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When observers monitor for infrequent signals for extended durations, they generally 

experience a decline in detections over time. This decline is termed the vigilance 

decrement. Current theories of vigilance attribute the decrement to three potential 

mechanisms: conservative shifts in response bias, losses of sensitivity, and an 

increased rate of attentional lapses over time. Understanding which mechanisms 

contribute to the losses of vigilance is necessary to mitigate the decrement in applied 

settings. Unfortunately, much of the existing literature examining vigilance 

performance relies on measures that are not suited for distinguishing between all three 

proposed mechanisms. Using novel methods of analysis, the present project examined 

the extent to which bias shifts, sensitivity losses, and attentional lapses contributed to 

the vigilance decrement across a range of vigilance tasks.  Study 1 (Chapter 3) used 

psychometric curves to analyze changes in response bias, sensitivity, and lapse rate in 

two online vigilance tasks. Data showed that the decrement was largely driven by an 

attentional lapses and conservative shifts in bias over time, with inconclusive 

evidence for a sensitivity loss. Study 2 (Chapter 4) presents a generative process 

model to simulate cognitive mechanisms directly and tests the adequacy of the model 

by reanalyzing data previously fitted with psychometric curves. Results provide 

converging evidence that the decrement was driven by attentional lapses and shifts in 

bias. Study 3 (Chapter 5) uses the generative model to assess vigilance performance 



 

 

 

within a cognitive vigilance task. Vigilance was relatively stable in the cognitive task 

and data gave strong evidence that the decrement, albeit small, was driven by an 

increase in attentional lapses. Together, findings provide strong evidence that 

vigilance decrement is driven by attentional lapses, followed by conservative shifts in 

bias. Relatively weak evidence for sensitivity loss. Suggests interventions that target 

lapses and response criteria most effective for minimizing vigilance losses in applied 

settings.  
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Chapter 1: General Introduction 

Discriminating rare signals from background noise for long durations requires 

vigilance—a state of readiness to perceive and respond to stimuli (N. H. Mackworth, 

1948). Maintaining vigilance is a fundamental part of many routine and safety-critical 

activities, from sonar monitoring and air-traffic control to quality control and long-

distance driving. Though these tasks vary in complexity and consequence, each can 

be conceptualized as a discrimination between two states of the world: one in which a 

signal is present among noise, and one in which a signal is absent. As time on watch 

progresses, monitors often fail to notice signals they are otherwise capable of 

detecting. For example, early researchers noted that inspection workers (Wyatt & 

Langdon, 1932), ship lookouts (Ditchburn, 1943), and radar operators (Lindsley & 

Anderson, 1944) detected progressively fewer targets throughout their shifts. This 

decline in detections over time is called the vigilance decrement. 

Broadly, the objective of the current thesis is to identify the mechanisms that 

contribute to the vigilance decrement. Although this is not a new endeavor, previous 

work has used methods unsuitable for distinguishing between criterion shifts, 

sensitivity losses, and attentional lapses, leaving the question of what causes vigilance 

decrements largely unresolved. An additional point of uncertainty is the nature of 

performance differences between sensory vigilance tasks, in which observers judge 

perceptual features of stimuli, and cognitive vigilance tasks, in which observers judge 

the meaning or value of symbolic stimuli (Deaton & Parasuraman, 1993).  

The studies included in this dissertation aim to address these issues, furthering 

our understanding of the factors that make human monitors vulnerable to declines in 

detection performance over time. This understanding is necessary to effectively 
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mitigate the occurrence of vigilance decrements in applied tasks that require sustained 

attention, including security monitoring, baggage screening, driving, medical 

screening, and air traffic control, since different theories of vigilance loss suggest 

conflicting interventions. For example, the effects of overly conservative response 

criteria might be reduced by adjusting training procedures, increasing the base rate of 

signals (e.g., as in threat image projection used in airport baggage screening), or 

payoffs for hits and false alarms to encourage monitors to adopt more liberal response 

criteria. Alternatively, sensitivity losses might be mitigated by minimizing task 

load—if attentional resources are depleted—or increasing task engagement—if 

attention is reallocated toward task unrelated thoughts. If vigilance decrements are 

driven by attentional lapses, methods of monitoring and recapturing attention may 

prove fruitful. 

Before presenting empirical work examining mechanisms of vigilance loss, 

Chapter 2 provides a review of existing literature. The review describes patterns of 

vigilance performance, classification of vigilance tasks, measurement of the vigilance 

decrement, and theories of vigilance loss. Chapter 3 presents two studies that examine 

changes in three potential mechanisms of vigilance loss—bias shifts, sensitivity 

losses, and attentional lapses—over time. Study 1 used psychometric curves to 

analyze the extent to which each mechanism contributes to the vigilance decrement in 

an online, sensory vigilance task. Study 2 is a close, pre-registered replication.  

Chapter 4 presents an alternative, process modeling approach for analyzing 

mechanisms of vigilance loss. We demonstrate the utility of the model by reanalyzing 

data from the pre-registered online task from Chapter 3, Study 2, as well as data from 

a pre-registered lab-based sensory task. Chapter 5 uses the cognitive process model 
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tested in Chapter 4 to examine the extent to which changes in response bias, 

sensitivity, and attentional lapses contribute to the vigilance decrement in a cognitive 

vigilance task. Chapter 6 presents a general discussion of findings.   
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Chapter 2: Literature Review 

The systematic study of vigilance was prompted by the Royal Air Force’s 

need during World War II to determine the length of time over which radar operators 

could accurately detect enemy submarines. To simulate the key features of a watch-

keeping task, N. H. Mackworth (1948) devised the clock test—a task in which 

operators were to observe a ticking clock hand and detect instances in which it made 

a jump of twice the usual size. Signals were infrequent, difficult to perceive, and 

interspersed among frequent noise stimuli. Mackworth observed that the incidence of 

missed signals was relatively low during the first thirty minutes of the task but 

increased significantly after that, remaining high for the rest of the watch period. 

In the two decades following Mackworth’s clock test, vigilance was assessed 

across a range of laboratory-based watch-keeping tasks. Two key issues emerged. 

First, vigilance performance was inconsistent across tasks. Secondly, no clear 

explanation of the vigilance decrement was forthcoming.  

Inconsistent Performance Across Vigilance Tasks 

A glance at the results of just about any vigilance study will reveal large 

individual differences in measures of performance, including correct detections (Ware 

et al., 1962) and reaction times (McCormack, 1959). Performance indices vary with 

characteristics such as the monitor’s age (Parasuraman & Giambra, 1991), cognitive 

ability (Shaw et al., 2010), working memory (Caggiano & Parasuraman, 2004), and 

task unrelated images and thoughts (Grodsky & Giambra, 1990). Researchers have 

also examined individual differences in the slope of decline over time (Bakan, 1955; 
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N. H. Mackworth, 1950), the magnitude of practice and fatigue effects, and the extent 

to which noise harms performance (Broadbent, 1954).  

Typically, individual differences in performance are consistent within tasks. 

For instance, Jenkins (1958) compared observers’ performance on a visual vigilance 

task completed in the morning to performance on the same task completed in the 

afternoon, finding high correlations in the percentage of signals detected from time 1 

to time 2. Ware et al. (1961) found similar results when they examined the reliability 

of monitors’ performance in an auditory vigilance task over five successive days. The 

observed consistency of performance within tasks presumably reflects stable 

individual differences in the ability to maintain vigilance over prolonged watch 

periods (Jenkins, 1958). This prompted speculation about the possibility of a common 

vigilance factor (H. J. Jerison & Wing, 1961; Tyler et al., 1972). 

Performance across tasks is less consistent. Buckner and collaborators (1960) 

assessed the performance of 54 sonar operators, twice a day, four days a week, for 

four weeks, finding that correlations for detection rate, detection latency, and error 

rates were high across sessions, but low across visual and auditory modalities. 

Similarly, McGrath (1961) assessed the reliability of performance measures across 16 

visual and 16 auditory vigilance tasks, reporting coefficients of .89 and .72 for the 

percentage of signals detected within visual and auditory tasks, respectively. 

However, correlations were low when comparing performance on tasks across 

modalities. Within modalities, detection rates are also highly correlated across tasks 

that match type and difficulty of signal discriminations (Baker, 1963a; Buckner & 

McGrath, 1963; Gruber 1964; McGrath et al., 1960; McGrath, 1961; Pope & 
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McKechnie, 1963), suggesting that these factors may be important determinants of 

vigilance performance (Parasuraman & Davies, 1977). 

Levine et al. (1973) identified two primary perceptual abilities—perceptual 

speed and flexibility of closure—by which monitoring tasks could be classified. 

Perceptual speed describes the ability to rapidly compare sensory stimuli for identity 

or similarity, as when detecting long flashes of light among a series of shorter flashes 

(Eason et al., 1965). Flexibility of closure describes the ability to detect a previously 

specified target among distractors (Baddeley & Colquhoun, 1969). Levine and 

collaborators analyzed the effects of signal rate, sensory mode, and knowledge of 

results on vigilance performance as a function of ability category, revealing that the 

shape of the decrement function was dependent on the abilities involved. At low 

(<1/min) and moderate (1-2/min) signal rates, detections declined gradually over time 

in perceptual speed tasks but declined sharply then plateaued in flexibility of closure 

tasks. 

Building on the abilities classification above (Levine et al., 1973), 

Parasuraman (1976) examined the consistency of individual differences across four 

visual vigilance tasks. Tasks were categorized according to whether they required 

perceptual speed or flexibility of closure, and whether the signal to be discriminated 

was a decrease in the intensity of a flashing light or a decrease in the separation 

between two lines. Three groups of participants (n = 10) completed selected pairs of 

tasks (see Figure 1). 

Note that Parasuraman (1979) later adopted the terms successive and 

simultaneous to describe what he considered to be the key difference between tasks 
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involving perceptual speed versus flexibility of closure—the type of signal 

discrimination. Successive discriminations, common in “perceptual speed” tasks, 

require observers to detect a change in some feature (e.g., flash duration) of a 

stimulus when a standard stimulus is not present for comparison. In contrast, 

simultaneous discriminations, featured in tasks requiring flexibility of closure, require 

observers to detect a target among distractors when signal and noise stimuli are 

presented simultaneously (Parasuraman, 1979).  

  

 

 

 

 

Figure 1. Task pairs performed by participants in Parasuraman (1976). 

 

Each task lasted 45 minutes, presented stimuli at a rate of 15 events/minute, 

and presented signals at a rate of 1/minute. Performance was analyzed as a function 

of 15-minute time blocks, revealing that correct detections decreased significantly 

throughout the course of the task in each group. Three measures of performance—

correct detections, false alarms, and sensitivity—were highly correlated across tasks 

within groups 1 and 2, suggesting that performance was consistent across tasks 

matched on discrimination type, irrespective of signal type. These measures were 

uncorrelated for group 3’s tasks, which matched signal type (a decrease in light 

Group 1 

Group 3 

Group 2 
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intensity) but differed with respect to discrimination type (simultaneous vs. 

successive).  

In a follow-up experiment, another three groups of subjects (n = 10 per group) 

completed selected pairs of tasks across visual and auditory modalities (Parasuraman 

& Davies, 1977). Performance was correlated for tasks matched on discrimination 

type but not modality, but uncorrelated for tasks that differed in both discrimination 

type and modality. Together, the two experiments indicate that that vigilance 

performance is not entirely task-specific, as inconsistencies in the earlier literature 

may have suggested, nor is it correlated across all tasks as expected if driven by a 

common vigilance factor. Instead, performance appears to depend on task 

characteristics, particularly, whether a task requires the observer to make successive 

or simultaneous discriminations.   

Signal Detection Analysis of the Vigilance Decrement 

The vigilance decrement is typically indexed by a decline in the percentage of 

correctly detected signals over time. Early theories of vigilance assumed that the 

decrement was caused by a decline in observer’s perceptual ability to distinguish 

signals from noise (Frankman & Adams, 1962; J. F. Mackworth, 1968b). The 

development of signal detection theory (SDT; Green & Swets, 1966; Swets et al., 

1961; Tanner & Swets, 1954), however, introduced the possibility that perceptual 

losses alone might not explain vigilance failures.  

SDT models an observer’s ability to discriminate between signal and noise 

events in the presence of noise or uncertainty.  The most basic form of signal 

detection task, the yes-no task, requires the observer to report each trial whether a 
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signal is present or not. The combination of two possible states of the world (signal 

present/signal absent) and two possible responses (signal/noise) produces four 

stimulus-response events, shown in Figure 2. When the true state of the world is 

signal, signal responses are correct and are called hits. Conversely, when the true state 

of the world is noise, signal responses are incorrect and are called false alarms (Green 

& Swets, 1966).  The proportions of signal trials judged as signal and noise are 

termed hit rate (HR) and false-alarm rate (FAR), respectively, and are used to 

calculate measures of sensitivity and bias. The miss rate and correct rejection rate are 

the complements of hit and false alarm rates, respectively, making the latter sufficient 

to fully describe signal detection performance. 

 

 

  

 

Figure 2. Stimulus-response events for signal detection judgments. 

The SDT model assumes that upon observing a stimulus, the observer encodes 

evidence to decide whether the stimulus represents signal or noise, and represents the 

evidence as a univariate decision variable (T. D. Wickens, 2002). Signal and noise 

events correspond to separate distributions of evidence values. On average, signals 

produce larger evidence values than noise. However, unless the distinction between 

the two alternatives is unambiguous, the evidence distributions will overlap, and 

noise trials will sometimes produce larger evidence values than signal trials. The 

 
Signal 

present 
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absent 

Respond 
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Respond 
noise 

Miss 
Correct 
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decision-maker’s ability to distinguish between signal and noise, as determined by the 

overlap between the distributions, is termed sensitivity. Assuming that signal and 

noise distributions are normal and of equal variance, sensitivity can be measured with 

the statistic d’, 

𝑑′ = 𝑧(𝐻𝑅) − 𝑧(𝐹𝐴𝑅) 

 

where HR = p(signal response | signal) and FAR = p(signal response | noise).  

Following encoding, SDT assumes that observers arrive at discrete judgments 

by comparing the decision value to a criterion value (Green & Swets, 1966). 

Evidence values that exceed the criterion are transformed into signal judgments and 

values that fall below the criterion are transformed into noise judgments. The position 

of the criterion reflects the likelihood of making a particular response. For instance, 

an unbiased criterion indicates that the observer has no preference for signal or noise 

judgments, and the proportions of misses and false alarms are equal. This is ideal 

when base rates of signal and noise are equal, and the payoff schedule for signal and 

noise responses are symmetrical. Alternatively, a conservative criterion is biased 

towards noise judgments, which may be ideal when signals are rare or false alarms 

are costly, and a liberal criterion is biased towards signal judgments, which may be 

ideal when signals are frequent, or the value of a hit outweighs the costs of a false 

alarm. The distance from the observer’s criterion to the unbiased position provides a 

measure of response bias, denoted c (T. D. Wickens, 2002). 
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Applying signal detection analyses to vigilance data allows researchers to 

attribute changes in observers’ hits and false alarms to underlying changes in 

sensitivity and response bias. Figure 3 illustrates how changes in an observer’s 

sensitivity and bias affect their hit and false alarm rates. In general, as the observer’s 

criterion shifts conservatively (from the left to right panels), both hits and false alarms 

decrease, and as sensitivity decreases (from the top to bottom panels), hits decrease, 

and false alarms increase. Therefore, changes in sensitivity and bias are inferred from 

the pattern of tradeoffs between hits and false alarms. 

 

Figure 3. How changes in bias and sensitivity affect hits and false alarms. In Panel A, 

the observer’s sensitivity and unbiased criterion produce a roughly 2:1 ratio of hits to 

false alarms. In Panel B, the observer adopts a more conservative criterion, resulting 

in a reduced HR and a reduced FAR. In Panel C, the observer retains the unbiased 

criterion, but has worse sensitivity. Panel D depicts a concurrent criterion increase 
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and sensitivity decrease, resulting in fewer hits and fewer false alarms than in Panel 

A. 

Following the adoption of SDT by vigilance researchers, many studies 

conducted during the 1960’s reported that observers adopted progressively more 

conservative criteria over time on task (e.g., Broadbent & Gregory, 1963; Colquhoun 

& Baddeley, 1967; Loeb & Binford, 1964).  Reviews concluded that the vigilance 

decrement primarily results from changes of bias, rather than declines in sensitivity 

(Broadbent, 1971; Mackworth, 1970; Swets & Kristofferson, 1970). 

Some studies, however, did report decreases in sensitivity concurrent with 

changes in bias. More specifically, sensitivity decrements occurred in tasks that used 

visual signals and high event rates, requiring continuous attention to the display. For 

example, J.F. Mackworth (1968) found declines in d’ in tests requiring continuous 

observation, but constant d’ in discrete tests. Loeb and Binford (1968) and Smith and 

Barany (1970) found a linear decreases in d’ as event rate increased. Interestingly, 

changes in d’ were not observed for auditory signals, regardless of event rate, 

suggesting that performance might also depend on sensory modality.  

To further evaluate the effects of event rate and sensory modality on 

sensitivity and bias, Swets (1977) analyzed the results of twelve studies published 

between 1969 and 1971. All twelve experiments showed an increasingly strict 

criterion over time, (Colquhoun & Edwards, 1970; Deaton et al., 1971; Guralnick, 

1972; Hatfield & Soderquist, 1970; Johnston et al., 1969; Loeb & Binford, 1970; 

McCann, 1969; Miloŝević, 1969; Thurmond et al., 1970; Williges; 1969, 1971, 1973). 

Four of the studies showed concurrent decreases in sensitivity (M. Deaton et al., 
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1971; Guralnick, 19720101; Hatfield & Soderquist, 1970; Williges, 1973); the other 

eight studies found no change in sensitivity. In contrast to previous findings (Loeb & 

Binford, 1968; J. F. Mackworth, 1968a), sensitivity decrements in Swets’ analysis 

were not exclusive to visual tasks and were not ubiquitous among tasks with “high” 

event rates. Swets suggested that the effect of event rate on sensitivity may vary from 

task to task. A later study by Guralnick (1972) found an interaction between event 

rate and signal discriminability, whereby increasing the event rate reduced sensitivity, 

but only when signals were not readily detectable. 

The application of signal detection theory to vigilance data provided 

researchers with a method of assessing vigilance performance that isolates sensitivity 

from bias. Analyses using this method, though sometimes yielding inconsistent 

results, showed that declines in correct detections were mostly caused by observers 

adopting progressively more conservative response criteria over time (Broadbent, 

1971; Parasuraman, 1976; Swets, 1973; Swets & Kristofferson, 1970). Data also 

suggested that sensitivity decrements were more likely to occur in tasks with higher 

event rates, but the relationship between event rate and sensitivity was inconsistent.  

