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Investigations of 16S rRNA gene sequences hallmark modern microbiology. 

These sequences provide culture-independent insight into the abundance and 

distribution of microbiota and serve as a principle resource through which microbial 

community diversity is measured. Consequently, researchers rely on 16S gene 

sequences to test hypotheses rooted in ecology, evolution, and disease. Within 16S 

gene analyses, there exist potential sources of error that are often overlooked and 

under considered when developing studies and interpreting data. Prior research 

demonstrates that methodological sources of error introduced into 16S gene studies 

may arise from choices in sample preservation and storage temperature, DNA 

extraction method, PCR, and sequencing platform. Further variation can be 

introduced during informatic processing that is applied post DNA sequencing. 

Collectively, these errors limit the power of inferences derived from 16S rRNA gene 

sequences. It is therefore imperative to understand how study methodology impacts 

nucleotide sequence data to accurately interpret results from 16S genes. I provide a 



 

 

summary of these methodological sources of error from literature and distill out best 

practices for conducting 16S rRNA studies when applicable. One widespread 

application of 16S rRNA sequences that microbiome studies frequently rely on is 

phylogenetic measures, which can assess microbial community diversity or infer 

evolutionary patterns. The conclusions drawn from these phylogenetic metrics 

assume the underlying phylogeny is reconstructed accurately; yet, the accuracy of 

phylogenetic trees has been shown to be dependent on a myriad of conditions, some 

of which remain unresolved. I describe how sequence length, region of the 16S gene, 

sequence diversity, and sample size effect the accuracy of 16S rRNA gene 

phylogenies using simulated data. Additionally, I show how incorporating full-length 

sequences selected from referential 16S rRNA sequence databases during 

phylogenetic reconstruction can improve the accuracy of 16S rRNA gene trees that 

are otherwise assembled from the short DNA sequences obtained by contemporary 

sequencing platforms. Collectively, I highlight through literature review the 

importance of experimental design throughout the typical steps taken during the 16S 

rRNA gene sequencing workflow, and I demonstrate through simulation analyses 

how several of these methodological choices impact the accuracy of resulting 

phylogenies. 
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Introduction 

 Microorganisms have long been known to cause disease (Blevins and Bronze 

2010), play vital roles in nutrient cycles (eg. Falkowski, 1997), and benefit plants (eg. 

Freiberg et al. 1997) and animals (eg. Round and Mazmanian 2009). However, until 

recently, enormous sums of microbial diversity have gone unseen, unidentified, and 

unstudied. The technological advances that occurred at the turn of the century which 

resulted in high-throughput nucleic acid sequencing have unlocked rapid access to these 

diverse microbial communities and with it a revolution in microbiology. Now, complex 

assemblages of microbes that would once have been difficult to tease apart can be 

characterized using genomic techniques. As a result, ambitious large-scale projects such 

as the Earth Microbiome Project (Thompson et al. 2017), Human Microbiome Project 

(Huttenhower et al. 2012), American Gut Project (McDonald et al. 2018), and TARA 

Oceans (Sunagawa et al. 2015) have sought to study the microbiota associated with 

environmental and host-associated biomes. One key approach used to classify microbial 

taxa in these studies is the sequencing of universally conserved, taxonomically diagnostic 

“barcode” genes, such as that of the small subunit ribosomal RNA (16S rRNA gene in 

bacteria and archaea). 

 By simultaneously sequencing the 16S rRNA gene of the various taxa that 

comprise a microbial community, researchers can quickly and inexpensively determine 

which organisms comprise the community, quantify community biodiversity, and 

measure the phylogenetic relatedness of these organisms. The 16S rRNA gene encodes a 

critical component of the 30S small subunit of ribosomes, which is required by all known 

bacterial and archaeal cells due to the ribosome’s essential role in translating mRNA into 
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protein. Consequently, the 16S rRNA gene serves as a wide-spread genetic marker that 

can be used to discriminate between microbial taxa. The structure of the 16S rRNA gene 

and conservation of function constrain the rate of mutations throughout the gene. This 

results in nine hypervariable regions flanked by regions of high conservation (Woese et 

al. 1980 and Yang et al. 2016). Due to the vastly different rates of evolution, 

polymorphisms in the hypervariable regions can be used to distinguish between more 

recently diverged lineages while those in the highly conserved regions can be used to 

infer more ancient divergences. PCR primers have been designed to target highly 

conserved regions to amplify adjoining hypervariable regions for DNA sequencing 

(Baker et al. 2003). 

 Degenerative PCR primers that target 16S rRNA gene hypervariable regions 

enable rapid and inexpensive insights into the taxa that comprise microbial communities. 

Studies that rely on 16S gene sequences typically include several steps. First, 

environmental or host-associated samples such as soil or feces that contain 

microorganisms are collected. The DNA from each sample is then extracted and PCR 

primers are often used to amplify 16S rRNA gene regions of interest prior to DNA 

sequencing. Finally, the resulting 16S gene sequences are used to test hypotheses. 

Yet, despite the power genome-based studies offer, there exists potential for 

errors. Differences in methodology such as DNA extraction, amplification, and 

bioinformatic pipelines can result in artificial variation that is comparable to biological 

variation that can be measured between different samples (Sinha et al. 2017). 

Additionally, reproducibility between 16S rRNA gene studies has been shown to vary 

between facilities (HMP Consortium 2012; Sinha et al. 2016). These effects may obscure 
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biologically significant signal, result in false discoveries, and influence downstream 

analyses. Therefore, it is important to consider how study parameters impact 16S rRNA 

gene sequence-based investigations. In the following subsections, we review the state of 

knowledge about how various study parameters, including sample storage and 

preservation, PCR, primer selection, sequencing platform, and bioinformatics pipelines 

on inferences about bacterial communities. 

 

Sample Storage 

 Environmental and host-associated samples that contain microbial biomass may 

be collected long before DNA extraction. Buffering solutions and temperature controlled 

storage stabilize the DNA of microbial communities to ensure accurate detection of 

microbial taxa at a later date. However, different preservation methods and storage 

temperatures can produce inherent biases in 16S rRNA gene-based studies. 

An array of preservation techniques have been developed and several studies have 

assessed their impact on the accuracy of estimates of community composition and 

diversity. OMNIgene.GUT buffer resulted in lower compositional changes in gut 

microbiome communities compared to fresh samples than RNAlater, 70% ethanol, 95% 

ethanol, and Whatman FTA cards (Song et al. 2016). Another study showed that samples 

preserved in OMNIgene.GUT were more similar to cold-stored samples, which are 

generally considered to stabilize DNA, than replicates stored in RNAlater, Tris-EDTA, or 

at room-temperature (Choo et al. 2015). When cooling is unavailable, card-based 

preservation methods such as fetal occult blood test (FOBT) or Whatman FTA cards may 

be better choices than buffer solutions (Sinha et al. 2016; Dominianni et al. 2014; Song et 
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al. 2016). We caution against the use of RNAlater because its use may result in decreased 

DNA purity and lower microbial diversity (Dominianni et al. 2014), higher variation in 

microbial communities with heat (Song et al. 2016), and reduced DNA yields (Gorzelak 

et al. 2016). Similarly, preservation in 70% ethanol may decrease community stability 

with heat (Sinha et al. 2016; Song et al. 2016). As a result, if ethanol preservation is used, 

concentrations should be at least 95% ethanol and regardless of preservation method, 

samples should be stored at cold temperatures (Song et al. 2016; Hale et al. 2015). 

Additional considerations when selecting between available preservation 

techniques include potential for conducting further analyses. For example samples stored 

in RNAlater can be used for transcriptomic investigations and samples stored in ethanol 

can be used for metabolomics studies (Sinha et al. 2016). Therefore sample preservation 

method should likely be considered based on the planned analyses that will be conducted 

to investigate a biological question of interest. 

In conjunction with sample preservation methods, storing samples in temperature 

controlled environments can reduce variation in microbial communities that can occur 

over time. Generally, -80°C storage of biological and environmental samples is regarded 

as the highest fidelity storage temperature to preserve DNA quality and ensure accurate 

microbial community profiles (Choo et al. 2015; Lauber et al. 2010; Bahl et al. 2012; 

Tzeneva et al. 2009; Fouhy et al. 2015). Microbial communities from gut microbiome 

samples have low differences in β-diversity between storage temperatures but greater 

differences in abundance weighted β-diversity (Song et al. 2016). Relative abundance 

estimates have been shown to vary by sample storage temperature by multiple groups 

ranging from -80°C to approximately 25°C (Roesh et al. 2009; Choo et al. 2015; Lauber 
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et al. 2010; Bahl et al. 2012, Gorzelak et al. 2015). Of potential interest to gut 

microbiome researchers, two gut microbiome studies reported significant shifts in the 

abundance of Firmicutes and Bacteroidetes between samples stored in differing 

temperatures (Bahl et al. 2012; Gorzelak et al. 2015). Variation in the ratios of these 

phyla may obscure biologically meaningful results because the ratio of Bacteriodetes to 

Firmicutes in fecal samples is frequently treated as an indicator of host health (Ley et al. 

