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Chapter 1: Robot Hand Design for Manipulation

Robots interact with the world using robot end effectors. End effectors are built according to a

robot’s specifications, and therefore can greatly vary in design and function. So far, many end

effectors focus on grasping objects effectively. However, roboticists are beginning to explore end

effectors for manipulation tasks. Many robot end effectors designed for object grasping and ma-

nipulation use fingers. In this work, we focus on end effectors which utilize fingers. To differentiate

them from other end effectors, we will refer to these as robot hands.

Robot hands are complicated systems built of many components. A robot hand is guaranteed

to have three essential system components: 1) its morphology (the body), 2) some sort of actuation

scheme that moves the morphology, and 3) the software controllers (low level and high level) to

drive actuators with purpose. This is visualized in Figure 1.1. Due to their complicated nature,

robot hand systems are difficult to characterize and compare to one another. To understand why

this is, it is necessary to understand more about robot hand systems.

The morphology component is all about the body of the robot hand. For a typical robot

hand this pertains to the structure of the palm, the structure and placement of the fingers, and

any extra structures needed to accommodate other system components. Figure 1.1 contains a more

detailed list of attributes in the morphology component at the bottom of the figure.

The actuation component is built into the morphology component. Actuation pertains to

how the fingers will move, including the motors, transmission (tendons, gearing, etc), and low-level

feedback (encoders, torque at joints).

The software control component directs the actuation component and receives the low-level

feedback. Directing the actuation requires low-level and high-level software controllers. The low-

level layer consists of drivers and basic code to make the motors work. The high-level layer uses

the low-level layer to make the hand move towards the completion of some task.

The high-level layer could also connect to non-essential high-level feedback components (e.g.

cameras, fingertip force sensors). We excluded a high-level sensing component as an essential

component because it is still an active research field and many hands in research do not use one.

It is important to understand that the three essential components are tightly coupled to each

other — for example, the morphology can’t move without actuators, nor can the actuators do

anything without some sort of software. Figure 1.2 relates these system components at a high level,

located in the top-right of the figure.

When characterizing and comparing robot hands this creates problems because there are too

many variables to consider. When characterizing hand performance, this means that it is difficult

to understand how each system component contributes individually to system performance. When

comparing robot hands, this is problematic because its difficult to isolate system components for

direct component to component comparisons.
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Figure 1.1: Robot hands are made of three essential system components: its morphology (body),
its actuation, and its software control.

System Component Makeup 
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Whatever 
controller is 
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motors 

• Degrees of freedom to actuate 
• Motor type (torque, speed) 
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Q Software Control 
• Low-level drivers 
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■ Low level feedback 
• High-level control 
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Figure 1.2: A basic system model of the three essential system components in every robot hand
(morphology, actuation, and software control). Each system component builds off of the potential
the component below it.

Three Essential System Components of Robot Hands 
In this simplified model, each layer realizes (or not) the performance 
potential given by the system components below it. See the example below. 
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This is not a problem that we can ignore; it is necessary to understand system component

performance due to the fact that system components build off of each other. The morphology

component is foundational; therefore it provides the max potential of a hand. This is because the

actuation component builds off of the morphology’s potential — it can realize the entirety of the

potential or a small portion of it depending on how the actuation is designed. The software control

component, in turn, builds off of the actuation component.

Understanding the max performance that the morphology brings to a robot hand can enable

better perspectives for characterizing and communicating hand performance, such as characterizing

actuation systems by how well they realize the potential provided by the morphology.

The coupling of system components leads to problems when trying to dissect issues with robot

hands — anecdotally, many roboticists dread debugging these complicated systems. This is partly

due to complications when trying to understand component contributions separately from others.

This only becomes more complicated when one tries to compare robot hands to each other.

This is because now there are two systems to unravel and compare. However, even small changes

in a single hand’s component can have profound effects up the chain — for example, changing an

actuation scheme, even just adding or subtracting an actuator, can profoundly change how software

control is manifested. The sheer number of variables at play that make it difficult to characterize

and build an understanding of the contributions of each system component.

Improving our understanding of robot hands relies on unravelling the system components and

enabling effective comparisons to be made about robot hands. To that end, my work here intends

to mitigate these two problems by designing new benchmarks and methodologies to enable the

characterization of components and the comparison of robot hand designs at manipulation tasks.

1.1 Important Vocabulary and Context

Research into robot hands and in-hand manipulation is built on years of robot and human grasping

research. This section provides a basic guide to the terminology and context of robot hand research

for readers who need it. The terminology and concepts provided in this section will not be defined

later, so please refer back to this section as needed.

Structurally, a robot hand consists of fingers and a palm. The segments in a finger are called

links. The closest link to the palm is called the proximal link. The furthest link, which is the

last link in the chain, is called the distal link. Links between the proximal and the distal link are

called intermediate links. Intermediate links are often numbered if there is more than one. This

naming convention also applies to joint names, with some minor variations. Figure 1.3 shows these

concepts in the top left of the figure.

An effective exercise is to consider the structure of the human hand, which is also referred to as

an anthropomorphic hand design. The human hand contains four fingers, each with three links —

therefore there is one proximal (closest to palm), one intermediate, and one distal link (furthest).

There is also a two-linked thumb with one proximal and one distal link.
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Figure 1.3: Basic terminology and concepts about robot hands. (left) Structural terminology.
(right) Basic grasp types.

When using a robot hand, there are two ubiquitous grasps to know: the precision and power

grasps (1). These two grasps form the foundation of modern grasping taxonomies — a type of

grasp is either one of or a combination of these grasps.

Precision grasps, shown in the top right of Figure 1.3 utilize the distal links to grasp an

object. Precision grasps are known for enabling greater dexterity and sensitivity. It is generally

called a precision grasp because of the relatively higher precision required to make this grasp (2; 3).

Power grasps, also shown in the top right of Figure 1.3 utilize the whole hand to grasp an

object, usually including the palm. Power grasps are known for stability. It is generally called

a power grasp because of the extra stabilizing power that comes from grasping with the whole

hand (2; 3).

Roboticists often choose to simplify contact points on multi-finger scenarios within grasps by

consolidating similar contact points based on contact position and force. Consolidated points are

known as virtual fingers.

Roboticists use many actuation schemes to make a hand perform these grasps. An actuation

scheme is the setup used to make the fingers move for a particular hand design. When a finger

curls, it flexes. When a finger straightens, it extends.

Degrees of freedom (DOF) is a measure of how many variables are required to define the

state of a mechanical system. For robot hand morphologies, one could simply count the number of

joints.

We label actuation schemes by how many degrees of freedom are controlled. For a fully-

actuated hand, all of the degrees of freedom are under control. Therefore, the hand’s behavior —

every single degree of freedom — is under the control of the software. Figure 1.4 shows an example

of a fully-actuated scheme using tendons on the left. Note how there is a tendon on each side of

each link. In this scheme, a roboticist is able to control each link separately and in each direction

using the corresponding tendon for the motion they desire.
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Figure 1.4: Two fundamental actuation schemes. (Left) Fully-actuated schemes control every
degree of freedom. (Right) Minimally actuated schemes are underactuated schemes that minimize
control.

A hand which does not have all degrees of freedom under control is called an under-actuated

hand. These hands are advantageous because of the reduced control complexity — there are simply

fewer tendons to pull to make this kind of hand work. Of course, the tradeoff is that there is a

reduction in performance.

Considering the human hand, it is also underactuated. It controls our 22 joints with 38 ten-

dons (4), which is not enough to drive every joint in two directions.

In this work, we discuss a new label for a common under-actuated design schemes called min-

imal actuation to differentiate them from more complex, but underactuated schemes. When a

hand is minimally actuated, the minimum number of degrees of freedom are actuated to get the

hand working. Such an actuation scheme is shown in the right of Figure 1.4. Note how there

is only one tendon on the distal link of each finger, however the tendon is also connected to the

proximal link. Therefore, both links will move when the tendon is actuated. Also note how there

is no tendon to extend the finger. Therefore, such a design scheme requires some mechanism to

extend the finger when it is not being actuated. This is typically accomplished using springs.

Cleverly, depending on which link makes contact first also dictates which kind of grasp is made.

If the proximal link makes contact first, then a power grasp is made. First contact with the distal

link will make a precision grasp. This is shown in Figure 1.6.

Due to the variety of hand designs, it is sometimes difficult to fit these concepts to every

hand design. For instance, soft pneumatic actuators have been used as fingers, however, they are

continuous and therefore it is difficult to fit the concept of links to those fingers (5). There are

also hands where the concept of a palm is difficult to place. A novice reader should not despair,

however, because it is also equally difficult for expert roboticists to fit these concepts onto some of
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Figure 1.5: Robot hand research began with great scope, however difficulties to control such sys-
tems in real time resulted in researchers refining their scope and greatly simplifying hand designs.
Looking ahead for manipulation tasks, it is unclear what the next iteration of hand designs will be.

these more exotic hand designs.

1.2 A brief history of robot hands

The entire history of fingered robot hands can be simplified into a story of the attempts robot hand

designers have made to create a hand that is highly capable but also practical to control. The first

robot hands were inspired from, and aimed at surpassing, the human hand. Examples include the

Utah-MIT hand (1986, (6)), the Salisbury hand (1987, (7)), and the DLR hand (1998, (8)).

These hands were fully-actuated systems. Theoretically, these hand’s were highly capable,

however, their control complexity was too high for real-time control. Figure 1.5 shows these hands

on the left. Even with current techniques, it is difficult for roboticists to effectively use all of the

degrees of freedom for real-time, dynamic tasks.

Roboticists were aware that the high control complexity needed to be lowered in order to make

hands more practical. To that end, researchers simplified their scope to focus on grasping and then

significantly reduced the control complexity to match that scope. This resulted in the widespread

adoption of underactuated hands.

However, although referred to as under-actuated hands, the under-actuated hands at the time

are better understood to be minimally-actuated robot hand designs. This is because only one

actuator was used to control a finger, or even an entire hand (refer to bottom of Figure 1.3). Re-
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Figure 1.6: Robot hand research mitigated performance losses when simplifying robot hands by
utilizing passively compliant joints and clever design of actuation schemes.

searchers mitigated the loss in performance, despite the significant reduction of control complexity,

using passive compliance and actuation synergies.

Passive compliance is a hardware modification where compliance is built into a hand’s design

(see it listed under ’Morphology’ in Figure 1.1). This typically occurs using rubber joints (such

as the SDM hand, ihy, openhand) or mechanical linkages (gosselin, sarah hand, robotiq). The

difference between the two techniques is that rubber joints can comply in 6 DoF, whereas linkages

limit compliance to the direction of actuation.

Passive compliance harmonizes with minimal-actuation to give fingers the ability to wrap around

objects as they flex. This occurs because all the links in a finger are coupled in minimally-actuated

systems. Therefore, as links come into contact with an object, other links can continue to flex.

This means that a passively-compliant, minimally-actuated hand can perform both precision and

power grasps, depending on which links contact the object first, as shown in Figure 1.6. The

added advantage that this brings is that this happens dynamically with no extra code — all the

fingers have to do is close — reducing software complexity and processing requirements for realtime

control.

Synergies specialize actuation schemes to make specific, coordinated finger flexing patterns. A

synergy is a foundational movement which significantly contributes to many different movement

patterns or tasks. The idea behind synergies is that because a synergy contributes to many tasks,

one could make a hand more versatile by having it only do that synergy. Roboticists use passive

compliance and under-actuation to cover the rest needed to complete a task.
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When a synergy is built into a hand this movement is connected to one tendon. Pulling this

tendon makes the hand perform the synergy movement. Most commonly, roboticists utilize a two

step process to implement synergies. First, they need to identify synergies present when grasping

sets of objects, typically using human study or modelling approaches. Then, they build actuation

schemes which are designed to reproduce those synergies.

1.2.1 Manipulation and Minimally-Actuated Hands

Minimally-actuated hands are also being used for manipulation tasks, despite their original intention

as solutions to simplify and improve grasping. However, manipulation tasks are more complex than

grasping and therefore will require more from these minimally-actuated systems.

Roboticists have applied minimally-actuated hands (without modification) to manipulation

tasks with some success. Odner et al (9) and Calli et al (10) characterize the manipulation abil-

ity of their compliant robot hand. Ma et al developed algorithms for manipulation using caging

grasps (11). Calli & Dollar demonstrate in-hand manipulation with a UAH utilizing computer

vision and model predictive control (12; 13). Odner & Dollar demonstrate a precise grasping move-

ment with a manipulation component (grasping a coin from a table surface) by implementing a

ridged surface on the fingers (14).

One should note, however, that some of the advantages of minimal-actuation and compliance

for grasping, are now liabilities for manipulation. For example, the compliance in a finger makes

it difficult to apply precise forces, which are typically needed for manipulation tasks. Further,

roboticists need to get creative to make the most of these limited systems, since they have so little

control over the hand as a whole.

Others have begun adding complexity back into the minimally-actuated paradigm to complete

more complex manipulation tasks. It should be noted, however, that these modifications treat

the original, minimally-actuated design as a foundation rather than coming up with new, radically

different designs. The first modifications added the ability for fingers to rotate at their base (15).

Aukes et al implemented the ability to lock joints on a UAH, which allowed their hand to exhibit

under-actuated and fully-actuated behaviors (16). Yang et al replicated joint locking on a hand

with soft actuators for fingers (17). Tincani et al implemented a UAH with active surfaces called the

Velvet hand (18; 19). Spiers et al demonstrated a hand with fingers that have two friction modes for

sliding movements (20). Ma et al replaced a finger with an active tank tread mechanism for in-hand

manipulation, and the other finger on this hand used two tendons instead of one (21). McCann

& Dollar demonstrated a unique hand design for manipulation that uses planar manipulation

which is fundamentally based on a stewart platform (22). Bircher et al redesigned their UAH with

custom linkages that support in-hand reorientation (23). Some robot hand designers added a higher

complexity thumb to their design to improve manipulation.

There are few radically different robot hand designs for manipulation which increase control

complexity. Ma & Dollar proposed a concept hand design for precision manipulation with custom
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fingertips that have compliant joints. The distal joints, which are custom spiked balls, are fully-

actuated (6 DOF, (24)). Others have investigated the role of redundant actuators for manipulation

tasks (25).

It is also important to consider how a hand interacts with the arm that it is attached to. Many

robot arms have sufficiently high degrees of freedom to do many complex tasks with simple hands.

However, increasing complexity on a robot hand is often justified as a supplement to the high-dof

robot arm (26). In the real world, robots will likely work in closed and cluttered environments

– not conducive for robot arms with simple grippers. Dexterous hands can cover for constraints

placed on a robot arm in such environments by reducing the need for arm movement, such as for

re-grasping objects in complex manipulations.

It is difficult to navigate the space of modifications out there for manipulation because it is

unclear what each modification brings to the table. Researchers are currently realizing the need

for better benchmarks for evaluating robot hand performance to clarify how well these new hands

work. This is evidenced by multiple workshops and special issues in journals on this very topic (27;

28; 29; 30).

Fundamentally, in order to understand what the advantages and disadvantages of a design are,

we need to be able to comprehensively compare hands to each other as a whole system, and at

the system component level (Fig. 1.2). Currently, we lack a method to do this. This is due to the

intricasies of the coupled system components in a robot hand — as a consequence, most robot hand

design is done intuitively and it is difficult to build a quantitative understanding based on that.

1.3 Research Objectives and Contributions

The insufficiencies of existing benchmarks to effectively characterize the lower level manipulation

capabilities of robot hands makes it difficult to build a quantitative understanding of robot hand

design performance. The lack of a quantitative understanding about hand design forces roboticists

to rely on intuition and empirical methods of hand design - which makes it difficult to share

knowledge.

