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Chapter 1 Introduction

Canonical polyadic decomposition (CPD) [previously known as parallel factor analysis

(PARAFAC)] [11, 29, 44] is arguably the most popular low-rank tensor decomposition

model. CPD has successfully found many applications in various fields, such as analytical

chemistry [38], social network mining [48], hyperspectral imaging [26], topic modeling

[2], and time series analysis [3]; also see [21, 43, 45] for more classic applications in

communications.

Computing the CPD of a tensor, however, is a quite challenging optimization prob-

lem [24]. Many algorithms have been proposed through the years [11, 25, 32, 52]. To

keep pace with the ever growing volume of available data, one pressing challenge is to

compute CPD at scale. The classic alternating least squares (ALS) algorithm [11] has an

elegant algorithmic structure, but also suffers from a number of numerical issues [13,33]

and is hardly scalable. In recent years, many new CPD algorithms have appeared, trig-

gered by the advances in big data analytics and first-order optimization [25, 27, 35, 52].

Many of these algorithms leverage data sparsity to scale up CPD—by cleverly using the

zero elements in huge tensors, computationally costly key operations in ALS (e.g., the

matricized tensor times Khatri-Rao product (MTTKRP) operation) can be significantly

simplified. Consequently, the classic ALS algorithm can be modified to handle CPD of

huge and sparse tensors.

However, when the tensor to be factored is dense—i.e., when most entries of the

tensor are nonzero—the sparsity-enabled efficient algorithms [25–27,35,52] are no longer

applicable. Note that large and dense tensors arise in many timely and important appli-

cations such as medical imaging [1], hyperspectral imaging [26], and computer vision [42].

In fact, since big dense tensors typically cost a lot of memory (e.g., a dense tensor with

a size of 2, 000 × 2, 000 × 2, 000 occupies 57.52GB memory if saved as double-precision

numbers), it is even hard to load them into the RAM of laptops, desktops, or servers.

This also raises serious challenges in the era of Internet of Things (IoT)—where edge

computing on small devices is usually preferable.

Stochastic approximation is a powerful tool for handling optimization problems in-
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volving dense data, which is known for its low per-iteration memory and computational

complexities [8]. A number of stochastic optimization based CPD algorithms have been

proposed in the literature [4,7,49]. Specifically, The works in [7,49] work in an iterative

manner. In each iteration, the algorithm samples a random subset of the tensor entries

and update the corresponding parts of the latent factors using the sampled data. The

algorithms have proven quite effective in practice, and features distributed implemen-

tation [7]. The challenge here is that every tensor entry only contains information of

a certain row of the latent factors, and updating the entire latent factors may need a

lot of iterations. This may lead to slow improvement of the latent factor estimation

accuracy. More importantly, this update strategy loses the opportunity to incorporate

constraints/regularizations on the whole latent factors, since the sampled entries only

contain partial information of them. This is undesired in practice, since prior information

on the latent factors are critical for enhancing performance, especially in noisy cases.

Recently, a stochastic algorithm that ensures updating one entire latent factor in

every iteration was proposed in [4]. Instead of sampling tensor entries, the algorithm

works via sampling tensor fibers that contain information of the whole latent factors.

However, this algorithm works with at least as many fibers as the tensor rank, which in

some cases gives rise to much higher per-iteration complexity relative to the algorithms

in [7,49]. In addition, like those in [7,49], the algorithm in [4] cannot handle constraints or

regularizations on the latent factors, either. Furthermore, although empirically working

well, convergence properties of many stochastic CPD algorithms such as those in [4, 49]

are unclear.

Contributions In this thesis, we propose a new stochastic algorithmic framework for

computing the CPD of large-scale dense tensors. Specifically, our contributions include:

• A Doubly Randomized Computational Framework for Large-Scale CPD.

Our first contribution lies in proposing an efficient and flexible computational framework

for CPD of large dense tensors. Our method is a judicious combination of randomized

block coordinate descent (BCD) [5, 34] and stochastic proximal gradient (SPG) [22,

23]. Specifically, in each iteration, our method first samples a mode from all modes

of the tensor. Then, the algorithm samples some fibers of this mode and updates the

corresponding latent factor via stochastic proximal operations. Such a combination

exhibits an array of attractive features: It admits much smaller per-iteration memory

and computational complexities relative to the existing fiber sampling based method
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in [4]. More importantly, it is very flexible in terms of incorporating regualrizations and

constraints on the latent factors.

• Rigorous Convergence Analysis. Both BCD and SPG are well studied topics in

the optimization literature [5, 34, 39]. However, convergence properties of the proposed

framework is not immediately clear, due to the nonconvex nature of CPD. The existing

block-randomized SGD (BR-SGD) framework [50] only considers convex optimization.

A related work in [53] deals with nonconvex problems via block stochastic gradient, but

their Gauss-Seidel type BCD strategy (without block randomization) makes the conver-

gence analysis inapplicable to our case. Hence, we offer tailored convergence analyses

for our proposed CPD algorithms.

• Implementation-friendly Adaptive Stepsize Scheduling. In practice, one of

the most challenging aspects in stochastic optimization is selecting a proper stepsize

schedule. To make the proposed algorithms friendly to use by practitioners, we pro-

pose a practical and adaptive stepsize schedule that is based on the celebrated Adagrad

algorithm [16]. Adagrad is an adaptive stepsize selection method that was devised for

single-block gradient descent. Nonetheless, we find through extensive simulations that it

largely helps reduce the agonizing pain of tuning stepsize when implementing our multi-

block algorithm for CPD. In addition, we also show that the adaptive stepsize-based

algorithm converges to a stationary problem almost surely under some conditions.

A quick demonstration of the effectiveness of the proposed algorithms is shown in

Fig. 1.1, where the average mean squared error (MSE) of the estimated latent factors

against the number of MTTKRP computed (which dominates the complexity) is plotted.

One can see that the proposed algorithm largely outperforms a couple of state-of–the-art

algorithms for constrained CPD.
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Figure 1.1: The proposed algorithms (AdaCPD and BrasCPD) exhibit low complexity for
achieving high accuracy of the estimated latent factors. The tensor under test has a size
of 100×100×100 and the rank is 10. The latent factors are constrained to be nonnegative.
The baselines are two state-of-art constrained CPD algorithms AO-ADMM [25] and APG [52].
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Chapter 2 Background

2.1 Preliminary

In this chapter, we will introduce some basic knowledge of tensors used in state-of-art

and our proposed approach. Specifically, we will focus on tensor fibers, mactricization,

and Canonical Polyadic Decomposition (CPD). Before that, we will also talk about some

notations and useful product operations for tensors.

2.1.1 Notation

In this thesis, we denote scalars by lower case letters x ∈ R, vectors by lower case bold

letters x ∈ RI1 , matrices by upper case bold letters X ∈ RI1×I2 , and higher order tensors

by upper case bold calligraphic letters X ∈ RI1×I2×...×IN .

2.1.2 Useful Product Operations

Outer product: The vector outer product is defined as the product of the vector’s ele-

ments. This operation is denoted by the ◦ symbol. The vector outer product of two

n-dimensional vectors a, b is defined as follows and produces a matrix X:

X = a ◦ b = abT (2.1)

By the definition of tensors, we can define a tensor X as the outer product of N vectors:

X = a(1) ◦ a(2) ◦ · · · ◦ a(N) (2.2)

Inner product: The inner product of two n-dimensional vectors a, b is defined as

x = 〈a, b〉 = aTb =

n∑
i=1

aibi = a1b1 + a2b2 + · · ·+ anbn (2.3)
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and generates a scalar x.

Kronecker product: The Kronecker product of A (I × K) and B (J × L) produces a

IJ ×KL matrix

A⊗B :=


BA(1, 1) BA(1, 2) · · · BA(1,K)

BA(2, 1) BA(2, 2) · · · BA(2,K)
...

... · · ·
...

BA(I, 1) BA(I, 2) · · · BA(I,K)



Khatri–Rao product: One important product operation is the Khatri–Rao (column-wise

Kronecker) product of two matrices with the same number of columns. Assuming we

have two matrices which are A = [a1, · · · ,aR](ai denotes the corresponding columns of

matrix A) and B = [b1, · · · , bR](bi denotes the corresponding columns of matrix B),

the Khatri–Rao product of A and B is

A�B := [a1 ⊗ b1, · · ·aR ⊗ bR] . (2.4)

Hadamard product: The Hadamard product of two same-dimensional matrices A ∈ RI×J

and B ∈ RI×J , A ∗B ∈ RI×J , is defined as the element-wise matrix product(aij and bij

are the corresponding elements in matrix A and B).

A ∗B :=


a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J
...

...
. . .

...

aI1bI1 aI2bI2 · · · aIJbIJ

 (2.5)
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Figure 2.1: Column, row, and tube fibers of a mode-3 tensor

2.2 Canonical polyadic decomposition (CPD)

2.2.1 Tensor Fibers and Slices

We can have tensor fibers and slices by fixing some of the given tensor’s indices. Fibers

are created when fixing all but one index, slices are created when fixing all but two

indices. For a third order tensor the fibers are given as x:jk (column), xi:k (row), and

xij: (tube); the slices are given as X::k (frontal), X:j: (lateral), Xi:: (horizontal). We

show the examples of fibers and slices for a 3-way tensor in Figure 2.1 and 2.2.

2.2.2 Rank-one Tensor

Before talking about rank-one tensor, let’s take a look at rank-one matrix. A rank-

one matrix X of size I × J is an outer product of two vectors: X(i, j) = a(i)b(j),

∀i ∈ {1, · · · , I}, ∀j ∈ {1, · · · , J}: i.e.,

X = a ◦ b = abT (2.6)
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Figure 2.2: Horizontal, lateral and frontal slices of a mode-3 tensor

Figure 2.3: Rank-one matrix and rank-one third-order tensor

A rank-one third-order tensor X of size I × J ×K is an outer product of three vectors:

X (i, j, k) = a(i)b(j)c(k): i.e.,

X = a ◦ b ◦ c (2.7)

And we show a simple example of rank-one matrix and rank-one third-order tensor in

Figure 2.3.

2.2.3 CPD

The polyadic decomposition (PD) means that we can write an Nth-order tensor X as

a sum of rank-1 terms and each of them is an outer product of N nonzero vectors. For
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Figure 2.4: A (canonical) polyadic decomposition writes a tensor as a (minimal) sum of
R rank-1 terms.

example, for a third-order tensor, we can write

X =

R∑
r=1

ar ◦ br ◦ cr (2.8)

We show an example of polyadic decomposition in Figure 1.4.

The minimum number of rank-one terms R that makes (2.8) hold is the rank of X .

Furthermore, we name PD with rank R as the canonical polyadic decomposition (CPD).

CPD has a significant property which is its essential uniqueness under mild condi-

tions. Given tensor X of rank R , its CPD is essentially unique if and only if the R

rank-1 terms in its decomposition are unique. Nontheless, computing CPD is an NP-hard

problem. In the next chapter, some classic CPD algorithms will be introduced.

2.2.4 Matricization

There is one very important tensor algebra operation which we call it mactricization.

Mactricization can be explained by a third-order tensor example. We always consider a

third-order tensor X as a set of slices, and each slice is a matrix. We can use matricization

operation to reorder a tensor into a matrix. The operation consists of taking out each
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Figure 2.5: Mode-1 mactricization(unfolding) of a third-order tensor

slice and vectorizing it, then rearranging them into a matrix. If we are given a third-

order tensor X ∈ RI×J×K with its factor matrix A ∈ RI×R, B ∈ RJ×R and C ∈ RK×R,

the mactricizations of tensor X are given below:

X(1) = (C �B)AT

X(2) = (C �A)BT

X(3) = (B �A)CT

(2.9)

In order to illustrate the formula introduced above, we show a simple example of the

matricization of a third-order tensor in Figure 2.5.

