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Chapter 1: Introduction

Many realistic sequential decision-making problems have huge state and action spaces

with highly stochastic state-transition dynamics. The state and action spaces of these

problems are usually defined in a factored manner using a set of state and action variables.

The state-transition dynamics are specified as Dynamic Bayesian Networks (DBN) [48]

over these variables, and the reward function is defined as a function of state and action

variables. The framework of factored Markov Decision Processes (MDP) [42] is used to

model these problems mathematically, and the language RDDL ([49]) was designed to

encode factored MDPs compactly. We focus on RDDL probabilistic planning problems

with binary state and action variables in this work.

Probabilistic planning differs from Reinforcement Learning (RL) in that the plan-

ning agent has access to a precise model of the environment in the form of a factored

MDP. The MDP is usually too large for exact offline solution techniques such as value

iteration, policy iteration and linear programming [42]. A typical solution technique

for probabilistic planning is online search such as Monte Carlo Tree Search (MCTS) [9]

with an environment simulator that can return a sample next state and reward for any

state-action pair. The state-of-the-art planner for benchmark RDDL problems, PROST

([28]), performs MCTS with the Upper Confidence bound for Trees (UCT) [31] heuristic

for expanding the search tree.

Online search methods make an action choice only for the current environment state

as opposed to offline methods that compute a policy for the entire state space. The action

selected for the current state is immediately executed to get to the next environment state

at which the online search process is repeated. Although very effective in practice, online

search can take considerable time to make good action choices for the states encountered

in the online search process, which can be a problem in applications that require fast

decision making. A good alternative to both online planning and exact offline methods

for these applications is high-quality reactive policies compactly encoded for the entire

state space that can be applied instantly at any given state. We explore the possibility

of using deep learning to train such reactive policies.
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In the first part of our work, we train reactive Deep Neural Network (DNN) policies

via supervised learning for probabilistic planning problems. We train several problem-

dependent network architectures to imitate the action choices of two high-quality expert

planners. The key feature of our work is a sparse network architecture with connections

mirroring the DBN defining the state-transition dynamics of the problem. This is similar

in spirit to Convolutional Neural Network (CNN) architectures taking advantage of the

spatial proximity of pixels in images. This work was published in the proceedings of the

28th International Conference on Automated Planning and Scheduling (ICAPS) [23]. It

can be found in section 2 of the thesis.

Reactive policies can be applied instantly at any state to make action decisions really

quickly. However, in practice, we may have more time to make action decisions than

what we need to just apply a reactive policy. The extra time, which might not be enough

for a complete online search for optimal actions, can be utilized to search around the base

policy to find better actions. We refer to this process of improving on a given base policy

via online search as Online Search for Policy Improvement (OSPI). An OSPI procedure

performs online search with the objective of computing a policy that is better than or

at least as good as the given base policy.

Online search is typically done by constructing a search tree with the state for which

an action decision is to be made as the root of the tree. The tree is used to estimate

the state-action values of actions at the root and the action with the maximum value

is returned for the state. Online search trees tend to be huge, so, in practice, action

branches in the tree need to be pruned, which can affect policy improvement adversely.

An OSPI procedure can return a policy that is worse than the base policy when actions

are pruned in its search tree. We illustrate this with an example and formalize the idea

with the choice function framework.

A choice function is a function from nodes in a search tree to action subsets. It returns

a subset of applicable actions for a given node in a search tree. An OSPI procedure can

be completely specified by a choice function and the leaf evaluation function when the

state-transition dynamics in the search tree are exact. Since action pruning in OSPI

search trees is entirely defined by the choice function, we can identify properties of

choice functions that affect policy improvement.

In the second part of our work, we establish sufficient conditions on choice functions

for guaranteed policy improvement in OSPI procedures. We also introduce a param-
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eterized choice function called Limited Discrepancy Choice Function (LDCF), which

satisfies the sufficient conditions and covers several existing OSPI procedures as special

cases. This work was published in the proceedings of the 34th AAAI Conference on

Artificial Intelligence [24]. It can be found in section 3 of the thesis.

There are several existing OSPI procedures that come with theoretical guarantees of

policy improvement under ideal conditions. However, these procedures can fail when the

ideal theoretical assumptions cannot be satisfied in practice. In the third part our work,

we draw attention to the issue of policy degradation, which happens when the online

policy returned by an OSPI procedure performs worse than the base policy. In order

to understand the empirical performance of OSPI procedures, we propose benchmark

domains with base policies, baseline OSPI procedures and evaluation metrics that take

policy degradation into consideration. This work was published in the Workshop on

the International Planning Competition (WIPC) in the 31st International Conference

on Planning and Scheduling [21]. It can be found in section 4 of the thesis.

Most realistic probabilistic planning problems lead to factored MDPs with large state

and action spaces. Such large MDPs are usually solved approximately as exact offline

solution methods are impractical for large state and action spaces. State aggregation in

MDPs is an approximate solution technique, where states and even actions of an MDP

are grouped together to form a smaller aggregate problem. The aggregate problem is

then solved and the solution is extended to the original MDP. The approximate solution

thus obtained for the original MDP will usually be sub-optimal with the degree of sub-

optimality depending on the precise definition of the aggregate problem.

In the final part of our work, we study existing aggregation methods for approximate

solution of MDPs. We consider two basic aggregation frameworks and the associated

theoretical results on the sub-optimality of the aggregate solutions. We then relate

several aggregation schemes to the two frameworks with the objective of presenting a

unified view of the theoretical bounds. This part of our work can be found in section 5

of the thesis.
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Chapter 2: Training Deep Reactive Policies for Probabilistic

Planning Problems

2.1 Abstract

State-of-the-art probabilistic planners typically apply look-ahead search and reasoning

at each step to make a decision. While this approach can enable high-quality decisions,

it can be computationally expensive for problems that require fast decision making. In

this paper, we investigate the potential for deep learning to replace search by fast reac-

tive policies. We focus on supervised learning of deep reactive policies for probabilistic

planning problems described in RDDL. A key challenge is to explore the large design

space of network architectures and training methods, which was critical to prior deep

learning successes. We investigate a number of choices in this space and conduct experi-

ments across a set of benchmark problems. Our results show that effective deep reactive

policies can be learned for many benchmark problems and that leveraging the planning

problem description to define the network structure can be beneficial.

2.2 Introduction

Many real-world planning problems involve large factored state spaces with highly stochas-

tic exogenous and endogenous dynamics. The Relational Dynamic Influence Diagram

Language (RDDL) was designed to model such problems by compactly defining large

Dynamic Bayesian Networks (DBNs) over state and action variables. Current state-of-

the-art planners for RDDL problems are based on online search, where at each step some

combination of search and reasoning is used to select an action. For example, there are

planners based on sample-based tree search [28, 32, 8], symbolic variants [13, 45, 2], and

those that construct and solve integer linear programs at each step [22]. These planners

can require non-trivial computation time per step, which can make them inapplicable to

problems that require fast decisions.
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One approach to support fast decisions is via reactive policies that can be applied

online to quickly select actions. Offline Symbolic Dynamic Programming (SDP) has re-

cently been explored for producing such policies for RDDL problems [43, 44]. SDP [18]

uses symbolic operations to produce a symbolic policy representation that can be effi-

ciently evaluated at any state. Unfortunately, while there have been significant advances,

scalability is still an issue with SDP.

Reactive policies can also be produced via supervised learning or reinforcement learn-

ing. Most recently, state-of-the-art results have been achieved in a variety of domains by

learning deep neural networks (DNNs) to represent reactive policies. Examples include

learning to play Atari games directly from pixel input [38], robotic control (e.g., [34]),

and the game of Go [52, 54]. These results motivate the investigation of learning such

Deep Reactive Policies (DRPs) for planning problems described in RDDL. We note that

the impressive successes of DRPs are not due to the blind application of off-the-shelf

tools and DNN architectures. Rather, the successes were enabled by significant exper-

tise and manual exploration of architectures and training methods. The objective of

this paper is to present an initial exploration of the DRP design space for RDDL bench-

mark problems via an extensive empirical investigation covering five domains with some

theoretical guarantees about the expressiveness of the architectures.

We describe three classes of architectures that support problem-specific DRPs by

leveraging the RDDL problem definition. We train our DRPs to imitate the action

choices of more expensive non-reactive planners by supervised learning. We consider

two different choices for generating data and two different ways to optimize DRPs based

on the data. Our experiments shed light on the following questions. Can we learn DRPs

that are competitive with the planners that they are learned from? Can the RDDL

problem definition be used to define more effective network architectures? Are there

any consistently superior DRP architecture choices across RDDL problems? Are some

supervised training signals and loss functions more effective in general than others? We

note that this study is focused on learning DRPs for individual planning problems using

supervised learning. It is an interesting future direction to consider learning DRPs that

generalize across problems within an entire planning domain. However, such a step

requires additional architectural considerations, which we believe should be informed by

the study of individual problems. We also note that other training mechanisms such as

reinforcement learning will be interesting to consider in future work.
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2.3 Related Work

There is a long history of work on integrating machine learning and automated planning

[36, 63, 26]. Much work focuses on learning control knowledge (heuristics and pruning

rules) to speed up a planner and/or improve the plan quality. While these approaches

have shown promise, they are not guaranteed to reduce planning times and can even

result in net slow down of a planner [37]. An important exception is the prior work on

learning reactive policies in the form of relational rule lists for deterministic STRIPS

domains [29]. Extensions to the work include using richer rule representations [35, 14],

iterative learning algorithms [16], and application to probabilistic STRIPS [62]. While

these approaches are promising in many domains, it has been a challenge to demonstrate

their robustness across a wide range of domains. One difficulty is that the rule languages,

once selected, are inflexible and can not always capture key concepts. This motivates

investigating DNNs for planning, since, in principle, they can induce deep features and

concepts as needed.

The most closely related prior work is the Factored Policy Gradient (FPG) planner

[10], which represents reactive policies using simple neural networks, most commonly

a linear network per action for computing action probabilities. The network parame-

ters are tuned using policy-gradient reinforcement learning where each learning episode

begins from the starting state of the problem being considered. Promising results were

demonstrated for a number of planning domains including probabilistic PDDL (PPDDL)

benchmark problems. Interestingly, for most problems there was no perceived benefit

to using multi-layer networks over simple linear networks. Our experiments also show

that for some RDDL benchmarks linear networks are as good as or better than more

complex networks. Most recently, concurrent work [57] is the first to learn deep networks

for relational generalization across problems of PPDDL planning domains. PPDDL and

RDDL are qualitatively different languages, however, which makes it difficult to apply

that approach directly to many RDDL domains.

2.4 RDDL Planning Problems

We assume familiarity with the basic framework of Markov Decision Processes (MDPs).

A factored MDP describes the state space by a finite set of binary variables (x1, x2, . . . , xn)
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and the action space by a finite set of binary variables (a1, a2, . . . , am). In this work, we

focus on the case where actions are constrained to have exactly one of the action vari-

ables set at any time and view each ai as a distinct ground action. Most current RDDL

benchmarks already have this constraint. The reward function R specifies a mapping

from the state and action variables to real-valued rewards. We assume that the transition

function T is compactly described as a DBN which specifies the probability distribution

over each state variable xi in the next time step, denoted x′i, given the values of a sub-

set of the state and action variables parents(x′i) in the current time step, in particular,

T (s, a, s′) =
∏
i Pr(x

′
i|parents(x′i)). RDDL [49] is a high-level specification language for

compactly representing such DBN domains in a relationally-factored form using param-

eterized state and action variables. Individual problem instances then specify a set of

domain objects that instantiate the state and action variables. A policy π is a mapping,

possibly stochastic, from the state space to actions. We focus on optimizing the expected

finite-horizon total reward of a policy.

2.5 Architectures for Deep Reactive Policies

A Deep Reactive Policy (DRP) is a policy encoded as a deep neural network. DRPs

are reactive as they can be quickly evaluated in a single feed-forward pass. Our DRP

architectures are organized into L+1 layers of nodes. Z l = {zlk} denotes layer l, where zlk
is the k’th node in layer l and its value is denoted by o(zlk). The input layer Z0 contains

n nodes, each taking the value of one state variable, i.e., o(z0
i ) = xi. Layers 1 through

L−1 are hidden layers each containing C×n nodes, where C parameterizes the number

of channels which allows for scaling the DRP size with the number of state variables.

The output layer ZL = {zL0 , zL1 , zL2 , . . . , zLm} contains m + 1 nodes, where zL1 , . . . , z
L
m

correspond to the m RDDL actions and zL0 corresponds to the NOOP action. In all the

architectures the final hidden layer ZL−1 is fully connected to the output layer ZL.

For single-channel networks (C = 1) we have Z l = {zl1, zl2, ..., zln} for all the hidden

layers. Each hidden node zlk is connected to a set of nodes (I lk) in the previous layer

Z l−1 via real-valued weights, where wli,k is the weight from zl−1
i to zlk and blk is the bias

parameter to zlk. We use ReLU activation functions as the non-linearity for hidden nodes
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Figure 2.1: Single-channel FC-DRP, Single-channel S-DRP, Multi-channel S-DRP

so that the value of zlk is

o(zlk) = ReLU

∑
p∈Ilk

o(zl−1
p )wlp,k + blk

 . (2.1)

The output layer is a softmax layer computing a probability distribution over the m+ 1

actions

o(zLk ) =
exp(

∑|ZL−1|
p=1 o(zL−1

p )wLp,k + bLk )∑m
j=0 exp(

∑|ZL−1|
p=1 o(zL−1

p )wLp,j + bLj )
. (2.2)

For multi-channel networks (C > 1) Z l = {X l
1, X

l
2, ..., X

l
n} for all the hidden layers.

The set of nodes in Z l is partitioned into n subsets, where subset X l
k corresponds to zlk in

a single-channel network with |X l
k| = C. If the hidden layers of single-channel networks

are (column) vectors of size n then those of multi-channel networks are matrices with

C such (column) vectors. The kth row of the matrix corresponds to nodes in X l
k. All

nodes in X l
k receive the same set of input connections from the previous layer though

with different weights. If zl−1
p is connected to node zlk in a single-channel network then

the entire subset of nodes X l−1
p are connected to zlk in a multi-channel network.

Fully-Connected DRPs (FC-DRPs). FC-DRPs are the traditional fully-connected

networks in which each hidden node at layer l is connected to each hidden node in layer

l−1, i.e., for all l > 1 and k, I lk = {1, . . . , |Z l−1|}. We use FC(L,C) to denote a FC-DRP

architecture with layer and channel parameters L and C.
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Sparse DRPs (S-DRPs). The large number of FC-DRP parameters raises the poten-

tial for overfitting. CNNs reduce the number of parameters, while remaining expressive

by attaching spatial semantics to hidden nodes and only allowing connections to spa-

tially close nodes. In analogy, S-DRPs associate hidden nodes with state variables and

only connect nodes whose variables have probabilistic dependencies. S(L,C) denotes an

S-DRP with the associated layer and channel parameters. The nodes in hidden layer Z l

are partitioned into n sets X l
1, X

l
2, . . . , X

l
n, each having C hidden units. We interpret

the nodes in X l
i as being associated with state variable xi. A hidden node zlk ∈ X l

i is

connected only to nodes in Z l−1 that are associated with state variables that xi depends

on in the transition function. In particular, I lk =
⋃
j∈parents(x′i)

X l−1
j , where parents(x′i)

is the set of state variables in the current time step that can influence the transition

probability of xi. Thus, the S-DRP connectivity mirrors the DBN local dependency

structure across time steps. Figure 2.1 illustrates an FC-DRP and S-DRP with single

and multiple channels.

Representation Capacity of S-DRPs. The potential advantage of sparsity is better

generalization, while the potential disadvantage is representation capacity. Consider an

MDP with two binary state variables x1 and x2 with independent transition dynamics.

Let policy π(x1, x2) = XOR(x1, x2), which is not linearly representable. The hidden

layers for any S-DRP will not be able to compute features that combine x1 and x2

and hence the final linear softmax layer will not be able to represent π. In general,

when policies involve complex dependencies among state variables that have independent

transition dynamics, S-DRPs may be inadequate. We provide an initial result that

characterizes a class of policies that is S-DRP representable subject to MDP restrictions

and also describe a small S-DRP modification that supports any policy.

The Q-function Qπ(s, a) of π gives the value of executing action a from state s and

then following policy π. We say that a policy π is Q-representable if there is a policy π′

such that π(s) = arg maxaQ
π′(s, a) and that for each state the maximizing Q-value is

unique. Examples of Q-representable policies include optimal policies that have unique

optimal actions in each state, policies computed by the Rollout algorithm for any base

rollout policy π′, or any policy from the standard policy iteration sequence. A reward

function R is said to be independently additive if R(s) =
∑

iRi(xi). A transition function

is DBN-representable if it has the form T (s, a, s′) =
∏
i Pr(x

′
i|parents(x′i)).
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Theorem 1. For any MDP with independently additive rewards and DBN-representable

transition function, if π is Q-representable, then π can be represented as a finite S-DRP.

Proof. The proof uses the concept of Krylov basis for MDPs [40]. Let P be the transition

probability matrix over ground MDP states for π and R be the reward vector over ground

states. The Krylov basis function of order t is given by bt = P tR. The component of

vector bt for state s gives the expected reward at step t if π is followed from s. For a

finite K the value function V π of π can be represented as a linear combination of the

basis functions b0, . . . , bK [20]. It follows that for every action a ∈ A, the vector, Qπ(., a),

consisting of the Q-values of all the states for action a, can also be linearly represented

with a basis of the same dimension K.

To relate the Krylov basis to S-DRPs, it is possible to show that for DBN-representable

transition functions and independently additive rewards, each Krylov basis function has

the form bt(s) =
∑

iRi(xi)P
(
xti|parentsti

)
, where xti is the value of state variable xi

after t steps from the initial state being conditioned on parentsti, the set of state vari-

ables at the initial time step that influence xti, i.e., the t-step influencers of xi. Thus,

the Krylov basis decomposes linearly into a set of functions that depend on the t-step

influencers of each xi. Now consider any S-DRP hidden node z ∈ XL−1
i in the last layer

that is associated with xi. It is easy to see that the output o(z) is a function of only the

input state variables that are L-step influencers of xi under any policy. Thus, each such

z can be viewed as computing a potentially complex non-linear feature of the L-step

influencers of xi. For large enough L and C this allows for the S-DRP to represent the

above decomposition of the Krylov basis and applying a softmax layer will then return

the actions of π.

By changing the activation function of the output layer we can represent any policy

under mild conditions. In particular, an RBF S-DRP is a DRP where the softmax output

layer is replaced by having a radial basis activation function (RBF) for each output node.

The only constraint on the RBF is that it is maximized when the affine transformation

of its input is zero (e.g., a Gaussian). An RBF S-DRP selects the action in the output

layer with the highest node activation. In the following a policy π is said to be Q-distinct

if for any state s and any a 6= π(s), Qπ(s, π(s)) 6= Qπ(s, a).

Theorem 2. For any MDP with independently additive rewards and DBN-representable

transition function, if π is Q-distinct then π can be represented via a finite RBF S-DRP.
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Proof. (Sketch) The proof is similar to the previous theorem. Since V π is linearly repre-

sentable via Krylov basis functions, so is the vector V π −Qπ(., a) for any action a ∈ A.

Since π is Q-distinct, this expression is zero iff π(s) = a. This means that applying an

RBF to the above difference for each a will identify π(s). The rest of the proof follows

along the same lines as above.

When the reward function is not independently additive, it may decompose into

factors over groups of state variables. In such cases, we can get a similar result by

extending the S-DRPs to include one or more fully connected layers between the last

sparse hidden layer and the output layer.

Relational Weight Sharing DRPs (R-DRPs). An R-DRP is constructed by con-

straining all weights in the S-DRP that are relational matchings to have the same value.

Intuitively, (s, t) and (u, v) are relational matchings when the probabilistic dependency

between s and t is structurally similar to that from u to v. Sharing is limited to weights

between state-fluent nodes in adjacent layers. The bias parameters and the weights

of the fully-connected layer at the end are not shared. Two connections are similar if

the (start-node, end-node) pairs of the connections are similar. For example, in the

blocksworld domain, the pairs (clear(A), on(A, B)) and (clear(C), on(C, D)) are seman-

tically similar. Since nodes in the input and hidden layers of R-DRPs represent state

fluents the (start-node, end-node) pairs (zl−1
u , zlv) are instantiated first-order predicates.

Consider weights wlj,k and wlu,v between (zl−1
j , zlk) and (zl−1

u , zlv) respectively, where

(zl−1
j , zlk) = (qj(j1, j2, ...jnj ), qk(k1, k2, ...knk)), and (zl−1

u , zlv) = (qu(u1, u2, ...unu),

qv(v1, v2, ...vnv)). Let J = (j1, j2, ...jnj ),K = (k1, k2, ...knk), U = (u1, u2, ...unu), and

V = (v1, v2, ...vnv). Weights wlj,k and wlu,v are constrained to be the same if (1) qj = qu

and qk = qv and (2) J × K = U × V . |J × K| = njnk and J × K is defined as

the cross-product of ordered tuples J and K giving an ordered tuple of binary val-

ues. The 1st nk entries of J × K are computed by comparing j1 with each element of

(k1, k2, ..., knk). The 2nd nk entries of J ×K are computed by comparing j2 with each

element of (k1, k2, ..., knk). The last nk entries of J × K are computed by comparing

jnj with each element of (k1, k2, ..., knk). The components of both J and K are strings

representing objects in the problem and when j1 is compared to k1 the result is 1 if the

strings match and 0 otherwise. For example, if zl−1
j = clear(A) and zlk = on(A,B) then

J ×K = (1, 0) because A 6= B and the second component is 0.
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2.6 Supervised Training of DRPs

We use supervised learning to train DRPs for individual RDDL problems. This involves

generating training data and optimizing the parameters of a chosen DRP architecture.

