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GEOMETRIC OPTIMIZATION METHODS FOR MOBILE

SYSTEMS

1. GENERAL INTRODUCTION TO GEOMETRIC MECHANICS

This thesis is a study of mobile robot systems, particularly those behaving similarly

to biological organisms. Biomimetic robots depend heavily on specific dynamic interac-

tions with their environment; control policies must balance a broad set of physics in order

to produce effective locomotion. With this in mind, a key area of interest is optimal design

and control of mobile systems. Our objective is to understand the best way to balance the

given dynamics of a system with specific locomotion objectives. Often, we also want to

build intuition about how a system behaves so that design decisions in the future are as

natural as possible. In general, our approach to these problems relies on the relationship

between a system’s geometry and its underlying mechanics.

The set of methods in this thesis builds on a broader set of approaches by the ge-

ometric mechanics community. The term “geometric mechanics” refers to an application

of differential geometry to mechanics. The objects studied in differential geometry often

have a natural correspondence with the sorts of structures we see in mechanics. Notions

of form (length, area, volume...) and change (in the form of derivatives) are baked into

differential geometry. These same concepts are relevant to mechanics. For example, kine-

matic quantities (position and its derivatives) occupy manifolds with curvature, tangent

spaces, and tangent-tangent spaces; dynamic quantities (force, torque) are covectors over

tangent spaces. By understanding the kinds of mathematical objects we are working with,

certain operations become much more natural than they are when expressed in other ways.
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This thesis introduces a number of these geometric approaches to mechanics, and explains

further why these tools are useful.

The body of this thesis is organized into three separate manuscripts, all sharing a

common theme. In the first manuscript, Characterizing Error in Noncommutative Ge-

ometric Gait Analysis, we investigate the extent that coordinate optimization reduces

error when estimating displacement for mobile systems. We construct a bound on third

order displacement errors, and demonstrate that optimized minimum perturbation co-

ordinates significantly reduce error. In the second manuscript, Minimum Perturbation

Coordinates on the 3D Rotation Group, we extend our own prior work and compute min-

imum perturbation coordinates on SO(3), the group of 3D rotations. We also introduce

additional mathematics that improve coordinate optimization results. In the third and

final manuscript, Geometric Nonlinear Dimensionality Reduction for Robot Shape Spaces,

we identify a “most useful” 2D shape space for systems with many degrees of freedom,

using prior tools from the geometric mechanics community. This work is a robust proof-of-

concept, and may be extended as a general dimensionality reduction for mobile systems.

The shared theme of this work is an investigation of optimization methods for mobile

systems: optimizing coordinate choice in the first two manuscripts, and optimizing control

domain in the final manuscript. However, across this thesis, we explore the tools required

to use geometric mechanics on more real-world systems, including those that move spa-

tially (in 3D space) or have many degrees of freedom. With more intuitive understanding

of how these systems behave mechanically, we can construct and control agents that are

prepared to interact with and inhabit the natural world.
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Characterizing Error in Noncommutative Geometric Gait

Analysis

Capprin Bass, Suresh Ramasamy, and Ross L. Hatton

Abstract

A key problem in robotic locomotion is in finding optimal shape changes to effectively displace

systems through the world. Variational techniques for gait optimization require estimates of body

displacement per gait cycle; however, these estimates introduce error due to unincluded high order

terms. In this paper, we formulate existing estimates for displacement, and describe the contri-

bution of low order terms to these estimates. We additionally describe the magnitude of higher

(third) order effects, and identify that choice of body coordinate, gait diameter, and starting phase

influence these effects. We demonstrate that variation of such parameters on two example systems

(the differential drive car and Purcell swimmer) effectively manages third order contributions.

Proceedings of the 2022 IEEE International Conference for Robotics and Automation
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2.1. Introduction

In nature, creatures of all kinds move with gaits. Bodies interact with their envi-

ronment through changes in shape, which displace the body through the world. These

gaits are, by nature, cyclic: running, swimming, and flying all involve repeated action,

and result in body displacement. It is useful to describe the locomotion of robots in the

same way.

When controlling locomoting robots, it is useful to understand which gait cycles

result in “good” displacements, based on desired gait properties such as displacement per

unit time or unit energy [1,2]. As one approach to this problem, the geometric mechanics

community has described a framework for relating system dynamics, configuration, and

gait geometry that provides insight into the displacements resulting from particular gaits

[3–11].

Because gaits are cycles in system shape, they form closed loops in the shape space

of the system. The motility map A, defined over the shape space of a system, can be used

to map shape velocity to body velocity [8]. Using the corrected body velocity integral

(cBVI), a surface integral of the total Lie bracket over the region enclosed by a gait, we

construct an estimate for displacement, gϕ [1, 12],

gϕ ≈ exp

(¨
ϕ

total Lie bracket︷ ︸︸ ︷
dA+ [A1,A2]︸ ︷︷ ︸

cBVI

)
, (2.1)

in which the first term (dA) captures the nonconservativity of locomotion; this is the

“forwards minus backwards” displacement due to the gait. The second term ([A1,A2])

is the local Lie bracket of the matrix columns of the motility map,1 and captures the

effects of noncommutativity of the position space; this is the sideways “parallel parking”

1The local Lie bracket may be extended to greater than two dimensions by taking Lie brackets of each
matrix column:

∑
j>i[Ai,Aj ] [1].
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FIGURE 2.1: Relationship between systems and displacements. The configuration of a
system is represented by shape variables; in this case, the Purcell swimmer is represented
by two relative orientations α1 and α2. A gait family captures shape changes of a certain
kind. Integration of the BCH series approximation inside the gait provides estimates for
displacement. As gait diameter increases, so does displacement per cycle; starting phase
impacts gait error angle.

effect from “move forward and turn” actions. Fig. 2.1 captures this relationship between

system, shape changes, and estimated displacements for the Purcell swimmer [13].

Our previous work has shown that the cBVI has associated error; that is, the dis-

placement predicted by the cBVI is not exactly ground truth. This error comes from

unaccounted-for higher order displacement effects present in many systems and gaits. We

have argued that particular choices of body coordinates (in particular, the use of mini-

mum perturbation coordinates [14]) reduce the contribution of higher order terms, instead

capturing their effect with the total Lie bracket [12]. However, we have not previously

quantified the error introduced by these higher order terms.

In this paper, we address the specific gap of understanding in the magnitude and

direction of higher order terms of the total Lie bracket. We do so by using the Baker-

Campbell-Hausdorff series to construct an expression for the cBVI that includes higher
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order terms:

gϕ = exp

(¨
ϕ

total Lie bracket︷ ︸︸ ︷(
dA+ [A1,A2]

)
+

πℓ

8

[
Ā,

¨
ϕ

(
dA+ [A1,A2]

)]
︸ ︷︷ ︸

third order effects

+ · · ·

)
,

(2.2)

in which Ā is an estimate for the average of the motility map in the region of the gait and

ℓ is the characteristic diameter of the gait in the shape space.

We comment further on the factors contributing to leading order error. Third order

effects (in the plane) are bounded by

||A|| · ||DA||ℓ3, (2.3)

where DA = dA+ [A1,A2], referring to to the total Lie bracket. Because the cBVI is an

area integral of DA, third order effects may be expressed relatively to the cBVI as being

proportional to

||A||ℓ, (2.4)

the magnitude of the motility map and the size of the gait. Given ||A|| for a system at

a given point, (2.4) communicates the maximum size gait possible before error becomes

too large. Coordinate choice also affects ||A||; in fact, our own minimum perturbation

coordinates maximize ℓ for a given level of acceptable error. Fig. 2.1 demonstrates this

effect for two choices of coordinate and several gait amplitudes.

In addition, for gaits without net body rotation, third order effects are directed

orthogonally to the displacement predicted by the cBVI. As a result, their respective

contributions may either be compared in terms of absolute magnitude or in terms of the

“error angle” resulting from third order effects.

The rest of the paper is organized as follows: In §2.2., we describe the model, as well

as the supporting mathematics leading up to the total Lie bracket. In §2.3., we construct
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the total Lie bracket. In §2.4., we approximate third order effects, and derive expressions

for third order contributions and a heuristic on characteristic gait diameter. In §2.5., we

apply these methods to two locomoting systems. In §2.6., we make concluding remarks

and comment on future work.