2006; Koliada et al. 2017). Conversely, other studies have found that there are no 

significant differences between the relative abundance of major phyla in gut microbiome 

samples stored in differing temperatures without buffers or subjected to two thaw cycles 

(Dominianni et al. 2014; Bassis et al. 2017). 

However, the effects of storage temperature on microbial communities may be 

environment specific. Minimal variation in microbial community composition are 

associated with storage temperatures for human oral microbiome samples (Lou et al. 

2014), skin microbiome samples (Lauber et al. 2010), and vaginal microbiome samples 

(Bai et al. 2012) stored in buffer solutions. For environmental samples, the community 

composition of soil stored at room temperature for up to 14 days were mostly unaffected 

(Lauber et al. 2010); however, air-dried soil samples stored for three months exhibited 

significant differences in richness and diversity of bacterial profiles compared to samples 

stored at -80°C (Tzeneva et al. 2009). 

In summary, based on the findings of our literature search, when samples cannot 

be processed shortly after collection, OMNIgene.GUT buffer solution and -80°C storage 

of microbial samples provide the most protection for microbial DNA and minimize shifts 

in community composition. That said, new preservation methods have recently entered 
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the market and may provide improved results. Some microbial communities or samples 

collected from certain environments may benefit less from low temperature storage than 

others due to naturally lower moisture content or increased variation in environmental 

conditions. Due to the diversity of DNA preservation methods employed in conjunction 

with temperature storage it is difficult to disentangle absolute guidelines. Further work 

should be conducted to elucidate the effects of sample preservation and long-term storage 

strategy on the integrity of microbial community DNA across different microbiomes. 

However regardless of methodology, we stress the importance of consistency across 

samples to reduce batch effects. 

 

DNA Extraction 

 DNA yield is dependent on the method of storage, preservation, and extraction 

techniques (Nechvatal et al. 2008). DNA isolation can be conducted through the use of 

classical techniques such as phenol-chloroform or chaotropic salts based extractions. 

However in the age of high-throughput sequencing, biotech companies have engineered 

all-inclusive kits to expedite extractions and standardize methodology. Depending on the 

extraction method, researchers have reported varying yields of DNA and purity of nucleic 

acids which have been shown to result in differing community diversity and abundance 

estimates. Yet despite improvements, regardless of method, biases are introduced during 

DNA extraction (Yuan et al. 2012; Brooks et al. 2015) and must be considered in study 

design. 

Choice of DNA extraction method affects the overall DNA concentration 

obtained from samples; however, studies conflict as to which method recovers the most 
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accurate and highest quality DNA. In human fecal samples, use of the QIAamp DNA 

Stool Kit (QIAGEN) for DNA extractions was shown to produce higher average DNA 

yields than extractions using the MoBio Fecal Kit (now owned by QIAGEN) (Nechvatal 

et al. 2008). Additionally, use of the QIAamp DNA Stool mini Kit for extracting DNA 

produces better nucleic acid purity, greater sequencing yield, longer reads after quality 

trimming, and higher OTU-level diversity than phenol-chloroform or chaotropic salt 

based DNA extractions yet lower double stranded DNA yield than chaotropic salt DNA 

extractions (Gerasimidis et al. 2016). Conversely, in other gut microbiome studies, use of 

the PowerSoil DNA Isolation Kit (now owned by QIAGEN as PowerFecal Kit) resulted 

in higher DNA yield than QIAamp DNA Stool Kit (Bahl et al. 2012) and outperformed 

the QIAamp DNA Stool Kit in low bacterial biomass samples (Velásquez-Mejia et al. 

2018). 

Estimates of relative abundance for microbial taxa may be biased by DNA 

extraction method (Brooks et al. 2015; Velasquez-Mejia et al. 2018; Yuan et al. 2012). 

For example, use of the MoBio PowerSoil DNA Isolation Kit resulted in an increased 

number of Firmicutes and Actinobacteria and a decrease in Bacteroidetes compared to 

samples extracted using a QIAamp DNA Stool mini Kit (Velasquez-Mejia et al. 2018). 

Depending on the physical properties of the microorganisms present in the sample, DNA 

extractions that incorporate standard chemical lysis may be unable to access DNA from 

the whole microbial community. Organisms such as Mycobacterium spp. and Bacillus 

can form spores which contain thick cell walls that require mechanical lysis techniques to 

recover DNA (Kuske et al. 1998; Vandeventer et al. 2011). As a result, mechanical lysis 

is considered a necessary component of DNA extraction that can be added to any DNA 
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extraction protocol through a bead beating preprocessing step. Bead beating has been 

shown to reduce biases during DNA extraction that effect downstream community 

calculations of richness and relative abundance estimations due to the inability to access 

DNA from subsets of bacterial and archaeal populations (Kuske et al. 1998; Carrigg et al. 

2007; Yuan et al. 2012; Salonen et al. 2010; de Boer et al. 2009; Smith 2011). While 

there are a multitude of different options for mechanical lysis, 0.1 mm silica beads have 

been shown to improve the recovery of Gram positive bacteria during DNA extraction 

without negatively impacting Gram negative organisms (de Boer et al. 2009). 

 As a result, we recommend mechanical lysis if not already integrated into the kit 

protocol to maximize microbial diversity recovered from samples and minimize 

additional taxa specific biases during DNA extraction. It is difficult to identify a single 

optimal DNA extraction method however, use of standardized kit-based methods 

improve reproducibility. Additionally, we stress that a single method of DNA extraction 

should be executed for a given study to negate inter-sample biases. 

 

Hypervariable Region Selection 

The vast majority of 16S rRNA-based studies use polymerase chain reaction 

(PCR) to target and amplify specific regions of the 16S gene due to technological 

limitations of the most widely used sequencing platforms that result in short length 

sequences. Therefore until long-read sequencing that spans whole genes is universally 

adopted, primers will continue to be used to PCR amplify regions of the 16S gene that 

possess high nucleotide variation which allow for differentiating between taxa. As a 

result, short regions of the 16S gene are used to approximate the variation encompassed 
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in the roughly 1500 nucleotide long gene that itself only represents a small portion of an 

organism’s genome. To target hypervariable regions, primers bind to complementary 

highly conserved sequences in one of the highly conserved regions of the 16S rRNA gene 

that flank each hypervariable region (Baker et al. 2003). Rates of nucleotide conservation 

and hypervariable region length vary which consequently dictates the efficacy of each 

region to differentiate between taxa. Researchers have extensively considered how the 

use of DNA sequences from the different hypervariable regions impact study outcomes 

such as phylogeny-based measurements, taxonomic classification rates, and community 

diversity metrics. Phylogenies reconstructed using V4-V6 region sequences which 

encompass hypervariable regions four through six (Yang et al. 2016) and V3/V4 

sequences (Ragan-Kelley et al. 2013) are most representative of full-length 16S 

phylogenies while V2 and V8 (Yang et al. 2016) and V9 (Ragan-Kelley et al. 2013) were 

least similar to the full-length phylogenies. For taxonomic classification, V4 

hypervariable region sequences are, on average, best able to assign sequences genus level 

taxonomic labels across different sampling environments (Soergel et al. 2012). β-

diversity metrics applied to 16S data were robust to primer and sequencing platform 

selection; however, primer choice influences relative abundance estimations (Tremblay et 

al. 2015). Of those tested (V4, V6-V8, and V7-V8), the V4 hypervariable region 

sequences most closely resemble community profiles obtained using shotgun sequencing 

(Tremblay et al. 2015). Simulated V4, V5-V6, and V6-V7 hypervariable region 

fragments most closely estimate the full-length 16S sequence species richness (Youssef 

et al. 2009). Despite numerous studies identifying the “best” hypervariable region(s) that 

most closely resemble results obtained from using full-length 16S gene sequences, it is 
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difficult to determine which primer pair to use because of PCR biases that affect taxa 

unequally. 

 

Polymerase Chain Reaction 

PCR is a widely used step in 16S rRNA gene sequencing which enables the 

analysis of low biomass samples by amplifying specific segments of DNA. 

Unfortunately, errors can occur during PCR, and these errors can compound with each 

additional amplification cycle. For example, poor DNA polymerase fidelity can result in 

substitutions, insertions, and deletions as well as off-target primer binding, which may 

result in chimeras that arise from incompletely extended sequences annealing to another 

sequence. These PCR errors can significantly impact estimation of community diversity 

and composition. 