Emergence of a Vigilance Taxonomy 

Seeking to more concretely identify the task characteristics that produce 

sensitivity decrements, Parasuraman and Davies (1977) evaluated 27 vigilance studies 

reporting signal detection analyses. As in the experiments on intra- and inter-modal 

correlations (Parasuraman, 1976; Parasuraman & Davies, 1977), they classified tasks 

according to type of discrimination (successive, simultaneous) and sense modality 

(auditory, visual). They also classified tasks according to source complexity (single 
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source, multi-source) and stimulus event rate (low, high). Based on Loeb and 

Binford’s (1968) finding that sensitivity declined at an event rate of 24/min, 

Parasuraman and Davies defined event rates ≤24/min as low and >24/min as high. 

Parasuraman and Davies observed sensitivity decrements in 13 of the 27 studies they 

examined. The task classification analysis revealed that 1) individual differences were 

only consistent for tasks requiring the same ability, and 2) sensitivity decrements only 

occurred in tasks that combined successive discrimination with high event rates. 

Parasuraman and Davies presented these results as a preliminary taxonomy of 

vigilance, in which sensitivity decrements are a function of discrimination type and 

event rate.  

To further examine the effects of task dimensions on sensitivity losses, 

Parasuraman (1979) manipulated discrimination type and event rate in two 

experiments. In the first experiment, forty participants performed a 45-minute 

auditory vigilance task under one of four conditions produced by the combination of 

two discrimination types (successive, simultaneous) and two event rates (15 

events/min, 30 events/min). Again, a vigilance decrement was observed in all 

conditions, but sensitivity declined only for the successive-high event rate task.  

A second experiment compared performance across a successive 

discrimination task and two simultaneous discrimination tasks that differed in noise 

levels. Sensitivity declined in the successive task, but not in either of the 

simultaneous tasks, supporting the hypothesis that event rate and memory load, rather 

than noise, drive sensitivity decrements. These findings provided support for the 

proposed taxonomy of vigilance performance (Parasuraman & Davies, 1977), 
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prompting Parasuraman (1979) to assert that vigilance decrements are primarily 

driven by declines in sensitivity, with little change in bias, when tasks require 

successive discriminations and employ a high event rate, but are driven only by 

increases in response criterion under alternative conditions. 

Taken at face value, these experiments seem to provide evidence that 

sensitivity decrements occur only in successive, high event rate tasks. Although the 

extremely small sample sizes and high familywise error rates produced by multiple 

comparisons might weaken confidence in these early studies, many aspects of the 

taxonomy are supported by subsequent work. 

Parasuraman (1979) attributed the observed sensitivity decrements to the 

increased information processing demands—specifically, memory and temporal 

demands—placed on the observer in high event rate, successive discrimination tasks. 

This explanation can be understood within the context of resource models of 

attention, which conceptualize attention as the allocation of information processing 

resources to a task (Kahneman, 1973; Norman & Bobrow, 1975; Schneider & 

Shiffrin, 1977; C. D. Wickens, 2002). Information processing resources (e.g., 

processing effort, memory capacity, and communication channels; Norman & 

Bobrow, 1975) are drawn from a limited capacity ‘pool’ of resources that is taxed by 

cognitive activity. 

 A task’s demand on resources depends on parameters such as the sensory 

quality of stimuli, response complexity, and the subject’s level of skill (Navon & 

Gopher, 1979). Subjects allocate resources to a task to achieve the desired level of 

performance, with performance suffering if the demand on resources exceeds the 
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supply (Kahneman, 1973; Kantowitz & Knight, 1974; Moray, 1967; Norman & 

Bobrow, 1975). Sustained attention tasks, in general, are said to place particularly 

high demands on information processing resources; observers need not only pay 

attention for prolonged periods, but must also put forth effort to maintain attention 

despite low signal rates (De Waard, 2002; Hancock, 1989). 

Parasuraman’s resource depletion account of the vigilance decrement 

proposed that tasks with high event rates and successive discriminations are more 

demanding than tasks with low event rates and simultaneous discriminations, and 

therefore tax resources to a greater extent. When the limited supply of cognitive 

resources is used faster than it is replenished, fewer resources are available to the 

vigilance task, and the observer’s ability to discriminate signal and noise declines 

over time. Tasks with high event rates may be more demanding than those with low 

event rates due to the higher rate of processing and time pressure they impose. 

Research shows that time constraints increase perceived mental workload (Hertzum 

& Holmegaard, 2013), which reduces the residual capacity available to the task 

(Block et al., 2010; Hancock & Weaver, 2005). Successive discrimination tasks may 

be more demanding than simultaneous discrimination tasks due to the memory load 

they impose. When stimulus events are presented successively, the observer must 

hold a representation of the standards stimulus in memory to compare to the current 

stimulus each trial (Caggiano & Parasuraman, 2004). Maintaining information in 

memory requires attention (Engle, 2002, 2018) and has been shown to be capacity-

demanding (Baddeley & Hitch, 1974). 
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In contrast, tasks with simultaneous discriminations or low event rates are less 

demanding and do not overburden resources. Decreases in detection rates are 

therefore attributed entirely to conservative changes in response bias (Broadbent & 

Gregory, 1963; Broadbent, 1971, 1971; Egan et al., 1961; Hatfield & Loeb, 1968; 

Loeb & Binford, 1964; Parasuraman, 1976; Swets, 1973; Swets & Kristofferson, 

1970). The optimal criterion placement depends on base rates of signals and noise 

events (Jerison et al., 1965; Williges, 1971) and, to a lesser extent, payoffs for hits 

and false alarms (Levine, 1966; Williges, 1971). Assuming symmetrical payoffs, a 

criterion biased toward the more frequent stimulus event will maximize payoffs. 

Thus, in vigilance tasks containing rare signals, this reduced willingness to report 

‘signal’ over time represents a trend toward optimal decision behavior (Broadbent & 

Gregory, 1963; Broadbent & Gregory, 1965; Levine, 1966; Williges, 1969). 

Sixteen years after Davies and Parasuraman published their vigilance 

taxonomy, See et al. (1995) conducted a meta-analysis of 42 studies that specifically 

examined sensitivity in vigilance tasks. The studies’ 138 conditions were classified 

according to type of discrimination, event rate, whether the tasks were sensory or 

cognitive, and several additional features that could potentially increase task demands 

(e.g., signal regularity, spatial uncertainty, and vigil length). The meta-analysis 

revealed sensitivity decrements with effect sizes greater than 0.2 in 78% of the 

conditions and confirmed that sensitivity decrements mainly occurred in tasks with 

successive discriminations and high event rates.  

Aside from the studies included in the meta-analysis, most of the research 

examining discrimination type and event rate has instead focused on their effects on 
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detection rates in general, rather than on changes in sensitivity and bias. For example, 

researchers have found that successive tasks produce larger vigilance decrements than 

simultaneous tasks (Dember et al., 1985; Lanzetta et al., 1985; Parasuraman et al., 

1984; Parasuraman & Mouloua, 1987), and that the magnitude of the vigilance 

decrement is proportional to the memory load imposed by a task (Helton & Warm, 

2008).  

Similarly, high event rate tasks consistently produce larger vigilance 

decrements than low event rate tasks (Claypoole et al., 2019; Davies & Parasuraman, 

1982; Galinsky et al., 1993; Guralnick, 1972; Jerison & Pickett, 1964; Lanzetta et al., 

1987; Meuter & Lacherez, 2016; Mouloua & Parasuraman, 1995; Parasuraman, 1979; 

Parasuraman & Giambra, 1991; Rose et al., 2001; Smith et al., 2002; Warm & 

Jerison, 1984; Yadav et al., 2015). In fact, although Parasuraman and Davies (1977) 

originally dichotomized event rate as high or low, later studies have shown that 

detection rate is inversely linearly related to event rate (Galinsky et al., 1993; Warm 

& Jerison, 1984). 

Together, these findings provide convincing evidence that successive 

discriminations and high event rates produce greater decrements in vigilance 

performance than their simultaneous and low event rate counterparts. Further, they 

show that increases in memory demand and event rate negatively impact 

performance. These results are consistent with Parasuraman’s claim that vigilance 

tasks produce sensitivity decrements because the increased processing load depletes 

attentional resources and, as such, they are largely interpreted as evidence for the 

resource depletion account of the vigilance decrement. The results do not, however, 



19 

 

 

directly support the claim that decrements in these conditions are driven by losses of 

sensitivity. 

Other studies have reported findings inconsistent with the taxonomy 

altogether. Although Parasuraman and Davies (1977) argued that simultaneous 

discriminations only produce changes in response criteria, sensitivity decrements 

have been observed in simultaneous tasks with poor signal discriminability (Dittmar 

et al., 1985.; Parasuraman, 1985; Parasuraman & Mouloua, 1987; Scerbo et al., 1987; 

Warm et al., 1987). For example, Nuechterlein et al. (1983) manipulated the degree of 

stimulus degradation in a simultaneous, high-event rate task (which, according to the 

taxonomy, should not produce a sensitivity loss). They found that sensitivity declined 

within 5 minutes in the highly degraded condition, but not in the moderately degraded 

or undegraded) conditions. A later study (Parasuraman & Mouloua, 1987) found that 

only successive judgments showed sensitivity decrements when stimulus 

discriminability was moderate or high, but that successive and simultaneous tasks 

both produced sensitivity decrements when stimulus discriminability was poor.  

The taxonomy also specifies that tasks with low event rates (i.e., fewer than 

24/min) only produce changes in criteria, not sensitivity. Yet, researchers have found 

sensitivity decrements in many tasks with event rates below the taxonomy’s cutoff 

(Beh, 1989; Eilers et al., 1988; Joshi, 1985; Mackworth, 1970; Tomporowski & 

Simpson, 1990; Williams, 1986; Williges, 1971)  

Revisions to the Taxonomy 

Although the taxonomy is supported by findings of sensitivity losses in 

successive, high event rate tasks, sensitivity losses in both simultaneous and low 
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event rate tasks suggest that the original taxonomy was incomplete. Researchers have 

proposed two major revisions, discussed below. 

Overall Task Load. In response to findings that sensitivity losses sometimes 

occurred in simultaneous or low event rate tasks, researchers, including Parasuraman 

himself (Parasuraman & Mouloua, 1987), suggested that overall task demand may be 

a more important determinant of sensitivity decrements than the specific combination 

of successive discriminations and high event rates (Lanzetta et al., 1987; Nuechterlein 

et al., 1983). It is generally accepted now that sensitivity decrements may result from 

any combination of variables that sufficiently increases the demand for attentional 

resources (See et al., 1995; Smit et al., 2004). See et al. (1995) suggested that total 

task demand may be indexed by the average level of sensitivity achieved throughout 

the vigil. More demanding tasks—those with lower initial sensitivity—suffer more 

with time on task (Helton & Russell, 2011; See et al., 1995). 

Sensory versus Cognitive Vigilance. See et al. (1995) also recommended 

revising the taxonomy to distinguish sensory tasks, in which signals are changes in 

perceptual features of stimuli (e.g., brightness, size), from cognitive tasks, which 

require numeric, linguistic, or semantic discriminations. Though Davies and Tune 

(Davies & Tune, 1969) had suggested that vigilance performance might differ 

between tasks using sensory (perceptual) and cognitive (alphanumeric) stimuli, 

research making that comparison was too sparse to warrant including the sensory-

cognitive dimension in the taxonomy (Deaton & Parasuraman, 1993). Following the 

development of the vigilance taxonomy, however, Koelega et al. (1989) further 

examined the conditions required for sensitivity losses by comparing performance 
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across four successive, high event rate tasks of varying demand, complexity, and 

stimulus type. The most notable difference in performance was between sensory and 

cognitive tasks; sensitivity declined in the two sensory tasks, but not for the two 

cognitive tasks. Similar results were observed in other studies (Loeb et al., 1987; 

Warm et al., 1984). 

The reason for the performance differences between tasks using sensory and 

cognitive stimuli was unclear. Sensitivity may have remained stable in the cognitive 

task because the alphanumeric stimuli were familiar and well-learned, making them 

less demanding than sensory stimuli. Consistent with this idea, Fisk and Schneider 

(1981) found that variably-mapped signals, requiring effortful processing, produced 

sensitivity decrements while well-learned pairings, requiring automatic processing, 

did not.  

Alternatively, sensitivity may have remained stable in cognitive tasks not 

because alphanumeric stimuli were more familiar, but because they required 

observers to make fundamentally different kinds of discriminations than sensory 

stimuli (Deaton & Parasuraman, 1993; See et al., 1995; Warm et al., 1984). Deaton 

and Parasuraman (1993) had participants make sensory and cognitive discriminations 

of an identical set of numerical stimuli. Correct detections declined over time in the 

sensory task, which required discriminations of digit size, and remained stable in the 

cognitive task, which required even/odd discriminations of digit value. This finding 

suggested that 1) sensory/cognitive differences are driven by factors beyond the 

physical features of the stimuli, and 2) tasks should be classified as sensory or 
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cognitive on the basis of the discrimination required, rather than the nature of the 

stimuli. 

Performance differences might have been driven by the additional processing 

step involved in cognitive discriminations (Deaton & Parasuraman, 1993; See et al., 

1995). The sensory task involved extracting line length from the digits and comparing 

them, while the cognitive task involved extracting the name code for the digit, 

determining the number category to which it belongs (odd/even), and then comparing. 

However, the cognitive task was not considered more difficult and did not produce 

lower performance than the sensory task in Koelega et al.’s (1989) study. It is also 

possible that sensory tasks suffer more with time on task because participants are less 

able to predict how well they are performing (Deaton & Parasuraman, 1993). Deaton 

and Parasuraman suggested that the familiarity of cognitive stimuli offers built-in 

feedback that may motivate monitors to perform better. 

Despite receiving relatively little attention in the literature, the sensory-

cognitive dimension explained variance over and above the average level of 

sensitivity in the meta-analysis (See et al., 1995). Overall, sensitivity decrements 

were larger in sensory tasks than in cognitive tasks, except at very high event rates. 

However, a recent study (Claypoole et al., 2019) showed that event rate has a similar 

effect on cognitive and sensory stimuli. The current understanding, based on research 

summarized in See et al.’s (1995) meta-analysis, is that the presence and magnitude 

of a sensitivity decrement is a function of the type of discrimination, event rate, 

average sensitivity, and type of stimuli used in the task (sensory, cognitive). The 
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mechanism by which sensitivity differs in sensory and cognitive tasks remains 

unspecified.  

Theories of Sensitivity Loss 

In recent years, the focus of vigilance research has shifted from identifying the 

conditions in which sensitivity declines to understanding why it declines. The 

resource depletion theory attributes sensitivity decrements to information processing 

resources being overloaded and in turn, depleted. Mind-wandering theories, on the 

other hand, attribute sensitivity losses to resources being underloaded and in turn, 

reallocated elsewhere.  

Resource Depletion 

The resource depletion hypothesis (Parasuraman, 1979) posits that vigilance 

tasks are effortful and therefore deplete information processing resources over time 

(Caggiano & Parasuraman, 2004; Parasuraman, 1979; Warm et al., 1996). As 

resources diminish, less attention can be directed to the task, reducing the monitor’s 

ability to discriminate signal from noise. The resource depletion account of vigilance 

is consistent with findings that 1) increasing task demands increases the vigilance 

decrement, 2) vigilance tasks are subjectively effortful, and 3) cerebral metabolic 

activity declines with time on task. 

Increasing task demands increases vigilance decrement.  If sensitivity 

declines because task demands deplete resources (Parasuraman et al., 1987), then 

tasks that place greater demands on resources ought to deplete resources faster and 

produce a larger vigilance decrement than those that are less demanding (Caggiano & 
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Parasuraman, 2004). A substantial body of research finds that more demanding tasks 

produce not only lower overall detection rates but greater vigilance decrements than 

less demanding tasks (Gluckman et al., 1988; Helton & Russell, 2011, 2013; Helton 

& Warm, 2008; Smit et al., 2004; Joel S. Warm & Dember, 1998). For example, tasks 

with poor signal discriminability show steeper decrements over time that those with 

high signal discriminability, some of which are attributed directly to sensitivity losses 

(Helton et al., 2004, 2002; Helton & Warm, 2008; Matthews et al., 2000; Temple et 

al., 2000). MacLean et al. (2009) found that cueing visual attention to the location of 

a signal resulted in smaller sensitivity decrements than when stimuli required 

continuous monitoring. These findings demonstrate that more demanding tasks 

produce greater vigilance decrements, if not greater sensitivity decrements, consistent 

with the resource depletion hypothesis. 

Vigilance is subjectively effortful. Vigilance tasks—though relatively 

straightforward—also appear to impose considerable mental workload on observers 

(R. A. Grier et al., 2003; Helton & Russell, 2013; Helton & Warm, 2008; Hitchcock 

et al., 1999; Temple et al., 2000; Warm et al., 1996). Workload describes the effort 

expended by an operator to achieve a particular level of performance (Hart & 

Staveland, 1988) and is the product of a task’s demands, an operator’s skill and 

response to a task, and the context in which the task is performed. Including a 

measure of workload is now commonplace in vigilance research, and for several 

decades, studies have consistently found that vigilance tasks produce moderate to 

high workload ratings (Dittmar et al., 1993; Finomore, 2006; Grier et al., 2003; Grubb 

et al., 1995; Helton et al., 2005; Helton & Russell, 2013, 2013; Helton & Warm, 

2008; Hitchcock et al., 1999; Hollander et al., 2004; Matthews et al., 2000; Scerbo et 
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al., 1993; Schoenfeld & Scerbo, 1997; Szalma et al., 2004; Temple et al., 2000) 

driven by high levels of mental demand and frustration (Hancock, 1984; Matthews et 

al., 2000). 

Observers also find vigilance tasks highly stressful, making them feel less 

energetic, cheerful, motivated, able to concentrate, confident, and self-focused 

(Szalma et al., 2004). These effects do not seem to result simply from boredom, but 

from the information processing demands of the vigilance tasks themselves (Alikonis 

et al., 2002; Hitchcock et al., 1999; Warm et al., 1996). 

The high workload and stress associated with vigilance tasks is interpreted as 

evidence that vigilance depletes resources (Parasuraman and Davies, 1977; Davies 

and Parasuraman, 1982; Parasuraman, 1984; Parasuraman, Warm and Dember, 1987; 

Warm and Dember, 1998). An alternative interpretation is that remaining vigilant for 

rare signals does not deplete resources, but that resource demanding tasks are 

susceptible to vigilance losses. If it is the vigilance component of these tasks that 

makes them stressful/taxing, and not other task, operator, or contextual factors, then 

workload should decrease when signals become more frequent.     