Our research goal is to build new processes to unravel robot hand systems necessary to start

that understanding at its foundation — which is building a quantitative understanding of the

contributions that a hand’s morphology (alone) brings to robot hand performance. To get past

this, we need to design new benchmarks and methodologies that can study system components.

These benchmarks must be able to enable the study of the contributions of each system component

that a robot hand has towards manipulation performance.

We demonstrate that by using a human study methodology and benchmarks which characterize

how objects are moved, we can effectively circumvent the coupling that a hand’s morphology has

with the actuation and software control components. We then apply our novel benchmark and

human studies to study the potential that a hand’s morphology provides to the robot hand’s

manipulation performance.
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We list our contributions as:

1. a new approach for characterizing the maximum capabilities of a robot hand’s actuation and

morphology components.

2. with regards to actuation, using the human as an ideal controller, we analyzed human-desired

actuation strategies with a fully-posable version (puppeted as if fully-actuated) of the Barrett

hand using a pen and spray bottle.

• we accomplish this using a novel human-study design called Physical Human Interactive

Guidance for manipulation (mPHIG)

3. with regards to morphology, using novel benchmarks with mPHIG, we analyzed human-

actuation strategies on fully-posable versions of basic, two-fingered robot hands for funda-

mental, in-hand manipulation tasks

• we accomplish this using a novel testing suite for in-hand manipulation, called the As-

terisk Test

• We also develop a novel, visual geometric representation of the space between a hand’s

fingers, which we call the potential hand-object contact region. We use this charac-

terization to normalize results between robot hands for more effective comparisons of

manipulation performance.

4. finally, we find...

(a) insights into how human-preferred actuation strategies differ from current underactuated

hand designs

(b) that the 2v2 hand, as controlled by humans, represents a baseline in versatile in-hand

manipulation performance.

(c) that additional degrees of freedom do not contribute much to improve manipulation

performance

(d) Identify assymetries of performance in a hand’s workspace

(e) fingerpad compliance is critical to human-performed manipulations

1.4 Structure of Dissertation

In this work, we isolate and study a hand’s morphology to characterize its potential at fundamental

in-hand manipulation tasks. In this work, first we systematically go through the two core building

blocks of our method in Chapters 2 and 3. Then we use our method, described in Chapter 4, to

characterize and compare robot hand designs for manipulation tasks in Chapter 5.
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Chapter 2 introduces our method to isolate system components using human studies called

Physical Human Interactive Guidance for manipulation (mPHIG). In mPHIG, humans puppet

robot hands to complete tasks. Because the human subjects are manually moving the hand, they

get unparalleled feedback and unrestricted freedom to move that our methods of human control

cannot. This also mitigates the problems of transposing and controller transparency that all human

data collection and control methods wrestle with.

We start Chapter 3 with a new hand measurement method for normalizing object translation

within a hand by a hand’s size. This new method is designed to enable fairer comparisons between

robot hands. The rest of Chapter 3 details a novel benchmark made to characterize in-hand

performance, called the asterisk test. This benchmark specifically links robot hand design to

fundamental precision manipulation abilities. We also discuss the new perspectives that make up

this benchmark.

Chapter 4 details how we use mPHIG and the Asterisk Test to study system components of

robot hands. Inside we describe three studies. In the first, we use mPHIG to study and compare

actuation strategies for tool-use scenarios (using a pen and a spray bottle) on three-fingered hands.

The second study builds off of the first by characterizing distal link geometries to explain the

first study’s findings. Finally, in the third, we use mPHIG and the Asterisk Test to study hand

morphology and the potential that it would bring to in-hand manipulation performance.

Chapter 5 presents the results of the three studies described in Chapter 4. Chapter 6 provides

future work.
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Chapter 2: Using a Human as an ideal controller and sensor for

manipulation

Humans exhibit extraordinary manipulation abilities that serve as a continual inspiration for robot

systems. Many roboticists have studied human strategies and applied them to robot systems with

great effect. However, it is also difficult to use human data because of mismatches between human

and robot hand designs and capabilities. Mismatches requires transposing data from a human hand

perspective to a robot hand perspective in a way that preserves the utility of the human data. This

mismatch also can make it difficult for humans to transfer their skills to robot hands, known as low

controller transparency.

In this chapter we survey the literature for how humans are used already in robot hand research:

namely, taxonomies and other in-depth studies, demonstrations for learning, and human-in-the-loop

implementations. Within this survey, we also discuss the current problems in the field, particularly

that of transposing human data to robot hands and controller transparency. Finally, we introduce

our novel human-study design, which we call Physical Human Interactive Guidance for manipulation

(mPHIG).

2.1 Background

The study of human manipulation capabilities is necessary because manipulation is mainly a sub-

conscious activity in the human brain. Humans can also train new skills — as they are trained,

these skills become more and more subconscious. (have thinking fast and slow in here?) By storing

them in the subconscious a human is able to recall skills almost immediately, in many environments,

and without much thought.

Four ways that humans are used in manipulation are through taxonomies, in-depth study into

human approaches to grasping and manipulations, as expert demonstrations for learning techniques,

and as controllers in human-in-the-loop systems.

2.1.1 Taxonomies and other In-depth Studies

From the beginning we have used the human hand to characterize grasp types through taxonomies

of human grasps. The current state-of-the-art taxonomy is the GRASP Taxonomy, which itself is

the reconciliation of 22 human grasping taxonomies that came before it (1). This taxonomy lists

33 grasps that come from 17 basic grasp prototypes. The GRASP taxonomy organizes these grasps

based on three attributes: 1) the focus of the grasp (power vs. precision), 2) the direction of the

grasp forces relative to the palm (opposition types), and 3) the number of virtual fingers used for

the grasp.
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Bullock & Dollar observed human in-hand manipulation behaviors and organized them into a

taxonomy (31). This taxonomy evaluates manipulations based on the presence of contact, the type

of contact (prehensile contact), and the nature of the motion of the manipulation. Manipulations

are first organized by two criteria: whether motion occurs at contact, and how the object moves

(rotation vs. translation). Unfortunately, this taxonomy is hand-centric — therefore work must be

done to adapt this taxonomy onto other kinds of hand designs.

Others have studied other aspects of human grasping and manipulation behavior. For example,

identifying how often items in taxonomies are used, how people approach grasping and manipu-

lation, and the specifications and limits of the strategies humans employ. Such in-depth studies

typically feature humans ‘in their natural habitat’, aka using their own hands. With this in mind,

it can be difficult to transfer these findings directly onto robot hands.

Examples of in-depth studies are how humans choose grasps (32; 33; 34; 35; 36; 37; 38), grasp

with uncertainty (39), couple grasping with their vision (40; 41), rate robot grasps (42; 43; 44), use

their fingers for precision manipulation (45; 46; 47; 48; 49), among other topics (31; 50; 51; 52; 53;

54).

This research has occurred in parallel with grasping research in Human Factors, which is pri-

marily focused on applying and accomodating the human grasping system (not understanding it).

Research topics include for example the relationship between hand physiology and grasping (espe-

cially for force output) (55; 56; 57; 58; 59; 60; 61; 62) , on studying tool use and accommodating

tool design (63; 64; 65; 66; 67) , and on modelling a grasp (68; 69; 70).

2.1.2 Robots Learning Manipulation from Human Demonstrations

Humans have not always been studied by fellow humans. Learning from Demonstration (LfD)

techniques have used human demonstrations for years (71). Further, machine Learning techniques,

such as Reinforcement Learning (RL), have also begun to use humans. In this section, we describe

these problems in greater detail with examples from LfD implementations, due to the maturity of

the research.

In general, the quality and structure of any learning algorithm is dependent on the data fed

into it. Researchers must make many decisions when using human data - for example, what hand

should the human use (their own or a robot) and how to record that data. Each decision needs to

keep in mind two problems: 1) how easily it can incorporate human data onto a robot hand (called

transposing) and 2) the quality of feedback and control that a human receives, called controller

transparency.

In LfD, human demonstrations fall into one of two categories: record mapping and embodiment.

The key difference between the demonstration categories is the frame of references that the data is

recorded in.

Record mapping techniques record the demonstration from an external frame of reference to

the robot learner. This can manifest itself in many ways.



15

Miyata et al. (72) and Liarokapis et al. (73) measured the hand pose of a human demonstrator

with a motion capture system. Hand pose and orientation, as well as the pose of the thumb, index,

and pinky fingers, have also been recorded with a data glove (74). Huang et al. (75) recorded a

bottle opening task demonstration using a combination of a motion capture system, force torque

sensor, and wearable haptic device.

Computer vision techniques have also been used for record mapping. Kang and Ikeuchi (76)

used a four camera setup with a cybergove to record their demonstrations. Heuser et al. (77) used

only a stereoscopic vision system for their demonstrations. In doing so, the hand was tracked with

color-histogram based tracking and hand posture was recorded with PCA.

Record mapping has also been demonstrated with a focus only on the object being grasped.

Liarokapis et al. (73) attached motion tracking markers on a valve for a valve turning task.

Record mapping is easy to implement and imposes little restriction on the demonstrator. The

main disadvantage to record mapping is that the demonstration data must be converted to the

robot’s hand before it can learn (transposing). This can produce a serious challenge to those trying

to implement LfD or reinforcement learning.

Mapping a human hand grasping demonstration to a robot learner depends heavily on the

robot’s hardware: specifically, its hand. Robot hands vary widely between anthropomorphic and

non-anthropomorphic designs. Both types introduce mapping challenges depending on the hand’s

capabilities; for example, their drive mechanisms and physical constraints.

Oztop et al. (78) describes two of the simplest mapping techniques: joint space and cartesian

fingertip mapping. Joint space mapping is most suitable for power grasps, and cartesion fingertip

mapping for precision grasps. Interpolation between the joint space and cartesian fingertip space

in a single mapping is also a viable solution.

Liarokapis et al. (73) provide a good example for cartesian fingertip mapping. Since the three-

fingered Barrett hand does not match to the human hand, the actions of several human fingers had

to be interpolated into the three-finger Barrett configuration. For this implementation, the thumb

directly corresponded to one fingertip position, and the other human fingers were interpolated

between for the remaining two fingers on the Barrett hand.

The dimensionality of the mapping can provide further challenges. PCA, Nonlinear PCA

(NLPCA), and Sequential NLPCA (SNLPCA) have been used to reduce the dimensionality of

high-dimensional human demonstration data (79). PCA is regarded as the default method (80; 79).

NLPCA and SNLPCA are typically used for complex tasks.

Ciocarlie and Allen (81) defined low-dimensional regions inside the grasp space with PCA,

which they termed grasp space (or grasp synergies). They used simulated annealing to fit grasps

to objects using those synergies.

Ekvall and Kragic (74) used an artificial neural network (ANN) to lower the dimensionality of

the control data to fit a data glove implemention to two robot hands: the barrett and robonaut

hand. The ANN was trained by sampling a number of common human grasp poses and matching

those to robot hand poses. Finger locking issues occurred when fingers were wrapped over each



16

other and were not unwrapped in a specific order known only to the ANN.

The second demonstration category is Embodiment mapping. Embodiment use the robot’s

hand to record the demonstration. This means that the mapping between the demonstration and

the robot learner is not needed since the demonstration is already in the robot learner’s frame.

This is an advantage that embodiment mapping techniques hold over record mapping.

However, controller transparency becomes a bigger problem because the demonstrator must

control the robot for the demonstration. Deficiencies in feedback and control can severely limit the

quality of the demonstration.

Sauser et al. (82) used an instrumented glove for human demonstrators to control a robot hand

for demonstration. This work also utilized a secondary learning phase — which they called the self

demonstration phase. In this second learning phase the demonstrator corrected robot grasps by

disturbing the held object.

Oztop et al. (78) used a motion capture system to track a human hand for robot hand tele-

operation. Human subjects had to train for a week to prepare for an in-hand ball-swapping task

demonstration.

There is another encoding step between the learning and demonstration phases in an LfD

scenario. There are three methods to encode demonstrations to develop policies from: (1) mapping

function, (2) system model, and (3) the plan (83). The mapping function directly approximates the

policy from the demonstration data. The system model is a model of the world’s dynamics built

from the demonstration data. This is typically represented as a transition matrix for a Markov

decision process. Markov decision processes also use reward functions. The reward functions could

be generated from the demonstration or by hand. A plan is an association of actions taken from

the demonstration. The conditions before and after the action occurs are also associated with the

action. The plan would be directly generated from the demonstration. Policies are then derived

from the encoded demonstration, using the learning algorithms described at the beginning of this

section.

2.1.3 Human in the Loop Implementations

There are three general strategies that describe all methods humans can use to control robots

(in order of increasing autonomy): direct, shared, and supervisory (84). Direct techniques use

minimal robot autonomy and rely on total human control. Shared techniques use a combination of

human and autonomous control. With supervisory techniques, the system is mainly autonomous

and human input is in the form of a supervisory or commanding role. These methods are used

to synergize human and autonomous system proficiencies. What humans typically contribute are

their judgement, adaptability, high-level understanding of the world, and their understanding of

abstract or high level commands.

How well human-in-the-loop systems enable human proficiences through their interfaces and

through feedback is called controller transparency. Leeper et al. (84) studied the effectiveness of
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these three human-in-the-loop (HitL) strategies for grasping an object in a cluttered environment

with a PR2 robot. Each Graphical User Interface (GUI) studied will be described. (1) The direct

strategy interface utilized a GUI using a set of arrows and rings around a virtual PR2 gripper

enabling the operator to change the pose of the gripper in real time. (2) Two shared strategy

interfaces were implemented: a) In the first, human operators indicated waypoints that the robot

autonomously planned between, and b) in the second, human operators specified the final hand

pose of the robot. (3) For the supervisory strategy, operators selected a grasp to implement from a

set of pre-computed grasps planned by the robot’s grasp planner. Of the four interfaces tested, the

supervisory strategy was found to be the most successful and most preferred between the human

subject operators.

The nature of supervisory techniques makes it easy to implement them. GUIs have been used

to provide a point-and-click interface for robots both in simulation and in real life (84). In another

application, a gesture drawing interface on a tablet was implemented to control robots vacuuming

in a house (85).

Human gestures, such as pointing, are another well-implemented supervisory control method

(86). Quintero et al. (87) developed a pointing-aware system that used the first-generation Kinect

sensor, having an average error of 9.6cm when determining where a human is pointing. This work

was further implemented on the Kinect 2 with improved results (88). Such GUIs are common in

situations where the robot and human are in the same environment (89; 90)

Direct strategy systems are more complicated to implement, but this is necessary to give hu-

mans adequate control and context. Robotic surgery systems provide arguably the most intuitive

interfaces for HitL control because of their high sensitivity and ergonomic design. While grasping

could be a required part of surgery, these interfaces are highly specialized for movements necessary

in surgery, though not grasping (91). Currently, the da Vinci surgical robot by Intuitive Surgical

Inc. is the most commonly used surgical robot (92). A human surgeon would utilize hand and

foot controls with a camera feed interface shown through a binocular viewer. The thumb and index

fingers on the hands of each operator are placed in adjustable loops which are connected to a haptic

device. The fingers are used to open and close jawed instruments for surgery. A modified Phan-

tom Omni haptic interface was also used as a da Vinci simulator training device (93). In another

application, NASA’s Robonaut 2 is GUI controlled with sliders for direct motor control (94).

2.2 Physical Human Interactive Guidance for Manipulation

In the embodiment mapping techniques and human in the loop implementations described already,

there is still some sort of fundamental disconnect between the human and the context of the task.