Use of high fidelity DNA polymerases such as KAPA and minimizing the number 

of PCR rounds help to alleviate the formation of chimeras, nucleotide polymorphisms, 

and compositional biases in microbial communities (Gohl et al. 2016; Sze and Schloss 

2019). Sze and Schloss used mock communities to demonstrate that the number of PCR 

rounds is of primary importance and polymerase choice is secondary (Sze and Schloss 

2019). After clustering sequences to reduce noise, at 30 rounds of PCR amplification, 

KAPA polymerase had the lowest error rate followed by Phusion, Q5, Accuprime, and 

Platinum; however, Accuprime had the fewest chimeras followed by KAPA, Phusion, Q5 

and Platinum (Sze and Schloss 2019). As additional rounds of PCR are conducted, 

Shannon diversity index generally increased and bacterial communities became more 

even (Sze and Schloss 2019). As a result, Sze and Schloss caution against comparing data 
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from differing PCR conditions (Sze and Schloss 2019). Gohl and colleagues found that 

beyond 20 cycles of PCR, KAPA polymerase out performs Q5 and Taq both in having 

the lowest nucleotide error rate and least number of chimeric sequences (Gohl et al. 

2016). Additionally, reducing the amount of starting DNA used in PCR decreases the 

percentage of chimeric reads detected after DNA sequencing (D’Amore et al. 2016). 

 

Sequencing Technology 

Long gone are the days of determining DNA sequences from 2D gel 

electrophoresis, Sanger sequencing, and most recently Roche 454. Instead, Illumina’s 

HiSeq and MiSeq sequencing platforms have quickly become the sequencing standard as 

they have been shown to produce higher quantity and quality reads than Roche 454 

(Caporaso et al. 2012). Yet researchers must still select an appropriate sequencing 

platform and understand the benefits and weaknesses associated with their decision. 

The two Illumina sequencers: HiSeq and MiSeq can be distinguished from each 

other by scale of operation, cost, and read length. MiSeq machines deliver rapid smaller 

scale sequencing while the HiSeq reduces per sample cost by enabling higher 

parallelization at the expense of time and sequence length (Caporaso et al 2012). MiSeq 

and HiSeq have both been shown to produce low variability across lanes in a single run 

and similar quality reads (Caporaso et al. 2012). Taking advantage of the higher quantity 

of reads, dual-index paired-end primers have enabled MiSeq reads to attain similar error 

rates to Roche 454 GS-FLX Titanium while increasing read-depth by 10-fold (Kozich et 

al. 2013). Unfortunately, MiSeq is currently limited to short read sequencing of roughly 
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300 nucleotides and attempts to increase read length generally result in reduced overlap 

between reads that limit the ability to correct errors (Schloss et al. 2016). 

Illumina’s HiSeq and MiSeq platforms are limited to short sequence lengths 

which has forced investigators to focus on the short information rich hypervariable 

regions of the 16S gene. Emerging long-read sequencing technologies such as PacBio 

and Oxford Nanopore hold potential to transform 16S investigations by offering access to 

full-length gene sequence reads. For example, longer sequences are more likely to receive 

better resolved taxonomic annotations to the level of genus or species (Schloss et al. 2016 

and Pootakham et al. 2017) and reconstruct phylogenies more similar to those 

reconstructed using full-length genes (Ragan-Kelley et al. 2013). One limitation of long-

read sequencing technologies that has reduced their adoption is concern surrounding their 

higher sequencing error rates compared to the HiSeq and MiSeq. That said, these 

technologies are rapidly improving and new informatic solutions targeted at reducing 

long-read errors are being developed. For example, after conducting read filtering and 

quality control, PacBio (P6-C4 chemistry) can produce sequences with error rates of 

around 0.03% (Schloss et al. 2016 and Wagner et al. 2016). Another potential effect of 

long-read sequencing is on the accuracy of estimates of species richness. One study found 

that MiSeq V1-V2 sequences have elevated species richness estimates than PacBio full-

length sequences from the same sample (Wagner et al. 2016). However, when the full-

length PacBio sequences were truncated to simulate V1-V2 reads, there was an increase 

in species diversity indicating that short read sequencing may result in overestimation of 

species diversity (Wagner et al. 2016). 
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As new sequencing platforms are developed and chemistries improve, the per 

nucleotide error rates resulting from sequencing error will likely decrease. Currently, a 

large factor in platform selection resides in cost, wherein HiSeq is the cheapest followed 

by MiSeq and then PacBio. Unfortunately, read length and read quality are proportional 

to cost. Therefore, the selection of a sequencing platform should be based on 

experimental need. The following sections which discuss downstream bioinformatic 

analyses may provide additional insight into which sequencing platform should be 

utilized choice. 

 

Bioinformatics 

DNA sequencers produce “raw” reads which must be subject to computational 

quality control prior to analysis. During this bioinformatic cleanup process, there exist 

numerous options in software each designed to produce optimal results for differing 

scenarios. This section provides an overview of important steps in 16S gene sequence 

processing pipelines and highlights examples of stand-alone and popular all-inclusive 

methods. 

First, sequencing adaptors must be removed from raw amplicon reads prior to 

their subsequent analysis (e.g., cutadapt (Martin 2011)). Reads are then typically subject 

to paired-end assembly (e.g., PANDAseq (Masella 2012)), which merges mate pairs into 

longer 16S rRNA gene contigs, as well as quality trimming (e.g., Cutadapt (Martin 2011) 

or Sickle (Joshi and Fass 2011)), which filters or truncates error prone read sequences. 

Chimeras are then identified and removed from the set of reads (e.g., UCHIME (Edgar et 

al. 2011) or DECIPHER (Wright et al. 2012)). 



 

 
15 

After these quality filtering steps, sequences can be assigned into operational 

taxonomic units (OTUs) in three general ways; de novo, reference-based, and open-

reference. Although OTUs can be created in different ways, studies have demonstrated 

that de novo methods which do not rely on information from a database outperform 

reference-based clustering that leverage database-dependent taxonomy binning (Schloss 

and Westcott 2011; Westcott and Schloss 2015; Schloss 2016). Furthermore, between 

different de novo based methods, average neighbor clustering which averages the 

differences between pairs of sequences was the most robust method (Schloss and 

Westcott 2011; Schloss 2016). Additionally, when OTU clustering was applied to human 

twin gut microbiomes, de novo clustering identified a higher number of heritable OTUs 

between twin pairs than other approaches (Jackson et al. 2016) which improved the 

power of the analysis. Amplicon sequence variants (ASVs) generated by DADA2 provide 

an alternative sequence clustering method that applies sequencing run-specific error 

model training to reduce sequencing-error and preserve fine-scale variation between 

sequences that may be lost during OTU clustering (Callahan et al. 2016). 

ASV or OTU-clustered representative sequences are then aligned to enable 

comparisons between the sequences, assign taxonomy, or construct phylogenetic trees. 

Three primary algorithms that are commonly used in nucleotide alignments: de novo 

pairwise, de novo multiple sequence, and profile-based alignments each offer differing 

levels of speed and accuracy (Schloss 2009). Before or after alignment, sequences can be 

taxonomically annotated using SILVA (Yarza et al. 2008), Greengenes (DeSantis et al. 

2006), or RDP (Cole et al. 2009) 16S rRNA sequence databases. Each 16S database 

contains sequences with varying levels of alignment quality and phylogenetic diversity 
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(Schloss 2010) that result in environment specific taxonomic classification accuracy. For 

example, SILVA-based taxonomic classification classifies human fecal microbiomes and 

soil samples with greater accuracy than Greengenes or RDP while RDP-based taxonomic 

classification better classifies mouse feces (Schloss et al. 2016). 

Rather than create custom software pipelines to string together these vital 

informatic processes, there exist several software packages that expedite these steps and 

bring added uniformity between studies. Of the most commonly used software suits, 

mothur (Schloss et al. 2009) and QIIME (Caporaso et al. 2010) are OTU-based while 

DADA2 (Callahan et al. 2016) and most recently QIIME 2 (Bolyen et al. 2018) produce 

ASVs. In the end, regardless of the sequencing technology and software selection, 

inclusion of quality trimming, error correction and read assembly can significantly reduce 

substitution errors (Schirmer et al. 2015). 

