each redundancy), finding the best

design requires an optimization approach. Since the cost of each function increases linearly with the

number of redundancies and the failure probability decreases (approximately) with the power of the

redundancies, when increasing the number of redundancies from zero, the overall cost associated with

each function is expected to either start at the minimum or decay exponentially before increasing

linearly. Following this design approach, to optimize the score xn is increased from zero until C(xn)

stops increasing.

The results of this design approach are shown in Table 6.3, in the column labeled “Red. Added.”

As can be seen, redundancies are added in the functions where the associated design and operational

cost is less than the failure cost. In those cases, the failure cost is reduced dramatically due to the

exponential decrease in probability from moving to single-part failures to joint-part failures due to
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Table 6.3: Design problem parameters and results

(a) Problem Parameters

Function Mode Effect Rate (occ/hr) Effect Cost
Store Electrical
Energy

PartialStorage Degraded Mech. Energy, Optical Energy, Heat
rate, effort

5.00E-06 1500

Red. Cost: 1750 NoStorage No Mech. Energy, Optical Energy, Heat rate, effort 5.00E-06 2700
Supply Electrical
Energy

AdverseResistance Low Mech. Energy, Optical Energy, Heat rate, ef-
fort

2.00E-06 1500

Red. Cost: 400 MinorOverloading No Optical Energyrate, effort, high Mech. Energy
rate, effort

1.00E-05 1400

MajorOverloading No Mech. Energy, Optical Energy, Heat rate, effort 3.00E-06 2700
ShortCircuit No Mech. Energy, Optical Energy, Heat rate, effort 1.00E-07 2700
OpenCircuit No Mech. Energy, Optical Energy, Heat rate, effort 5.00E-08 2700

Distribute Electri-
cal Energy

AdverseResistance Low Mech. Energy, Optical Energy, Heat rate, ef-
fort

1.00E-05 1500

Red. Cost: 1000 PoorAllocation Degraded Mech. Energy, Optical Energy, Heat
rate, effort

2.00E-05 2700

ShortCircuit No Mech. Energy, Optical Energy, Heat rate, effort 2.00E-05 2700
OpenCircuit No Mech. Energy, Optical Energy, Heat rate, effort 3.00E-05 2700

Convert Elec-
trical Energy to
Mechanical

HighTorque High Mech. Energy rate, effort 1.00E-04 500

Red. Cost: 200 LowTorque Low Mech. Energy rate, effort 5.00E-05 500
TooHighTorque High Mech. Energy rate, effort, no Optical Energy

or Heat rate, effort
5.00E-05 2900

OpenCircuit No Mech. Energy rate, effort 5.00E-05 900
ShortCircuit No Mech. Energy, Optical Energy, Heat rate, effort 5.00E-05 2700

Convert Electrical
Energy to Optical

Adverse Optical
Resistance

Low Optical Energy rate, effort 5.00E-07 500

Red. Cost: 200 NoConversion No Optical Energy rate, effort 2.00E-06 900
Convert Electrical
Energy to Heat

NotEnoughHeat low heat rate, effort 2.00E-06 500

Red. Cost: 200 Hot High Heat rate, effort 1.00E-07 500
TooHot Highest Heat rate, effort 5.00E-07 1100
OpenCircuit No Heat rate, effort 1.00E-07 900

(b) Design Results and Associated Costs

Function Pre-Design
Failure Cost

Red.
Added

Post-Design Fail-
ure Cost

Design
Cost

Operational
Cost

Total
Cost

Store Electrical Energy 919.80 0 919.80 0 0.00 919.80
Sup Electrical Energy 1, 117.12 1 0.01 400 265.43 665.44
Distribute Electrical Energy 8, 935.30 1 0.21 1000 3,504.04 4, 504.25
Convert Electrical Energy to Me-
chanical Energy

17, 520.49 1 0.99 200 2,628.09 2, 529.07

Convert Electrical Energy to Op-
tical Energy

89.79 0 89.79 0 0.00 89.79

Convert Electrical Energy to
Heat Energy

74.02 0 74.02 0 0.00 74.02

Total 28, 656.53 9, 082.37
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the independence of part failure probabilities (an assumption of the design problem). The results in

this example show a $20,000 decrease in overall costs due to failure from redundancy allocation–a

reduction of roughly 70%.