Training Data Generation. Following prior work (e.g., [29, 35, 62]) we generate

training data using imitation learning, which aims to learn a policy that imitates the

actions of an expert. In our case, the expert is a non-reactive online planner that can

select an action at any state. More precisely, given a planning problem with initial

state s0 and horizon H, we use the planner to generate multiple trajectories, each one

starting in s0 and then following a sequence of actions selected by the planner until

the horizon. Each of the stochastic trajectories gives a sequence of state-action pairs

(s0, a0), (s1, a1), . . . , (sH−1, aH−1), which can be combined to create a standard super-

vised training set. A disadvantage of learning from just state-action pairs is that the

learning algorithm is unable to make informed trade-offs when perfect accuracy is not

possible. To address this, we can augment the training examples with Q-value estimates

for each action when available from the planner. Here the Q-value of a state action pair

Q(s, a) is the expected finite horizon reward of starting in state s, taking action a, and

then acting optimally thereafter. This idea of leveraging Q-values for supervised policy

learning has been shown to be effective in prior work, e.g., [16].

Expert Planners. We consider imitation learning from two RDDL planners. The first

is the state-of-the-art planner, Prost [28] (IPPC-2011), which is based on Monte-Carlo

Tree Search with various heuristics and pruning mechanisms. Prost does not generate

Q-value estimates for all actions in a state due to pruning mechanisms. Thus, when

using Prost, the training data only contains state-action pairs. The second planner is

Rollout, which performs policy rollout [56] using a random base policy. Given a state s,

Rollout produces a very rough estimate of Q(s, a) for each action a as follows. Simulate

N trajectories that each start at s, then select action a followed by random actions until

a fixed horizon. Q(s, a) is estimated to be the average cumulative reward across the

trajectories, and the Rollout planner returns the action that maximizes Q(s, a). Since

Rollout produces Q-value estimates for all actions, we include those values in the training

data. Rollout can be viewed as computing a policy that is equivalent to performing one

step of policy iteration starting from a random policy. In practice, Rollout is often
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Table 2.1: Sysadmin, Game of Life and Skill Teaching Results

Sysadmin

Planners TRN(Rollout, 0/1) TRN(Rollout, Q) TRN(Prost, 0/1)
Problem # Prost Rollout πlin π∗ πL πA πlin π∗ πL πA πlin π∗ πL πA
1 339 332 342 346 344 344 341 346 341 341 342 347 344 341

R310 F110 F110 R110 F310 Lin S310 F310 F15

2 301 290 302 315 309 313 313 319 311 313 311 321 321 316
S510 S110 S15 S110 S310 R110 S310 S310 F110

3 553 523 562 575 559 559 559 576 557 562 570 570 561 554
F110 S110 S15 S110 S310 S55 Linear F110 S35

4 489 463 502 504 492 504 495 510 501 501 496 513 490 486
F110 S110 F110 F110 S310 S35 F11 S110 F15

5 573 588 625 645 631 618 625 649 628 634 620 650 637 638
S15 S110 R110 R310 S310 S110 S15 S110 F110

6 527 532 583 598 590 598 583 597 597 595 576 601 578 573
S15 S110 S15 S310 S310 R110 S310 S110 F15

7 618 658 724 734 733 714 727 737 730 737 709 730 723 711
S310 S15 R35 S310 S110 S310 R35 S15 S35

8 498 522 589 591 589 569 596 600 584 579 583 591 591 583
S15 Linear R11 F11 S110 S15 S15 S15 Linear

9 728 811 872 889 875 872 884 893 883 877 832 849 833 849
R35 S15 Linear R310 S110 R35 F11 S15 F11

10 546 580 643 645 641 643 639 655 643 624 608 624 608 624
F11 S15 Linear F11 S110 R15 S11 Linear S11

%∆ Prost 0 1.62 9.82 11.72 10.21 9.81 10.22 12.55 10.43 10.21 8.32 11.18 9.23 8.82
%∆ Rollout -1.32 0 8.00 9.88 8.37 8.03 8.38 10.69 8.59 8.40 6.63 9.44 7.50 7.06

Game of Life

1 210 188 77 196 196 196 70 202 197 199 49 191 191 188
F310 F310 F310 F510 S510 S310 S310 S310 F310

2 130 122 96 125 125 125 98 135 135 121 85 129 126 129
F510 F510 F510 F510 F510 F55 F510 F310 F510

3 150 134 128 146 146 141 121 148 148 148 119 149 148 149
F510 S510 F310 R510 S510 S510 F510 S310 F510

4 347 347 225 331 331 331 227 339 338 338 206 321 304 321
S310 S310 S310 S55 S510 S510 S310 S35 S310

5 309 295 240 285 285 280 234 304 304 304 229 299 287 299
S35 S35 S510 S510 S510 S510 S510 S310 S510

6 283 266 253 268 267 263 252 277 276 274 245 277 275 277
S510 S310 S55 F35 S35 S510 S310 S35 S310

7 486 500 330 455 449 447 308 481 481 481 280 435 421 435
S510 S35 S310 S510 S510 S510 S510 S35 S510

8 435 450 330 431 431 431 337 449 446 446 313 408 408 406
S55 S55 S55 S55 S510 S510 S35 S35 S510

9 410 412 340 416 414 416 344 429 419 419 335 402 399 402
S310 S35 S55 S510 S55 S55 S55 S35 S55

10 575 602 263 488 486 488 252 531 531 531 280 513 483 476
S510 S310 S510 S510 S510 S510 S510 S35 S310

%∆ Prost 0 -2.58 -29.91 -5.06 -5.33 -5.93 -31.18 -0.72 -1.36 -2.37 -35.31 -5.20 -7.43 -6.02
%∆ Rollout 2.98 0 -27.74 -2.20 -2.45 -3.12 -29.09 2.23 1.56 0.49 -33.43 -2.27 -4.51 -3.07

Skill Teaching

1 67 65 66 67 67 66 64 67 66 64 67 68 65 65
F11 S510 F31 F15 S53 S55 R110 F55 F55

2 80 76 76 78 76 78 76 78 75 77 78 80 77 77
R35 R510 R35 F110 S53 S31 F31 F310 F310

3 74 85 83 94 85 82 80 98 92 78 87 106 89 89
S15 R55 F31 R31 S55 F11 F15 S510 S510

4 101 84 62 104 101 82 56 110 91 89 114 114 93 91
R51 R55 R15 R31 R510 S35 F110 F55 R35

5 10 -10 -28 -4 -23 -39 -14 -4 -42 -19 17 36 -1 -1
R51 R53 S310 R55 R310 R53 R31 F35 F35

6 -11 -11 31 33 -1 -6 17 24 -25 9 5 21 -4 -4
S51 R310 F110 F51 R510 S110 F310 F35 F35

7 -48 -83 -68 -46 -89 -49 -59 -40 -60 -51 -44 -23 -62 -62
R53 R55 S310 R53 R510 S510 F31 R310 R310

8 -141 -210 -191 -142 -163 -212 -155 -139 -156 -156 -154 -109 -144 -134
F310 R55 F110 F110 R55 R55 F510 S310 S55

9 -145 -155 -160 -138 -161 -162 -146 -122 -155 -155 -167 -122 -156 -172
F510 R35 R55 S35 R35 R35 S15 F15 F510

10 -214 -212 -216 -194 -226 -240 -247 -188 -268 -279 -228 -178 -214 -194
F310 R53 R31 F11 R510 F15 R15 F110 F53

%∆ Prost 0 -34.46 -13.40 28.75 -35.04 -54.41 -9.29 24.70 -72.14 -18.76 21.96 71.06 -8.41 -8.12
%∆ Rollout 29.01 0 19.23 57.26 -0.21 -20.93 20.93 52.84 -38.46 12.03 50.17 94.30 22.03 22.11
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Table 2.2: Tamarisk Results

Planners TRN(Rollout, 0/1) TRN(Rollout, Q) TRN(Prost, 0/1)
Problem # Prost Rollout πlin π∗ πL πA πlin π∗ πL πA πlin π∗ πL πA

1 -137 -160 -177 -124 -142 -142 -173 -127 -145 -145 -162 -123 -142 -142
F35 S310 S310 S55 S35 S35 F15 S310 S310

2 -469 -524 -587 -469 -485 -475 -571 -473 -502 -484 -532 -427 -486 -472
R15 S35 R35 R15 S35 S310 F31 S510 S310

3 -210 -243 -244 -198 -211 -211 -274 -207 -207 -207 -256 -186 -209 -200
S15 S310 S310 S310 S310 S310 R15 S310 S35

4 -744 -783 -786 -650 -705 -705 -805 -669 -719 -719 -782 -694 -701 -694
R110 S35 S35 S15 R310 R310 R310 S35 R310

5 -568 -646 -671 -560 -615 -560 -640 -547 -588 -588 -645 -526 -558 -579
S35 S310 S35 S510 R310 R310 R510 S310 S35

6 -1005 -977 -940 -834 -883 -886 -969 -866 -882 -891 -1100 -893 -938 -938
S110 S310 R310 S55 S310 R310 S55 S35 S35

7 -862 -829 -834 -662 -669 -669 -809 -677 -687 -677 -875 -679 -709 -709
S510 S310 S310 S53 S310 S53 S110 S310 S310

8 -1380 -1229 -1210 -1087 -1139 -1165 -1203 -1104 -1131 -1144 -1361 -1228 -1243 -1243
R510 S35 S310 R110 S55 S35 F51 S35 S35

9 -1010 -827 -803 -686 -797 -736 -867 -681 -735 -681 -961 -752 -818 -821
F11 S310 S510 R510 S510 R510 R310 S310 S53

10 -1548 -1228 -1259 -1064 -1124 -1095 -1254 -1057 -1201 -1201 -1528 -1375 -1394 -1595
S110 S35 S310 F11 F510 F510 S53 S35 F510

%∆ Prost 0 -0.72 -3.27 15.39 8.99 10.73 -4.39 14.14 8.87 9.71 -7.56 12.48 6.38 5.52
%∆ Rollout -1.16 0 -2.15 15.87 9.52 11.28 -3.33 14.69 9.40 10.30 -7.70 11.91 6.15 4.90

surprisingly effective and it is often competitive or better than Prost, especially for

larger planning problems.

Parameter Optimization. For each problem we use both Prost and Rollout to gen-

erate a training data set of size 10,000 state-action pairs for three domains and up to

32,000 for the other two domains (Sysadmin and Game-of-life) depending on the problem

size. The data was generated by producing trajectories with horizon H = 40. Given

one such dataset, we optimize the parameters of a DRP by defining a loss function

over the training data and applying stochastic gradient descent. In this work, for all

problems and networks we use the Adam optimizer built into the Tensorflow framework

with a batch size of 40 and initial learning rate of 10−5. We train for 2000 iterations

and compute the accuracy on a validation set every 500 iterations and stop if there is

no improvement in two successive stages. Training times vary significantly for different

problems and architectures, which can be improved with additional hardware and further

optimizations.

Training with 0/1 Loss. Our first loss is defined over just state-action pairs. Given

a state s, a DRP produces a probability distribution over actions, P (a|s), which we

will denote by the vector P̂ (s). Given a training state-action pair (s, a), let t(s) denote

the 0/1 target probability distribution over actions that assigns probability 1 to action
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Table 2.3: Wildfire Results

Planners TRN(Rollout, 0/1) TRN(Rollout, Q) TRN(Prost, 0/1)
Problem # Prost Rollout πlin π∗ πL πA πlin π∗ πL πA πlin π∗ πL πA

1 -275 -439 -481 -256 -603 -603 -522 -368 -368 -368 -950 -159 -238 -208
S110 S35 S35 R510 F15 F15 F35 R15 S510

2 -8856 -8913 -9466 -8621 -8900 -8783 -8989 -8674 -9078 -9078 -8807 -8428 -9034 -9034
S55 F15 S15 R110 S15 S15 F11 F15 F15

3 -1899 -1547 -1354 -1131 -1131 -1373 -2037 -976 -1285 -1517 -1355 -802 -1747 -1490
R510 R510 F11 S15 F11 R310 F15 S35 R310

4 -8756 -8986 -8572 -7808 -8136 -8459 -8840 -7757 -8040 -8040 -8888 -7693 -7693 -9121
R110 R510 S55 R310 S35 S35 S35 S35 F31

5 -3220 -585 -1331 -467 -716 -1100 -800 -497 -497 -723 -1552 -1552 -2959 -2517
R15 S11 R510 F11 F11 S35 Linear S110 F510

6 -15878 -7079 -7370 -6548 -7465 -6820 -7132 -6480 -7221 -7221 -15313 -10948 -14056 -11975
F15 F11 S35 R15 R55 R55 F15 S110 F510

7 -7731 -6169 -5483 -4885 -5169 -6479 -5452 -5178 -5648 -5882 -7327 -6270 -9259 -9259
S15 S11 F510 S310 S15 F510 R31 F510 F510

8 -13673 -10192 -9975 -9389 -9389 -10840 -9411 -9305 -9529 -9828 -13053 -11235 -16661 -16661
S11 S11 S53 S110 F11 S15 R11 F510 F510

9 -16129 -5551 -4941 -4152 -6662 -6662 -4317 -4310 -5911 -5911 -17962 -17036 -17556 -17556
R310 F510 F510 R51 F510 F510 F35 F510 F510

10 -25459 -12049 -11238 -9763 -12030 -12030 -10586 -9683 -11113 -11113 -31343 -29047 -30061 -30061
R35 F510 F510 F11 F510 F510 F53 F510 F510

%∆ Prost 0 25.68 24.26 40.90 23.44 18.39 22.30 37.24 32.04 29.59 -18.67 21.66 -1.74 1.74
%∆ Rollout -91.75 0 -9.91 18.54 -2.45 -13.43 -3.35 15.99 7.12 1.09 -81.34 -44.79 -93.72 -82.48

a. We measure the 0/1 cross entropy loss of a prediction P̂ (s) as the cross-entropy

H(P̂ (s), t(s)) between P̂ (s) and t(s), where for probability vectors P and Q, H(P,Q) =

−
∑

i Pi log(Qi). H(P,Q) is minimized when P = Q, and hence the 0/1 loss encourages

P̂ (s) to increase the probability of the action.

Training with Q-Loss. When Q-values are available in the training data, we incor-

porate them by defining a Q-Loss function that prefers predictions P̂ (s) that assign

higher probabilities to actions with higher Q-values. In particular, we use the Q-values

for a state s to define a Boltzmann probability distribution over actions P (a | s) =
exp(Q(s,a))∑
a′ exp(Q(s,a′)) with temperature equal to one. Here P assigns higher probability to

actions with higher Q-values. Our Q-loss function for a training example is then sim-

ply H
(
P̂ (s), P (·|s)

)
, which is minimized when the predicted probabilities match the

Boltzmann probabilities.

Doing Better than the Expert. In our experiments, we will sometimes see the

learned DRPs outperforming the expert planners. The exact reasons for this is not fully

clear. However, results from imitation-learning theory offer a potential explanation.

First, it is important to note that Prost and Rollout are both stochastic planners due

to running Monte-Carlo simulations. One way to model the stochasticity is by starting

with a deterministic policy π∗ that captures the typical action choices of the planner
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and then creating a stochastic policy π̂ that follows π∗ with 1 − ε probability and uses

a randomized action choice with ε probability. It has been shown by Ross et al. [47]

that the finite-horizon reward of π̂ can be worse than π∗ by as much as εH2, where H

is the horizon. Thus, even if Prost and Rollout typically select actions according to a

high-quality π∗, their actual performance can be substantially worse. We can now think

of the training data as being generated by π∗, but corrupted with some amount of noise.

If our learning procedure is robust to the noise, then it is possible for the learned DRP

to provide a better approximation of π∗ than the planners. In particular, if the learned

approximation has an error rate of ε′ < ε, then the learned policy has the potential to

achieve a performance closer to π∗ than the planner.

2.7 Experiments

Benchmark Problems and Architectures. We selected five RDDL benchmark do-

mains: Sysadmin, Game-of-Life, Skill Teaching, Tamarisk, and Wildfire. Each domain

comes with a standard set of ten problems ranging from quite small to quite large. While

computational constraints prevented including additional domains, there are some bench-

mark domains that are not a good match for DRPs. For example, the Navigation domain

contains state variables that only provide the robot location. To be successful a planner

needs to reason about the probabilistic navigation grid to eventually find a determinis-

tic optimal path. In such domains, there is no room to benefit from the generalization

ability of a DNNs. All the selected domains appear to offer non-trivial opportunities to

learn policies that generalize across states.

We trained FC-DRPs, S-DRPs, and R-DRPs for all combinations of L = 1, 3, 5 and

C = 1, 5, 10 along with a linear policy (no hidden layers). Each architecture was trained

using three strategies: Rollout as the planner with 0/1 loss, Rollout with Q-loss, and

Prost with 0/1 loss. The strategies are denoted by TRN(Rollout,0/1), TRN(Rollout, Q),

and TRN(Prost, 0/1) respectively. In total this resulted in training 27× 3 networks for

each of the 50 problems.

Description of Results Tables. Tables 2.1-2.3 contain our main set of experimental

results for each domain. Throughout our experiments, the expected total reward of a

policy or planner is estimated using a horizon of 40 averaged over 100 simulations. In
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each table the top 10 rows give results for individual problems, where larger problem

numbers tend to correspond to larger problems. The second and third columns give the

average reward of Prost and Rollout. The next three blocks of columns correspond to

one of the three training methods. For each training method, the first column gives

the average reward for the trained linear policy πlin. The next column, labeled π∗,

gives the maximum reward achieved over all architectures trained for the problem (all

combinations of F(L,C), S(L,C), and R(L,C)). Below this maximum reward is the name

of the architecture that achieved the maximum reward, e.g., S110 is an S-DRP with

L = 1 and C = 10. This maximum reward is what we would achieve in practice if

we performed DRP model selection via simulation of the learned policies, which will be

practical in some settings.

The final two columns in each block are included to assess our ability to perform

model selection using validation data, rather than simulations as for π∗. In particular,

for each problem in addition to the training set we generated a set of validation data

containing 2000 state-action pairs from the appropriate planner. Given a learned DRP,

we can evaluate the loss it achieves on the validation data (either 0/1 or Q loss as

appropriate) and the accuracy of selecting the actions in the validation set. For each

problem, the column πL (πA) gives the average reward and name of the architecture that

minimized (maximized) the validation loss (accuracy). For large RDDL benchmarks and

a moderate number of DRP architectures, it will often be much cheaper to select models

using the validation set measures compared to using simulation to estimate expected

reward. Thus, the πL and πA columns are included to help evaluate how effective this

cheaper form of model selection might be.

Finally, the last two rows of each table aggregate results across problems. The row

labeled %∆Prost (%∆Rollout) gives the average percentage improvement over Prost

(Rollout) across problems for each column. For example, in Sysadmin, the Rollout

planner achieves a negligible average improvement over Prost of 1.62%. Negative values

indicate an average decrease in performance.

Comparison to Expert Planners. First we consider the performance of the simple

linear policy. We note that for Sysadmin and Wildfire that on averge πlin is able to

achieve a non-trivial average performance improvement over both Prost and Rollout for

all of the training regimes, with the exception of TRN(Prost, 0/1) for Wildfire. This
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Table 2.4: FC-DRP vs S-DRP vs R-DRP Results

TRN(Rollout, 0/1) TRN(Rollout, Q) TRN(Prost, 0/1)
Domain %∆ π∗ πF πS πR π∗ πF πS πR π∗ πF πS πR

Sysadmin Prost 11.72 10.85 11.11 10.56 12.55 11.74 11.96 11.83 11.18 10.30 10.80 9.91
Rollout 9.88 9.04 9.27 8.73 10.69 9.89 10.13 9.96 9.44 8.59 9.07 8.18

Game of Life Prost -5.06 -8.01 -5.49 -12.32 -0.72 -4.48 -1.64 -6.79 -5.20 -10.01 -5.45 -13.17
Rollout -2.20 -5.07 -2.66 -9.68 2.23 -1.44 1.25 -3.90 -2.27 -6.96 -2.53 -10.42

Skill Teaching Prost 28.75 -10.93 18.95 6.87 24.70 17.90 -1.89 18.55 71.06 62.72 61.09 53.67
Rollout 57.26 19.89 48.39 36.19 52.84 46.27 28.15 47.23 94.30 86.50 85.68 79.50

Tamarisk Prost 15.39 12.19 13.95 13.06 14.14 11.98 13.56 13.26 12.48 10.88 10.42 11.90
Rollout 15.87 12.74 14.38 13.67 14.69 12.69 14.00 13.86 11.91 10.28 10.05 11.33

Wildfire Prost 40.90 36.26 39.41 39.76 37.24 35.08 35.42 35.63 21.66 17.63 11.98 12.12
Rollout 18.54 11.82 15.79 17.15 15.99 12.97 11.44 13.16 -44.79 -60.91 -75.68 -69.14

indicates that it is possible to represent good policies in these two domains using simple

functions. This is also an example of where a learned policy outperforms the expert that

it was learned from, for which, we presented a potential explanation. For other domains,

πlin performs worse than the experts, which indicates that good policies in these domains

require more complex representations or that a good linear policy was not learnable using

this training data. Now consider the performance of π∗, which is the best we would hope

to do when using simulation for model selection. For all domains, with the exception of

Game-of-Life, π∗ had better average performance than both expert planners in all three

training regimes. One exception was a decrease in performance relative to Rollout in

Wildfire for TRN(Prost, 0/1). This decrease is understandable since the performance of

Prost in this domain is quite poor compared to Rollout (average performance reduction

of -91.75%), which means learning from Prost is unlikely to yield good performance. In

Game-of-Life, π∗ is on average worse than both expert planners by a small percentage

in all three training regimes. We note that the relatively small drop in performance

compared to the planners comes with a dramatic improvement in decision making time.

Finally, we note that for all benchmarks and all training regimes, π∗ is able to significantly

outperform the linear policy on average, except in Sysadmin, where π∗ is better by only

a small margin. This shows that there is indeed benefit to considering deeper non-linear

architectures for these RDDL benchmarks.

Comparison of Model Selection Strategies. Here we consider the impact of using

the validation set loss πL and validation accuracy πA for model selection instead of

using simulations as done for π∗. We first observe that for Sysadmin, Game-of-Life,

and Tamarisk, the drop in performance of πL and πA compared to π∗ for all training
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regimes is relatively small in terms of average percent improvement over the planners.

For Wildfire, the performance drop is more significant when learning based on 0/1 loss,

especially for TRN(Prost, 0/1), which may again be due to the low quality of Prost’s

data in this domain. In Skill Teaching, the drop in average performance of both πL

and πA is substantial in all training regimes. This indicates a poor match between the

validation loss and actual reward accumulated during planning. The reasons for this

are currently unclear. We also observe that except for Skill Teaching, in all cases where

π∗ showed an average positive improvement over an expert planner, πL and πA were

also able to achieve an improvement. Thus, in most cases if we were satisfied with the

performance of the expert planner, we would also be satisfied with the much faster DRPs

selected by πL and πA. Finally, there does not appear to be a clear winner between πL

and πA, nor does there appear to be a training regime where model selection based on

validation data performs best.