2.3 Summary

In this chapter, we have introduced the fundamental knowledge of tensors and its different

operations. Five different operations have been introduced here. After that, we talked

about CPD and its properties. Based on all of these, we will discuss different algorithms

for solving CPD problems.
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Chapter 3 Related Work

In this chapter, we review some existing CPD algorithms. Firstly, we will introduce Al-

ternating Least Squares (ALS) [11] which is the classical algorithm to solve CPD prob-

lems. We will also introduce matricized tensor times Khatri-Rao product (MTTKRP)

which is the most costly operation in the ALS [11] algorithm. Then, we will introduce

two constrained CPD algorithms: AO-ADMM [25] and APG [52], in which subproblems

are solved by constrained optimization techniques. Following that, we will introduce

two stochastic optimization based algorithms: RBS [49] and CPRAND [4] in which re-

searchers take advantage of sampling strategies to reduce per-iteration complexity. The

details of these algorithms will be described in this chapter.

3.1 Classical Algorithm

The most popular and arguably method in CPD is what we call “Alternating Least

Squares” (ALS) [11]. The key step for alternating least squares is to fix all other factor

matrices and try to optimize the only left one non-fixed matrix. Then we need to

repeat this step again and again for every factor matrix until reaching some stopping

criterion [37].

3.1.1 Alternating Least Squares (ALS)

We can write down the formulation of third-order CPD case as follows:

minimize
A,B,C

∥∥∥∥∥X −
R∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r)

∥∥∥∥∥
2

F

. (3.1)
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To tackle the above, we can rewrite this problem in a matricized form:

X(1) = (C �B)AT

X(2) = (C �A)BT

X(3) = (B �A)CT

(3.2)

For the third-order tensor case, the ALS algorithm would perform the following steps

repeatedly until convergence.

A← arg min
A
||X(1) − (C �B)AT ||2F

B ← arg min
B
||X(2) − (C �A)BT ||2F

C ← arg min
C
||X(3) − (B �A)CT ||2F

(3.3)

The optimal solution to this minimization problem is given by

AT = [(C �B)]†X(1) = (CTC ∗BTB)−1(C �B)TX(1)

BT = [(C �A)]†X(2) = (CTC ∗ATA)−1(C �A)TX(2)

CT = [(B �A)]†X(3) = (BTB ∗ATA)−1(B �A)TX(3)

(3.4)

Let’s take a look at the flops analysis of optimal solution for A:

• CTC will consume O(R2K) flops and BTB will consume O(R2J) flops. (CTC ∗
BTB)−1 is a R × R matrix with inverse operation O(R3). R is usually not very

large.

• Using H to denote the Khatri–Rao product of different factor matrix:

H(1) = C �B;H(2) = C �A;H(3) = B �A. (3.5)

• The so-called matricized tensor times Khatri-Rao product (MTTKRP) operation,

i.e.,

MTTKRP : HT
(n)X(n)

• Assuming X(1) ∈ RJK×I and H(1) ∈ RJK×R,HT
(1)X(1) will cost O(IJKR) flops.
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Algorithm 1 ALS algorithm

1: Input: Third-order tensor X ∈ RI×J×K ; rank R; initialization
{A(0)}, {B(0)}, {C(0)}, step size {α(t)}t=0,...

2: t← 0;
3: repeat

4: A(t)T ← [(C(t−1) �B(t−1))]†X(1) = (C(t−1)TC(t−1) ∗B(t−1)TB(t−1))−1(C(t−1) �
B(t−1))TX(1)

5: B(t)T ← [(C(t−1) � A(t))]†X(2) = (C(t−1)TC(t−1) ∗ A(t)TA(t))−1(C(t−1) �
A(t))TX(2)

6: C(t)T ← [(B(t) �A(t))]†X(3) = (B(t)TB(t) ∗A(t)TA(t))−1(B(t) �A(t))TX(3)

7: until stopping criterion is reached
8: Output: {A(t)T }, {B(t)T }, {C(t)T }

In particular, the so-called matricized tensor times Khatri-Rao product (MTTKRP)

operation is always the most costly operation in computing ALS [11] algorithm. This is

quite costly even if I, J,K is moderately large. Many prior works [46], [55] used sparsity

of X to accelerate MTTKRP. Once the tensor is dense, methods in [46], [55] do not

work.

Here we can see that the ALS algorithm listed in Algorithm 1 is easy to understand

and code. And we do not need to tune any parameters in the algorithm which is conve-

nient for us to apply. However, convergence can be slow when dealing with large-scale

tensors and MTTKRP of ALS will be costly.

3.2 Constrained Case Algorithms

In a lot of problems, we consider:

minimize
A,B,C

∥∥∥∥∥X −
R∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r)

∥∥∥∥∥
2

F

+ r1(A) + r2(B) + r3(C) (3.6)

where rn(·) denotes constraints and regularizations. In many applications, feasible solu-

tions might lie in the constrained space. For example, when dealing with hyperspectral

images [26] which involve two spatial domain and one spectrum domain, all the elements

in hyperspectral images are nonnegative.
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In this section, we will introduce two algorithms: AO-ADMM [25] and APG [52].

Both of them are under ALS [11] framework and solve subproblems by using constrained

optimization techniques.

3.2.1 AO-ADMM

Consider a constrained CPD problem as below:

minimize
A,B,C

∥∥∥∥∥X −
R∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r)

∥∥∥∥∥
2

F

+ r1(A) + r2(B) + r3(C) (3.7)

where rn(·) represents constraints or regularizations here. We can add different con-

straints and regularizations to factor matrix A,B and C by employing different con-

straints and regularizations r(·). For instance, we can use a nonnegativity constraint by

applying the indicator function of R+ and sparsity regularization by employing ‖‖1.
It is obvious that equation (3.7) is a non-convex problem. And we always employ ALS

(alternating least squares) framework to solve this problem. If there are no constraints

or regularizations r(·) here, this framework is the same as the alternating least squares

(ALS) algorithm. Huang [25] has proposed AO-ADMM which combines the insights of

ALS framework and ADMM (alternating direction method of multipliers). ADMM is

known as a popular framework for solving constrained optimization problems [9]. AO-

ADMM employs the advantage of both methods. For the AO framework, it uses its

monotonically decreasing objective function. For the ADMM framework, it leverages its

flexible ability to handle different constraints.

In fact, AO-ADMM resolves the constrained CPD problem with a sequence of outer

and inner iterations. As we can see, the outer iteration aims at optimizing one of the

matrix factors. Then, the inner iteration focuses on solving constraints. And we apply

this method for all factor matrices repeatedly until some stop criterion is achieved.

When it comes to ADMM, Huang has proposed that we can write the primal and

dual variables as H(1) = C �B ∈ RJK×R, A ∈ RI×R and U(1) ∈ RI×R, respectively.

Here we will introduce an auxiliary variable Â ∈ RR×I which satisfies a constrained



15

Algorithm 2 Solve (3.8) using ADMM [25]

1: Input: X(1), H(1), A, U(1), R

2: G = HT
(1)H(1);

3: ρ = trace(G)/R;
4: Calculate L from the Cholesky decomposition of G+ ρI = LLT ;
5: F = HTX(1);
6: repeat
7: Ã← L−TL−1(F + ρ(A+U(1))

T )

8: A← arg minA r(A) + ρ
2‖A− Ã

T +U(1)‖2F
9: U(1) ← U(1) +A− ÃT

10: until stopping criterion is reached
11: Output: {A} and {U(1)}

optimization problem in the formulation of ADMM:

minimize
A,Ã

‖X(1) −H(1)Ã‖2F + r(A)

A = ÃT .

(3.8)

It is easy to adopt the ADMM algorithm and derive the following iterations:

Ã← (HT
(1)H(1) + ρI)−1(HT

(1)X(1) + ρ(A+UT
(1));

A← arg min
A

r(A) +
ρ

2
‖A− ÃT +U1‖2F ;

U(1) ← U(1) +A− ÃT .

(3.9)

Solving (3.8) using ADMM algorithm is shown in Algorithm 2:

Huang [25] has mentioned that setting ρ = trace(G)/R in Line 3 was inspired by [41].

And the choice of ρ here is an approximation of optimal ρ which was proposed in [41].

In order to save computations of Line 7 in Algorithm 2, Huang also proposed that we

can employ Cholesky decomposition to compute (G+ ρI) in Line 4 of Algorithm 2.

Combining the two different frameworks, Huang [25] introduced the complete AO-

ADMM framework in Algorithm 3. We update factor matrices by using Algorithm 2

repeatedly. It requires O(IJKR) flops to compute the MTTKRP operation in each

iteration and is often the most resource-consuming step of the AO-ADMM framework.

Let’s take a look at per-iteration complexity of AO-ADMM [25]. In line 2, there
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Algorithm 3 Solving (3.7) using AO-ADMM [25]

1: Initialize: A, B, C
2: Initialize: U(1), U(2), U(3) to be all zero matrices
3: repeat
4: X(1) = (C �B)AT

5: X(2) = (C �A)BT

6: X(3) = (B �A)CT

7: H(1) = C �B
8: H(2) = C �A
9: H(3) = B �A

10: update A, B, C and U(1), U(2), U(3) using Alg. 2 initialized with the previous
A, B, C and U(1), U(2), U(3)

11: until some stopping criterion is reached
12: Output: {A}, {B}, {C}

are R2 × (2I − 1) flops. For line 3, there is R flops. In line 4, the flops of Cholesky

decomposition are 1/3(R3 + R2 × I). In line 5, it costs J × K × R(2I − 1) flops. For

line 7, there are R3 flops for the two inverse. And (LT )−1(L−1) costs R2 × (2R − 1)

flops. (A + U(1)) consumes I × R flops. And the multiplication part consumes I × R
flops and add costs I × R flops. The operation of (LT )−1(L−1) multiples the result of

(F+ρ(A+U(1))
T ) will cost I×R×(2R−1) flops. And update part costs J×K×R(2R−1)

flops. For this part, it loops for 5 times in each iteration. In line 8, the flops consuming

depends on the proximal operator here. For line 9, the add and subtract parts cost

2 × J × K × R flops. As we can see here, the most costly operation in AO-ADMM is

still MTTKRP.

The convergence of AO-ADMM is summarized in Proposition 1.

Proposition 1 If the sequence generated by AO-ADMM in Alg. 3 is bounded, then for

third or higher-order tensor, AO-ADMM converges to a stationary point of (3.7).

The proof can be found in Theorem 2 [25].

AO-ADMM is a good strategy to solve constrained tensor decomposition problems

which take the advantage of the ADMM frame work to handle different situations. How-

ever, MTTKRP can not be avoided when we apply ADMM algorithm which will be

costly.
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3.2.2 Alternating Proximal Gradient (APG)

Consider the optimization problem below:

minimize
A,B,C

∥∥∥∥∥X −
R∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r)

∥∥∥∥∥
2

F

+ r1(A) + r2(B) + r3(C) (3.10)

where we have three different blocks A,B,C here. We can see from the equation that

the feasible set of variables and the objective function are not convex jointly, but convex

in each block A,B,C. Note that∥∥∥∥∥X −
R∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r)

∥∥∥∥∥
2

F

(3.11)

is differentiable and we assume that ri for i = 1, 2, 3 are the convex functions.

Xu [52] proposed an ALS frame based proximal gradient method to solve the con-

strained CPD problems. In his approach, if we fix all other variables except one of

the variable, then this objective function becomes convex. We also define the function

r1(A) =∞ if A 6∈ dom(r1), r2(B) =∞ if B 6∈ dom(r2) and r3(C) =∞ if C 6∈ dom(r3).