This makes it difficult to use these techniques for our focus on in-hand manipulation because these

techniques are not transparent enough to make use of humans nuances of control and perception

in manipulation. This is ultimately an issue of haptics — currently, humans aren’t able to receive

the information needed to manipulate objects to their fullest. A different Embodiment Mapping
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technique, called Physical Human Interactive Guidance, is a technique which has the ability to fill

this gap.

In this technique, human subjects manually move robots through the motions of a task. This

technique empowers human subjects to move the robots in the ways that they prefer because they

have full control. In addition to that, because they are right in the context of he task with the

robot, the human subjects can make use of their senses directly — which enables them to make

In previous work, human subjects positioned a robot arm and hand system to study and compare

human grasps to state of the art robot grasps (95). The objects to be grasped also were to be

grasped with a functional intent, such as grasping a wine glass to lift and pour liquid. Researchers

observed a new feature of human grasps that was not present in autonomous grasps, called skewness.

Skewness represents how aligned the wrist is with the object’s prinicpal axis before grasping. In

this work, humans consistently utilized grasps with low skewness, whereas robot generated grasps

varied. When robot planners were adjusted to consider skewness, grasp success improved from

77-93%.

Other work has used PHIG to study how humans coordinate degrees of freedom that are intrinsic

to the robot hand (e.g. how the fingers flex) and extrinsic (e.g. global pose of hand) (96). Human

subjects directed a soft robotic hand (RBO v2 (97)) attached to a Barrett WAM arm to grasp six

objects with various constraints on how the subject could coordinate degrees of freedom. In the

experimental condition with the fewest constraints, human subjects puppeted the hand with a stick

attached to the wrist of the arm.

Adapting PHIG for manipulation would involve human subjects controlling fingers on a hand.

This can be advantageous to robotics research because of how well humans can adapt to tools. In

a way, robot hands can be another tool which humans adapt to. With this in mind, using human

subjects can effectively normalize control strategies across hands (see Fig. 2.1) — human subjects

will use the same strategies between hands (but these strategies are tailored to each specific hand

design) to complete a task. These strategies employed in common across hand designs become the

common thread to normalize (as best as possible) system components across hands. This ultimately

simplifies data collection because no transposing is required if the human is using the robot hand

you wish to study.

Further, by puppeting fingers human subjects can also utilize their own senses in the task by

feeling through the robot hand fingers.

This provides a high degree of sensing which should provide almost perfect controller trans-

parency.
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Figure 2.1: Human subjects can be used to stand in for system components on a robot hand. We
use this to make comparisons of system components that would not be possible otherwise.
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Chapter 3: The Asterisk Test: Measuring In-Hand Manipulation

Performance

For manipulation tasks roboticists have recently realized the need for better benchmarks to improve

existing design processes. However, the types of benchmarks being considered for manipulation are

too high-level to provide links between a robot hand’s design and its ability to do manipulation

tasks.

We present a novel benchmark for characterizing fundamental, in-hand manipulations. This

benchmark avoid the pitfalls of current benchmarks by using an object-centric methodology to

characterize low level performance: how well the hand can maneuver an object through its space.

The benchmark contains three test sets which characterize different aspects of manipulation

space. In the first, robot hands must translate an object in eight cardinal directions (the asterisk)

as far as possible to characterize translation ability. In the second, robot hands must rotate an

object in place as much as possible to characterize rotation ability. In the third, translation and

rotation is combined; robot hands must translate an object in the asterisk directions after rotating

the object a set amount. This third test characterizes how robust translation performance is with

suboptimal contacts which were brought about by the rotation.

In Section 3.1, we discuss the task-specific benchmarks currently used in robot manipulation

and contrast them with object-centric benchmarks, which enable lower-level investigations into

hand design performance. Next we present a novel representation of a hand’s region of potential

contact, in Section 3.2, which we use to normalize results. Finally, we present our new benchmark

for fundamental manipulation tasks, called the Asterisk Test, in Section 3.3.

3.1 A Change in Perspective: Task-specific vs. Object-centric metrics

To date, researchers have most commonly used a combination of time-based, task-specific, and

binary measures for quantifying robot hand capability (e.g. time to complete tasks, counting

successful grasps, etc). Task-specific metrics characterize performance on high-level aspects of a

task, which focus solely on the task and not the hand.

Such metrics have been used to study manipulations to characterize a wide range of hands and

controllers (98; 9; 99; 10; 100; 13). Other metrics have been used to characterize elements of the

robot hand subsystem; for example characterizing a hand’s strength and speed (101), characterizing

a finger’s kinematic workspace and how they overlap on a hand design (102), characterizing how

well a hand rotates an object in hand (103), and optimizing finger placement and link length on a

hand design for both grasping and manipulation (104; 105).

Task-specific metrics are important for understanding overall performance on a task and their

main advantage is that they are agnostic to hand design. However, they are insufficient because
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they are high-level. Currently, roboticists use task-specific metrics as a tool direct their focus in

what is largely an intuitive investigation into a robot hand’s performance. Lower-level metrics

would allow roboticists to focus directly on what they want to know, while still being agnostic to

hand design, which would improve scientific communication and simplify design processes.

For example, rotation is fundamental to manipulation, but most methods indirectly measure a

hand’s rotational ability by necessitating rotation in the tasks they are measuring (106; 10). For

example, the box and block (107), rubik’s cube (100), and NIST peg in hole (108) tests require

robot hands to rotate objects, however rotational movement is not directly benchmarked. Another

benchmark considers rotation capabilities as part of a larger objective, such as characterizing a

robot’s ability to change an object’s orientation (103). Other work has characterized rotational

ability using characterizations unique to the robot hand design being characterized. For example,

the Model GR2 (109), Model Q (110; 111), and Model W (112) Yale OpenHand designs are each

characterized at their designed method of rotation manipulation.

Object-centric metrics, in contrast, solely focus on the what the object is doing in a task.

Objects used in manipulations are tracked throughout the task — effectively capturing how the

hand is moving (read: manipulating) the object without requiring any specific information about

the hand design.

There already exist object-centric benchmarks, such as grasping force vector fields (113; 114),

and Manipulability (115). There are also other manipulation metrics designed from an object-

centric perspective that are still task-specific, such as trajectory tracking (104; 105).

An object-centric benchmark for in-hand manipulation would need to characterize how well a

hand can move an object through the space inside its fingers. This space is more than just a hand’s

kinematics because of the dynamics present in a manipulation task (the dynamics: contacts, forces

that a finger can do, compliance, inertia, energy in system).

For the Asterisk Test, we take inspiration from the manipulability metric (115) which considers

an arm’s dexterity and how it can flow through the workspace. However, we apply this idea of

flow to the object being manipulated and how it is maneuvered through the workspace using the

fingers. We call this concept maneuverability.

To keep the benchmark simple, we can make generalizations across the space given performance

at discrete directions (the asterisk, see Fig 3.1) rather than sampling the whole space of manip-

ulations. We adapt the manipulation taxonomy constructed by Bullock and Dollar (45) for this

purpose, which defined the asterisk shape. We can then generalized performance with a quantitative

assessment of how symmetrical the robot’s performance is across the x and y axes.

We incorporate maneuverability into the Asterisk Test with how it judges performance. We do

this by judging the quality of a hand’s ability to manipulate in discrete directions by comparing

the object’s path to the ideal path using nine metrics.



22

Figure 3.1: The Asterisk which the Asterisk Test is named after. One component of the Asterisk
Test is to translate an object in eight cardinal directions on a tabletop. Object pose is collected
throughout the trial and benchmarked using benchmarks like frechet distance.

3.2 A Measurement Method for Normalizing a Hand’s Space

It is difficult to compare robot hands to each other because of the number of variables present when

making a comparison. One major variable is that of hand size; the space within a hand’s fingers

can vary immensely given different capabilities in the fingers (due to different joints, link lengths,

materials, etc.). For example, when comparing how hands might grasp an object, this object might

have a different relative size between each hand which would not be a fair comparison.

Previous studies have used finger length to normalize the space (116). This is problematic

however, because it only incorporates one aspect of a hand’s space and not others (such as how far

apart the fingers are, how do the fingers close, etc). The issue of a hand’s space has a greater impact

when comparing manipulation performance, compared to grasping. This is because manipulation

tasks involve an object moving inside the space of the fingers. This requires a new method of

normalization to normalize translations within the entire space.

We developed our own method of measurement to represent a hand’s space in order to more

effectively normalize hand performance for in-hand manipulation tasks. We do this by first defining

a novel coordinate system (span, depth, width) and then measuring the space between the fingers

at different levels of actuation. Using these measurements we can normalize how the object moves

within the hand’s space for fairer comparisons between hands.

We pair this measurement method with the Asterisk Test to normalize translations by a hand’s

size for easier comparisons between hands. We also use these measurements to normalize object

size and the initial distance that objects are placed.

Asterisk Test Translation Directions 
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translate an object on a 2D surface in the eight 
cardinal directions, as well as rotations (not shown). 
How the object is maneuvered is compared to the 
ideal object path using metrics like frechet distance. 

Approach to Quantifying Error 
Total Distance 

Initial 
Object 
Pose ' \ 

Ideal 
Object 

Path 

Direction 
Vector 

\ 

Use metrics to X __ A_ct_u-al-it' Project path onto 

characterize error ' - Object direction vector 
between actual and Path 
ideal paths 



23

Figure 3.2: Our measurement method is a four step process, which involves: fitting measurement
axes to a hand (1), and making various sets of measurements to represent the entire hand’s space
and how it changes as the fingers close (2-4).
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Figure 3.3: The Asterisk Testing suite consists of three sets of tests: Translation-Only (top left),
Rotation-Only (top right), and Rotation+Translation (bottom).

Detailed instructions for our measurement method are provided in Appendix A. We also provide

a concise visual guide in Figure 3.2 as a reference.

3.3 Benchmarking Fundamental, Distal Manipulations: The Asterisk Test

Considering the current capabilities of most robot hands right now, we designed the Asterisk Test

to focus on 2D manipulations, as if performed on a table top. Considering Bullock and Dollar’s

manipulation taxonomy (117), we chose eight cardinal directions (see Fig 3.1) and two rotations

(clockwise and counterclockwise) to characterize the manipulation space of a hand.

Due to the object-centric nature of this test, the Asterisk Test can be easily adapted for most

objects, hands, and controllers. This makes it well suited for an investigation into the contributions

of the system components.
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3.3.1 Protocol

The Asterisk Test focuses on how a hand maneuvers an object in eight cardinal directions. The

objective of the Asterisk Test is to move an object as far as possible in a specified direction and

while minimizing error.

We divide the characterization into three test sets: translation-only tests, rotation-only tests,

and combination tests (see Fig 3.3).

The translation-only tests are the eight cardinal directions. Translations start equidistant from

each finger. In these tests, a hand must translation an object as far as possible and as close to the

ideal as possible. Rotation is not desired.

Rotation-only tests are the opposite. In these tests, a hand must rotation an object clockwise

and counterclockwise as far as possible, with as little translation as possible.

Combination tests (also called R+T tasks) discretely combine rotation and translation tasks

to test for how robust object maneuverability is on a hand. The R+T task is as follows: 1) first

the hand must rotate the object to ±15◦ in the center of the asterisk, then 2) the hand must

translate the object in the direction of the trial, while maintaining the 15◦ rotation as best as

possible. During the translation, we require the object to maintain that rotation to the end of the

translation, ±10◦. The contact conditions are the same as in the rotation-only trials.

We chose the +/-15 degree rotation empirically to allow as many hands as possible to be able

to complete the test while still having a discernible rotation.

The translation component of the R+T task is the same as a normal translation Asterisk Test

— moving the object in each direction of a 2d asterisk on a surface as far as possible and as close

to the desired direction as possible with no re-grasping.

A trial ends when the hand can no longer move the object in the testing direction. We calculate

error based on how far a trial deviates from its ideal — namely a straight vector in the desired

direction.

All that the Asterisk Test requires is a way to track the x, y, and θ coordinates of the object

throughout each trial. Two simple solutions to this are to use ARuCo tags with a camera (118) or

a motion capture system.

We require contact to stay on the side that the fingers originally contacted. Re-grasping an

object is not allowed, however the position of the contact can still be changed (i.e. sliding or rolling)

as long as it does not round a corner to another side (if there are defined sides on the object; ex:

a cube).

When reporting Asterisk Test data we strongly recommend reporting all testing variables (the

hand design, controller, object size and shape, and initial object positioning) used in testing, as

well as any other changes to the standard protocol, to enable comparison with other Asterisk Test

studies.



26

3.3.2 Performance Metrics

Our data gathering step generates an object path for each trial. Each path was normalized by the

hand’s dimensions. Specifically, the x translations were normalized with a hand’s maximum span;

the y translations were normalized with a hand’s maximum depth (119).

We compare each object path to the desired straight-line path and to the limit of the hand’s

dimensions. We call this path the target line. In general, the magnitude of the target line is based

on the distance between the object’s initial position and the hand’s span and depth. Each target

line has a magnitude of half the normalized distance (normalized by either hand span and/or depth,

depending on the direction) because the object was placed centered to the hand’s palm (see Figure

3.3).

We use the following nine metrics for evaluating the difference between the target line and the

object path (using the “similaritymeasures” python library (120)):

Trial Distance: The distance that a trial went in the target line direction. We calculate this as

the magnitude of the object path projected onto the target line.

Arc Length: The length traveled on the object path.

Movement Efficiency: The total distance divided by arc length.

Max Error: The distance of the furthest point on the object path to the target line. This metric

is normalized by the trial’s arc length.

Frechet Distance: The minimum of the maximum pairwise point distances between two discrete

curves without respect to time. This metric enables comparison of the entire object path to the

target line. A lower value indicates lines are more similar to each other. See (121) for a description

using the analogy of a dog on a leash.

Total Area Between Curves: The area between the object path and the target line.

Region of Max Error: The largest area between the two curves within a sliding window of width

20% of the total distance. We also record the window’s center location at the point of max area,

called the Location of Max Error, represented as a percentage along the full target line.

Max Rotation Error: The largest object rotational deviation from the starting orientation along

the object path. In this work, the benchmark prefers no rotation.

When analyzing the data, these metric values were aggregated by direction and compared to

other directions as a set. When comparing each object path to its target line, we scale the target

line to the Trial Distance for a fair comparison.

3.3.3 Data Processing: Handling Multiple Trials

We display asterisk test results by representing the average path of each direction. We averaged

each trial by sampling 20 points along the target line and averaging all points on all valid object

paths within a certain bound around each sample point. We also calculated the error of each point
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in the average from the average point. We represent the magnitude of the average error at each

averaged point and represented this on the asterisk plot as a shaded region.

3.3.4 Calculating Symmetries

We define a symmetry as a direction pair that is similar to another. We determine symmetries

by calculating the p value between each direction’s set of metric values for each metric separately

using the Welch (Unequal Variance) T test. If less than 1/3 of the metrics indicated a statistical

significance, we considered the direction pair symmetrical.

For the 2D asterisk test there are 28 (8*7/2) possible direction pairs. We focused on assessing

symmetries across the x (CG) and y (AE) axes of the asterisk. We used these two groups of

symmetries (six direction pairs total) to represent the symmetry of the entire hand.
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Chapter 4: Methodologies to study the actuation and morphological

component contributions of robot hands at in-hand manipulations

We use our approach to investigate how the actuation and morphological components contribute to

overall robot hand performance at manipulation tasks. In this chapter, we detail the methodologies

of both studies. Results are provided in the next chapter.

For the actuation component study, we use mPHIG to study how four three-fingered robot

hands, based on the Barrett hand and Model O hand, can use a pen and spray a spray bottle. The

primary difference between these hands is what is available to the human subject to control. For

the Barrett hand, one hand uses a minimally underactuated scheme and is controlled via sliders,

and another is puppeted with no limits to how fingers are moved. For the Model O, one version

uses rubber joints and the other uses pin joints. The rubber joints are provided to give human

subjects additional degrees of freedom at the distal link.