Experiments manipulating signal rate have not found evidence that higher 

signal rates are associated with lower workload (R. A. Grier et al., 2003; Sawyer et 

al., 2014). At least one study trended in the opposite direction—Matthews (1996) 

compared low (.1) and high (.35) signal probabilities and found that mean overall 

workload was higher for the high-probability task. Although the resource depletion 

account predicts that increasing the signal rate reduces attentional demands, and 

therefore workload, Matthews interpreted the increased workload as evidence that 
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resources were depleted by the increased need to respond when signals were more 

frequent. This presents an issue for testing the claim that vigilance itself causes high 

workload: if reducing attentional demands (by increasing the signal rate) 

proportionally increases response demands, then changes in workload as a function of 

signal rate are not diagnostic of resource depletion. 

Cerebral metabolic activity declines with time on task. Although high 

workload is not proof that that the vigilance aspect of monitoring tasks depletes 

resources, the taxing nature of vigilance tasks is also demonstrated by brain imaging 

studies. Early PET and FMRI studies found that vigilance tasks were associated with 

increased activity in several brain areas (Deaton & Parasuraman, 1988) but 

unfortunately, did not examine changes in brain activity over time on task. Newer, 

less invasive neuroimaging techniques like transcranial doppler sonography (TCD; 

Aaslid, 1986) allow researchers to monitor participants for extended periods without 

hindering movement, making them more suitable for assessing changes over time. 

During TCD, ultrasound waves are transmitted through the skull and are 

reflected off blood cells. Metabolic activity in the brain produces by-products such as 

carbon dioxide, which dilates blood vessels in the area, resulting in an increase in 

blood flow to the region. By measuring the difference in frequency between outgoing 

ultrasound signals and the reflected energy, TCD provides a real time measure of 

cerebral blood flow velocity (CBFV). CBFV reflects metabolic activity and is higher 

when a person is engaged in mental activity than when they are at rest (Duschek & 

Schandry, 2003; Helton et al., 2007; Stroobant & Vingerhoets, 2000; Vingerhoets & 

Stroobant, 1999a, 1999b). Individual differences in CBFV are correlated across tasks 
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and are unrelated to changes in physiological arousal (e.g., pulse rate, heart rate, 

respiration, and blood pressure (Schnittger et al., 1997; Vingerhoets & Stoobant, 

1999a, 1999b). 

Several experiments have used TCD to analyze CBFV during vigilance tasks 

(Joel S. Warm et al., 2008; Joel S. Warm & Parasuraman, 2007). Participants 

performing vigilance tasks show an increase in CBFV in the right cerebral 

hemisphere relative to the left hemisphere. No hemispheric differences are observed 

in participants performing a control task (Helton et al., 2007; Hollander et al., 2003). 

The absolute blood flow velocity appears to be positively associated with the 

cognitive demands of the vigilance task (Hitchcock et al., 2003; Warm & 

Parasuraman, 2007). Additionally, right hemisphere CBFV declines over time for 

tasks that produce vigilance decrements (Hitchcock et al., 2003; Shaw et al., 2009) 

but remains stable when vigilance decrements are not observed (Funke et al., 2010). 

This covariation led proponents of resource depletion theory to suggest that declines 

in CBFV reflect declines in the availability of information processing resources (Joel 

S. Warm et al., 2012). 

Other studies though, do not find evidence of a decline in CBFV over time. 

Helton et al. (Helton et al., 2007) and Hollander et al. (Hollander et al., 2003) both 

found that observers performing an abbreviated (12-minute) vigilance task had higher 

blood flow velocity in the right than the left cerebral hemisphere, compared to no 

hemispheric differences in in a control task. But CBFV remained stable over time in 

both cases, despite declines in correct detections. Both studies also included a 

measure of cerebral blood oxygen saturation, which has been previously shown to 
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increase with the information processing demands of the task being performed 

(Punwani et al., 1998; Toronov et al., 2001). As with blood flow velocity, blood 

oxygenation was higher in the right hemisphere than the left for the vigilance group 

than the control, but did not decline over time. Helton and Hollander suggested that 

the abbreviated tasks they used may not have been long enough to allow declines in 

cerebral vascular dynamics to be observed, despite being long enough to produce a 

vigilance decrement. 

If CBFV and oxygenation reflect the availability of resources, then under the 

depletion hypothesis, declines in CBFV should parallel declines in sensitivity.  The 

aforementioned studies reveal associations between performing a vigilance task and 

increased blood flow velocity in the right hemisphere, and between declines in CBFV 

and correct detections. However, the false alarm rates were too low to allow for signal 

detection analysis of sensitivity and bias, meaning that observed declines in correct 

detections cannot be attributed confidently to declines in sensitivity. The exception is 

a more recent study by Matthews and colleagues (Matthews et al., 2010), who found 

that declines in CBFV were accompanied declines in A’—an alternative measure of 

sensitivity that is widely believed to be nonparametric (see p. 40 for discussion of the 

limitations of A’).  

Collectively, the pattern of results observed in brain imaging studies leaves 

open the possibility that increased blood flow and oxygenation are not functionally 

important for maintaining vigilance but byproducts of engaging with the vigilance 

task. The observed decline in blood flow velocity may simply reflect a decline in 

resource utilization over time (e.g., if attention is diverted elsewhere), rather than a 
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decline in resource availability. An explanation along these lines would account for 

the co-variation in brain activity and vigilance decrements without assuming a causal 

mechanism or loss of sensitivity.  

Mind-wandering 

In contrast to the view that vigilance tasks ‘overload’ observers, leaving 

insufficient resources for the task, mind-wandering accounts posit that the 

monotonous and understimulating nature of vigilance tasks ‘underloads’ observers, 

causing them to withdraw attention from the task. Theories of mind-wandering 

specify not only that attention is withdrawn from the task, but that it is redirected to 

internally generated task unrelated thought (TUT; Klinger, 1978; McVay & Kane, 

2009; Risko et al., 2012; Seli et al., 2016; Thomson et al., 2015, 2016). As in a 

resource depletion account, a mind-wandering explanation predicts that fewer 

resources are allocated to the task over time, resulting in poorer quality information 

processing, and in turn, a decline in sensitivity.  

Smallwood and Schooler (Smallwood & Schooler, 2006) argue that mind-

wandering is automatically activated by task-unrelated goals that draw attention away 

from the primary task, but that resources are required to maintain the resulting TUTs. 

Therefore, in the context of vigilance, TUTs draw attentional resources away from the 

primary task, resulting in a decline in correct detections over time. This theory has 

been described as the executive-resource theory of mind-wandering (Feng et al., 

2013; Thomson et al., 2015). 

Conversely, McVay and Kane (2009, 2012) argue that mind wandering does 

not require attentional resources. Drawing on Watkins’ (2008) elaborated control 
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theory, they propose a control-failure theory of mind-wandering, in which TUTs are 

initiated by failures of executive control to combat thoughts that interfere with the 

task and are maintained automatically. Both theories (Smallwood & Schooler, 2006; 

McVay and Kane, 2009; 2012) assume that mind-wandering occurs because the task 

fails to hold the observer’s attention and, as such, attention becomes decoupled from 

the task (i.e., divided between external and internal information; Antrobus, 1968; 

Barron et al., 2011). Mind-wandering accounts of the vigilance decrement are 

consistent with findings that 1) increasing task engagement, arousal, and motivation 

reduces the vigilance decrement, 2) increasing task demands increases the vigilance 

decrement, and 3) TUTs increase with time on task.  

Increasing Task Engagement and Motivation Reduces the Vigilance 

Decrement. Vigilance studies find that task engagement, as measured by the DSSQ 

(Matthews et al., 2002), typically declines over time (Matthews et al., 2002, 2017; 

Szalma et al., 2004) and is positively associated with detection performance 

(Finomore et al., 2009; Matthews et al., 2001; Matthews & Davies, 2001; Neigel et 

al., 2019). These findings are consistent with both resource depletion and mind-

wandering accounts of the vigilance decrement.  Under a resource depletion account, 

declines in task engagement have been interpreted as a byproduct of diminishing 

attentional resources (Matthews & Davies, 2001; Temple et al., 2000). Meanwhile, 

the mind-wandering account assumes that disengagement from the task causes 

attentional lapses, resulting in a decline in detections. This leads to the specific 

prediction that more engaging tasks will result in fewer attentional lapses and in turn, 

smaller vigilance decrements than less engaging tasks (Barron et al., 2011; Thomson 

et al., 2015). 
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Pop et al. (2012) manipulated task engagement by increasing the response 

demands of a simulated air traffic control task. Participants in both the “standard” and 

“engagement” conditions were tasked with monitoring for potential aircraft collisions. 

Those in the engagement had the additional task of clicking on aircraft as they entered 

the airspace. Participants performed the task on four consecutive days (1 hr/day). A 

vigilance decrement was observed for both conditions on Days 1, 2, and 3, but by 

Day 4, vigilance declined only in the standard condition and remained stable in the 

engagement condition. This suggests that engaging monitors in the task by having 

them respond to stimuli, rather than just passively monitor them, can mitigate the 

vigilance decrement—at least after extended practice. 

In an earlier study, however, Pop et al. (2010) included two levels of cognitive 

engagement in which operators made decisions about aircraft based either on a single 

feature or the conjunction of two features. Vigilance declined in all conditions. Taken 

together, these findings (Pop et al., 2010, 2012) suggest that task engagement can 

mitigate the vigilance decrement, but perhaps only when the method of increasing 

engagement imposes minimal cognitive demands on the operator. This interpretation 

is consistent with Molloy and Parasuraman’s (Molloy & Parasuraman, 1996) finding 

that detection performance was better in a complex single task, which involved 

monitoring an automated routine in a simulated flight system, than in a complex 

multitask condition, which involved monitoring additional gauges, and a simple 

single-task condition, which involved discriminating squares that differed in size.  

Vigilance can also be maintained at relatively high levels via motivational 

influences. Esterman et al. (2016) examined the motivational effects of monetary 
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losses in a vigilance task in which participants began with the potential to keep $18. 

Participants either lost small amounts of money for errors throughout the task (the 

continuous-small loss condition) or lost all $18 if they incorrectly responded to one 

particular stimulus toward the end of the task (the anticipated-large loss condition). 

When tasks were well-practiced, sensitivity (d’) remained stable in the anticipated-

large-loss condition, but declined over time in the continuous-small-loss condition, 

showing that vigilance can be affected by motivational differences. Esterman et al. 

attributed the effect of the anticipated-large loss to the fact that the opportunity cost 

was held constant in this condition. The opportunity cost model (Kurzban et al., 2013) 

posits that when the value of alternatives is greater than the value of the current task, 

information processing resources will be reallocated to an alternative that is more 

rewarding or lower effort (e.g., mind wandering). Thus, in the continuous-small-loss 

condition, the value of alternatives is more likely to exceed the value of attending to 

the task as the remaining reward decreases in monetary value. Previous work that has 

failed to find an effect of reward and punishment on vigilance have employed 

continuous-small rewards/punishments (Bergum & Lehr, 1964; Esterman et al., 

2014).  

Vigilance decrements can also be attenuated by providing monitors with 

knowledge of results (e.g., a message saying “hit” after a correct detection (Chadda, 

1992; Shaw et al., 2009; Szalma et al., 2006; Warm et al., 2009). Baker (1963b) 

suggested that knowledge of results (KR) improves vigilance by allowing monitors to 

generate accurate expectations about the timing and frequency of signals. However, 

this interpretation is challenged by findings that false KR is just as effective at 

mitigating vigilance decrements as true KR (Antonelli & Karas, 1967; Loeb & 
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Schmidt, 1963; J. F. Mackworth, 1964; R. L. Smith, 1966; Warm et al., 2009; 

Weidenfeller et al., 1962). These findings suggest that the effectiveness of KR can be 

attributed to the process of receiving feedback rather than to its informational content.     

To disentangle the motivating and arousing effects of receiving feedback, 

Loeb and Schmidt (1963) compared the effectiveness of messages that simply 

acknowledged monitors’ responses to messages that provided true and false KR.  

Acknowledgement of responses did not maintain performance, suggesting that the 

effectiveness of KR is not driven by the arousing effect of added stimulation, but by 

receiving feedback in particular. These findings led researchers to conclude that the 

facilitative effects of KR are mostly motivational in nature (Loeb & Schmidt, 1963; 

Sipowicz et al., 1962; R. L. Smith, 1966), though it is possible that feedback 

messages are more arousing than task-irrelevant messages. Alternatively, since these 

studies did not isolate the effects of KR on sensitivity and bias, KR might have 

increased the detection rate simply by modifying bias (i.e., feedback of missed signals 

would promote a more liberal response bias). 

In addition, monitors often demonstrate an “end spurt” whereby vigilance 

improves towards the end of the task (Beh, 1989; Catalano, 1973; Childs & Halcomb, 

1972; De Joux et al., 2013; Johnston et al., 1966). Given that the increase in vigilance 

occurs only when participants have knowledge of the length of the vigil and time 

remaining, researchers attribute it to an increase in motivation due to anticipation of 

the end of the task (Bergum & Lehr, 1963; Catalano, 1973; Dannhaus et al., 1976). 

Collectively, the findings that increased engagement, rewards, knowledge of results, 

and knowledge of vigil length can attenuate vigilance decrements suggests that 
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vigilance is not merely a function of the resources available, as predicted by the 

resource depletion account. Instead, vigilance appears to be at least partially driven by 

monitors’ motivation and willingness to attend to the task, consistent with the mind-

wandering account.  These findings might be reconciled with a resource depletion 

account if we assume that motivation and willingness to attend to the task increase 

resource availability (Kahneman, 1973).  

Increasing Task Demands Increase the Vigilance Decrement. As 

previously discussed, the resource depletion account of the vigilance decrement is 

supported by evidence that more demanding tasks produce larger vigilance 

decrements (Caggiano & Parasuraman, 2004; See et al., 1995). In contrast, the mind-

wandering account assumes that attentional lapses are driven by the understimulating 

and monotonous nature of vigilance tasks, such that more demanding tasks should 

reduce attentional lapses and produce smaller vigilance decrements. Accordingly, 

rates of mind-wandering tend to be lower in more demanding tasks (Forster & Lavie, 

2009; Giambra, 1995; Smallwood et al., 2004; Thomson et al., 2013) and increasing 

task demands should therefore decrease the size of the vigilance decrement. 

However, Smallwood and Schooler’s attentional resource theory of mind-

wandering assumes that performing vigilance tasks and engaging in TUTs draw from 

the same pool of attentional resources. As such, attending to one leaves fewer 

resources for the other. It follows, then, that cost of allocating resources to mind-

wandering would be greater in vigilance tasks that are more resource-intensive (e.g., 

Feng et al., 2013; Thomson et al., 2014). The resource depletion and mind-wandering 

accounts of the vigilance decrement therefore both predict that more demanding tasks 
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produce greater vigilance decrements because fewer attentional resources are 

available to the task. 

Mind-wandering Covaries with Performance. On their own, findings that 

more demanding tasks produce larger vigilance decrements are unable to distinguish 

between the resource depletion and mind-wandering hypotheses. However, if 

vigilance decrements are in fact a result of mind-wandering, then decreases in 

vigilance should be paralleled by increases in mind-wandering. Methods of 

measuring mind-wandering include the probe-caught method, in which participants 

are periodically asked to report whether they are currently engaging in task-related or 

task-unrelated thoughts (Smallwood et al., 2007), the self-caught method, in which 

participants indicate when they become aware of task-unrelated thoughts (Smallwood 

et al., 2004), and retrospective reporting, in which participants estimate the frequency 

of task-related and task-unrelated thoughts at the end of the task (e.g., using the 

“thinking content” subscale of the DSSQ;  Matthews et al., 2002).  

The evidence that mind-wandering is negatively correlated with overall 

performance in is mixed, with some studies reporting that the frequency of self-

reported TUTs is negatively correlated with detections (Helton & Warm, 2008; 

Robertson et al., 1997), and others reporting that TUTs did not predict performance 

(Head & Helton, 2014). However, very few tasks assess the frequency of mind-

wandering over time. Those that do indicate that the frequency of TUTs increase 

throughout the duration of the vigil, while correct detections decrease (Cunningham 

et al, 2000) and response times increase (McVay & Kane, 2012). If we assume that 

TUTs demand attentional resources, then under the resource depletion account, TUTs 
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should decline over time as the pool of available resources diminishes.  Although 

research directly assessing the prediction that increases in mind-wandering parallel 

declines in vigilance is sparse, the existing findings that TUTs increase over time 

support the mind-wandering account and are inconsistent with the resource depletion 

account. 

So far, the mind-wandering wandering account of the vigilance decrement is 

supported by findings that vigilance decrements can be alleviated by increasing the 

extent to which monitors are engaged in and motivated to perform well in vigilance 

tasks and findings that mind-wandering increases over time. The relationship between 

increasing task demands and greater vigilance decrements can also be explained by 

the mind-wandering account. However, the idea that mind-wandering occurs because 

task it is under-stimulating is inconsistent with strong evidence that vigilance tasks 

are stressful (e.g., Caggiano & Parasuraman, 2004). Thus, neither the resource 

depletion theory nor the resource and control-failure theories of mind-wandering can 

fully account for all the findings observed.  

Resource Control Theory 

To better account for the full range of findings, Thomson, Besner and Smilek 

(2015) recently proposed a new theory of sustained attention that draws on aspects of 

the resource depletion account and the executive-resource and control-failure mind 

wandering accounts discussed above. Resource control theory posits that failures of 

executive control result in inappropriate allocation of attentional resources to mind-

wandering. Helton and Warm (2008) had previously speculated from a resource 

depletion perspective that resources could be misallocated to TUTs. 



37 

 

 

Thomson et al. (2015) propose that executive control is responsible for 

distributing attentional resources among tasks, and that engaging executive control 

requires effort. The theory holds that the monotonous and unrewarding nature of 

vigilance tasks causes the motivation to engage executive control to wane over time, 

allowing information processing resources to be inappropriately allocated to mind-

wandering. Specifically, executive control is said to fade because the cost—perceived 

as effort—of maintaining it outweighs the benefit of detecting occasional signals.  

The resource control theory differs from the executive control theory of mind-

wandering (McVay and Kane, 2009; 2012) in that it does not assume that executive 

control failures initiate instances of mind-wandering, only that control failures allow 

instances of mind-wandering to proceed unchecked and consume resources needed 

for the primary task. The resource control theory attributes the effortful and stressful 

nature of vigilance tasks to the increasing effort required to maintain the correct 

allocation of resources to the primary task over time. 

Re-examining evidence for sensitivity losses 

Overload and underload accounts of the vigilance decrement offer alternative 

explanations for the progressive decline in sensitivity over time. Under a resource 

depletion hypothesis, monitors’ information processing resources deplete, limiting the 

amount of attention that can be directed to detecting signals. Under the mind-

wandering hypotheses, the pool of resources does not shrink but is instead reallocated 

to TUT. Both the resource depletion account and the resource control theory of mind-

wandering are consistent with the finding that vigilance tasks are subjectively 

effortful and stressful.  
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Although there is ongoing debate about the mechanism underlying the 

vigilance decrement, it seems clear that declines in sensitivity play an important role. 