Since it is very hard for us to update all the variables at the same time, it is much

easier for people to update a block at a time. Similar to ALS, people have been used

alternating minimization method to solve this problem for a long time. When updating a

block at a time, we name this method as block coordinate descent (BCD) which updates

variables block by block. We define a function f :

f =

∥∥∥∥∥X −
R∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r)

∥∥∥∥∥
2

F

(3.12)

And we have:

X(1) = (C �B)AT

X(2) = (C �A)BT

X(3) = (B �A)CT

(3.13)
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H(1) = C �B

H(2) = C �A

H(3) = B �A

(3.14)

When considering updating A at iteration t, from above, we can have:

f(A) =
∥∥X(1) −H(1)A

T
∥∥2
F

(3.15)

and

∇Af = A(t)HT
(1)H(1) −XT

(1)H(1) (3.16)

Let

H
(t−1)
(1) = C(t−1) �B(t−1) (3.17)

We take

L
(t−1)
(1) = ||H(t−1)T

(1) H
(t−1)
(1) ||2, ω

(t−1)
1 = min(ω̃(t−1), δω

√√√√√L
(t−2)
(1)

L
(t−1)
(1)

) (3.18)

δω < 1 is preselected, and ω̃(t−1) = k(t−1)−1
k(t)

with

k(0) = 1, k(t) =
1

2
(1 +

√
1 + 4(k(t−1))2) (3.19)

And we use an extrapolation weight to update

Ã(t−1) = A(t−1) + ω
(t−1)
1 (A(t−1) −A(t−2)) (3.20)

and let

G̃
(t−1)
(1) = (A(t−1)H

(t−1)
(1)

T −X(1))H
(t−1)
(1) (3.21)

be the gradient. Then the update rule is:

A(t) = arg min
A

< G̃
(t−1)
(1) ,A− Ã(t−1) > +

L
(t−1)
(1)

2
||A− Ã(t−1)||2F + r1(A) (3.22)
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Algorithm 4 Block coordinate descent method for solving the problem (3.10) [52]

1: Input: Nonnegative 3-way tensor X and rank R
2: Initialize: Choose a positive number σω < 1 and randomize A−1(n) = A0

(n), n =
1, ..., N , as nonnegative matrices of appropriate sizes

3: while stopping criterion is not satisfied and t = 1, 2, . . . and i = 1, 2, 3 do

4: Compute L
(t−1)
(i) , and set ω

(t−1)
(i) according to (3.18)

5: Let Ã(t−1) = A(t−1) + ω
(t−1)
(1) (A(t−1) −A(t−2)),

6: B̃(t−1) = B(t−1) + ω
(t−1)
(1) (B(t−1) −B(t−2)),

7: C̃(t−1) = C(t−1) + ω
(t−1)
(1) (C(t−1) − C(t−2)) Update A,B and C according to

(3.23)
8: if f(A(t)) ≥ f(A(t−1)) then

Reupdated A(t) according to (3.23) with Ã(t−1) = A(t−1);

9: if f(B(t)) ≥ f(B(t−1)) then
Reupdated Bt according to (3.23) with B̃(t−1) = B(t−1);

10: if f(C(t)) ≥ f(C(t−1)) then
Reupdated C(t) according to (3.23) with C̃(t−1) = C(t−1);

11: if stopping criterion is reached then
Return {A}, {B}, {C}

which can be written in the closed form

At = max(0, Ã(t−1) − G̃(t−1)
1 /L

(t−1)
1 ) (3.23)

Following the steps above, we can update B and C in the same manner. Xu [52]

also mentioned that the extrapolation operation (3.18) for updating (3.20) significantly

accelerates the convergence of APG in their applications.

At the end of the iteration t, we check whether f(A(t)) ≥ f(A(t−1)). If so, we

reupdate A(t) by (3.23) with Ã(t−1) = A(t−1)

We show the complete APG [52] algorithm in Algorithm 4:

Let us take a look at per-iteration complexity of APG [52]. In line 3, computing L
(t−1)
(n)

costs R2(2×J×K−1)+2×R2. Computing w
(t−1)
(n) costs 3 flops. In line 4, it costs 3×I×R

flops. In line 5, it costs R2(2×J×K−1)+I×R(2R−1)+I×R(2×J×K−1)+I×R to

compute G
(t−1)
(n) . And updating A

(t)
(n) consumes 3×I×R. Here, the most costly operation

is still MTTKRP.
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Proposition 2 Let {A(t)} be the sequence generated by Algorithm 4. Assume that

{A(t)} is bounded and there is a positive constant l such that l ≤ L
(t)
n for all t and

n. Then {A(t)} convergences to a critical point A.

This proposition shows that once {A(t)} is bounded, L
(t)
(n) is also bounded. And under

the condition that l ≤ L
(t)
(n) for all t and n, {A(t)} will converge to a critical point A.

The proof can be found in Theorem 3.1 [52].

APG is flexible with different constraints and regularizations. It can handle proba-

bility simplex, sparsity, and so on by using the proximal gradient technique. However,

MTTKRP can not be avoided when we do the gradient-type update.

Figure 3.1: AO-ADMM [25] and APG [52] exhibit the same convergence behavior. The
tensor under test has a size of 50 × 50 × 50 and the rank is 10. The latent factors
are constrained to be non-negative. AO-ADMM and APG consume similar flops when
dealing with constrained CPD problems.

In Figure 3.1, we show a simple numerical experiment of the performance by using

AO-ADMM and APG. We test a tensor with size 50× 50× 50, and the rank is 10. We

also set all the latent factors are constrained to be nonnegative. From the figure, we

found that AO-ADMM and APG have similar convergence behavior. It also shows that

when reaching the same cost function value, AO-ADMM and APG will consume similar

flops.
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3.3 Stochastic Algorithms

In this section, we will introduce two algorithms: CPRAND [4] and RBS [49] which

employ stochastic optimization to reduce per-iteration complexity. CPRAND [4] lever-

ages fiber sampling, which is similar to our sampling approach. RBS [49] uses subtensor

sampling, which is also a promising method.

3.3.1 RBS

Consider the optimization problem as below:

min
{A,B,C}

f(A,B,C) (3.24)

in which f is a decomposable function:

f =
1

2
‖X −

R∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r)‖2F (3.25)

Vervliet [49] proposed that if we define tensor block by its index sets B1,B2,B3, then the

gradient of f is only nonzero for the variables belonging to the block index set.

As we can see in Algorithm 5, a random subtensor is sampled in each iteration.

And variables in this subtensor will be updated in each update process. Vervliet also

mentioned that instead of using an exact Hessian matrix in updating rule (Line 10, 11

and 12), the algorithm takes advantage of relatively cheap approximation of the Hessian

matrix. The details for using the approximation Hessian matrix can be found in Part 3,

section B in [49]. Vervliet uses ∆t as his step size which is decreased in order to achieve

convergence and to improve the accuracy.

Vervliet [49] proposed that we randomly choose a sample subtensor X sub by selecting

a random subset Bn of Bn indices from In = {1, · · · , In}. And we will select N new

subtensors in each iteration. We define Qn = In/Bn be the number of subtensors per

dimension and will permute the elements within index set after every Qn iterations. Fol-

lowing this sample strategy, we will continuously select indices Bn when all the variables

in the dimension are updated. The block size and random selection play a significant role

in the algorithm since they will impact the robustness, the total computation time and
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Algorithm 5 Randomized block sampling CPD [49]

1: Initialize: factor matrices A,B,C
2: for n = 1, ..., N do
3: Randomly generate sample indices
4: Bn ⊆ In = {1, · · · , In}, n = 1, 2, 3
5: Let X sub = X (B1,B2,B3)
6: Asub = At(B1, :)
7: Bsub = Bt(B2, :)
8: Csub = Ct(B3, :)
9: {Asub} ← update (X sub, {Asub},∆t)

10: {Bsub} ← update (X sub, {Bsub},∆t)
11: {Csub} ← update (X sub, {Csub},∆t)
12: Set At+1 = At and At+1(Bn, :) = Asub

13: Bt+1 = Bt and Bt+1(Bn, :) = Bsub

14: Ct+1 = Ct and Ct+1(Bn, :) = Csub

15: t← t+ 1

16: if stopping criterion is reached then
Return {A}, {B}, {C}

the result accuracy. We can apply any CPD algorithm to compute the update in Algo-

rithm 5. Vervliet applies two different ways to do the update procedure. The first one is

alternating least squares (ALS) and the second one is nonlinear least squares (NLS) [49].

Let’s take a look at per-iteration complexity of RBS [49]. In line 4, it costs |Fn| ×N
flops. In line 5, it costs |Fn| flops. In line 10, I get from Part 4.2 of [47] that it will cost

R×|Fn|3+N×R×|Fn|3+N×R2×|Fn|2+2∗(N×R2×|Fn|+N×R2×|Fn|2) flops for

updating factor matrix. As we can see from this flop analysis, per-iteration complexity

has been reduced to a relatively small number which is related to the size of our sampled

subtensor.

RBS [49] is very scalable and many existing algorithms can be applied to the sampled

subtensor, for example, ALS (alternating least squares). However, RBS is not flexible

with constraints. Since constraints on the column of A(n) or the entire A(n) can not be

handled, Vervliet [49] adopts the sample strategy as min(R + 20, 2 × R) in RBS paper.

Once we meet the case that R is larger than min(I, J,K), the sample strategy here does

not work.

In Figure 3.3, we show the impact of cost function value with different subtensor
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Figure 3.2: Randomized block sampling CPD

Figure 3.3: RBS [49] shows different convergence behavior under different size of sampling
blocks. The tensor under test has a size of 100 × 100 × 100 and the rank is 50. When
the subtensor is not identifiable, RBS will converge with a relatively high cost function
value.

sizes. We did this experiment by using a tensor with size of 100 × 100 × 100 and the
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rank is 50. By Vervliet’s [49] default, the sampled subtensor size should be 70. We also

tried different subtensors with size equal to 30 and 50. Figure 3.3 shows that if the size

of subtensor is too small, RBS may take the risk of losing identifiability.

3.3.2 CPRAND

Consider the CPD problem as below:

minimize
A,B,C

∥∥∥∥∥X −
R∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r)

∥∥∥∥∥
2

F

(3.26)

When applying stochastic optimization methods to the problem above, Battaglino [4]

proposed that we can uniformly sample rows fromH(n) (n is the index of different modes)

with its corresponding rows from XT
(n). Here, we set |Fn| as the number of sampling

fibers that we need for CPRAND algorithm. In order to make CPRAND algorithm more

accurate and robust, Battaglino proposed that we can set |Fn| > max{I, J,K,R}. We

get the samples from {1, · · · , JK}, {1, · · · , IK}, {1, · · · , IJ} and denote it as |Fn|, so

we have |Fn| as our mini batch. Every row in H(n) and XT
(n) will have the same chance

to be selected and each time we will uniformly select from all the rows. The samples we

have in different iterations are independent.

Consider the optimization problem:

A← arg min
A
||X(1) − (C �B)AT || (3.27)

Battaglino also mentioned that it is obvious that forming the full Khatri-Rao product

H(1) = C � B will consume a lot of computing resources, therefore we would like to

simplify the computing process without actually forming H(1). When we want to sample

the jth row of H(1), we can find the corresponding row indices of other factor matrix

as (j, k). Finally, we find that the jth row of H(1) is the Hadamard product of the

appropriate rows of the factor matrices. And we have the equation as below:

H(1)(j, :) = B(j, :) ∗C(k, :). (3.28)

Since every time in updating procedure we will not just choose one row for samples,
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every Fn here is a vector with different choice of j-th column. We will get H(Fn, :)
with size |Fn| × R. Under the same strategy, we can construct XT (Fn, :) in this way.