We then follow-up on this study by investigating how fingerpads were used in the previous study.

We do this with two straightforward characterizations: the flick test and the pull test. The flick

test characterizes how well a hand can resist a sudden, strong impulse. The pull test characterizes

fingerpad surface area by how well it can resist an object being pulled out of its grasp.

Finally, we detail our study into a hand’s morphology, which uses mPHIG and the Asterisk test

to characterize how well a hand can translate and rotate an object using the distal links. This study

is divided into two parts: an exploratory study and a validation study. The exploratory study uses

human subjects to explore the maneuverable space of 10 hand designs. In the validation study,

we take the best trials for each hand-direction-rotation set and use additional human subjects to

validate the repeatability of the best trials.

4.1 Studying human actuation strategies for tool-use

We chose two highly-dexterous tasks that would be difficult to automate with existing technology.

Our tasks were selected from Bullock and Dollar’s (117) hand-centric manipulation taxonomy, with

a focus on tasks that were sufficiently difficult for a human puppeteering a robot end effector to

complete. The tasks are: drawing on a bowl with a sharpie (in taxonomy: C P M W NA (14)) and

using a spray bottle (in taxonomy: C P M W N (15)). Both tasks take place on a flat table.

We analyze the data using both qualitative (descriptive analysis of the manipulation from a

video recording, questionnaire asking for subjective feedback) and quantitative (joint angles, time

and success rates on task) data. Our results show that there are demonstrable differences between

hand types in both efficacy and control strategies.

Contribution: Our contribution is a physical study design that enables side-by-side comparison

of the capabilities (and limitations) of different robotic hand designs. This design lets us use the
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Figure 4.1: The hands which we used for the study (2 left columns) and the control interfaces used
for each hand (far-right column). The motorized hands used the slider interface and the puppet
hands used the fingerloops. The Openhand model had two designs, one with a pin joint and the
other a soft joint.

“Human Grasp Planner” with nearly complete capabilities, but without the problem of having to

map from the human hand back to a robotic one. We use this data to draw conclusions on effective

strategies for hand design and control for manipulation tasks.

4.1.1 Robot Hands Studied

We used three robot hand setups which had different kinematic constraints: 1) a commercial Barrett

hand, 2) a puppet hand version of the Barrett Hand, and 3) a puppet hand version of the Openhand

Model O. Each hand is shown in Figure 4.1 and is described below.

The commercial Barrett hand used an underactuated strategy. This underactuated design

supports only closing or opening the finger in a set relationship between the proximal and distal

joints. The Barrett hand employs a patented slip-gearing system to implement compliance. Because

of an inability to move the fingers directly, this robot hand was technically not a puppet hand.

Participants controlled the end effector using a custom control box with three linear sliders (one

for each finger, color coded for ease of use) and a rotating knob to control finger spread.

The puppet hand version of the Barrett hand is identical in morphology to the original end

effector. A key difference, however, is that the puppet Barrett hand does not have any joint

constraints. Each joint can freely rotate, including past 180 degrees on the distal joint. Participants

manually moved the fingers on the puppet Barrett hand. For ease of use, we added plastic loops

on the back of the distal links for participants to rest their fingers. These were color coded and

matched the color scheme for the underactuated hand. We also instrumented the puppet Barrett

hand with rotary potentiometers at each joint to collect joint angle measurements.

A) Barrett Hand B) Openhand Model 0 C) Control 

Slider Interface 

Motorized 

Finger Loops 

Puppet 

• Hands were used in first human study experiment 
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The Openhand Model O was also used in puppet hand form. We used the Model O variant with

compliant distal links. We replaced the silicone in the joints with Dragonskin 10 rubber (Smooth-

On) to make it easier for participants to manipulate the distal link. We implemented plastic loops

for participants in a similar manner to the puppet Barrett hand. We used Dragonskin 10 in the

fingerpads for consistency. We also modified the palm rubber to be thicker so that the palm-finger

depth would match the Barrett hand more closely. We were unable to instrument the Model O as

we did the Barrett hand because of the compliant distal joints. Therefore, this end effector does

not appear in the quantitative analysis of the joint angles for the human study.

Across all hands, we normalized the finger pad friction by using standard electrical tape across

the finger pad.

After initial data collection, we ran a less rigourous follow-up study of the posable Barrett hand

modified to have compliant fingerpads and added an Openhand with rotary joints. We also added

actuated versions of the Openhand, which used the slider controller for a fairer comparison between

hand designs. Then we studied these new hands amongst ourselves.

4.1.2 Protocol

First, participants completed a short warmup to become familiar with the end effector setup used

for the rest of the trial. After the warmup, participants completed the pen-drawing task followed

by the spray task. Participants were given 15 minutes to complete each task. We recorded a video

of each trial for analysis, as well as joint angle data for two of the three hands (see subsection on

Robot hands below for more details).

After both tasks were completed, participants were given a survey to collect qualitative data

regarding task performance and ease-of-use for that hand. At the completion of both end effector

setups, participants were given extra survey questions comparing the two setups. We provide the

survey questions in Appendix 4.1.3, for reference.

4.1.2.1 Warmup Tasks

For the warmup the subjects had to complete two subtasks: a grasping and writing task. The

grasping subtask asked subjects to lift three objects of increasing difficulty: a Pringles can (YCB

set), a toy plane (YCB set), and a thin plastic vacuum nozzle. The writing subtask consisted of

writing ’OK’ on a flat sheet of paper with the same King-Sized sharpie used in the bowl task (pen

placed in the hand, rather than grasped). ‘OK’ was chosen because it was short and contained

both curved and straight features for the subjects to practice on.

The subjects were not given a time limit for the grasping task and had 10 minutes to complete

the writing task. All subjects successfully completed the warmup tasks within the time constraints.
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4.1.2.2 Pen Task

In the pen drawing task, we asked participants to draw a pattern on a bowl. The pattern consisted

of a zig-zag line which was printed on paper that we taped to the side of the bowl. As an extra

challenge, we asked our participants to follow the pattern at a 1cm offset from the line printed on

the paper. We chose to use the surface of a bowl instead of a flat surface because it required a

larger range of surface contacts and stabilizing forces than a flat one.

The pen used was a King-Sized Sharpie, which was an adequate size for the larger robot hands.

The bowl was taken from the YCB object set (122). We taped a piece of paper with a zig-zag

pattern to the top of the bowl, as shown in Figure 4.2. We filled the bowl with a high friction

putty that kept the bowl in the same place during the task, but made the bowl easy to move when

cleaning up after the task.

In addition to the 15 minute time constraint, we limited participants to three tries during

drawing — whichever came first. Participants would use up a try when a pen grasp failed at the

time of contact with the bowl. If a participant’s grasp failed before making contact with the bowl

it did not use up a try. If the pen grasp failed at contact and before drawing, the pen was reset

to its starting position and the participant would have to try the task from scratch again. If a

participant had drawn some of the line before grasp failure, the participant was allowed to continue

the line from where it ended.

The subjects were allowed to move or rotate the pen before picking it up. The pen had to stay

on its side and subjects were not allowed to move the pen off of its side. Also, subjects were not

allowed to move the pen when it was in contact with the robot hand or use the edge of the table

to grasp the object.

4.1.2.3 Spray Task

In the spray task, participants had to pick up a janitorial spray bottle (946 mL size), angle it to

approximately 45 degrees, and spray the bottle three times. The bottle had a freely rotating nozzle

and was filled with 200-300 mL of water.

We were generous when considering which sprays from the spray bottles would count — as long

as some water shot out of the spray bottle (instead of dripping out), we counted it as a spray.

The same procedures in the pen task applied to the spray task with one exception: we did not

apply the concept of tries to the spray task.

4.1.3 Survey on Hand Ease-of-Use

After completing the tasks for a given hand design, subjects were given a five question survey to

rate their performance and the hand design. After completing both hands, the subjects were given

an additional three follow-up eight question to compare the two hands they used. Participants

were allowed to ask clarification questions if they were confused about a question. The survey is
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OptiTrak

WAM 
Arm Video

Draw task

Spray task

BH Pen PH Pen

PH SprayBH Spray

OH Pen

OH Spray

Figure 4.2: The setup of the PHIG study. Humans puppet the fingers of a robot hand directly for
two tasks: drawing with a pen on a bowl (bowl task) and spraying a spray bottle (spray task).
Author is featured in photograph — consent was provided.

provided in Appendix 4.1.3.

4.1.3.1 Participant Demographics

We recruited 18 participants through word of mouth. Each participant used two hand types for

this study, meaning that a total of 12 subjects used each hand type (6 as first hand, 6 as second).

All participants had normal (or corrected to normal) vision and physical capabilities. We chose two

groups of participants: 1) two-thirds of the participants were engineering undergraduate students

and 2) the remaining one-third of participants had little or no experience with robotic hands. We

found no difference in the ability to perform the task based on engineering background.

4.1.3.2 Task and Data Analysis

We analyzed task performance using three metrics: 1) the time it took participants to complete

the task, 2) the number of re-grasps or attempts made, and 3) survey responses. We determined

these metrics by analyzing video of each trial.

During video analysis we segmented each video into grasping and manipulation phases. We de-

fined the start of the grasping phase as the time the participant began manipulating the wrist/fingers

of the end effector into a pre-grasp shape. We defined the end of the grasping phase as the time
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when all of the fingers on the hand had reached stable contact. On average, successful grasping

phases lasted 23 (standard deviation: 24) and 18 (standard deviation: 16) seconds for the pen

drawing and spray bottle tasks, respectively.

We defined the start of the manipulation phase as the time when the participant started to

perform the task. For the pen drawing task, this was when the pen first contacted the bowl. For

the spray bottle task, this was when the spray bottle was lifted off the table. We defined the end

of the manipulation phase as the time when the participant dropped the object or completed the

task. If in the pen task a participant dropped the pen and re-grasped it using the same grasp, we

cut out the grasp (recording it as a grasp phase) and joined the individual manipulation phases

which bookend the grasp together.

We analyzed the joint angle data (Barrett hands only) by phase. Since each data segment has

a unique duration we normalized these sequences by resampling each phase to 1000 samples. This

enabled us to compare joint angle data between participants regardless of temporal length.

4.2 Characterizing the Dynamic Response of Robot Hand Designs

In the previous study, we observed that grasps using the entire fingerpad were clearly superior to

grasps using the fingertips. This can potentially be explained by the following three observations: 1)

the fingerpad grasp tends to have more surface area in contact with the object, increasing friction;

2) the fingertip grasp is only capable of applying restoring forces roughly perpendicular to the point

of contact, while the finger pad has the ability to ’rock’, applying a wider range of restoring forces

in all directions; 3) the contacting surface shapes are different — the fingertip is more curved than

the fingerpad.

Characterizing these directly is challenging because of the compliance in the contact surfaces

and (for soft joints) the joint itself. It is also difficult to directly measure the perceived forces

the participant is responding to, and how they respond to those forces. For this reason, we have

designed our follow-up study to quantitatively measure robustness to disturbances.

4.2.1 Experimental Design

We describe the two characterization experiments we used to understand the benefits of the pad

grasp over the tip one: the pull test and the flick test. In the pull test, we measured the force

required to pull an object out of a grasp with normalized grasping force and normalized fingerpad

friction. The flick test measures how well each grasp resists a large and sudden disturbance — a

finger flick to the object it was holding.

For both tests, the objects were placed vertically in the grasp about 2cm from the table’s

surface; the operator was not required to pick the object up from the table. For both tests we used

a 3d printed object with integrated force sensors (which we refer to as the instrumented object) to

normalize the grasping force on the object for all trials.

We performed ten trials for each test, per hand. We did not recruit subjects for this test.
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Figure 4.3: Flick and Pull Test. (Left) Instrumented object used in both pull and flick tests to
normalize grasping force. (Right) Pull test setup. Flick test setup is identical, but without force
gauge.

Below we describe various aspects of our follow-up study, including setup (Section 4.2.2), pull

test protocol (Section 4.2.3), flick test protocol (Section 4.2.4).

4.2.2 Pull and Flick Test Setup

Both the pull and flick test used the same setup. For both tests we used a simple instrumented

object, shown in Figure 4.3. This object had a rectangular base where we attached force sensors

(Flexiforce). On top of the rectangular base was a cylinder for flicking. The total object dimensions

are 4x4x7cm with a hollow inside for cable routing. We also route a thin velcro piece through the

hollow inside for pulling the object.

The force sensors were taped onto the object so that the fingers would directly press on them

when grasping the object. The force sensors were taped to make sensor placement easier between

hands (Barrett vs Model O). We did not observe the tape to have any effect on any object grasps.

We set the normalized force for both tests to be 5N. Participants had access to real-time force

data when grasping the object to help them normalize forces on the object.

4.2.3 Pull Test

This test measured the maximum force required to pull the instrumented object out of both the

tip and pad grasps. We focused on the puppet Barrett and Model O hands because they were able

to do both the tip and pad grasps. The testing setup is shown in Figure 4.3.

In the pull test, participants grasped the instrumented object with normalized force and held

it about 2 cm off of the table. We used a force gauge with a large hook to pull the instrumented

object out of the grasp. We pulled the instrumented object by hand, slowly increasing force as we

pulled. The maximum force measured was recorded for each trial.

We analyzed results statistically using ANOVA between relevant hand pairings.

Flexiforce sensors 
are attached to the 
side of the object 
with tape 
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4.2.4 Flick Test

We performed the flick test with two objects: the instrumented object described above, and the

pen used in the pen drawing task. Similarly for the pull test, we focused on the puppet Barrett

and Model O hands because they were able to do both the tip and pad grasps.

In the flick test, participants grasped each object and held it about 2 cm off of the table.

We were unable to attach force sensors to the pen, so only the instrumented object flick tests

were guaranteed to be normalized. However, we attempted to normalize the pen grasp by having

participants perform the flick test on the instrumented object first. Then we asked the participants

to recreate the normalized force they felt with the instrumented object on the pen.

For each trial, the object is flicked perpendicular to the fingerpad/fingertip. We flicked the

objects ourselves. We recognize that there is variation in the flicks between trials and attempted

to normalize this variation between hands by using 10 trials.

We recorded results as one of three result conditions: 1) Fail, 2) Move, and 3) Stable. Fail

is defined as instances when the grasp would fail when the object is flicked. We define the move

condition as instances where the object moved more than five degrees in the grasp, but did not

fall. We define a stable condition as instances where the object moved less than five degrees. We

also attached a scoring system to each condition: Fail (0 points), Move (0.5 points), and Stable (1

point).

We analyzed results statistically using the Kruskal Wallis test between relevant hand pairings.

4.3 Exploring the Maneuverable Space

We study the morphological component’s contribution to in-hand manipulation performance be-

cause it is the component which has received the least attention in robot manipulation. In this

study, we use mPHIG and the asterisk test to characterize robot hands at fundamental in-hand

translations and rotations using the distal links.

We use mPHIG to normalize the controller (a human subject) across hand designs. Using a

human subject also allows us to study multiple robot hands while bypassing the need to develop

an entire robot hand system.

The Asterisk Test characterizes how a hand maneuvers an object through its workspace. It

compares the object’s path to the desired path using a set of nine metrics. The test uses three sets

of tasks to do this: translation-only, rotation-only, and rotation+translation tasks (see Fig 3.3).

Please reference Chapter 3 for more details on the Asterisk Test.

This study is divided into two parts. The first uses human subjects to explore the maneuverable

space of ten hand designs. In the second part, we best the best trials in each direction for each hand

and used human subjects to validate how repeatable those trials were. We describe the protocols

of each part separately because they differ slightly.
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Figure 4.4: The ten hands studied in the exploration study utilized rotary joints and planar joints
at the palm to cover a variety of degrees of freedom.