2.2. Model Background

2.2.1 Model

We model our systems as having a configuration space Q, partitioned into a position

space G and a shape space R, as in [2]. Elements g ∈ G describe positions of the system in

space, and r ∈ R describe the shape of the system itself. Fig. 2.1 illustrates the difference

between position and shape. As in [2,8,12,14], the local connection (or motility map) may

be used to map infinitesimal shape changes to infinitesimal position changes,2

◦
g = A(r)ṙ, (2.5)

in which A refers to the local connection,3 and
◦
g is a body velocity. Body velocities

are elements of the Lie algebra of the position space; they represent velocity in the local

frame. As such, Lie algebra elements may be represented by either a column vector (with

the body frame acting as bases) or in a corresponding matrix form. For the remainder of

this paper, the position space is the special Euclidean group (g ∈ SE(2)); we notate body

velocities with
◦
g ∈ se(2).

2.2.2 Gaits

Certain changes in system shape result in a displacement through the position space.

In the context of locomotion, it is useful to describe shape changes in terms of cyclic gaits,

2This expression makes the assumption that systems behave kinematically. Previous work [15] extends
this domain to apply to many systems.

3In previous work, the local connection, by convention, encodes negative body motion; we have dropped
this convention for this paper.
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where a mapping ϕ : [0, T ) → R describes the shape r at time t ∈ [0, T ); T is the period

of the gait. This structure allows us to express displacement from the identity induced by

a gait:

gϕ =

ˆ T

0
g(t)A(r(t))ṙ(t)dt =

‰
ϕ
gA(r)dr, (2.6)

where the rightmost integral described in (2.6) is a path integral along a closed loop drawn

in the shape space by the gait ϕ.

This integral is invariant to time parameterizations, but does depend on the ordering

of actions along the path. Both versions of the integral contain system configuration, which

a traditional Riemann integral does not adequately describe. In contrast, the product-

integral4 accounts for the ordering of actions along the path, respecting configuration:

gϕ =
T

R
0

(
exp
(
A(t)ṙ(t)dt

))
, (2.7)

in which exponentiating A(t)ṙ(t) over infinitesimal time produces the corresponding body

frame transformation, and taking the product of all these infinitesimal transformations

produces the total displacement over the gait.

Because multiplication of translation/rotation elements does not commute, we still

cannot compute a closed form expression for this integral. By employing the Baker-

Campbell-Hausdorff series described in the next section, however, we can construct an

approximate closed-form solution that provides geometric insight into the system motion.

2.2.3 The Baker-Campbell-Hausdorff Series

The Baker-Campbell-Hausdorff (BCH) series expresses the result of executing serial

group actions as a single equivalent operation. It is related to the exponential map, which

implies a correspondence between a groupwise velocity and a group action. For example,

4The product-integral is a multiplicative version of the additive Riemann integral. Product integration
preserves the effect of the group operation, rather than integrating components independently. In effect,
the product integral preserves the order that events occur, as in (2.6).
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take a groupwise velocity
◦
g ∈ se(2); it is mapped to a group element g ∈ SE(2) with:

g = exp
(◦
g
)
, (2.8)

where the exponential map is equivalent to integration of the groupwise velocity over unit

time.

Now, take two groupwise velocities X,Y ∈ se(2). Applying their corresponding

group actions in series has the form

g = exp (X) exp (Y ) . (2.9)

The BCH series can be used to replace the right hand side of (2.9) with the exponential

of a single groupwise velocity Z ∈ se(2) defined such that

exp(Z) = exp(X) exp(Y ). (2.10)

The BCH series is infinite, and its lowest order terms are:

Z = X + Y +
1

2
[X,Y ] +

1

12
[X − Y, [X,Y ]] + · · · . (2.11)

Note that the BCH series contains the nominal X + Y as expected from commutative

algebra; however, it also contains additional, corrective terms. The following example

builds intuition for these terms; refer to Fig. 2.2 for its visualization.

Consider the example of a diffdrive car, which can drive forward and turn. We

assign X as driving forward, and Y as turning; because X,Y ∈ se(2), we write each action

as

X = [
◦
x 0 0]T , Y = [0 0

◦
θ]T , (2.12)

for some
◦
x,

◦
θ. The composite motion exp(X) exp(Y ) encodes displacement after driving

forward for some time, and then turning. This results in a (x, 0, θ) position. In contrast,

exp(X + Y ) encodes displacement after simultaneously driving forward and turning, re-

sulting in a (x, y, θ) position.
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FIGURE 2.2: Action of the BCH series. (a) For the serial actions X, Y , the ground truth
is moving forward, followed by a turn. (b) The action X + Y results in movement along
an arc. (c) The inclusion of a local Lie bracket term, 1

2 [X,Y ], corrects some error. (d)
The endpoints for ground truth (pink), Lie bracket correction (black), and truncated BCH
series (red) are distinct.

The two operations result in different predicted displacements of the car in space;

exp(X) exp(Y ) is the ground truth, and exp(X+Y ) is an approximation of ground truth,

discarding information about the order in which events occur. To improve the approxima-

tion, we can introduce additional terms from the BCH series. The second term expands

the approximation to exp(X + Y + 1
2 [X,Y ]). The local Lie bracket captures the fact that

X occurred before Y , and introduces a lateral velocity to the car that corrects most of the

y error in the approximation.

2.3. Baker-Campbell-Hausdorff for Gaits

Rather than integrating (2.6) or (2.7) directly, we construct an integral estimate

that captures the relationship between system properties and displacement. This estimate

leverages the BCH series to describe leading-order displacement effects from gaits, while

simplifying the integral expression such that it may be solved numerically. The total Lie

bracket is a truncation of this BCH series expression, as we will show.



11

FIGURE 2.3: To construct a displacement integral, a circular gait of diameter ℓ and
starting phase Φ is discretized into four segments a, b, c, d.

We first split the gait into four sections a–d, distributed evenly around the gait such

that the mean tangent vectors in a and c are antiparallel, as are the mean tangent vectors

in b and d, as illustrated in Fig. 2.3. This split discretizes the product-integral from (2.7)

into the product of four product-integrals over smaller intervals,

gϕ ≈
4∏

i=1

 (i)T/4

R
(i−1)T/4

(
exp
(
A(t)ṙ(t)dt

)) . (2.13)

If we apply the BCH series recursively to the (infinite number of infinitesimal)

elements in each of the four product integrals and assume commutativity within each gait

segment such that all the Lie bracket terms go to zero, the segment integrals may be

written as

R
τ

(
exp
(
A(t)ṙ(t)dt

))
= exp

(ˆ
τ
Adτ

)
, (2.14)

where τ is an arbitrary gait segment.5

Assigning each of the
´
A integrals to their corresponding segment names, we can

rewrite (2.13) as the product of four exponential terms,

gϕ ≈ eaebeced. (2.15)

5As per [16], the assumption of local commutativity introduces fourth-order errors; we constrain our
focus in this paper to third-order errors.
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Applying the BCH formula to each term in this product produces a series expression for

gϕ in terms of the
´
A integrals,

≈ exp(a+ b+ c+ d+
1

2
([a, b] + [b, c] + · · · , (2.16)

in which the first terms are the “simple integral” of the body frame motions the system

makes, and the Lie bracket terms are corrections to the global motion based on the order

in which the segments appear in the gait.

With the series expression from (2.16) in hand, we can now use the geometric

arrangement of the segments to gain further insight about the gait displacement integral:

Because the elements of the gait pairs {a, c} and {b, d} are antiparallel, we can approximate

them in terms of the mean value of the local connection in the region of the gait, its first

derivative over the shape space, and the characteristic diameter ℓ of the gait in the shape

space. This approximation takes the form

a ≈ α− δ/2, b ≈ β +∆/2,

c ≈ −(α+ δ/2), d ≈ −(β −∆/2),

(2.17)

in which α and β are the mean values of the columns of the local connection in directions

aligned with the a and b sections of the gait, scaled by ℓπ/4, the length of a quarter-circle

for diameter ℓ,

α =
π

4
ℓĀR(Φ)

1
0

 , β =
π

4
ℓĀR

(
Φ+

π

2

)1
0

 , (2.18)

and δ and ∆ are the rates at which the local connection changes across the shape space,

multiplied by the diameter of the gait,

δ = ℓ
∂Aα

∂rβ
, ∆ = ℓ

∂Aβ

∂rα
. (2.19)

Inserting these approximations into the BCH series for the gait gives

gϕ ≈ exp(− δ +∆+ [α, β]+

1

2
[(α+ β), (−δ +∆+ [α, β])] + · · · ,

(2.20)
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which we can then expand in terms of the local connection as

gϕ ≈ exp


−δ+∆︷ ︸︸ ︷¨
ϕ

(
dA+

[α,β]︷ ︸︸ ︷
[A1,A2]

)
︸ ︷︷ ︸

cBVI

+

third order effects︷ ︸︸ ︷
πℓ

8

[
(Āα + Āβ),

¨
ϕ

(
dA+ [A1,A2]

)]
 .