6.4.3 Uncertainty Quantification

Because this design process is performed early, each of the numbers provided in Table 6.3 result from

estimates which are prone to various biases. To model the effect of these biases, the uncertainty

model form presented in Section 6.2.2 is adapted to consider the uncertainty in design costs, failure

mode rates, and failure mode costs (other uncertainties, such as independence of redundancy failure

rates are not considered, since this is a demonstration of the approach). In this example, the Monte

Carlo method is used, which determines the distributions of output parameters by randomly picking

a large number of values from the input parameter distributions and propagating them through the

model. The formula used for individual design cost response cn,i for function n in sample point i is:

cn,i = cn,est ∗ scd,i ∗ εn,cd,i (6.22)

where cn,est is the estimate, scd,i is the sample point drawn from the system-wide design cost bias

distribution, and εn,cd,i is drawn from the error distribution of the cost of design for the function n.

The formula used for individual mode rate response λm,i for mode m is:

λm,i = λm,est ∗ sλ,i ∗ fn,λ,i ∗ εm,λ,i (6.23)

where λm,est is the estimate, sλ,i is drawn from the system-wide rate bias distribution, fn,λ,i is

drawn from the rate bias distribution for function n, and εm,λ,i is drawn from the error distribution

of the individual mode rate.
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Table 6.4: Expected costs of redundancies in each function (and the optimal design) considering uncer-
tainty in parameter values.

Functions 0 Red. 1 Red. 2 Red. Opt. Design VoD EVPI V ∗ − V 6∗

Store Electrical Energy 1382.27 3207.55 6415.08 0 Red. 0 28.64 1826.28
Supply Electrical Energy 1683.62 870.96 1781.88 1 Red. 812.66 30.14 812.66
Distribute Electrical En-
ergy

13268.84 6396.83 12792.72 1 Red. 6872.01 108.17 6395.89

Convert Electrical En-
ergy to Mechanical En-
ergy

26432.77 4226.13 8447.65 1 Red. 22206.64 0.0 4221.52

Convert Electrical En-
ergy to Optical Energy

134.04 268.36 536.71 0 Red. 0 7.3 134.32

Convert Electrical En-
ergy to Heat Energy

110.89 269.99 539.98 0 Red. 0 2.88 159.10

Total: 43011.43 15239.82 30514.02 13120.10 29891.31 177.13 134.34

The formula used for mode cost uncertainty cm,i for response i from mode m is:

cm,i = cm,est ∗ scm,i ∗ εm,cm,i (6.24)

where cm,est is the estimate, scm,i is drawn from the system-wide mode cost bias distribution and

εm,cm,i is drawn from the error distribution of the individual mode cost. Each of the distributions

used in this example followed the Beta-PERT distribution using the Crystal Ball software pack-

age [210], and were set to vary with a range parameter of R = 2 for the maximum and minimum

values and the default peakedness.

6.4.4 Validity Test

The validity of this process is tested by quantifying uncertain distributions and using the Monte

Carlo technique to calculate the expected values of each test metric. Here a Beta-PERT distribution

is used to quantify the uncertainty in the system, function, parameter, and instantiation errors in

Eq. 6.2 for failure rates and design and operational costs according to PERT (a = 1/R, 1, R), where

the range R was set to 2 for all parameters. By simulating the value model using these uncertain

distributions as inputs, the uncertainty check, the increase in value test, and meaningfulness test

are performed below.



167

Figure 6.5: The distribution of value from choosing the point-estimate design compared to the
baseline no-redundancy design.

Figure 6.6: Distribution of loss of value from choosing the point-estimate design over a design
generated with perfect information.
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The design process passes the uncertainty check T1 because even though the predicted values

of the design are different, the same optimal design is chosen when considering uncertainty as when

using the estimates, as shown in Table 6.4. Interestingly, the increase in value of the design using

this approach is larger than would be predicted from point-estimates, which likely is a result of the

skew caused by the multiplier distributions being centered around 1 and varying between 1/R and

R, which leads to a greater magnitude of error from under-estimation than over-estimation.