 

Phylogenetics 

Once sequences are processed, filtered, clustered into ASVs or OTUs, and 

accurately aligned, phylogenies can be reconstructed to provide additional insights into 

microbial communities. Phylogenetic trees allow for the calculation of evolutionarily 

informed measures of β-diversity (Lozupone and Knight 2005), identification of 

phylogenetic and co-phylogenetic signal (Gaulke et al. 2018), and trait identification 

(Washburne et al. 2017). Yet phylogenetic trees have been shown to vary based on gene, 

region, sequence length, alignment, diversity, and reconstruction method. To draw 

meaningful conclusions from these tools which rely on phylogenies, researchers must be 

aware of the methodological sources of phylogenetic error that may impact their results. 
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Depending on the study, differing gene segments may result in improved 

taxonomic resolution. For example, 16S rRNA is known to be unable to differentiate 

between Bacteroidaceae and Bifidobacteriaceae (Moeller et al. 2016) thus alternative 

markers should be used when taxa of biological interest are known to have poor 

separation with 16S gene sequences. Longer sequences are better able to recapitulate full-

length genetic variation (Schloss 2010), increase the proportion of correct trees (Graybeal 

1998), improve branch-length calculations (Rosenberg and Kumar 2003), and more 

accurately represent the phylogenetic distance of full-length phylogenies (Ragan-Kelley 

et al. 2013). However, due to potentially uninformative stretches within genes, analyzing 

the appropriate region(s) of a gene that yield discriminatory power between taxa has a 

greater effect on phylogenetic inferences than increasing sequence length (Martin et al. 

1995). Despite longer sequences improving results, it is critical to trim sequences to the 

same starting and ending regions to ensure phylogenetic accuracy because different 

regions of genes do not mutate at uniform rates (Schloss 2010). The ability of different 

16S hypervariable regions to compute community diversity metrics is discussed in a prior 

section. 

There are four primary types of phylogenetic reconstruction methods that model 

evolutionary relationships from aligned sequences: distance, parsimony, and maximum 

likelihood and Bayesian inference. Distance based methods such as neighbor joining 

(Saitou and Nei 1987) or minimum-evolution (Rzhetsky and Nei 1992) rely on a distance 

matrix composed of all taxa. Maximum parsimony methods minimize the number of 

evolutionary events predicted in the final phylogeny (Felsenstein 2004). Both maximum 

likelihood and Bayesian inference employ probability-based statistical approaches to 
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determine the optimal tree. Maximum likelihood methods determine the tree that has the 

highest probability of depicting evolutionary history based on the likelihood function 

while Bayesian inference uses posterior probabilities to optimize topology (Svennblad et 

al. 2006).  

The accuracy of reconstruction method depends on substitution rate, number of 

sites, and number of taxa (Rosenberg and Kumar 2001; 2003). Generally, maximum 

likelihood and Bayesian methods reconstruct phylogenies most accurately followed by 

maximum parsimony and neighbor-joining (Rosenberg and Kumar 2001; Ogden and 

Rosenberg 2006; Price et al. 2010). Currently, some of the most popular software used in 

microbiome studies for phylogenetic tree reconstruction are FastTree2 (Price et al. 2010), 

RaxML (Stamatakis 2012), and BEAST (Drummond and Rambaut 2007). Recently 

released RaxML-NG appears promising as it boasts the improved accuracy of maximum 

likelihood with greatly reduced computational time compared to prior options (Kozlov et 

al. 2019). 

While different methods of phylogenetic tree reconstruction will provide varying 

levels of accuracy, phylogenies in general are highly dependent on the quality of 

sequence alignment. Morrison and Ellis found that sequence alignments accounted for 

more phylogenetic variation than tree-building method (Morrison and Ellis 1997). 

Schloss has conducted extensive studies that demonstrate differences in alignment quality 

between full-length 16S databases that are commonly used for reference-based alignment 

and found that poor quality alignments inflate phylogenetic diversity (Schloss 2009; 

2010). As a result, the poor variable region alignments in Greengenes predict higher 

genetic diversity, richness, and phylogenetic diversity than SILVA and RDP alignments 
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(Schloss 2010). Furthermore, errors in topology from poor alignments become magnified 

in phylogenies with shallow diversity (Ogden and Rosenberg 2006). Additionally, 

sequence diversity and the number of lineages impact phylogenetic accuracy (reviewed in 

Hillis et al. 2003; Nabhan and Sarker 2012). 

 Overall, maximizing the accuracy of phylogenetic analyses is complex and 

requires researchers to understand how each decision in their analyses may affect 

potential conclusions. Generally, to improve phylogenetic accuracy the most important 

considerations are the gene region of interest and alignment algorithm. Secondarily, tree 

reconstruction method, sequence length, number of lineages, and diversity between 

lineages influence phylogenetic accuracy, Additional considerations must be made if 

conducting clade-based analyses due to their dependence on rooted phylogenies. 

 

Conclusions 

 16S rRNA analyses provide powerful, inexpensive insights into microbial 

communities that may otherwise remain unexplored. Consequently, it is important for 

researchers to understand how sources of error such as PCR amplification bias and 

sequence error can accumulate in pyrosequencing studies and imperative to understand 

how these errors may be controlled for. Throughout our literature search we were unable 

to identify a universal consensus about the best methodological practices and community 

specific biases appear pervasive to microbiome studies. Despite this fact, there are several 

broad recommendations that can be relayed. Firstly, DNA extraction of fresh samples 

circumvents potential storage and preservation effects although in the event of delayed 

sample processing, cold storage reduces potential changes to the microbial community 
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composition. Secondly, kit-based DNA extraction methods can reduce variability and 

improve cross-study comparisons and mechanical lysis should be integrated to ensure 

maximum diversity within the community is captured. Thirdly, optimal primer selection 

may be microbial community specific, however, generally reads that include portions of 

the V4 hypervariable region appear to provide improved discriminatory power. Fourthly, 

during bioinformatic processing, we suggest careful attention during sequence alignment 

and appropriate selection of clustering dependent on the biological question of interest. 

Another consideration that has been posited to reduce methodological errors is to 

incorporate mock communities into sequencing studies. Mock communities can serve as 

a strong quality control to identify error-driven outliers within samples (Bender et al. 

2018). Additionally, for meta-analyses, researchers must be cognizant of study-effects 

that may diminish cross-study comparisons. Finally, we stress that methodological 

consistency between samples within a study are of paramount importance to ensure that 

there are no methodological sample specific effects. 

 While prior work affords meaningful methodological recommendations for most 

of the steps associated with the generation and analysis of 16S rRNA gene sequence data, 

there remains many open questions that need to be answered to help ensure that future 

research is as accurate as possible. In the following chapter, I delve deeply into one 

specific underexplored area of bioinformatic analysis of 16s rRNA gene sequence data: 

phylogenetics. Surprisingly few of the phylogenetic analyses discussed prior were 

conducted on microbial genes and fewer yet specifically focused on the accuracy of 16S 

rRNA gene phylogenies. Therefore we sought to determine how phylogenetic accuracy is 

influenced by study design within the context of 16S rRNA microbial microbiomes. In 
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particular the following work seeks to address how sequence length, sample diversity, 

sample size, and hypervariable regions affect the accuracy of 16S phylogenetic trees. In 

doing so, we offer researchers insights into potential phylogenetic inaccuracies and hope 

these data will be taken into consideration during the design of study methods. 
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Abstract 

The majority of microbiome studies rely on 16S rRNA sequences to assess 

community diversity and frequently leverage phylogenetic measures to do so. However, 

there has been relatively little investigation of the accuracy of phylogenies assembled 

from the rather short and voluminous sequences produced during most microbiome 

investigations. We developed a statistical simulation framework to quantify the accuracy 

of such phylogenies and discern the effect of their error. Our software framework 

subsamples and trims full-length 16S rRNA sequences from 16S rRNA databases to 

simulate short reads obtained from environmental amplicon sequencing. We then 

compute similarity and dissimilarity metrics between 16S rRNA phylogenetic trees 

constructed using short sequences versus full-length sequences to measure the accuracy 

of phylogenies with differing sequencing parameters. We find that as sequence length 

increases, the phylogenetic error of truncated sequence phylogenies decreases. We 

demonstrate that including full-length reference sequences from a database ameliorates 

this error. Additionally, we find that the phylogenetic diversity within microbial 

communities and the number of lineages within a phylogeny influences the ability of 

phylogenies assembled from truncated sequences to accurately recapitulate their full-

length counterparts. Furthermore, we present an automated software pipeline that 

researchers can use to produce phylogenies with optimized accuracy given the results of 

our simulations. Here, we provide evidence that sequence length and sample diversity 

drive patterns of similarity between phylogenies constructed using full-length sequences 

relative to short sequences. Collectively, our findings highlight the importance of 

experimental design and methodological selection by demonstrating their impact on 
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phylogenetic tree structure which may ultimately skew the interpretation of phylogeny-

derived inferences. 
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Introduction 

The advent of culture-independent genome sequencing has transformed 

microbiology and created numerous multi-disciplinary fields dedicated to understanding 

the petabytes of genetic code. In an attempt to interpret these data, microbial sequences 

are often analyzed on the basis of relative taxonomic abundance and distribution. The 

16S rRNA gene encodes the 30S ribosomal protein which constitutes the small-subunit of 

all bacterial and archaeal ribosomes and provides a universal marker to infer taxa. 16S 

ribosomal function is conserved thereby constraining the rate and location of tolerable 

mutations; yet, due to the transcript structure, the 16S gene can be deconstructed into nine 

hypervariable regions flanked by nine highly conserved regions (Woese et al. 1980 and 

Yang et al. 2016). As a result, PCR primers can be designed to target highly conserved 

regions and amplify the intervening hypervariable regions to infer the taxa of bacteria 

(Van de Peer et al. 1996; Baker et al. 2003). 