A recent review, however, suggests that the evidence for sensitivity losses is much 

weaker than it appears (Thomson et al., 2016). Thomson and colleagues argue that 

shifts in response bias can masquerade as sensitivity losses when false alarms are 

extremely low. Although signal detection theory provides measures to isolate 

sensitivity from bias, measures of sensitivity based on binary responses are only bias-

free when certain distributional assumptions are met. Recall that a decrease in correct 

detections may arise from a conservative shift in response criterion, in which case the 

observer makes fewer ‘signal’ judgments, resulting in fewer false alarms, or from a 

decline in sensitivity, in which case the observer more frequently confuses signals 

and noise stimuli, resulting in more false alarms.  

The pattern of false alarms, then, is critical in distinguishing changes in 

sensitivity from changes in bias. As Thomson and collaborators (2016) explain, the 

issue is disentangling sensitivity and bias when false alarms are extremely low.  This 

is rarely the case in regular signal detection tasks, in which the base rates of signal 

and noise events are typically equivalent, observers are required to respond on every 

trial, and signal and noise events are relatively difficult to discriminate. These factors 

encourage more moderate criterion placement than tasks with more frequent signals. 

False alarms tend to be less frequent in vigilance tasks, though, as signals are 

rare and are usually quite distinct from noise events. Thus, task demands encourage 

more conservative criterion placement than tasks with equal base rates of signal and 

noise, and produce little overlap between the underlying signal and noise 
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distributions. When false alarms are at or near floor, conservative shifts in an 

observer’s response criterion can occur without detectably reducing false alarms. If a 

decrease in correct detections is not accompanied by a concurrent decrease in false 

alarms, then shifts in response bias could manifest as declines in the sensitivity 

metric, d’.  

Thus, unless false alarms are high enough that decreases in hit rate could be 

accompanied by a commensurate decrease in false alarms, SDT metrics of sensitivity 

are not independent of response bias (Thomson et al., 2016).  Several researchers 

have previously cautioned against the application of SDT to vigilance tasks for this 

reason (Caldeira, 1980; Craig, 1977; Craig & Colquhoun, 1975; Jerison, 1967; 

Williges, 1973). Yet, researchers continue to interpret apparent declines in hit rate as 

evidence that vigilance decrements are driven by sensitivity losses, even while 

acknowledging that false alarms are too low for meaningful analysis (e.g., (Ariga & 

Lleras, 2011; Helton et al., 2004, 2007, 2008; Temple et al., 2000). 

By manipulating false alarm rates across conditions of a vigilance task, 

Thomson et al. (2016) showed that observed decreases in detections manifested as 

declines in sensitivity metrics when false alarms were low, but revealed changes in 

criterion when false alarms were sufficiently high. Both theoretically and empirically, 

Thomson et al. make a compelling case that within vigilance tasks, patterns of 

performance appearing to reflect declines in d’ may simply reflect shifts in response 

bias.  
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To overcome the problem of low false alarm rates, researchers often opt to use 

the supposedly nonparametric measure of sensitivity, A’, that unlike d', can be 

calculated with hit rates of 1 and false alarm rates of 0. 

 

𝐴′ =
1

2
+
(𝐻𝑅 − 𝐹𝐴𝑅) ∗ (1 + 𝐻𝑅 − 𝐹𝐴𝑅)

(4 ∗ 𝐻𝑅) ∗ (1 − 𝐹𝐴𝑅)
 

 

(J. B. Grier, 1971). A’ corresponds to the area under the receiver operating 

characteristic curve, which is formed by plotting the cumulative HR against 

cumulative FAR at various criterion settings.   The ability to calculate A’ when false 

alarms are 0 makes it particularly appealing to vigilance researchers, since false 

alarms are often extremely low under conditions of low signal rates. It is now known, 

however, that A’ increasingly underestimates sensitivity as bias becomes more 

extreme (McCarley et al., 2021; Pastore et al., 2003; Verde et al., 2006), meaning 

conservative shifts in response bias can manifest as declines in A’ even when true 

sensitivity does not change.  

Unfortunately, the use of A’ is widespread within the vigilance literature (See 

et al., 1995). The preference for A’ likely stems from the fact that the low signal rates 

in vigilance tasks often violate the assumption of equal variance required by d’, and 

the misconception that A’ is nonparametric (Craig, 1979). Many of the seminal 

findings linking memory demands, high event rates, and overall processing loads to 

sensitivity losses are based on reductions in A’ over time. 
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Given the consensus that vigilance decrements are at least partially driven by 

conservative shifts in response bias over time, and the propensity for A’ to 

underestimate sensitivity in these conditions, many of these apparent declines in A’ 

might be driven purely by shifts towards more extreme response criteria.  

Without clear evidence that performance decrements can be attributed to 

changes in sensitivity, the resource depletion account no longer stands out as the most 

plausible explanation of the vigilance decrement. Further, it suggests that vigilance 

researchers cannot simply assume that performance decrements reflect changes in 

sensitivity when tasks are designed according to Parasuraman and Davies’ vigilance 

taxonomy. Thomson and colleagues urge researchers to “place higher value (and 

expend greater empirical effort) on theories of vigilant attention that do not hinge on 

declining observer sensitivity as the primary underlying cause of performance 

decrements” (p.24, 2016) 

Alternatives to Sensitivity Loss 

The consensus among vigilance researchers is that the vigilance decrement is 

at least partially the result of conservative shifts in bias over time. Given that apparent 

sensitivity decrements may be spurious, it is possible that vigilance decrements are 

driven entirely by shifts in response criteria. Alternatively, vigilance decrements 

might be driven by an extreme form of mind-wandering—mindlessness—without 

implicating a loss of sensitivity.   
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Mindlessness 

The mindlessness hypothesis holds that the monotonous and understimulating 

nature of vigilance tasks encourages observers to withdraw their attention from the 

task, leading to increasingly automatized responding over time (Manly, 1999; 

Nachreiner & Hänecke, 1992; Robertson et al., 1997). Since signals are infrequent 

and observers need only respond when they detect a signal, the dominant ‘response’ 

in a vigilance task is to withhold responses from noise events. With time on task, 

withholding responses becomes more frequent, resulting in fewer correct detections. 

The key difference between mind-wandering and mindlessness, is that mindless 

responses are not stimulus driven. It is not merely that some attentional resources are 

redirected, but that attention is withdrawn from the task entirely, resulting in 

attentional lapses that are independent of signal strength. In contrast, mind-wandering 

reduces the quality of information processing, reducing sensitivity such that strong 

signals are detected more often than weak signals. 

Assuming that false alarms are sufficiently high, attentional lapses would 

reduce hit and false alarm rates equally, making lapses indistinguishable from 

conservative criterion shifts in a binary signal detection task. Alternatively, if false 

alarms are near floor, the effect of lapses would only be observed on hit rates, 

appearing as a decline in sensitivity. However, the absence of a relationship between 

self-reported TUTs and time on task (Helton & Warm, 2008) suggests that attentional 

lapses alone cannot fully account for the vigilance decrement. 
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Three mechanisms of vigilance decrement 

Together, current theories invoke three potential mechanisms by which 

vigilance may decline over time: criterion shifts, sensitivity losses, and attentional 

lapses. With only two degrees of freedom, binary signal detection data are unsuitable 

for discriminating between the proposed mechanisms. A novel method, employed by 

McCarley and Yamani (in press), is to analyze changes in the psychometric curve for 

a detection task. Psychometric curves plot signal response rates as a function of signal 

intensity and are characterized by three parameters. The shift parameter determines 

the curve’s horizontal position and corresponds to the level of signal intensity at 

which a monitor reports a signal 50% of the time (i.e., response criterion). The scale 

parameter determines the slope of the curve and corresponds to how easily the 

monitor can discriminate signal from noise (i.e., sensitivity). A steeper slope implies 

better sensitivity, as the rate of responding changes more dramatically depending on 

the signal intensity. Finally, lapse rate determines the asymptote of the curve. A lower 

asymptote implies a higher rate of non-responses that are independent of stimulus 

intensity (i.e., attentional lapses).  

As such, analyzing changes in psychometric curves over time can reveal the 

extent to which changes in response bias, sensitivity, and lapse rate contribute to 

decreased response rates in a vigilance task (See Figure 4).  
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Figure 4. Sample psychometric curves. Curves are showing the effects of changes to 

shift (left), scale (middle), and lapse rate (right). Reproduced with permission from 

McCarley and Yamani (2021). 

 

McCarley and Yamani (2021) employed Bayesian hierarchical modeling to fit 

psychometric curves to responses from a go/no go vigilance task. Vigilance declined 

over the course of the 20-minute task and parameter estimates revealed effects of 

shift, scale, and lapse rate. These findings provide preliminary evidence that all three 

mechanisms: bias shifts, sensitivity losses, and lapse rates, contribute to vigilance 

losses, though the effect of sensitivity losses might be small.    
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Chapter 3: Assessing Online Vigilance Performance with Psychometric Curves 

 

Chapter 3 presents two experiments that test the robustness of McCarley and 

Yamani’s (2021) findings in an online sample. Experiment 1 employed a 12-minute 

sensory vigilance task adapted from McCarley and Yamani’s 20-minute task. Using 

hierarchical Bayesian modeling, we fit detection data with psychometric curves to 

estimate changes in shift, scale, and lapse rate from the first to the last 4-minutes of 

the task. Experiment 2 is a large scale, preregistered replication of Experiment 1. 
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Abstract 

When human monitors are required to detect infrequent signals among noise, they 

typically exhibit a decline in correct detections over time. Researchers have attributed 

this so-called vigilance decrement to three alternative mechanisms: shifts in bias, 

losses of sensitivity, and mind-wandering. The current experiments (n = 111, n = 194) 

examined the extent to which changes in these mechanisms contributed to the 

observed vigilance decrement in an online monitoring task. Participants completed an 

online visual signal detection task, judging whether the separation between two 

probes exceeded a criterion value. Separation was varied across trials and data were 

fit with logistic psychometric curves using Bayesian hierarchical parameter 

estimation. Parameters representing sensitivity, response bias, and attentional lapse 

rate were compared across the first and last four minutes of the vigil. Across two 

experiments, data gave evidence of an increased attentional lapse rate and 

conservative shifts in response bias, with inconclusive evidence for or against an 

effect of sensitivity. Sensitivity decrements appear less robust than criterion shifts or 

attentional lapses as causes of the vigilance loss. 
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Assessing Online Vigilance Performance with Psychometric Curves  

Many tasks require people to watch for rare but critical events over a long 

time; consider baggage screeners and sonar operators watching for security threats, 

quality control inspectors watching for faults, and drivers watching for hazards on the 

road. Discriminating rare signals from background noise for long durations requires 

vigilance—a state of “psychological readiness to perceive and respond” to stimuli 

(Mackworth, 1948, p. 6). As time on watch progresses, vigilance declines and 

monitors miss signals they would otherwise be able to detect. This decline in 

detections over time, called the vigilance decrement, typically begins within the first 

half hour, sometimes in as little as 5 minutes (Nuechterlein et al., 1983). 

Despite intensive study of the topic since the 1940s, researchers have yet to 

reach consensus on the mechanisms underlying the vigilance decrement. The most 

common framework for studying vigilance has been signal detection theory (SDT; 

Green & Swets, 1966; Hautus et al., 2022; Swets et al., 1961; Tanner & Swets, 1954), 

a model of the process by which observers transform probabilistic evidence into 

discrete judgments. In a conventional yes-no signal detection task, the observer is 

asked to discriminate between two possible states of the world, typically termed noise 

(N) and signal plus noise (S+N). Under the SDT model, the observer encodes 

evidence for or against the presence of a signal each trial as a scalar value (Pastore et 

al., 2003). Evidence values vary continuously and probabilistically, and by 

convention, the S+N distribution is assumed to have a mean greater than or equal to 

that of the N distribution.  

Confusability between states of the world exists when the evidence 

distributions corresponding to N and S+N events overlap. To reach a discrete 
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judgment, the observer compares the encoded evidence value to a cutoff (Green & 

Swets, 1966), responding with an S+N judgment if the evidence value is above the 

criterion and N judgment otherwise. Sensitivity, the observer’s ability to distinguish 

signal from noise, increases as overlap between distributions decreases. Bias, the 

observer’s tendency to favor either N or S+N judgments, is determined by placement 

of the response cutoff. 

SDT thus allows two possible mechanisms by which signal detection rates 

might decrease over time--sensitivity losses and conservative bias shifts—and data 

have suggested that in fact, both can contribute to the vigilance decrement. 

Conservative bias shifts occur as observers adjust their behavior to the low signal 

rate, gradually moving their response cutoff upward. (Broadbent & Gregory, 1965; 

Craig, 1978; Williges, 1969). Bias shifts are common in vigilance tasks (Broadbent & 

Gregory, 1965; Colquhoun & Baddeley, 1964, 1967; Swets, 1977; Warm et al., 

2015), and have been regarded as the primary cause of the vigilance decrement 

(Craig, 1978). Decreases in sensitivity are possible but less common, generally 

occurring only in tasks that impose high time stress and heavy demands on working 

memory and perception (Nuechterlein et al., 1983; Parasuraman, 1979; See et 

al.,1995; Swets, 1977).  

The most popular account of these selective effects, the resource depletion 

theory of vigilance (Caggiano & Parasuraman, 2004; Grier et al., 2003; Helton & 

Warm, 2008; Parasuraman, 1979) proposes that sensitivity losses occur when 

sustained information-processing demands gradually consume the operator’s 

attentional capacity. An alternative account, the resource control model (Thomson et 

al., 2015), suggests that the sensitivity decrement occurs when failures of executive 
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control allow information processing resources to drift to off-task processing. Both 

models are consistent with findings that vigilance tasks are stressful and subjectively 

effortful (Dember et al., 1996; Warm et al., 2008).  

Recent work, however, suggests that yes-no signal detection data may be 

inadequate for understanding the vigilance decrement. One concern has been the 

suggestion that apparent losses of sensitivity could be the result of a statistical artifact 

(Thomson et al., 2016). In general, conservative bias shifts and sensitivity losses—

which both reduce hit (i.e., true-positive) rates—are distinguished in SDT by their 

effects on false alarm (i.e., false-positive) rates. All else being equal, false alarm rates 

decrease when bias becomes more conservative and increase when sensitivity 

declines. If evidence distributions for N and S+N events are assumed to be Gaussian 

and equal variance, the tradeoff between hits and false alarm rates in yes-no data is 

captured by the parametric sensitivity measure d’ (Hautus et al, 2022),  

 

d’ = Z(hit rate) – Z(false alarm rate)         (1) 

 

where Z denotes the inverse normal transformation.  

Unless the false alarm rate is high enough to allow a statistically detectable 

decrease between task conditions, however, changes in sensitivity and bias are 

indistinguishable. Unfortunately, as Thomson et al. (2016) have noted, the low signal 

rate inherent to vigilance tasks encourages monitors to adopt an extremely 

conservative cutoff for S+N responses, often producing mean false alarm rates very 

near zero and introducing the risk of spurious sensitivity losses. Although alternative 

measures of sensitivity have been proposed for the analysis of yes-no data (e.g., 
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Pollack & Norman, 1964; Craig, 1979; Szalma et al., 2006), none of them is bias free 

(Getty et al., 1995; McCarley et al., 2021; Macmillan & Creelman, 1996; Pastore et 

al. 2003). These considerations imply that the existing evidence for sensitivity losses 

in vigilance tasks may be less convincing than previously thought (Thomson et al., 

2016). 

Yes-no tasks also provide no direct method of testing for a third form of 

vigilance error, mindless responses. The mindlessness account of vigilance 

(Robertson et al., 1997; Manly et al., 1999; Thomson et al, 2014; Warm et al., 2015) 

argues that detection rates fall because of lapses that occur when attention is 

redirected from the monitoring task to self-generated, task-unrelated thoughts. The 

resource control hypothesis (Thomson et al., 2015) links these lapses to a traditional 

resource model, suggesting that lapses result when executive control failures allowing 

the mind to wander from the vigilance task to unrelated thoughts (Kane & McVay, 

2012). Empirical data have confirmed that off-task thoughts increase over time in 

monitoring tasks, and that the frequency of off-tasks thoughts is correlated with 

vigilance performance (Thomson et al., 2014). But, because yes-no signal detection 

models provide at most two degrees of freedom (depending on whether the false 

alarm rate is above floor), they provide no way of accounting for the effects of mental 

lapses. Further, because lapses will tend to change hit and false alarm rate 

proportionately, they violate the equal-variance Gaussian assumption, and thereby 

distort calculations of sensitivity and bias from yes-no data. 

 The method commonly used to assess vigilance performance, the yes-no 

signal detection task, thus conflates three potential mechanisms by which vigilance 

may decline over time--criterion shifts, sensitivity losses, and attentional lapses. An 
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alternative method of discriminating between the proposed mechanisms, is to analyze 

changes in the psychometric curve (McCarley & Yamani, 2021). The psychometric 

curves plot behavior in a psychophysical task as a function of a given stimulus 

property (Kingdom & Prins, 2016). The psychometric curve for a detection task, for 

example, might plot detection rates as a function of signal intensity, and are 

characterized by three parameters. The first, shift, determines the curve’s horizontal 

position and provides a measure of response bias. The second parameter, scale, is 

inversely related to the slope of the curve and corresponds a measure of sensitivity. 

Finally, lapse rate determines the asymptote of the curve; an attentional lapse implies 

that a signal will go undetected even if it is well above the operator’s response 

threshold, and a higher lapse rate therefore manifests as a decrease in asymptote. As 

such, analyzing changes in psychometric curves over time can reveal the extent to 

which changes in response bias, sensitivity, and lapse rate contribute to decreased 

response rates in a vigilance task. Figure 5 shows examples of curves, from a 

hypothetical vigilance task, differing in three parameters.   
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Figure 5. Sample psychometric curves. Curves are showing the effects of changes to 

shift (left), scale (middle), and lapse rate (right). Curves in the right panel are plotted 

under the assumption that a lapse leads to a failure to respond.  Reproduced with 

permission from McCarley and Yamani (2021). 

 

McCarley and Yamani (2021) employed Bayesian hierarchical modeling to fit 

psychometric curves to responses from a go/no go vigilance task. Vigilance declined 

over the course of the 20-minute task and parameter estimates revealed effects of 

shift, scale, and lapse rate, showing that all three mechanisms contribute to vigilance 

losses. We test the robustness of these findings in two experiments, in which we 

adapted McCarley and Yamani’s (2021) procedure for use in an online task. Research 

examining vigilance performance online is sparse (Luna et al., 2021; Ralph et al., 

2015; Thomson et al., 2016), perhaps, in part, because online studies offer less 

environmental and perceptual control than lab-based studies (Claypoole et al., 2018). 