Comparison of Training Methods. For Sysadmin, Game-of-Life, and Tamarisk we

see that Prost and Rollout achieve similar average performance across problems. In

these cases, we see that the performance of π∗ is also similar across the three training

regimes. In Skill Teaching, Rollout is significantly worse on average than Prost (by

-34.46%) and we see that π∗ trained with TRN(Rollout, 0/1) and TRN(Rollout, Q)

is significantly worse on average than with TRN(Prost, 0/1). This agrees with the

intuition that learning from a lower quality planner should result in a worse learned

policy. For Wildfire, the situation is reversed and we see that training from Prost data is

significantly worse than training from rollout with TRN(Rollout, 0/1) and TRN(rollout,

Q). Overall these results indicate that for these experiments, the quality of the planner

used to generate data is the dominating factor in training, compared to using 0/1 or

Q-based loss. This is in contrast to prior studies [16, 3], where Q-based loss improved

performance. This suggests investigating improved ways to incorporate Q-values into

loss functions.

Comparison of Architectures. From the tables, we can observe for each problem and

training regime, which architecture was selected by π∗. Overall, from this data we do not

see a consistent trend that would favor particular architectural properties. In particular,

we see FC-DRPs, S-DRPs, and R-DRPs all appearing with reasonable frequencies. We
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do see that in Game-of-Life, which is perhaps the most complex policy to learn based on

the difficulty of competing with the planners, we see that, for large problems, S-DRPs

with larger values of L and C tend to be chosen. It is also difficult to spot an overall

trend in terms of L or C. We did find that sparse architectures suffer much more than

FC-DRPs when C = 1, which requires further investigation. We note that these results

are at best suggestive, since the tables do not indicate how close other architectures were

to the performance of π∗.

Table 2.4 summarizes the performances of the best FC-DRP, S-DRP, and R-DRP

across the domains. Each row gives the averaged % improvement over Prost or Rollout

for each domain. The first column in each training regime, copies results for π∗ from

the previous table and represents the best performance over all architectures. The next

three columns record the average improvement of the best architecture restricted to

FC-DRPs (πF ), S-DRPs (πS), and R-DRPs (πR). Again we see that there is not a

consistently best single top performing class. We do see that at least one of the sparsely

connected DRPs, πS and πR, always outperform the fully connected architectures (πF ),

with the exception of Wildfire and Tamarisk for TRN(Prost, 0/1). This suggests that

the sparse architectures can leverage the RDDL definition to realize a benefit. We have

also seen that frequently the sparse architectures are able to achieve similar results to

FC-DRPs using many fewer parameters. It is also encouraging to see that the weight

sharing approach of πR is usually competitive on average even though it uses dramatically

fewer parameters. This suggests the potential effectiveness of relational generalization

across planning problems in a domain. Finally, we see that π∗ sometimes significantly

outperforms the others. This indicates that within a single problem domain, the best

architecture class differs across the problems.
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Chapter 3: The Choice Function Framework for Online Policy

Improvement

3.1 Abstract

There are notable examples of online search improving over hand-coded or learned poli-

cies (e.g., AlphaZero) for sequential decision making. It is not clear, however, whether

policy improvement is guaranteed for many of these approaches, even when given a per-

fect leaf evaluation function and transition model. Indeed, simple counterexamples show

that seemingly reasonable online search procedures can hurt performance compared to

the original policy. To address this issue, we introduce the choice function framework

for analyzing online search procedures for policy improvement. A choice function spec-

ifies the actions to be considered at every node of a search tree, with all other actions

being pruned. Our main contribution is to give sufficient conditions for stationary and

non-stationary choice functions to guarantee that the value achieved by online search is

no worse than the original policy. In addition, we describe a general parametric class of

choice functions that satisfy those conditions and present an illustrative use case of the

empirical utility of the framework.

3.2 Introduction

For many applications of sequential decision making, it is possible to learn or hand-code

a reactive policy for online operation, e.g., [19, 30, 50]. While such policies are computa-

tionally cheap to apply, they will generally be sub-optimal in some or many states. This

motivates using additional computation during online operation to improve upon such

base policies. The focus of this paper is on approaches that use online lookahead search

for this purpose, which we refer to as Online Search for Policy Improvement (OSPI).

At each state encountered during online operation, OSPI approaches use an environ-

ment simulator or model to construct a search tree that includes the base-policy action

choices along with a subset of other action choices. The action values at the root can
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then be used to select an action. Well-known examples of OSPI include the policy-rollout

algorithm [56], which was first shown to improve Backgammon policies, and AlphaZero

[54], which improves over an underlying greedy policy via Monte-Carlo Tree Search.

Ideally, due to the additional online computation, we would like an OSPI procedure

to yield improved performance compared to the base policy. Perhaps more importantly,

we would at least like to guarantee that an OSPI procedure is “safe” in the sense that it

does not perform worse than just using the base policy. For example, the policy rollout

algorithm is guaranteed to be safe in this sense. However, as we show in Section 3.4,

many OSPI procedures are not safe, even when 1) using a perfect transition model, 2)

using the exact policy value function for leaf evaluation, and 3) the base policy action is

expanded at each tree node.

Our primary goal is to derive safety conditions for OSPI. For this purpose, we in-

troduce the choice-function framework for analyzing OSPI procedures. The key idea is

to notice that OSPI procedures primarily differ in their choice of which actions other

than the base policy action to expand at each tree node. Thus, each procedure can be

characterized by a choice function, which specifies the actions to consider at each node

of the search tree. Thus, we can characterize properties of an OSPI procedure, such as

safety, via properties of the corresponding choice function.

Our main contribution is to give sufficient conditions on choice functions that guar-

antee safety. This is done for both stationary and non-stationary choice functions. In

addition, we describe a parametric class of safe choice functions, that captures a num-

ber of existing approaches. This allows for hyperparameter search over a safe space of

OSPI procedures in order to optimize online performance. Using this class we provide

illustrative empirical results that demonstrate the practical potential of the framework.

3.3 Related Work

An early approach for OSPI is the policy-rollout algorithm [6, 56], which has been shown

to significantly improve policies in a variety of applications, e.g., Backgammon [56],

combinatorial optimization [7] and stochastic scheduling [5]. Nested rollout [61, 11] allows

for leveraging additional computation time to further improve a policy by approximating

multiple steps of policy iteration. Policy Switching [12] allows rolling out multiple policies

instead of just one and improves over all the base policies.
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Monte-Carlo Tree Search (MCTS) has commonly used policies as a form of knowledge

to guide and prune the search, often as part of the rollout policy applied at the leaves [9].

Recent, high-profile examples include AlphaGo and AlphaZero [52, 54], which combine a

learned base policy and value function to guide MCTS. One view of the search approach

of AlphaZero is as OSPI, where the search aims to improve over the learned greedy base

policy. Indeed, the basis for learning is to use search to generate training data from

a (hopefully) improved policy. A related approach [41] uses a learned policy to prune

actions from consideration at each tree node that are not highly ranked by the policy.

Another example of combining MCTS with policies [39] allows the base policy to be

treated as a temporally extended action at each node in the search tree.

The idea of searching around a base policy has also been considered in the area of

deterministic heuristic search. Limited Discrepancy Search (LDS) [17] uses a heuristic

to define a greedy policy for guiding search. LDS generates all paths in the search tree

that disagree with at most K choices of the base policy and returns the best solution

uncovered by the search. LDS has been used effectively in a variety of search problems

ranging from standard benchmarks to structured prediction [15] and non-deterministic

AND/OR search graphs [33].

3.4 Problem Setup

We formulate sequential decision making in the formalism of Markov Decision Processes

(MDPs). An MDP is a 4-tuple 〈S,A, P,R〉, where S is a finite set of states, A is a finite

set of actions, P : S ×A× S → [0, 1] is the state-transition function and R : S ×A→ R
is the reward function. Pss′(a) denotes the probability of reaching state s′ from state s

taking action a and R(s, a) denotes the immediate reward for taking action a in state

s. We focus on the discounted infinite-horizon setting with discount factor γ. A policy,

π : S → A, is a mapping from states to actions with value function V π given by

V π(s) = R(s, π(s)) + γ
∑
s′∈S

Pss′(π(s)) · V π(s′)

for all s ∈ S. Offline computation of an optimal policy can be computationally expensive

and impractical for applications with large state spaces. In such cases, online search is

a practical alternative to offline solutions.
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Figure 3.1: Figure shows a search tree constructed by an unspecified search procedure for
the shown deterministic MDP. The base policy is shown and the leaf nodes are assigned
the value of the base policy and every internal state node includes the base-policy action.
The grayed out part of the tree is the part not expanded by the search procedure. The
values of the internal state nodes have been computed via Bellman backup using a
discount factor of 0.9. The best action at the root is a since it leads to the depth 1 state
with the highest value. The text describes how this choice is not π-safe.

Online Search for MDPs. In online search, actions are selected only for the states

actually encountered during online operation. At each decision point, online search

constructs a finite-horizon search tree rooted at the current state. A search tree alternates

between layers of state and action nodes. The leaf nodes of a search tree are state nodes

and are often evaluated via a state evaluation function. The tree is used to estimate

action values at the root, and the action with the highest estimate is executed in the

environment.

When a model of the MDP is available, an expectimax tree can be built that assigns

exact probabilities to child states of actions. For large enough search depths or accurate

leaf evaluations, near-optimal actions can be selected. In some applications, only a sim-

ulator of the MDP is available, which allows for sampling state transitions and rewards.

Monte-Carlo sampling can then be used to construct an approximation to the exact tree

by sampling a number of child states for each action node. The Sparse Sampling algo-

rithm [27] follows this approach and guarantees near optimal action selection in time

independent of the size of the state space. Monte-Carlo Tree Search algorithms also use

simulators for online search, typically producing search trees of non-uniform depth.
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Online Search for Policy Improvement. In practice, online computational con-

straints can limit the search tree size, which can lead to poor performance of online

search. To address this issue, it is common to learn or provide different types of prior

knowledge into the search process. For example, the search depth can be reduced by

utilizing higher-quality leaf evaluation functions, or the search breadth can be reduced

via action pruning functions.

While such knowledge sources can reduce computational cost, there are typically

no guarantees on the value achieved by the online search procedure. Most theoretical

results aim to guarantee near optimal performance (e.g., [27]), but require impractical

computational costs. Rather, it is desirable to develop approaches that support perfor-

mance guarantees within practical computational limits. This motivates the framework

of OSPI.

An OSPI procedure takes a policy, an environment simulator, an optional leaf eval-

uation function and a state as input and produces an action as output. OSPI aims for

performance guarantees relative to a base policy π. The policy may be learned or hand-

coded, but is assumed to be computationally cheap to apply. While π could be directly

used for online action selection, this may not fully use the computational resources.

OSPI aims to leverage those resources to improve over π via online search to explore

the decision space around π. An OSPI procedure is π-safe when its online performance

is guaranteed to be as good or better than that of π. That is, if π′ is the online policy

computed by an OSPI procedure, then the procedure is π-safe if V π′(s) ≥ V π(s) for

all states s. While safety is a less powerful guarantee compared to near optimality, in

practice, it is more attainable and still useful.

It can be difficult to determine, in general, whether a given OSPI procedure is π-safe.

For example, one might expect that an OSPI procedure that considers the actions of π

at every tree node and uses V π for leaf evaluation might be π-safe when combined with

a perfect environment model. However, this is not the case as the following counterex-

ample shows. The next section develops a framework for assessing the safety of OSPI

procedures.

Counterexample. Figure 3.1 shows a deterministic MDP, a base policy π, and the

search tree constructed for state A by an unspecified deterministic search procedure,

which produces the same tree every time state A is encountered. The tree respects the
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exact MDP model and the leaf evaluation function is exactly V π. Further, each node of

the search tree includes the action corresponding to the choice of π.

The action choice of the search procedure (i.e., the highest valued root actions) will

be denoted by the policy π′. Given the tree properties relative to π, we might expect

that the value of π′ would be at least as good as π. For state A, the base policy selects

π(A) = b and the corresponding value of state A under π is V π(A) = 10. However, the

online search suggests the alternative action π′(A) = a, which results in a lower value of

V π′(A) = 0. Thus, the online search procedure is not π-safe, at least for state A.

To understand the failure to be π-safe at state A, consider using the search tree to

make a decision at state A at time step t. The reason action a looks best is that the

state-action sequence A → a → A → c → C → c → C achieves a high value due to the

600 reward of the final transition. However, after actually taking action a and ending

up in state A again at time step t + 1 the tree does not include the promising path of

A → c → C → c → C, due to pruning of the lower levels of the search tree. Thus, at

time step t + 1 the search procedure does not recognize the value of taking action c in

A and takes a again. This is just one of several failure-mode types of OSPI procedures,

even when their trees satisfy the assumptions of this example relative to π.

3.5 The Choice Function Framework

Search trees encode the future trajectories to be considered when evaluating actions at

a state. Search algorithms vary in how they expand the paths, which results in different

search trees and hence different action values. Thus, one way to characterize online

search approaches is by describing the trees they construct. In our framework, this is

done using choice functions, which allows for properties, such as safety of search, to be

analyzed via choice-function properties.

Choice Functions for General Online Search

Search trees have two sources of branching: 1) action branching and 2) state branching.

Choice functions describe the action branching by specifying the subset of possible action

choices to be considered at each state node. Leaf nodes are assigned the empty set of

choices. For state branching, we assume an exact MDP model so that all non-zero
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probability child states of an action node are included in the tree. When a model is not

available, but a simulator is, sparse sampling can be used to approximate the dynamics.

State and action nodes in a tree are identified by paths that list the alternating

sequence of states and actions starting at the root state. The path of a state node

labeled with state s will be denoted by p; s where p is the path starting at the root

leading to the parent action node of the state node. Action nodes will often similarly be

denoted by p; s; a, where p; s designates the parent state node. The length of any path

denoted by |p| is the number of actions that it contains. Thus, a path corresponding to

a single state s has length zero. The set of all paths that end with a state is denoted by

SP and a choice function is a mapping ψ : SP → 2A from paths that end with a state

to action subsets.

In order to define the trees associated with a choice function, several definitions are

needed. A path is ψ-satisfying if all of its actions are “allowed” by ψ. That is, for each

prefix p′; s′; a′ of the path, we have a′ ∈ ψ(p′; s′). A state path p; s is a leaf path of ψ if

it is ψ-satisfying and ψ(p; s) = ∅. A leaf path of ψ cannot be extended to a ψ-satisfying

path. A choice function ψ is finite horizon if there is a finite upper bound on the length

of any ψ-satisfying state path. For finite-horizon ψ, the horizon H(ψ) is the maximum

length of any ψ-satisfying path, or equivalently, of any leaf path.

Given a current, or root state, s0, the tree corresponding to ψ, denoted Tψ(s0), is the

tree containing exactly the ψ-satisfying state paths that begin with s0. Thus, the leaf

nodes of Tψ(s0) correspond to leaf paths of ψ. The tree will be finite when ψ is finite

horizon, with H(ψ) bounding the depth of any leaf node. In this paper, we will restrict

attention to finite-horizon choice functions and hence finite trees.

To use the tree Tψ(s0) for action selection at state s0, it is necessary to specify a

leaf evaluation function u, which is a function of states u : S → R. Often u will be a

learned or hand-coded function that provides an estimate of a state’s optimal value or

value under a policy. Alternatively, u may be uninformative and return a constant value.

Together, a choice function ψ and leaf evaluation function u allow us to define the value

of each state node p; s in Tψ(s0), denoted V ψ
u (p; s), and each action node p; s; a, denoted

Qψu (p; s; a).
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V ψ
u (p; s) =

 u(s), ψ(p; s) = ∅,
max

a∈ψ(p;s)
Qψu (p; s; a), otherwise.

Qψu (p; s; a) = R(s, a) + γ
∑
s′∈S

Pss′(a) · V ψ
u (p; s; a; s′).

The online-search action policy, denoted Πψ
u , returns a maximum valued action at state

s allowed by ψ, with ties broken arbitrarily: Πψ
u (s) = arg max

a∈ψ(s)
Qψu (s; a).

Choice Functions for OSPI

Given a base policy π we would like to define choice functions and corresponding leaf-

evaluation functions that result in (approximately) π-safe OSPI procedures. That is,

we would like to guarantee that Πψ
u is π-safe. Section 3.6 develops sufficient conditions

on choice functions to give such a guarantee. First, however, we provide examples of

choice functions for several existing OSPI procedures whose safety will later be assessed

according to the conditions.

Policy Rollout. This simple OSPI procedure [56] returns the action at state s that

maximizes a Monte-Carlo estimate of Qπ(s, a). This estimate can be viewed as evaluating

a tree that considers all actions at the root s and then only contains the actions of π

thereafter until some horizon H. Policy rollout can thus be characterized by the following

choice function.

ψro(p; s) =


A, |p| = 0,

{π(s)}, 0 < |p| < H,

∅, otherwise.

Policy rollout can be proven to be π-safe as it corresponds to the policy improvement

step of the policy iteration algorithm. Our π-safe conditions will imply this for ψro.

Limited Discrepancy Search (LDS). This procedure was originally introduced for

deterministic offline search problems [17]. LDS searches around π by limiting the num-

ber of discrepancies (off-policy actions) along every root-to-leaf path to K up to some
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maximum horizon H. The idea was later extended to offline non-deterministic AND/OR

tree/graph search [33] using a similar limit on discrepancies. LDS for MDPs is easily

captured via the following choice function, where #[p 6= π] is the number of off-policy

actions in path p.

ψlds(p; s) =


A, |p| < H and #[p 6= π] < K,

{π(s)}, |p| < H and #[p 6= π] = K,

∅, |p| = H.

Our conditions will imply that ψlds is π-safe.

Pruned Online Search with Learned Policies. Reinforcement Learning (RL) algo-

rithms typically learn policies that select actions by maximizing an action ranking func-

tion, such as a Q-function or probability distribution over actions. Such action rankings

can be used for action pruning in online tree search. Let q(p; s, a) be the learned action

ranking function, which may depend on the full path p; s (e.g., when q is a recurrent

neural network) or depend only on s. A simple pruning approach such as the one studied

in Pinto et al. [41], allows only the set of top k actions at each search node, denoted

TOPq,k(p; s), as captured by the following choice function.

ψq,k(p; s) =

{
TOPq,k(p; s), |p| < H,

∅, |p| = H.

As discussed in Section 3.7, our results will help clarify conditions on q that ensure safety.

3.6 Performance Guarantee

Our goal is to identify properties of a choice function ψ that guarantee that the online-

search action policy Πψ
u is approximately π-safe. That is, we seek to bound V π(s) −

V Πψu (s). A natural property to suggest is that ψ be consistent with π. A choice func-

tion ψ is π-consistent if π(s) ∈ ψ(p; s) for each path p; s that ends with a state. Our

counterexample in section 3.4, however, is based on a π-consistent choice function, since

all tree nodes include π. Thus, π-consistency of ψ is not sufficient for π-safety, requiring

the introduction of additional concepts and notation.
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We will often treat value functions as vectors, indexed by states, with arithmetic

and comparison operators being applied element-wise. The max-norm of a vector ‖V ‖∞
returns the maximum absolute value of the elements. The min-horizon of ψ, denoted

h(ψ), is the minimum depth of any leaf node in Tψ(s0) for any state s0. Given a path p; s

we let yp; s denote the path obtained by removing the leftmost state-action pair of p; s.

We say that ψ is monotonic if the set of actions returned by ψ for state s when reached

via path p is a subset of the set of actions returned for s when reached via the path with

the leftmost state-action pair of p removed, i.e., ψ(p; s) ⊆ ψ(yp; s) for all p; s ∈ SP. We

can now give our main result.

Theorem 3. For any MDP, discount factor γ, and policy π, if ψ is π-consistent and

monotonic and ‖u− V π‖∞ ≤ ε, then for π′ = Πψ
u ,

V π − V π′ ≤ 2εγh(ψ)

1− γ
.

This bound implies that in the ideal case when u = V π, monotonicity and π-consistency

together are sufficient for safety. It also shows that the impact of inaccuracy in u with

respect to V π decreases exponentially with the min-horizon due to discounting of future

returns.

From the theorem we get an immediate corollary that applies to the set of all policies

ψ is consistent with, denoted Cψ, where ε(u, π) = ‖u− V π‖∞.

Corollary 1. For any MDP, discount factor γ, leaf evaluation function u, π-consistent

and monotonic choice function ψ, the policy π′ = Πψ
u satisfies

V π′ ≥ max
π∈Cψ

[
V π − 2ε(u, π)γh(ψ)

1− γ

]
.

This implies that for a large min-horizon, the online policy is guaranteed to be safe

with respect to the best policy that ψ is consistent with. In general, this shows the

performance trade-off between larger min-horizons (i.e., minimum search depth) and the

closeness of u to a good policy.
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Proof of Theorem 3

All proofs not in the main text are in the appendix (section 7.1). The high-level idea of

our proof is inspired by the analysis of offline multi-step policy improvement [6]. This

procedure starts with the value function V0 = V π and then performs m applications of

the Bellman Backup operator B to get a sequence of value functions Vi = B[Vi−1], where

B is defined as follows.

B[V ](s) = max
a∈A

R(s, a) + γ
∑
s′∈S

Pss′(a) · V (s′)

The greedy policy πm with respect to the final value function Vm is then returned as the

improved policy over π. The monotonicity of B can be used to guarantee that V πm ≥ V π.

An OSPI procedure for computing πm(s) is to evaluate a depth m + 1 tree with

root s using V π for leaf values. This computes the greedy action with respect to Vm,

but without synchronously updating all states from the bottom up. Thus, the offline

guarantee carries over to OSPI. OSPI with choice functions can be viewed similarly but

with backups restricted to actions allowed by the choice function. Our analysis below

generalizes these ideas to path-sensitive choice functions and approximate leaf values.

To prove the main result we start by introducing a number of lemmas. It will be

useful to introduce the policy-restricted Bellman Backup operator Bπ[V ], which restricts

backups to only consider the actions of π.