Since the development of rapid 16S rRNA gene amplicon sequencing (Lane et al. 

1985), phylogenetic trees reconstructed using rRNA sequences have been used to 

describe microbial diversity. In addition to applications in microbial ecology (eg. 

Lozupone and Knight 2007) and epidemiology (Clarridge 2004), the use of small-subunit 

RNA sequences is deeply rooted in taxonomy and formed the basis for defining the three 

domains of life as Archaea, Bacteria, and Eucarya (Woese et al. 1990). While 16S rRNA 

sequences are used to impute taxonomic classification, these sequences can also be used 

to construct phylogenies which offer greater insight into microbial function and 

evolutionary relationships (Lozupone and Knight 2005; Gaulke et al. 2018; Washburne et 

al. 2018). 
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Technological limitations and budgetary constraints have resulted in routine use 

of short sequences obtained from next generation high-throughput sequencing platforms 

to create phylogenetic trees. Early work demonstrated that phylogenies constructed on the 

basis of partial 16S rRNA sequences were topologically equivalent to those derived from 

full-length 16S rRNA sequences (McCarroll et al. 1983), which have been shown to 

generally correlate with genome phylogenies (Snel et al. 1999). However, more recent 

studies have demonstrated that the accuracy of phylogenies is affected by the gene(s) 

used (Rosenberg and Kumar 2001; Case et al. 2006; Wu et al. 2013), the specific region 

of gene(s) used (Martin et al. 1995; Schloss 2010; Ragan-Kelley et al. 2013; Yang et al. 

2016), sequence length (Martin et al. 1995; Graybeal et al. 1998; Rosenburg and Kumar 

2001, 2003; Ragan-Kelley et al. 2013), alignment methodology (Lake 1991; Morrison 

and Ellis 1997; Hall 2005; Ogden and Rosenberg 2006; Schloss 2010), tree 

reconstruction method (Rosenberg and Kumar 2001; Ogden and Rosenberg 2006), and 

the genetic diversity of the sequences being compared (reviewed in Nabhan and Sarker 

2012). As a result, it is imperative to fully understand how these experimental parameters 

bias 16S rRNA gene sequence phylogenies that subsequently influence the outcome of 

phylogenetic-based approaches to study microbial community ecology, such as ClaaTU 

(Gaulke et al. 2018), UniFrac (Lozupone and Knight 2005; Lozupone et al. 2007), PGLS 

(Grafen, 1989), Phylofactorization (Washburne et al. 2017), PhILR (Silverman et al. 

2017), and PhyloAssigner (Vergin et al. 2013). 

To quantitatively investigate how sequencing parameters in environmental 16S 

studies affect phylogenetic tree structure, and by extension downstream inferences, we 

established a software framework to simulate short read amplicon sequencing. Using this 



 

 
34 

framework, we conducted simulations to measure error in phylogenetic trees derived 

from sequence length, hypervariable region, and sequence diversity. Further, we offer 

cost-effective suggestions that can improve the ability of short sequences to represent 

full-length 16S evolutionary history. 
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Methods 

Sequence Selection 

 We simulated sequencing data that is representative of processed reads generated 

from 16S rRNA amplicon sequencing studies which are commonly used in the 

reconstruction of phylogenetic trees using the pre-aligned full-length 16S rRNA database: 

SILVA 16S LTP version 123 (Yarza et al. 2008). Sequences in the database were filtered 

based on nucleotide length from primer mapping locations to remove sequences that were 

too short for our analyses. For all phylogenies, we selected “reference” sequences prior to 

sampling lineages. Briefly, reference lineages are full-length sequences that provide 

additional diversity that are used during the reconstruction of phylogenies and are 

removed prior to analysis. Sequences were selected for references and samples separately 

according to three sampling paradigms: (1) maximum phylogenetic distance, (2) 

randomly, and (3) representative taxa based on literature. Maximum phylogenetic 

distance sampling selects the most distant lineages based off of the full-length all 

sequence database tree (Wu et al. 2009). Random sampling leverages Perl module, 

List::Util qw(shuffle) to randomly select sequences from the SILVA 16S database. 

Representative taxa sampling applies filtering criterion on random sampling to exclude 

taxa that are not present within a desired taxonomic level. 

 

Simulation Methods 

 We investigated how sequence length, position within the 16S rRNA gene, 

taxonomic diversity, sample size, and number of full-length reference lineages effect 

measures of phylogenetic accuracy. From the selected aligned full-length 16S rRNA 
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sequences, we simulated reads obtained from high-throughput DNA sequencing 

platforms by cutting the length of sequences based on the alignment positions that 

correspond to PCR primers from literature in the 5’ to 3’ direction (Table 1). Sample 

diversity was integrated into the analyses based on the sampling paradigms listed above. 

The maximum number of reference sequences were determined prior to each experiment 

and reserved from the potential sampling pool. References were removed after 

reconstructing complete phylogenies using both simulated short read sequences or full-

length sequences and full-length references with R package ape::drop.tip to produce 

reference-guided phylogenies. 

 

Construction of Phylogenetic Trees 

 For each test condition, we constructed four phylogenetic trees: full-length (FL) 

and short read (SR) phylogenies that are comprised of only sampled sequences and 

reference-guided full-length (RGFL) and reference-guided short read (RGSR) 

phylogenies that include full-length reference sequences that were pruned out prior to 

analysis. All phylogenetic trees were reconstructed using FastTree-2.1.10 -nt -gtr to 

specify generalized time-reversible model of nucleotide substitution (Price et al. 2010). 

 

Phylogenetic Statistical Analyses 

 All analyses were conducted using R (R Core Team 2018). To quantify the 

differences in phylogenetic diversity between phylogenetic trees reconstructed under 

different conditions, we computed tip-to-tip distances using the base R function, 

cophenetic on each newick format phylogenetic tree. This produces a distance matrix 
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between each tip within a tree by summing the total branch lengths that segregate each 

pair of lineages. To compare trees (FL, SR, RGFL, and RGSR), we correlate these 

distance matrices with a mantel correlation using vegan::mantel, which is interpreted 

such that higher correlation coefficients correspond to more similar phylogenies. In the 

case of comparisons with FL trees, these correlation coefficients serve as a measure of 

accuracy. Tree topology was quantified using a normalized Robinson-Foulds distance 

metric using phangorn::RF.dist in a pairwise manner between phylogenetic trees with the 

same sampled sequences (FL, SR, RGFL, and RGSR). Robinson-Foulds distances assess 

the structural differences between two trees by computing the number of partitions that 

differ between trees (Robinson and Foulds 1981). When normalized Robinson-Foulds 

distances are calculated between FL trees and alternative phylogenies, a lower value 

corresponds to higher accuracy. 

  



 

 
38 

Results 

Increased sequence length improves phylogenetic accuracy 

We developed and applied a software framework which subsamples and simulates 

short read 16S rRNA sequences from pre-aligned databases to assess the accuracy of 

phylogenetic trees reconstructed from reads typically obtained during environmental 

amplicon sequencing experiments. Briefly, the starting locations of simulated short reads 

were identified by the location of universal primers in an aligned E. coli sequence. 

Sequences were then trimmed to a selected number of nucleotides. We randomly sampled 

1000 sequences from the SILVA 16S LTP database (Yarza et al. 2008) and trimmed 

sequences to 100, 200, 300, 400, and 500 nucleotides from the beginning of the V2, V3, 

V4, V5, and V6 hyper-variable regions by mapping the nucleotide alignment position of 

PCR primers in the 5’ to 3’ direction (Table 1). We reconstructed phylogenetic trees from 

these simulated short reads (SR) and compared their phylogenetic diversity and topology 

to full-length (FL) phylogenies of the same sequences to assess overall phylogenetic 

accuracy. 