The design process passes the value test T2 because the value increase of the optimal design

is very large. Using the threshold of VDP,des = 1000, the process passes, since the expected value

increase is VDP = 29891, as shown in Figure 6.5. However, this may no longer hold if, for example,

there is a more established process that can achieve better value. Looking at the value of indi-

vidual design decisions shown in Table 6.4, it can be seen that the process was not necessary for

the Store Electrical Energy, Convert Electrical Energy to Optical Energy, and Convert

Electrical Energy to Heat Energy functions since the baseline design was kept. This does not

invalidate the overall process, since other variables contributed a large enough value to compensate,

but instead shows these variables were not worth exploring.

Finally, the design process passes the meaningfulness test T3 because the cost of uncertainty

is much less than the threshold set. Using the conservative threshold of EV PIdes = 1000, the

process still passes with EV PI = 177.13, as shown in Figure 6.6. This result continues to hold when

considering each individual decision, as shown in the right two columns of Table 6.4, in which the

value of information for each decision is much lower than the value difference between it and the

next best decision. However, when viewed as a whole, the total value of information is larger than

the next-best designs in which there are redundancies in the functions Convert Electrical Energy

to Optical Energy and Convert Electrical Energy to Heat Energy, respectively. This means

that if the value information was not able to be calculated on a single decision-basis, those decisions

would be considered arbitrary compared to the level of uncertainty present system-wide.

Thus, the process of choosing redundancies in early design is validated on this problem based

on the uncertainty check, value test, and meaningfulness test, since the decisions had a high impact
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compared to the uncertainty present in estimates.

6.5 Conclusions

This chapter defined three concerns that must be addressed by a resilience-based design process

to be accepted as valid: whether a design selection approach required uncertainty quantification,

how effective the design approach was at increasing design value, and whether the design results

are certain enough to justify a given choice. Three tests were provided in Section 6.2 to quantify

each of these concerns: the uncertainty check (whether the result changes when uncertainty is

quantified), the value improvement test (how much the expected value of the design increased), and

the meaningfulness test (whether the value of the decision is higher than the cost of information). As

shown in the provided example problems, these tests can then be used to determine the validity of

a given design approach when the effect of epistemic uncertainty is quantified. In a simple example

of choosing a health management approach for a system in Section 6.3, the testing approach showed

that the early design approach should have incorporated uncertainty to account for the different

potential design scenarios and shows that the choice between the top two designs is not sufficiently

justified. In the second example in Section 6.4 considering redundancy allocation in early design,

the testing approach showed that considering uncertainty is not required to make optimal choices

and that the choices made have a high enough impact on value compared to the choice-affecting

uncertainty to be certain. These examples demonstrate how uncertainty quantification can be used

as a framework to understand the validity of early risk-based and resilient design approaches.

However, the primary limitation of this method is that it relies on a subjective uncertainty

assessment to validate a subjective decision-making process. Thus, if one doubts the usefulness of an

early design decision-making framework (e.g., per arguments in Ref. [294]) one might justifiably also

doubt the results of this validity testing framework, especially when the designer realizes the same

biases in the validity test as they did in the decision-making process (e.g., motivated reasoning).

Nevertheless, the value of this approach when diligently carried out is that it finds cases where
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decisions were not sufficiently justified given the uncertainty–an important issue in decision-making

[69]–so that those design processes can be improved in the future. Thus, future work should show

show how to use previous data and psychological studies regarding estimation biases to inform

the assessment. For example, while a multiplicative Beta-PERT uncertainty model is provided in

Section 6.2.2.2, other models such as an additive model or a model without biases but in which

errors correlate with each other could be used for the same approach. An important question for

future research, then, is how best to represent this underlying parameter uncertainty, given error

can result from a number of different interacting sources and different model forms may affect the

results of the validity tests presented here. While some work has been performed to link designer

biases in decision-making with real-world accidents [141], and quantified distributions for estimation

error [69, 302, 250], future work needs to develop a model of this in the resilient design process and

investigate how different uncertainty models affect the resulting determination of validity.