Bπ[V ](s) = R(s, π(s)) + γ
∑
s′∈S

Pss′(π(s)) · V (s′).

Lemma 1 gives a lower bound on V π in terms of a value vector V and how much Bπ

decreases the value of V .

Lemma 1. For any policy π and value vector V , if

V −Bπ[V ] ≤ δ, then V − V π ≤ δ

1− γ
.

Next, Lemma 2 generalizes the conditions that guarantee policy improvement in the

offline multi-step lookahead policy improvement procedure to OSPI with choice func-

tions. Proposition 1 follows from lemma 2.
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Lemma 2. If a stationary choice function ψ is π-consistent and monotonic and u = V π

then for any path p; s such that 1 ≤ |p; s| ≤ H(ψ), V ψ
u (yp; s) ≥ V ψ

u (p; s).

Proposition 1. If a stationary choice function ψ is π-consistent and monotonic and

u = V π, then V ψ
u (s) ≥ V π(s).

Lemma 3 below bounds the values of paths of length less than or equal to h(ψ) for

two different leaf evaluation functions u and u′ satisfying ‖u − u′‖∞ ≤ ε. This will be

useful for quantifying the impact of the leaf evaluation function being an approximation

to the base policy value function.

Lemma 3. If ψ is a stationary choice function and ‖u−u′‖∞ ≤ ε then for any path p; s

with |p; s| ≤ h(ψ),
∣∣∣V ψ
u (p; s)− V ψ

u′ (p; s)
∣∣∣ ≤ εγh(ψ)−|p;s|.

For the following we use the notation V ψ
u,k to denote the vector consisting of the

elements of V ψ
u for |p; s| = k. In particular, V ψ

u,0 is the vector of the values of all root

nodes, i.e., |p; s| = 0. Lemma 4 and proposition 2 below are key results that combine to

bound the difference between V ψ
u,0 and the value of Πψ

u .

Lemma 4. If a stationary choice function ψ is π-consistent and monotonic and ‖u −
V π‖∞ ≤ επ, then for π′ = Πψ

u , V ψ
u,0 −Bπ′ [V

ψ
u,0] ≤ επγh(ψ)(1 + γ).

Proposition 2. If a stationary choice function ψ is π-consistent and monotonic and

‖u− V π‖∞ ≤ επ, then for π′ = Πψ
u , V ψ

u,0 − V π′ ≤ επγ
h(ψ)(1 + γ)

1− γ
.

Proof. Directly combine lemmas 4 and 1.

Using the above lemmas we can now prove the main result.

Theorem 3. If a stationary choice function ψ is π-consistent and monotonic and ‖u−
V π‖∞ = επ, then for π′ = Πψ

u ,

V π − V π′ ≤ 2επγ
h(ψ)

1− γ
.
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Proof. In the proof, V π is denoted as ū to simplify notation.

V π(s)− V π′(s) = V π(s)− V ψ
u,0(s) + V ψ

u,0(s)− V π′(s).

≤ V π(s)− (V ψ
ū,0(s)− επγh(ψ)) + V ψ

u,0(s)− V π′(s), by lemma 3

≤ επγh(ψ) + V ψ
u,0(s)− V π′(s), since V ψ

ū,0(s) ≥ V π(s) by proposition 1

≤ επγh(ψ) +
επγ

h(ψ)(1 + γ)

1− γ
, by proposition 2

=
2επγ

h(ψ)

1− γ
.

Non-Stationary Choice Functions

We have assumed that choice functions are stationary, i.e., the same choice function is

used across online decision steps. Some OSPI approaches, however, correspond to a non-

stationary choice function that varies across steps. For example, some search algorithms

use a sub-tree produced at time step t as a starting point for search at time step t+ 1.

Randomized OSPI approaches are non-stationary due to different random seeds across

steps. Here, we extend our analysis to the non-stationary case.

A non-stationary choice function Ψ = (ψ1, ψ2, ψ3, . . .) is a sequence of time-step

indexed stationary choice functions ψt. To relate two different stationary choice functions

ψ and ψ′ we say that ψ subsumes ψ′, denoted ψ ⊇ ψ′, if for every path p; s, ψ(p; s) ⊇
ψ′(p; s). We can extend the bound in Theorem 3 to a non-stationary choice function Ψ

when each ψt satisfies the conditions of that theorem, each ψt has the same set of leaf

paths, and ψt+1 ⊇ ψt for each time-step t.

Theorem 4. Let Ψ = (ψ1, ψ2, . . .) be a non-stationary choice function such that each

component choice function ψt is monotonic and π-consistent and ‖u−V π‖∞ = επ. If all

ψt have the same set of leaf paths and for each time-step t, ψt+1 ⊇ ψt, then for π′ = Πψ
u

and all s ∈ S,

V π(s)− V π′(s) ≤ 2επγ
h(ψ1)

1− γ
.
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The proof is in the appendix (section 7.1). This result has implications on the design

of OSPI procedures that correspond to non-stationary choice functions. For example,

many MCTS-based approaches, such as that used by AlphaZero, do not appear to cor-

respond to non-stationary choice functions that satisfy these conditions. This does not

mean that they will not perform well in a particular application, but suggests that for

some applications they can have fundamental issues that degrade the performance of a

base policy, even ignoring inaccuracies due to Monte-Carlo sampling. One way to adjust

some of these and other algorithms to achieve the subsumption property is to build upon

the relevant subtrees constructed at time t at time step t + 1. The practical impact of

such a change is an empirical question worth investigating.

3.7 Limited Discrepancy Choice Functions

We do not expect a single type of choice function to perform best across all problems.

Rather, in practice, the selection of a choice function can be similar to the selection of

other application-dependent hyperparameters. This motivates defining parametric fam-

ilies of choice functions that span different trade-offs between decision time and quality.

In particular, given an application’s decision-time constraints, offline optimization can

be used to select a high-performing choice function that satisfies the constraints.

To support this vision, we introduce the parametric family of Limited Discrepancy

Choice Functions (LDCFs). We show that all LDCFs are monotonic and π-consistent

for any π and hence satisfy our safety conditions. We then analyze how the parameters

of the LDCF family relate to the computational complexity of online action selection.

Finally we relate LDCFs to previously introduced examples.

LDCF Definition and Safety. An LDCF ψ defines a uniform-horizon tree, which

limits the discrepancies w.r.t. a base policy along root-to-leaf paths by their number

and depth. In cases where a base policy only makes occasional errors the discrepancy

limit makes intuitive sense. Indeed, search can improve the policy by “correcting” the

rare errors along paths by introducing discrepancies. This suggests that there can be a

computational advantage to bounding search by discrepancies in applications of OSPI

to learned policies that already perform well but can still be improved.
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A discrepancy w.r.t. π in path p is a state-action pair (s, a) in p such that a 6= π(s).

LDCFs are parameterized by the tuple (π,H,K,D,∆), where π is the base policy, H

is the uniform horizon bound, K ≤ H is a bound on the number of discrepancies in a

path, and D < H is a bound on the maximum depth that a discrepancy may appear in

a path. Finally, the discrepancy proposal function ∆ : S × {0, . . . , D} → 2A maps pairs

of states and depths to action subsets. Intuitively ∆ returns the discrepancies that can

be considered at a state node p; s at depth |p| which has not yet reached the discrepancy

limit imposed by K and D. We allow ∆ to depend on depth, since it is often useful to

allow for more discrepancies at shallower depths. Given parameters θ = (π,H,K,D,∆)

the corresponding LDCF is defined as follows.

ψθ(p; s) =


∆(s, |p|) ∪ {π(s)}, |p| ≤ D and #[p 6= π] < K,

{π(s)}, D < |p| < H or #[p 6= π] = K,

∅, |p| = H.

All members of the LDCF family are π-consistent by construction. However, mono-

tonicity of an LDCF requires constraining ∆. We say that ∆ is depth monotonic if

∆(s, d) ⊇ ∆(s, d+ 1) for all s ∈ S and d.

Theorem 5. For LDCF parameters θ = (π,H,K,D,∆), if ∆ is depth monotonic, then

ψθ is monotonic.

The proof is in the appendix (section 7.1). A straightforward way to obtain a depth-

monotonic ∆ is to use a learned action-ranking function over states and return the top

ranked actions at a state, where the number of returned actions is non-increasing with

tree depth.

Application to Special Cases. The choice function ψlds is a restricted LDCF with

∆(s, d) = A, which trivially satisfies our safety conditions. The LDCF space provides

more flexibility on how to better control the introduction of discrepancies compared to

traditional LDS.

The policy rollout choice function ψro is a special case of an LDCF with D = 0

and ∆(s, 0) = A, which allows all choices at the root and only the base policy’s choices

thereafter. Since ∆ is trivially depth monotonic, our safety result applies. This can be
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generalized to multi-step look-ahead rollout [6], where the top M levels of the tree are

fully expanded followed by restricting actions to those of the base policy until the horizon.

Specifically, D = M and ∆(s, d) = A, which again satisfies our safety conditions. Note

that when D = H − 1 this degenerates to value iteration with horizon H.

Finally, the pruned-search choice function ψq,k is an LDCF with a specific choice of

discrepancy function TOPq,k. Our safety conditions specify sufficient constraints that

the action ranking function q should satisfy. When q is history-independent, TOPq,k is

depth-monotonic. Otherwise, if q is history-dependent, e.g., a recurrent neural network,

no such guarantee can be made. However, it is relatively straightforward to put a wrapper

around such a q to ensure depth monotonicity.

Computational Complexity. Increasing H, K, and D, and the size of sets returned

by ∆ can be expected to improve Πψθ
u for reasonable u. This comes at the cost of

higher computational complexity typically dominated by the number of leaves in Tψθ .

In addition to the LDCF parameters, the number of leaf nodes depends on the state

branching factor C, which is the maximum number of state nodes under an action node.

When an exact model is used, this is the maximum number of non-zero probability

successor states. For Monte-Carlo algorithms, this is the number of successor states

sampled for each action node. Given the state branching factor and an upper bound on

the number of actions returned by ∆, we get the following bound on tree size.

Proposition 3. Let ψθ be an LDCF with θ = (π,H,K,D,∆), such that ∆(s) ≤ W

for any s ∈ S. The number of leaf nodes in Tψθ with state branching factor C is upper

bounded by 2CH for (D + 1)W = 1 and by ((D+1)W )K+1−1
(D+1)W−1 CH = O

(
(DW )KCH

)
for

(D + 1)W 6= 1.

Ignoring the impact of C, which is controlled by the search algorithm, the complexity is

dominated by K. We also see that for deterministic domains where C = 1, there is no

exponential dependence on H.

3.8 Illustrative Empirical Results

Our primary contribution is theoretical. However, here we illustrate the potential prac-

tical utility of our framework using the LDCF family. The experiments are intended to

demonstrate how the choice function functions as a hyperparameter to be tuned offline.
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Figure 3.2: Performance vs time-per-step for LCDF choice functions applied to linear
(left) and non-linear (right) base policies.

We implemented a variant of Forward Search Sparse Sampling (FSSS) [59] for approx-

imately computing the online policy Πψ
u for any LDCF ψ and leaf-evaluation function

u using an MDP simulator. The key parameter, other than the choice-function, is the

sampling width C, which controls how many state transitions are sampled for each action

node. The appendix (section 7.1) contains a summary of the algorithm. Our implemen-

tation can be found here: https://bitbucket.org/eshkim/ld-fsss/src/master/.

Experiments Setup. We run experiments in the domain Game-of-Life, a benchmark

domain from the International Probabilistic Planning Competition. This is a grid-based

domain with each grid-cell either being alive with some probability depending on its

neighbors. Actions allow for selecting one cell at each time step (or none) to set to be

alive in the next time step. The reward is based on the number of alive cells at each

step. There are 10 problems of grid sizes 3× 3, 4× 4, 5× 5 and 10× 3. Problems have

different levels of stochasticity in the dynamics.

We used supervised learning via imitation of a planner to train two base policies

represented as neural networks, using the same approach as in Issakkimuthu et al. [23].

Each network outputs a probability distribution over actions. Policies 1 and 2 are base

policies. Policy 1 is a linear network, while Policy 2 is a non-linear network with 3 hidden

layers. For each base policy, we consider four leaf evaluation functions. The first is the

constant zero function. The remaining three are neural networks with different configura-

tions trained on a dataset of 5000 state-value pairs obtained via Monte-Carlo simulation

https://bitbucket.org/eshkim/ld-fsss/src/master/
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of each policy. All the networks have been trained using Tensorflow to minimize the

mean squared error.

We experiment with 11 choice functions in the LDCF family with parameters H in

{3, 4, 5} and (D,K) in {(0, 1), (1, 1), (1, 2), (2, 1)}. The combination (2, 1) is not appli-

cable for H = 3. The number of non base-policy actions considered at the root node is

9 and other internal nodes is 1. The non base-policy actions are determined from the

action probabilities given by the base policy. We use C = 3 for FSSS.

Given one of these policies and a problem, we would like to identify the best com-

bination of LDCF parameters and leaf evaluation function given a constraint on the

time-per-step. In practice, this could be done in an offline tuning phase where different

configurations are evaluated. Figure 3.2 shows a scatter plot of the normalized reward

versus time-per-step for each of the 44 configurations (11 LDCF settings and 4 leaf eval-

uation functions). The normalized reward is the average reward per episode divided by

the average reward per episode of the base policy. Values greater than 1 perform better

than the base policy. For both base policies, all LDCF configurations perform better.

There is also a larger improvement for base policy 1, which makes sense due to the fact

that policy 2 is a much higher-quality policy and hence more difficult to improve. We

also see that the LDCF space shows considerable coverage of the performance vs. time

space, which shows the utility of offline tuning. There is a general trend toward better

performance for larger times, but this is not uniformly true. There are complex interac-

tions between the LDCF parameters and a particular problem, which makes it unlikely

that a single feature such as time-per-decision is always the best indicator.

Table 3.1 gives results for each of the 10 problems, which includes the normalized

rewards with confidence intervals for the best performing LDCF configuration for each

of the policies. We see that for the linear policy, the best LDCF configuration is never

significantly worse (lower interval is greater than 1) and often significantly better. For

the second non-linear policy, we see that for most problems the LDCF performance is

not significantly worse than the policy (confidence interval contains 1) and sometimes

significantly better. For three problems, the upper confidence bound is less than one,

indicating a significant decrease in performance. These problems happen to be among

the most stochastic problems in the benchmark set. This suggests that a likely reason

for the decrease in performance is due to the relatively small sampling width used for

FSSS (C = 3), which provides a poor approximation for such problems.



41

LDCF Policy 1 LDCF Policy 2

Prob. # Normalized Decision Normalized Decision
Avg. Reward Time (s) Reward Time (s)

1 2.57 ± 0.07 0.081 1.08 ± 0.04 0.491

2 1.27 ± 0.10 0.345 0.95 ± 0.06 0.631

3 1.11 ± 0.05 0.129 0.92 ± 0.03 0.374

4 1.51 ± 0.03 0.523 1.03 ± 0.02 0.830

5 1.14 ± 0.03 1.084 1.00 ± 0.03 6.298

6 1.05 ± 0.02 1.223 0.96 ± 0.02 9.163

7 1.54 ± 0.02 0.523 1.05 ± 0.01 1.957

8 1.21 ± 0.02 4.488 1.02 ± 0.02 10.463

9 1.13 ± 0.02 3.262 0.96 ± 0.01 3.749

10 2.11 ± 0.04 2.493 1.23 ± 0.02 4.746

Table 3.1: Game-of-Life - Best Normalized reward.

3.9 Summary

We have introduced a framework for analyzing online search procedures for policy im-

provement guarantees. The key idea is to separate the action specification part of search

from the search process and create an abstract concept called choice functions. A choice

function instance will then be a parameter of search. We identify properties of choice

functions to provide sufficient conditions for guaranteed online policy improvement when

the leaf evaluation function is perfect. Our main result is a bound on the performance of

the online policy relative to the base policy for any leaf evaluation function. We have also

introduced a parameterized class of choice functions called LDCF. Our next directions

are to explore the practical application of the framework across a wide range of problems

and to integrate notions of state abstraction into the framework.



42

Online Policy Improvement for Probabilistic Planning: Benchmarks

and Baselines

Murugeswari Issakkimuthu and Alan Fern

Workshop on the International Planning Competition (WIPC) at the 31st International

Conference on Automated Planning and Scheduling (ICAPS-2021)



43

Chapter 4: Online Policy Improvement for Probabilistic Planning:

Benchmarks and Baselines

4.1 Abstract

The goal of Online Policy Improvement (OPI) is to use a given base policy to compute

a better policy via online planning. There are OPI algorithms that come with theoret-

ical guarantees of policy improvement under ideal conditions. However, when the ideal

conditions are not met in practice, these algorithms can result in policy degradation,

i.e., the new policy can perform worse than the base policy. Our goal in this paper is to

move towards a better understanding of the empirical performance of OPI algorithms.

We propose benchmark problems and base policies and suggest evaluation metrics for

OPI. We also present baseline results on the benchmark set for two OPI algorithms,

which demonstrate the baselines are a solid starting point for comparison.

4.2 Introduction

Online planning is a practical approach to solving Markov decision problems with large

state spaces. An action choice is made for the current state, and the selected action is

executed immediately, so action decisions need to be made only for the states visited

during the online planning process. Online planning aims at computing a near optimal

policy. Online policy improvement (OPI) is online planning with the goal of computing

a policy that performs better than a given base policy.

When a base policy is available, OPI can sometimes be a safer alternative to optimal

planning. For example, attempts at optimal planning under computational limits may

completely fail, while OPI may provide useful results. There are different approaches to

online planning. Our focus is on search-based approaches, where the Q-values of actions

at the current state are estimated via lookahead search. Online planning returns an

action that maximizes the Q-value estimate, while OPI can return any action with a

Q-value estimate greater than that of the base policy action.
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There are OPI algorithms that come with theoretical guarantees of policy improve-

ment under ideal conditions, e.g., policy rollout [56], [6], nested rollout [11], parallel

rollout [12], and Limited Discrepancy Forward Search Sparse Sampling (LD-FSSS) [24].

However, when the ideal conditions are not met in practice, OPI algorithms can result

in policy degradation, i.e., the new policy can perform worse than the base policy.

Our goal in this work is to move towards a better understanding of the empirical

performance of OPI algorithms. We propose benchmark problems and base policies and

suggest evaluation metrics for OPI. Our benchmark set consists of 5 domains from past

International Probabilistic Planning Competitions with 10 problems of varying levels of

difficulty in each domain and 2 base policies of different qualities for each problem. We

also present baseline results on the benchmark set for two classes of OPI algorithms.

In particular, these classes include algorithms that can leverage transition probabilities

when available or just use the ability to sample transitions. We show that these classes

are able to cover different points in the performance trade-off space, making them useful

for future comparisons.

4.3 Background and Related Work

We assume basic familiarity with Markov Decision Processes (MDPs). A discrete finite-

horizon MDP is a tuple 〈S,A, P,R,H〉, where S is a finite set of states, A is a finite set

of actions, P : S × A × S → [0, 1] is a state-transition function with Pss′(a) denoting

the probability of reaching state s′ from state s on action a and
∑

s′∈S Pss′(a) = 1 for

all a ∈ A, R : S ×A→ R is a real-valued reward function defined on state-action pairs,

and H is an integer representing the finite horizon.

A deterministic, non-stationary policy of the MDP is a time-dependent mapping from

states to actions, i.e., π = {µ0, µ1, . . . , µH−1}, where µk : S → A for k = {0, 1, . . . ,H−1}.
The H steps-to-go value function of the policy is V π

H , where

V π
k (s) = R(s, µH−k(s)) +

∑
s′∈S

Pss′(µH−k(s)) · V π
k−1(s′),

for k = {1, 2, . . . ,H} and V π
0 (s) = 0 for all s ∈ S. The H steps-to-go Q-value function
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with respect to π is

QπH(s, a) = R(s, a) +
∑
s′∈S

Pss′(a) · V π
H−1(s′),

for all s ∈ S and a ∈ A . A policy π′ is said to be better than a policy π if V π′
H (s) ≥ V π

H(s)

for all s ∈ S. A solution of the MDP is an optimal policy π∗ with value function

V ∗H(s) = maxπ V
π
H(s) for all s ∈ S.

Online Planning

An MDP can be solved offline via approaches such as value iteration, policy iteration

or linear programming [42]. The offline solution techniques can be computationally

expensive for MDPs with large state spaces. An alternative practical approach is online

planning, where plan execution is interleaved with planning. Action decisions are made

only for the initial state and the states visited subsequently in the online planning process.

Our focus is on search-based online planning, where the Q-values of actions at the

current state are estimated via finite-horizon lookahead search. Typically, a search tree

is built with the current state at the root followed by alternating layers of action nodes

and state nodes. Leaf nodes are initialized and the values of internal nodes are computed

from the values of their successor nodes. An action that maximizes the Q-value estimate

is returned for the current state. There are variants of search-based online planning, e.g.,

Sparse Sampling (SS) [27], Forward Search Sparse Sampling (FSSS) [59], Monte Carlo

Tree Search (MCTS) [9].

Base Policies in Online Planning. Online planning does not require a base policy,

but it can benefit from one if there is one available. MCTS algorithms typically employ

a default base policy to initialize the values of leaf nodes using one or more rollouts of

the base policy. The well-known AlphaGo and AlphaZero programs [54, 53] use base

policies to expand their search trees. Nguyen et al. [39] use a base policy as an extended

action at every node of the search tree to identify better actions at the nodes. Pinto et

al. [41] use a partial policy that gives a subset of actions for every state to successfully

prune actions in the search tree. All these approaches can be roughly viewed as a form

of OPI, even though the goal is not just to perform better than the base policy.
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4.4 Online Policy Improvement

Online Policy Improvement (OPI) has the goal of doing better than a given base policy,

so a base policy is a required input for OPI algorithms. Once the Q-values of actions are

estimated for the current state, OPI can return any action with a Q-value greater than

that of the base policy action. OPI can therefore be done with as few as one off-policy

action (non base-policy action) and the base policy action at the root. There are several

existing OPI algorithms that come with theoretical guarantees of policy improvement.

We discuss a few such algorithms below.