(2.21)

This surface integral formulation opens the possibility of gait optimization via vari-

ational techniques. These specific optimization techniques are outside the scope of this

paper; however, they assume that the cBVI is an accurate estimate of displacement (as

in the optimized coordinates shown in the last row of Fig. 2.1). Our focus in this paper

is the validity of this assumption, and quantifying residual errors due to the truncation

of the BCH series. In particular, we express and bound the contribution of third order

effects to displacement.

2.4. Third Order Bound

The third order effects in (2.21) depend on (α+β) and the cBVI. As in (2.18), the gait

diameter ℓ and starting phase Φ together encode the initial configuration of the system.

Within a fixed diameter gait, Φ is solely responsible for initial system configuration. In

general, third order effects depend on the size and orientation of the local connection A,

the gait diameter ℓ, and starting phase Φ, as shown in Fig. 2.1.

2.4.1 Approximation

Third order effects (2.21) are a third-degree polynomial in ℓ; to produce a third

order bound, we construct a similar polynomial approximation for the cBVI. This is done

by computing a two-dimensional, second order Taylor series approximation for the total
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Lie bracket, DA, at the center of the gait:

DA ≈ DA(δα1, δα2) = T 2
DA(δα1, δα2). (2.22)

We then reparameterize (2.22) into polar coordinates, and integrate over the circular

approximation for a gait,

cBVI(ℓ) =

ˆ ℓ/2

0

ˆ 2π

0
DA(ρ, θ)ρ dρ dθ, (2.23)

producing a diameter-dependent estimate for the cBVI.

As third order effects (and associated estimates) depend on phase Φ and character-

istic gait diameter ℓ, these parameters are used to compute a third order bound.

2.4.2 Third Order Bound

The preceding polynomial approximations assume a circular gait, and express both

nominal and approximate displacements as a result. We use these approximations to

construct a heuristic on the size of third order contributions for generic systems, and

determine third order effects in the worst case.

The magnitude of third order effects can be made large by maximizing the possible

size of its constituent components. This is first done with the triangle inequality on α and

β, creating an upper bound on (α+ β):

(α+ β) ≤ (|α|+ |β|); (|α|+ |β|) = π

4
ℓ|Ā|

1
1

 . (2.24)

Note that with the absolute values of α and β, phase Φ is no longer present. This implies

that the bound captures the largest possible third order effects across all phases.

We also maximize the local Lie bracket, using the triangle inequality. This has the

form

[X,Y ] =


XyY θ − Y yXθ

Y xXθ −XxY θ

0

 ≤


|XyY θ|+ |Y yXθ|

|Y xXθ|+ |XxY θ|

0

 . (2.25)
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Combining the upper bounds, we have

third order bound =
1

2
[(|α|+ |β|), cBVI(ℓ)]ub, (2.26)

where [·, ·]ub refers to the bound on the local Lie bracket.

An important note is that the local Lie bracket in (2.26) speaks to the direction of

third order effects. For gaits with no net rotation, third order effects are orthogonal to the

cBVI; this is demonstrated in Fig. 2.1 and Fig. 2.5. As a result, we may speak of third

order effects in terms of the “error angle” they produce. Ground truth displacements lie

on an arc with an equivalent angle, and a radius equivalent to the cBVI. Location on the

arc is determined by the starting phase Φ of the particular gait.

2.4.3 Characteristic Length Bound

The third order bound is an increasing function of the characteristic diameter ℓ and

the local connection A; third order contributions are small if ℓ is small. The definition of

“small” is relative, and is determined by the size of the local connection, which depends

on the choice of body frame. For a given choice of coordinates, solving the inequality

[(|α|+ |β|), cBVI(ℓ)]ub ≤ P · cBVI(ℓ) (2.27)

for ℓ will constrain third order effects to a proportion P of the cBVI. Because all the

quantities involved are polynomials in ℓ, (2.27) can be solved numerically.

2.5. Application of Bound

We now apply the techniques introduced in §2.4. for two systems, investigating

particular gait families. We explore the direction and magnitude of third order effects in

both original and minimum perturbation coordinates.
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2.5.1 Systems

We investigate two example systems: the differential-drive car and the Purcell swim-

mer. Illustrations of each are in Fig. 2.4. Both reside in the plane and have two shape

variables. For the car, the shape variables are the orientations of the wheels; for the

swimmer, they are the relative orientations of every two links. A “shape” is a particular

value for both shape variables; it defines the configuration of a system.

FIGURE 2.4: Characteristic gaits and resulting trajectories for each system. On the top
row, (a-c), the diffdrive car moves in square gaits (a), with the orientation of each wheel as
the shape. (b) Square diffdrive gaits result in a displacement trajectory. (c) In minimum
perturbation coordinates, BCH estimates for displacement are exactly colocated. On the
bottom row (d-f), the Purcell swimmer moves with circular gaits (d), with the relative
orientation of each link as the shape. (e) Circular Purcell gaits result in a displacement
trajectory. (f) In minimum perturbation coordinates, BCH estimates are only approxi-
mately colocated.

In general, the shape space of a system is all of the possible shapes it can make; gaits

are closed loops within the shape space. In the case of the above systems, we can represent

the shape space as a subset of R2, and draw closed loops on the plane to construct gaits

of interest.

Fig. 2.4(a) and 2.4(d) show characteristic gaits investigated for each system. The

diffdrive car has a square gait, as it executes discrete “move forward” and “turn” actions.
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The Purcell swimmer has a circular gait, where it continuously accelerates each joint. Each

gait results in a displacement through the world; this displacement (and how it varies for

different gaits) is of principal interest.

2.5.2 Displacement and Effect of Additional Terms

Changes in system shape induce a displacement trajectory through position space,

shown in Fig. 2.4(b) and 2.4(e).

As mentioned in §2.2., the ground truth is calculated exactly with a path integral of

the local connection along the gait. Approximations of displacement are done with a sur-

face integral of BCH terms inside the path; as more terms are included, the approximation

becomes more accurate.

2.5.3 Minimum Perturbation Coordinates

Choice of body coordinate affects the trajectory that systems follow through position

space. Body displacements may be computed in any body frame, so long as the frame

is rigidly attached to the system. Minimum perturbation coordinates [14] are a choice of

frame with this property.

Fig. 2.4(c) and 2.4(f) show how the use of minimum perturbation coordinates

affects each system’s trajectory. For the diffdrive car, displacement estimates are exact in

minimum perturbation coordinates [12,14]: the BVI,6 cBVI, and third order estimates are

perfectly colocated. For the Purcell swimmer, the BVI, cBVI, and third order estimates

are approximately colocated; in this case, they are 0.0031, 0.0013, and 0.0022 from ground

truth, respectively.

It is important to note that Fig. 2.4 ignores the effect of starting phase on displace-

ment, which does appear in higher order terms. This effect is addressed in both §2.5.4

and §2.5.5.

6The Body Velocity Integral (BVI) [14] is a first order estimate for displacement, making Fig. 2.4
capture first, second, and third order estimates.
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2.5.4 Relative Third Order Contribution

To demonstrate the third order bound, we sample the gait families for both the

diffdrive car and Purcell swimmer over gait amplitude and starting phase. In addition,

we compute resulting ground truth, cBVI, and third order effects for each gait, in original

and minimum perturbation coordinates.

Fig. 2.5 shows the results of amplitude and period sampling for the diffdrive car, in

original coordinates. The sampling is omitted in minimum perturbation coordinates, as

the BVI exactly captures displacement for this system [12, 14]. Fig. 2.1 shows the same

sampling for the Purcell swimmer, in both original and minimum perturbation coordinates.