4.4 Exploration Study

In this study, three subjects performed the asterisk test for all ten hands over the course of a single

day. Although undesirable, this was necessary due to COVID restrictions at the time. Subjects

were placed in a testing room on their own, and the study was administered through zoom and

controlled via remote desktop.

4.4.1 Hands Studied

Figure 4.4 shows the ten hands used in this study, which represent a wide variety of dof. At the low

dof end is the 1v1 hand, 2 dof, which is a parallel jaw gripper with independently moving fingers.

At the high dof end are the 3v3 and p2vp2 hands, each 6 dof, which utilize two three-linked fingers

and two two-linked fingers on sliders, respectively.

The BH hand is the posable Barrett hand with compliant fingerpads used in the actuation

study. The f1v1 hand utilizes a variable friction finger based on the model vf hand (20). The finger

contained a low-friction pad which was moved out of the way when force was applied to it.

The rest of the hands are custom, modular designs based on the Yale Openhand. These hands

utilize different combinations of rotary and planar joints. The planar joints only occur at the palm,

meaning that the fingers can freely slide, changing the width of the palm.

Fingers on all hands were designed so that they were the same length, regardless of how many

Hands Used in Exploratory Study 
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Posable Barrett Hand (6DOF) 

w y 
WYV 

Legend 
Joints 

Q Rotatingjoint 

~ Sliding joint 

~ Stiff joint 

Other Features 

Variable friction 
fingerpad 

~ Hand label 



37

Figure 4.5: Hand Span and Depth measurements and asterisk test setup for both the 1v1 (left)
and 2v2 hand (middle, right). Measurements for max span and max depth were used to set object
size and initial position. Relevant dimensions and setup images were taken from top-down camera.
Each object is sized smaller than the ARuCo code.

links there were. The hands were also designed to be modular to simplify assembly.

4.4.2 Protocol and Setup

In the Asterisk test, hands must translate an object in eight cardinal directions, repeated for three

rotation conditions (x, p15, and m15), and rotate the object in place clockwise and counterclockwise.

The following additional constraints were placed on subjects during the asterisk test:

1. Once contact is established, contact cannot be broken until the end of the trial. No regrasping

is allowed, however sliding and rolling contacts are. Fingers can pivot at object corners,

however they cannot pivot onto a new surface.

2. Subjects had to let go at the end of the trial. This was meant to discourage leaning the

object.

3. No time limit was place on each trial. Subjects were free to repeat trials until they were

satisfied.

Directions were not repeated until the subject ‘came around’ the asterisk again. Directions

were repeated five times. This was meant to help the subject explore the space and adapt new

strategies to other directions. The order subjects completed directions was: [N, NE, E, SE, S, SW,

W, NW, CW, CCW], repeated five times in order, and repeated for the three rotation conditions

(no rotation, +15, -15). The rotation-only trials (CW and CCW) were not performed when the

rotation conditions were +/-15.

We used an overhead camera to track an ARuCo marker on top of the testing object. The

testing object was sized to be between 20-25% of a hand’s max span. The center of the object, as

well as two opposing walls, were hollowed out, to discourage pivoting on to a new side of the hand.

Basic Hand 
Measurements 

And Setup 

~0.25 Span 

2v2 Depth 2v2 Hand 
Measurements 

And Setup 
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The object was placed equidistant between the fingers and about 75% the hand’s max depth

from the palm. The object was re-centered to this position after every trial.

See Figure 4.5 for example measurements, object size, and initial placements for the 1v1 and

2v2 hands.

4.4.3 Data Processing

After data was collected, we first normalized the data. The x component was normalized by the

hand’s max span. The y component was normalized by the hand’s max depth. Then, the nine

metrics were calculated.

Next was a garbage collection step; we checked to see whether the path had deviated too far

from the target line. This was accomplished using a simple threshold of 0.2 normalized distance

from the target line. If a path went outside the threshold, it would be labelled as a deviated path.

Finally, we collect non-deviated trials of corresponding hand, direction, and rotation type and

then average their paths and metric values. We averaged each trial by sampling 20 points along

the target line and averaging all points within a certain bound around each sample point. We also

calculated the error of each point in the average from the averaged point.

We plot the averages paths on an asterisk. We represent the magnitude of the average error at

each averaged point and represented this on the asterisk plot as a shaded region.

4.4.4 Hypotheses

Given prior experience with human subjects, we believe that our subjects will be able to adapt well

to each hand design. We also hypothesize that they will utilize sliding and rolling contacts on each

hand.

In terms of hand performance, we expect a improved performance with increased degrees of

freedom. We expect that the sliders will have exceptional performance right and left. Considering

asymmetrical hands, we hypothesize that they will have reduced performance due to whichever

finger has fewer degrees of freedom.

4.5 Validating the best paths

The second part of the morphology study was used to validate how repeatable the best trials from

the exploratory study were. The validation was performed on six of the original ten hands based

on performance in the exploratory study. In addition, hands in the study were divided into two

categories based on their exploratory results: high performing and low performing hands.

Six subjects were used, each doing the asterisk test on one low performing hand and two

high performing hands, according to a latin squares design. Subjects were also given surveys after

completing each hand, which asked about ease of use and desired changes to a hand’s design (see B).
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Figure 4.6: Six hands used in the validation study. Hands were divided into low performing and
high performing categories according to their performance in the exploratory study.

4.5.1 Hands Studied

Figure 4.6 shows the six hands used in the study.

Two hands, the 2v1 and p1vp1 hands, were classified as low performing hands. The 2v2, 2v3,

3v3, and p2vp2 hands were classified as high performing hands.

The hands used were the same hands from the previous study. With that in mind, we observed

that the fingerpads had lost some of their friction, which affected performance.

Four hands were not included due to time and performance concerns. The 1v1 hand was

too basic to validate, however it was used as a warmup. The 2v0 hand was excluded due to poor

performance. The f1v1 hand was excluded due to difficulties analyzing the data due to the strategies

that the human subjects used. The BH was not included because of its tendency to tip objects in

the exploratory study, due to its fingers not being directly opposite each other.

4.5.2 Protocol and Setup

We slightly modified the set of constraints placed on the human subjects. The main difference is

that the new criteria for repeating trials and the trial end criteria were modified.

The constraints are as follows:

1. Once contact is established, contact cannot be broken until the end of the trial. No regrasping

is allowed, however sliding and rolling contacts are. Fingers can pivot at object corners,

however they cannot pivot onto a new surface.

2. The object was not let go at the end of the trial. Although the previous rule discouraged

leaning, it would also cause the object to wobble at the end of a trial, which complicated data
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analysis. Instead, subjects indicated verbally when they were done.

3. No time limit for trials.

4. Subjects had to move the object to within 75% of the total distance value of the best trial. If

subjects had difficulties replicating the best trial, they were given three attempts before their

performance would be saved, regardless of the total distance. Exceptions to this rule occurred

when the third trial was not valid or was not consistent with their previous attempts. Three

attempts would be repeated for each of the 3 trials recorded.

Subjects completed three trials for each direction before moving on to the next. The order of

directions was also modified to accommodate symmetries. The updated order is: [N, NE, NW, E,

W, S, SE, SW, CW, CCW].

Each hand was given its own custom tesitng object this time, sized to be exactly 25% of max

hand span. This object was hollowed out more aggressively than the object used in the exploratory

study.

Object initial distance was not changed in the validation study.

4.5.3 Best Trial Selection

We chose the trial with the highest total distance from a filtered set of trials with high quality. We

filtered the trials to ensure that trials with high total distance, but poor metric performance were

not considered for best trial.

We cut trials based on two metrics: movement efficiency (mvt eff) and translational total

distance (t fd). Selected trials had to be within 30% of the best values attained for the metric on

that hand in the specific direction.

We show the best trials selected for each hand for the ’x’ rotation condition in Figure 4.7. We

provide best trial plots for all hands in the validation study and the +/-15 R+T conditions in

Appendix ??.

4.5.4 Hypotheses

Given our experience with the exploratory study, we hypothesize that our next set of human

subjects will be able to reproduce each best trial on every hand in the study.
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Figure 4.7: Selected best trials (colored) for each hand, for the x rotation condition. All of trials
are drawn in grey.

Selected Best Trials for Translation-Only Trials 
Each colored line is the best trial path. All other trials are drawn in grey. 

2v2 2v3 3v3 

.. 11.#.J) ••J:,t 

..., pf}' -•ff•J o.• ,,,.., 

i'-LJJ 

.,.. ... ,., .. ., .. •' ... .... .,., .. •' .. .. ... .,. . .,., .. •' .. . . 
plvpl p2vp2 2vl 

.. 

◄• 



42

Chapter 5: Results of actuation and morphological component studies

5.1 Tool-Use Study Results

We present qualitative and quantitative results on task performance, followed by a detailed com-

parison of the BH versus PH joint angles.

Pen Task
Pen Task Pen Task

Spray Task Spray Task Spray Task

Barrett Hand Puppet Barrett Puppet Model O

Figure 5.1: Qualitative results gathered from the PHIG study. (Top) Images gathered from trial
video showing the types of grasps used for each task. (Bottom) Notable survey quotes, focused on
the ease of use of each hand. With both the Posable and Open hand it was possible to bend the
fingers backwards in order to grip the pen with the fingers flat instead of at the tips.

5.1.1 Human Task Performance

Task performance results are presented in Figure 5.2. The OH performed significantly better than

the other hands in terms of average task completion time (paired t-test < 0.05 for the spray bottle,

< 0.01 for the bowl). All hands performed similarly for the other metrics. There was no statistically

significant difference in any metric based on hand order.
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Task Metric Barrett Hand Puppet Barrett Puppet Model O

B
o

w
l Avg. Task Completion (sec) 190.58 sec 265.33 sec 84.58 sec

Avg. Manip. Time (%) 29.96% 20.57% 22.27%

Avg. Regrasps 3 6 2

Sp
ra

y Avg. Task Completion (sec) 383.33 sec 344.17 sec 162.92 sec

Avg. Manip. Time (%) 23.20% 21.50% 20.89%

Avg. Regrasps 4 5 2

Figure 5.2: Qualitative results gathered from the PHIG study. (Top) Images gathered from trial
video showing the types of grasps used for each task. (Bottom) Notable survey quotes, focused on
the ease of use of each hand.
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Table 5.1: Percentage coverage of joint angle data for each added dimension, using pca.
PCA results, percentage coverage per dimension

Bowl task Spray task
Dim Barrett Printed Barrett Printed

1 45.72991 50.40023 56.86313 47.05089

2 38.58421 27.53254 37.68461 28.6918

3 9.707124 13.04163 4.115794 13.6785

4 4.053381 4.859988 1.105763 8.449121

5 1.925369 4.165617 0.230695 2.129684

5.1.2 Survey Results

Participants rated the underactuated Barrett hand and the puppet Model O hand similarly. Both

were consistently rated higher than the puppet Barrett hand. Participants commented that the

underactuated Barrett hand was hard to control to get the grasp in the first place, but was better

at holding a grasp. The comments were reversed for the puppet Model O hand: participants found

the grasp easier to make (and reflected participant’s desired grasps better), but maintaining the

grasp was more difficult. We provide several representative quotes from survey responses in Figure

5.1.

Many participants rated the puppet Barrett hand poorly. The primary complaint made about

this end effector was that a lack of fingertip compliance (the fingertip was 3d printed) made estab-

lishing grasps difficult.

Participants chose the proximal joint to be more important than the distal (9 versus 2). If only

given the choice to make one finger fully actuated, the participants chose the thumb (2/16). The

thumb was defined as the finger which did not move during finger spreading on both hands. Several

participants also made comments about the general hand design: two suggested adding more joints

on the thumb, two wanted to change the finger lengths, and another two wanted thinner fingers for

easier manipulation.

5.1.3 Joint Angle Analysis

The mean proximal and distal joint angles for each task per hand are shown in Figure 5.2 for the

bowl (left) and spray (right) tasks. Qualitatively, the OH joint angles closely mirrored the PH, as

can be seen in Figure 5.1.

We provide further proximal and distal joint angle relationships with respect to time in Figure

5.3 (1000 time samples for each successful grasp analyzed). The underactuated nature of the BH

is clear here, with participants primarily moving the proximal joint, or jamming the proximal

joint which leads to only distal movement. Participants using the PH clearly did not employ

monotonically decreasing angles, but often backtracked.

Running PCA on the joint angle data also showed that the BH and PH data could be described

in 2 and 3 dimensions, respectively (Table 5.1).
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Figure 5.3: Finger joint angle relationships between BH and PH. 1000 time samples are plotted for each
grasp to show how each was used.

5.1.4 Comparison of human controlled fully-actuated and underactuated

grasps

First, we noticed that when given complete freedom over hand positioning, humans will depart from

using underactuated control schemes. We show a general representation of these findings between

the BH and PHs in Figure 5.2. The large standard deviations for PH show a lot of proximal joint

variation between subjects. Interestingly, the distal joint has lower standard deviations and much

tighter angle boundaries. Referencing the bowl results in Figure 5.2 specifically for its clarity, the

averaged data shows fingers 1 and 2 bent backwards and finger 3 straight in opposition. This results

in usage of the fingerpad (compliant) over the fingertip (less compliant).

Our hypothesis how humans approach these manipulation tasks (and their grasping subtasks)

is with a combination of full and under actuation finger strategies (which we refer to as quasi-

actuation). We believe that humans use the proximal joint in a fully actuated method to bring the

distal link close to the object. Then the distal link governs actual contact with an underactuated

scheme. We believe that humans use quasi-actuation to compensate for our lack of precision. We

believe that these observations are support by the tendon routing in the bio-memetic robot-human

hand by Xu & Todorov (123), as well as in part by the finger actuation scheme of the M2 hand (21).

This leads us to conclude that underactuation alone cannot handle manipulation tasks - as a human

approaches it, particularly with two joint fingers. We believe that when underactuation is utilized

within a quasi-actuated control scheme, the real potency of underactuation will be realized.

However, the question remains about what the subjects optimize for when grasping without

I . 
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hand constraints. We observed qualitatively that despite large proximal joint variance between

subjects, the poses of the fingerpad relative to the objects between subjects are the same. This

goes beyond pregrasp shapes - think instead of object centric finger positioning. Figure 5.3 supports

these findings. In the figure, the BH joint angles move largely independent of each other (straight

lines), contrary to the PH, where both proximal and distal joints are adjusted relative to each other

(amidst lots of backtracking). On its own the PH joint angle data is difficult to analyze, however

with the quasi-actuation scheme in mind as well as our own observations, we believe proximal (and

by association, the distal) joint angles are more dependant on the hand position for stable grasps

than considered with existing schemes, such as capture regions. We plan to follow up on these

findings by analyzing joint angles in relation to the position of the object which will be grasped.

These findings are also echoed by Todorov & Ghahramani (124) in a dataglove experiment. They

concluded from their findings that the synergies in a human hand for manipulation tasks (which

also differed between tasks) arise from human closed-loop control and not by actuator design - again

suggesting a human grasping perspective that is not hand-centric. Regarding grasp preshapes and

their similarities to what we argue, we believe that grasp preshapes are only a symptom of a more

generalizable object-centric human grasping system.

5.1.5 The Effect of Compliance

The PH and OH grasps were observed to be the same. If this is so, how can their performance

metrics differ so much? We observed from the survey responses that the hard plastic of the hand did

not comply well. In direct contrast to that, the OH used rubber on the finger pads which complied

well to the objects. These findings suggest that compliance in the fingerpad is an important feature

for a human on a hand.

On the same note, we are also unsure of any other study design choices that could have impacted

the efficacy of certain actuation strategies, such as choice of normalized friction values, puppeteer

system design choices, or slider box controller attributes.