Policy Rollout. The policy rollout algorithm is an online implementation of a single

offline policy improvement step over the base policy value function. The policy improve-

ment step is based on the fact that actions with Q-values greater than the Q-value of

the base policy action will be better than the base policy action for a given state. When

the base policy is substituted with improved actions at one or more states, the resulting

policy will be better than the base policy. In the online version, the Q-value of an action

at the current state is estimated as an average over multiple base policy trajectories

starting with that action. The estimates will get close to the actual values when the

average is computed with a large number of trajectories of sufficient length. The policy

rollout algorithm has been shown to be effective in different applications [56], [5].

Nested Rollout. The nested rollout algorithm [11] is an online implementation

of a sequence of iterations of the policy iteration algorithm, in contrast to the policy

rollout algorithm that implements just one iteration of the policy iteration algorithm.

The policy computed at each iteration of the policy iteration algorithm will be better

than all the previous policies along the sequence. Hence nested rollout is guaranteed to

return a better policy when the Q-values are estimated with a large number of simulated

trajectories of sufficient length.

Parallel Rollout. The parallel rollout algorithm takes multiple base policies as input

to compute a policy that is better than all the base policies [12]. It is an online version

of the offline policy switching algorithm that returns for every state the action of the

base policy with the highest value among all the base policies. The resulting policy is

guaranteed to be better than all the base policies. Parallel rollout estimates the values of
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Table 4.1: Performance of the two base policies

Sysadmin Game of Life Tamarisk Skill Teaching Wildfire

# Bad Good Bad Good Bad Good Bad Good Bad Good

1 171 ± 7 335 ± 5 76 ± 13 177 ± 10 -178 ± 21 -144 ± 20 65 ± 2 65 ± 2 -647 ± 308 -594 ± 251
2 250 ± 11 304 ± 9 82 ± 8 119 ± 9 -590 ± 29 -502 ± 25 -60 ± 0 75 ± 2 -9015 ± 387 -8998 ± 344
3 421 ± 15 554 ± 14 112 ± 7 137 ± 5 -264 ± 38 -222 ± 33 56 ± 15 81 ± 14 -1439 ± 412 -1529 ± 432
4 379 ± 9 487 ± 15 216 ± 17 327 ± 15 -804 ± 30 -681 ± 31 -64 ± 7 57 ± 17 -9050 ± 791 -8585 ± 801
5 518 ± 9 627 ± 17 236 ± 9 281 ± 8 -642 ± 44 -618 ± 37 -64 ± 19 -64 ± 19 -1010 ± 343 -754 ± 257
6 541 ± 15 575 ± 17 244 ± 6 276 ± 5 -952 ± 29 -860 ± 33 -16 ± 31 -10 ± 30 -7697 ± 663 -7374 ± 761
7 597 ± 10 721 ± 17 303 ± 18 462 ± 10 -826 ± 48 -706 ± 45 -297 ± 10 -82 ± 26 -5729 ± 475 -5447 ± 418
8 481 ± 11 583 ± 16 336 ± 14 429 ± 9 -1188 ± 29 -1108 ± 34 -498 ± 12 -201 ± 35 -9912 ± 583 -9792 ± 619
9 780 ± 12 839 ± 15 337 ± 12 421 ± 5 -868 ± 63 -758 ± 52 -166 ± 31 -175 ± 28 -4939 ± 715 -4840 ± 747
10 523 ± 11 616 ± 17 257 ± 22 473 ± 26 -1225 ± 41 -1087 ± 47 -623 ± 12 -239 ± 37 -10834 ± 711 -10584 ± 660

all base policies for the current state as the average over multiple trajectories of the base

policy. The average must be computed over a large number of trajectories of sufficient

length for parallel rollout to return a better policy.

Limited Discrepancy Forward Search Sparse Sampling (LD-FSSS). LD-FSSS

is a version of FSSS [59] with a class of choice functions called Limited Discrepancy

Choice Functions (LDCF) [24]. A choice function defines the off-policy actions (discrep-

ancies) available at the internal nodes of the search tree. LDCF limits the number of

discrepancies along each root-to-leaf path and the depth up to which discrepancies are

allowed in the search tree. It also restricts the set of discrepancies for every state to be

non-increasing with depth. The base policy action is expanded at all the internal nodes

of the search tree. When leaf nodes are initialized to base policy values and action val-

ues are computed with all possible successors with the true state-transition probabilities,

LD-FSSS is guaranteed to return a policy better than the base policy.

The OPI algorithms mentioned above are all based on offline procedures that are

theoretically guaranteed to return a policy better than the base policy. However, the

ideal conditions on the number of sampled trajectories, lengths of trajectories, leaf ini-

tialization to base policy values, perfect state transitions of actions might not hold in

practice. In that case, the online implementations can result in a policy that is worse

than the given base policy.
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4.5 OPI Baselines

Our baselines are variants of the policy rollout algorithm with a Q-value adjustment

heuristic to deal with policy degradation to some extent. Let s0 be the current state for

which an action decision is to be made, As0 be the set of actions expanded at s0, L be

the lookahead horizon and π be the base policy. The base policy can be non-stationary.

In order to keep the notation simple, we describe the baselines and heuristic with a

deterministic, stationary policy π = {µ0, µ1, . . . , µL−1}, where µk = µ for k = 0, . . . , L−1

and µ : S → A. We use π(s) instead of µ(s) for the base policy action at state s.

Baseline 1: MC Policy Rollout

Our first baseline is a version of the Monte Carlo (MC) policy rollout algorithm [6], [56].

The Q-values of actions at s0 are estimated from sampled trajectories without building

a search tree. The Q-value estimate of an action is the average of the values of multiple

base-policy trajectories starting with that action. If N is the number of trajectories,

then

Q̂πL(s0, a) =
1

N

N∑
i=1

(
R(s0, a) +

L−1∑
k=1

R(sik, π(sik))

)
,

where sik is the kth subsequent state of trajectory i and si1 ∈ {s′ ∈ S : Ps0s′(a) > 0}
and sik+1 ∈ {s′ ∈ S : Psiks

i
k+1

(π(sik)) > 0} for 0 < k < L and 0 < i < L. We note that

Q̂πL(s0, a) is an unbiased estimate of QπL(s0, a).

Baseline 2: DAG Policy Rollout

The second baseline builds a search DAG (Directed Acyclic Graph) to make better use

of samples compared to the first baseline. The DAG will have s0 at its root followed by

a sequence of state-node layers (S1, S2, . . . , SL). While computing the backup values of

states in the DAG, every state in layer Si is assumed to be connected to all the states

in layer Si+1. This baseline is also a version of the policy rollout algorithm, so off-policy

actions are allowed only at the root, and only the base policy action is allowed at all

other internal nodes of the DAG.
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DAG Construction. We expand the base policy action π(s0) and one or more off-

policy actions at the root node s0 and generate b0 successors for each action using the

true state-transition probabilities. The b0 successors generated for an action can have

repeated states. We put together all the generated successors of all the actions and

eliminate duplicates to form the subsequent state-node layer S1, i.e.,

S1 =
⋃

a∈As0

GSucc(s0, a, b0),

where GSucc(s0, a, b0) is the set of distinct successors of action a taken b0 times at state

s0 such that GSucc(s0, a, b0) ⊆ {s′ ∈ S : Ps0s′(a) > 0} and |GSucc(s0, a, b0)| ≤ b0.

We then expand the base policy action for all the states in layer S1 and generate

b successors for each state using the true state-transition probabilities. Again, the b

successors generated for a state can have repeated states. We put together all the

generated successors of all the states and eliminate duplicates to form the subsequent

state-node layer S2. We follow the same process to create all subsequent state-node

layers S3, . . . , SL. Formally,

Sk+1 =
⋃
s∈Sk

GSucc(s, π(s), b),

for k = 1 . . . , L − 1, where GSucc(s, π(s), b) is the set of distinct successors of the base

policy action π(s) taken b times at state s such that GSucc(s, π(s), b) ⊆ {s′ ∈ S :

Pss′(π(s)) > 0} and |GSucc(s, π(s), b)| ≤ b.

Q-Value Computation. We set the values of leaf nodes to zero. We estimate the

value of each state node in layers S1 through SL−1 as the immediate reward of the base

policy action for the state plus a weighted average of the values of all the state nodes in

the following layer. Let V̂L−k(s) denote the value estimate of state s in layer Sk in the

DAG. Then V̂0(s) = 0 for all s ∈ SL and

V̂L−k(s) = R(s, π(s)) +
∑

s′∈Sk+1

P̂k,ss′(π(s)) · V̂L−k−1(s′),



50

where

P̂k,ss′(a) =
Pss′(a)∑

s′∈Sk+1
Pss′(a)

.

The L steps-to-go Q-value of an action at the root node s0 is the immediate reward

of the action plus a weighted average of the values of its successors in layer S1, i.e.,

Q̂πL(s0, a) = R(s0, a) +
∑
s′∈S1

P̂0,s0s′(a) · V̂L−1(s′).

We note that Q̂πL(s0, a) computed using normalized weights can be a biased estimate

of QπL(s0, a).

The Q-value Adjustment Heuristic

The purpose of the Q-value adjustment heuristic is to make it harder for off-policy

actions to qualify as better actions in the current state. The OPI algorithm will then be

conservative in switching to off-policy actions. We achieve this by computing an error

margin for the Q-value estimate of each action at s0. We then increase (decrease) the

Q-value estimate of the base policy action (off-policy actions) by their respective error

margins.

Let επ(s0, a) denote the error margin for action a. We have two formulas for the

error margins and hence two different heuristics, namely, the C-Heuristic and the PC-

Heuristic.

• C-Heuristic. The error margin is a fraction of the absolute Q-value estimate of

the action, i.e.,

επ(s0, a) = C · |Q̂πL(s0, a)|,

where C ∈ [0, 1] is a parameter.

• PC-Heuristic. The error margin has an additional state-action dependent factor

equal to the total probability of next-states not covered while generating successors

and hence not used in estimating the Q-value, i.e.,

επ(s0, a) = D(s0, a) · C · |Q̂πL(s0, a)|,
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where C ∈ [0, 1] and D(s0, a) = 1−
∑

s′∈S1
Ps0s′(a).

The adjusted Q-value estimate of action a at s0 is then

Q̃πL(s0, a) =

{
Q̂πL(s0, a) + επ(s0, a), if a = π(s0),

Q̂πL(s0, a) − επ(s0, a), if a 6= π(s0).

Both MC policy rollout and DAG policy rollout return an action â that maximizes

the adjusted Q-value estimates for s0, i.e.,

â ∈ arg max
a∈As

Q̃πL(s0, a).

4.6 Benchmarks

Our initial OPI benchmark set consists of the following 5 domains from the past Interna-

tional Probabilistic Planning Competitions (IPPC): (1) Sysadmin, (2) Game of Life, (3)

Tamarisk, (4) Skill Teaching and (5) Wildfire. Each domain comes with a standard set

of 10 problems of varying sizes and difficulty levels. Further details on the IPPC can be

found at http://www.icaps-conference.org/index.php/Main/Competitions. Both

the domains and problems are described using RDDL [49].

Sysadmin. This domain is about keeping as many computers up as possible in

a computer network. The state of a computer is affected by the states of computers

connected to it plus an external random factor. Actions are to reboot computers to

bring them up. The immediate reward of a state-action pair is the number of computers

running minus the action cost. The state space is factored with binary state variables

for the computers in the network. The size of the state space ranges from 210 to 250 for

the 10 problems.

Game of Life. This is a grid-based domain with cells in the grid either alive or dead.

The goal is to have as many cells alive as possible. The state of a cell is affected by the

states of the cells around it combined with an external random factor. Actions are to

set cells to bring them alive. The immediate reward of a state-action pair is the number

of cells alive minus the action cost. The size of the state space ranges from 29 to 230 for

the 10 problems.

http://www.icaps-conference.org/index.php/ Main/Competitions
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Table 4.2: WTL Scores for DAG Policy Rollout

C0 C0.1 PC0.1 C0.2 PC0.2 C0.3 PC0.3

Bad Base Policy W T L W T L W T L W T L W T L W T L W T L

Sysadmin 8 1 1 2 8 0 3 7 0 0 10 0 2 8 0 0 10 0 1 9 0
Game of life 10 0 0 8 2 0 9 1 0 5 5 0 7 3 0 2 8 0 5 5 0
Tamarisk 0 2 8 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0
Skill Teaching 5 5 0 3 7 0 5 5 0 3 7 0 6 4 0 3 7 0 6 4 0
Wildfire 0 6 4 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0

C0 C0.1 PC0.1 C0.2 PC0.2 C0.3 PC0.3

Good Base Policy W T L W T L W T L W T L W T L W T L W T L

Sysadmin 0 2 8 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0
Game of life 3 7 0 2 8 0 4 6 0 0 10 0 2 8 0 0 10 0 2 8 0
Tamarisk 0 0 10 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0
Skill Teaching 0 10 0 1 9 0 0 10 0 0 10 0 1 9 0 0 10 0 0 10 0
Wildfire 0 9 1 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0

Table 4.3: WTL Scores for MC Policy Rollout

C0 C0.1 PC0.1 C0.2 PC0.2 C0.3 PC0.3

Bad Base Policy W T L W T L W T L W T L W T L W T L W T L

Sysadmin 7 3 0 2 8 0 3 7 0 0 10 0 1 9 0 0 10 0 1 9 0
Game of life 8 2 0 6 4 0 8 2 0 2 8 0 6 4 0 1 9 0 6 4 0
Tamarisk 0 0 10 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0
Skill Teaching 5 5 0 6 4 0 5 5 0 3 7 0 5 5 0 3 7 0 5 5 0
Wildfire 0 3 7 0 10 0 0 9 1 0 10 0 0 10 0 0 10 0 0 10 0

C0 C0.1 PC0.1 C0.2 PC0.2 C0.3 PC0.3

Good Base Policy W T L W T L W T L W T L W T L W T L W T L

Sysadmin 0 0 10 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0
Game of life 1 6 3 0 10 0 2 8 0 0 10 0 1 9 0 0 10 0 1 9 0
Tamarisk 0 0 10 0 9 1 0 9 1 0 10 0 0 10 0 0 10 0 0 10 0
Skill Teaching 0 9 1 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 1 9 0
Wildfire 0 4 6 0 10 0 0 9 1 0 10 0 0 10 0 0 10 0 0 10 0

Tamarisk. This domain is about eradicating an invasive plant species called tamarisk

to promote a native plant species in a river network. The region is divided into reaches

each consisting of a certain number of slots. Tamarisk can spread from a reach to an

adjacent (downstream) reach. Actions are to eradicate tamarisk or restore native species

in reaches. The immediate reward of a state-action pair is a penalty for the number of

slots invaded by and vulnerable to tamarisk plus the action cost. The state space is

factored with two state variables per slot indicating the presence of tamarisk or native

species. The size of the state space can range from 216 to 248 for the 10 problems.
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Figure 4.1: Normalized Mean Scores for DAG Policy Rollout
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Figure 4.2: Normalized Mean Scores for MC Policy Rollout

Skill Teaching. This domain is about teaching a student a given set of skills via

hints and questions. There are prerequisites for some of the skills. A student can attain

medium proficiency in a skill if they know all the prerequisites. A student can attain high

proficiency if they have medium proficiency in that skill and answer questions correctly.

Answering a question wrong can decrease the proficiency level. Actions are to give hints

or ask questions in skills. The immediate reward is a bonus for high proficiency and

a penalty for medium proficiency in skills. The state space is factored with six state

variables per skill. The size of the state space can range from 212 to 248 for the 10

problems.
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Figure 4.4: Normalized Percentile Scores for MC Policy Rollout

Wildfire. This is about controlling the spread of fire in a region modeled as a grid.

A few cells are marked as targets that need to be protected from fire. A grid cell with

fuel in it is more likely to burn if many of its neighbors are burning and a burning cell

continues to burn until the fire is extinguished. Actions are to remove fuel from cells

or put out fire in cells. The immediate reward for a state-action pair is a penalty for

burned out or burning cells plus an action cost. The penalty is high for the target cells.

The state space is factored with two state variables per cell indicating the presence of

fuel and fire. The size of the state space can range from 218 to 272 for the 10 problems.
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Base Policies

We have two base policies for each domain making a total of 10 base policies. For each

domain, one of the base policies is of high quality, while the other is of relatively poor

quality. Table 4.1 shows the performance of the two base policies. The numbers denote

the average finite horizon sum of rewards for 100 evaluation runs with 95% confidence

intervals. For the domains tamarisk and wildfire, the two policies are of roughly the

same quality.

All our base policies are Neural Networks (NNs) taking a factored state as input and

returning a probability distribution over actions as output. The action with the highest

probability is taken as the base policy action for the state. We have used two distinct

NN architectures for each domain: a linear architecture and one with 3 hidden layers and

sparse connections defined by state-variable transitions. The linear architecture performs

best for sysadmin and skill teaching, while the non-linear architecture performs best for

game of life, tamarisk and wildfire. We have adopted the architecture, dataset, and

training method for the NN base policies from Issakkimuthu et al. [23].

Evaluation Metrics

We estimate the expected finite horizon sum of rewards of the base policy and the OPI

policy by taking the average over 100 evaluation runs. In order to assess OPI policies

for performance degradation, we propose the following 3 evaluation metrics.

1. Win-Tie-Loss (WTL) Count. For each domain, we compute a triple of integers

that add up to 10 (the number of problems in the domain). The components W,

T and L stand for the number of wins, ties, and losses achieved by OPI against

the base policies. The win, tie, or loss outcome for a problem is defined in terms of

the standard 95% Confidence Intervals (CIs) around the mean performance of the

base policy and the OPI policy. If the CI of OPI is totally above the CI of the base

policy, then the outcome is a win for OPI. If the CIs overlap, then the outcome is a

tie. Otherwise it is a loss. Wins are hard to achieve because the condition for wins

is very strict. The WTL count is a simple and natural measure of the performance

of OPI algorithms. OPI algorithms with losses can be considered unreliable for

the domain. OPI algorithms with wider CIs will have many ties and no losses,
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which might look fine under the WTL criterion. This drawback can be addressed

by using the following metric along with WTL counts.

2. Normalized Mean Score (NMS). For each domain, we compute a single real

number that indicates OPI performance. The NM score of a domain is the average

of the NM scores of the 10 problems. The NM score for problem k is defined in

terms of the mean performance of the base policy ν(k) and the mean performance

of the OPI policy ν ′(k) for that problem:

NMS(k) =
ν ′(k)− ν(k)

|ν(k)|
.

A positive normalized mean score indicates better average improvement, a negative

score indicates worse average degradation, and a zero score indicates equivalent

average performance of OPI for the domain.

3. Normalized Percentile Score (NPS). In addition to NMS, another measure

- the average of the bottom α% of the 100 evaluation runs - might be useful to

ensure that OPI does not crash badly when the base policy does not. The NP score

of a domain is the average of the NP scores of the 10 problems. The NP score for

problem k is defined in terms of the average of the bottom α% of evaluation runs

of the base policy ζα(k) and the average of the bottom α% of evaluation runs of

the OPI policy ζ ′α(k) for that problem:

NPSα(k) =
ζ ′α(k)− ζα(k)

|ζα(k)|
.

Positive, negative, and zero NP scores indicate improved, worse, and equivalent

low end average of OPI. NPS is analogous to the notion of Conditional Value at

Risk (CVaR) in statistics.

4.7 Experiments

Here we provide an example of our evaluation procedure for the DAG and MC OPI

baselines. The primary goal is to demonstrate the evaluation methodology and show

that the baselines are strong for both the cases when transition probability information
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is not available (MC with C-Heuristic) and when the transition probability is available

(DAG and MC with PC-Heuristic). Our implementation can be found here: https:

//bitbucket.org/eshkim/ld-fsss/src/master/.

Setup. The lookahead depth is 4 for both DAG and MC policy rollout. Leaf nodes

are set to zero. The number of root actions is 8 or the number of actions applicable

whichever is less. These are the top 8 actions according to the base policy probabilities

and therefore include the base policy action. The number of successors generated for a

state-action pair in the case of DAG policy rollout is 3, i.e., b0 = b = 3. In order to

compare DAG and MC policy rollout results, we first run DAG policy rollout for the

current state and then run MC policy rollout for the same amount of time. The number

of rollout trajectories in MC policy rollout can therefore vary from state to state.

The parameter C of the Q-value adjustment heuristic takes values from the set

{0.0, 0.1, 0.2, 0.3}. For MC policy rollout with the PC-Heuristic, we record the suc-

cessors of the root state s0 for every action to compute D(s0, a) using the true state-

transition probabilities. In our experiments, the planning horizon is 40, and actions are

limited to those with at most one action bit set. Our experiments were run on an HPC

cluster with the RDDLSim library available at https://github.com/ssanner/rddlsim

for evaluation.

Notation. In all the tables and charts, the labels Cx and PCx have been used to denote

OPI policies with different Q-value adjustment heuristics. Cx stands for the C-Heuristic

with parameter C set to value x. PCx stands for the PC-Heuristic with parameter C

set to value x. C0 corresponds to the OPI policy without Q-value adjustment, as it is

equivalent to the first heuristic with parameter C set to 0.

WTL Results. Tables 4.2 and 4.3 show the WTL scores for DAG and MC policy

rollout for the two base policies. The first major observation is that both DAG and MC

rollout without Q-value adjustment (C0) have many losses across the domains. This is

particularly the case for the higher-quality base policy, which is frequently degraded.

Next, we consider the influence of C on performance. We see, as expected, that as

C increases the number of losses decreases and the wins tend to increase. In particular,

for C > 0 there are only a very small number of losses and no losses for C ≥ 0.2. At the

https://bitbucket.org/eshkim/ld-fsss/src/master/
https://bitbucket.org/eshkim/ld-fsss/src/master/
https://github.com/ssanner/rddlsim
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same time we see that in 3 of the domains there are a significant number of wins for the

lower-performing base policy even for the largest value of C = 0.3. There are zero wins

for the high-performing base policy, which is due to the strict conditions under which

we judge a win (non-overlapping confidence intervals). We will see later, however, that

even in these cases there is improvement when considering the expected values.

Next, comparing the results for Cx versus PCx, we see that including the probability

of states “not covered” typically results in more wins without a substantial increase (or

any increase) in losses. This, shows that the PCx heuristic is able to effectively modulate

the Q-value adjustment on a per state-action basis to improve OPI performance. This

shows that when transition probabilities or good estimates are available, PCx can be an

effective approach to maintaining safety while improving performance.

Finally, we see that the DAG policy rollout generally performs better that the MC

approach in terms of total number of wins while not increasing the number of losses.