But, despite variability in device type, screen size, testing location and environmental 

conditions, data collected online are generally consistent with, and of comparable 

quality to, data collected in the lab (Germine et al., 2012; McGraw et al., 2000). It is 

currently unknown whether this holds true for vigilance data. 
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At present, two published studies (Claypoole et al., 2018; Luna et al., 2021) 

have replicated an online vigilance task in a lab setting, producing mixed results. 

Collecting data in a laboratory, Claypoole and colleagues reported declines in correct 

detections like those that Thomson et al. (2016) found in an online version of the 

same task. However, they failed to replicate changes in metrics of sensitivity. In the 

online study, conventional A’ scores indicated a sharp decline in sensitivity over time, 

whereas A’ scores corrected for low false alarm rates did not significantly change. In 

the lab, A’ and corrected A’ scores both increased over time. Luna and colleagues 

observed similar declines in A’ in their lab-based and online vigilance tasks, but 

interpretation of these results is limited, given that A’ is known to vary with shifts in 

bias (McCarley et al., 2021; Pastore et al. 2003). 

We expect our online vigilance task to produce a decline in detections over 

time, but it remains to be seen whether the effects of shift, scale, and lapse rate are 

comparable in the lab and online.  

Experiment 1 

In Experiment 1, we followed the procedure of McCarley and Yamani’s (2021) study 

in an online sample. Participants viewed a series of probe circles and judged whether 

the gap between each pair of probes exceeded 2 cm. To maximize online completion 

rates, we shortened the task from 20-minutes to 12-minutes. There were also small 

differences in task and stimulus design as a result of reprogramming the experiment 

to run online. We fit gap discrimination data with psychometric curves, and analysis 

compared shift, scale and lapse rate parameters for the first and last 4-minutes of the 

task. 
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Method 

Participants. One hundred and eleven undergraduate students were recruited 

from a large public university in the United States. Inclusion criteria were fluency in 

English, normal color vision, and normal or corrected-to-normal visual acuity. All 

participants gave informed consent to participate. Data were excluded from 

participants who failed to complete the full experimental session or to achieve d’ 

scores of ≥ 0.25 in each 4-minute block of the task. Exclusions left 103 participants 

for analysis (Mage = 22.58 years, gender = 80 females, 20 males, 2 non-binary, 1 not 

specified).  All participants received course credit for a 30-minute experimental 

session.  

Apparatus and stimuli. The experimental task was controlled by software 

written in PsychoPy 3 (Peirce et al., 2019) and hosted on Pavlovia 

(https://pavlovia.org/). Stimuli were scaled to participants’ monitors to maintain 

consistent sizing across devices. The stimulus each trial was a pair of red probe 

circles embedded amongst five black distractor circles. Distractors which were 

intended to decrease signal discriminability, a characteristic associated with rapid 

sensitivity decrements (Nuechterlein et al., 1983). All circles were unfilled, drawn in 

2-pixel stroke, and had a diameter of 0.3 cm. Stimuli were presented on a white 

background, within a circular search field 8 cm diameter.  

The two probe circles were arranged horizontally, separated by a distance that 

varied across trials, as described below. The midpoint between probe circles was 

randomly assigned a position with an x-coordinate within an imaginary square of 2 × 

2 cm centered within the display. Distractor circles were randomly assigned a 

position with an X-coordinate ± 2.8 cm from the center of the field and a Y-
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coordinate ± 1 cm from the center, allowing them to appear in any location along the 

X-axis that probe circles could appear. 

Procedure. To match stimulus size across monitors, participants were first 

prompted to complete a screen-scaling procedure in which they resized an onscreen 

image of a credit card to match the size of a physical card. They then performed a 

signal detection task in which they judged whether the horizontal distance between 

probe circles each trial exceeded a criterion value of 2 cm. To account for any 

potential variability in stimulus sizing that remained after the scaling procedure, the 

task instructions did not describe the criterion distance in units of length, but simply 

showed an example of probe circles separated by the criterion distance. Participants 

were asked to press the space bar if the gap between probe circles exceeded the 

criterion distance on a given trial, and to withhold response otherwise.  

We defined gaps greater than the criterion distance as signal events, and gaps 

equal to or less than the criterion distance as noise events. The distance d between 

probe circles varied across trials between 0.5 cm and 3.25 cm, in steps of 0.25 cm. 

The value of d for a given trial was determined probabilistically: on each trial, there 

was an 80% probability that the gap would be less than or equal to the criterion 

distance of 2 cm, and a 20% probability that gaps would exceed the criterion distance. 

After a trial was determined to be signal or noise, the gap size was selected randomly 

and with equal probability from amongst the range of possible values for that trial 

type. The range of non-signal values (0.5—2.0) was larger than the range of signal 

values (2.25—3.25) to deter participants from using the stimulus distribution 

midpoint as an implicit criterion. 
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Participants first completed a practice vigil of 90 trials, followed by a 12-

minute experimental vigil. Vigil length was not disclosed to participants. Each trial 

comprised a 250 ms stimulus display followed by a blank interval of 1,250 ms, during 

which only the outline of the search field remained visible (see Figure 6). The 

subsequent trial began immediately thereafter, producing an event rate of 40 trials per 

minute. A response was attributed to trial i if it occurred before the onset of trial i + 1. 

Participants did not receive post-trial feedback. 

 

 

 

 

 

 

 

Figure 6. Sequence of events over a signal (left) and non-signal (right) trial. Not to 

scale. 

 

The practice vigil was the same as the experimental vigil except that 1) signal 

and noise events were equally probable, creating a signal rate of 0.50, 2) for the first 

25 trials of the vigil, the stimulus display remained visible for the full trial duration of 

1,500 ms, and 3) response errors were followed by a 1-second feedback message 

reading either, “Oops! It was not a target.”, or “Oops! You missed a target.”, as 

appropriate. Error-free performance resulted in a practice vigil of 2 minutes 15 

seconds and each error added 1 second. 
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At the end of the vigil, participants completed a computerized A-SWAT 

mental workload scale (Luximon & Goonetilleke, 2001). The A-SWAT consists of 

three subscales: time load, mental effort, and psychological stress, which were 

presented in order, one at a time. Participants made their rating of each subscale by 

clicking a horizontal line anchored with the text descriptions of subscale endpoints. 

Analysis 

To exclude participants who might have stopped attending to the task entirely, 

we converted participants’ binary responses to the signal detection theory measure of 

sensitivity, d’. To correct for ceiling- or floor-level hit and false alarm rates, d′ scores 

were calculated using a log-linear correction (Hautus, 1995). Six participants who 

failed to achieve a d’ of at least 0.25 in the first, middle, or last 4-minutes of the task 

were excluded from further analyses. With these exclusions, mean d’ was 2.33, mean 

hit rate was 0.86, and mean false alarm rate was 0.16 for the whole vigil. 

We used hierarchical Bayesian parameter estimation (Kruschke, 2015; Lee, 

2018; Lee & Wagenmakers, 2013) to assess changes in vigilance between the first 

and last 4-minutes of the task. Signal detection responses were fit with logistic 

psychometric curves with three parameters: shift, α, representing response bias; scale, 

β, representing sensitivity; and asymptote, λ, representing lapse rate (Kingdom & 

Prins, 2016). Standardized mean differences in shift, scale, and lapse rate between 

first and last blocks were modeled with normalized effects and unit normal priors. For 

consistency and ease of comparison across parameters, the model placed priors on the 

probit-transformed lapse rate rather than on lapse rate directly, such that prior values 

corresponded to a uniform distribution over the interval [0, 1].  
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Follow-up analyses used Savage-Dickey density ratios to assess evidence for 

the effects of block on the standardized mean differences in scale, shift, and lapse rate 

from the first to last block. The Savage-Dickey ratio is the height of the posterior 

distribution divided by height of the prior distribution at the parameter value of 

interest, in this case, δα = 0, δβ = 0, and δλ = 0. The resulting Bayes factor, 

denotedB10, is the ratio of the likelihood of the data under the alternative hypothesis 

versus the null, and therefore summarizes the strength of the evidence for or against 

the alternative. A ratio of 1 indicates no evidence in either direction, values greater 

than 1 support the alternative hypothesis, and values between 0 and 1 support the null. 

For ease of interpretation, we describe the strength of evidence using the qualitative 

guidelines proposed by Jeffreys (1961), whereby a Bayes factor of 1-3 is considered 

anecdotal evidence, 3-10 is considered substantial evidence, 10-30 is considered 

strong evidence, 30-100 is considered very strong evidence, and > 100 is considered 

decisive evidence for the alternative hypothesis. 

Mean ratings for each of the A-SWAT subscales were estimated separately 

within a hierarchical model that placed a normal likelihood function on observed 

ratings, and uniform priors, U(1, 100), on the group means and standard deviations of 

the ratings.  

All analyses were conducted in R (R Core Team, 2019). Estimation 

procedures ran four MCMC chains for 10,000 warmup trials, followed by 250,000 

sample steps each, using the JAGS package (Plummer, 2015). Chains were thinned to 

every fifth step, leaving 50,000 samples for analysis. All parameter estimates showed 

R̂ convergence values of < 1.1, indicating satisfactory convergence of MCMC chains. 
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Results 

The psychometric curves in the left panel of Figure 7 show the proportion of 

trials on which participants responded for the first and last 4-minute blocks of the 

task. Symbols represent the empirical data, with responses for gaps ≤2 cm 

corresponding to false alarms and responses for gaps > 2 cm corresponding to hits. 

The right panel shows mean differences in response rate between blocks, with 

negative values indicating lower response rates in the last block. The error bars in 

both panels represent 95% posterior predictive credible intervals, based on data 

simulated from the posterior distribution. Here, the intervals demonstrate that the 

model captures the trend of the empirical data. Response rates were lower in the last 

block than in the first, showing a vigilance decrement.  

Figure 8 shows the posterior distributions of the standardized mean 

differences in shift, scale, and the probit-transformed lapse rate between the first and 

last blocks. Shift,B10 = 94.53, and lapse rate,B10 = 2891.56, both increased between 

blocks, indicating a conservative change in response bias and an increased rate of 

attentional lapses in the last block. The scale parameter trended in the direction of a 

sensitivity loss, with the mass of the posterior distribution falling above 0. However, 

the Bayes factor gave no conclusive evidence for or against a change in scale between 

blocks,B10 = 0.85. The standardized mean difference for lapse rate, Mdiff = 1.24, 95% 

BCI[0.61, 2.03], was larger than for shift, Mdiff = 0.42, 95% BCI[0.2, 0.65] or scale, 

Mdiff = 0.30, 95% BCI[-0.02, 0.64]. 
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Figure 7. Response rates for the first (black) and last (red) 4-minute blocks of the 

vigilance task. Symbols represent empirical means, error bars represent 95% posterior 

predictive credible intervals, and the gray triangle denotes the boundary between 

noise and signal events.  
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Figure 8. Posterior density plots of the standardized mean differences in shift, scale, 

and probit-transformed lapse rate between first and last blocks. 

 

While standardized effect sizes are useful for comparing effects on parameters 

that differ in scale, they do not directly reveal the impact of the observed effects on 

raw data (Pek & Flora, 2018). To compare the selective effects of shift, scale, and 

lapse rate changes on raw response rates between blocks, McCarley and Yamani 

(2021) calculated posterior predictive data for each parameter individually, while 

holding other parameters fixed at their mean values. They found that conservative 

shifts in response bias explained most of the observed differences in response rate 

between blocks. Their data indicated that changes in lapse rate produced a decrease in 
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response rates for signal events, while changes in scale explained small increases in 

response rates for noise events just below threshold, and small decreases in response 

rates for signal events just above threshold. We applied the same analysis to the 

current data. Figure 9 presents the posterior predictive distributions for the selective 

effects of block on shift (holding scale and lapse rate constant), scale (holding shift 

and lapse rate constant), and lapse rate (holding shift and scale constant). The mean 

change in response rate between the first and last blocks is plotted for comparison.  

 

Figure 9. Selective effects of shift, scale, and lapse rate on posterior predictive 

differences in response rate. Filled symbols represent mean response rate differences 

and error bars represent 95% credible intervals. Open symbols are mean changes in 

response rate, representing the combined effects of shift, scale, and lapse rate.  

 

Of the selective effects, changes in shift and lapse rate accounted for most of 

the decrease in response rates between blocks. Changes in shift produced large 

decreases in response rate around gaps of 2 cm, showing that participants required 

more evidence (i.e., larger gap sizes) to produce a signal response over time. 

Response rates for gap sizes that were clearly above or below the criterion for signal 
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were unaffected by the change in shift, as expected. Changes in lapse rate produced 

decreases in response rate for gaps that were unambiguously larger than 2 cm. Gaps 

less than 2 cm showed little effect of attentional lapses since the correct ‘response’ in 

these cases was to refrain from responding. The selective effect of scale had a 

negligible effect on raw response rates from the first to last block. 

Estimated mean A-SWAT ratings were M = 33.61, 95% BCI[28.33, 38.86] 

for time load, M = 81.02, 95% BCI[77.43, 84.65] for mental effort, and M = 59.96, 

95% BCI[54.83, 65.08] for stress. High ratings for mental effort and psychological 

stress are consistent with findings that vigilance tasks impose a high workload on 

monitors (e.g., Caggiano & Parasuraman, 2004; Helton & Warm, 2008).  

Discussion 

Psychometric curves gave decisive evidence for changes in lapse rate, strong 

evidence for changes in shift, and inconclusive evidence for changes in scale. 

Changes in each parameter were associated with decreased responses in the last 

block, with lapse rate accounting for the largest decrease in response rate. These 

results, though preliminary, demonstrate that the vigilance decrement was driven by 

attentional lapses and conservative shifts in bias in an online task. We conducted a 

second experiment to validate these findings in a pre-registered replication. 

Experiment 2 

Experiment 2 was a close, pre-registered replication of Experiment 1. We 

recruited paid participants from Prolific (https://prolific.co) rather than from the 

undergraduate subject pool. Research suggests that participants compensated with pay 

outperform those who are compensated with course credit (Brase et al., 2006), and 
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Prolific encourages highly engaged participants by enforcing fair rewards and 

rigorous data quality rules. 

Details of the sample, method, and analyses were pre-registered on Open Science 

Framework (https://osf.io/nt6u3) prior to data collection. Analysis scripts and data are 

also available on OSF. 

Method 

Participants. The sample size was determined using the following pre-

registered plan: We recruited an initial 125 participants from Prolific and continued in 

increments of 25 until (i) the Bayes factors for effects of shift, scale, and lapse rate 

indicated an evidence ratio of at least 1:10 in either direction (i.e., until the data were 

10 times as likely under the alternative or null hypothesis than the other), or (ii) 

reaching a maximum of 200. Data collection ceased at 200 participants, at which 

point the Bayes factor for the effect of scale had not yet reached the 1:10 evidence 

criterion. 

Participants gave informed consent to participate and were screened for 

English fluency, normal color vision, and normal or corrected-to-normal visual 

acuity. Data were excluded from three participants who failed to complete the full 

experimental session or to achieve d’ scores of ≥ 0.25 in each 4-minute block of the 

task. Data files were blank for an additional three participants, leaving 194 

participants for analysis (Mage = 27.77 years, gender = 77 females, 118 males, 2 not 

specified). All participants received 10.00 USD/hour for a 30-minute experimental 

session. 

All other methodological details were identical to Experiment 1. 
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Results 

The left panel of Figure 10 shows response rates for the first and last 4-minute 

blocks of the task. The right panel shows the mean change in response rates between 

the first and last blocks. Visual inspection shows that the response rate in Experiment 

2 was higher in the first 4-minutes of the task than the last 4-minutes, indicating a 

vigilance decrement. The error bars represent 95% posterior predictive credible 

intervals. Although they capture the overall trend of the data, the posterior predictive 

intervals slightly overestimate the response rate for values just below the signal 

threshold, and slightly underestimate the response rate for values above the signal 

threshold. 

 

Figure 10. Response rates for the first (black) and last (red) 4-minute blocks of the 

vigilance task. Symbols represent empirical means, error bars represent 95% posterior 

predictive credible intervals, and the gray triangle denotes the boundary between 

noise and signal events. 
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Figure 11 shows the posterior distributions of the standardized mean 

differences in shift, scale, and the probit-transformed lapse rate between the first and 

last blocks. Shift,B10 = 841.97, and lapse rate,B10 = 3012.02, increased between 

blocks, indicating a conservative shift in response bias and an increased rate of 

attentional lapses in the last block, respectively.  Evidence for a change in scale 

favored the null hypothesis (i.e., that sensitivity did not decline) but not strongly,B10 

= 0.27.  

Figure 11. Posterior density plots of the standardized mean differences in shift, scale, 

and probit-transformed lapse rate between first and last blocks. 
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 Figure 12 presents the posterior distributions for the selective effects of block 

on shift, scale, and lapse rate, with the mean change in response rate between the first 

and last blocks plotted for comparison. 

Figure 12. Selective effects of shift, scale, and lapse rate on posterior predictive 

differences in response rate. Filled symbols represent mean response rate differences 

and error bars represent 95% credible intervals. Open symbols are mean changes in 

response rate, representing the combined effects of shift, scale, and lapse rate.  

 

Again, changes in shift produced decreases in response rates for gaps around 2 

cm, indicating more conservative responding over time, and changes in lapse rate 

produced decreases in response rate for gaps clearly above criterion. Scale did not 

account for any meaningful changes in raw response rates across blocks.  

Estimated mean A-SWAT ratings were M = 35.84, 95% BCI[31.64, 40.05] for time 

load, M = 80.05, 95% BCI[77.62, 83.37] for mental effort, and M = 51.34, 95% 

BCI[47.15, 55.54] for stress. 
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Discussion 

Data gave decisive evidence for changes in lapse rate and shift, but not scale, 

over time, replicating the pattern of results observed in the first experiment. However, 

compared to Experiment 1, the current experiment found a larger effect of shift and a 

smaller—though still decisive—effect of lapse rate.  

General Discussion 

In two experiments (N = 103 and N = 194), we analyzed psychometric curves 

for the first and last 4-minutes of an online vigilance task, testing the extent to which 

changes in response bias, sensitivity, and lapse rate contributed to the vigilance 

decrement. In both experiments, the vigilance decrement was largely driven by (i) 

conservative shifts in response bias and (ii) more frequent attentional lapses. In other 

words, over the course of the task, people (i) became less willing to call to a given 

gap size a signal, independent of their ability to discriminate between signal and 

noise, and (ii) experienced a greater number of failures to respond to even the most 

intense signals.  