Second, it should be noted that the process shown here enables validation of a method over a

specific instance of a problem. While this enables the designer to answer questions about whether

a specific method was applicable to a specific problem, it does not provide a general assessment

of where a design process will apply. While it could be argued that the demonstrations here are

archetypal of most general design cases, and, thus, the results shown here should hold for most

problems, they do not constitute proof of general validity. To approach this problem, future work

needs to explore the allowable ranges of parameters for certain specific values given specific levels

of uncertainty. Using an approach like this could additionally show the ranges where the use of

heuristics is valid, which is an important question for design theory.
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Chapter 7: Conclusions

7.1 Summary

The preceding chapters presented methods and examples of how to include resilience in design

decision making (Chapter 3), how to model resilience for use in early design (Chapter 4), how to

optimize resilience in an integrated framework with design and operational costs (Chapter 5), and

how to understand the impact of uncertainty on the validity of the design process (Chapter 6. While

these methods stand on their own, they were developed to integrate with each other to comprise a

design framework for early-stage resilience-based design. As demonstrated in the provided examples,

(and noted extensively in Table 1.2), while it is not strictly necessary to use the methods together,

the methods naturally integrate to enable a coherent resilience-based design process.

In addition to outlining and demonstrating these methods, there was also some study about how

they work and when/how to use each. Section 3.6 studies the use of different quadratures when using

fault sampling approaches in resilience quantification, with some advice and discussion on how to

balance simulation cost and fidelity in design. Section 5.5 compares optimization architectures which

can be be used in integrated resilience optimization on the basis of effectiveness and computational

cost, and discusses potential use-cases for each. Finally, Section 6 provides examples of when a design

process might be valid or invalid based on the amount of uncertainty present in model used to make

the decisions. However, aside from these explorations of the particular details of the methods, there

has been less overall discussion of this work to a general design scenario.

Thus, to conclude this work, the next sections first assess and discuss how and where these

methods may be applied (Section 7.2) and gaps which may be filled in future work (Section 7.3).
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Yes

Need to incorporate
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decision-making

process?

Yes

No

Are there
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requirements on the

design?

Yes

No

Can we provide costs
and rates for the
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Requirements-driven
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Multi-objective,
robustness, or

recoverability-based
resilience framework

Expected Cost-based
Definition of
Resilience

No model

fmdtools
dynamic
model

IBFM or static model

Is there a model? If
so, what type?

Dynamic expected
cost sampling
approaches

IBFM Resilience-
Informed Scenario
Cost Sum (RISCS)

Figure 7.1: Context and purpose of cost-based resilience objectives in Chapter 3.

7.2 Assessment of Methods

Much of the overall design framework presented here relies on the expected cost-based definition of

resilience presented in Chapter 3. It forms both the objectives used in the optimization problems

formulated in Chapter 5 and the basis of the validity testing framework in Chapter 6. However,

as shown in Figure 7.1, using a cost-based objective is not always appropriate because of the for-

mulation of the design problem. Indeed, many risk, reliability, and resilience frameworks formulate

the problem as an optimization of costs subject to risk constraints because these are given to the

designer as requirements. While there is a strong case for using an inclusive cost function (i.e.,

one which includes safety) as the primary driver in design (see Section 2.1.2), when hazards in the

system have impact on safety, stakeholders are often more comfortable setting a requirement for

hazard probability than directly trading it against design and operational costs. As a result, when

in this design situation, designers would be better suited to using a more traditional requirements-

driven design approach (reliability [166] or safety engineering [136]) than the value-driven approach

presented in this work. Additionally, another assumption underlying this work is that rates and

cost models hazardous scenarios can be developed with any sort of certainty. While this work ad-

ditionally provided a validity testing framework understand and control the effect of uncertainty in

the design process (Chapter 6), this validity testing framework can only work if uncertainties are

manageable enough to be quantified. In this situation, when the designer still wishes to make the
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Create dynamic fault
model

Create hierarchical
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Figure 7.2: Context and purpose of the modelling framework in Chapter 4 in an overall design
process.

system resilient to hazards, they may instead consider using a multi-objective [265], robustness [292]

or recoverability-based [38] resilience framework that is less dependent on explicitly modelling the

hazards to take into account but instead on building generic properties into the system which ensure

the system will be resilient to a large number of scenarios.