Therefore, we have avoided the process to directly construct XT (Fn, :) and HT (Fn, :).
Battaglio named the randomized version algorithm as CPRAND [4] which is shown in

Algorithm 7. CPRAND has very simple updates and it is well-aligned with the ALS [11]

structure. However, CPRAND can not handle different constraints and regularizations.

And it needs to sample |Fn| ≥ R fibers at each iteration, in which R might be large in

CPD problems.

Let’s take a look at per iteration complexity of CPRAND [4]. In line 5, it costs

|Fn| × N flops. In line 6, it costs |Fn| × R × (N − 1) flops. In line 7, it costs 0 flops

here. In line 8, it costs 2× |Fn| ×R2 + 2× |Fn| ×R× I1 +R2 × I1 flops. As we can see

from the analysis, CPRAND [4] has reduced per iteration complexity by fiber sampling

strategy. Under this sampling fibers strategy, we can save a lot of computing resources.

Table 3.1: Performance of the algorithms under various I’s, R = 100; all the algorithms
are stopped after computing 30 MTTKRPs.

Algorithm Metric
I

200 300 400

AdaCPD MSE 0.0121 0.0016 1.0068× 10−4

CPRAND MSE 0.0459 0.0056 0.0025

AdaCPD Cost 0.0058 4.8050× 10−4 3.5958× 10−5

CPRAND Cost 0.0136 0.0018 0.0011

CPRAND [4] has reduced per iteration complexity compared with AO-ADMM [25]

and APG [52] when dealing with large scale CPD problems. Under the setting of large

scale tensor decomposition, we also focus on the accuracy of our applied algorithm. In

Table 3.1, we compare CPRAND [4] with our proposed AdaCPD [18] which also uses

fiber sampling strategy. We did the experiments with a fixed tensor rank R = 100 and

three different tensor size (200, 300, 400). The results in Table 3.1 show that CPRAND

will have a higher cost function value when doing same MTTKRP with AdaCPD. It

means that if we want to find a high accuracy algorithm in our practical problems,

CPRAND may be not suitable for that scenario.
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Algorithm 6 Sampled Khatri-Rao Product (SKR) [4]

1: Initialize: factor matrices A,B,C
2: H(Fn, :)← 1 ∈ R|Fn|×R;
3: for m = 1, · · · , n− 1, n+ 1, · · · , N do
4: A(Fn, :)← A(index(:,m), :)
5: H(Fn, :)←H(Fn, :) ∗A((Fn, :))
6: return: H(Fn, :)

3.4 Summary

In this chapter, we have introduced five algorithms for solving CPD problems: ALS [11],

AO-ADMM [25], APG [52], CPRAND [4], and RBS [49]. ALS [11] is the classical

algorithm people use to handle the CPD problem by fixing all other variables instead

of one and does the update in this manner. AO-ADMM [25] and APG [52] focus on

constrained CPD problems which employ the ALS [11] framework and solve subproblems

by constrained optimization techniques. However, MTTKRP can not be avoided in

these two algorithms. CPRAND [4] and RBS [49] leverage stochastic optimization, for

example, subtensor sampling and fiber sampling, which reduce per-iteration complexity.

However, both of them cannot handle constrained CPD problems.
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Algorithm 7 CPRAND [4]

1: Initialize: factor matrices A,B,C
2: for n = 1, 2, 3 do
3: Define sampling operator Fn ∈ R×

∏
m 6=n Im

4:

5: H(1)(Fn, :)← SKR(Fn,C,B)
6:

7: H(2)(Fn, :)← SKR(Fn,C,A)
8:

9: H(3)(Fn, :)← SKR(Fn,B,A)
10:

11: XT
(n)(Fn, :)← FnX

T
(n)

12:

13: A← arg min
A

∥∥X(1)(Fn, :)−H(1)(Fn, :)AT
∥∥2
F

14:

15: B ← arg min
B

∥∥X(2)(Fn, :)−H(2)(Fn, :)BT
∥∥2
F

16:

17: C ← arg min
C

∥∥X(3)(Fn, :)−H(3)(Fn, :)CT
∥∥2
F

18:

19: Normalize columns of A,B,C and update λ.

20: if stopping criterion is reached then
Return {A}, {B}, {C}
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Chapter 4 Proposed Algorithms

In this thesis, we have proposed a new stochastic optimization strategy for CPD1. Our

algorithms are based on alternating least squares and fiber sampling. And it is highly

favorable that our sampling size which is under our control can be much smaller than the

tensor rank. It is the key step for our methods to have a low per-iteration complexity. An

amount of constraints and regularizations that are commonly used in signal processing

and data mining can be easily handled by our proposed algorithms—which is reminiscent

of stochastic proximal gradient (SPG) [23, 51]. Meanwhile, we also provide convergence

proof to strengthen our algorithms in this thesis.

4.1 Basic Idea: Unconstrained Case

Consider the optimization problem as below:

min
{A(n)}Nn=1

f(A(1), . . . ,A(N)). (4.1)

Inspired by alternating least squares and tensor fiber sampling strategies, we proposed

our stochastic optimization algorithms. In detail, at each iteration, we sample a set of

mode-n fibers for a certain n as the method in [4] does. However, instead of exactly

solving the least squares subproblems (3.3) for all the modes following a Gauss-Seidel

manner in each iteration, we update A(n) using a doubly stochastic procedure. To be

more precise, at iteration f , we first randomly sample a mode index n ∈ {1, ..., N}.
Then, we randomly sample a set of mode-n fibers that are indexed by Fn ⊂ {1, ..., Jn}
(Figure 4.1). Let G(r) ∈ RI1×R × · · · × RIN×R be a collection of matrices, representing

1This work is based on two papers. The first one is from arXiv [19], the second one is from ICASSP
2019 [18]
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Figure 4.1: Sampled fibers of a third-order tensor

the stochastic gradient as:

G
(t)
(n) =

1

|Fn|

(
A

(t)
(n)H

T
(n)(Fn)H(n)(Fn)−XT

(n)(Fn)H(n)(Fn)
)

G
(t)
(n′) = 0, n′ 6= n, (4.2)

where G
(t)
(n) denotes the nth block of G(t), and we use the simplified notations

X(n)(Fn) = X(n)(Fn, :), H(n)(Fn) = H(n)(Fn, :).

We update the latent variables by following the step below:

A
(t+1)
(n) ← A

(t)
(n) − α

(t)G
(t)
(n), n = 1, ..., N. (4.3)

Note that G
(t)
(n) is nothing but a stochastic approximation which we apply it to ap-

proximate the full gradient of Problem (4.1) with respect to the chosen mode-n variable

A(n). And the update process is similar to the classical stochastic gradient descent

algorithm which we choose a minibatch size |Fn|) for solving the problem in (3.3).

Our proposed method takes advantage of low per-iteration complexity since we have

avoided the most resource-consuming updateHT
(n)X(n) in algorithms such as those in [25,

52]. We construct XT
(n)(Fn, :)H(n)(Fn, :) only by consuming O(|Fn|FIn) flops which we

can control the size of |Fn|. One observation of our algorithm is that we randomly sample
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a block at the beginning which is not similar with the classical ALS-type algorithms

updating the block variables A(n) cyclically. And this small procedure helps us a lot in

analyzing convergence properties.

4.2 Constrained and Regularized Case

When it comes to real life applications, we always need to take regularizations or con-

straints on A(n)’s into conisderation. Since our proposed algorithm updates the entire

A(n) in each iteration, it is natural for us to include different types of widely used

constraints and regularizations. Compared with the entry sampling based approaches

in [7, 49], our proposed algorithm is more flexible for handling different situations. And

we can extend our unconstrained cases to constrained cases by using the formula shown

below:

min
{A(n)}Nn=1

f(θ) +
N∑
n=1

hn(A(n))

subject to A(n) ∈ An,

(4.4)

where f(θ) is the objective function of (4.1), hn(A(n)) denotes a structure-promoting reg-

ularizer on A(n). Note that A(n) ∈ An can also be written as a regularization hn
(
A(n)

)
if hn(·) is defined as the indicator function of set An, i.e.,

hn(A) = I(An) =

0, A ∈ An
∞, o.w.

where I(X ) denotes the indicator function of the set X . Using the same fiber sampling

strategy as in the previous subsection, we update A(n) by

A
(t+1)
(n) ← arg min

A(n)

∥∥A(n) −
(
A

(t)
(n) − α

(t)G
(t)
(n)

)∥∥2
F

+ hn
(
A(n)

)
(4.5a)

A
(t+1)
(n′) ← A

(t)
(n′), n′ 6= n (4.5b)

Problem (4.5a) is also known as the proximal operator of hn(·), which is often denoted

as

A
(t+1)
(n) → Proxhn

(
A

(t)
(n) − α

(t)G
(t)
(n)

)
. (4.6)
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Algorithm 8 BrasCPD

1: Input: N -way tensor X ∈ RI1×...×IN ; rank R; initialization {A(0)
(n)}, step size

{α(t)}t=0,...

2: t← 0;
3: repeat
4: uniformly sample n from {1, . . . , N}, then sample Fn from {1, . . . , Jn} with |Fn| =
B

5: form the stochastic gradient G(t) ← (4.2)

6: update A
(t+1)
(n) ← (4.5a), A

(t+1)
(n′) ← A

(t)
(n′) for n′ 6= n

7: t← t+ 1
8: until stopping criterion is reached

9: Output: {A(t)
(n)}

N
n=1

Many hn(·)’s admit simple closed-form solutions for their respective proximal operators,

e.g., when hn(·) is the indicator function of the nonnegative orthant and hn(·) = ‖ · ‖1;
see Table 4.1 and more details in [25, 36]. The complexity of computing (4.6) is often

similar to that of the plain update in (4.3), and thus is also computationally efficient.

An overview of the proposed algorithm can be found in algorithm 8, which we name

Block-Randomized SGD for CPD (BrasCPD).

Table 4.1: Proximal/projection operator of some frequently used regularizations and
constraints.

h(·) prox./proj. solution complexity

‖ · ‖1 soft-thresholding O(d)

‖ · ‖2 re-scale O(d)

‖ · ‖2,1 block soft-thresholding O(d)

‖ · ‖0 hard-thresholding O(d)

I(∆) randomized pivot search [17] O(d) in expectation

I(R+) max O(d)

monotonic monotone regression [30] O(d)

unimodal unimodal regression [10] O(d2)
†In the table, d is the number of optimization variables.
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4.3 Convergence Properties

Note that BrasCPD does not fall into any known framework of block stochastic gradient

optimization, and thus its convergence properties are not immediately clear. Two most

relevant works from the optimization literature are [52] and [50]. However, the work

in [52] considers Gauss-Seidel type block SGD (i.e., cyclically updating the blocks),

instead of the block-randomized version as BrasCPD uses. The work in [50] considers

block-randomized SGD, but only for the convex case. In addition, many assumptions

made in [50,52] for their respective generic optimization problems are not easily satisfied

by our CPD problem. In this section, we offer tailored convergence analyses for BrasCPD.

4.3.1 Unconstrained Case

To proceed, we will use the following assumptions:

Assumption 1 The stepsize schedule follows the Robbins-Monro rule [40]:

∞∑
t=0

α(t) =∞,
∞∑
t=0

(α(t))2 <∞.

Assumption 2 The updates A
(t)
(n) are bounded for all n, t.

Assumption 1 is a principle for stepsize scheduling, which is commonly used in

stochastic approximation. Assumption 2 is a working assumption that we make to

simplify the analysis. It is considered a relatively strong assumption, since it is hard

to check or guarantee. Nevertheless, unbounded iterates rarely happen in practice, if the

stepsize is well controlled.