Neither experiment found strong evidence for or against an effect of scale, 

which corresponds to sensitivity in the SDT framework. In both experiments, the 

mass of the posterior distribution fell above 0, which may be interpreted as a trend 

toward an effect, yet the Bayes factors were inconclusive in Experiment 1 and 

favored a null effect by roughly a 4-to-1 ratio in Experiment 2. Although we placed 

diffuse priors on parameter estimates, Bayes factors can be highly sensitive to prior 

distributions (Liao et al., 2021; Liu & Aitkin, 2008). Given the relatively weak 

evidence, a different prior specification might have produced different results. 
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Altogether, the findings of null sensitivity changes should be treated as uncertain, 

though the data do suggest sensitivity losses were small, at best. 

The present experiments partially replicate McCarley and Yamani’s findings 

(2021). Although both studies found effects of bias shifts and lapses, there were 

differences in the relative sizes of these effects. While McCarley and Yamani 

reported vigilance losses primarily driven by bias shifts, the decrement was driven 

strongly by both bias shifts and attentional lapses in the present study. McCarley and 

Yamani also reported decisive changes in scale over the course of their task, 

indicating a sensitivity loss between the first and last 4-minutes of their 20-minute 

task. Cumulatively, we found weak evidence against an effect of block on scale. 

Discrepancies in the magnitude of lapse rate and scale effects between the 

current study and Yamani and McCarley’s (2021) may have been driven by 

differences in face-to-face versus online data collection. Participants in the present 

study completed the online vigilance tasks in uncontrolled, unsupervised locations, 

likely exposing them to interruptions and distractions that could have affected 

attention allocation. For example, dividing attention between the online vigilance task 

and an alternative task, such as checking one’s phone or watching television, may 

have 1) inflated the lapse rate, and 2) reduced total information processing demands, 

potentially attenuating sensitivity losses. This possibility accords with data reported 

by Casner and Schooler (2015), who found that pilots in a simulated flight task used 

external activities strategically to maintain their alertness, but that engagement in 

external activities, ironically, led to monitoring failures. 

 It is also possible that participants completing the online tasks simply 

expended less effort than those in-person, leaving less room for sensitivity to decline. 
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However, perceived mental effort was higher in the current experiments (Meffort = 

81.02 and Meffort = 80.05 for Experiments 1 and 2, respectively) than in the lab 

experiment (Meffort = 72.3; McCarley & Yamani, 2021), suggesting that the absence 

of a sensitivity loss online was not driven by a lack of effort.  

Alternatively, differences between the current findings and McCarley and 

Yamani’s could be explained by differences in vigil length or stimulus characteristics. 

To increase the likelihood that participants would complete the online task, we 

reduced the duration of the vigil from 20 to 12 minutes. Previous use of abbreviated 

vigilance tasks has found that 12-minutes is sufficient to produce a vigilance 

decrement (Craig & Klein, 2019; Temple et al., 2000). It is possible, though, that 

sensitivity does not decline as rapidly as changes in bias and lapse rate occur, such 

that the abbreviated task may have produced smaller sensitivity losses than a longer 

task would have. Additionally, stimuli in the lab-based task were embedded in 

dynamic Gaussian visual noise to decrease discriminability. Because were unable to 

implement this noise online, probe stimuli were instead embedded among distractor 

circles of a different color. Visual noise was therefore less dense in the online task, 

which also could have limited sensitivity losses. Future work should test these 

hypotheses directly.  

Results of this study indicate that the vigilance decrement was primarily 

driven by attentional lapses and conservative criterion shifts in this online vigilance 

task. While sensitivity losses may contribute to the decrement under alternative 

conditions, the effect of sensitivity appears to be less robust and less consequential 

than the effects of bias and attentional lapses. These findings are at odds with theories 

that assign resource depletion a significant role in the vigilance decrement, and 



71 

 

 

suggest that vigilance decrements may reflect different mechanisms when tasks are 

conducted online rather than in laboratory settings. Further, these results imply that 

interventions targeting response bias and attentional lapses might be more effective at 

mitigating vigilance decrements than interventions focused on reducing sensitivity 

losses. 
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Chapter 4: Mechanisms of Vigilance Loss: A Cognitive Modeling Approach  

 

As an alternative to fitting detection data with psychometric curves, Chapter 4 

presents a cognitive process model with parameters directly representing observers’ 

response criteria, internal decision noise, and attentional lapse rate. This approach 

provides quantitative predictions and links performance changes directly to putative 

cognitive mechanisms. The generative cognitive model is used to reanalyze data from 

two previous experiments, demonstrating that it captures trends in the data that were 

revealed by psychometric curve analyses. 
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Abstract 

The ability to detect rare signals among background noise declines with time on 

task—a phenomenon called the vigilance decrement. Current theories attribute the 

vigilance decrement to three alternative mechanisms: shifts in bias, losses of 

sensitivity, and attentional lapses. Two experiments examined the extent to which the 

vigilance decrement reflects each mechanism. In Experiment 1, 194 participants 

completed an online visual signal detection task, judging whether the gap between 

two probe circles exceeded a criterion value. In Experiment 2, 132 participants 

completed a similar lab-based task. Gap size was varied across trials and data were fit 

with a generative cognitive model with parameters representing response bias, 

sensitivity, and attentional lapse rate. Parameter estimates were compared across the 

first and last four minutes of the vigil in a hierarchical Bayesian analysis. Data gave 

evidence that the decrement was driven by a conservative shift in response bias and 

an increased frequency of attentional lapses from the first to the last block. Although 

data trended in the direction of a sensitivity loss, the effects were not statistically 

credible. 
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Mechanisms of Vigilance Loss: A Process Modeling Approach 

Vigilance is the state of readiness to perceive and respond to stimuli (Mackworth, 

1948) and is difficult to maintain for long durations. As such, human operators 

watching for rare signals among frequent noise events (e.g., baggage screeners 

watching for security threats or sonar operators watching for enemy activity) usually 

experience a decline in detections over time. This decline, known as the vigilance 

decrement, typically appears within the first 30 minutes of beginning a task, but has 

been observed within as little as 5 minutes (Nuechterlein et al., 1983).  

Although the study of vigilance began during World War II (Mackworth, 1948) 

and has remained a topic of interest since, researchers have yet to agree upon the 

mechanisms underlying the vigilance decrement. The most common framework for 

analyzing vigilance data has been signal detection theory (SDT; Green & Sweats, 

1966). SDT models an observer’s ability to discriminate between signal and noise 

events using the relationship between correct detections and false alarms to compute 

separate measures of sensitivity and response bias. Both sensitivity—the observer’s 

ability to distinguish signal from noise, and response bias—the observer’s tendency to 

make signal or noise judgments, can explain a decline in detections over time.  

 SDT data suggest that the vigilance decrement is primarily driven by 

conservative bias shifts, whereby observers adopt progressively stricter cutoffs for 

making signal judgments in response to the low signal rate (Broadbent & Gregory, 

1965; Craig, 1978). Analyses sometimes reveal a concurrent sensitivity decrement, 

whereby monitors get worse at discriminating signal from noise over time (See et al., 

1995). Sensitivity losses generally only occur when task demands are high, for 
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example, when discriminations load memory, event rates impose time pressure, or 

stimuli are not very discriminable (Nuechterlein et al., 1983; Parasuraman, 1979).  

The selective nature of the sensitivity decrement has been explained by two 

theoretical accounts. The resource depletion theory (Parasuraman, 1979) proposes 

that sensitivity decrements occur when the demands on information processing 

resources deplete the observer’s attentional capacity, while the resource control 

model (Thomson et al., 2015) proposes that executive control failures allow attention 

to drift off-task. In both cases, fewer attentional resources are available to the task. 

Both accounts are supported by findings that vigilance tasks are subjectively effortful, 

and that increasing task demands reduces sensitivity (Caggiano & Parasuraman, 

2004; Grier et al., 2003; Helton & Warm, 2008). 

Recent work, however, suggests that yes-no signal detection data may not be 

suitable for understanding the vigilance decrement. First, when false alarms are near-

zero, bias shifts and sensitivity losses—which usually have opposing effects on false 

alarms—become indistinguishable. Because of the low signal rates inherent in 

vigilance tasks, observers tend to adopt very conservative criteria for responding 

‘signal’. This, in turn, produces low false alarm rates, allowing shifts in bias to mimic 

declines in the sensitivity measure, d’ (Thomson et al., 2016).  

Second, although an alternative measure, A’, is widely used to analyze sensitivity 

when false alarms are near-zero, it is not actually bias free (Getty et al., 1995; 

Macmillan & Creelman, 1996; Pastore et al., 2003). In fact, a recent simulation study 

found that shifts in bias produce spurious changes in A’ (McCarley et al., 2021). This 

work suggests that much of the existing evidence for sensitivity losses in vigilance 
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tasks may be misleading, which prompts reconsideration of the mechanisms 

contributing to the vigilance decrement.  

Finally, SDT is unable to capture declines in detections driven by a third 

potential mechanism—attentional lapses (Jerison et al., 1965; Robertson et al., 1997). 

Lapses occur when attention is temporarily withdrawn from the task, resulting in 

failures to respond to stimuli entirely, regardless of signal intensity. With only two 

degrees of freedom, binary signal detection data are unsuitable for discriminating 

criterion shifts, sensitivity losses, and attentional lapses. 

Employing a novel method of analysis to account for all three alternatives, 

McCarley and Yamani (2021) fit psychometric curves to detection responses in a 

go/noGo vigilance task. Data gave decisive evidence that the vigilance decrement was 

driven by losses of sensitivity, conservative shifts in response bias, and attentional 

lapses, with bias shifts accounting for most of the decrement.  

To generalize these findings, we adapted McCarley and Yamani’s (2021) 

vigilance task for use in an online sample. To maximize completion rates, we 

shortened the task from 20 minutes to 12 minutes and increased the signal rate from 

0.15 to 0.20. The punctate visual noise used to decrease signal discriminability in the 

original experiment could not be replicated online and was substituted with distractor 

stimuli that were intended to serve the same purpose.  

Across two online experiments (N = 103, N = 194), we replicated the 

conservative bias shifts and increased frequency of attentional lapses observed in the 

lab. However, neither experiment found conclusive evidence for or against a 

sensitivity loss, suggesting that sensitivity losses—though present in the lab—do not 
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always play a significant role, even in tasks to designed to elicit sensitivity losses 

(i.e., those with high event rates and successive discriminations; Parasuraman & 

Davies, 1977). 

An alternative way of analyzing these data is to fit them with a generative 

process model. This approach should provide more statistical sensitivity than fitting 

psychometric curves to the data and, since it simulates cognitive processes directly, 

might give more insight into the psychological processes involved in generating the 

observed data. 

Experiment 1 

Experiment 1 re-examined data collected from a preregistered 

(https://osf.io/nt6u3) online adaptation of McCarley and Yamani’s (2021) vigilance 

task. The data were originally analyzed using psychometric curves and are reported in 

Experiment 2 of Chapter 3. 

Method 

Participants. Data were analyzed from 194 participants recruited from the online 

research platform Prolific (www.prolific.co). Inclusion and exclusion criteria are 

detailed on page 61. 

Apparatus and stimuli. The stimulus each trial was a pair of red probe circles 

embedded in five, black distractor circles. Stimuli were presented on a white 

background, within a circular search field 8 cm diameter. The two probe circles were 

arranged horizontally, separated by a distance (d) that varied each trial between 0.5 

cm and 3.25 cm, in steps of 0.25 cm. Full details are reported on pages 51-52.  

 

http://www.prolific.com/
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Procedure. Participants viewed a series of probe circles and judged whether the 

gap between each pair of probes exceeded 2 cm. The distance between probe circles 

varied across trials between 0.5 cm and 3.25 cm, in 0.25 cm increments. Participants 

were asked to press the space bar if the gap between probe circles exceeded the 

criterion distance on a given trial, and to withhold response otherwise. The mean 

signal rate was 0.20. Each trial comprised a 250 ms stimulus display followed by a 

blank interval of 1,250 ms, during which only the outline of the search field remained 

visible. The subsequent trial began immediately thereafter, producing an event rate of 

40 trials per minute. Participants first completed a practice vigil of 90 trials, followed 

by a 12-minute experimental vigil. The full procedure is reported on pages 52-54. 

Analysis 

Participants’ binary responses from the 12-minute vigil were converted to the 

signal detection theory measure of sensitivity, d’. To correct for ceiling- or floor-level 

hit and false alarm rates, d′ scores were calculated using a log-linear correction 

(Hautus, 1995).  Of the 197 participants whose data were saved, three were excluded 

for failing to achieve a d’ of at least 0.25 in first, middle, or last 4-minutes of the task. 

With these exclusions, mean d’ = 2.33, mean hit rate = 0.86, and mean false alarm 

rate = 0.16. 

We used hierarchical Bayesian parameter estimation (Kruschke, 2015; Lee, 

2018; Lee & Wagenmakers, 2013) to assess changes in vigilance between the first 

and last 4-minutes of the task. Signal detection responses were fit with a hierarchical 

process model that estimated parameters representing response bias, sensitivity, and 

attentional lapses at the individual- and group-level. Mean differences in group-level 
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parameters between the first and last block were modeled with normalized effects and 

unit normal priors. The model placed priors on the log of internal noise to ensure 

positive variance values, and on probit-transformed lapse rate rather than lapse rate 

directly for ease of comparison across parameters. Priors for group level estimates 

were assigned the following values: 

mu_lognoise2 ~ normal (0, .001) 

sigma_lognoise2 ~ uniform (0, 100) 

mu_c ~ normal (0, .001) 

sigma_c ~ uniform (0, 100) 

mu_probitlapse ~ normal (0, 1) 

sigma_probitlapse ~ uniform (0, 100) 

      Priors on effects of block were assigned the following values: 

mu_delta_lognoise2 ~ normal (0, .001) 

sigma_delta_lognoise2 ~ uniform (0, 100) 

mu_delta_c ~ normal (0, .001) 

sigma_delta_c ~ uniform (0, 100) 

mu_delta_probitlapse ~ normal (0, .001) 

sigma_delta_probitlapse ~ uniform (0, 100) 

We report mean parameter estimates with 95% Bayesian credible intervals 

(BCIs) representing the middle (i.e., most credible) 95% values from the posterior 

distribution. Effects are considered statistically credible if the BCI excludes zero. All 

analyses were conducted in R (R Core Team, 2019). All analyses were conducted in 

R (R Core Team, 2019). Estimation procedures ran four MCMC chains for 1000 
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warmup trials, followed by 12,500 sample steps each, using the JAGS package 

(Plummer, 2015). Chains were thinned to every fourth step. All parameter estimates 

showed R̂ convergence values of < 1.1, indicating satisfactory convergence of 

MCMC chains. 

Results 

Figure 13 shows the proportion of trials on which participants responded for the 

first and last 4-minute blocks of the vigilance task. Visual inspection of Figure 1 

shows that correct detections (i.e., signal trials on which participants made a “yes” 

response) decreased over time, indicating a vigilance decrement.                                                                    

 

 
 

Figure 13. Response rates for the first and last 4-minute blocks of the vigilance 

task. Black and white symbols are empirical means with error bars representing 

standard errors. Red symbols are posterior predictive values with error bars 
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representing 95% BCIs. 

 

Figure 14 shows the posterior distributions of the mean differences in the 

response criterion, the log of internal noise, and the probit-transformed lapse rate 

between the first and last blocks.  

 

 

Figure 14. Posterior distributions of effects of block on three parameters: response 

cutoff (top), log of internal noise (middle), and the probit of lapse rate (bottom). 

 

The top panel shows that the cutoff for responding to stimuli (i.e., a “signal 

present” judgment) was higher in the last block of the task than the first, M = 0.65, 

BCI = [0.60, 0.71]. The middle panel shows a trend toward an increase in internal 

noise between blocks, M = 0.06, BCI = [-0.01, 0.12], but the effect is not credible. 

The bottom panel shows an increased rate of attentional lapses in the last block, M = 
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1.06, BCI = [0.56, 1.6]. The difference between blocks was larger for lapse rate than 

for response cutoff or internal noise. 

Discussion 

The current analysis compared the extent to which three proposed mechanisms of 

vigilance loss contributed to the vigilance decrement in an online signal detection 

task. Parameter estimates revealed credible effects of block on response cutoff and 

attentional lapse rate. Both effects were associated with a decrease in response rate, 

indicating that monitors adopted a more conservative response bias and experienced a 

greater number of attentional lapses with time on task. There was also a trend toward 

an increase in internal noise over time. More internal noise corresponds to a greater 

degree of overlap between internal representations of signal and noise events, thereby 

reducing observers’ sensitivity. However, the 95% BCI includes negative values, 

suggesting that the effect is not credibly different from zero. This reanalysis provides 

converging evidence that the vigilance decrement was primarily driven by bias shifts 

and attentional lapses in this online task.  

 

Experiment 2 

To further test the adequacy of the process model, Experiment 2 reanalyzed 

data from a preregistered lab-based replication of McCarley and Yamani’s (2021) 

study. As in McCarley and Yamani’s original lab-based study and our online 

adaptation, participants were asked to respond when the gap between pairs of probes 

exceeded 2 cm. The preregistered replication data were originally analyzed using 

psychometric curves. Figure 15 shows the posterior density plots for normalized 

effects of block on the shift, scale, and lapse rate parameters. Data gave decisive 
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evidence for an effect of block on lapse rate,B10 = 3700.4, but only anecdotal 

evidence for effects on response bias,B10 = 2.21, and sensitivity,B10 = 0.37.   

 

 

Figure 15. Posterior distributions of effects of block on three parameters: shift, 

corresponding to response bias (top), scale, corresponding to sensitivity (middle), and 

the probit of lapse rate, corresponding to attentional lapses (bottom). 

 

Here, we reanalyze these data using the cognitive process model from 

Experiment 1 to estimate changes in response bias, sensitivity, and attentional lapse 

rate between the first and last 4-minutes of the task. 
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Method  

Participants. One hundred thirty-two undergraduate students were recruited 

from two large public universities in the United States. Inclusion criteria were fluency 

in English, normal color vision, and normal or corrected-to-normal visual acuity. One 

participant was excluded for failing to achieve a d’ score of ≥ 0.25 in each 4-minute 

block of the task. All methodological details, including exclusion criteria, were 

preregistered at osf.io/3np2v/. Participants received 10 USD/hour for an experimental 

session designed to be completed in < 30 minutes.  

Apparatus and stimuli. Experimental software was written in PsychoPy 3 

(Peirce et al., 2019) and was identical to that used by McCarley and Yamani (2021). 