This shows that there can be value in reuse of MC samples in a DAG structure and also

exploiting the transition model within the DAG model compared to a pure MC approach.

The design space of DAG structures used for value estimation is large and it is reasonable

to expect that optimization of the structure could result in further improvement.

Overall, the results indicate that the DAG and MC approaches offer a strong parame-

terized space of baselines for safe OPI that span different WTL trade-offs for comparison

to other approaches. In particular, MC offers a baseline that requires no information

about transition probabilities, while DAG is able to exploit transition information when

available. The results also indicate that with respect to number of wins, there is significant

room to improve over the baselines for the higher-quality base policy.

Normalized Mean Scores. The bar charts in Figures 4.1 and 4.2 show the NMS for

DAG and MC policy rollout for both the base policies. We first see that for both DAG

and MC policy rollout, the scores are positive in sysadmin, game of life, and skill teaching

for the bad base policy and somewhat positive in game of life for the good base policy.

The scores are negative or close to zero everywhere else. The scores are particularly

negative for the case of no Q-value adjustment (C0). Increasing the value of C largely

mitigates the degradation, and including the “missing probability” into the adjustment

tends to be better Finally, again, DAG policy rollout performs slightly better than MC

policy rollout, which shows that the baselines are able to leverage the availability of
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transition probabilities for better performance.

Normalized Percentile Scores. The bar charts in Figures 4.3 and 4.4 show the

NPS for the bottom 5% evaluation runs for DAG and MC policy rollout for both the

base policies. These results are qualitatively similar to those for NMS. However, we

do see that the NPS values tend to be higher than the corresponding NMS values.

This indicates that the baseline OPI methods are generating more improvement or less

degradation for the lower end of the performance profile (NPS) compared to the mean

performance. In other words, these OPI baselines are suggesting they are particularly

effective at improving worst case performance.

4.8 Summary

In this work, we have drawn attention to the important practical issue of policy degra-

dation in OPI. We have proposed benchmarks and evaluation metrics for OPI with the

goal of improving our understanding of the empirical performance of OPI algorithms.

We have also presented OPI baselines with a heuristic to deal with policy degradation.

The baselines form a class of methods that can use transition probabilities if available or

only utilize samples. The parameterized baselines are demonstrated to span the trade-off

space of OPI performance, making them useful points for future comparison. Further,

the baselines demonstrate benefit from using transition probability information, making

them useful for comparing to evaluation settings with and without that information. The

DAG-based baseline makes better use of samples by constructing a search DAG instead

of discarding sampled trajectories. It will be interesting to consider future extensions

that continue to search off-policy actions within the DAG rather than only at the root.

Overall, we hope that this work helps set the stage for more work on safe OPI algorithms

backed by solid evaluations and comparisons to strong baselines.
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Chapter 5: Theoretical Results Related to Aggregation in MDPs

5.1 Abstract

Sequential decision-making problems under uncertainty are often modeled using the

framework of Markov Decision Processes (MDPs). Many real-world problems give rise to

MDPs with huge state and action spaces, which has led to a variety of proposed approx-

imate solution techniques. Aggregation is one such technique, where MDP states and

actions are grouped together to form a smaller aggregate problem. The smaller problem

is solved in place of the original problem, and the aggregate solution is extended to the

original problem. The quality of the aggregate solution depends on properties of the

aggregation, which has led to a number of theoretical analyses of the sub-optimality

of aggregation. An investigation of the current set of results, however, revealed that

despite the apparent similarity of prior work on aggregation, the results are not always

informed by or related to one another. This has made it difficult to understand the

overall landscape of results in a unified way. The main contribution of this paper is to

synthesize a more unified view of the sub-optimality guarantees provided by some widely

used aggregation frameworks. In particular, the collection of results is put in the context

of two prior aggregation frameworks, which leads to a more common analysis approach

and, in some cases, improved sub-optimality bounds.

5.2 Introduction

Sequential decision-making problems under uncertainty are typically modeled using the

framework of Markov Decision Processes (MDPs). Once modeled as an MDP with an

objective, a sequential decision-making problem can be solved optimally using exact

MDP solution techniques such as value iteration, policy iteration and linear program-

ming. However, many real-world problems give rise to MDPs with huge state and action

spaces, which can only be solved approximately in practice. Aggregation is a problem

approximation technique, where states and actions of an MDP are grouped together to
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form a smaller aggregate problem. The aggregate problem is then solved in place of the

original problem, and the aggregate solution is extended to the original problem. Aggre-

gation will be useful when the aggregate solution is not too sub-optimal in the original

MDP.

The aggregation approach to solving an MDP can be viewed as a sequence of three

steps. The first step is to define the aggregate problem, which is usually another MDP

with a relatively smaller state and action space. The second step is to solve the aggregate

problem, for instance, by computing the optimal value function of the smaller MDP. The

final step is to specify how the aggregate solution will be extended to the original MDP.

There are several aggregation schemes in the literature that differ in one or more of

the three steps. Many of them come with theoretical bounds on the sub-optimality of the

aggregation solution in the original MDP. Our objective in this synthesis is to present

a unified view of the sub-optimality guarantees provided by aggregation schemes. We

achieve this by identifying two prior aggregation frameworks that capture a collection of

existing work. This synthesis provides a detailed presentation of sub-optimality results

for those frameworks and expresses a number of other prior results as special cases of

these frameworks.

5.3 Background

A Markov decision process M is a tuple (S, {As}, P,R), where S is a finite set of states,

As is the finite set of actions applicable in state s, P is the state-transition function

where Pss′(as) denotes the probability of reaching state s′ from state s on taking action

as at state s, and R is the reward function where R(s, as) ∈ [Rmin, Rmax] denotes the

immediate reward for taking action as in state s. The objective is to maximize the

expected discounted infinite-horizon sum of rewards with discount factor γ ∈ (0, 1).

A deterministic policy π of an MDP is a mapping from states to actions. The Q-value

function of a policy π gives the expected infinite-horizon discounted cumulative reward

of executing an action as in state s and then following π thereafter, which is denoted

by Qπ(s, as). The Q-function of a policy is the unique solution to the following set of
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constraints:

Qπ(s, as) = R(s, as) + γ
∑
s′∈S

Pss′(as) ·Qπ(s′, π(s′)) (5.1)

for all as ∈ As. Similarly, the value of a policy at a state, denoted V π(s), gives the

expected infinite-horizon cumulative reward of executing π starting at s and satisfies the

constraint V π(s) = Qπ(s, π(s)) for all s ∈ S. The Bellman backup operator with respect

to vector V restricted to policy π is

Bπ[V ](s) = R(s, π(s)) + γ
∑
s′∈S

Pss′(π(s)) · V (s′) (5.2)

for all s ∈ S and V π is the fixed point of Bπ, i.e., V π = Bπ[V π].

An optimal policy π∗ for an MDP is a policy that has a Q-value or value that is as

good as or better than any other policy across the full state-action space. The Q-function

and value function of an optimal policy, denoted Q∗ and V ∗ are unique and satisfy the

Bellman equation:

Q∗(s, as) = R(s, as) + γ
∑
s′∈S

Pss′(as) · max
as′∈As′

Q∗(s′, as′) (5.3)

for all as ∈ As and V ∗(s) = maxas∈As Q
∗(s, as) for all s ∈ S.

It will be useful to have the following definition of Q-values with respect to a given

vector V .

QV (s, as) = R(s, as) + γ
∑
s′∈S

Pss′(as) · V (s′) (5.4)

noting that Qπ(s, as) = QV π(s, as) and Q∗(s, as) = QV ∗(s, as) for all s ∈ S and as ∈ As.
The optimal value function can be computed via the value iteration algorithm by iterating

the Bellman backup operator starting from any value vector V ,

B[V ](s) = max
as∈As

R(s, as) + γ
∑
s′∈S

Pss′(as) · V (s′) (5.5)

for all s ∈ S. V ∗ is the unique fixed point of this operator, i.e., V ∗ = B[V ∗].
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In addition to value iteration, other well known approaches to solving MDPs include

policy iteration and linear programming [42]. Each of these algorithms scales at least

polynomially in the number of states and actions, which makes them computationally

expensive or impractical for MDPs with enormous state and/or action spaces. The

aggregation approach reduces the size of the MDP by aggregating states, and possibly

actions, to create a smaller aggregate problem. In the following sections, we introduce

two prior frameworks for aggregation that capture a collection of results in the literature.

5.4 The Whitt Framework

Whitt introduced this aggregation framework in his work Approximations of Dynamic

Programs I [60]. In this framework, the aggregate problem is an abstract MDP. Whitt’s

framework is for general dynamic programs. We describe a version of it here for discrete

MDPs with finite state and action spaces.

The Abstract MDP

The abstract MDP is M̄ = (S̄, {Ās̄}, P̄ , R̄) with state space S̄, action space {Ās̄} where

Ās̄ denotes the set of actions applicable in state s̄ ∈ S̄, state-transition function P̄ where

P̄s̄s̄′(ā) is the probability of reaching state s̄′ from state s̄ on taking action ās̄ at state

s̄ and R̄ is the reward function where R̄(s̄, ās̄) ∈ [Rmin, Rmax] is the immediate reward

for taking action ās̄ in state s̄. The objective is to maximize the expected discounted

infinite-horizon sum of rewards with discount factor γ ∈ (0, 1).

Definition

The abstract MDP M̄ = (S̄, {Ās̄}, P̄ , R̄) and the original MDP M = 〈S,A, P,R〉 are

related by the following onto mappings

• φ : S → S̄,

• ψ = {ψs : As → Āφ(s), ∀s ∈ S}.

The onto mapping φ : S → S̄ defines a partition of S, as it maps every state in S to an

abstract state in S̄. An abstract state s̄ ∈ S̄ represents a block of the partition defined
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by φ, i.e., s̄ = {s ∈ S : φ(s) = s̄}. Similarly, the onto mapping ψs : As → Ās̄ defines

a partition of As as it maps every action as ∈ As to an action in Āφ(s). An abstract

action āφ(s) ∈ Āφ(s) represents a block of this partition. Together, the mappings φ

and ψ define a partition of the set of all admissible state-action pairs (s, as) of the

original MDP. An abstract state-action pair (s̄, ās̄) represents a block of this partition,

i.e., (s̄, ās̄) = {(s, as) : φ(s) = s̄, ψs(as) = ās̄} for all s̄ ∈ S̄ and ās̄ ∈ Ās̄.
The state-transition and reward functions of the abstract MDP are defined in terms of

the state-transition and reward functions of the original MDP. For this purpose, a prob-

ability distribution Ws̄ās̄ is defined over the set of original state-action pairs mapped to

every abstract state-action pair (s̄, ās̄), i.e., Ws̄ās̄ is such that
∑

(s,as)∈(s̄,ās̄)
Ws̄ās̄(s, as) = 1

for all s̄ ∈ S̄ and ās̄ ∈ Ās̄.

State-Transition Function. The state-transition probability of an original state-

action pair (s, as) to an abstract state s̄′ is the sum of the transition probabilities from

state s on action as to every original state s′ in the abstract state s̄′. The state-transition

probability of an abstract state-action pair (s̄, ās̄) to an abstract state s̄′ is a weighted

average of the state-transition probabilities of all the original state-action pairs in (s̄, ās̄)

to the abstract state s̄′, i.e.,

P̄s̄s̄′(ās̄) =
∑

(s,as)∈(s̄,ās̄)

Ws̄ās̄(s, as)
∑
s′∈s̄′

Pss′(as) (5.6)

for all s̄ ∈ S̄ and ās̄ ∈ Ās̄.

Reward Function. The immediate reward of an abstract state-action pair (s̄, ās̄) is a

weighted average of the immediate rewards of all the original state-action pairs mapped

to (s̄, ās̄), i.e.,

R̄(s̄, ās̄) =
∑

(s,as)∈(s̄,ās̄)

Ws̄ās̄(s, as) ·R(s, as) (5.7)

for all s̄ ∈ S̄ and ās̄ ∈ Ās̄.
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Solution

Since M̄ is just another MDP, the definitions of Q-functions, value functions and Bellman

backup operator in equations 5.1 to 5.5 apply to M̄ as well. We use the bar notation for

the abstract MDP, that is, the Q-function and value function of the abstract MDP M̄

with respect to an abstract policy π̄ are denoted Q̄π̄(s̄, ās̄) and V̄ π̄(s̄) respectively for all

s̄ ∈ S̄ and ās̄ ∈ Ās̄.

Solution Extension

A value vector of the abstract MDP is extended to the original MDP by assigning the

value of each abstract state to all the original MDP states mapped to it. The extension

of V̄ , denoted X[V̄ ], is therefore

X[V̄ ](s) = V̄ (φ(s)) (5.8)

for all s ∈ S. Similarly, a Q-vector of the abstract MDP is extended to the original MDP

by assigning the value of each abstract state-action pair to all the original state-action

pairs mapped to it. The extension of Q̄, denoted X[Q̄], is therefore

X[Q̄](s, as) = Q̄(φ(s), ψs(as)) (5.9)

for all s ∈ S and as ∈ As. A deterministic policy of the abstract MDP is extended to

a deterministic policy for the original MDP by choosing for each state s ∈ S a repre-

sentative action for each abstract action applicable at φ(s). This is necessary because

multiple actions of state s can be mapped to an abstract action for φ(s).

Let ãs[āφ(s)] be the representative action of the set {as ∈ As : ψs(as) = āφ(s)}. The

extension of π̄ to the original MDP, denoted X[π̄], is

X[π̄](s) = ãs[π̄(φ(s))] (5.10)

for all s ∈ S.
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Main Results

Whitt’s framework in his paper [60] is for general dynamic programs. In this section, we

present the main results of the framework adapted to discrete MDPs with finite state

and action spaces. In the theorems, we use the following definitions from equations

(6.1), (3.1) and (4.4) in Whitt [60]. The first two definitions compare the immediate

rewards and state-transition probabilities of the original and abstract MDPs.

Definition 1. Kr is a measure of the worst-case difference between the immediate re-

ward of a state-action pair in M and M̄ . More precisely, Kr is the maximum absolute

difference between the immediate reward of a state-action pair in M and that of the

corresponding abstract state-action pair in M̄ , i.e.,

Kr = max
s∈S, as∈As

∣∣R(s, as)− R̄(φ(s), ψs(as))
∣∣ .

Definition 2. Kq is a measure of the worst-case difference between the transition proba-

bilities of a state-action pair in M and M̄ . More precisely, Kq is the maximum one-norm

distance between the state-transition distribution of a state-action pair in M over the ab-

stract state space S̄ and that of the corresponding abstract state-action pair in M̄ , i.e.,

Kq = max
s∈S, as∈As

∑
s̄′∈S̄

∣∣∣∣∣∑
s′∈s̄′

Pss′(as)− P̄φ(s)s̄′(ψs(as))

∣∣∣∣∣ .

Definition 3. For value vector V of the original MDP, δ(V ) is the difference between

the maximum and minimum components of V , i.e.,

δ(V ) = max
s∈S

V (s)−min
s∈S

V (s).

The definition applies for a value vector V̄ of the abstract MDP as well, i.e.,

δ(V̄ ) = δ(X[V̄ ]).
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The following definition compares the one-step backup values of the original and abstract

MDPs with respect to a given vector.

Definition 4. K(V̄ ) is a measure of the worst-case difference between the one-step

backup value of a state-action pair in M and M̄ . For value vector V̄ of the abstract

MDP, K(V̄ ) is the maximum absolute difference between the Q-value of a state-action

pair in M with respect to X[V̄ ] and that of the corresponding abstract state-action pair

with respect to V̄ , i.e.,

K(V̄ ) = max
s∈S, as∈As

∣∣∣QX[V̄ ](s, as)− Q̄V̄ (φ(s), ψs(as))
∣∣∣ .

Definition 5. For value vector V of the original MDP, L(V ) is the maximum abso-

lute difference between the Q-values of two state-action pairs of M mapped to the same

abstract state-action pair, i.e.,

L(V ) = max
s̄∈S̄, ās̄∈Ās̄

max
(s,as), (ŝ,aŝ) ∈ (s̄,ās̄)

|QV (s, as)−QV (ŝ, aŝ)| .

For value vector V̄ of the abstract MDP, L(V̄ ) = L(X[V̄ ]).

Lemma 5. For value vector V̄ of the abstract MDP, L(V̄ ) ≥ K(V̄ ).

Proof. A proof can be found in the appendix (section 7.2).

Theorem 6 below gives a bound on K(V̄ ) in terms of Kr, Kq and δ(V̄ ). This result

has been adapted from theorem 6.1(b) in Whitt [60] and it will be used in some of the

sub-optimality results.

Theorem 6. For value vector V̄ of the abstract MDP M̄ ,

K(V̄ ) ≤ Kr + γ · Kq

2
· δ(V̄ ).
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Proof. The bound follows from the definitions of K(V̄ ), Kr, Kq and δ(V̄ ). A proof

based on the proof of theorem 6.1(b) in Whitt [60] is given in the appendix (section

7.2).

Theorem 7 below gives a bound on the max-norm distance between the extended Q-

vector of an abstract policy π̄ and the Q-vector of the extended abstract policy X[π̄],

i.e., ‖X[Q̄π̄]−QX[π̄]‖∞.

Theorem 7. For any deterministic, stationary policy π̄ of M̄

‖X[Q̄π̄]−QX[π̄]‖∞ ≤
1

1− γ
(

1− Kq
2

) (Kr + γ · Kq

2
· Rmax −Rmin

1− γ

)
,

where [Rmin, Rmax] is the reward function range for both the original and abstract MDPs.

Proof. A detailed and complete proof is given in the appendix (section 7.2). The proof

structure is based on the proof of theorem 6.2(a) in Whitt [60].

The following corollary gives a bound on the max-norm distance between the extended

value vector of an abstract policy π̄ and the value vector of the extended abstract policy

X[π̄], i.e., ‖X[V̄ π̄]− V X[π̄]‖∞. This is the result in theorem 6.2(a) from Whitt [60].

Corollary 2. For any deterministic, stationary policy π̄ of M̄

‖X[V̄ π̄]− V X[π̄]‖∞ ≤
1

1− γ
(

1− Kq
2

) (Kr + γ · Kq

2
· Rmax −Rmin

1− γ

)
,

where [Rmin, Rmax] is the reward function range of both the original and abstract MDPs.

Proof. A proof is given in the appendix (section 7.2).

Theorem 8 below gives a different bound on ‖X[V̄ π̄]−V X[π̄]‖∞ in terms of K(V̄ π̄). This

result has been adapted from theorem 3.2 in Whitt [60].
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Theorem 8. For any deterministic, stationary policy π̄ of M̄

‖X[V̄ π̄]− V X[π̄]‖∞ ≤
1

1− γ
·K(V̄ π̄).

Proof. A proof is given in the appendix (section 7.2).

Theorem 9 below gives a bound on the max-norm distance between the extended optimal

value vector of the abstract MDP and the optimal value vector of the original MDP, i.e.,

‖V ∗ −X[V̄ ∗]‖∞. This result has been adapted from theorem 3.1 in Whitt [60].

Theorem 9. For the optimal value vectors V ∗ and V̄ ∗ of the original MDP M and the

abstract MDP M̄ , we have

‖V ∗ −X[V̄ ∗]‖∞ ≤
1

1− γ
·K(V̄ ∗).

Proof. The proof follows from a bound on the max-norm distance between X[V̄ ∗] and

the Bellman backup vector with respect to B[X[V̄ ∗]]. A complete proof is given in the

appendix (section 7.2).

Theorem 10 below gives a bound on the max-norm distance between the value vector of

the optimal policy of the abstract MDP extended to the original MDP and the optimal

value vector of the original MDP, i.e., ‖V ∗ − V X[π̄∗]‖∞. This result has been adapted

from the corollary of Lemma 3.1 in Whitt [60].

Theorem 10. For the optimal value vector V ∗ of the original MDP M and the optimal

value vector V̄ ∗ and optimal policy π̄∗ of the abstract MDP M̄ , we have

‖V ∗ − V X[π̄∗]‖∞ ≤
2

1− γ
·K(V̄ ∗).

Proof. The result follows from theorems 8 and 9 above. A complete proof is given in the

appendix (section 7.2).



70

Special cases

We list several special cases of the Whitt abstraction framework in this section.

1. Simulation Lemmas

Here the abstract MDP is an approximation of the original MDP with the same

state and action spaces but different reward and state-transition functions.

(a) Lemma 1 from Strehl et al. [55].

The original MDP is M = 〈S,A, P,R〉 and the abstract MDP is M̄ =

〈S,A, P̄ , R̄〉. The set of applicable actions is the same for all the states,

i.e., As = A for all s ∈ S. The reward function range for both M and M̄

is [0, Rmax], i.e., 0 ≤ R(s, a) ≤ Rmax and 0 ≤ R̄(s, a) ≤ Rmax for all s ∈ S
and a ∈ A. Since both M and M̄ have the same state and action spaces, the

expressions for Kr and Kq reduce to

Kr = max
s∈S, a∈A

∣∣R(s, a)− R̄(s, a)
∣∣ ,

Kq = max
s∈S, a∈A

∑
s′∈S

∣∣Pss′(a)− P̄ss′(a)
∣∣ .

A policy of M̄ is also a valid policy for M , since both M and M̄ have the

same set of policies. Lemma 1 from Strehl et al. [55] gives a bound on the

max-norm distance between the Q-vector of a policy in M and M̄ . In our

notation, their bound can be expressed as

‖Qπ̄ − Q̄π̄‖∞ ≤
Kr + γ ·Rmax ·Kq

(1− γ)2
.

We can apply theorem 7 to improve this bound slightly to get

‖Qπ̄ − Q̄π̄‖∞ = ‖QX[π̄] −X[Q̄π̄]‖∞

≤ 1

1− γ (1− Kq
2 )

(
Kr + γ · Kq

2
· Rmax

1− γ

)
.
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(b) Theorem 1 from Serban et al. [51].

The original MDP is M = 〈S,A, P,R〉 and the abstract MDP is M̄ =

〈S,A, P̄ , R〉. M and M̄ have the same reward function with range [0, Rmax],

i.e., 0 ≤ R(s, a) ≤ Rmax for all s ∈ S and a ∈ A. Since M and M̄ have the

same state and action spaces and reward function, the expressions for Kr, Kq

and K(V̄ ) reduce to

Kr = 0,

Kq = max
s∈S, a∈A

∑
s′∈S

∣∣Pss′(a)− P̄ss′(a)
∣∣ ,

K(V̄ ) = max
s∈S, a∈A

∣∣QV̄ (s, a)− Q̄V̄ (s, a)
∣∣ .