5.1.6 Study Limitations

There are several limitations to this study, first and foremost being the sample size and the lack of

quantitative data for the OH. Other observed disadvantages are the differences between the posable

hand designs used. Several subjects noted that the thickness of the fingers was too big on the PH.

The OH fingers are about 0.5 cm smaller in width than the BH/PH finger width. The OH finger

span was also shorter than the Barrett, which made it easier to puppet.

5.2 Flick and Pull Test Results

In this section we present our results for both the pull (section 5.2.1) and flick (section 5.2.2) tests.

We provide quantitative results in Table 5.2 for the puppet Barrett and Model O hands used in part
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1 of the study. We provide extra quantitative results in Table 5.3 for the rest of the end effectors

in this study.

5.2.1 Pull Test Results

The results for the pull test are given in the orange section of Table 5.2 and in Table 5.3.

There was significant difference between the tip and pad grasps for the Model O hand (p <

0.0016)and between tip grasp results between the Barrett hand and Model O tip grasps (p <

0.00089). All other relationships did not have significance between them (tip vs pad, Barrett hand

(p < 0.169); pad vs pad, Barrett & Model O (p < 0.624)). We attribute the different effects of

the pad grasp (being significant for the Model O, and not for the Barrett hand) to how force is

transmitted at the distal link from our study participants.

For the Model O the distal joint is made of rubber, which can flex out of plane. We believe

that our study participants could not transmit all of their force into the object because they were

also trying to stabilize the finger in all directions. In contrast the Barrett hand, having a distal

joint with a pin, naturally resists out of plane movements and therefore transmits all force into the

object, no matter how the participant holds the grasp.

The puppet hand Model O with pin joints performed comparably to the fingertip grasp results

for the Model O with rubber joints.

The actuated Model O hands performed relatively poorly. We believe that this is due to the

human experimenter unconsciously maximizing finger surface area during grasps when using puppet

hands. The actuated end effectors did not do that — instead a single tendon generated all of the

finger’s forces.

The actuated Barrett hand performed relatively well. However, we were unable to normalize

the Barrett hand’s grasping forces during the trials, however, we present these results because they

reflect how the part 1 study participants used the hand.

5.2.2 Flick Test Results

The results for the flick test are given in the blue and green sections of Table 5.2 for the instrumented

object and pen, respectively. Extra results are also given in Table 5.3.

There were significant differences between only a few hands in the flick test trials, and all

significance occurred in trials with the pen object (Barrett tip vs Model O tip (p < 0.0127);

Barrett tip vs Barrett pad (p < 0.00045). We attribute the size of the instrumented object to

the complete lack of significance in those trials. Due to the size, we believe that the larger object

maximized surface area and helped stabilize itself during a flick, regardless of the grasp used. This

is also evident in the relatively decent scores for the instrumented object trials. The pen used in

the other flick test trials did the opposite.

The pen object minimized surface area and its curved surface did not offer extra support during

a flick. This meant that the design of the fingertip mattered much more than in the instrumented
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Table 5.2: Summary of pull and flick test results using puppet Barrett and Model O hands.

Test Barrett Barrett Openhand Openhand 
Tip Pad Tip Pad 

Pull Test 
0.6720 0.7350 0.4810 0.7630 

Average 

Pull Test 
Standard 0.1044 0.0917 0.1105 0.1517 
Deviation 

Pull Test 
0.0330 0.0290 0.0349 0.0480 

Standard Error 

Flick Test 
3 4.5 2 5.5 Score (OBJ) 

Flick Test 
Median Score 0 0.5 0 0.5 

(OBJ) 

Flick Test 
0.3000 0.4500 0.2000 0.5500 Avg (OBJ) 

Flick Test 
0.4216 0.2838 0.2582 0.4378 

St.D. (OBJ) 

Flick Test 
0.1333 0.0898 0.0816 0.1384 St.Err. (OBJ) 

I 
Flick Test 

0 4.5 3.5 4 
Score (PEN) 

Flick Test 
Median Score 0 0.5 0.25 0.5 

(PEN) 

Flick Test 
0 0.4500 0.3500 0.4000 

Avg (PEN) 

Flick Test 
0 0.2838 0.4116 0.3944 

St.D. {PEN) 

Flick Test 
0 0.0898 0.1302 0.1247 

St.Err. (PEN) 
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Table 5.3: Extra pull and flick test results using extra Model O variants and actuated Barrett
hands. Each hand could only perform the fingertip grasp. *Note: We were not able to normalize
the Barrett hand’s grasp forces. We present these results for completeness, but please acknowledge
that these results are not normalized.

object tests. As evident in the data, the Barrett hand distal link geometry completely failed the

flick test using the pen object. Only by changing the grasp to a pad grasp was it able to succeed.

Table 5.3 shows the results for the rest of the end effectors. The puppet Model O hand with

pin joints performed the comparably to the puppet Model O with rubber joints. We believe that

this is because the pin joints provided more stability for the experimenters to hold the objects.

The actuated Model O hands performed poorly for both objects. We believe that this poor

performance is due to two factors: actuated end effectors grasped objects too statically, and the

restoring forces available to the end effectors were too limited. When the human hands could

puppet an end effector, often the grasp was very dynamic — especially when the experimenters

responded to the flick. The actuated hands lacked that. Furthermore, the puppet hands had a

wide range of restoring forces available to them because the human generating those forces. With

the actuated hands there was only a single tendon in the finger — this limited the restoring forces

available to the actuated end effectors.

5.2.3 On how the Fingerpad Grasp Improves over the Fingertip Grasp

We observed two overall tool grasping strategies in the human study, most noticeable for the pen-

drawing task: the fingerpad and fingertip grasp. This is especially evident in Figure 5.2, where the

averaged joint angle data shows fingers 1 and 2 bent backwards, and the thumb in a straight line.

With current underactuated schemes, these finger positions are impossible to make. The human

study ranked the fingerpad grasp as superior so long as the fingerpads were compliant.

In our data, we have observed that the fingerpad grasp acts as an equalizer between hand

Tasks 

Pull 

Flick {Obj) 

Flick (Pen) 

Puppet 
Hands 

Model O 

Pin 

0.449 kg 

2.5 

5.5 

Actuated Hands 

Model O 
Barrett"' 

Pin Rubber 

0.932* 0.154 kg 0.201 kg 

7.s• 0 4 

5* 0 0 
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designs. In the pull test, the Model O hand, which performed the test poorly with the fingertip

grasp, improved with the fingerpad grasp to perform about the same as the Barrett hand. A similar

observation is made in the flick test results. In the flick test the Barrett hand performed poorly

using the fingertip grasp (using the pen), but with the fingerpad grasp it improved to perform at

a similar level to the Model O hand in that test.

We also observed that in other situations the fingerpad grasp did not impact performance

meaningfully. We observed this in the pull test results for the Barrett hand, for all of the flick test

results with the Instrumented Object, and for the flick test results with the pen for the Model O.

We believe in those situations that this is due to the design of the fingers.

To understand how the finger design could have impacted the design, we analyzed the fingertip

and fingerpad grasp surface area. We analyzed the grasps by taking top-down images of grasping

the instrumented object and the pen using both the Barrett and Model O hands. We found that

the surface area increased on average approximately 2 times when switching to the pad grasp. This

would explain the Model O’s improvement in the pull test.

Although the pad grasp out-performs the tip grasp in general, the tip grasp was effective for two

hands and two flick tests — the motorized Model O with soft joints (object) and the puppet Model

O with pin joints (pen) — outperforming even the fingerpad grasps. This echoes statements by the

participants that, once the tip grasp is established (motorized Barrett) it was easier to manipulate.

Given that the pen is curved, and the test object is not, some of this might be attributed to the

ability to hold and maintain a force perpendicular to the surface of the object (see Section below).

The motorized hands make it easier to maintain the pressure (because of the under-actuation

design) while manually holding the fingers in that position is challenging (maintaining pressure

with the distal joint orthogonal to the point of contact with an unstable proximal joint). However,

it should be noted that the tip grasp is extremely difficult to achieve with the mechanized hands.

This is further substantiated when considering which hands could complete the pen-drawing

and spray tasks (see Table 5.4). Amongst the Model O variants tested, none could perform a

fingerpad grasp — and those same hands were also unable to perform the pen-drawing task.

It is still unclear what our human subjects were optimizing for in the fingerpad grasp, although

we hypothesize that the fingerpad grasp gives a human the ability to maneuver the object within

the grasp better than the fingertip grasp. Qualitatively, we observed that the poses of the fingerpad

relative to the objects between subjects was the same despite large proximal joint variations (see

Figure 5.2). This suggests that the participants picked their finger positions based on the object’s

pose. We find support for these findings in a dataglove experiment by Todorov and Ghahra-

mani (124). From their findings, they concluded that the synergies — which they measured for

manipulation tasks (which were unique for each task) — arise from human closed-loop control and

not by actuator design. This means that grasp preshapes are a symptom of a more generalizable

object-centric human grasping system.

Interestingly, this is similar to how the human finger is controlled. We hypothesize that humans

use a moderately-actuated control strategy (when we consider underactuation to be minimal actu-
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Table 5.4: Abilities of all robot hands tested to complete the pen-drawing and flick tests.

ation). This strategy is built into how the hands are actuated: the proximal link is fully actuated

(this brings the fingertip close to the object) and the distal link is underactuated (it has the sole

purpose of engaging with the object once it’s near). This tendon routing is demonstrated by Xu

and Todorov (123) as well as in part by the M2 hand tendon scheme by Ma et al. (125).

From this data we can conclude that underactuation may help with grip stability but is prob-

lematic for manipulation, in part because it prevents a fingerpad grasp.

5.2.4 On how well the Simpler Tasks Explain the Performance

of the Complex Tasks

We hypothesized that the fingerpad grasp was better than the fingertip grasp because the fingerpad

grasp had more surface area and could resist sudden disturbances easier. To test that hypothesis,

we designed two characterization tests: the pull and flick tests.

With these tests, we also wanted to see how well these two aspects, more surface area and greater

disturbance resistance, could explain each hand’s performance at the pen-drawing and spray tasks.

We present our findings by task below. We show which end effectors could do each task in Table

5.4.

The end effectors which could do the pen-drawing task had at least a value of 0.45kg of force

in the pull test and at least a score of 3.5 in the flick test.

For the spray task, we found that the end effectors needed to have at least 0.4 of force in the

pull test and at least a score of 3.5 in the flick test. It should be noted that all of the puppet hands

were able to complete the spray task.

These findings describe both the pen-drawing and spray task results well. However, from

observation we believe that the spray task is still not represented well. Note how the Barrett hand

grasps the spray bottle in Figure 5.2. Our study participants could perform the spray task with

the Barrett hand by pulling the spray bottle trigger with the Barrett hand’s intermediate joint.

Tasks 

Pen

drawing 

Spray 

Barrett 

Pass 

Pass 

Puppet Hands 

Model 0 

Pin Rubber 

Fail Pass 

Pass Pass 

Actuated Hands 

Model 0 
Barrett 

Pin Rubber 

Pass Fail Fail 

Pass Fail Fail 
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This was also observed to be the way that our experimenter used the spray bottle with the puppet

hand Model O with pin joints.

With this in mind, although more surface area and disturbance rejection is important to com-

plete the spray task, we do not believe that they are the aspects which matters the most. We

hypothesize that finger kinematics matter the most for the spray task. In this case, we further

hypothesize that 3-link fingers would have an advantage in doing the spray task.

With this in mind, it is clear that more tasks are needed to characterize an end effector for

generalized in-hand manipulation.

5.2.5 Study Limitations

In this section we describe the limitations of our study.

The Model O end effectors were designed without sensors incorporated into the hands. The

soft distal joints used in with the Model O made the distal link’s pose impossible to track without

a motion capture system. However, a motion capture system is not viable for this test because of

how often the human subject ‘puppeteer’ would occlude the motion tracking markers.

In our work it is difficult to compare the actuated hand’s performance to the puppet hands.

This is because of the of how different the methods are to each other. In the actuated versions, the

end effector is driven by motors or tendons and and the human subject is removed a little from the

context of the manipulation. In the puppet hand versions, the end effector is human-powered and

the human subject is directly in the context of the manipulation. With the puppet hand versions,

powering the end effector and manipulating objects could have presented a more difficult task to

the participant than the actuated versions.

Another limitation is our usage of human-based measures in both the pull and flick test. In

the pull test, a human tester regulated how the object was pulled by the force gauge. In this case,

human variability would have caused variations in pulls between tests. In the flick test, a human

tester flicked the objects with their finger. Flicking objects caused finger strain, which forced us to

cycle through several testers during the flick test. In this case, flick strength and direction would

vary as each tester grew more fatigued of flicking and between testers.

Our human study also had a low sample size, although this was somewhat offset by how consis-

tent our participants were. Unfortunately, our in-person evaluation process is difficult to conduct

on a large scale. We are currently considering other ways to utilize human control experience using,

for example, on-line studies.
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5.3 Results from Exploring the Maneuverable Space: Both Exploration and

Validation

In this work we combined mPHIG and the asterisk test to study how well robot hand morphologies

perform in-hand manipulation. We did this using two human studies. In the first, we used human

subjects to explore the maneuverable space. In the second, we used human subjects to validate

how consistent and do-able the best performances in the exploration study were.

We used the results we collected to make several comparisons:

1. How well the subjects validated the best trials,

2. How robust performance was between translation-only and rotation+translation trials,

3. Comparing translation-only results between hand designs.

In the following subsections, we offer a curated discussion of results for each of these comparisons.

We provide the complete result figures in Appendix D for trial paths and statistical analyses. Hand

setups and relative object sizes are also shown for each hand there.

5.3.1 Comparing Exploration and Validation Studies

We compared data between our first and second studies to understand how repeatable the best

performance from the first studies were. We were surprised to observe that the human subjects

in the validation study generally performed better than the best trials in the exploration study.

Result plots can be found in Appendix D.1 and statistical results can be found in Appendix D.2.

Figure D.1 (page 87) shows the comparison between the exploration and validation for the 2v2

hand. The East, West, South, and South-West directions showed a significant difference between

the exploration and validation data (see Figure D.6, page 93). However, as can be noted from

the accompanying box-plot, we observe that the validation results (blue) were better than the

exploration data with respect to total distance.

This can also be observed for the 2v3 hand (Figure D.7, page 94) in the East, West, South,

South-East, and South-West; for the 3v3 hand (Figure D.8, page 95) in North, West, South, South-

East, and South-West; for the p2vp2 hand (Figure D.9, page 96) in East, West, South, South-East,

and South-West; and for the 2v1 hand (Figure D.10, page 97) in North, North-East, West, South,

South-East, and South-West.

Overall, the significant improvements occur consistently in the South, South-East, and South-

West. There can be many reasons for this. On reason is that between the exploration and validation

study the fingerpads had a lower coefficient of friction. The lower coefficient of friction for subjects

to slide the object along the single link finger, which is especially clear in the North direction.

In addition, it seems that the validation study had better training than the exploration study.

In the exploration study, subjects were given a grasping task and practiced manipulating the

object without a direct purpose. In the validation study, this was replaced with a directed object
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Figure 5.4: Validation study results for our baseline hand — the 2v2 hand. The 2v2 hand was
chosen because it was the lowest degree of freedom hand that could perform all of the tests close to
the edges of the normalized workspace (translation-only, rotation-only, and rotation+translation).

manipulation task. Further, before each trial, subjects were shown the recorded footage of the best

trial from the exploration study. We observed that human subjects learned a trial quickly when

shown a replay of the best trial.

For the p1vp1 (Figure D.10, page 97), we observed an overall lower level of performance. The

exploration results had a significantly higher total distance than the validation results.