The stimulus each trial was a pair of red probe circles, but unlike in the previously 

reported online tasks, probes were embedded in dynamic Gaussian visual noise rather 

than distractor circles. Probes were unfilled, drawn in 3-pixel stroke, with a diameter 

of 2 mm. The two probe circles were arranged horizontally, separated by a distance 

(d) that varied each trial between 0.75 cm and 3.5 cm, in steps of 0.25 cm. Stimuli 

were presented on a 24-inch LED monitor with a resolution of 1024 x 768 pixels and 

a refresh rate of 75 Hz, and on a 24-inch LED monitor with a resolution of 1920 x 

1080 pixels and a refresh rate of 60 Hz, depending on the site of data collection.  

Procedure. Each trial, participants judged whether the horizontal separation 

between two probe circles exceeded a target criterion of 2 cm. They were asked to 

press the space bar if the gap between probe circles exceeded the criterion distance on 

a given trial, and to withhold response otherwise. The value of d for a given trial was 

determined probabilistically with each trial randomly designated to be a signal or 

https://osf.io/3np2v/
https://osf.io/3np2v/
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noise event. The probability of signal was 0.15. Gap size was then selected randomly 

and with uniform probability from the range of values corresponding to the trial type. 

Non-signal values were 0.75, 1.25, and 1.75. Signal values were 2.25, 2.75, 3.25, and 

3.75.  

On each trial, stimuli were displayed for 500 ms, followed by a blank screen for 

1000 ms. Figure 16 depicts the sequence of events. The next trial began immediately 

thereafter, producing an event rate of 40 trials per minute. A response was attributed 

to trial i if it occurred before the onset of trial i + 1. Participants did not receive post-

trial feedback on experimental trials. 

 

 

 

 

 

 

 

 

Figure 16. Sequence of events over a series of trials. Not to scale. Reproduced with 

permission from McCarley and Yamani (2021). 

 

Each participant began by completing a 3-minute block of practice trials. The 

practice vigil was the same as the experimental vigil except that 1) signal and noise 

events were equally probable, 2) for the first 25 practice trials, the stimulus display 
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remained visible for the full 1,500 ms duration, and 3) response errors were followed 

by a 1-second feedback message reading either, “Oops! It was not a target.”, or 

“Oops! You missed a target.”, as appropriate. Following practice, participants 

completed the 20-minute vigil. Immediately after the experimental trials, participants 

were asked to complete the abbreviated Subject Workload Assessment Technique 

(ASWAT)  in which they provided ratings of mental effort, time load, and 

psychological stress.  

Results 

Figure 17 shows that correct detections (yes responses on signal trials) decreased 

over time, indicating a vigilance decrement.                                                                    

Figure 17. Response rates for the first and last 4-minute blocks of the vigilance task. 

Black and white symbols are empirical means with error bars representing standard 
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errors. Red symbols are posterior predictive values with error bars representing 95% 

BCIs. 

 

Figure 17 shows the posterior distributions of the mean differences in the 

response criterion, the log of internal noise, and the probit-transformed lapse rate 

between the first and last blocks.  

 

Figure 17. Posterior distributions of effects of block on three parameters: response 

cutoff (top), log of internal noise (middle), and the probit of lapse rate (bottom). 

 

The top panel shows that observer’s cutoff for making a signal present 

response was higher in the last block of the task than in the first, M = 0.39, BCI = 

[0.16, 0.62]. The middle panel shows a noncredible trend toward an increase in 

internal noise between blocks, M = 0.14, BCI = [-0.03, 0.31]. The bottom panel 
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shows an increased rate of attentional lapses in the last block compared to the first, M 

= 1.59, BCI = [0.76, 2.79]. Again, the effect of block was largest for attentional lapse 

rate, followed by response cutoff. 

 

Discussion 

 The current analysis examined changes in response cutoff, internal noise, and 

lapse rate in a lab-based sensory vigilance task. Parameter estimates revealed credible 

effects of block on response cutoff and attentional lapse rate, indicating that monitors 

adopted a more conservative response bias and experienced more attentional lapses as 

the task progressed. Although there was a trend toward an increase in internal noise 

between blocks, the 95% BCI included negative values indicating that the effect was 

not credibly different from zero. These results are consistent with those revealed by 

the psychometric curve analysis and demonstrate that the vigilance decrement was 

largely driven by an increase in the rate of attentional lapses.  

 

General Discussion 

 

In the present study, we fit data from two previous experiments (N = 194 and 

N = 132) with a generative cognitive model to test the model’s ability to capture 

changes in response bias, sensitivity, and attentional lapses. Experiment 1 re-

examined data from the preregistered online sensory vigilance task reported in 

Chapter 3. Consistent with results from the original psychometric curve analysis, the 

generative model revealed credible effects on response cutoff and lapse rate, 

indicating that conservative shifts in response bias and an increase in the frequency of 

attentional lapses both contributed to the vigilance decrement.   
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Experiment 2 re-examined data from a preregistered lab-based sensory task 

directly replicating McCarley and Yamani (2021). The replication is not reported in 

this dissertation. However, consistent with its findings, the generative cognitive 

model revealed credible effects on response cutoff and lapse rate. These results 

indicate again that the observed vigilance decrement was driven by monitors adopting 

a more conservative response bias and experiencing more attentional lapses with time 

on task. More broadly, Experiments 1 and 2 demonstrate that the generative model 

discriminates between the three potential mechanisms of vigilance loss and captures 

the same trends in parameter estimates as the psychometric curves while providing 

greater statistical sensitivity.  

 

  



90 

 

 

Chapter 5: Mechanisms of Vigilance loss in an Online Cognitive Task 

 

Using the generative cognitive model described and tested in Chapter 4, 

Chapter 5 assesses the extent to which bias shifts, losses of sensitivity, and attentional 

lapses contribute to the vigilance decrement in an online cognitive vigilance task. 

While sensory vigilance tasks require discriminations of perceptual features (e.g., the 

separation two circles), cognitive tasks require discriminations of the semantic 

meaning or numeric value of stimuli. Cognitive vigilance tasks typically show smaller 

vigilance decrements over time than sensory tasks, but interaction effects are 

inconsistent and the reasons for more stable performance are unclear. To date, no 

prior research has compared all three potential mechanisms of vigilance loss within a 

cognitive task.  
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Abstract 

In vigilance tasks, a common finding is that monitors experience a progressive 

decline in detections over time called the vigilance decrement. However, most 

vigilance research has examined performance within sensory tasks, which require 

judgments of perceptual features of stimuli. The vigilance decrement appears to be 

less consistent within cognitive vigilance tasks, which require judgments of the 

meaning or value of alphanumeric stimuli. The current experiment (N = 180) 

examined the extent to which changes in response bias, sensitivity, and attentional 

lapses contributed to the vigilance decrement in a cognitive vigilance task. Each trial 

participants viewed a set of four three-digit numbers and judged whether they were 

drawn from a distribution with a mean of 490 (noise) or 510 (signal). Data gave 

substantial evidence against a shift in response bias and strong evidence against a 

sensitivity loss. Although the vigilance decrement was trivial compared to decrements 

observed in prior sensory tasks, data gave substantial evidence for an increase in 

attentional lapse rate over time. 
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Chapter 5: Mechanisms of Vigilance Loss in an Online Cognitive Task 

Vigilance tasks like quality control and security surveillance require observers 

to monitor for infrequent signals over extended periods of time. A common finding is 

that vigilance deteriorates, producing a progressive decline in detections termed the 

vigilance decrement (Mackworth, 1948; Nuechterlein et al., 1983; Parasuraman, 

1979; See et al., 1995; Warm et al., 1996). The vigilance decrement generally occurs 

within 30 minutes (Mackworth, 1948), but under some circumstances, can begin 

within 5 minutes of starting a task (Nuechterlein et al., 1983). Despite considerable 

research dedicated to mitigating the vigilance decrement, the mechanisms underlying 

the effect remain the subject of debate.  

Typically, vigilance studies employ yes-no detection tasks in which operators 

judge each trial whether a signal is present (yes) or absent (no). As such, responses 

can be evaluated using signal detection theory (SDT; Green & Swets, 1966) to isolate 

the effects of sensitivity and response bias on performance. SDT analyses have 

suggested that the vigilance decrement largely reflects a tendency for operators to 

adopt a progressively more conservative response criterion throughout the task, such 

that they become less willing to classify events as signals over time (Broadbent & 

Gregory, 1965; Broadbent, 1971; Swets, 1973, 1977). This shift toward more cautious 

responding is assumed to represent a change in the observer’s signal expectancy 

(Parasuraman, 1979; Parasuraman & Mouloua, 1987), and reduces both hits (true 

positive detections) and false alarms (false positive detections).  

When tasks impose a high demand on attentional resources, SDT analyses 

may also reveal a decline in sensitivity, whereby operators become worse at 
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discriminating signals from background noise. Sensitivity losses tend to occur in tasks 

that place heavy demands on attentional resources, such as those combining a high 

memory load with time pressure or poor signal discriminability (Nuechterlein et al., 

1983; Parasuraman, 1979; See et al., 1995; Smit et al., 2004). Theoretical accounts 

attribute the selective occurrence of sensitivity losses to gradual reductions in the 

attentional resources allocated to the vigilance task. Resource depletion theory 

proposes that maintaining vigilance is mentally taxing (Grier et al., 2003; Warm et 

al., 2008) and when demand on attentional resources exceeds availability, the pool of 

resources shrinks (Caggiano & Parasuraman, 2004; Warm et al., 1996). Alternatively, 

resource control theory argues that the pool of resources remains constant in size, but 

that executive control wanes over time, allowing resources drift to task-unrelated 

thoughts (Thomson et al., 2015). Under either model, resources dedicated to the 

vigilance task dwindle over time, resulting in poorer sensitivity. 

Although signal detection theory distinguishes between two potential 

mechanisms of vigilance decrement—bias shifts and sensitivity losses—an alternative 

theory proposes that the decrement is driven by attentional lapses (Jerison et al., 

1965; Manly et al., 1999; Robertson et al., 1997). The mindlessness theory holds that 

that the monotonous nature of vigilance tasks (Scerbo, 1998) encourages observers to 

respond in an automatic, routinized manner, resulting in brief periods in which 

attention is fully decoupled from the vigilance task. Unlike periods of mind-

wandering, which reduce response rates for weaker, more ambiguous signals, periods 

of mindlessness reduce response rates regardless of signal intensity.  
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Support for the mindlessness theory comes from studies employing the 

Sustained Attention to Response Task (SART; Robertson et al., 1997): a modified 

vigilance task in which observers respond to frequent noise events and withhold 

responses to infrequent signals to promote rapid response automatization. Research 

with the SART has shown that detection failures are preceded by periods of faster, 

presumably more automatic, responding (Dockree et al., 2004; Manly et al., 1999), 

and that trait absentmindedness is positively associated with number of detection 

failures (Manly et al., 1999; Robertson et al., 1997). However, the vigilance 

decrement does not appear to be solely the result of mindless responding; subjective 

workload data indicate that both traditional vigilance tasks and the SART are effortful 

(Dillard et al., 2015; Grier et al., 2003). It remains a possibility, though, that the 

decrement is at least partially driven by attentional lapses.   

A recent study accounting for all three proposed mechanisms found that 

conservative shifts in response bias, attentional lapses, and—to a lesser extent—

losses of sensitivity, all contributed to the vigilance decrement (McCarley & Yamani, 

2021). An online adaptation (Gyles et al., 2022) replicated the effects of conservative 

bias shifts and attentional lapses but did not find strong evidence for or against a 

sensitivity loss. Together, these findings suggest that sensitivity losses are possible, 

both potentially less robust than bias shifts and lapses.  

Within the vigilance literature, researchers often make a distinction between 

sensory and cognitive tasks (Davies & Tune, 1969, See et al., 1995). Most previous 

research has examined vigilance performance within sensory tasks, which commonly 

require observers to detect perceptual features of visual or auditory stimuli (Deaton & 
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Parasuraman, 1993). Participants in a sensory vigilance task, for example, might be 

asked to detect larger than usual jumps in a clock hand (Mackworth, 1948), increases 

in the brightness of a light (Broadbent & Gregory, 1965) or amplitude of a tone 

(Cahoon, 1973), or differences in the color of a disk (Chan & Chan, 2022). Sensory 

tasks are also common in applied settings. Consider the earlier examples of baggage 

screening, quality control, and security surveillance; each of these tasks requires the 

operator to monitor perceptual features like size, shape, and movement to detect a 

signal. 

Less research has examined vigilance performance in cognitive tasks, which 

require observers to judge the meaning or value of alphanumeric stimuli (Deaton & 

Parasuraman, 1993). Of the relatively small number of studies that have examined 

cognitive vigilance, many have asked participants to perform simple arithmetic 

operations on pairs of digits (Claypoole & Szalma, 2018; Claypoole et al., 2019; 

Warm et al., 1984) (e.g., whether paired digits differ by more or less than 1) or to 

monitor a stream of digits for successive odd numbers (Matthews et al., 1990). These 

discriminations are abstractions of real-world tasks in which operators must monitor 

displays of symbolic information. For example, combat aircraft pilots must process 

strings of letters and numbers to identify aircraft as friendly or hostile (Deaton & 

Parasuraman, 1993), and cyber security officers must monitor network activity to 

detect keywords, IP addresses, and changes in network traffic (McIntire et al., 2013).  

A meta-analysis examining conditions that produce sensitivity losses (See et 

al., 1995) revealed that the sensory-cognitive dimension explains variation in 

whether, and to what extent, sensitivity declines in the vigilance decrement. However, 
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performance differences between sensory and cognitive tasks are inconsistent. The 

meta-analysis revealed that sensitivity losses are generally smaller in cognitive tasks 

than in sensory tasks, except at very high event rates, in which case the opposite 

pattern is observed. This effect was also dependent on whether the tasks required 

simultaneous or successive discriminations. Within cognitive tasks, event rate was 

positively associated with the magnitude of sensitivity loss for simultaneous tasks but 

had little effect on successive tasks.  In contrast, a recent study examining the effects 

of event rate on cognitive vigilance found that event rate was positively associated 

with the magnitude of sensitivity losses even in a successive cognitive task 

(Claypoole et al., 2019).  

Other studies have reported a vigilance increment in cognitive tasks, whereby 

target detection rates increased over the course of the vigil (Deaton & Parasuraman, 

1993; Dember et al., 1984; Lysaght et al., 1984; Noonan et al., 1985; Warm et al., 

1984). Although many of these studies did not report signal detection measures of 

sensitivity and bias, See and colleagues (1995) found that effect sizes for sensitivity 

losses were negative at low event rates, suggesting that previously reported vigilance 

increments could reflect increases in sensitivity. However, many studies attempting to 

replicate the cognitive vigilance increment have failed to find an increase in 

detections over time (Ash et al., 1983; Loeb et al., 1982; Noonan et al., 1984; Noonan 

et al., 1985), while others have seen temporal improvements only in response times 

(Ash et al., 1985; Dember et al., 1984).  

Although vigilance decrements and sensitivity losses are generally less 

consistent in cognitive tasks than in sensory tasks, the reason for this difference is not 
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well understood (Deaton & Parasuraman, 1993; See et al., 1995). Researchers have 

suggested that sensitivity might be more stable in cognitive tasks because 

alphanumeric stimuli are highly familiar, and therefore impose a lower load on 

information processing resources than unfamiliar sensory stimuli (Koelega et al., 

1989; Warm et al., 1984). However, cognitive tasks are sometimes rated as more 

demanding than sensory tasks (Claypoole et al., 2019; Deaton & Parasuraman, 1993), 

even when they do not demonstrate a vigilance decrement, indicating that cognitive 

tasks do not universally impose a lower workload than sensory tasks.  

Warm and colleagues (1984) have also speculated that observers might be 

more motivated to attend to cognitive tasks because the well-learned stimuli make it 

easy for observers to recognize when they have made an error. An increase in 

motivation and task engagement might prevent attentional resources from drifting to 

task unrelated thoughts. But this hypothesis was partially ruled out by a study in 

which participants made sensory and cognitive discriminations of an identical set of 

numerical stimuli (Deaton & Parasuraman, 1993). The sensory task required 

discrimination of digit size, with signals defined as pairs of digits in which one digit 

was physically smaller than the other. The cognitive task, on the other hand, required 

discrimination of digit values, with signals defined as pairs containing one even and 

one odd digit. Detections declined over time in the sensory task but remained stable 

in the cognitive task, despite initial performance levels being similar. Although this 

effect cannot be attributed to differences in stimuli, these results do not rule out the 

possibility that noticing errors is easier for cognitive judgments than for sensory 

judgments.  
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We propose another potential explanation: that performance differences 

observed in sensory and cognitive vigilance tasks might be driven by differences in 

whether the tasks involve continuous- or discrete-state judgments. Signal detection 

theory assumes that observers make judgments by comparing a continuous decision 

variable to a cutoff to render a binary response (Green & Swets, 1966), and therefore 

models a continuous-state decision process. In sensory tasks, the decision variable 

(e.g., size or brightness of a stimulus) is subject to both external noise (i.e., 

uncertainty inherent in the data) and internal noise (i.e., variation in the observer’s 

neural response to stimuli). As such, it is often ambiguous whether the extracted 

evidence represents a signal or noise event (MacMillan & Creelman, 2005).  

Cognitive vigilance tasks, however, tend to map stimuli to discrete rather than 

continuous states. For instance, when observers judge whether the difference between 

two digits is equal to 1, or whether a digit is odd or even, a stimulus is unambiguously 

signal or noise. So long as the stimuli are well above sensory thresholds for detection 

and recognition, performance will be unaffected by graded internal noise, and 

judgments are unlikely to be subject to drifts of response bias. 

To further explore mechanisms of the vigilance decrement in cognitive tasks, 

the current study analyzed vigilance performance in a signal detection task requiring 

continuous-state judgments of numerical value (Healy & Kubovy, 1981). The task 

was framed as a cyber monitoring task in which participants monitored a display of 

four briefly presented numbers and provided a keypress response when their average 

value exceeded a criterion. The numbers presented on signal and noise trials were 

drawn from distributions with means of 510 and 490, respectively, each with a 
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standard deviation of 20. On average, signal trials tended to produce values greater 

than 500, but the overlap between signal and noise distributions introduced 

variability, such that numbers drawn from the signal distribution could sometimes 

exceed numbers drawn from the noise distribution. Further, the brief presentation of 

the numbers did not allow observers to calculate the precise arithmetic mean, but 

rather, required rapid estimation, introducing uncertainty in the mapping of the 

stimuli to the observer’s decision variable. Therefore, unlike cognitive tasks requiring 

discrete-state judgments (e.g., whether a number is odd or even), performance in this 

cognitive task was subject to both external and internal decision noise, allowing 

examination with a continuous-state decision model and comparison with existing 

sensory vigilance data. 