FIGURE 2.5: Amplitude and phase sampling for the diffdrive car, in original coordinates.
Sample trajectories are included in red; resulting ground truths are in black. The cBVI
captures changes in amplitude; third order effects (as red X’s) capture changes in phase.
Arc “error” angle increases with amplitude.

For both systems, it is clear that the magnitude of third order effects is much

smaller than the cBVI, i.e., third order contributions to displacement are small (in optimal

coordinates). The relative size of this contribution increases with gait amplitude. In cases

where the bound is not acceptably small, it can be made so with the constraints on
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amplitude.

2.5.5 Guarantees using Third Order Bounds

Using the length bound defined in §2.4.3, the magnitude of third order effects may be

absolutely constrained to an arbitrary proportion of the cBVI. The effect of this bounding

technique is shown in Fig. 2.6. The maximum “error angle” increases with characteristic

gait diameter.

FIGURE 2.6: Error angle for the Purcell swimmer, in minimum perturbation coordinates.
The X constraint curvature function is overlaid with gait contours; each gait diameter has
an associated error angle (a). Error angle bounds the third order effects present in the
ground truth (b). Ground truths (dashed lines) shown are of the same scale as in Fig.
2.1.

Third order effects may additionally be relatively constrained (within a given am-

plitude) with an intelligent selection of starting phase, Φ. As shown in (2.21), the local

Lie bracket increases with (α + β); α and β are dependent on phase, as well as charac-

teristic diameter. Certain choices of starting phase will result in relatively small third

order effects. Fig. 2.1 and Fig. 2.5 corroborate this claim. Within a given amplitude, the

sampled phases all have different third order contributions.



20

2.6. Conclusion

In this paper, we extend existing displacement approximations, and characterize

third order effects of the BCH series in the context of locomoting systems. We identify that

gait diameter, starting phase, and coordinate choice influence third order contributions,

and demonstrate the use of these quantities as tools to manage errors introduced by the

cBVI.

Future work will explore third order effects in the context of gaits with net rotation;

these will act non-orthogonally to the cBVI, and require further analysis. In addition,

we will expand scope to include fourth order terms, which capture additional, previously

ignored displacement effects.
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Minimum Perturbation Coordinates on the 3D Rotation

Group

Capprin Bass and Ross L. Hatton

Abstract

When considering mobile robot systems, displacement estimates like the constraint curvature func-

tion are useful for intuition of dynamics and optimization of control policies. These estimates are

valid only for small shape changes, unless particular body coordinates (minimum perturbation

coordinates) are used to compute displacements. In this paper, we extend prior work to compute

minimum perturbation coordinates on the 3D rotation group, SO(3). We improve the derivation

of the objective function and introduce a more correct method for reconstruction of dynamics

after coordinate change. We demonstrate these methods on an example system, and show that

minimum perturbation coordinates are more effective on SO(3) than previously thought.

Unpublished Manuscript
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3.1. Introduction

A key modern problem in robotics is the construction and control of mobile locomo-

tors. These are systems that move through the world using highly dynamic interactions

with their environment; examples include legged locomotors [17–19], snakes [20, 21], and

fluid swimmers [2, 22, 23]. Such systems have a broad set of dynamic effects, including

contributions from inertia, coriolis terms [2], and storage or dissipation of energy [24,25].

Classical mechanics provides the tools to model dynamic systems, in the sense that

kinematics, forces, and torques may be mapped through the robot. However, these tools

provide little intuition on a high level about which control actions are effective for specific

locomotion objectives. More specifically, the relationship between internal changes in

shape and resulting trajectory through the world is unclear.

The geometric mechanics community has defined tools that describe system dynam-

ics at this high level. In particular, the Constraint Curvature Function (CCF) [12] provides

intuition about which internal motions result in specific world displacements. This was not

possible until the importance of the choice of body frame coordinates was well understood,

and minimum perturbation coordinates were derived for planar systems [14].

By choosing minimum perturbation coordinates as the reference frame for mobile

systems, we can use the CCF to visualize which parts of robot shape spaces produce

desired motion through the world [12]. As natural extensions, the CCF has been used as

an objective function to produce optimal control policies for dynamic systems [1, 26, 27]

and do online dynamics estimation and control for systems with unknown geometry [28].

Minimum perturbation coordinates are also a natural choice when doing learning-based

control, as they ensure that the learned policy is responsible for system performance, not

the particular choice of body coordinate.

Previous work has derived minimum perturbation coordinates for planar systems
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[14] as well as systems on the 3D rotation group, SO(3) [29]. This paper addresses gaps in

the latter work, specifically correcting, completing, and simplifying the derivation of mini-

mum perturbation coordinates on SO(3) in order to make the content more approachable

for others. We construct an improved expression of the objective function, describe how

optimization is performed, and explain how to reconstruct the local connection using the

time derivative of the exponential map.

The remainder of this paper is organized as follows. In §3.2., we describe the rele-

vant model and detail previous contributions towards minimum perturbation coordinates

in SE(2) and SO(3). In §3.3., we express our contributions towards the derivation and

computation of minimum perturbation coordinates on SO(3). In §3.4., we demonstrate co-

ordinate optimization results for a reaction wheel satellite, the same system demonstrated

in [29]. In §3.5., we make concluding remarks and discuss future work.

3.2. Background

3.2.1 Model

We model mobile systems respecting their configuration space Q, partitioned into a

shape space B and position space G. The shape of a system is defined by the configuration

of its internal degrees of freedom. The position is defined by the coordinates of some

reference frame attached to the system, and reflects which parameters are important to

describe motion of the system. As an example, planar systems are often represented with

[x, y, θ]T ∈ G, implying a special Euclidean position space: G = SE(2). In this paper, the

position space is the group of 3D rotations: G = SO(3).

The distinction between shape and position space is necessary to develop a notion

of how internal changes in shape produce displacement in the world. A motility map

expresses this relationship, acting as a local connection between respective tangent spaces.
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For r ∈ B, this is:

◦
g = A(r)ṙ, (3.1)

where
◦
g ∈ g is a body velocity, residing in the Lie algebra of the position space. The

local connection may be constructed for kinematic systems using the nullspace of system

constraints [2, 22], or for dynamic systems, given specific properties [15].

By considering each row of the local connection separately, we can construct vector

fields over the shape space that map between shape velocities and resulting body velocities

in the position space [30]. As an extension, motion plans in the shape space result in

well-defined trajectories through the world; internal motion is mapped forward through

the system dynamics. However, the reverse operation is more challenging. The local

connection evaluated at a given shape does not necessarily have a unique inverse, and

integration of its pseudoinverse over time does not respect the need to stay within joint

limits. Additional structure is necessary to discuss closed gait geometry while analyzing

the gaits that produce specific world displacements. This information is provided by the

Constraint Curvature Function.

3.2.2 Constraint Curvature Function

To intuit which regions of the shape space are valuable for specific displacements,

we extend the local connection to measure accrued differences in displacement due to mo-

tion (nonconservativity) as well as compound effects from motion in different dimensions

(noncommutativity) [12]. Expressed mathematically, this is

gϕ =

¨
ϕ

nonconservativity︷︸︸︷
dA + [A1,A2] + higher order terms︸ ︷︷ ︸

noncommutativity

dϕ, (3.2)
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where ϕ is a closed1 gait cycle, gϕ is the world displacement induced by the cycle, and

[·, ·] is a local Lie bracket of the columns of the local connection. The integrand in (3.2)

is the Constraint Curvature Function (CCF) [12, 29], which may be evaluated over the

shape space to indicate which regions produce desired displacement through the world.

As mentioned in [12,29,31], the CCF is a truncation of the Baker-Campbell-Hasudorff

series, and ignores higher order displacement effects. These effects may be ignored for small

motions; however, as gait size increases, the magnitude of higher order terms results in

significant accrued error [31]. This is addressed by using a particular choice of body coor-

dinates, which accounts for error by minimizing contributions to nonconservative effects.

3.2.3 Minimum Perturbation Coordinates on SE(2)

The general notion of choosing “minimum perturbation” coordinates is based on

the relative size of the local connection with respect to different body frames. Intuitively,

we pick a body frame such that contributions towards the integrand of (3.2) are as small

as possible; this corresponds to minimizing A with respect to constrained choices of body

frame. As described in [12, 14, 29] we can pick any frame that acts like a rigid body

attached to the system.