The result in theorem 1 from Serban et al. [51] is in terms of the KL divergence

between the state-transition distributions of P and P̄ . To state the result in

our notation, we need the following definitions. Let Ps.(a) and P̄s.(a) denote

the state-transition distributions of P and P̄ respectively over S for the state-

action pair (s, a). The KL divergence between Ps.(a) and P̄s.(a) is

DKL(Ps.(a) || P̄s.(a)) =
∑
s′∈S

Pss′(a) log
Pss′(a)

P̄ss′(a)
.

Let Kkl be the maximum absolute square root of the KL divergence between

the state-transition distributions of P and P̄ over all state-action pairs, i.e.,

Kkl = max
s∈S, a∈A

∣∣∣∣ √DKL(Ps.(a) || P̄s.(a))

∣∣∣∣ .
From Serban et al.’s bound [51] on the L1 distance between Ps.(a) and P̄s.(a)

using Pinsker’s inequality, i.e.,

∑
s′∈S

∣∣Pss′(a)− P̄ss′(a)
∣∣ ≤ √

2 DKL(Ps(a) || P̄s(a)),

we get Kq ≤
√

2 Kkl.
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Theorem 1 from Serban et al. [51] gives a bound on the max-norm distance

between the optimal Q-vectors of M and M̄ . In our notation, this bound can

be expressed as

‖Q∗ − Q̄∗‖∞ ≤
γ ·Rmax ·

√
2 ·Kkl

(1− γ)2
.

This bound can be slightly improved using theorem 7 to get

‖Q∗ − Q̄∗‖∞ ≤
1

1− γ (1− Kq
2 )

(
γ · Rmax

1− γ
· Kkl√

2

)
.

Proof.

Q∗ − Q̄∗ = Qπ
∗ − Q̄π

∗
+ Q̄π

∗ − Q̄∗ ≤ Qπ
∗ − Q̄π

∗ ≤ ‖Qπ∗ − Q̄π∗‖∞.

Q̄∗ − Q∗ = Q̄π̄
∗ − Qπ̄

∗
+ Qπ̄

∗ −Qπ∗ ≤ Q̄π̄
∗ − Qπ̄

∗ ≤ ‖Q̄π̄∗ − Qπ̄
∗‖∞.

By theorem 7, we have

‖Q∗ − Q̄∗‖∞ ≤
1

1− γ (1− Kq
2 )

(
γ · Rmax

1− γ
· Kq

2

)

≤ 1

1− γ (1− Kq
2 )

(
γ · Rmax

1− γ
· Kkl√

2

)
, since Kq ≤

√
2 Kkl.

2. Approximate MDP Homomorphism (Ravindran et al. [46]).

The original MDP is M = (S, {As}, P,R) with optimal value function V ∗ and the

abstract MDP is M̄ = (S̄, {Ās̄}, P̄ , R̄) with optimal value function V̄ ∗ and optimal

policy π̄∗. The main result in section 4.1 of Ravindran et al. [46] gives a bound on

the sub-optimality of the stochastic extension X [π̄∗] of an optimal policy π̄∗ of M̄
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to M . In our notation, this result can be expressed as

V ∗ − V X (π̄∗) ≤ 2

1− γ
·K(V̄ ∗),

where

X [π̄∗](s, as) =
π̄∗(φ(s), ψs(as))

|{a′ ∈ As : ψs(a′) = ψs(as)}|

for all s ∈ S and as ∈ As. The result follows from theorem 10 since theorem 8 holds

for the stochastic extension X [π̄∗] of π̄∗ as shown in Corollary 3 in the appendix

(section 7.2).

3. Model Similarity based State Abstraction (Abel et al. [1]).

The original MDP is M = (S,A, P,R) and the abstract MDP is M̄ = (S̄, A, P̄ , R̄).

M and M̄ have the same action space A. The reward function range for both M

and M̄ is [0, 1], i.e., 0 ≤ R(s, a) ≤ 1 and 0 ≤ R̄(s̄, a) ≤ 1 for all s ∈ S, s̄ ∈ S̄ and

a ∈ A. The state space of M̄ is a partition of the state space of M defined by an

onto mapping φ : S → S̄. The partition is such that states of M mapped to the

same abstract state have similar reward values and state-transition probabilities

for every action. Formally, for a given ε ≥ 0, the mapping φ : S → S̄ satisfies

φ(s) = φ(ŝ) ⇒ ∀a ∈ A
[
|R(s, a)−R(ŝ, a)| ≤ ε AND

∀s̄ ∈ S̄
{∣∣∣∣ ∑

s′∈s̄
Pss′(a)−

∑
s′∈s̄

Pŝs′(a)

∣∣∣∣ ≤ ε

}]
for all s, ŝ ∈ S.

Lemma 2 in Abel et al. [1] bounds the sub-optimality of the optimal policy of M̄

extended to M . In our notation, this bound can be expressed as

V ∗(s)− V X[π̄∗](s) ≤ 2ε+ 2γ (|S| − 1) ε

(1− γ)3
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=
2

1− γ

[
ε

(1− γ)2
+ γ · ε (|S| − 1) · 1

(1− γ)2

]
for all s ∈ S. We can use theorem 10 and definition 5 to improve this bound to

V ∗(s)− V X[π̄∗](s) ≤ 2

1− γ

(
ε+ γ · ε

∣∣S̄∣∣
2
· 1

1− γ

)
.

A proof can be found in the appendix (section 7.2) as Lemma 8.

4. Jiang et al.’s theorem 1 in [25].

The original MDP is M = (S,A, P,R) and the abstract MDP is M̄ = (S̄, A, P̄ , R̄).

The state space of M̄ is a partition of the state space of M defined by an onto

mapping φ : S → S̄. The reward function range for both M and M̄ is [0, Rmax],

i.e., 0 ≤ R(s, a) ≤ Rmax and 0 ≤ R̄(s̄, a) ≤ Rmax for all s ∈ S, s̄ ∈ S̄ and a ∈ A.

It is assumed that there exists a probability distribution p defined over the set of

all state-action pairs of M , i.e., p(s, a) ≥ 0 for all s ∈ S, a ∈ A and∑
s∈S, a∈A

p(s, a) = 1.

A weight function w is defined for each state-action pair of M as

w(s, a) =
p(s, a)∑

ṡ∈φ(s)

p(ṡ, a)
.

The state-transition function and reward function of M̄ are

P̄s̄s̄′(a) =
∑
s∈s̄

w(s, a)
∑
s′∈s̄′

Pss′(a),

R̄(s̄, a) =
∑
s∈s̄

w(s, a) ·R(s, a)

for all s̄, s̄′ ∈ S̄ and a ∈ A.
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The expressions for of Kr, Kp and K(V̄ ) reduce to

Kr = max
s∈S, a∈A

∣∣R(s, a)− R̄(φ(s), a)
∣∣ ,

Kp = max
s∈S, a∈A

∑
s̄′∈S̄

∣∣∣∣∣∑
s′∈s̄′

Pss′(a)− P̄φ(s)s̄′(a)

∣∣∣∣∣ ,
K(V̄ ) = max

s∈S, a∈A

∣∣∣QX[V̄ ](s, a)− Q̄V̄ (φ(s), a)
∣∣∣ .

M̄ is approximated empirically by M̂ = (S̄, A, P̂ , R̂) by sampling state-action pairs

of the original MDP M according to the probability distribution p. M̂ has the

same state space and action space as M̄ with P̂ and R̂ defined empirically using

the sampled state-action pairs of M . The details can be found in the paper. K(V̄ )

in definition 4 that relates M and M̄ . We can define K̄(V̂ ) that relates M̄ and M̂ ,

i.e.,

K̄(V̂ ) = max
s̄∈S̄, a∈A

∣∣∣Q̄V̂ (s̄, a)− Q̂V̂ (s̄, a)
∣∣∣ .

Lemma 3 in Jiang et al. [25] gives an upper bound on K̄(V̂ ) that holds with high

probability for all value vectors V̂ of M̂ . We denote this upper bound as K̄.

Theorem 1 in Jiang et al. [25] gives a bound on the optimal value vector of the

original MDP M and the value vector of the optimal policy of the empirical MDP

M̂ extended to M . In our notation, we can express this bound as

‖V ∗ − V X[π̂∗]‖∞ ≤
2

(1− γ)2

[(
Kr + γ · Kp

2
· Rmax

1− γ

)
+ K̄

]
.

This bound can be improved using theorems 8, 9 and 10 by a factor of
1

1− γ
as

shown below.

Proof.

V ∗− V X[π̂∗] = V ∗− X[V̄ ∗] + X[V̄ ∗] − X[V̄ π̂∗ ] + X[V̄ π̂∗ ] − V X[π̂∗].



76

≤
(
‖V ∗ − X[V̄ ∗]‖∞ + ‖V̄ ∗ − V̄ π̂∗‖∞ + ‖X[V̄ π̂∗ ] − V X[π̂∗]‖∞

)
.

≤
(

1

1− γ
·K(V̄ ∗) +

2

1− γ
· K̄(V̄ ∗) +

1

1− γ
·K(V̄ π̂∗)

)
,

using theorems 8, 9 and 10

=
2

1− γ

[(
Kr + γ · Kp

2
· Rmax

1− γ

)
+ K̄

]
.

Since V ∗(s) ≥ V X[π̂∗](s) for all s ∈ S,

‖V ∗ − V X[π̂∗]‖∞ ≤
2

1− γ

[(
Kr + γ · Kp

2
· Rmax

1− γ

)
+ K̄

]
.

5.5 The Feature-based Aggregation Framework

This is the state aggregation framework discussed in Tsitsiklis et al. [58] and Bertsekas

[4]. The aggregate problem in this framework is an implicitly defined abstract MDP. We

describe the framework briefly here.

The Abstract MDP

The abstract MDP is M̄ with state space S̄ and the same action space as the origi-

nal MDP. State-transition and reward functions are not defined for the abstract MDP.

Rather, a Bellman backup operator is defined for the abstract MDP in terms of the

state-transition and reward functions of the original MDP. The objective is to maximize

the expected discounted infinite-horizon sum of rewards with discount factor γ ∈ (0, 1).

Definition

The abstract MDP M̄ with state space S̄ and the original MDP M = 〈S,A, P,R〉 are

related by the onto mapping φ : S → S̄, where φ(s) is based on some feature of state

s. The mapping φ : S → S̄ defines a partition of S as it maps every state in S to an

abstract state in S̄. An abstract state s̄ ∈ S̄ represents a block of the partition defined
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by φ, i.e., s̄ = {s ∈ S : φ(s) = s̄}. Ws̄ is a probability distribution defined on the

partition s̄, i.e.,
∑

s∈s̄Ws̄(s) = 1 for all s̄ ∈ S̄.

Solution

The Bellman backup operator of the abstract MDP M̄ with respect to value vector V̄ is

B̄[V̄ ](s̄) =
∑
s∈s̄

Ws̄(s)

(
max
a∈A

R(s, a) + γ
∑
s′∈S

Pss′(a) ·X[V̄ ](s′)

)
(5.11)

for all s̄ ∈ S̄, where X[V̄ ] is the extension of V̄ to M as defined in equation 5.8, i.e.,

X[V̄ ](s) = V̄ (φ(s))

for all s ∈ S. V̄ ∗ is the unique fixed point of this operator, i.e., V̄ ∗ = B̄[V̄ ∗].

Solution Extension

An approximate policy of M based on the abstract problem is a greedy policy with

respect to X[V̄ ∗], denoted πX[V̄ ∗], i.e.,

πX[V̄ ∗](s) ∈ arg max
a∈A

R(s, a) + γ
∑
s′∈S

Pss′(as) ·X[V̄ ∗](s′). (5.12)

Main Results

Theorem 11 below gives a bound on the max-norm distance between the optimal value

vector of M̄ extended to M and the optimal value vector of M , when the mapping φ

defining the abstract state space is based on the optimal values of states in M . This

result has been adapted from theorem 1 (part b) in Tsitsiklis et al. [58].
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Theorem 11. For a given ε ≥ 0, if

φ(s) = φ(ṡ) ⇒ |V ∗(s)− V ∗(ṡ)| ≤ ε

for all s, ṡ ∈ S, then ‖V ∗ −X[V̄ ∗]‖∞ ≤
ε

1− γ
.

Proof. A proof based on the proof of theorem 1 (part b) in Tsitsiklis et al. [58] is given

in the appendix (section 7.2).

Theorem 12 below gives a bound on the max-norm distance between the optimal value

vector of M and the value vector of the approximate policy πX[V̄ ∗] of M based on the

optimal solution of M̄ defined in equation 5.12, when the mapping φ defining the abstract

state space is based on the optimal values of states in M . This result has been adapted

from theorem 1 (part c) in Tsitsiklis et al. [58].

Theorem 12. For a given ε ≥ 0, if

φ(s) = φ(ṡ) ⇒ |V ∗(s)− V ∗(ṡ)| ≤ ε

for all s, ṡ ∈ S, then

‖V ∗ − V πX[V̄ ∗]‖∞ ≤
2εγ

(1− γ)2
.

Proof. A proof based on the proof of theorem 1 (part c) in Tsitsiklis et al. [58] is given

in the appendix (section 7.2).

Special cases

We list a few special cases of the feature-based abstraction framework in this section.

1. The Optimal Q-value based State-Abstraction Scheme of Abel et al. [1].
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The original MDP is M = 〈S,A, P,R〉 and the abstract MDP is M̄ = 〈S̄, A, P̄ , R̄〉.
The state space of the abstract MDP is defined by an onto mapping φ that satisfies

the condition: for a given ε ≥ 0

φ(s) = φ(ṡ) ⇒ ∀a ∈ A |Q∗(s, a)−Q∗(ṡ, a)| ≤ ε

for all s, ṡ ∈ S.

Abel et al.’s [1] claim 1 in section 5.1 gives a bound on the max-norm distance

between the optimal Q-value vector of M and the the optimal Q-value vector of

M̃ extended to M , i.e.,

∥∥Q∗ −X[Q̄∗]
∥∥
∞ ≤

ε

1− γ
.

Abel et al. [1] have given an inductive proof for this bound, which can be proved

easily using the same proof structure as theorem 11. This bound can also obtained

from theorem 11 by defining a new original MDP MX and abstract MDP M̄X

as described below. The new original MDP MX = 〈SX , A, P,R〉, where SX =

S ×A = {(s, a) : s ∈ S, a ∈ A}. The only action applicable at state (s, a) is a and

the optimal value of state (s, a) is

V ∗X(s, a) = R(s, a) + γ
∑
s′∈S

Pss′(a) max
a′∈A

V ∗X(s′, a′) = Q∗(s, a).

The state space of the new abstract MDP is S̄X = S̄ ×A = {(s̄, a) : s̄ ∈ S̄, a ∈ A}
defined by the onto mapping φX(s, a) = (φ(s), a) for all (s, a) ∈ SX . The only

action applicable in state (s̄, a) is a. By theorem 11, for a given ε ≥ 0, if

φX(s, a) = φX(ṡ, a) ⇒ |V ∗X(s, a)− V ∗X(ṡ, a)| ≤ ε

for all (s, a) ∈ SX , then
∥∥V ∗X −X[V̄ ∗X ]

∥∥
∞ =

∥∥Q∗ −X[Q̄∗]
∥∥
∞ ≤

ε

1− γ
.
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Chapter 6: Conclusion

We studied the problems of learning and improving policies for probabilistic planning

problems in this work.

In the first part, we learned deep reactive neural network policies for benchmark

RDDL probabilistic planning problems. For each problem, we trained three different

problem-specific networks on the datasets of two expert planners and made the following

key observations: (1) For two domains, the expert policies could be represented well using

simple linear networks. However, in general, having multiple hidden layers and channels

in the networks proved to be useful; (2) The quality of the expert planner influences the

quality of the learned policy more than anything else; (3) Except for one domain, the

best deep reactive policy was better on average than the expert policies, and our two

sparse architectures turned out to be better than the fully-connected architectures for

most problems.

In the second part, we focused on Online Search for Policy Improvement (OSPI),

where the goal is to improve on a given base policy via online search. We introduced

the choice function framework for analysing the performance of OSPI procedures. The

main idea is to parameterize search procedures with a choice function that defines the

action specification part of search. We identified key properties of choice functions and

established sufficient conditions on choice functions for guaranteed policy improvement.

We stated a bound on the performance of the online policy returned by search in terms

of the quality of the leaf evaluation function. We also introduced a parameterized class

of choice function that satisfies the sufficient conditions and covers several existing OSPI

procedures as special cases.

In the third part, we drew attention to the issue of policy degradation in OSPI pro-

cedures, where the online policy returned by search performs worse than the base policy.

This can happen even with OSPI procedures that come with theoretical guarantees on

policy improvement under ideal conditions because the ideal conditions might not be sat-

isfied in practice. With the goal of encouraging the development of more reliable OSPI

procedures in terms of empirical performance, we proposed benchmark problems with
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base policies, two parameterized baseline search procedures with a heuristic to deal with

policy degradation, evaluation criteria and baseline results on the benchmark problems

for comparison.

In the final part, we focused on state aggregation, a problem approximation tech-

nique used to compute approximate solutions for Markov decision problems. In state

aggregation, an aggregate problem, which is typically smaller then the original problem,

is defined and solved, and the solution is extended to the original problem. The approx-

imate solution thus obtained for the original problem will usually be sub-optimal. The

degree of sub-optimality depends on the definition of the aggregate problem. We iden-

tified two basic aggregation frameworks, the Whitt framework and the Feature-based

aggregation framework, and presented the key theoretical results of the two frameworks.

We looked at several existing aggregation schemes and related those to the basic frame-

works in order to give a unified view of the theoretical sub-optimality results of several

aggregation schemes. We were able to simplify the proofs and give tighter results for

several of these previous papers.
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Chapter 7: Appendix

7.1 The Choice Function Framework: Supplementary Material

Lemma 1. For any policy π and value vector V , if

V −Bπ[V ] ≤ δ, then V − V π ≤ δ

1− γ
.

Proof. Let P π ∈ Rn×n, Rπ ∈ Rn and V π ∈ Rn be the state-transition matrix, reward

and value functions of π respectively. We use the matrix notation V π = Rπ + γP πV π to

mean

V π(s) = R(s, π(s)) + γ
∑
s′∈S

Pss′(π(s)) · V π(s′)

for all s ∈ S. If D = V − V π then

D = V −Rπ − γP πV π, since V π = Rπ + γP πV π

= V −Rπ − γP πV π + γP πV − γP πV, add and subtract γP πV

= γP π(V − V π) + V −Rπ − γP πV.

= γP πD + (V −Bπ[V ]), since Bπ[V ] = Rπ + γP πV

= (V −Bπ[V ]) + γP πD.

Therefore, D = (V −Bπ[V ]) + γP πD is the fixed-point equation of a policy with P π as

the state-transition matrix and V − Bπ[V ] as the reward function. Since the maximum

value of the value function of a policy with maximum reward Rmax is
Rmax

1− γ
, we get

V − V π = D ≤ V −Bπ[V ]

1− γ
≤ δ

1− γ
.
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Lemma 2. If a stationary choice function ψ is π-consistent and monotonic and u = V π

then for any path p; s such that 1 ≤ |p; s| ≤ H(ψ),

V ψ
u (yp; s) ≥ V ψ

u (p; s).

Proof. By definition,

V ψ
u (p; s) =

 V π(s), if ψ(p; s) = ∅,
max

a∈ψ(p;s)
R(s, a) + γ

∑
s′∈S

Pss′(a)V ψ
u (p; s; a; s′), otherwise.

The proof is by induction on |p; s|. If |p; s| = H(ψ) then ψ(p; s) = ∅.

Induction Basis. Let p; s be such that |p; s| = H(ψ).

Case (1). ψ(yp; s) = ∅. Since |p; s| = H, we have ψ(p; s) = ∅ and

V ψ
u (yp; s) = V ψ

u (p; s) = V π(s).

Case (2). ψ(yp; s) 6= ∅.

V ψ
u (yp; s) = max

a∈ψ(yp;s)
R(s, a) + γ

∑
s′∈S

Pss′(a)V ψ
u (yp; s; a; s′)

= max
a∈ψ(yp;s)

R(s, a) + γ
∑
s′∈S

Pss′(a) · V π(s′), since |yp; s; a; s′| = H

≥ R(s, π(s)) + γ
∑
s′∈S

Pss′(π(s)) · V π(s′), since π(s) ∈ ψ(p; s)

= V π(s) = V ψ
u (p; s).

Induction Hypothesis. Assume that V ψ
u (yp; s) ≥ V ψ

u (p; s) for p; s such that |p; s| = k+1.

Inductive Proof. Let p; s be such that |p; s| = k.

Case (1). ψ(yp; s) = ∅. Since ψ is monotonic, ψ(p; s) ⊆ ψ(yp; s) and hence ψ(p; s) = ∅.
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Therefore,

V ψ
u (yp; s) = V ψ

u (p; s) = V π(s).

Case (2). ψ(yp; s) 6= ∅.

V ψ
u (yp; s) = max

a∈ψ(yp;s)
R(s, a) + γ

∑
s′∈S

Pss′(a)V ψ
u (yp; s; a; s′)

≥ max
a∈ψ(yp;s)

R(s, a) + γ
∑
s′∈S

Pss′(a) · V ψ
u (p; s; a; s′),

by induction hypothesis, since |p; s; a; s′| = k + 1

≥ max
a∈ψ(p;s)

R(s, a) + γ
∑
s′∈S

Pss′(a) · V ψ
u (p; s; a; s′), since ψ(p; s) ⊆ ψ(yp; s)

= V ψ
u (p; s).
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Lemma 3. If ψ is a stationary choice function and ‖u−u′‖∞ ≤ ε then for any path p; s

with |p; s| ≤ h(ψ),∣∣∣V ψ
u (p; s)− V ψ

u′ (p; s)
∣∣∣ ≤ εγh(ψ)−|p;s|.

Proof. The proof is by induction on |p; s| for |p; s| ≤ h(ψ).