We found that as sequence length increases, irrespective to hyper-variable 

location within the 16S gene, measures of both phylogenetic diversity and topology 

become more similar to the FL phylogeny (Figure 2A,C). The greatest improvement to 

the accuracy of SR phylogenetic diversity compared to FL phylogenetic diversity 

occurred between 100 and 200 nucleotides with an average increase to the mean 

correlation across all hypervariable regions of 6.62 x 10
-4

 per additional nucleotide and 

secondarily between 200 and 300 nucleotide long sequences with an average increase of 

5.02 x 10
-4

 per additional nucleotide. The accuracy of tree topology improved at a 
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steadier rate across sequence lengths. These results corroborate prior work that 

demonstrates increased sequence length yields more accurate phylogenies (Graybeal 

1998; Rosenberg and Kumar 2003; Schloss 2010; Ragan-Kelley et al. 2013) through both 

phylogenetic diversity and topology while contextualizing this finding to 16S gene 

sequence phylogenies. 

 

V4-hypervariable region most closely reconstructs full-length 16S phylogeny 

We found that given highly diverse phylogenies reconstructed with between 100 

to 400 nucleotide SR sequences, the V4 hypervariable region generally best reconstructs 

FL phylogenetic diversity and topology followed by V2, V3, V5, and V6 (as in Table 1) 

(Figure 2A,C). At 100 nucleotide SR phylogenies, the V3 and V4 hypervariable regions 

did not display significantly different phylogenetic diversities compared to FL 

phylogenies (Tukey HSDT on one-way ANOVA; F4,495 = 678, P > 0.05). However, the 

mean V4 topological accuracy was significantly greater than V3 (Tukey HSDT on one-

way ANOVA; F4,495 = 1023, P < 0.001). The effect of a hypervariable region was 

minimal on phylogenetic diversity at 500 nucleotide long SR phylogenies. Only four of 

the ten pairwise comparisons between hypervariable regions (V1-V5, V3-V5, V4-V5, 

and V5-V6) had statistically significant differences in the mean phylogenetic diversity 

correlation of 500 nucleotide SR to FL phylogenies (Tukey HSDT on one-way ANOVA; 

F4,495 = 19.62, P < 0.001). These observations support prior assertions that for short reads, 

the V4 hypervariable region describes the greatest discriminatory power (Schloss 2010; 

Ragan-Kelley et al. 2013; Yang et al. 2016) and that gene-regions have a greater effect on 

phylogenetic inferences than sequence length (Martin et al. 1995). However, by 
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conducting statistical comparisons with both phylogenetic distance and topology metrics, 

we demonstrate that SR phylogenies reconstructed from a hypervariable region may 

inadequately recapitulate the phylogenetic diversity of FL sequences yet be highly 

correlated with FL topology (eg. V2). 

 

Reference sequences improve phylogenetic accuracy 

Prior work has demonstrated that the phylogenetic diversity within samples and 

total sample size influence phylogenetic accuracy (reviewed in Nabhan and Sarker 2012). 

Incorporating additional sequences into the reconstruction of phylogenetic trees and then 

removing the sequences has been shown to reduce phylogenetic error (Rosenberg and 

Kumar 2001; Pollock et al. 2002) and has been used when answering biological questions 

about microbial community diversity (Sharpton et al. 2011; Riesenfeld and Pollard 2013; 

O’Dwyer et al. 2015; Gaulke et al. 2018). We extended this concept of adding sequences 

from a full-length 16S database during phylogenetic tree reconstruction into our analyses 

to determine how the addition of full-length sequences and their subsequent removal 

prior to analysis influences phylogenetic accuracy. We refer to these full-length 

sequences as reference sequences, and phylogenetic trees that incorporate reference 

sequences as reference-guided full-length (RGFL) and reference-guided short read 

(RGSR) phylogenies. 

We selected 1000 full-length 16S reference sequences from the SILVA LTP 

database that represent taxa with maximum phylogenetic distance between them. These 

reference sequences were added to the 1000 randomly selected sample 16S gene 

sequences and used to reconstruct phylogenies. We found statistically significant 
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improvement in the accuracy of phylogenetic diversity when 1000 reference sequences 

are included during phylogenetic tree reconstruction (mean phylogenetic diversity 

correlation to FL phylogenies is 0.054 higher in RGSR than SR phylogenies; paired t-test 

p < 0.001). Less pronounced but still significant improvement in topology accuracy for 

RGSR phylogenies (mean Robinson-Foulds distance to FL phylogenies is 0.016 lower in 

RGSR than SR phylogenies; paired t-test p < 0.001) was also observed (Figure 2B,D). 

Additionally, including reference sequences greatly reduced the effect of sequence length 

and hypervariable region on phylogenetic diversity in comparisons between RGSR and 

FL phylogenies. 

Next, we investigated how the quantity of full-length reference sequences affects 

phylogenetic diversity and topology. We reconstructed phylogenies with 1000 sample 

sequences and compared 100-nucleotide long RGSR phylogenies that contain anywhere 

from 1 to 5000 reference sequences. The resulting 5000 different phylogenies were each 

compared to FL phylogenies of the 1000 sampled sequences. As before, all sampled 

sequences and references sequences were selected based on maximum phylogenetic 

distance. We found that there was a sharp decline in the rate of change in the similarity of 

phylogenetic diversity between RGSR and FL phylogenies at approximately 750 

reference sequences. Adding additional reference sequences beyond 1000 to the 

phylogeny yielded little additional effect on diversity as compared to phylogenies 

containing only 1000 reference sequences (Supplemental Figure 1). 

 

Variation along the 16S rRNA gene defines regions that yield accurate phylogenies 

and regions that reduce accuracy 
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We quantified the accuracy of phylogenies reconstructed from short reads that 

represent every continuous 100, 300, and 500 nucleotide stretch within the 16S gene to 

determine the effect of the per-nucleotide variation in highly conserved and hyper 

variable regions within the 16S rRNA gene. To conduct this analysis, we reconstructed 

phylogenies with 100, 300, and 500 nucleotide long SRs that began at each nucleotide 

position in the 6888 position SILVA LTP alignment in the 5’ to 3’ direction and 

compared each SR phylogeny to the corresponding FL phylogeny. We simulated 1000 

short reads and 1000 reference sequences which were selected to represent taxa that 

maximize the phylogenetic distance between each pair of sequences. Our results showed 

that phylogenies reconstructed with SRs that include regions of the 16S gene that are 

adjacent to the alignment position where the final nucleotide of PCR primers map to (eg. 

515F and 784F alignment positions 3281 and 3800 respectively) result in decreased 

phylogenetic accuracy than SRs that include portions of highly conserved regions 

compared to FL phylogenies (Figure 3). These results reinforced our prior findings that 

the inclusion of reference sequences alongside SR improves the accuracy of phylogenetic 

diversity compared to FL phylogenies (Figure 3B). Additionally, we demonstrated that 

increased sequence length compensates for regions of poor phylogenic signal (Figure 3). 

 

Microbial taxonomic diversity contributes to phylogenetic accuracy 

To assess how community diversity affects phylogenetic accuracy, we sampled 

sequences using taxonomically biased and unbiased approaches and measured the effect 

of this bias on phylogenetic accuracy. Specifically, we sample sequences that represent 

taxa with maximum phylogenetic distance between each sequence, were randomly 
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distributed across the LTP phylogeny, or restricted to taxa that are all annotated in a 

single phylum or order. Simulated short read sequences were trimmed to 100-600 

nucleotides from the beginning of the V4 hypervariable region in the 5’ to 3’ direction 

(Table 1). 1000 reference sequences were selected based on maximizing the phylogenetic 

distance between each sequence and combined with the simulated short read sequences to 

reconstruct 500 tip phylogenies. The four single phyla-level phylogenies contained only 

taxa within the Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes phyla and 

the three order-level phylogenies contained only taxa within the Bacillales, 

Flavobacteriales, and Actinobacteridae orders. Randomly sampled sequences may have 

included up to 35 different phyla and maximum diversity samples were always comprised 

of the same 20 phyla. We found that phylogenetic trees reconstructed using 

taxonomically constrained sampling resulted in decreased accuracy as measured by the 

phylogenetic diversity and topology of SR phylogenies compared to FL phylogenies 

(Figure 4). Additionally, this effect was magnified at shorter read lengths. For example, 

the mean phylogenetic diversity correlation coefficient between 100 nucleotide SR and 

FL phylogenies reconstructed with random sequences compared to single order 

phylogenies decreased by 0.243 compared to a 0.169 decrease at 600 nucleotides (Tukey 

HSDT on one-way ANOVA; 100nucletoide F3,70 = 85.55, P < 0.001; 600 nucleotide F3,70 

= 29.75, P < 0.001). When including 1000 reference sequences selected to represent taxa 

with maximum phylogenetic distance between each sequence in tree reconstruction, we 

saw that the phylogenetic diversity of RGSR phylogenies improved compared to FL 

sequences, however, the effect of reference sequences was modest on topological 

accuracy. We hypothesize that our observation of phylogenies with lower taxonomic 
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diversity that result in less accurate phylogenies compared to full-length sequences will 

extend to phylogenies reconstructed from microbial communities with low phylogenetic 

diversity. 