There are also an array of problem structures that are useful for studying convergence

of the algorithm.

Fact 1 The LS fitting part in the objective function (4.4) (i.e.f(θ)) satisfies

f(θ) ≤f(θ̄) + 〈∇A(n)
f(θ̄),A− Ā(n)〉

+
L̄(n)

2
‖A− Ā(n)‖2F , (4.7)
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where L̄(n) ≥ λmax(H̄>(n)H̄(n)), θ̄ is a feasible point, and Ā(n) and H̄(n) are extracted/constructed

from θ̄ following the respective definitions.

Eq. (4.7) holds because the objective function f(θ) w.r.t. A(n) is a plain least squares fit-

ting criterion, which is known to have a Lipschitz continuous gradient—and the smallest

Lipschitz constant is λmax(H̄>(n)H̄(n)).

The second fact is instrumental in proving convergence of the algorithm:

Fact 2 Denote ξ(t) and ζ(t) as the random variables that are responsible for selecting the

mode and fibers in iteration t, respectively. Also denote B(t) = {ξ(1), ζ(1), . . . , ξ(t−1), ζ(t−1)},
i.e., the filtration up to t. The block-wise stochastic gradient constructed in (4.2) is an

unbiased estimation for the full gradient w.r.t. A(ξ(t)), i.e.,

Eζ(t)
[
G

(t)

(ξ(t))
| B(t), ξ(t)

]
= ∇A

(ξ(t))
t(θ(t)), (4.8)

if ζ(t) admits the following probability mass function (PMF):

Pr(ζ(t) = i) =
1

Jn
, ∀i ∈ {1, . . . , Jn}. (4.9)

The proof of the above is straightforward and thus skipped. The Fact says that even

if our block stochastic gradient is not exactly an unbiased estimation for ∇θf(θ), it is

an unbiased estimation for the “block gradient” ∇A(n)
f(θ(t)). This fact will prove quite

handy in establishing convergence. In fact, the two-level sampling strategy (i.e., block

sampling and fiber sampling, respectively), makes the gradient estimation w.r.t. θ unbi-

ased up to a scaling factor (see Appendix A.1). This connection intuitively suggests that

the proposed algorithm should behave similarly as an ordinary single-block stochastic

gradient descent algorithm.

We first have the following convergence property:

Proposition 3 Consider the case where hn(·) = 0 and Assumptions 1-2 hold. Then,

the solution sequence produced by BrasCPD satisfies:

lim
t→∞

inf E
[∥∥∥∇A(n)

t
(
A

(t)
(1), . . . ,A

(t)
(N)

)∥∥∥2] = 0, ∀n.
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The proof is relegated to Appendix. The above proposition implies that there exists a

subsequence of the solution sequence that converges to a stationary point in expectation.

We should mention that the SGD/stochastic proximal gradient type update and the block

sampling step are essential for establishing convergence—and using the exact solution to

sketched version problem in [4] may not have such convergence properties.

4.3.2 Constrained/Regularized Case

To understand convergence of the proximal gradient version with hn(·) 6= 0, denote

Φ(θ) = f(θ) +
∑N

n=1 hn(θ) as the objective function. Our optimality condition amounts

to P
(t)
(n) = 0, ∀ n, where

P
(t)
(n) =

1

α(t)

(
A

(t)
(n) − Proxhn

(
A

(t)
(n) − α

(t)∇A(n)
f(θ(t))

))
;

i.e., the optimality condition is satisfied in a blockwise fashion [39, 53]. Hence, our goal

of this section is to show that E[‖P (r)
(n)‖

2] for all n vanishes when t grows. We will use

the following assumption:

Assumption 3 There exists a sequence σ(t) for t = 0, 1, . . ., such that

Eζ(t)
[∥∥∥G(t)

(ξ(t))
−∇A

(ξ(t))
f(θ(t))

∥∥∥2 ∣∣∣ B(t), ξ(t)] ≤ (σ(t))2,

and
∞∑
t=0

(σ(t))2 <∞. (4.10)

We show that BrasCPD produces a convergent solution sequence in the following propo-

sition:

Proposition 4 Assume that Assumptions 1-3 hold. Also assume that hn(·) is a convex

function. Then, the solution sequence produced by BrasCPD satisfies

lim
t→∞

inf E
[∥∥∥P (t)

(n)

∥∥∥2] = 0, ∀n.

Remark 1 Note that the convergence result in Proposition 4 inherits one possible draw-
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back from single-block stochastic proximal gradient algorithms for nonsmooth nonconvex

optimization. To be specific, the relatively strong assumption in (4.10) needs to be as-

sumed for ensuring convergence. Assumption 3 essentially means that the variance of

the gradient estimation error δ
(t)

(ξ(t))
= G

(t)

(ξ(t))
− ∇A

(ξ(t))
f(θ(t)) decreases and converges

to zero. This is not entirely trivial. One way to fulfill this assumption is to increase the

minibatch size along the iterations, e.g., by setting [22, 53]:

|F (t)
n | = O(dt1+εe), ∀ε > 0.

Then, one can see that (σ(t))2 = O( 1
dt1+εe), so that

∑∞
t=0(σ

(t))2 < ∞. Another popular

way for achieving (4.10) is to use some advanced variance reduction techniques such

as SVRG [51]—which may go beyond the scope of this paper and thus is left out of

the discussion. Also notice that as the convergence analysis is pessimistic, in practice

constant minibatch size works fairly well—as we will see soon.

4.4 An Adaptive Stepsize Scheme

One may have noticed that the convergence theories in Propositions 3-4 do not specify

the sequence α(r) except two constraints as in Assumption 1. This oftentimes gives rise to

agonizing tuning experience for practitioners when implementing stochastic algorithms.

Recently, a series of algorithms were proposed in the machine learning community

for adaptive stepsize scheduling when training deep neural networks [15,28,54]. Most of

these works are variants of the Adagrad algorithm [16]. The insight of Adagrad can be

understood as follows: If one optimization variable has been heavily updated before, then

it is given a smaller stepsize for the current iteration (and a larger stepsize otherwise).

This way, all the optimization variables can be updated in a balanced manner. Adagrad

was proposed for single-block algorithms, and this simple strategy also admits many

provable benefits under the context of convex optimization [16]. For our multi-block

nonconvex problem, we extend the idea and propose the following updating rule: In
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iteration t, if ξ(t) = n, then, for all i ∈ {1, . . . , In} and all t ∈ {1, . . . , T}, we have

[η
(t)
(n)]i,t ←

η(
b+

∑t−1
p=0[G

(p)
(n)]

2
i,t

)1/2+ε , (4.11a)

A
(t+1)
(n) ← A

(t)
(n) − η

(t)
(n) ∗G

(t)
(n), (4.11b)

A
(t+1)
(n′) ← A

(t)
(n′), (4.11c)

where η, b, ε > 0. The Adagrad version of block-randomized CPD algorithm is very

simple to implement. The algorithm is summarized in Algorithm 9, which is named

AdaCPD.

As one will soon see, such a simple stepsize strategy is very robust to a large number of

scenarios under test—i.e., in most of the cases, AdaCPD performs well without tuning the

stepsize schedule. In addition, the AdaCPD algorithm works well for both the constrained

and unconstrained case.

Proving convergence for nonconvex Adagrad-like algorithms is quite challenging [12,

31]. In this work, we show that the following holds:

Proposition 5 Assume hn(·) = 0 for all n, and that Pr(ξ(t) = n) > 0 for all t and n.

Under the Assumptions 1-2, the solution sequence produced by AdaCPD satisfies

Pr
(

lim
t→∞
‖∇A(n)

f(θ(t))‖2 = 0
)

= 1.

Proposition 5 asserts that the algorithm converges almost surely. The proof is relegated

to Appendix A. Our proof extends the idea from a recent paper [31] that focuses on

using Adagrad for solving single-block nonconvex problems. As mentioned, our two-

level sampling strategy makes our algorithm very similar to single-block SGD with a

scaled gradient estimation (cf. Appendix A.1), and thus with careful modifications the

key proof techniques in [31] goes through. Nevertheless, we detail the proof for being

self-containing.

4.5 Summary

In this chapter, we have proposed two algorithms: BrasCPD and AdaCPD. Both of them

have lightweight updates and circumvents MTTKRP operations. Meanwhile, they can
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Algorithm 9 AdaCPD

1: Input: N -way tensor X ∈ RI1×...×IN ; rank R; sample size B , initialization {A(0)
(n)}

2: t← 0;
3: repeat
4: uniformly sample n from {1, . . . , N}, then sample Fn from {1, . . . , Jn} with |Fn| =
B

5: form the stochastic gradient G(t) ← (4.2)

6: determine the step size η
(t)
(n) ← (4.11a)

7: update A
(t+1)
(n) ← (4.11b), A

(t+1)
(n′) ← A

(t)
(n′) for n′ 6= n

8: t← t+ 1
9: until stopping criterion is reached

10: Output: {A(t)
(n)}

N
n=1

easily handle many commonly used constraints and regularizations. More important, we

have showed the proof of convergence for the two algorithms in which some stochastic

optimization method may be unclear.
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Chapter 5 Experiments

In this section, we use simulations and real-data experiments to showcase the effectiveness

of the proposed algorithm.

5.1 Synthetic Data Simulations

5.1.1 Data Generation

Throughout this subsection, we use synthetic third-order tensors (i.e., N = 3) whose

latent factors are drawn from i.i.d. uniform distribution between 0 and 1—unless oth-

erwise specified. This way, large and dense tensors can be created. For simplicity, we

set In = I for all n and test the algorithms on tensors having different In’s and F ’s.

In some simulations, we also consider CPD for noisy tensors, i.e., factoring data tensors

that have the following signal model:

Y = X + N ,

where X is the noiseless low-rank tensor and N denotes the additive noise. We use zero-

mean i.i.d. Gaussian noise with variance σ2N in our simulations, and the signal-to-noise

ratio (SNR) (in dB) is defined as SNR = 10 log10

(
1∏N

n=1 In
‖X‖2

σ2
N

)
.

5.1.2 Baselines

A number of baseline algorithms are employed as benchmarks. Specifically, we mainly use

the AO-ADMM algorithm [25] and the APG algorithm [52] as our baselines since they are the

most flexible algorithms with the ability of handling many different regularizations and

constraints. We also present the results output by the CPRAND algorithm [4]. Note that we

are preliminarily interested in constrained/regularized CPD. Because CPRAND operates

without constraints, the comparison is not entirely fair (e.g., CPRAND can potentially



39

attain smaller cost values since it has a much larger feasible set). Nevertheless, we

employ it as a benchmark since it uses the same fiber sampling strategy as ours. All the

algorithms are initialized with the same random initialization; i.e., A(0)’s entries follow

the uniform distribution between 0 and 1.

5.1.3 Parameter Setting

For BrasCPD, we set the stepsize to be

α(t) =
α

tβ
, (5.1)

where t is the number of iterations, β = 10−6 and α typically takes a value in between

0.001 and 0.1, and we try multiple choices of α in our simulations. The batch size |Fn| is
set to be below 25, which will be specified later. For AdaCPD, we fix β = 10−6 and η = 1

for all the simulations. For CPRAND, we follow the instruction in the original paper [4]

and sample 10F log2 F fibers for each update.