Specifically, rotating the body frame changes only the curl-free component of the

local connection vector field, while preserving the divergence-free component; the structure

of SE(2) causes rotations to commute. Referencing (3.2), we minimize noncommutative

effects while preserving absolute nonconservativity (the dA term) [14]. The objective

function describing minimum rotation in SE(2) is

D =

¨
Ω
||Aθ(r) +∇rbθ(r)︸ ︷︷ ︸

Aθ
opt(r)

||2dΩ, (3.3)

1The closed-loop constraint is a result of replacing a line integral (in the case of the local connection)
with an area integral. Formally, this is an expression of Green’s theorem (for 2D shape spaces) or Stokes’
theorem. Intuitively, this is because nonconservativity, in a similar sense as voltage, is a potential expressed
as a difference between two points.
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where we minimize D with respect to a shape-varying coordinate transform b(r) in expo-

nential coordinates within a region Ω of the shape space [14].

On SE(2), the choice of body frame exp(b) is optimized numerically using a discrete

Hodge-Hemholtz decomposition, which respects the curl- and divergence-free components

of the local connection [14]. On SO(3), however, noncommutativity between rotations on

different axes necessitates a different problem formulation.

3.2.4 Minimum Perturbation Coordinates on SO(3)

The motivation behind minimum perturbation coordinates on SO(3) is the same

as on SE(2): we look for a minimal local connection that preserves system behavior.

However, rotations in 3D are noncommutative, meaning that series’ of rotations along

different axes have different results depending on order.2 As a result, the expression for

the optimized local connection on SO(3) contains terms that capture noncommutativity

in rotation:

Aopt(r) = A(r)− b(r)A(r)︸ ︷︷ ︸
noncommutativity

−∇rb(r), (3.4)

where b(r) is still a shape-varying coordinate transform in exponential coordinates [29].

A second consequence of noncommutativity on SO(3) is that rotations are coupled;

that is, rotations that act along two axes induce additional rotation along the third axis.

Coordinate optimization is performed simultaneously along each dimension to address

coupled rotation:

D =

¨
Ω
||Ax

opt(r)||2 + ||Ay
opt(r)||2 + ||Az

opt(r)||2dΩ, (3.5)

where Ω is still a region of the shape space, and {x, y, z} are the axes of rotation. The

transform b(r) is optimized numerically by finding weights on linear basis functions defined

over a discretization of the shape space [29].

2As an example, imagine a 90◦ rotation of any coordinate frame about its x axis, followed by another
90◦ rotation about its y axis. The result is quite different than the same rotations applied in the reverse
order.
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The details on the derivation and optimization of the objective function presented in

previous work [29] are vague, and in some cases, not correct. In this paper, we reformulate

minimum perturbation coordinates on SO(3), fully describing the objective function and

process of optimization. In addition, we contribute a more complete and correct expression

of the optimized local connectionAopt(r) using the time derivative of the exponential map.

3.3. Minimum Perturbation Coordinates on the 3D Rotation Group

3.3.1 Derivation

Minimum perturbation coordinates are given by a transform β(r) ∈ SO(3) that

changes over the shape space. We express this transform using exponential coordinates,

represented by a body velocity b(r) ∈ so(3) on the Lie algebra of SO(3). The relationship

between velocities expressed in original and optimal coordinates is given instantaneously

by

◦
gopt = Ad−1

β

( ◦
gorig︸︷︷︸

−A(r)ṙ

+∇rb(r)ṙ
)
, (3.6)

where velocity in the original frame
◦
gorig is transferred to the optimal frame, accounting

for contributions from changes in b(r) in the new frame.

On SO(3), the adjoint mapping is equivalent to a corresponding spatial rotation.

In our case, we can represent the adjoint Ad−1
β as exp(−b). Applying these identities to

(3.6), we construct a local connection in the optimal frame:

◦
gopt = exp(−b)

(
−A(r) +∇rb(r)

)︸ ︷︷ ︸
−Aopt(r)

ṙ. (3.7)

The local connection described in (3.7) is nonlinear in b, making minimization with

respect to rigid body constraints challenging. Instead, we perform a linearization of the

exponential map, which will allow us to optimize β over a discretization of the shape
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space. The first order approximation for exp is

exp(X) = I + ρ(X), (3.8)

where ρ is the general linear matrix representation for X. Applied to (3.7) and dropping

both higher order terms and function notation, we have

◦
gopt ≈

(
−A+ [−A, b] +∇rb

)︸ ︷︷ ︸
−Aopt(r)

ṙ. (3.9)

Note that noncommutativity between rotations is captured by the Lie bracket term. When

expressed for each dimension, (3.9) is

Ax
opt = Ax + byAz − bzAy −∇rb

x, (3.10)

Ay
opt = Ay + bzAx − bxAz −∇rb

y, (3.11)

Az
opt = Az + bxAy − byAx −∇rb

z. (3.12)

The above result is similar to (but not the same as) the expression for the optimized local

connection provided by [29]; sign changes on the gradient terms indicate inconsistencies

in the previous work. We believe that this is the more correct expression.

The objective function is the same as in (3.5), with the goal of simultaneously

minimizing the magnitude of all components of the local connection. We now describe the

computational approach to minimization of the objective function.

3.3.2 Computation

As in [29], b is expressed as a weighted sum of linear basis functions over a discrete

mesh with n vertices. That is, bx =
∑n

i f
x
i e

x
i , b

y =
∑n

i f
y
i e

y
i , and bz =

∑n
i f

z
i e

z
i , where fi

is a linear function of unit height at point i, and ei is the associated weight. Optimization

consists of solving for weights eji such that the resulting b minimizes (3.5).

We minimize (3.5) by finding b such that

∂D

∂ex
=

∂D

∂ey
=

∂D

∂ez
= 0. (3.13)
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The linear finite element approach allows (3.13) to be expressed as a linear equation, and

weights found as a solution of said equation. This expression is

ˆ
Ω


∇fi · ∇bx + fib

x (Az ·Az +Ay ·Ay) ∇fi · byAz − fiA
z · ∇by

∇fi · bxAz + fiA
z · ∇bx ∇fi · ∇by + fib

y (Az ·Az −Ax ·Ax)

∇fi · bxAy − fiA
y · ∇bx −∇fi · byAx + fiA

x · ∇by

−∇fi · bzAy + fiA
y · ∇bz

−∇fi · bzAx − fiA
x · ∇bz

∇fi · ∇bz + fib
z (Ay ·Ay +Ax ·Ax)

 =

ˆ
Ω


∇fi ·Ax

∇fi ·Ay

∇fi ·Az

 , (3.14)

and is equivalent to that given in [29]. Gradients are computed numerically over the grid,

and integration is performed with quadrature (respecting the fact that functions over the

grid are all linear).

Note the following. Each row of (3.14) corresponds to a single x, y, or z dimension.

Each column corresponds to contributions from x, y, and z directions of the tranform b.

Because there are n points in our mesh and bj contains n weighted basis functions, each

entry is a n× n block of values.

Because (3.14) depends linearly on weights eji , we can trivially express the optimal

transform b(r) as the solution to said linear equation.

3.3.3 Reconstructing the Local Connection

Given the optimal transform b(r) in exponential coordinates, the only remaining task

is to construct the local connection Aopt in the optimized frame. Näıvely, this is done

with the instantaneous expression for the local connection given in (3.7) or its linearization

given in (3.9). We believe [29] uses the former definition. The more correct approach takes

advantage of the full expression, which accounts for changes in b along its exponential flow.

We explain this process here.

We can interpret (3.7) as the velocity of the optimal frame gopt at the end of the
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flow exp(b). The complete expression is

◦
gopt = Ad−1

β

(◦
gorig

)
+

◦
exp(b), (3.15)

where β = exp(b) is the transform generated by b. The contribution from b is written as

◦
exp(b) = exp(−b)

(
d

dt
exp(b)

)
, (3.16)

which accounts for how changes in b propogate into the optimal frame. Because b changes

along its exponential flow, we integrate change along the flow to find
◦

exp(b):

◦
exp(b) =

ˆ 1

0
Ad−1

β−1(τ)β(1)

(
d

dt
b

)
dτ. (3.17)

We express
◦
gopt using this contribution from b:

◦
gopt = Ad−1

β

(◦
gorig

)︸ ︷︷ ︸
−Aorig(r)ṙ

+

ˆ 1

0
Ad−1

β−1(τ)β(1)

(
d

dt
b

)
︸ ︷︷ ︸
∇rb(r)ṙ

dτ. (3.18)

If we do not account for change in b along the flow, (3.18) simplifies to the expression

given in (3.7). This is a reasonable choice when optimizing for b, as we only use local

information for that process. However, given b(r) after optimization, it is important to

use this complete expression for
◦
gopt to capture all the effects of being in the optimal

frame. We demonstrate the impact of this approach in our results.