 

Large phylogenies are more sensitive to topological errors 

 We used 100, 500, 1000, and 7500 sequences to reconstruct phylogenies and test 

the effect of number of taxa on the accuracy of phylogenies. We saw that as the number 

of sequences that comprise a phylogeny increases, the number of sequences does not 

have an ordered effect on the phylogenetic diversity of SR compared to FL phylogenies 

(Figure 5A). However the addition of 1000 reference sequences generally introduced 

structure to the effect of phylogeny size in the calculation of phylogenies diversity for 

RGSR phylogenies compared to FL phylogenies (Figure 5B). We did find that 

phylogenies with fewer number of sequences resulted in improved topology for SR and 

RGSR compared to FL phylogenies (Figure 5C,D). It is difficult to disentangle the effect 

of the number of sequences from phylogenetic distance between taxa on the accuracy of 

phylogenies because we applied our maximum phylogenetic distance sequence selection 

methodology which selects sequences based on maximum phylogenetic distance from 

each other. Consequently, we show that increasing the number of sequences in a 

phylogeny, and thus decreasing the phylogenetic distance between neighboring tips in the 

tree, increased topological and phylogenetic diversity error in SR phylogenies compared 

to FL phylogenies. 
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Discussion 

Reconstructing accurate phylogenies is an exciting prospect for strict systematists 

and general microbiologists alike because they enable researchers to glean insight into the 

evolutionary history of organisms and speculate about their functional potential. We offer 

new insight into methods for improving phylogenetic accuracy within the context of 

microbiome studies. Prior studies rooted in theory and simulation that attempted to 

quantify phylogenetic accuracy were conducted in the 1990’s and early 2000’s but lacked 

validation on 16S rRNA data. Many of the parameters that affect phylogenies originally 

outlined in these studies have remained under appreciated in microbiome sciences. Our 

work exemplifies some of these difficulties in phylogenetic reconstruction and 

subsequently phylogeny-informed analyses in part due to the high per-base genetic 

variation within 16S rRNA genes that make it a strong phylogenetic marker (Woese et al. 

1980; Noller and Woese 1981; Ashelford et al. 2005). 

The simulation-based experimental design we employ to assess the ability of short 

read 16S gene sequences to reconstruct the full-length 16S gene phylogeny mitigates the 

effects of poor sequence quality and alignment by leveraging SILVA’s hand-curated 16S 

sequence database. That said, while these sequences are of high quality (Schloss 2009; 

Schloss 2010), they may still contain some errors despite database curation and thereby 

not necessarily reflect the evolutionary relationships obtained through phylogenomic 

analysis. We briefly considered the effect of alignment on phylogenetic accuracy 

however prior work already demonstrates the effects of lane masking (Lane 1991; 

Schloss 2010) and alignment quality of databases on phylogenies (Schloss 2010). As a 

result, we decided to limit our analyses to SILVA LTP 16S rRNA database sequences 
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due to their superior sequence quality and alignment that better estimate measures of 

phylogenetic diversity (Schloss 2009; 2010). By using a single database, we ensure that 

additional variation to sequences that are introduced during curation is negated despite 

reducing the maximum size of phylogenies and sequence diversity. We understand that 

the present study does not exhaustively address all sources of methodological errors that 

may influence phylogenetic analyses and does contain limitations as a result of 

simulations. For example, our simulation study design restricts our ability to extrapolate 

which hypervariable region primers should be used during PCR to best represent global 

bacterial phylogenies. We do however show that the V4 hypervariable region, when 

detectable, produces the most similar phylogeny compared to FL sequences within the 

SILVA 16S database. Additionally, our application of constrained taxonomic sampling 

still allowed us to ascertain effect of sample diversity on the accuracy of SR phylogenetic 

diversity without biological samples. 

Using simulated collections of short reads, we demonstrated that phylogenetic 

trees comprised of sequences that represent taxa with maximum phylogenetic distances 

between each pair of tips produce more accurate phylogenies than lower phylogenetic 

distance phylogenies compared to the full-length sequences. We hypothesize that 

phylogenies with low phylogenetic distance between taxa are less likely to accurately 

infer correct branch length and positional accuracy than phylogenies reconstructed with 

highly diverse taxa. We had initially hypothesized that the addition of full-length 

reference sequences would reduce the effects of sequence similarity on the ability to infer 

accurate phylogenies by artificially inflating diversity during tree reconstruction; 

however the composition of reference sequences may play a pivotal role in the strength of 
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this effect. Prior work which showed that introducing additional sequences that bisect 

long branches improves the accuracy of branch lengths (Hillis 1998) and consequently 

phylogenetic diversity supports this hypothesis. Similarly, as the number of reference 

sequences is increased, the rate of improvement in similarity between RGSR and FL 

phylogenies decreases. This indicates that there may be scenarios in which the proportion 

of additional phylogenetic diversity that is achieved by adding a new reference sequence 

yields negligible improvements in phylogenetic accuracy. These findings corroborate 

prior work which finds that the benefit of RGFL phylogenies are constrained by the 

phylogenetic diversity captured within the references (Sharpton et al. 2011). 

As we move towards improved sequencing technologies that enable rapid and 

accurate sequencing nearing full-length 16S gene segments we expect the incorporation 

of high-quality reference sequences will continue to improve phylogenetic accuracy. 

Regardless of sequencing quality and length, the added phylogenetic diversity that 

provides additional contextualization for lineages may improve the resolution of 

phylogenetic trees. Our results comparing FL to RGFL (data not shown) indicated that 

there are still differences between both phylogenetic diversity and tree topology. We 

hypothesize that these differences between FL and RGFL phylogenies provide a further 

gain in accuracy due to the additional information in the form of added phylogenetic 

diversity with reference sequences. Further, we extrapolate that multi-gene, protein, or 

genome phylogenies would benefit from pertinent reference sequences to guide the 

placement of the samples. 

In summary, we have provided evidence that sequence length, sample size, and 

sample diversity drive patterns of accuracy between phylogenies reconstructed using full-
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length and short sequences. We demonstrated that reference sequences improve the 

precision of short sequences to reconstruct 16S rRNA relationships between taxa. As a 

result, we recommend that researchers integrate full-length reference sequences into their 

phylogenetic reconstruction methods to improve the accuracy of their phylogenies. We 

found that generally, the greatest increase in phylogenetic accuracy occurs between 100 

and 200 nucleotides, and therefore suggest that 16S rRNA based studies should strive to 

be conducted with reads of at least 200 nucleotides in length. However, when conducting 

analyses that apply clade-based phylogenetic tools, we recommend longer read lengths 

due to the continuous improvement in topological accuracy compared to full-length 

phylogenies. Furthermore, when reconstructing phylogenies with closely related 

organisms, we recommend longer sequence lengths to minimize phylogenetic error. 

Together, our findings have highlighted the importance of experimental design and 

methodological selection by demonstrating their impact on phylogenetic tree structure 

which may ultimately skew the interpretation of phylogeny-driven inferences. 
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Figure 2.1 | Simulation Framework Overview 
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Figure 2.2 | The accuracy of phylogenetic diversity and tree topology across read 

length and hypervariable regions. Each point represents the mean value from 100 

comparisons between two phylogenetic trees, one reconstructed with SR or RGSR and 

the other with FL sequences. Phylogenies were reconstructed using 1000 randomly 

selected sequences from SILVA 16S LTP database after filtering out sequences shorter 

than 550 nucleotides from the beginning of the V6 primer. SR and RGSR sequences were 

trimmed to 100, 200, 300, 400, and 500 nucleotides from the beginning of the primer 

location within the SINA aligned sequences for hypervariable regions V2-V6 in the 5’ to 

3’ direction. (A) Phylogenetic diversity of SR phylogenies compared to FL phylogenies. 