5.1.4 Performance Metrics

To measure the performance, we employ two metrics. The first one is the value of the

cost function, i.e., cost = (1/
∏N
n=1 In)×f(θ(t)). The second one is the estimation accuracy

of the latent factors, A(n) for n = 1, . . . , N . The accuracy is measured by the mean

squared error (MSE) which is as defined in [14,20]:

MSE = (5.2)

min
π(r)∈{1,...,R}

1

R

R∑
r=1

∥∥∥∥∥ A(n)(:, π(r))

‖A(n)(:, π(r))‖2
−

Â(n)(:, r)

‖Â(n)(:, r)‖2

∥∥∥∥∥
2

2

where Â(n) denotes the estimate ofA(n) and π(r)’s are under the constraint {π(1), . . . , π(R)} =

{1, . . . , R}—which is used to fix the intrinsic column permutation in CPD.

Since the algorithms under test have very different operations and subproblem-solving

strategies, it may be challenging to find an exactly unified complexity measure. In this

section, we show the peformance of the algorithms against the number of MTTKRP
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operations HT
(n)X(n) used, since HT

(n)X(n) is the most costly step that dominates the

complexity of all the algorithms under comparison. All the simulations are conducted in

Matlab. The results are averaged from ten random trials with different tensors.

5.2 Results

Fig. 5.1 shows the average MSEs of the estimated latent factors by the algorithms under

a much larger scale simulation, where I1 = I2 = I3 = 300 and R = 100. We set |Fn| = 18

so that the proposed algorithms use 5,000 iterations to compute a full MTTKRP. All

the algorithms use nonnegativity constraints except CPRAND. There are several observa-

tions in order: First, the stochastic algorithms (i.e., BrasCPD, AdaCPD, and CPRAND) are

much more efficient relative to the deterministic algorithms (AO-ADMM and APG). After 30

MTTKRPs computed, the stochastic algorithms often have reached a reasonable level

of MSE. This is indeed remarkable, since 30 MTTKRPs are roughly equivalent to 10 it-

erations of AO-ADMM and APG. Second, two of the proposed stochastic algorithms largely

outperforms CPRAND. In particular, BrasCPD with α = 0.1 gives the most promising per-

formance. However, the performance of BrasCPD is affected a bit significantly by the

parameters α. One can see that using α = 0.05 and α = 0.01 the algorithm does not give

so promising results under this setting. Third, AdaCPD yields the second lowest MSEs,

but its MSE curve starts saturating and decreases slower after it reaches MSE=10−3.

This is understandable, since the ‘size’ of η is shrinking after each iteration and thus

the stepsize can vanish after a large number of iterations. Nevertheless, MSE=10−3 is

already very satisfactory, and AdaCPD shows surprising robustness to changing scenarios,

without changing any setup in its stepsize scheduling strategy. Fig. 5.2 shows the cost

values against the number of full MTTKRPs computed, which is consistent to what we

observed in Fig. 5.1.

Table 5.1 shows the MSEs and cost values of output by the algorithms when the tensor

rank varies under I = 300. All the algorithms are stopped after 30 full MTTKRPs are

used. One can see that BrasCPD in general exhibits the lowest MSEs if a proper α is

chosen, under the employed stepsize schedule in (5.1). However, one can see that when

F changes, there is a risk that BrasCPD runs into numerical issues and yields unbounded

solutions. This suggests that BrasCPD may need extra care for tuning its stepsize. On

the other hand, AdaCPD always outputs reasonably good results. The MSEs output by
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Figure 5.1: MSE of the algorithms. I1 = I2 = I3 = 300 and R = 100. A(n) ≥ 0.
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Figure 5.2: cost of the algorithms. I1 = I2 = I3 = 300 and R = 100. A(n) ≥ 0.
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AdaCPD is slightly higher relative to BrasCPD, but is much lower compared to those of the

baslines. More importantly, AdaCPD runs without tuning the stepsize parameters—which

shows the power of the adaptive stepsize scheduling strategy.

Table 5.1: Performance of the estimated latent factors by the algorithms under different
R; I = 300; all the algorithms are stopped after computing 30 MTTKRPs. “NaN”
means the algorithm outputs unbounded solutions. A(n) ≥ 0.

Algorithm Metric
R

100 200 300 400

BrasCPD (α=0.1) MSE 8.4375× 10−5 NaN NaN NaN

BrasCPD (α =0.05) MSE 0.0126 0.0494 0.0894 NaN

BrasCPD (α =0.01) MSE 0.2882 0.3142 0.3235 0.3239

AdaCPD MSE 0.0016 0.1247 0.1467 0.2382

AO-ADMM MSE 0.3190 0.3124 0.3093 0.3033

APG MSE 0.3574 0.3527 0.3538 0.3545

CPRAND MSE 0.0056 0.0967 0.2115 0.2404

BrasCPD (α =0.1) Cost 2.3759× 10−5 NaN NaN NaN

BrasCPD (α =0.05) Cost 0.0046 0.0397 0.1162 NaN

BrasCPD (α =0.01) Cost 0.0903 0.1832 0.2687 0.3461

AdaCPD Cost 4.8050× 10−4 0.1555 0.1684 0.2144

AO-ADMM Cost 0.0990 0.1952 0.2800 0.3520

APG Cost 0.6649 1.3629 2.0664 2.7707

CPRAND Cost 0.0018 0.0691 0.1842 0.2481

Table 5.2: Performance of the algorithms under various I’s, R = 100; all the algorithms
are stopped after computing 30 MTTKRPs. A(n) ≥ 0.

Algorithm Metric
I

100 200 300 400

BrasCPD (α=0.1) MSE 0.2432 0.0474 8.4375× 10−5 1.2052× 10−9

BrasCPD (α =0.05) MSE 0.2724 0.2000 0.0126 1.0631× 10−4

BrasCPD (α =0.01) MSE 0.2906 0.3086 0.2882 0.2127

AdaCPD MSE 0.2214 0.0121 0.0016 1.0068× 10−4

AO-ADMM MSE 0.2561 0.3171 0.3190 0.3235

APG MSE 0.3107 0.3459 0.3574 0.3635

CPRAND MSE 0.1857 0.0459 0.0056 0.0025

BrasCPD (α =0.1) Cost 0.0795 0.0179 2.3759× 10−5 3.5023× 10−10

BrasCPD (α =0.05) Cost 0.0862 0.0668 0.0046 2.8758× 10−5

BrasCPD (α =0.01) Cost 0.1453 0.0981 0.0903 0.2127

AdaCPD Cost 0.0814 0.0058 4.8050× 10−4 3.5958× 10−5

AO-ADMM Cost 0.0843 0.0957 0.0990 0.1008

APG Cost 0.5936 0.6450 0.6649 0.6776

CPRAND Cost 0.0566 0.0136 0.0018 0.0011

Tables 5.3-5.4 show the performance of the algorithms under different SNRs. Except

for adding noise, other settings are the same as those in Fig. 5.1. In a noisy environment,

the ability of handling constraints/regularizations is essential for a CPD algorithm, since

prior information on the latent factors can help improve estimation accuracy. Table 5.3
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Table 5.3: Performance of the algorithms under various SNRs; all the algorithms are
stopped after computing 30 MTTKRPs. I1 = I2 = I3 = 300, R = 100. A(n) ≥ 0.

Algorithm Metric
SNR

10 20 30 40

BrasCPD (α=0.1) MSE 0.3685 0.0225 0.0024 0.0003

BrasCPD (α =0.05) MSE 0.2962 0.0198 0.0066 0.0044

BrasCPD (α =0.01) MSE 0.3125 0.2823 0.2774 0.2758

AdaCPD MSE 0.3285 0.0192 0.0025 0.0004

AO-ADMM MSE 0.3330 0.3135 0.3118 0.3101

APG MSE 0.3524 0.3521 0.3521 0.3520

CPRAND MSE 1.6047 0.0367 0.0104 0.0100

BrasCPD (α =0.1) Cost 1.9627 0.2081 0.0212 0.0021

BrasCPD (α =0.05) Cost 0.9086 0.0918 0.0110 0.0025

BrasCPD (α =0.01) Cost 0.2812 0.1058 0.0885 0.0865

AdaCPD Cost 0.3137 0.0671 0.0155 0.0024

AO-ADMM Cost 0.1533 0.0999 0.0954 0.0948

APG Cost 0.6445 0.6441 0.6430 0.6435

CPRAND Cost 0.8038 0.0811 0.0100 0.0039

Table 5.4: Performance of the algorithms under various SNRs after computing 30 MT-
TKRPs. I1 = I2 = I3 = 300, R = 100. 1>A(n) = ρ1>, A(n) ≥ 0. ρ = 300.

Algorithm Metric
SNR

10 20 30 40

BrasCPD (α =0.1) MSE 0.4697 0.4423 0.3956 0.4320

BrasCPD (α =0.05) MSE 0.4443 0.4267 0.4135 0.4146

BrasCPD (α =0.01) MSE 0.3940 0.0335 0.0033 0.0003

AdaCPD MSE 0.2983 0.0611 0.0011 0.0002

AO-ADMM MSE 0.3206 0.2996 0.2973 0.2972

APG MSE 0.2761 0.2760 0.2760 0.2760

CPRAND MSE 1.6020 0.0466 0.0045 0.0112

BrasCPD (α =0.1) Cost 14274.5141 12059.7192 7386.9652 10944.0721

BrasCPD (α =0.05) Cost 11424.7030 10159.3117 9059.4911 9152.1151

BrasCPD (α =0.01) Cost 229.6424 24.8565 2.5698 0.2571

AdaCPD Cost 14.8627 3.4755 0.5916 0.1318

AO-ADMM Cost 9.6097 6.1642 5.8643 5.8359

APG Cost 36.5461 36.5095 36.5059 36.5055

CPRAND Cost 51.5269 5.2663 0.5413 0.2570
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and Table 5.4 test the cases where A(n) is elementwise nonnegative and the columns

of A(n) reside in a scaled version of the probability simplex, respectively. One can see

from the two tables that both BrasCPD (with a proper α) and AdaCPD work very well.

In Table 5.4, one can see that BrasCPD again shows its sensitivity to the choice of α,

with α = 0.1 and 0.05 actually not working. We also note that when the SNR is low,

CPRAND is not as competitive, perhaps because it cannot use constraints to incorporate

prior information of the A(n)’s—this also shows the importance of being able to handle

various constraints.

5.3 Real-Data Experiment

In this subsection, we test our algorithm on a constrained tensor decomposition prob-

lem; i.e., we apply the proposed BrasCPD and AdaCPD to factor hyperspectral images.

Hyperspectral images (HSIs) are special images with pixels measured at a large number

of wavelengths. Hence, an HSI is usually stored as a third-order tensor with two spatial

coordinates and one spectral coordinate. HSIs are dense tensors and thus are suitable

for testing the proposed algorithms. We use sub-images of the Indian Pines dataset

that has a size of 145 × 145 × 220 and the Pavia University dataset1 that has a size of

610× 340× 103.

Tables 5.5-5.6 show the cost values of the nonnegativity constrained optimization al-

gorithms under different ranks, after computing 10 MTTKRPs for all three modes, which

corresponds to 10 iterations for AO-ADMM and APG (we use this “all-mode MTTKRP” in

this section since the tensors are unsymmetrical and thus single-mode MTTKRPs cannot

be directly translated to iterations in batch algorithms). One can see that the proposed

algorithms show the same merits as we have seen in the simulations: BrasCPD can ex-

hibit very competitive performance when α is properly chosen (e.g., when R = 10 and

α = 4 for the Indian Pines dataset); in addition, AdaCPD gives consistently good per-

formance without tuning the stepsize manually. Particularly, on the Pavia University

dataset, AdaCPD gives much lower cost values compared to other algorithms. Fig. 5.3

shows how the cost values change along with the iterations on the Pavia University data

using R = 200.

1Both datasets are available online: http://www.ehu.eus/ccwintco/index.php/Hyperspectral_

Remote_Sensing_Scenes
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Table 5.5: Performance of the algorithms on the Pavia University dataset under different
R’s.