5.3.2 Translation+Rotation Results for each Hand

The Rotation+Translation tests were designed to test how well a hand could maneuver an objects in

an in-hand manipulation task with more constraints. The +/-15 degree rotations before translation

made the task more complicated because it forces subjects to use sub-optimal contacts for trans-

lating the object. We compared how well human subjects used the hands between translation-only

and rotation+translation tasks to indicate how robust a hand design would be to small changes in

contact position. Result plots can be found in Appendix D.1 and statistical results can be found

in Appendix D.2.

However, in our results we found few patterns of statistical significance. What we did observe

was a consistent visual skewing of the asterisk plots in the direction. It is important to note that

this consistent visual skewing is due to the averaged line and might not be valid for the trial data.

You can view this skewing in the 2v2 results shown in Figure 5.4.

Baseline: 2v2 Hand Results 
Max Span Max Depth Obj Size I nit Dist 

170mm 135mm 43mm 101 mm 

2v2 hand setup in validation study 

• -15 R+ T • Translation-Only • +15 R+T 
,-. O..M' 

.. .tlWflJ.f lrlt O ◄? 

- .. ~-- ., 
... , ...., 

~OJf " .. St::O.J7' 

SCI.JC! 
-0 ♦ .... 

.,... ... ,., .. ., ., . .. ... ... .,., .,. .,, ., . .. .... ... ..,, . . . , .,. ., . 



55

We also list two more hand-specific observations that could bear more investigating. First, we

noticed that depending on the direction of rotation with the 2v2 hand, one of the diagonals would

not have a significant different from the translation-only results. For the -15 rotation, this diagonal

is NE-SW. For the +15 rotation, this diagonal is NW-SE.

For the p2vp2 hand, there were some directions which deviated too much to count. In the -15

asterisk results, these directions were NW, W, and SE. In the +15 asterisk results, these directions

were NE, E.

5.3.3 Between Hand Results

Due to the large amount of hands in our study we avoid making comparisons between each hands

and instead opt for a more focused comparison. We used the 2v2 to focus our comparison — it

was the perfect baseline because it was the lowest degree of freedom hand that could perform all of

the tests (translation-only, rotation-only, and rotation+translation). As a result, all comparisons

in this section are made to the 2v2 hand. These baseline results are shown in Figure 5.4.

Using the 2v2 as our baseline, we found that adding or subtracting degrees of freedom did

not significantly affect performance, but instead added more nuance to a hand’s capabilities. We

provide a compilation of results in Figure 5.6.

Adding degrees of freedom to the 2v2: The 3v3 and p2vp2 hands each add different

degrees of freedom onto the 2v2 hand. We found that each type of degree of freedom improves on

the 2v2 in different ways. See Appendix D.2 for comprehensive figures and pvalues.

The 3v3 hand adds another link/joint to each finger of the 2v2 hand. Between the 2v2 and 3v3,

the 3v3 hand significantly improves over the 2v2 in the S, SE, and SW directions with respect to

total distance. Qualitatively, we observed that this improved performance is due to a higher degree

of distal link control afforded by the extra joint/link.

The p2vp2 adds a slider at the base of each two link finger. Between the p2vp2 and the 2v2,

the p2vp2 provides a significant improvement in N, NE, and S. It should be noted that when

comparing NW the pvalue is close to significance, we attribute this to handedness in our subjects.

Qualitatively, we observed that our subjects brought the fingers together when moving in the

Northern hemisphere, and we hypothesize that this provided the boost in total distance.

It should be noted that both higher degree of freedom hands significantly improve the 2v2 results

in S. This suggests that regardless of the added degrees of freedom, pulling objects towards the palm

might require more degrees of freedom. Such design considerations might help with hands which

try to transition from precision to power grasps might consider having larger degrees of freedom —

which also explains

These patterns also exist when comparing the 3v3 hand to the p2vp2 hand, shown in Figure 5.5.

Between these hands, the p2vp2 outperforms the 3v3 in the upper region and the 3 link fingers are

better in SE and SW. However, there is no significant difference between these hands in S.

Subtracting Degrees of Freedom from the 2v2: The 2v1 hand is a hand with fewer
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Figure 5.5: Statistical Comparison between 3v3 and p2vp2 hands, according to the Total Distance
metric results. Both hands have the same number of degrees of freedom, but different joints, which
provides nuanced advantages over the 2v2 hand. The same nuanced advantages are observable in
this comparison between high DOF hands as well.

degrees of freedom. On this hand, one finger does not have a distal joint, and the finger link

extends to approximately the same length as a double jointed finger. The 2v1 performs similarly

to the 2v2 hand except in N and NE. Despite no significant difference, it should be noted that 2v1

hand has a much higher the high degree of variation for each direction. It should be noted that

the reason why we make the 2v2 hand the baseline instead of the 2v1 is that the 2v2 hand could

do rotation conditions.

2v2 vs p1vp1 - 4 DOF Hand Comparisons: We also compared how merely changing

degrees of freedom would affect performance. For this comparison, we utilized the p1vp1 hand

— this hand utilized sliders at the base of the finger and had no rotary proximal joint. The 2v2

significantly outperformed the p1vp1 in almost every direction, suggesting that a proximal rotary

joint is key for in-hand manipulation.

Observations about Asymmetrical Hands: We observed that each side of the 2v3’s aster-

isk results depended on the finger on that side. Therefore, the two link side performed similarly to

the 2v2’s asterisk and the three link side performed similarly to the 3v3’s asterisk. This observation

also holds for the 2v1 hand — the two finger side was not significantly different than the 2v2’s left

side.

What this suggests is that during object translation (especially in E and W), the finger on the

outside of the object contributes the most to the translation. This suggests that the contribution

of the other finger might be only to provide a stabilizing force.

Comparing p2vp2 to 3v3 Legend 

According to Total Distance .... signi/icontly greater 
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Figure 5.6: A visual compilation of statistical results when comparing the 2v2 to the other hands
in the validation study. Statistical significance is shown as colored arrows — up and down indicate
whether the 2v2 performed significantly worse or better than the compared hand, respectively.
Complete results can be found in the Appendix D.
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Chapter 6: Conclusions and Future Work

In this research we analyzed how a robot hand’s morphology and actuation components contribute

to in-hand manipulation performance. We do this by utilizing a new methodology for studying

robot hand design, which is comprised of a human study design and object-centric benchmarks.

Existing methods do not provide the right focus for analyzing system component task contributions,

which leads to a lack of quantitative knowledge. Our research represents a new start for quantitative

research into robot hand performance for in-hand manipulation.

We first adapted a human design design called Physical Human Interactive Guidance to study

manipulation (which we call mPHIG). For that, our study design utilizes humans to manually

puppet robot fingers (Chapter 2). This method mitigates two major problems in human studies

with robot hands. The first problem involves transposing human data (typically the subject uses

their own hand) to a robot hand design. Our method mitigates this problem because human

subjects are given the freedom to move the robot hand however they like, thus making the human

transpose to the robot hand in situ, which is an easy task when puppeting. The second problem

involves controller transparency. Our method maximizes transparency by involving the human in

the context of the task. Here human subjects use their own senses to puppet the hand, which is

more natural than other forms of feedback utilized by other methods.

We also proposed a new object-centric benchmark for in-hand manipulation called the Asterisk

Test (Chapter 3). This benchmarks characterizes performance by comparing it to an ideal per-

formance using nine metrics. This method improves prior metrics because on low-level aspects

of performance (the object path) rather than high-level task-specific aspects (time to complete a

task, number of failures, etc). In addition, the low-level focus of this benchmark provides a way for

separate analysis of system components.

We utilized mPHIG and the Asterisk Test to analyze the actuation and morphology components

(Chapter 4). For the actuation component, we used mPHIG to study the minimally underactuated

Barrett hand for tool-use tasks (using a pen and spray bottle) ( 4.1). We compared its performance

to other versions of the Barrett hand or those with similar finger layouts (Model O hand). Study

results ( 5.1) showed similar performance between hands, but also a human preference for using

compliant fingerpads over fingertips and for different actuation schemes than the minimally under-

actuated scheme on the Barrett hand. We further investigated the fingerpad and fingertip contacts

for their ability to resist dynamic perturbations ( 4.2, results: 5.2).

Finally, for the morphology component, we used mPHIG with the Asterisk Test to analyze

robot hand design performance at in-hand manipulation tasks. We conducted this study in two

parts: first, we explored what is possible in the maneuverable space ( 4.3) and then we validated

the highest performing trials with additional subjects ( 4.5. Study results ( 5.3) showed that a

two-linked two fingered design provided versatile in-hand performance with little value added with
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additional degrees of freedom. Human subjects were able to validate a majority of the best trials,

indicating consistency between human subject findings. We also discussed ‘lessons learned’ for

future mPHIG studies.

Future Work: In the future, we can apply our study method to a wider range of robot hand

designs, including those with planar links and variable friction components, as well as more relative

object sizes and initial positions. In addition, we can put greater emphasis onto measuring how

contact points vary throughout a manipulation task.

Another useful study would be to combine our actuation study with the morphology asterisk

test study. With such a combination, which would require a method to track joint changes on our

puppeted hands, we can study how humans want robot hands to move. This can improve tele-

operation interfaces and contribute to the development of “moderately underactuated” actuation

schemes (as opposed to minimally underactuated schemes) which are designed for manipulation.

There are also some general improvements needed for the measurement method and mPHIG.

For the measurement method, we need to adapt the method to work with asymmetrical hands.

For mPHIG, we need to explore other methods of puppeting fingers whcih would provide better

control on high DOF hands but keep the low controller transparency and minimized transposing

that mPHIG provides.

Finally, others can utilize the Asterisk Test with automatic methods to study optimal control

performance on robot hand designs. With optimal control, we can determine quantitatively the

“ground truth” manipulation performance of a robot hand design — that is, the performance

potential which the morphology component provides for in-hand manipulation tasks.
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Appendix A: Instructions for Hand Measurements

We present the methodology of the most recently submitted manuscript for our mea-

surement method.

Our goal is to provide an approximation of the space enclosed by the hand’s palm and fingers.

Unfortunately, this is not straightforward because some hands have a “natural” orientation whereas

others do not. Therefore, we define our own coordinate system which can harmonize with a hand’s

natural orientation, if it exists, and impose order on a hand if there is not.

We accomplish this by defining our axes of measurement (span, depth, width) and fitting them

to a hand using a grasping scenario (Sec A.0.1). This grasping scenario, grasping a cylinder, dictates

the hand orientation that the axes are transfered onto. The grasping scenario is only used to select

the hand orientation for measurement — the grasp does not have to be performed.

Using these axes, we prescribe sets of measurements to approximate the fingerspace at finger

positions across actuation (Sec A.0.2, A.0.3, and A.0.4). Which finger positions to use depends no

the type of grasp one is trying to characterize the fingerspace for — each type of grasp has unqiue

specifications for what a valid grasp is, which need to be considers when measuring the fingerspace

(Sec A.0.5 and A.0.6).

More instructions, supporting software, and example measurements are provided on github (126).

A.0.1 Functional Axes: Span, Depth, and Width

To define the coordinate system we use for measuring the hand we first attach the coordinate

system to a cylinder (or sphere) resting on a table (see Fig. A.1). The measurer then places the

hand and configures the fingers in order to grasp the cylinder from the side. The intention is to

define a clear in-out from the palm (depth) and left-right finger closing direction (span). While

no physical object is required it can be helpful to use one in order to set up this positioning. The

functional definition of the axes is as follows:

Span — is the axis parallel to both the reference cylinder’s top/bottom faces and the palm’s

normal — i.e., a line passing through the middle of the cylinder parallel to the table. Moving in

the span axis is akin to moving the reference cylinder between the fingers across the table surface.

This axis measures the largest object the fingers can span; the primary open/close motion of the

fingers should be in this axis.

Depth — is the axis orthogonal to the plane of the palm. Moving in the depth axis is akin to

moving the reference cylinder closer to, or farther from, the palm. Span and Depth are typically

coupled under finger actuation; “opening” the fingers in the span direction will usually change the

depth.

Width — is the axis normal to the table top. Moving in the width axis is akin to lifting the cylinder
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Figure A.1: Our measurement method: 1) The three measurement axes are fit to the hand using a
grasping scenario. Other axis fits are shown in the bottom-right. 2) Measure the hand’s max and
min width. 3) Make at least two span-depth measurements, one at the base and another at the
distal links.

Measuring Hands with Span, Depth, & Width 

1. Fit Axes to Hand 
Position the hand to grasp a cylinder. Use 
features of the cylinder to apply measurement 
axes to hand. 

3. Span-Depth Measurements 
Measure distance between distal links, base of 
proximal link, and any mid points needed to 
adequately approximate the space. 

Dept 
h 

Span 

2. Measuring Width 
Max: tallest object that can fit 
Min: small height with opposition 

Examples: 

Axis Fits with Other Common 
Robot Hand Designs 

Anthropomorphic 
Fingers 

Width 
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Figure A.2: Our measurement method, continued: 4) repeat step 3 along the hand’s actuation
profile. An actuation profile depends on the grasp being used, precision and power grasps are
shown. One must make span-depth measurements at: i) the hand at the maximum open position
to practically accomplish the type of grasp used and ii) the hand when the distal measurement is
zero. Intermediate finger positions are used to better approximate the space, if needed.

4. Repeat Span-Depth Measurements for several Finger Positions 

Span-Depth Measurements are needed for the max and min grasp 
positions, as well as any intermediate grasp positions to adequately 
approximate the space. How the max and min grasp positions are defined 
depend on the type of grasp being used. 
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straight up off the table. The width axis measures the height of objects that can be grasped by a

hand. For most hands, the width measurements remain constant throughout actuation.

A.0.2 One-time Measurements

There are three measurements that are taken once and do not change with finger actuation. These

are: the Maximum Open, and the Minimum and Maximum Width measurements. The Maximum

Open measurement is used to record the span when the fingers are completely open. The Minimum

Width measures the shortest object the hand could pick up off of the table. The Maximum Width

represents the tallest object or width of the hand, depending on finger layout.

The Maximum Open measurement measures the distance between the ends of the distal links,

without taking grasping into account. For this measurement, we open the hand as far as it will go.

This is the finger configuration typically used in other work (127; 128).

It is important to consider the height an object has to be for the hand to have antipodal contact

(see Fig. A.1). Minimum Width is the distance from the tabletop to the lowest contact point at

which fingers on opposite sides would connect with the object.

Our definition for Maximum Width depends on the hand orientation. In general, Maximum

Width represents the tallest object which could fit inside the hand (e.g. Fig. A.1, bottom-right,

the tallest object that fits under the top finger of the hand labelled ‘Spread Fingers’). For hands

without an upper limit (also in Fig. A.1), the tallest object could (theoretically) be infinite. Instead,

in these cases, we record the hand’s palm width with a ‘+’ after the measurement.

A.0.3 Span-Depth Measurements at a given Finger Position

When measuring a hand configuration we require at least two span-depth measurements (Base and

Distal) in order to approximate the enclosed grasp shape (see left of Fig. A.1). The locations of

these measurements are based on depth. Each measurement records the Depth and the Span, for

a minimum of two measurement pairs.

The Base measurement is taken at the center of the proximal joints. If the proximal joints are

flush with the palm, the base measurement is taken at a depth of zero (at the palm).

The Distal measurement occurs at the distal link. We provide two locations: at the tip or at

the center of the distal link (on the fingerpad surface), depending on the finger configuration used

to accomplish the grasp. The tip should be used only when the tip of the finger is in contact with

the hypothetical cylinder (in this case the fingerpad surface is perpendicular to the contact).