(B) Phylogenetic diversity of RGSR phylogenies compared to FL phylogenies. (A,B) The 

mean mantel correlation between pairwise tip-to-tip distance matrices are reported with 

standard error bars. (C) Topological dissimilarity of SR phylogenies compared to FL 

phylogenies. (D) Topological dissimilarity of RGSR phylogenies compared to FL 

phylogenies. (C,D) The mean value of normalized Robinson-Foulds distance metric of 

tree topology between phylogenies is reported with standard error bars. 
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Figure 2.3 | A per-base sweep of phylogenetic accuracy across SILVA 16S rRNA 

alignment. Each point is a comparison between two phylogenetic trees, one reconstructed 

with SR or RGSR and the other with FL sequences. Phylogenies were reconstructed using 

1000 sequences from SILVA 16S LTP database after filtering out sequences shorter than 

550 nucleotides from the beginning of the V6 primer location. The sampled sequences 

were selected to maximize the phylogenetic distance between each two tips. At each 

position in the SILVA 6888 column alignment in the 5’ to 3’ direction, SR and RGSR 

were trimmed to 100, 300, and 600 nucleotides. A) Phylogenetic diversity of SR 

phylogenies compared to FL phylogenies. (B) Phylogenetic diversity of RGSR 

phylogenies compared to FL phylogenies. (A,B) Mantel correlation between pairwise tip-

to-tip distance matrices. (C) Topological dissimilarity of SR phylogenies compared to FL 

phylogenies. (D) Topological dissimilarity of RGSR phylogenies compared to FL 

phylogenies. (C,D) Normalized Robinson-Foulds distance metric of tree topology between 

phylogenies. 
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Figure 2.4 | Phylogenetic diversity and topological accuracy across sampling spaces. 

Three types of sampling were employed to select sequences from SILVA 16S LTP: 

constrained sampling to sequences annotated to 4 selected phyla and 3 orders, random 

sampling conducted with 100 replicates, and selecting to maximize the phylogenetic 

distance between each two tips. Phylogenies were reconstructed using 1000 sequences 

from SILVA 16S LTP database after filtering out sequences shorter than 750 nucleotides 

from the beginning of the V4 primer location. SR and RGSR sequences were trimmed to 

100, 200, 300, 400, 500, and 600 nucleotides from the beginning of the V4 hypervariable 

region in the 5’ to 3’ direction. A) Phylogenetic diversity of SR phylogenies compared to 

FL phylogenies. (B) Phylogenetic diversity of RGSR phylogenies compared to FL 

phylogenies. (A,B) The mean mantel correlation between pairwise tip-to-tip distance 

matrices are reported with standard error bars. (C) Topological dissimilarity of SR 

phylogenies compared to FL phylogenies. (D) Topological dissimilarity of RGSR 

phylogenies compared to FL phylogenies. (C,D) The mean value of normalized 

Robinson-Foulds distance metric of tree topology between phylogenies is reported with 

standard error bars. 
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Figure 2.5 | The effect of sample size on phylogenetic accuracy. Each point is a 

comparison between two phylogenetic trees, one reconstructed with SR or RGSR and the 

other with FL sequences. The 100, 500, 1000, or 5000 sequences in each phylogeny were 

selected to maximize the phylogenetic distance between each two tips after filtering out 

sequences shorter than 750 nucleotides from the beginning of the V4 primer. SR and 

RGSR sequences were trimmed to 100. 200, 300, 400, 500, and 600 nucleotides from the 

beginning of the V4 hypervariable in the 5’ to 3’ direction. A) Phylogenetic diversity of 

SR phylogenies compared to FL phylogenies. (B) Phylogenetic diversity of RGSR 

phylogenies compared to FL phylogenies. (A,B) Mantel correlation between pairwise tip-

to-tip distance matrices are reported for each sequence length and number of lineages. (C) 

Topological dissimilarity of SR phylogenies compared to FL phylogenies. (D) 

Topological dissimilarity of RGSR phylogenies compared to FL phylogenies. (C,D) 

Normalized Robinson-Foulds distance metric of tree topology between phylogenies are 

reported for each sequence length and number of lineages 
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Figure Supplemental 2.1 | Rate of accuracy improvement with increased reference 

sequences. Each point is a comparison between two phylogenetic trees one reconstructed 

with RGSR and the other with FL sequences. The points are connected with a smooth 

spline smoothing function for readability. We reserved 5000 sequences that maximize the 

phylogenetic distance between each two tips from the SILVA LTP 16S sequence 

database for use as reference sequence’s and constructed phylogenetic trees with the next 

1000 sequences that maximized the phylogenetic distance. We constructed phylogenies 

with 1-5000 full-length reference sequences in triplicate and compare the phylogenies 

reconstructed using RGSR that are 100 nucleotides long from the beginning of the V4 

hypervariable region in the 5’ to 3’ direction. (A) Mantel correlation of tip to tip distances 

between RGSR and FL. (B) Robinson-Foulds distance metric on RGSR and FL. (C) Rate 

of change of tip to tip distance correlation. (D) Rate of change of Robinson-Foulds 

metric. We observed a plateau in the rate of change for both phylogenetic diversity and 

topology around approximately 750 reference sequences (C,D). 
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Table 2.1 | Position of primers in SILVA 16S LTP 6888 Column Alignment (5’ to 3’) 

  

Region Position Primer Aligned SILVA (E. Coli) Reference 

V2 104F GGCGVACGGGTGAGTAA 978 Wang and Qian 2009 

V3 357F CTCCTACGGGAGGCAGCAG 2156 Turner et al. 1999 

V4 515F GTGCCAGCMGCCGCGGTAA 3281 Caporaso et al. 2011 

V5 784F AGGATTAGATACCCTGGTA 3800 Andersson et al. 2008 

V6 986F TCGATGCAACGCGAAGAA 4377 Chakravorty et al. 2007 
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Over the centuries, phylogenetic trees have been reconstructed to compare 

organisms to one another based on observational phenotypes and ultimately gain insight 

into evolutionary relationships. However, the advent of genomic sequencing has 

facilitated rapid generation of nucleic acid based phylogenies which have been 

extensively applied to microbial systems. The explosive growth of culture-independent 

based genomic studies in recent decades have resulted in the exponential expansion of 

known microbial diversity which can be better understood through phylogenetic 

inferences that contextualize newly discovered microorganisms (Hugenholtz et al. 1998; 

Hug et al. 2016). Further technological advances have enabled researchers to leverage 

vast amounts of data obtained through shotgun metagenomics and more recently single-

cell sequencing which provide insight into functional potential and fine-scale variation 

between organisms. Yet 16S rRNA gene based phylogenetic analyses continue to provide 

an inexpensive method for obtaining valuable information about the composition of 

microbial communities (Thompson et al. 2017). 

Phylogenetic analyses are conducted to integrate information about the 

evolutionary relationships between organisms in a phylogenetic tree, and because these 

trees are used to inform a variety of analyses, their accuracy is important to quantify. For 

example, phylogenies are used to infer community diversity (Lozupone and Knight 

2005), reveal patterns of trait selection (Gaulke et al. 2018; Washburne et al. 2018), 

identify epidemiological trends (Clarridge 2004), and inform taxonomic classification 

(Yilmaz et al. 2014). Moreover, within group diversity (richness) can be computed using 

phylogenetic distances between lineages or clades within a tree through summing the 

total branch lengths, branch lengths between lineages, or number of nodes. When paired 
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with sample information, a phylogenetic tree that incorporates two groups can be used to 

assess measures of between group diversity (β-diversity) (eg. UniFrac distance 

(Lozupone and Knight 2005; Lozupone et al. 2007)). Phylogenies can also be used to 

map the evolution of trait selection by identifying phylogenetic and co-phylogenetic 

signal (Gaulke et al. 2018). Additionally, phylogeny can inform taxonomic classification. 

In 1990, Carl Woese used phylogenetic inferences based on 16S and 18S rRNA 

sequences to propose three domains that shape modern taxonomy (Woese et al. 1990).  

 Due to the vast array of phylogenetic applications that depend on phylogenetic 

trees, it is imperative to understand and minimize sources of phylogenetic error to ensure 

accurate interpretations. The previous chapter illustrates the effect of methodological 

choices on 16S phylogenetic diversity and topological accuracy. We established a 

software framework to simulate short reads that would be obtained from high-throughput 

DNA sequencers by leveraging the high-quality SILVA LTP full-length 16S sequence 

database and conduct comparisons between 16S phylogenies reconstructed under 

different parameters. We examined the relationship between sequence length and 

phylogenetic error at hypervariable regions V2, V3, V4, V5, and V6, stepwise across 

each location in the alignment, with differing levels of phylogenetic diversity, tree size, 

and both with and without full-length reference sequences. Throughout these analyses, 

we demonstrated that the inclusion of reference sequences increases phylogenetic 

accuracy with remarkable improvements in the similarity of phylogenies reconstructed 

using short reads to phylogenies inferred from full-length gene sequences. Importantly, 

we measure the accuracy of phylogenetic tree reconstruction both in with phylogenetic 

diversity and tree topology metrics to ensure maximum applicability to researchers. 
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 Taken together, these results demonstrate the effects of both the highly recognized 

and the understudied contributors to the accuracy of phylogenetic tree reconstruction in 

microbiome studies. We underscore expense-free improvements to phylogenetic accuracy 

through incorporating reference sequences which are particularly beneficial to short read 

studies. Finally, we researchers should consider how these methodological choices 

impact phylogenetic accuracy and subsequent phylogeny-driven inferences. 
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