This work additionally presented a modelling, simulation and analysis framework and toolkit for

resilient design in Chapter 4. While this framework has a number of advantages (e.g., expressiveness,

extend-ability, etc.) that make it suitable for resilience research, there are many design cases where

one might use a different framework instead. Thus, the decision tree for using fmdtools or some

other framework is shown in Figure 7.2. Typically in the design process, expert-driven approaches

such as failure modes and effects analysis [217, Sec. 10.4] or fault-tree analysis [283] are used–while

using a model-based can improve on this by enabling an iterative design process, using models in

design is still contingent on having the design resources to devote to model-building. When a model

is used, it may also be helpful to use an existing modelling framework (e.g., simulink or modelica)

that is already commonly used in the model-based engineering of the system [136]. Finally, the

usage of fmdtools is highly contingent on designer Python knowledge and thus it may be easier to

use other frameworks (e.g. IBFM [185], which is also used in this work) to model fault scenarios.

Nevertheless, fmdtools has applicability when these conditions are met, and is an ideal tool for

conducting resilience research, where it is more important to enable the modeller the ability to

express complex behaviors in code and extend the modelling paradigm to meet research needs.
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Figure 7.3: Context and purpose of the optimization frameworks in Chapter 5 in a design process.

Yes
Need to understand

the validity of the
design process?

No

Yes

Is the concern
primarily the effect of

input/assumption
uncertainty?

No

Yes

Is one using a
quantitative model-
based/value-driven

process?

Use qualitative
validation methods

Use validation
square.

Use discrete-
uncertainty validity

tests

discrete

continuous

Is it convenient to
express this as
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Figure 7.4: Context and purpose of the validation framework in Chapter 6 in a design process.

To enable the automated design of resilience in large design spaces, this work presents an inte-

grated resilience optimization framework and optimization architectures for efficiently and effectively

structuring the problem in Chapter 5. However, optimization is not the only method of exploring

the design space and is not always applicable in the design process. If the design variants are highly

different and cannot be developed from the same model, the design space is low, or it is difficult to

parameterize the model(s) it may be preferable to use a simple concept selection process or simply

iteratively improve the design instead of setting up a formal optimization process. Nevertheless,

when optimization of resilience is applicable to the design process the methods in Chapter 5 will be

useful for understanding and structuring the problem.

Finally, Chapter 6 provided a validity testing framework for understanding how uncertainty

effects the design process. However, this validity testing framework is only applicable for considering

a specific question of validity–the effect of uncertainty on the underlying design decisions in a value-

based framework. However, validity in general is a much broader concern than just uncertainty
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in design inputs, but also the underlying model structures and thought processes used to make

decisions [209]. Thus, when thinking of applying Chapter 6 to validate a design process, one should

first go though the process shown in Figure 7.4. If one is not using a value-driven design process or

has broader concerns than the validity of design under input uncertainty, it may be better to use

existing methods, such as the validation square [251].

7.3 Future work

The unified framework for design, modelling, optimization, and validation of resilience presented

here is in no way an exhaustive study of every detail of each individual topic. Indeed, taking this

framework as a baseline formulation of the resilient design problem opens a number of research

questions that may be addressed in future work. To close this work, here are some possible research

questions to be addressed in future work, based on limitations of this baseline framework:

• How can one approach high uncertainty in fault scenario rates and probabilities in early design?

What probability model is appropriate for approaching deep uncertainties about hazard scenarios

and addressing second-order safety concerns?

While Chapter 3 presented a general definition of resilience as an expected cost of hazards,

there are a number of limitations regarding the methods used to quantify this expectation.