The conventional way of analyzing these data is to estimate sensitivity and 

response bias within the framework of signal detection theory. However, recent work 

suggests that binary detection data are unsuitable for distinguishing mechanisms of 

vigilance loss. Though many studies report decreases in the SDT measure of 

sensitivity d’, this decline may merely be the result of low false alarm rates. When 

false alarm rates are at or near floor, bias shifts and sensitivity losses—which usually 

have opposing effects on false alarms—become indistinguishable, allowing bias shifts 

to mimic declines in d’ (Thomson et al., 2016). Bias shifts also produce spurious 

changes in A’ (Pollack & Norman, 1964), an alternative measure of sensitivity often 

preferred by vigilance researchers when false alarms are low (McCarley et al., 2021). 

Even when false alarm rates are high enough to allow researchers to distinguish 

changes in bias from changes in sensitivity, yes-no detection data are limited by two 
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degrees of freedom. Binary signal detection tasks are therefore unable to account for 

the third potential mechanism of vigilance loss, attentional lapses.  

An alternative approach is to fit a generative cognitive process model (Haines 

et al., 2020) to responses to estimate bias, sensitivity, and lapse rate parameters 

directly. Here, participants were asked to estimate the mean of a set of numbers each 

trial, and to judge whether the numbers were sampled from signal or noise 

distribution (Healy & Kubovy, 1981). To model the task, we assumed that operator’s 

decision variable was equal to the arithmetic mean plus noise (Brusovansky et al., 

2018). To analyze changes in bias, sensitivity, and lapse rate over time, the current 

study employs Bayesian hierarchical modeling to compare parameter estimates for 

the first and last 4 minutes of a 12-minute vigil, using the generative model tested in 

Chapter 4.  

Method 

Participants 

Two hundred participants were recruited from the online research platform 

Prolific (https://prolific.co/). All participants gave informed consent and self-reported 

fluency in English, normal color vision, and normal or corrected-to-normal visual 

acuity. Data were excluded from participants who failed to complete the full 

experimental session or to achieve d’ scores of ≥ 0.25 in each 4-minute block of the 

task. Exclusions left 180 participants for analysis (Mage = 22.58 years, gender = 73 

females, 100 males, 4 non-binary, 3 not specified).  Participants were reimbursed at 

US$10.00/hour for an experimental session lasting approximately 25 minutes. 

 

https://prolific.co/
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Apparatus and stimuli 

The experimental task was controlled by software written in PsychoPy 3 

(Peirce et al., 2019) and hosted on Pavlovia (https://pavlovia.org/).The stimulus each 

trial was a column of four three-digit numbers, presented in black text on a white 

background.  

Procedure 

Participants performed a signal detection task in which they judged whether 

the average value of a set of numbers each trial was sampled from a distribution with 

a mean of 490 or 510. Participants were asked to press the space bar if they thought 

the average value was drawn from the signal distribution (i.e., with a mean of 510) 

and withhold response otherwise. Participants first completed a practice vigil of 90 

trials, followed by a 12-minute experimental vigil. To avoid potential end-spurt 

effects (Bergum & Lehr, 1963) participants were not informed of vigil length.  

Whether a trial represented a signal or noise event was determined 

probabilistically, with experimental trials assigned as signals with a probability of 

20%. If a trial was determined to be a signal, the four numbers were drawn randomly 

from a normal distribution with M = 510 and SD = 20. If a trial was determined to be 

noise, the four numbers were drawn randomly from a normal distribution with M = 

490 and SD = 20.  

Experimental trials comprised a 1500 ms stimulus display (see Figure 18), 

during which time participants could provide a keypress response. The subsequent 

trial began immediately thereafter, producing an event rate of 40 trials per minute. 

Participants did not receive post-trial feedback on experimental trials. 
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Figure 18. Sequence of events in the cognitive vigilance task. Not to scale. 

 

The practice vigil was the same as the experimental vigil except that 1) the 

signal rate was 0.50, 2) for the first 25 trials of the vigil, the stimulus display 

remained visible for 3000 ms, and 3) response errors were followed by a 1-second 

feedback message reading either, “Oops! It was not a target.”, or “Oops! You missed 

a target.”, as appropriate. Error-free performance resulted in a practice vigil of 2 

minutes 15 seconds and each error added 1 second. 

Upon task completion, participants completed a computerized A-SWAT 

mental workload scale (Luximon & Goonetilleke, 2001) consisting of three subscales: 

time load, mental effort, and psychological stress. Participants made their rating of 

each subscale, presented one at a time, by clicking a horizontal line anchored with the 

text descriptions of subscale endpoints. 
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Analysis 

To exclude participants who might have stopped attending to the task entirely, 

we converted participants’ binary responses to the sensitivity measure d’ using a log-

linear correction (Hautus, 1995) to correct for floor and ceiling level hit and false 

alarm rates. Twenty participants who failed to achieve a d’ of at least 0.25 in the first, 

middle, or last 4-minutes of the task were excluded from further analyses. With these 

exclusions, mean d’ was 1.35, mean hit rate was 0.75, and mean false alarm rate was 

0.30, collapsed across experimental blocks. 

We used hierarchical Bayesian parameter estimation (Kruschke, 2015; Lee, 

2018; Lee & Wagenmakers, 2013) to assess changes in vigilance between the first 

and last 4-minutes of the task. Signal detection responses were fit with a hierarchical 

generative model that estimated parameters representing response bias, sensitivity, 

and attentional lapses at the individual- and group-level. Mean differences in group-

level parameters between the first and last block were modeled with normalized 

effects and unit normal priors. The model placed priors on the log of internal noise to 

ensure positive variance values, and on probit-transformed lapse rate rather than lapse 

rate directly for ease of comparison across parameters. Prior values are reported in 

Chapter 4 (p. 79). 

We report mean parameter estimates with 95% Bayesian credible intervals 

(BCIs) to describe the posterior distributions, and Bayes factors to summarize the 

strength of evidence for (or against) each parameter. We calculated Bayes factors 

from the Savage-Dickey density ratio (Wagenmakers et al., 2010): the height of the 

posterior distribution divided by the height of the prior distribution at the parameter 
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value of interest (i.e., 0). The resulting Bayes factor, denotedB10, is the ratio of the 

likelihood of the data under the alternative hypothesis versus the null.  A ratio of 1 

indicates no evidence in either direction, values greater than 1 support the alternative 

hypothesis, and values between 0 and 1 support the null. We interpret the strength of 

evidence in line with guidelines proposed by Jeffreys (1961) (i.e., 1-3 = anecdotal, 3-

10 = substantial, 10-30 = strong, and >100 = decisive evidence for the alternative 

hypothesis, compared to the null hypothesis).  

Mean ratings for each of the A-SWAT subscales were estimated separately 

within a hierarchical model that placed a normal likelihood function on observed 

ratings, and uniform priors, U(1, 100), on the group means and standard deviations of 

the ratings.  

All analyses were conducted in R (R Core Team, 2019). Estimation 

procedures ran four MCMC chains for 1000 warmup trials, followed by 12,500 

sample steps each, using the JAGS package (Plummer, 2015). Chains were thinned to 

every fourth step. All parameter estimates showed R̂ convergence values of < 1.1, 

indicating satisfactory convergence of MCMC chains. 

Results 

Figure 19 shows the proportion of responses for signal and noise trials in the 

first and last blocks of the cognitive vigilance task. Visual inspection shows suggests 

that the response rate remained relatively stable between blocks.  
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Figure 19. Response rates for the first and last 4-minute blocks of the vigilance task 

for signal and noise trials. Black and white symbols are empirical means with error 

bars representing standard errors. Red symbols are posterior predictive values with 

error bars representing 95% BCIs. 

 

Figure 20 shows the posterior distributions of the mean differences in the 

response criterion, the log of internal noise, and the probit-transformed lapse rate 

between the first and last blocks. The top panel shows that the posterior distribution 

for the effect of block on response cutoff was highly variable but not credibly 

different from zero, Mdiff = 0.03, BCI = [-0.54, 0.60]. Data gave substantial evidence 

against a shift in response cuttoff from the first to last block,B10 = 0.29. Data in the 

middle panel give strong evidence,B10 = 0.06, against an effect of block on internal 

noise, Mdiff = -0.03, BCI = [-0.13. 0.07]. Data in the bottom panel give substantial 
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evidence,B10 = 3.90, in favor of an effect of block on lapse rate. The change in lapse 

rate was associated with a decrease in response rate from the first to last block, 

indicating an increase in attentional lapses over time, Mdiff = 0.49, BCI = [0.09, 

0.95].  

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Posterior distributions of effects of block on three parameters: response 

cutoff (top), log of internal noise (middle), and the probit of lapse rate (bottom). 

Discussion 

The present study assessed changes in parameters representing response bias, 

sensitivity, and lapse rate across the first and last 4-minutes of a cognitive vigilance 

task.  Data gave substantial evidence against an effect of response cutoff and strong 
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evidence against an effect of sensitivity, suggesting that neither bias shifts nor 

sensitivity losses contributed to changes in response rates in this task. Data did give 

substantial evidence for an effect of lapse rate, whereby lapses increased from the 

first to the last block, but the decrease in response rates was minimal. 

Like previous comparisons of sensory and cognitive vigilance, the studies 

reported within this dissertation reveal marked differences in performance between 

tasks requiring sensory discriminations versus those requiring cognitive 

discriminations. Chapters 2-4 report data exclusively from sensory tasks, for which 

analyses revealed substantial vigilance decrements. In contrast, detections in the 

present study remained relatively stable over time, despite the cognitive task meeting 

conditions known to encourage sensitivity losses in sensory tasks (i.e., high event 

rates and successive discriminations). This pattern accords with previous findings that 

vigilance losses are generally smaller in cognitive tasks than in sensory tasks (Ash et 

al., 1983; Loeb et al., 1982; Noonan et al., 1984; Noonan et al., 1985; See et al., 

1995).  

The present results are not, however, consistent with the vigilance 

increment—an increase in detections over time—that has been observed in some 

cognitive tasks (Deaton & Parasuraman, 1993; Dember et al., 1984; Koelega et al., 

1989; Loeb et al., 1987; Lysaght et al., 1984; Noonan et al., 1985; Warm et al., 1984).  

While See and colleagues (1995) suggest that the vigilance increment might be driven 

by an increase in sensitivity, the present study found stronger evidence against a 

change in sensitivity than in any of the sensory tasks reported in earlier chapters. It 

remains a possibility, though, that sensitivity increments occur only under alternative 
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task conditions, such as in low event rate or simultaneous discrimination tasks that are 

less demanding (Davies & Parasuraman, 1982).  

We proposed that performance differences between sensory and cognitive 

tasks might be driven by differences in whether the tasks required continuous- or 

discrete-state judgments. Previous cognitive tasks have asked participants to make 

judgments that are discrete in nature, such as judging whether number is odd or even. 

In an odd/even discrimination, the number unambiguously belongs to one category or 

the other, limiting the extent to which responses can be affected by graded internal 

noise and shifts in response bias. The present task was designed to allow these effects, 

yet still did not produce changes in sensitivity or bias. 

One possibility is that participants avoided making continuous state judgments 

by adopting a simpler heuristic for responding. Rather than judging whether the 

average of the numbers was drawn from a distribution with a mean of 490 or 510, as 

intended, participants could have simplified the task by responding “yes” whenever 

the average was greater than a criterion value (e.g., 500). Alternatively, performance 

differences between sensory and cognitive tasks might not be driven by differences in 

discrete- versus continuous-state decision models. Although previous work (Deaton 

& Parasuraman, 1993) ruled out the possibility that people perform better in cognitive 

tasks because alphanumeric stimuli make it easier for them to recognize when they 

have made an error, it remains possible that people are better able to notice errors 

when making cognitive discriminations, irrespective of stimulus type. Future work 

should directly test the effects of knowledge of results for tasks requiring sensory and 

cognitive discriminations.  
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Chapter 7: General discussion 

The systematic study of vigilance began during World War II as a means of 

understanding why radar and sonar operators missed targets at the end of their watch 

that they were usually able to detect. This decline in the ability to detect infrequent 

signals over time, termed the vigilance decrement, is now one of the best-established 

findings in the human performance literature (Hancock, 2013). Early theories of 

vigilance assumed that the decrement was caused by a decline in observers’ 

perceptual ability to distinguish signals from noise (i.e., sensitivity; Frankman & 

Adams, 1962; J. F. Macworth, 1968b). However, the development of signal detection 

theory (Green & Swets, 1966), allowed researchers to distinguish changes in 

observers’ sensitivity from changes in their response bias by analyzing the pattern of 

tradeoffs between hits and false alarms. 

 Following the adoption of SDT by vigilance researchers in the 1960’s, many 

studies reported that the vigilance decrement primarily resulted from monitors 

adopting progressively more conservative response criteria over time, rather than 

declines in sensitivity (Broadbent, 1971; Mackworth, 1970; Swets & Kristofferson, 

1970). But SDT analyses did sometimes reveal concurrent declines in sensitivity 

(Loeb & Binford, 1968; Smith & Barany, 1970). To identify the types of tasks that 

produced sensitivity losses, Parasuraman and Davies (1977) evaluated vigilance 

studies that reported SDT analyses, concluding that sensitivity only declined in tasks 

that combined high event rates (>24/min) with successive discriminations.  

Although many studies found sensitivity losses in successive, high event rate 

tasks (e.g., Claypoole et al., 2019; Galinksy et al., 1993; Smith et al., 2002; Warm & 
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Jerison, 1984), others observed sensitivity losses in tasks with low event rates (e.g., 

Mackworth, 1970; Tomporowski & Simpson, 1990; Williges, 1971) and simultaneous 

discriminations (Dittmar et al., 1985.; Parasuraman & Mouloua, 1987), suggesting 

that the original taxonomy was incomplete. Proposed revisions to the taxonomy 

suggest that sensitivity losses depend on overall task load (Parasuraman & Mouloua, 

1987), rather than the specific combination of high event rates and successive 

discriminations, as well as whether tasks require sensory or cognitive discriminations 

(See et al., 1995). 

Theorists generally attribute the selective pattern of sensitivity losses to 

limitations in effortful attention. Specifically, the resource depletion account 

(Caggiano & Parasuraman, 2004; Grier et al., 2003; Parasuraman, 1979) proposes 

that tasks imposing a high load on observers gradually exhaust the limited supply of 

attentional resources. Meanwhile, the resource control hypothesis (Thomson et al., 

2015) proposes that executive control wanes over time, allowing resources to drift to 

task-unrelated thoughts. In either case, fewer resources are available to the vigilance 

task, reducing information-processing quality. Both models are consistent with 

findings that vigilance tasks are stressful and subjectively effortful (Dember et al., 

1996; Warm et al., 2008). 

Recent work, however, suggests that traditional SDT analyses of binary 

detection data are inadequate for understanding the vigilance decrement. One concern 

is that apparent losses of sensitivity might be a statistical artifact of very low false 

alarm rates, which are common in vigilance tasks (Thomson et al., 2016). Unless the 

false alarm rate is high enough to allow a statistically detectable decrease between 
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task conditions (which is often not the case in vigilance tasks; Thomson et al., 2016) 

changes in sensitivity and bias are indistinguishable. To circumvent this issue, 

researchers often prefer to use A’ in place of d’, as it is widely believed to be a 

nonparametric measure of sensitivity. However, A’ is not actually bias-free (Getty et 

al., 1995; Macmillan & Creelman, 1996; Pastore et al., 2003) and shifts in bias have 

been shown to produce spurious changes in A’ (McCarley et al., 2021). Together, 

these issues prompt reconsideration of the mechanisms underlying vigilance 

decrements. 

An alternative theory, mindlessness, proposes that the vigilance decrement is 

driven by attentional lapses: brief periods in which attention is fully decoupled from 

the task (Jerison et al., 1965; Manly et al., 1999; Robertson et al., 1997). But, with 

only two degrees of freedom, binary detection data are unable to account for changes 

in bias shifts, sensitivity losses and attentional lapses.  

To address these limitations, the goal of the work presented within this 

dissertation was to re-examine the mechanisms underlying the vigilance decrement 

using methods suitable for distinguishing between bias shifts, sensitivity losses and 

attentional lapses. To this end, Chapter 3 presented two studies that examined 

changes in the psychometric curve between the first and last 4-minutes of an online 

sensory vigilance task. Psychometric curves revealed that the decrement was largely 

driven by an increase in the frequency of attentional lapses over time, followed by 

observers adopting a progressively stricter cutoff for making signal present responses. 

Across both studies, data failed to give convincing evidence for or against an effect of 

block on sensitivity. Although McCarley and Yamani (2021) found decisive evidence 
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of a sensitivity loss in their lab-based version of the task, its absence in the online 

studies suggests that 1) the vigilance decrement may reflect different mechanisms 

when tasks are conducted online versus in the lab, and 2) sensitivity losses are less 

robust than bias shifts and attentional lapses.  

Chapter 4 introduced an alternative modeling approach for estimating changes 

in response bias, sensitivity, and attentional lapses over the course of a vigilance task. 

The generative cognitive model was written to directly simulate observer’s response 

cutoffs, internal noise (corresponding to sensitivity), and attentional lapse rates, 

linking changes in response rates directly to the underlying cognitive mechanisms. 

The chapter presents two demonstrations that the generative model captures trends in 

the data previously revealed by analyzing changes in the psychometric curve. Results 

provide converging evidence that the vigilance decrement primarily reflects increases 

in attentional lapses and conservative bias shifts, in both an online and a lab-based 

sensory task.  

Chapter 5 shifted from examining mechanisms of vigilance loss in sensory 

tasks to examining vigilance within a cognitive task. Given the breadth of research 

examining sensory vigilance, relatively few studies have employed cognitive tasks. 

Those that have, tend to find that vigilance decrements and sensitivity losses are 

smaller than they are in sensory tasks. We proposed that these effects might have 

been driven by cognitive vigilance tasks mapping stimuli to discrete rather than 

continuous states, thereby limiting the extent to which responses are affected by 

internal noise and shifts in response criterion. However, despite designing a cognitive 

task that required continuous-state judgments, response rates remained relatively 
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stable across blocks. Data gave evidence against a bias shift and a sensitivity loss. 

The negligible decline in response rates appears to have been driven entirely by an 

increase in attentional lapses.  

Overall, these results support the distinction between sensory and cognitive 

vigilance tasks made by other researchers (Deaton & Parasuraman, 1993; Koelega et 

al., 1989; See et al., 1995) and suggest that performance differences between sensory 

and cognitive tasks might not be driven entirely by differences in discrete versus 

continuous-state decision processes.  

Collectively, the large-N, preregistered studies presented in this dissertation 

provide convincing evidence that the vigilance decrement largely reflects attentional 

lapses and conservative shifts in bias over time. Although analyses do not rule out 

sensitivity losses, the results reported here are not consistent with theories that assign 

resource depletion a significant role in the vigilance decrement. Finally, the results 

suggest that interventions aimed at reducing attentional lapses and bias shifts might 

be more effective at mitigating the vigilance decrement than those focused on 

minimizing sensitivity losses.  
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