Algorithm Metric
R

10 20 30 40

BrasCPD (α =4) Cost 6.8343× 10−4 4.7777× 10−4 3.4738× 10−4 2.9053× 10−4

BrasCPD (α =3) Cost 6.8507× 10−4 4.8550× 10−4 4.1556× 10−4 3.1278× 10−4

BrasCPD (α =2) Cost 6.9877× 10−4 5.7753× 10−4 5.4205× 10−4 4.2504× 10−4

AdaCPD Cost 7.0677× 10−4 4.6180× 10−4 3.5328× 10−4 2.9848× 10−4

AO-ADMM Cost 7.2503× 10−4 5.5708× 10−4 5.1489× 10−4 5.1505× 10−4

APG Cost 1.9392× 10−3 1.8952× 10−3 1.8818× 10−3 1.8675× 10−3

Table 5.6: Performance of the algorithms on the Indian Pines dataset under different
R’s.

Algorithm Metric
R

100 200

BrasCPD (α =0.5) Cost 2.7193× 10−3 2.5275× 10−3

BrasCPD (α =0.3) Cost 3.6496× 10−3 5.3453× 10−3

BrasCPD (α =0.1) Cost 6.4221× 10−3 5.7509× 10−3

AdaCPD Cost 1.7269× 10−3 9.0080× 10−4

AO-ADMM Cost 6.2494× 10−3 4.5879× 10−3

APG Cost 7.2966× 10−3 7.2647× 10−3

0 5 10 15 20 25 30

no. of all-modes MTTKRP computed

10-2

100

C
os

t

BrasCPD (  = 0.5)
BrasCPD (  = 0.3)
BrasCPD (  = 0.1)
AdaCPD
AO-ADMM
APG

Figure 5.3: No. of all-mode MTTKRPs v.s. cost values output by the algorithms when
applied to the Pavia University dataset. R = 200. Nonnegativity constraint is added.
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Chapter 6 Conclusion

We presented a problem setting in which a large-scale dense tensor is being decomposed to

many factors. We first propose a Block-Randomized SGD for CPD (BrasCPD) algorithm

which can easily handle a variety of constraints and regularizations that are commonly

used in signal processing and data analytics which is reminiscent of stochastic proximal

gradient. And we compare MTTKRPs which is the most resource consuming operations

along all the algorithms and find that our proposed BrasCPD outperforms a number of

state-of-art unconstrained and constrained CPD algorithms.

Inspired by the deep neural network optinization algorithms, we also proposed Adagrad

algorithm which takes tha advantage of using small stepsize to update heavily updating

variables for current iteration(and a large stepsize otherwise). And this strategy can

help us to upadate the variables in a balanced manner.

Both the algorithms can help us to achieve a reasonably high accuracy when using

the same MTTKRP operations. In synthetic data, it is obviously that our proposed

BrasCPD and AdaCPD outperform over all the baselines. When it comes to the real

world dataset, the cost function value of our algorithms are much lower than any other

state-of-art algorithms.

It is highly favorable that our algorithms have two significant advantages. First,

being able to quickly improve estimation accuracy of the latent factors can help us save

a lot of computing resources. Second, they are flexible with incorporating constraints

and regularizations which is important to handle our real life applications.
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Chapter A Convergence analysis

A.1 Connection between ∇f(θ(t)) and G(t)

Let us consider the following conditional expectation:

G
(t)
(n) = E

[
G

(t)
(n) | B

(t)
]

= E
[
G

(t)
(n) | {A

(t)
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= En′
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(
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(n)H(n) −X>(n)H(n)

)
(A.1)

where δ(·) is the Dirac function and the expectation in (a) is taken over the possible

modes n′. The last equality shows that G
(t)
(n) is a scaled version of the gradient of the

objective function of (4.1) taken w.r.t. A
(t)
(n). Hence, the block sampling step together

with fiber sampling entails us an easy way to estimate the full gradient w.r.t. all the

latent factors in an unbiased manner.

A.2 Proof of Proposition 1

To show Proposition 3, we will need the following [6, Proposition 1.2.4]:

Lemma 1 Let {at}t and {bt}t be two nonnegative sequences such that bt is bounded,∑∞
t=0 atbt converges and

∑∞
t=0 at diverges, then we have

lim
t→∞

inf bt = 0.

To make our notations precise, let us denote ξ(t) as the random index of mode chosen
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at iteration t and subsequently F (t)

(ξ(t))
is the random set of fibers chosen. Under Assump-

tion 2, we have ‖H(t)

(ξ(t))
‖22 ≤ L

(t)

(ξ(t))
where H

(t)

(ξ(t))
= �N

n′=1,n′ 6=ξ(t)A
(t)
(n′) and L

(t)

(ξ(t))
< ∞.

Combining with Fact 1, we observe the following bound:

f(θ(t+1))− f(θ(t))

≤
〈
∇A

(ξ(t))
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∥∥∥2
F
,

where we denote

L = max
t=0,...,∞

L
(t)

(ξ(t))
<∞,

since A
(t)
(n) is bounded for all iterations.

Taking expectation conditioned on the filtration B(t) and the chosen mode index ξ(t),

we have

E
[
f(θ(t+1)) | B(t), ξ(t)

]
− f(θ(t))

≤ −α(t)
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(ξ(t))
f(θ(t))
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(α(t))2LM

2
. (A.2)

where the first inequality used the assumption that L
(t)

(ξ(t))
≤ L and Fact 2, and the

second inequality is again a consequence of Assumption 2, as we observe:∥∥∥G(t)

(ξ(t))

∥∥∥ =
1

|Fn|

∥∥∥A(t)
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where in the right hand side we have dropped the superscript for n(t) for simplicity. As

X(n) is bounded for all n, and all the A
(t)
(n) are bounded under Assumption 2, we have

‖G(t)

(ξ(t))
‖2 ≤ M for all n, t and some M < ∞. Now, taking the expectation w.r.t. ξ(t)
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yields
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2
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Finally, taking the total expectation, we have

E
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Summing up the above from q = 0 to q = t, we have

E
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Taking t→∞, the above implies that

∞∑
t=0

α(t)E
[
Eξ(t)

[∥∥∥∇A
(ξ(t))

f(θ(t))
∥∥∥2]]

≤ f(θ(0))− f(θ(?)) +

∞∑
t=0

(α(t))2ML

2
, (A.7)

where f(θ(?)) denotes the global optimal value. Note that the right hand side above is

bounded from above because
∑∞

t=0(α
(t))2 <∞. Hence, using Lemma 1, we can conclude

that

lim
t→0

inf E
[
Eξ(t)

[∥∥∥∇A
(n(t))

f(θ(t))
∥∥∥2]] = 0.

Finally, we conclude:

lim
t→0

inf E
[∥∥∥∇f(θ(t))

∥∥∥2] = 0,
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since

Eξ(t)
[∥∥∥∇A

(ξ(t))
f(θ(t))

∥∥∥2] =
1

N

N∑
n=1

∥∥∥∇A(n)
f(θ(t))

∥∥∥2
by the fundamental theorem of expectation.

A.3 Proof of Proposition 2

A.3.1 Preliminaries

For the constrained case, let us denote Φ(θ) = f(θ) +
∑N

n=1 hn(θ) as the objective

function. Unlike the unconstrained case where we measure convergence via observing

if the gradient vanishes, the optimality condition of the constrained case is a bit more

complicated. Here, the idea is to observe the “generalized gradient”. To be specific,

consider the following optimization problem

minimize
θ

f(θ) + h(θ),

where f(θ) is continuously differentiable while h is convex but possibly nonsmooth. The

deterministic proximal gradient algorithm for handling this problem is as follows:

θ(t+1) ← Proxh

(
θ(t) − α(t)∇f(θ(t))

)
.

Define P (t) = 1
α(t)

(
θ(t+1) − θ(t)

)
, the update can also be represented as θ(t+1) ← θ(t) −

α(t)P (t), which is analogous to the gradient descent algorithm. It can be shown that

P (t) = 0 implies that the necessary optimality condition is satisfied, and thus P (t) can

be considered as a “generalized gradient”.

In our case, let us denote Φ(θ) = f(θ) +
∑N

n=1 hn(θ) as the objective function. Our

optimality condition amounts to P
(t)
(n) = 0, ∀ n, where

P
(t)
(n) =

1

α(t)

(
A

(t+1)
(n) − Proxhn

(
A

(t)
(n) − α

(t)∇A(n)
f(θ(t))

))
;

i.e., the optimality condition is satisfied in a blockwise fashion [39, 53]. Hence, our goal

of this section is to show that E
[
P

(t)
(n)

]
for all n vanishes when t goes to infinity.
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A.3.2 Proof

Our update is equivalent to the following:

A
(t+1)
(n) ← arg min

A(n)

〈
G

(t)
(n),A(n) −A

(t)
(n)

〉
(A.8)

+
1

2α(t)

∥∥∥A(n) −A
(t)
(n)

∥∥∥2 + hn(A(n))

for a randomly selected n, which is a proximity operator. For a given ξ(t), we have

hξ(t)
(
A

(t+1)

(ξ(t))

)
− hξ(t)

(
A

(t)

(ξ(t))

)
≤−

〈
G

(t)

(ξ(t))
,A

(t+1)

(ξ(t))
−A(t)

(ξ(t))

〉
− 1

2α(t)

∥∥∥A(t+1)

(ξ(t))
−A(t)

(ξ(t))

∥∥∥2
by the optimality of A

(t+1)

(ξ(t))
for solving Problem (A.8).

By the block Lipschitz continuity of the smooth part (cf. Fact 1), we have

f(θ(t+1))− f(θ(t)) ≤
〈
∇A

(ξ(t))
f(θ(t)),A

(t+1)

(ξ(t))
−A(t)

(ξ(t))

〉
+
L
(t)

(ξ(t))

2

∥∥∥A(t+1)

(ξ(t))
−A(t)

(ξ(t))

∥∥∥2 ,
where f denotes the smooth part in the objective function and

L
(t)

(ξ(t))
= λmax

((
H

(t)

(ξ(t))

)>
H

(t)

(ξ(t))

)
≤ L.

Combining the two inequalities, we have

Φ(θ(t+1)) ≤ Φ(θ(t))− α(t)
〈
∇A

(ξ(t))
f(θ(t))−G(t)

(ξ(t))
,p

(t)

(ξ(t))

〉
+

(
L(α(t))2

2
− α(t)

2

)
‖p(t)

(ξ(t))
‖2 (A.9)

where we define

p
(t)

(ξ(t))
=

1

α(t)

(
A

(t+1)

(ξ(t))
−A(t)

(ξ(t))

)
.
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The inequality in (A.9) can be further written as

Φ(θ(t+1))− Φ(θ(t))

≤ −α(t)
〈
∇A

(ξ(t))
f(θ(t))−G(t)

(ξ(t))
,p

(t)

(ξ(t))
− P (t)

(ξ(t))

〉
− α(t)

〈
∇A

(ξ(t))
f(θ(t))−G(t)

(ξ(t))
,P

(t)

(ξ(t))

〉
+

(
L(α(t))2

2
− α(t)

2

)
‖p(t)

(ξ(t))
‖2, (A.10)

Again, taking expectation conditioning on the filtration B(t) and ξ(t), we have

Eζ(t)
[
Φ(θ(t+1))|B(t), ξ(t)

]
− Φ(θ(t))

≤ α(t)Eζ(t)
[〈
∇A

(ξ(t))
f(θ(t))−G(t)

(ξ(t))
,P

(t)

(ξ(t))
− p(t)

(ξ(t))

〉
|B(t), ξ(t)

]
+

(
L(α(t))2

2
− α(t)

2

)
Eζ(t)

[∥∥∥p(t)
(ξ(t))

∥∥∥2 ∣∣∣B(t), ξ(t)] , (A.11)

i.e., the second term on the right hand side of (A.10) becomes zero because of Fact 2.