Specifically, one needs to be able to identify the set of scenarios (e.g. single-fault, joint-fault,

etc.) to take into account in the expectation and develop a probability model for those sce-

narios. However, there are a number of difficulties in estimating these probabilities, especially

when predicting low-probability unprecedented events–a rate may not be available and any

rate taken from previous systems may not apply to the new system, and the designer may not

have a good understanding of what hazards may occur [55, 225]. Thus, future work needs to

investigate means of identifying (automatically from a model or discursively) high-consequence

failures (e.g., [150]) and determine how to estimate/specify a probability model when hazard

scenario information is sparse.
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• What is the relationship between resilience frameworks? Can sub-metric optimization(s) be

performed while still optimizing expected cost?

As discussed in background Section 2.1, a number of reliability and resilience frameworks

have been presented in previous work which optimize different parts of the hazard response–

preventing the hazard from occurring or recovering after it happens. The restatement of the

resilience-based design problem in this work as an optimization of expected cost is much more

comprehensive than these other definitions (e.g., [167, 38]), however, there are downsides to

this approach, especially when the design becomes more detailed, and it may be unnecessary

to create a value model when there are not significant trade-offs to consider (e.g., if one is not

allocating features with trade-offs but optimizing the function of already-specified features).

Thus, future works should identify how these perspectives on resilience can align and where

it is, from the comprehensive resilience optimization point of view presented in this work,

practicable to use more narrowly-defined resilience optimization frameworks, as has previously

been used to validate design heuristics [25].

• How does making a model more detailed change ones consideration of resilience? Are there

late-stage modelling considerations that need to be accounted for in early design models?

Chapter 4 presents the fmdtools modelling framework, which can be used to represent sys-

tems at different levels of fidelity with network, static, dynamic, and hierarchical modelling

paradigms. This movement through the design process from a low-detail sketch to a fully

specified design is typical as one proceeds from conceptual design through the embodiment

design process [217]. However, the elaboration of the design in this way also results in new

behaviors, fault modes, and mitigating strategies. However, in general, the design decision-

making processes presented here in the examples and in Chapter 5 are only consider design

decision-making at a single moment in the design/modelling process given the information

given by the model. Thus, there may be issues, for example, if one optimizes resilience early

but then new hazards are introduced or identified as the design is elaborated. On the other

hand, if one waits to consider resilience late in the design process, high-level decisions made
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in the early design stage may lead one to be stuck with a too-fragile design when resilience is

finally considered. As a result, the resilience-based design process needs to be studied, both to

help designers predict and account for hazards which will be introduced by successive design

work and to manage resilience throughout the design process (e.g., [276]).

• How can one represent the complexities of complex engineered systems (human interactions,

dynamic environment, distributed interactions, etc.) in dynamic resilience models?

In the modelling framework presented in Chapter 4, a generic modelling framework was devel-

oped for the resilience of engineered systems. However, real complex engineered systems have

a number of specialized modelling concerns which need to be taken into account in design,

especially the interactions between the human system and the machine cyber/automated in-

terfaces. Previous work has developed methods for integrating the design of human tasks and

interfaces with the functions of the system in early design [125, 264] and on quantifying ex-

pected costs of human-function interactions [126]. However, this work has not been integrated

with the fmdtools modelling framework, which should be addressed in future work.

• How can stochastic input and model parameters be taken into account in fault-injection-based

resilience modelling?

One of the major limitations of the fmdtools modelling framework in Chapter 4 is that it is

a deterministic framework, while many engineered systems behaviors (especially in hazardous

scenarios) are uncertain or probabilistic. Thus, when modelling the different hazard scenar-

ios, fmdtools can only consider the set of input fault scenarios, rather than the full set of

resulting possible contingencies. Methods have been put forward to do this in safety engineer-

ing [86, 301], but not in the design of resilience. While this project was able to model some

uncertainty through input parameters in the fire response model example in Section 4.4, it is

currently unable to model uncertain behavioral assumptions. Thus, future work needs to ex-

tend the fmdtools framework to systematically incorporate both uncertain input assumptions

and uncertain behavioral assumptions.
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• How can one best balance simulation cost and accuracy when using fault scenarios to represent

expected costs in integrated resilience optimization?