3.4. Results and Analysis

Here, we compute minimum perturbation coordinates for an example system on

the 3D rotation group. We compare the resulting displacement maps to those in original

coordinates and prior work.

3.4.1 Reaction Wheel Satellite

The example system for this paper is the same reaction wheel satellite used in

previous work [29], shown in Fig. 3.1. The body has wheels at fixed distance from the
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FIGURE 3.1: Reaction wheel satellite, duplicated from [29]. Wheels centered on the y
and z body axes induce body rotations about the center of the system.

body frame, acting about the y and z axes. Rotations about each axis are parametrized

by α1 and α2, respectively, and induce a counterrotation of the body about the same axis.

As a result, the shape space of this reaction wheel satellite is 2D, and the position space

of this system is SO(3). We compute minimum perturbation coordinates for this system,

and compare displacement maps in original and optimal coordinates.

3.4.2 Optimal Displacement Maps

Fig. 3.2 shows the local connection for the reaction wheel satellite in original coor-

dinates, as well as coordinate optimization results from [29] and this paper. For the same

input behavior and shape space, coordinate optimization results are qualitatively similar

between this work and the previous work. However, the optimized local connection vector

fields are clearly different. We credit this to the methods for reconstructing the local

connection provided in §3.3.3, which reveal different structure than that in previous work.

The differences between optimization results are even clearer when we compare the

CCF and displacement from an example gait. Fig. 3.3 compares the CCF from [29] to

that from this paper, including the estimated displacement from an example gait. The

general shape of the CCF is again similar for both optimization results, indicating similar
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FIGURE 3.2: Local connection vector fields in original and optimized coordinates; the
first two columns are duplicated from [29] for comparison. The behavior after optimization
is generally the same for current and prior work. Differences in reconstruction of the local
connection provided in §3.3.3 reveal slightly different behavior of the local connection after
optimization.
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FIGURE 3.3: CCF and predicted displacement for an example gait; old figures duplicated
from [29]. With the improvements to reconstructing the local connection from §3.3.3,
magnitudes of both the CCF and resulting displacements are much smaller than in prior
work. For the new figures, the gait is omitted, and time is in units of radians.

behavior to that found in [29]. However, the magnitude of the CCF produced in this

paper is significantly smaller for all dimensions, indicating that coordinate optimization

has better results than published previously. The improved coordinate optimization results

are corroborated by the predicted displacement across the same example gait; across the

board, the magnitude of displacement in each dimension is either very similar to or smaller

than previous work.

In general, the results from this paper corroborate those of [29]. Our improved

method of reconstructing the local connection slightly changes the local connection vector

fields, and shows that the magnitude(s) of displacement after coordinate optimization are

smaller than demonstrated previously.
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3.5. Conclusion

The primary purpose of this work is to clarify the expression of coordinate optimiza-

tion on SO(3). We augment the coordinate optimization methods introduced in [29] with

further explanation, including motivations that span many prior papers. We also provide

a clearer derivation of minimum perturbation coordinates, including an improved method

of reconstructing the local connection after optimization. We implement our methods on

an example system, and demonstrate that minimum perturbation coordinates perform

better than shown in previous work.

There is a significant technical barrier to the methods explored here; we hope that

this document helps to make the content introduced in [29] more approachable. Future

work could investigate nonlinear optimization methods; these include expansion of the

exponential map to higher order terms, using the full expression for the optimized local

connection, or exploring the Cayley transform to linearize SO(3) before optimization.

These approaches would likely reveal further improvements in performance, similar to

those shown here.
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Geometric Nonlinear Dimensionality Reduction for Robot

Shape Spaces

Capprin Bass and Ross L. Hatton

Abstract

For robot systems with many degrees of freedom, much of the control space is often uninteresting

or not useful. In addition, data in this space (scalar, vector, or higher-order fields) is challenging

to visualize; as a result, it is difficult to explain or defend control policies. Building on our own

previous work, we construct a method for performing dimensionality reduction on kinematic robot

shape spaces. The resulting 2D space has well-defined mappings for both intrinsic structures and

extrinsic functions, and so is a viable candidate for visualization of robot capabilities. Construction

of this space is demonstrated for the family of discrete swimmers to act as example systems, and

the results and implications are discussed.

Unpublished Manuscript
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4.1. Introduction

Many robot systems today are designed to imitate biological organisms. On the

macroscopic scale, these are dynamic locomotors, such as Cassie [17], Mini Cheetah [18],

and ATLAS [19]. On smaller scales, systems imitate snakes [32] and swimmers [22].

A common feature of biomimetic systems is that they often have many (4+) degrees-

of-freedom (DoF). This high-dimensional shape space is impossible to visualize at full

complexity, and functions over this space (scalar fields, vector fields, etc) inherit the same

problem.

Many approaches may be used to visualize high dimensional data [33]; however, these

are general, and fail to capture the specific features and behavior of mobile systems. To

remedy this, dimensionality reduction and visualization techniques must take into account

system geometry and mechanics. Doing so will effectively capture the most important

regions and behavior of the control space.

Prior work from the geometric mechanics community [12,34] defines clear measures

for “good” regions of robot shape spaces for specific locomotion objectives, e.g. displace-

ment in particular local directions. These measures have been used in our previous motion

planning work [1] to compute optimal policies in polynomial time, under constraints for

direction traveled and motion cost.

In this paper, we present a method to reduce the dimensionality of robot shape

spaces to 2D by using prior geometric tools (including variational gait optimization) to

identify an optimal choice of subsurface in the shape space. Surfaces may be generated

with respect to any objective function. An example is shown in Fig. 4.1. This choice of

subsurface reduces the shape space of the robot, while preserving its most useful capa-

bilities (forward displacement). Functions that are defined for the entire robot are still

defined in this reduced space; conversely, structures (motion plans) in the reduced space
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FIGURE 4.1: Reduced shape space, constructed for a 4-link drag-dominated swimmer.
The reduced space is a 2D surface, constructed with a union of efficiency-optimal gaits
(shown in red) for forward displacement. Motion plans on the surface are valid in the full,
3D shape space.

may be mapped up to the entire robot. As a result, this choice of reduced space is still

valid for consideration of robot motion, and quantities in the complete robot shape space

may be visualized in the reduced space.

The geometric dimensionality reduction approach builds on our motion planning

work, which specifically produces single cyclic motion plans (gaits) [1]. Current work [27]

extends variational gait optimization, identifying the family of gaits that are optimal

with respect to a specified objective function. The resulting gaits are intrinsically one-

dimensional (parametrized by one variable, t). The union of this gait family, Φ, over

increasing gait diameter ℓ, produces an intrinsically two-dimensional surface immersed in

the shape space,

S = ∪ℓ,tΦ; S ⊂ B, (4.1)

where S is the two-dimensional space, and B is the shape space. Fig. 4.1 demonstrates
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how a gait family constructs the immersed surface. Smoothness of the underlying functions

implies that this space is continuously differentiable; so, there exists an injective mapping

between the respective tangent spaces of the surface and the shape space. This property

allows structures to be mapped from the surface to the shape space, or functions projected

from the shape space to the surface.

This paper is organized as follows. In §4.2., we review the underlying model and

relevant prior work. In §4.3., we construct the reduced shape space, and discuss its proper-

ties. In addition, we provide details for implementation in-code. In §4.4., we demonstrate

the dimensionality reduction approach on a set of example systems: viscous and free-

floating swimmers with many DoF. In §4.5., we discuss the important consequences of

this approach, and comment on future work.

4.2. Background

4.2.1 N-Link Swimmers

Throughout this paper, we reference the 3-link and 4-link “swimmers” as examples

of robot systems. As shown in Fig. 4.2, these systems are parametrized by 2 and 3 shape

variables respectively, and reside in the plane. The motion of the N-link swimmers depends

on the surrounding medium; here, we explore swimmers that are either drag-dominated

(in a viscous fluid) or isolated (in free fall, or residing in a vacuum).