The Mid measurement(s) (there can be more than one) are taken between the Base and Distal

measurements. They are intended to capture how the enclosed space widens between the Base and

Distal measurements. The measurer should choose the number and placement of these measure-

ments to capture maxima (and possibly minima) of the changes in Span with respect to Depth in

the hand’s space. For the hands measured in this paper we chose one Mid measurement and placed

it at the distal joint as an example.
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A.0.4 Finger Positions to Measure

We approximate how the enclosed space changes as the hand is actuated using at least two finger

positions. These finger positions correspond to the Maximum and Minimum f unctional grasps

attainable according to the type of grasp being performed (see right of Fig. A.2). These functional

configurations must represent grasps, and therefore are not necessarily the widest/narrowest figure

position.

Using linear interpolation we can generate approximate Span-Depth measurements at any point

in the actuation. Where this approximation differs too much from the actual measurements, an

intermediate measurement should be added. For the hands measured in this paper we chose one

intermediate measurement for each hand.

Intermediate finger positions represent any finger position between the Max and Min positions,

but they are not required. The intent of the Intermediate positions is to approximate how the

Span-Depth measurements change as the fingers are actuated. When determining intermediate

finger positions, make sure that each finger is actuated the same amount, as if all fingers were

actuated for the same amount of time.

A.0.5 Power Grasp Measurements

We define the power grasp functionality as a stable grasp with at least three contact points on an

ovoid object. This is typically one contact point on the palm and the others at the fingers. The

finger contact points should be past the centerline of the object and at an angle of at least 80◦

relative to the distal measurement line (see bottom row of Fig. A.2) as a guideline.

We define two power grasp variations: A spherical power grasp that fully encloses the object

from three (or more) directions, and a cylindrical power grasp that encloses a (2D) circular area.

Hands may be capable of none, one, or both grasps — which variations to measure is determined

by the measurer.

The Span-Depth measurements are slightly different for the spherical power grasp because the

contact points are no longer planar. Instead of a single pan length measurement we measure the

area of a disk that fits at each depth, effectively merging span and width.

A.0.6 Precision Grasp Measurements

We define the precision grasp functionally as a stable grasp with finger contacts at the centerline of

an ovoid shape held in the distal links. The distal link contact surfaces should be oriented at most

30◦ outward relative to the depth axes (see top row of Fig. A.2) as a functional guideline. The

intent here is to eliminate grasps in which the fingers contact the object without sufficient frictional

force to keep the object from “popping” out of the grasp.
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A.0.7 Improving Measurement Transparency

We include here brief recommendations on what measurers can do to make the measurements as

transparent as possible for end-users.

Measurements can be performed on a physical or simulated representation of the hand. For

physical hands, it may be difficult in practice to hold the fingers in the desired configurations,

particularly for underactuated hands performing power grasps. In this case we suggest using an

actual object to keep the hand in position.

Regardless of the medium used to measure the hand, we recommend providing pictures of each

measurement to maximize measurement transparency.

A.0.8 Software Tools

We provide additional software tools to 1) interpolate the measurements, 2) determine if an ob-

ject will fit in the hand, and 3) determine qualitative (small, medium, large) object-hand region

definitions. All of these are parameterized by the grasp type t.

Span s (optionally width w for spherical grasp types) is defined as a piece-wise linear function

of the depth, d. Each hand configuration defines n ≥ 2 sets of depth-span(width) measurements.

These sets are, in turn, linearly interpolated based on the percentage actuation, a:

(sa, da)n = ConfigInterp(t, a) (A.1)

s = SpanInterp(t, (sa, da)n, d) (A.2)

Given an object’s cross-sectional measurements (os, od) and optional height (ow), and desired grasp

type t, we define a simple search function that determines an ideal actuation percentage for enclosing

the object. This function returns the size of the object with respect to each axes x as well as the

best actuation percentage a and depth d to place the object’s center at:

(tS/S/M/L/tL)x, a, d = Fit(t, os, od, ow) (A.3)

The size measurements are calculated based on the maximum Mx and minimum mx values for each

axes x:

sx =
Ox −mx

Mx −mx
(A.4)

We define the size ranges as Too Small (sx < 0), Small (0 ≤ sx < 0.3), Medium (0.3 ≤ sx < 0.7),

Large (0.7 < sx ≤ 1.0), and Too Large (sx > 1). The closer sx is to 0 or 1, the less tolerance there

is for error when grasping the object.

Inverting the mid-point of these ranges (eg, using sx = 0.15 and calculating Ox) is a straight-

forward way to define a canonical “small” object size with respect to the hand.
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Appendix B: Study Surveys

B.1 Tool Use and Actuation Survey

Please see next page.



Hand/Task Survey, Round 1
Subject _____ Hand _____ Trial 1
Experimenter will fill out the above entries before the survey is started.

Please answer the following questions to the best of your ability based on your experience so
far in the study.

1. How successful were you at performing the task?

Not successful                        Somewhat successful                               Successful

1          2          3          4          5          6          7           8          9           10

2. If you were successful, how efficiently were you able to complete the task?

Not efficient                             Somewhat efficient                                   Efficient

1          2          3          4          5          6          7           8          9           10

3. How intuitive was it to control the hand?

Not intuitive                            Somewhat intuitive                                  Intuitive

1          2          3          4          5          6          7           8          9           10

4. How close did you come to performing the task the way you would have liked?

Not close                                 Somewhat close                                        Close

1          2          3          4          5          6          7           8          9           10

-



5. What improvements would you make to the hand and why?



Hand/Task Survey, Round 2
Subject _____ Hand _____ Trial 2
Experimenter will fill out the above entries before the survey is started.

Please answer the following questions to the best of your ability based on your experience so
far in the study.

6. How successful were you at performing the task?

Not successful                        Somewhat successful                               Successful

1          2          3          4          5          6          7           8          9           10

7. If you were successful, how efficiently were you able to complete the task?

Not efficient                             Somewhat efficient                                   Efficient

1          2          3          4          5          6          7           8          9           10

8. How intuitive was it to control the hand?

Not intuitive                            Somewhat intuitive                                  Intuitive

1          2          3          4          5          6          7           8          9           10

9. How close did you come to performing the task the way you would have liked?

Not close                                 Somewhat close                                        Close

1          2          3          4          5          6          7           8          9           10

-



10. What improvements would you make to the hand and why?

11. If you could choose one joint to make fully posable for all fingers on a hand, which would
you choose and why? Circle the joint on the diagram below. Why?



12. If you could choose one finger to make fully posable, which finger would you choose and
why? Circle the finger on the diagram below. Why?

Finger 1 

I 

Finger 3 



13. If you had to chose one hand from the study to perform this (and similar tasks), which
hand would you use? Why?
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B.2 Validation Study Survey

Please see next page.



Subject #: _____ Hand:___________________
Experimenter will fill out the above.

1v1 Hand Survey
Please answer the following questions to the best of your ability based on your experience so
far in the study.

Given your experience in this study with this hand, how much would you agree or disagree with
each question, for each direction? Write one of the following answers in the box:

● ‘+’ if you strongly agree
● ‘⏺’ if you strongly disagree
● Otherwise, nothing

E W

It felt easy to go far in this direction.

I was satisfied with the control I had over the hand for this
direction.

I was consistent between the trials for this direction.

Sliding the fingers along the sides of the object was useful for
this direction.

During the trials for this direction, I was tempted to let go and
regrasp the object.

1



Subject #: _____ Hand:___________________
Experimenter will fill out the above.

Hand #1
Please answer the following questions to the best of your ability based on your experience so
far in the study.

Given your experience in this study with this hand, how much would you agree or disagree with
each question, for each direction? Write one of the following answers in the box:

● ‘+’ if you strongly agree
● ‘⏺’ if you strongly disagree
● Otherwise, nothing

N NE E SE S SW W NW CW CCW

It felt easy to go far in this direction.

I was satisfied with the control I had over the hand
for this direction.

I was consistent between the trials for this direction.

Sliding the fingers along the sides of the object was
useful for this direction.

During the trials for this direction, I was tempted to
let go and regrasp the object.

What did you especially like about this hand design? Why?

What did you not like about this hand design? Why?

2



Subject #: _____ Hand:___________________
Experimenter will fill out the above.

Did you feel like the distal link was the right length? Would you have preferred if it was shorter or
longer? Why?

Did you feel like the proximal link was the right length? Would you have preferred if it was
shorter or larger? Why?

Did you feel like the palm was the right width? Would you have preferred if the fingers were
closer or farther apart? Why?

Generally, when you had to rotate and translate the object, how well did the hand perform? Is
there something we can change in the design to make it work better for these combined trials?
Why?

3



Subject #: _____ Hand:___________________
Experimenter will fill out the above.

Hand #2
N NE E SE S SW W NW CW CCW

It felt easy to go far in this direction.

I was satisfied with the control I had over the hand
for this direction.

I was consistent between the trials for this direction.

Sliding the fingers along the sides of the object was
useful for this direction.

During the trials for this direction, I was tempted to
let go and regrasp the object.

What did you especially like about this hand design? Why?

What did you not like about this hand design? Why?

4



Subject #: _____ Hand:___________________
Experimenter will fill out the above.

Did you feel like the distal link was the right length? Would you have preferred if it was shorter or
longer? Why?

Did you feel like the proximal link was the right length? Would you have preferred if it was
shorter or larger? Why?

Did you feel like the palm was the right width? Would you have preferred if the fingers were
closer or farther apart? Why?

Generally, when you had to rotate and translate the object, how well did the hand perform? Is
there something we can change in the design to make it work better for these combined trials?
Why?

5



Subject #: _____ Hand:___________________
Experimenter will fill out the above.

Hand #3
N NE E SE S SW W NW CW CC

W

It felt easy to go far in this direction.

I was satisfied with the control I had over the hand
for this direction.

I was consistent between the trials for this direction.

Sliding the fingers along the sides of the object was
useful for this direction.

During the trials for this direction, I was tempted to
let go and regrasp the object.

What did you especially like about this hand design? Why?

What did you not like about this hand design? Why?

6



Subject #: _____ Hand:___________________
Experimenter will fill out the above.

Did you feel like the distal link was the right length? Would you have preferred if it was shorter or
longer? Why?

Did you feel like the proximal link was the right length? Would you have preferred if it was
shorter or larger? Why?

Did you feel like the palm was the right width? Would you have preferred if the fingers were
closer or farther apart? Why?

Generally, when you had to rotate and translate the object, how well did the hand perform? Is
there something we can change in the design to make it work better for these combined trials?
Why?

7



Subject #: _____ Hand:___________________
Experimenter will fill out the above.

After Completion
Which number hand was the hardest to use? Why?

Which number hand was the easiest to use? Why?

Which number hand do you think had the best all-around performance? Why?

Considering your entire experience in this study, are there answers that you would like to
revise? For which hands? Why?

8
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Appendix C: Best Trials for all Hands, all Rotation Conditions
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Figure C.1: Best trials for the +15 Rotation+Translation trials are shown as colored lines in each
direction for the 2v2, 2v3, 3v3, and p2vp2 hands. The grey lines show other unselected trials for
reference.
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Figure C.2: Best trials for the -15 Rotation+Translation trials are shown as colored lines in each
direction for the 2v2, 2v3, 3v3, and p2vp2 hands. The grey lines show other unselected trials for
reference.

Selected Best Trials for -15 R+ T T(als 
Each colored line is the best trial path. All other trials are drawn in grey. 
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Appendix D: Full Asterisk Test Results

D.1 Averaged Trial Paths and Rotation Condition Analysis

See figures D.1 (2v2, page 87), D.2(2v3, page 88), D.3 (3v3, page 89), D.4 (p2vp2, page 90),

and D.5 (2v1 & p1vp1, page 91) show the averaged asterisk paths in for both the validation (top)

and exploration (middle) studies, and rotation-only results (bottom).
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Figure D.1: Comprehensive Asterisk Test Results for the 2v2 hand, for both the Experimental and
Validation studies.

2v2 Hand Results 
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Figure D.2: Comprehensive Asterisk Test Results for the 2v3 hand, for both the Experimental and
Validation studies.

2v3 Hand Results 
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Figure D.3: Comprehensive Asterisk Test Results for the 3v3 hand, for both the Experimental and
Validation studies.

3v3 Hand Results 

Max Span Max Depth Obj Size lnit Dist 

210mm 140mm 53mm 105mm 

Validation Study Results 

• -15 R+ T ■ Translation-Only 

5 ••1 

Exploration Study Results 

• -15 R+ T ■ Translation-Only 

.. wo• 

.. , 

... 

Rotation-Only 
Results 

.. 

Exploration 

3v3 hand setup in validation study 

+15 R+T 

01 111'0...&f 

+15 R+T 
.. 
.. 

Validation 



90

Figure D.4: Comprehensive Asterisk Test Results for the p2vp2 hand, for both the Experimental
and Validation studies.
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Figure D.5: Comprehensive Asterisk Test Results for the 2v1 and p1vp1 hands, for both the
Experimental and Validation studies.
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D.2 Rotation+Translation Trials Statistically Compared to Translation-Only

Trials, Exploration vs Validation Statistical Comparisons

See figures D.6 (2v2, page 93), D.7(2v3, page 94), D.8 (3v3, page 95), D.9 (p2vp2, page 96),

and D.10 (2v1 & p1vp1, page 97) show statistical comparisons: comparing the rotation+translation

trials to the translation-only trials (top) and comparing the exploration and validation trials (bot-

tom).
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Figure D.6: Statistical Results for the 2v2 hand, (top) between t-only and +/-15 degrees and
(bottom) between Experimental and Validation studies.
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Figure D.7: Statistical Results for the 2v3 hand, (top) between t-only and +/-15 degrees and
(bottom) between Experimental and Validation studies.
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Figure D.8: Statistical Results for the 3v3 hand, (top) between t-only and +/-15 degrees and
(bottom) between Experimental and Validation studies.
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Figure D.9: Statistical Results for the p2vp2 hand, (top) between t-only and +/-15 degrees and
(bottom) between Experimental and Validation studies.
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Figure D.10: Statistical Results for the 2v1 and p1vp1 hands, (top) between t-only and +/-15
degrees and (bottom) between Experimental and Validation studies.
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D.3 2v2 Comparisons with Other Hands in Validation Study

Figures D.11, D.13, and D.12 show the significant differences between the hands for each direction,

with respect to total distance.

Figure D.11: Statistical Comparisons between the 2v2 and p1vp1 according to total distance values
in each direction. As shown, 2v2 significantly outperforms the p1vp1 hand in every direction.
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Figure D.12: Statistical Comparisons between the 2v2 and 2v3 (top), 3v3 (bottom) according to
total distance values in each direction.
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Figure D.13: Statistical Comparisons between the 2v2 and p2vp2 (top), 2v1 (bottom) according to
total distance values in each direction.
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D.4 Results from Extra Hands in Exploratory study not included in Vali-

dation study

The exploratory study included more hands that were not studied in the Validation study: the

Barrett hand, 1v1, 2v0, f1v1 hands. In addition, a rotation+translation trials were collected for

the exploratory study and are also provided. Applicable data is shown in Figure D.15 (translation-

only, rotation+translation) and Figure D.16 (rotation-only). Please reference Figure D.14 for more.

Figure D.14: The ten hands studied in the exploration study utilized rotary joints and planar joints
at the palm to cover a variety of degrees of freedom.
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Figure D.15: Asterisk Test Results for the Barrett, 2v1, 2v0, 1v1, and f1v1 hands, for the exploration
study. The 2v0, 1v1, and f1v1 hands were not capable of rotation.
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Figure D.16: Rotation-only Results for the Barrett and 2v1 hands, for both the Experimental and
Validation studies. The 2v0, 1v1, and f1v1 hands were not capable of rotation.
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