Chapter 5 presented the idea of integrating the optimization of resilience with the rest of

the system design and introduced a number of architectures to structure this optimization

efficiently. However, for this optimization to be in any way efficient, it needs to run over a re-

duced set of faults, since the space of potential scenarios is very large. Thus, in the example in

Section 5.5, only the single-fault scenarios were considered at a single time. However, choosing

reduced subsets of fault scenarios has the opportunity to bias the optimization or resilience

toward those scenarios instead of the full set. Future work needs to how to best choose this

representative set of scenarios to best reduce simulation cost without biasing the resilience op-

timization. Additionally, there is some opportunity to explore more sophisticated optimization

architectures to enable a more computationally-efficient optimization process. For example,

the use of surrogate resilience models could enable consideration of resilience in a (more effi-

cient) sequential approach. Furthermore, it may be possible to limit the number of lower-level

optimizations in the bilevel formulation by re-using solutions from each optimization. Thus,

future work should explore additionally strategies to reduce computational cost in resilience

optimization.

• How does one test the validity of more complicated design/optimization processes? What about

processes where the form of the model changes over time?

Chapter 5 presented methods for testing the validity of a design process. However, the ex-

ample design processes presented in the chapter were quite simple, looking at either a simple

optimization problem or a single design evaluation. Real design problems often are not that

simple–having higher dimensionality and more heterogeneous input uncertainty. For exam-

ple, the optimization example in Chapter 5 had a large number of variables and a complex

optimization strategy. Thus, in this situation, calculating the validity tests may be much

more difficult than presented. Future work should study how to perform these tests in more

complicated optimization problems, such as those presented in Chapter 5.
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These are just a few questions which may be answered in future work. The framework presented

here is a baseline formulation of a framework which can be used for the design of resilience. In this

way, the work here sets the stage for future contributions to the field.
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Yau, and Matt D Knudson. Quantitative and risk-based framework for unmanned aircraft
control system assurance. Journal of Aerospace Information Systems, pages 57–71, 2018.



187

[94] Bergen Helms, Kristina Shea, and Frank Hoisl. A framework for computational design synthe-
sis based on graph-grammars and function-behavior-structure. In ASME 2009 international
design engineering technical conferences and computers and information in engineering con-
ference, pages 841–851. American Society of Mechanical Engineers, 2009.

[95] Devanandham Henry and Jose Emmanuel Ramirez-Marquez. Generic metrics and quantitative
approaches for system resilience as a function of time. Reliability Engineering & System Safety,
99:114–122, 2012.

[96] Daniel R Herber and James T Allison. Nested and simultaneous solution strategies for general
combined plant and control design problems. Journal of Mechanical Design, 141(1), 2019.

[97] Daniel Ronald Herber. Advances in combined architecture, plant, and control design. PhD
thesis, University of Illinois at Urbana-Champaign, 2017.

[98] C. S. Holling. Resilience and Stability of Ecological Systems. Annual Review of Ecology and
Systematics, 4:1–23, 1973.

[99] Crawford S Holling. Resilience and stability of ecological systems. Annual review of ecology
and systematics, 4(1):1–23, 1973.

[100] Crawford Stanley Holling. Engineering resilience versus ecological resilience. Engineering
within ecological constraints, 31(1996):32, 1996.

[101] Crawford Stanley Holling. Engineering resilience versus ecological resilience. Engineering
within ecological constraints, 31(1996):32, 1996.

[102] Erik Hollnagel. FRAM: the functional resonance analysis method: modelling complex socio-
technical systems. CRC Press, 2017.

[103] Nico B Holzel, Thomas Schilling, and Volker Gollnick. An aircraft lifecycle approach for the
cost-benefit analysis of prognostics and condition-based maintenance-based on discrete-event
simulation. Technical report, DLR-German Aerospace Center Hamburg Germany, 2014.
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