4.2.2 Geometric Mechanical Model

We model our systems by partitioning the configuration space Q into a position

space G and shape space B.

The position space reflects the unique positions of the system in the world, often

in terms of translation and orientation. In this paper, we primarily use G = SE(2), with

elements [x, y, θ]T ∈ G; however, these methods also generalize to other possible position
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FIGURE 4.2: Illustration of planar N-link swimmers. (a) The 3-link swimmer is
parametrized by two shape variables. (b) The 4-link swimmer is parametrized by three
shape variables.

spaces [29,32].

The shape space B captures the internal DoF of the system, and is often of the

same dimension. One natural parametrization of the shape space is the actuators on a

system; here, this is the relative orientations of “links” in the swimmer’s body. Multiple

shape variables may be combined to produce a smaller set of shape modes, which still

parametrize system behavior with less complexity.

For the analysis in this paper, we assume that systems behave kinematically;1 as

a result, we can use the the local connection to map internal robot motion (in the shape

space) to displacement through the world. The details of constructing the local connection

are left to [35] and [2]. We map between elements α ∈ B and g ∈ G:

◦
g = A(α)α̇, (4.2)

where A is the local connection, and
◦
g is the body velocity2 resulting from α̇. As in [35]

and [2], (4.2) may be integrated over motion plans (trajectories in the shape space) to

compute displacement through the world resulting from specific changes in internal robot

1The kinematic domain applies to a number of systems, including drag-dominated [35] and inertial [2]
systems. These can be swimming systems, snakes, or other low-speed crawlers.

2Body velocities are on the Lie algebra of the position space G.
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shape.

Because mobile systems often have joint limits, it is convenient to express motion

plans as gaits in the shape space. While displacement can still be computed using a line

integral, the total Lie bracket is a more useful tool, as it can be used to define a gradient

of displacement with respect to the gait parametrization. The expression for diplacement

using the total Lie bracket is

gϕ = exp

¨
ϕ

total Lie bracket︷ ︸︸ ︷
dA+ [A1,A2] dϕ

 , (4.3)

where ϕ is a gait parametrization, and gϕ is the displacement resulting from the gait. The

total Lie bracket, when sampled across the shape space, is referred to as the Constraint

Curvature Function (CCF), and its gradient is used alongside variational techniques to

optimize gait shape for displacement [1].

4.2.3 Bilinear Form

The Jacobian J : TS → TB is a linear map between the tangent spaces of a shape

space B and a subspace S. It can perform several key tasks for our purposes. In a

pushforward, J maps intrinsically-defined structures (shapes, velocities, gaits, etc) from S

to B. The pushforward guarantees that motion plans in a reduced shape space are valid

in the full shape space. A pullback uses J to project extrinsically-defined functions from

B onto S. The pullback allows us to define objective functions for the entire robot (such

as the CCF), and express them in the reduced space.

In this paper, we pullback the bilinear form of the CCF using the Jacobian. The
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CCF ΩB, defined in B, is represented using a skew-symmetric matrix:

Ω(vB1 , v
B
2 ) = (vB1 )

T



0 Ω12 Ω13 · · ·

−Ω21 0 Ω23 · · ·

−Ω13 −Ω23 0 · · ·
...

...
...

. . .


︸ ︷︷ ︸

ΩB

vB2 , (4.4)

where vBi,j are vectors of interest for evaluating the CCF. The Jacobian J is used to

pushforward velocities, or equivalently, pullback the extrinsically-defined CCF:

Ω(vS1 , v
S
2 ) =

(vB1 )T vB2︷ ︸︸ ︷ ︷︸︸︷

(vS1 )
T JT



0 Ω12 Ω13 · · ·

−Ω12 0 Ω23 · · ·

−Ω13 −Ω23 0 · · ·
...

...
...

. . .


J vS2

︸ ︷︷ ︸
ΩG

. (4.5)

4.3. Dimensionality Reduction

Here, we describe our dimensionality reduction approach. The objective is to con-

struct a reduced (2D) robot shape space for motion planning that preserves robot capabil-

ities. Structures (shapes, gaits, or other plans) in this domain must map to the full shape

space; conversely, it must be possible to express functions defined over the full shape space

(like the CCF) in the reduced shape space.

We first describe the underlying mathematics of the reduced space, which give rise

to our desired properties. Then, we discuss the optimal surface and associated mappings.

Finally, we cover details of implementation in-code.
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4.3.1 Mathematical Underpinnings

Gaits are parametric functions, mapping a single variable into the shape space. As

an example, for an execution time T , parameter t ∈ [0, T ), and α ∈ B, we define a gait ϕ:

ϕ : [0, T ) → B; ϕ(t) = α. (4.6)

The parametric gait definition implies that gaits are intrinsically one-dimensional, even if

the (extrinsic) shape space B has many dimensions.

Another property is that an increase in position space displacement requires an

increase in gait size, corresponding to the area enclosed by the gait [31]. We refer to the

size of a gait by its average diameter, ℓ.

If we define a gait family Φ as a set of gaits at all resulting displacements (equiva-

lently, gait diameters):

ϕ(ℓ; t) ∈ Φ, (4.7)

then the ordered union3 of Φ over ℓ and t is a set defined on B. That is,

S = ∪ℓ,tΦ; S ⊂ B. (4.8)

This process, illustrated in Fig. 4.3, defines the set S. Any element of S has a neighbor-

hood defined by ℓ (neighbors across gaits) and t (neighbors within gaits). The functions

that parametrize S are all continuous and differentiable,4 implying that its gradient with

respect to the basis directions in B is always defined.

So, the union of gaits across displacement is an intrinsically 2D surface, immersed

3Here, an ordered union refers to a standard union of sets, but imposes an order relation based on ℓ
and t. In effect, points are near one another if they are near in t and on gaits of similar size. This relation
can be formally expressed with the cartesian product of the sets [0, T ) and L s.t. ℓ ∈ L.

4There exist gait families (square gaits, for example) that are only C0 continuous, and are not differ-
entiable everywhere. These families are often not physically realistic; however, they may still be used to
construct a reduced shape space provided that computations are done in regions that are locally differen-
tiable.
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FIGURE 4.3: An arbitrary gait family Φ identifies a set of gaits ϕ ∈ Φ, ordered by gait
diameter ℓ and time t. The union of Φ produces a 2D topological space, with neighbor-
hoods defined by adjacent gaits (±δℓ) and time (±δt). The (ℓ, t) intrinsic coordinates may
be reparametrized into any choice of coordinate basis; here, this is (β1, β2).

in B. Any chosen parametrization (β1, β2) ∈ R2 defines a mapping between spaces:

f(β1, β2) = (ℓ, t), (4.9)

ϕ(ℓ; t) ∈ S, (4.10)

ϕ ◦ f : R2 → B. (4.11)

Shapes (β1, β2) in the reduced space S are unambiguous, so the point mapping from

R2 to B is injective. That is, the mapping ϕ ◦ f is an immersion in the shape space.

In addition, the smoothness of S implies that derivatives are defined everywhere on the

surface; this allows us to define the Jacobian J between S and B:

J : T(β1,β2)S → Tϕ◦f(β1,β2)B, (4.12)

where TiX refers to the tangent space of X at point i.

4.3.2 Choice of Surface

Gait-joined surfaces as defined in §4.3.1 can be expressed for any smooth gait family;

we are interested in a particularly effective choice of gait family to describe a reduced
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shape space. Happily, recent work [27] has defined the family of step-optimal gaits for any

displacement; that is, each gait in the family displaces the robot for a specific distance,

with minimal cost. The ordered union of this gait family produces a reduced shape space,

based on the specific objective and cost function used for gait optimization.

Of course, this is not the only candidate gait family for constructing the reduced

shape space. While the surface can be constructed with other families, this choice of

surface guarantees that systems can move with optimal efficiency for any displacement,

as this domain contains each optimal gait in the family.

4.3.3 Implementation Details

Here, we describe the steps for implementation in code. First, we generate the

surface, and find its intrinsic coordinates. Then, we generate mappings between intrinsic

space and the full shape space. The two implementation components are explained here,

and summarized in Algorithms 1 and 2, respectively.