The first term on the right hand side of (A.11) can be bounded via the following chain

of inequalities:

Eζ(t)
[〈
∇A

(ξ(t))
f(θ(t))−G(t)

(ξ(t))
,P

(t)

(ξ(t))
− p(t)

(ξ(t))

〉 ∣∣∣B(t), ξ(t) ]
≤ Eζ(t)

[∥∥∥δ(t)∥∥∥∥∥∥P (t)

(ξ(t))
− p(t)

(ξ(t))

∥∥∥ ∣∣∣ B(t), ξ(t) ]
≤ Eζ(t)

[
‖δ(t)‖2 | B(t), ξ(t)

]
≤ (σ(t))2 (A.12)

where for the first inequality we have applied the Cauchy-Schwartz inequality, and for

the second inequality we have used the non-expansiveness of the proximal operator of

convex hn(·). Taking expectation w.r.t. ξ(t) and then total expectation on both sides of
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(A.11), we have

E
[
Φ(θ(t+1))

]
− E

[
Φ(θ(t))

]
(A.13)

≤ α(t)(σ(t))2 +

(
L(α(t))2

2
− α(t)

2

)
E
[∥∥∥p(t)

(ξ(t))

∥∥∥2] .
Summing up through p = 0 to p = t− 1, we have

E
[
Φ(θ(t))

]
− Φ(θ(0)) (A.14)

≤
t∑

p=0

α(p)(σ(p))2 +
t∑

p=0

(
L(α(p))2

2
− α(p)

2

)
E
[∥∥∥p(p)

(ξ(p))

∥∥∥2] .
Since we have assumed α(t) < 1/L, we have L(α(t))2

2 − α(t)

2 < 0. Therefore, we have

t∑
p=0

(
α(p)

2
− L(α(p))2

2

)
E
[∥∥∥p(p)

(ξ(p))

∥∥∥2] .
≤ Φ(θ(0))− Φ(θ(?)) +

t∑
p=0

α(p)(σ(p))2 (A.15)

Taking t→∞, and by the assumption that
∑∞

t=0 α
(t)(σ(t))2 <∞, we can conclude that

lim
t→∞

inf E
[∥∥∥p(t)

(ξ(t))

∥∥∥2] = 0,

using Lemma 1.

One can see that

E
[∥∥∥P (t)

(ξ(t))

∥∥∥2] ≤ 2E
[∥∥∥p(t)

(ξ(t))

∥∥∥2]+ 2E
[∥∥∥p(t)

(ξ(t))
− P (t)

(ξ(t))

∥∥∥2]
≤ 2E

[∥∥∥p(t)
(ξ(t))

∥∥∥2]
+ 2E

[
Eζ(t)

[∥∥∥G(t)

(ξ(t))
−∇A

(ξ(t))
f(θ(t))

∥∥∥2 ∣∣∣B(t), ξ(t)]]
≤ 2E

[∥∥∥p(t)
(ξ(t))

∥∥∥2]+ 2(σ(r))2. (A.16)
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where the last inequality is obtained via applying the nonexpansive property again. Note

that both terms on the right hand side converge to zero. Hence, this relationship implies

that

lim
t→∞

inf E
[∥∥∥P (t)

(ξ(t))

∥∥∥2] = 0.

Note that by our sampling strategy, we have

E
[∥∥∥P (t)

(ξ(t))

∥∥∥2] = E
[
Eξ(t)Eζ(t)

[∥∥∥P (t)

(ξ(t))

∥∥∥2 ∣∣∣B(t), ξ(t)]] .
However, since P

(t)

(ξ(t))
is not affected by the random seed ζ(t), we have

E
[∥∥∥P (t)

(ξ(t))

∥∥∥2] = E
[
Eξ(t)

[∥∥∥P (t)

(ξ(t))

∥∥∥2 ∣∣∣B(t)]]
= E

[
N∑
n=1

1

N

∥∥∥P (t)
(n)

∥∥∥2] .
This proves the proposition.

A.4 Proof of Proposition 3

The insight of the proof largely follows the technique for single-block Adagrad [31],

with some careful modifications to multiple block updates. One will see that the block

sampling strategy and the block-wise unbiased gradient estimation are key to apply the

proof techniques developed in [31] to our case. To show convergence, let us first consider

the following lemma:

Lemma 2 [31] Let a0 > 0, ai ≥ 0, i = 1, . . . , T and β > 1. Then, we have

T∑
t=1

at

(a0 +
∑t

i=1 ai)
β
≤ 1

(β − 1)aβ−10

.

The proof is simple and elegant; see [31, Lemma 4].

Lemma 3 [31] Consider a random variable X. If E[X] <∞, then Pr(X <∞) = 1.
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Let us consider the block-wise again:

f(θ(t+1)) ≤ f(θ(t)) +
〈
∇A

(ξ(t))
f(θ(t)),A

(t+1)

(ξ(t))
−A(t)

(ξ(t))

〉
+
L
(t)

ξ(t)

2

∥∥∥A(t+1)

(ξ(t))
−A(t)

(ξ(t))

∥∥∥2 . (A.17)

Plugging in our update rule under AdaCPD, one can see that

f(θ(t+1)) ≤ f(θ(t)) +
〈
∇A

(ξ(t))
f(θ(t)),−η(t)

(ξ(t))
~G(t)

(ξ(t))

〉
+
L
(t)

ξ(t)

2

∥∥∥η(t)
(ξ(t))

~G(t)

(ξ(t))

∥∥∥2
= f(θ(t))−

〈
∇A

(ξ(t))
f(θ(t)),η

(t)

(ξ(t))
~∇A

(ξ(t))
f(θ(t))

〉
+
〈
∇A

(ξ(t))
f(θ(t)),η

(t)

(ξ(t))
~
(
∇A

(ξ(t))
f(θ(t))−G(t)

(ξ(t))

)〉
+
L
(t)

ξ(t)

2

∥∥∥η(t)
(ξ(t))

~G(t)

(ξ(t))

∥∥∥2 (A.18)

Taking expectation w.r.t. ζ(t) (the random seed that is responsible for selecting

fibers) conditioning on the filtration B(t) and the selected block ξ(t), the middle term is

zero—since the block stochastic gradient is unbiased [cf. Fact 2]. Hence, we have reached

the following

Eζ(t)
[
f(θ(t+1))|B(t), ξ(t)

]
≤ Eζ(t)

[
f(θ(t))|B(t), ξ(t)

]
− Eζ(t)

[〈
∇A

(ξ(t))
f(θ(t)),η

(t)

(ξ(t))
~∇A

(ξ(t))
f(θ(t))

〉
|B(t), ξ(t)

]
+
L
(t)

ξ(t)

2
Eζ(t)

[∥∥∥η(t)
(ξ(t))

~G(t)

(ξ(t))

∥∥∥2 ∣∣∣B(t), ξ(t)] (A.19)
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Taking total expectation on both sides, we have

E
[
f(θ(t+1))

]
≤ E

[
f(θ(t))

]
− E

[〈
∇A

(ξ(t))
f(θ(t)),η

(t)

(ξ(t))
~∇A

(ξ(t))
f(θ(t))

〉]
+ E

L(t)

ξ(t)

2

∥∥∥η(t)
(ξ(t))

~G(t)

(ξ(t))

∥∥∥2
 . (A.20)

From the above inequality and the assumption that L
(t)
(n) is bounded from above by L,

we can conclude that

T∑
t=1

E
[〈
∇A

(ξ(t))
f(θ(t)),η

(t)

(ξ(t))
~∇A

(ξ(t))
f(θ(t))

〉]
≤ f(θ(0))− f(θ(?)) +

T∑
t=1

L

2
E
[∥∥∥η(t)

(ξ(t))
~G(t)

(ξ(t))

∥∥∥2]

which is by summing up all the inequalities in (A.19) from t = 1 to T .

Let us observe the last term on the right hand side and take F →∞:

E

[ ∞∑
t=1

∥∥∥η(t)
(ξ(t))

~G(t)

(ξ(t))

∥∥∥2] (A.21)

= E

 ∞∑
t=1

J
ξ(t)∑
i=1

R∑
r=1

[
η
(t)

(ξ(t))

]2
i,r

[
G

(t)

(ξ(t))

]2
i,r


= E

 ∞∑
t=1

J
ξ(t)∑
i=1

R∑
r=1

[
η
(t+1)

(ξ(t))

]2
i,r

[
G

(t)

(ξ(t))

]2
i,r

+

∞∑
t=1

J
ξ(t)∑
i=1

R∑
r=1

([
η
(t)

(ξ(t))

]2
i,r
−
[
η
(t+1)

(ξ(t))

]2
i,r

)[
G

(t)

(ξ(t))

]2
i,r

 .
Note that we have exchanged the order of the limits and expectations, since the expec-

tation is taking on nonnegative terms. Using Lemma 2, one can easily show the first
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term above satisfies is bounded from above by

C1

2εβ2ε

where 0 < C1 <∞ is a constant. To see the second term is also bounded, observe that

∞∑
t=1

([
η
(t)

(ξ(t))

]2
i,r
−
[
η
(t+1)

(ξ(t))

]2
i,r

)[
G

(t)

(ξ(t))

]2
i,r

≤ max
t≥0

[
G

(t)

(ξ(t))

]2
i,r

∞∑
t=1

([
η
(t)

(ξ(t))

]2
i,r
−
[
η
(t+1)

(ξ(t))

]2
i,r

)
≤ max

t≥0

[
G

(t)

(ξ(t))

]2
i,r

[
η
(t)

(ξ(t))

]2
i,r

≤
[
η
(t)

(ξ(t))

]2
i,r

([
∇A

(ξ(t))
f(θ(t))

]2
i,r

+

([
∇A

(ξ(t))
f(θ(t))

]
i,r
−
[
G

(t)

(ξ(t))

]
i,r

)2
)

(A.22)

Since we have assumed that A
(t)
(n)’s are bounded, the right hand side is bounded from

above. Therefore, we have reached the conclusion

E

[ ∞∑
t=1

〈
∇A

(ξ(t))
f(θ(t)),η

(t)

(ξ(t))
∗ ∇A

(ξ(t))
f(θ(t))

〉]
<∞.

Applying Lemma 3, one can see that

Pr

( ∞∑
t=1

[
η
(t)

(ξ(t))

]
i,r

[
∇A

(ξ(t))
f(θ(t))

]2
i,r
<∞

)
= 1.

Since Pr(ξ(t) = n) > 0, one immediate result is that any n appears infinitely many times

in the sequence t = 1, . . . ,∞, according to the second Borel-Cantelli lemma. This leads

to

Pr

 ∞∑
j=1

[
η
(tj(n))

(n)

]
i,r

[
∇A(n)

f(θ(tj(n)))
]2
i,r
<∞

 = 1,

holds for n = 1, . . . , N , where t1(n), . . . , tj(n), . . . is the subsequence of {t} such that
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block n is sampled for updating.

Hence, with probability one there exists a subsequence t1(n), . . . , t∞(n) such that at

the corresponding iterations block n is sampled for updating. It is not hard to show that

∞∑
j=1

[
η
(tj(n))

(n)

]
i,r

=∞,

by the assumption that A
(t)
(n) are all bounded. This directly implies that

∞∑
t=1

[
η
(t)
(n)

]
i,r

=∞, ∀n.

Hence, by Lemma 2, we have

lim
t→∞

[∇A(n)
f(θ(t))]2i,r = 0

with probability one.