Surfaces are generated by sampling optimal gaits over a finite set of displacements.

Each gait is then sampled in time; the set of points across all gaits approximates the sur-

face. Isomap [36] generates topological information (a neighborhood) for each point, and

Multidimensional Scaling (MDS) is used immediately to generate intrinsic coordinates.5

Refer to Algorithm 1 for an expression of this process.

We construct two mappings between the surface and the shape space: the point

mapping defined in (4.11), and the Jacobian mapping defined in (4.12). The point mapping

relies on linear interpolation between samples in extrinsic space, and is done via a Delaunay

triangulation in intrinsic space. Adjacency information is pushed forward to extrinsic space

to define the optimal surface. The Jacobian may be constructed immediately following

the point mapping, for which we use a centered difference approximation for the derivative

5MDS maintains metric distances as much as possible; however, flattening of a curved surface will
introduce errors in distance between some points. This may be addressed during calculations with either
a pushforward of intrinsically-defined structures, or a pullback of the metric.
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in intrinsic space, mapped into extrinsic space. Refer to Algorithm 2 for a summary of

map construction.

Algorithm 1: Topology and

intrinsic coordinates
Input: Optimal gait family Φ

Output: Intrinsic coordinates

(βi, βj) ∈ R2

//get data points in all gaits

points ND = list();

foreach ϕ ∈ Φ do

points ND.append(ϕ.points);

end

//generate a distance graph

D = metric distance(points ND);

//Isomap for intrinsic

coordinates

points 2D = Isomap(D);

return points ND, points 2D

Algorithm 2: Generation of

mappings

Input: points ND, points 2D,

query 2D

Output: query ND, query J

//delaunay for interpolation

tris = delaunay(points 2D);

//point map uses triangulation

in ND

query ND = interpolate(tris,

points ND, query 2D);

//centered difference estimate

for J

query J =

estimate jacobian(point map,

query);

return query ND, query J

Given that only the point and Jacobian mappings are required to define the immer-

sion, the implementation choices made in this paper may be changed at will as long as

the mappings are preserved.

4.4. Results and Analysis

Here, we apply our method to the 4-link swimmer introduced in §4.2.1, both in a

vacuum and and viscous fluid. We first construct an optimized surface for both environ-
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ments, and visualize their immersions in the 3D shape space. Then, we show intrinsic

coordinates of the optimal surface.

4.4.1 Surface Construction

We first generate a reduced shape space for the 4-link swimmer, floating in a vacuum.

This system can only rotate, as it has no medium to react against; as such, we optimize

for rotation only. The optimal surface, immersed in the 3D shape space, is shown in Fig.

4.4(a). As desired rotation per cycle increases, constituent gaits maintain a similar shape,

and smoothly increase in diameter to incrementally capture flux of the CCF. The outer

boundary is the globally most efficient gait for rotation. The location of the surface in the

shape space is shown in Fig. 4.4(b), as well as the metric stretch of the space. The flux

of the CCF through the surface is shown in Fig. 4.4(c). As before, the surface is oriented

to maximize flux at the center, with dropoff towards the edges.

FIGURE 4.4: Rotation-optimized surface for the floating 4-link swimmer. (a) The surface
is composed of optimal gaits for displacement up to the maximum-efficiency gait. (b)
The Tissot indicatrix illustrates stretch of the underlying space; we have included the
immersed surface, as well. (c) The CCF can be represented with a vector field in 3-space;
here, we show flux of the CCF through the immersed surface.

Next, we generate a reduced shape space for the drag-dominated 4-link swimmer.

This system can react against its environment and move in either the x, y, or θ directions;

here, we optimize for displacement in the x direction. This optimal surface was first shown
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in Fig. 4.1; the CCF flux through this surface is shown in Fig. 4.5(a). Note that flux

is not absolutely maximized at the center of the surface (the CCF is not normal to the

surface at the center). As shown in Fig. 4.5(b), the shape space is highly compressed at

its center, normal to the surface. To capture more flux, the center gaits would necessarily

rotate in this direction, and consequently be much more expensive. Instead, gaits rotate to

capture more flux as their diameter increases, reflecting a decrease in relative pathlength

cost towards the edges of the shape space.

FIGURE 4.5: Optimal surface for the drag-dominated 4-link swimmer, optimized for
displacement in the x direction. (a) Flux of the CCF through the surface is high, but
is not necessarily normal. (b) The underlying space is highly compressed normal to the
surface, making higher-flux gaits much more expensive.

4.4.2 Intrinsic Coordinates

While we can reasonably visualize the shape space of the 4-link swimmer (and any

3DoF system), the main benefit of this approach is the reduction of system behavior to

2 shape variables. Intrinsic coordinates for both swimmers were computed, and colored

according to CCF flux through their corresponding surface.

The intrinsic coordinates for the drag-dominated swimmer is shown in Fig. 4.6(a);
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note that CCF flux is not maximized at the center, due to the highly expensive motion

required to capture additional flux. In contrast, the isolated 4-link swimmer, visualized in

Fig. 4.6(b), smoothly transitions from high flux at the center to low flux at the edges. It

exhibits this behavior due to the relatively low cost of gait execution in the chosen plane.

Note that the high-dimensional CCF (a vector field in 3-space) has been reduced to a

scalar field in the reduced space.

FIGURE 4.6: Intrinsic coordinates for the reduced shape space of the 4-link swimmer.
(a) CCF for displacement in the x direction through a low-Re fluid. (b) CCF for rotation
in a vacuum.

4.5. Conclusion

Here, we discuss important consequences of this dimensionality reduction approach

for robot shape spaces, and comment on future work.

4.5.1 Consequences

Immediately, this method may be used to visualize the dynamic behavior of highly

dimensional robot systems. We first identify unchanging constraints for optimization, like

a single direction of interest for displacement. We then construct the reduced domain,

and project important functions (in this paper, we used the CCF) onto the space. We can
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then identify features of interest, and subsequently interpret them in the full shape space.

This approach my also be used to identify either unnecessary or redundant DoF.

If the mappings between the reduced space and a dimension of the full shape space are

relatively small, then a given dimension may not be very important for the provided

objectives. In addition, if two mappings are similar, then the constituent DoF can likely

be replaced by a single actuator.

4.5.2 Future Work

This method produces an optimal surface for a given choice of objective function.

While further planning in the two-dimensional space could account for other goals, this

reduction may be too drastic to be useful for certain applications. To address this issue,

future work must explore simultaneous or iterative optimization under multiple objective

functions. Instead of a 2D surface created by joining a family of gaits, the objective is to

create (3+)D objects with multiple joined surfaces. These are environments that would

optimize for two or more quantities, in what is effectively a n-choose-k dimensionality

reduction.

Another essential next step is the application of this approach to existing robot

systems, and measuring effectiveness of policies experimentally. Good candidates for such

a study include aquatic robots and crawling locomotors, which behave similarly to the

systems studied here.
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5. GENERAL CONCLUSION AND FINAL REMARKS

The role of this work is to explore, explain, and push the boundaries of geometric

mechanics. The tools used here have proven to be useful for plain analysis of mobile

systems; however, their use on-hardware is limited. This is due at least in part to the

complexity of this approach: the use of differential geometry in general makes system

modeling more challenging. However, dynamic mobile systems are complex by nature,

and require an equally rich tool to describe them. There are a number of candidate

approaches, especially learning-based approaches for optimization or control. In contrast,

the use of geometric mechanics provides strong understanding of the underlying dynamics

and behavior of a system. In other words, we can understand why a particular choice of

geometry, coordinate frame, or gait is the best for a particular application.

In the future, geometric mechanics may be used entirely on its own to describe

and control mobile systems; it is more likely that it will be part of a stack of methods,

making reliable robotics more approachable. If geometric mechanics is capable of robust

modeling of kinematics and dynamics, additional methods may be used to accomplish

other objectives. For example, a neural network may be given some prior knowledge of

dynamics when learning a specific behavior, and could learn with more sparse information

as a result. Or, we could use objective functions from geometric mechanics (like the CCF

or pathlength metrics) when performing optimization, so we respect the capabilities of

our robot systems.

In general, these approaches are important because they capture complexity that

others do not guarantee, or miss outright. By taking the care to understand how systems

behave, we can be successful where others are not. If we combine these approaches with

others, we may show better results than any individual tool does on its own.
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