Induction Basis. The lemma holds for |p; s| = h(ψ), since by lemma 5,∣∣∣V ψ
u (p; s)− V ψ

u′ (p; s)
∣∣∣ ≤ ε

for all p; s with h(ψ) ≤ |p; s| ≤ H(ψ).

Induction Hypothesis. Assume that the lemma holds for |p; s| = h(ψ)− (k − 1).

Inductive Proof. Let p; s be a path such that |p; s| = h(ψ) − k. By the definition of

h(ψ), for any path p; s such that |p; s| < h(ψ), we have ψ(p; s) 6= ∅. Therefore,∣∣∣V ψ
u (p; s)− V ψ

u′ (p; s)
∣∣∣ =

∣∣∣∣ max
a∈ψ(p;s)

{
R(s, a) + γ

∑
s′∈S

Pss′(a) · V ψ
u (p; s; a; s′)

}
− max
a∈ψ(p;s)

{
R(s, a) + γ

∑
s′∈S

Pss′(a) · V ψ
u′ (p; s; a; s′)

}∣∣∣∣
≤ max

a∈ψ(p;s)

∣∣∣∣R(s, a) + γ
∑
s′∈S

Pss′(a) · V ψ
u (p; s; a; s′)−{

R(s, a) + γ
∑
s′∈S

Pss′(a) · V ψ
u′ (p; s; a; s′)

}∣∣∣∣
= max

a∈ψ(p;s)

∣∣∣∣γ∑
s′∈S

Pss′(a)(V ψ
u (p; s; a; s′)− V ψ

u′ (p; s; a; s′))

≤ max
a∈ψ(p;s)

γ
∑
s′∈S

Pss′(a)

∣∣∣∣V ψ
u (p; s; a; s′)− V ψ

u′ (p; s; a; s′)

∣∣∣∣
≤ max

a∈ψ(p;s)
γ
∑
s′∈S

Pss′(a) εγh(ψ)−(k−1), by the induction hypothesis

= εγh(ψ)−k.
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Lemma 4. If a stationary choice function ψ is π-consistent and monotonic and ‖u −
V π‖∞ ≤ επ, then for π′ = Πψ

u , V ψ
u,0 −Bπ′ [V

ψ
u,0] ≤ επγh(ψ)(1 + γ).

Proof. Let ū = V π to simplify notation.

V ψ
u,0(s)−Bπ′ [V ψ

u,0](s) = R(s, π′(s)) + γ
∑
s′∈S

Pss′(π
′(s)) · V ψ

u,1(s;π′(s); s′)−{
R(s, π′(s)) + γ

∑
s′∈S

Pss′(π
′(s)) · V ψ

u,0(s′)

}
.

= γ
∑
s′∈S

Pss′(π
′(s)) · (V ψ

u,1(s;π′(s); s′)− V ψ
u,0(s′)).

≤ γ
∑
s′∈S

Pss′(π
′(s))

{
V ψ
ū,1(s;π′(s); s′) + επγ

h(ψ)−1 −
(
V ψ
ū,0(s′)− επγh(ψ)

)}
,

using lemma 3

≤ γ
∑
s′∈S

Pss′(π
′(s)) · (επγh(ψ)−1 + επγ

h(ψ)), by lemma 2

V ψ
ū,1(s;π′(s); s′) ≤ V ψ

ū,0(s′).

= επγ
h(ψ)(1 + γ).



87

Lemma 5. If ψ is a stationary choice function and ‖u−u′‖∞ ≤ ε then for any path p; s

such that h(ψ) ≤ |p; s| ≤ H(ψ),∣∣∣V ψ
u (p; s)− V ψ

u′ (p; s)
∣∣∣ ≤ ε.

Proof. The proof is by induction on |p; s| for h(ψ) ≤ |p; s| ≤ H(ψ).

Induction Basis. Let p; s be a path such that |p; s| = H(ψ). The lemma holds for

|p; s| = H(ψ), since ψ(p; s) = ∅ and∣∣∣V ψ
u (p; s)− V ψ

u′ (p; s)
∣∣∣ = |u(s)− u′(s)| = ε.

Induction Hypothesis. Assume that the lemma holds for any path p; s such that

h(ψ) < |p; s| = H(ψ)− (k − 1).

Inductive Proof.

Let p; s be a path such that |p; s| = H(ψ)− k.

Case (1). If ψ(p; s) = ∅ then∣∣∣V ψ
u (p; s)− V ψ

u′ (p; s)
∣∣∣ ≤ ε.

Case (2). If ψ(p; s) 6= ∅ then∣∣∣V ψ
u (p; s)− V ψ

u′ (p; s)
∣∣∣ =

∣∣∣∣ max
a∈ψ(p;s)

{
R(s, a) + γ

∑
s′∈S

Pss′(a) · V ψ
u (p; s; a; s′)

}
−

max
a∈ψ(p;s)

{
R(s, a) + γ

∑
s′∈S

Pss′(a) · V ψ
u′ (p; s; a; s′)

}∣∣∣∣
≤ max

a∈ψ(p;s)

∣∣∣∣R(s, a) + γ
∑
s′∈S

Pss′(a) · V ψ
u (p; s; a; s′)−{

R(s, a) + γ
∑
s′∈S

Pss′(a) · V ψ
u′ (p; s; a; s′)

}∣∣∣∣
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= max
a∈ψ(p;s)

∣∣∣∣γ∑
s′∈S

Pss′(a)(V ψ
u (p; s; a; s′)− V ψ

u′ (p; s; a; s′))

∣∣∣∣
≤ max

a∈ψ(p;s)
γ
∑
s′∈S

Pss′(a)

∣∣∣∣V ψ
u (p; s; a; s′)− V ψ

u′ (p; s; a; s′)

∣∣∣∣
≤ max

a∈ψ(p;s)
γ
∑
s′∈S

Pss′(a) · ε, by the induction hypothesis

≤ ε.

Proposition 1. If a stationary choice function ψ is π-consistent and monotonic and

u = V π, then V ψ
u (s) ≥ V π(s).

Proof. Let p; s be a path such that |p; s| = k and ψ(p; s) = ∅. By definition, V ψ
u (p; s) =

V π(s). Let yip; s denote the path obtained from p; s by removing the first i state-action

pairs of p; s.

V π(s) = V ψ
u (p; s)

≤ V ψ
u (yip; s) ≤ V ψ

u (yi+1p; s), 1 ≤ i < k, by lemma 2

= V ψ
u (s)
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Lemma 6. For stationary choice functions ψ and ψ′, if ψ and ψ′ have the same set of

leaf paths and ψ ⊇ ψ′, then for any path p; s such that |p; s| ≤ H(ψ′) and leaf evaluation

function u, V ψ
u (p; s) ≥ V ψ′

u (p; s).

Proof. The proof is by induction on H(ψ′). Since ψ ⊇ ψ′ and ψ′(p; s) = ∅ ⇒ ψ(p; s) = ∅,
we have H(ψ′) = H(ψ).

Induction Basis. Let p; s be a path such that |p; s| = H(ψ′). Since ψ(p; s) = ψ′(p; s) = ∅,

V ψ
u (p; s) = V ψ′

u (p; s) = u(s).

The lemma holds for |p; s| = H(ψ′).

Induction Hypothesis. Assume that the lemma holds for |p; s| = k + 1 < H(ψ′).

Inductive Proof. Let p; s be a path with |p; s| = k.

Case (1). If ψ(p; s) = ∅ then

V ψ
u (p; s) = V ψ′

u (p; s) = u(s).

Case (2). If ψ(p; s) 6= ∅ then

V ψ
u (p; s) = max

a∈ψ(p;s)
R(s, a) + γ

∑
s′∈S

Pss′(a) · V ψ
u (p; s; a; s′).

≤ max
a∈ψ(p;s)

R(s, a) + γ
∑
s′∈S

Pss′(a) · V ψ′
u (p; s; a; s′),

by the induction hypothesis

≤ max
a∈ψ′(p;s)

R(s, a) + γ
∑
s′∈S

Pss′(a) · V ψ′
u (p; s; a; s′),

since ψ(p; s) ⊇ ψ′(p; s)

= V ψ′
u (p; s).
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Theorem 4. Let Ψ = (ψ1, ψ2, . . .) be a non-stationary choice function such that each

component choice function ψt is monotonic and π-consistent and ‖u−V π‖∞ = επ. If all

ψt have the same set of leaf paths and for each time step t, ψt+1 ⊇ ψt, then for π′ = Πψ
u ,

V π(s)− V π′(s) ≤ 2επγ
h(ψ1)

1− γ

for all s ∈ S.

Proof. Let π′t = Πψt
u denote the stationary online policy for the component choice func-

tion ψt and leaf evaluation function u. Let P π
′
t , Rπ

′
t and V π′t be the state-transition

matrix, the reward and value functions of policy π′t. From lemma 4,

V ψt
u,0 −Bπ′t [V

ψt
u,0] ≤ επγh(ψt)(1 + γ).

Since ψt+1 ⊇ ψt and ψ1(p; s) = ∅ ⇒ ψt(p; s) = ∅ for t ∈ {1, 2, . . .}, the min-horizon h(ψt)

is the same for all the component stationary choice functions ψt. Therefore,

V ψt
u,0 −Bπ′t [V

ψt
u,0] ≤ επγh(ψ1)(1 + γ)⇒ V ψt

u,0 −R
π′t − γP π′tV ψt

u,0 ≤ επγ
h(ψ1)(1 + γ),

since Bπ[V ] = Rπ + γP πV for any policy π

⇒ Rπ
′
t ≥ V ψt

u,0 − γP
π′tV ψt

u,0 − επγ
h(ψ1)(1 + γ).

Since V
ψt+1

u,0 ≥ V ψt
u,0 by lemma 6,

Rπ
′
t ≥ −επγh(ψ1)(1 + γ) + V ψt

u,0 − γP
π′tV

ψt+1

u,0 .

Let ū = V π to simplify notation. The value function of the online non-stationary policy

is

V π′ =

∞∑
t=1

[ t−1∏
k=1

γP π
′
k

]
Rπ
′
t ≥

∞∑
t=1

[ t−1∏
k=1

γP π
′
k

]
[−επγh(ψ1)(1 + γ) + V ψt

u,0 − γP
π′tV

ψt+1

u,0 ]
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=
−επγh(ψ1)(1 + γ)

1− γ
+

∞∑
t=1

[ t−1∏
k=1

γP π
′
k

]
V ψt
u,0 −

∞∑
t=1

[ t−1∏
k=1

γP π
′
k

]
(γP π

′
tV

ψt+1

u,0 )

=
−επγh(ψ1)(1 + γ)

1− γ
+ V ψ1

u,0 +
∞∑
t=2

[ t−1∏
k=1

γP π
′
k

]
V ψt
u,0 −

∞∑
t=1

[ t∏
k=1

γP π
′
k

]
V
ψt+1

u,0

=
−επγh(ψ1)(1 + γ)

1− γ
+ V ψ1

u,0 , cancelling out terms 2 and 4

≥ −επγ
h(ψ1)(1 + γ)

1− γ
+ V ψ1

ū,0 − επγ
h(ψ1), by lemma 3

≥ −επγ
h(ψ1)(1 + γ)

1− γ
+ V π − επγh(ψ1), since V ψ1

ū,0 ≥ V
π by proposition 1

=
−2επγ

h(ψ1)

1− γ
+ V π.

Therefore, we get

V π − V π′ ≤ 2επγ
h(ψ1)

1− γ
.
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Theorem 5. For LDCF parameters θ = (π,H,K,D,∆), if ∆ is depth monotonic, then

ψθ is monotonic.

Proof. Consider any path p; s such that 1 ≤ |p; s| ≤ H and let yp; s = p′; s. We must

show that ψθ(p; s) ⊆ ψθ(p
′; s). The definition of ψθ has three cases, which condition on

the input path’s length and number of discrepancies. p′; s never increases those quantities

compared to p; s, since |p′| = |p| − 1 and p′ does not contain state-action pairs that are

not in p and hence cannot increase the number of discrepancies. This means that there

are two cases to consider: 1) p′; s satisfies a condition higher in the order than p; s, or 2)

p′; s satisfies the same condition as p; s. For (1), ψθ(p; s) ⊆ ψθ(p
′; s) is clearly satisfied

when moving either from the bottom to middle or middle to top condition. For (2) we

have ψθ(p; s) = ψθ(p
′; s) for the bottom and middle conditions. The top condition gives

ψθ(p; s) ⊆ ψθ(p′; s) due to the fact that ∆ is depth monotonic.

Proposition 3. Let ψθ be an LDCF with θ = (π,H,K,D,∆), such that ∆(s) ≤
W for any s ∈ S. The number of leaf nodes in Tψθ with state branching factor C

is upper bounded by 2CH for (D + 1)W = 1 and otherwise by ((D+1)W )K+1−1
(D+1)W−1 CH =

O
(
(DW )KCH

)
.

Proof. The number of leaf nodes is bounded by the number of root-to-leaf paths in Tψθ .

Each path is a sequence of alternating state and action nodes containing H+1 states and

H actions. Each path has at most K discrepancies, each discrepancy being the choice of

one of the first D + 1 action nodes and one of at most W discrepancies returned by ∆.

Thus, the total number of combinations of K discrepancies is bounded by ((D + 1)W )K .

This bounds the combinations of K or fewer discrepancies by ((D+1)W )K+1−1
(D+1)W−1 if (D +

1)W > 1 and by 2 if (D + 1)W = 1. For each discrepancy combination the number of

paths is bounded by the number of ways to assign values to the H state nodes, which

is no greater than CH . Multiplying this with the number of discrepancy combinations

completes the proof.
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Forward Search Sparse Sampling for Choice Functions

FSSS [59] is a computationally efficient implementation of Sparse Sampling (SS) [27].

SS simply builds a search tree of depth H rooted at the current state s, with exactly C

successor state-nodes for every action-node, using a simulator of the true MDP. The root

action values are computed and used to select the best action. FSSS improves over SS by

incrementally constructing the tree via trajectory rollouts as in MCTS algorithms. This

allows for sound pruning of the tree by incrementally maintaining intervals [Ld(s), Ud(s)]

and [Ld(s, a), Ud(s, a)] at each depth d state-node and action-node respectively. The

intervals are guaranteed to contain the state and action values at those nodes, which

supports pruning. For example, an action node whose upper bound is lower than another

action’s lower bound can be safely ignored.

Adapting FSSS to search over at tree Tψ for any search function is straightforward.

Since FSSS expands the tree via root-to-leaf rollouts, FSSS simply is adapted to only

expand actions allowed by the choice function along the path of each rollout. For the

LDCF family our implementation has an additional efficiency enhancement. Two paths

p; s and p′; s with equal numbers of discrepancies have ψθ(p; s) = ψθ(p
′; s) and thus can

be merged to get a Directed Acyclic Graph (DAG) rather than a tree. The DAGs can

be significantly more compact than the corresponding trees, which leads to substantially

faster search.
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7.2 Aggregation in MDPs: Proofs

Lemma 7. Let M = (S, {As}, P,R) and M̄ = (S̄, {Ās̄}, P̄ , R̄) denote the original and

the abstract MDPs and V̄ be an abstract value vector for which

K(V̄ ) = max
s∈S, as∈As

∣∣∣QX[V̄ ](s, as)− Q̄V̄ (φ(s), ψs(as))
∣∣∣ ,

L(V̄ ) = max
s̄∈S̄, ās̄∈Ās̄

max
(s, as), (ŝ, aŝ) ∈ (s̄, ās̄)

∣∣∣QX[V̄ ](s, as)−QX[V̄ ](ŝ, aŝ)
∣∣∣ .

Then L(V̄ ) ≥ K(V̄ ).

Proof.

L(V̄ ) = max
s̄∈S̄, ās̄∈Ās̄

max
(s,as), (ŝ,aŝ) ∈ (s̄,ās̄)

∣∣∣QX[V̄ ](s, as)−QX[V̄ ](ŝ, aŝ)
∣∣∣

= max
s̄∈S̄, ās̄∈Ās̄

[
max

(s,as) ∈ (s̄,ās̄)
QX[V̄ ](s, as)− min

(s,as) ∈ (s̄,ās̄)
QX[V̄ ](s, as)

]

= max
s̄∈S̄, ās̄∈Ās̄

[
max

(s,as) ∈ (s̄,ās̄)
QX[V̄ ](s, as) − Q̄V̄ (s̄, ās̄) +

Q̄V̄ (s̄, ās̄) − min
(s,as) ∈ (s̄,ās̄)

QX[V̄ ](s, as)

]
.

Since

Q̄V̄ (s̄, ās̄) = R̄(s̄, ās̄) + γ
∑
s̄′∈S̄

P̄s̄s̄′(ās̄) · V̄ (s̄′)

=
∑

(s,as)∈(s̄,ās̄)

Ws̄ās̄(s, as)

[
R(s, as) + γ

∑
s′∈S

Pss′(as) ·X[V̄ ](s′)

]

=
∑

(s,as)∈(s̄,ās̄)

Ws̄ās̄(s, as) ·QX[V̄ ](s, as)

for all s̄ ∈ S̄, ās̄ ∈ Ās̄, we have

max
(s,as) ∈ (s̄,ās̄)

QX[V̄ ](s, as) − Q̄V̄ (s̄, ās̄) ≥ 0,
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Q̄V̄ (s̄, ās̄) − min
(s,as) ∈ (s̄,ās̄)

QX[V̄ ](s, as) ≥ 0

and therefore

L(V̄ ) ≥ max
s̄∈S̄, ās̄∈Ās̄

max
(s,as) ∈ (s̄,ās̄)

∣∣∣QX[V̄ ](s, as) − Q̄V̄ (s̄, ās̄)
∣∣∣

= max
s∈S, as∈As

∣∣∣QX[V̄ ](s, as) − Q̄V̄ (φ(s), ψs(as))
∣∣∣

= K(V̄ ).
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Lemma 8. Let M = (S, {As}, P,R) be an MDP with optimal value function V ∗ and

M̄ = (S̄, A, P̄ , R̄) be an abstract MDP with optimal value function V̄ ∗ and optimal policy

π̄∗. Let φ : S → S̄ be an onto mapping, which, for a given ε ≥ 0 satisfies

φ(s) = φ(ŝ) ⇒ ∀a ∈ A
[
|R(s, a)−R(ŝ, a)| ≤ ε AND

∀s̄ ∈ S̄
{∣∣∣∣ ∑

s′∈s̄
Pss′(a)−

∑
s′∈s̄

Pŝs′(a)

∣∣∣∣ ≤ ε

}]
for all s, ŝ ∈ S. Let the reward function range of both M and M̄ be [0, 1]. Then

V ∗(s)− V X[π̄∗](s) ≤ 2

1− γ

(
ε+ γ · ε

∣∣S̄∣∣
2
· 1

1− γ

)
.

Proof.

V ∗(s)− V X[π̄∗](s) ≤ 2

1− γ
·K(V̄ ∗), by theorem 10

≤ 2

1− γ
· L(V̄ ∗), by definition 5

=
2

1− γ
· max
s̄∈S̄, a∈A

max
s, ŝ ∈ s̄

∣∣∣QX[V̄ ∗](s, a)−QX[V̄ ∗](ŝ, a)
∣∣∣

=
2

1− γ
· max
s̄∈S̄, a∈A

max
s, ŝ ∈ s̄

∣∣∣∣R(s, a) + γ
∑
s′∈S

Pss′(a) ·X[V̄ ∗](s′) −

R(ŝ, a) − γ
∑
s′∈S

Pŝs′(a) ·X[V̄ ∗](s′)

∣∣∣∣
=

2

1− γ

{
max

s̄∈S̄, a∈A
max
s, ŝ ∈ s̄

∣∣R(s, a) − R(ŝ, a)
∣∣ +

max
s̄∈S̄, a∈A

max
s, ŝ ∈ s̄

γ

∣∣∣∣∑
s̄′∈S̄

[ ∑
s′∈s̄′

Pss′(a)−
∑
s′∈s̄′

Pŝs′(a)

]
· V̄ ∗(s̄′)

∣∣∣∣ }

=
2

1− γ

{
ε + max

s̄∈S̄, a∈A
max
s, ŝ ∈ s̄

γ
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∣∣∣∣∑
s̄′∈S̄

[(∑
s′∈s̄′

Pss′(a) − min

{∑
s′∈s̄′

Pss′(a),
∑
s′∈s̄′

Pŝs′(a)

})
−

(∑
s′∈s̄′

Pŝs′(a) − min

{∑
s′∈s̄′

Pss′(a),
∑
s′∈s̄′

Pŝs′(a)

})]
· V̄ ∗(s̄′)

∣∣∣∣ }

≤ 2

1− γ

{
ε + max

s̄∈S̄, a∈A
max
s, ŝ ∈ s̄

γ∣∣∣∣∑
s̄′∈S̄

(∑
s′∈s̄′

Pss′(a) − min

{∑
s′∈s̄′

Pss′(a),
∑
s′∈s̄′

Pŝs′(a)

})
·max
s̄∈S̄

V̄ ∗(s̄′) −

∑
s̄′∈S̄

(∑
s′∈s̄′

Pŝs′(a) − min

{∑
s′∈s̄′

Pss′(a),
∑
s′∈s̄′

Pŝs′(a)

})
·min
s̄′∈S̄

V̄ ∗(s̄′)

∣∣∣∣ }.
Since∑

s̄′∈S̄

(∑
s′∈s̄′

Pss′(a) − min

{∑
s′∈s̄′

Pss′(a),
∑
s′∈s̄′

Pŝs′(a)

})
=

∑
s̄′∈S̄

(∑
s′∈s̄′

Pŝs′(a) − min

{∑
s′∈s̄′

Pss′(a),
∑
s′∈s̄′

Pŝs′(a)

})
,

∑
s̄′∈S̄

(∑
s′∈s̄′

Pss′(a) − min

{∑
s′∈s̄′

Pss′(a),
∑
s′∈s̄′

Pŝs′(a)

})
+

∑
s̄′∈S̄

(∑
s′∈s̄′

Pŝs′(a) − min

{∑
s′∈s̄′

Pss′(a),
∑
s′∈s̄′

Pŝs′(a)

})
≤ ε |S̄|

and

max
s̄∈S̄

V̄ ∗(s̄) ≤ 1

1− γ
and min

s̄∈S̄
V̄ ∗(s̄) ≥ 0

we have

V ∗(s)− V X[π̄∗](s) ≤ 2

1− γ

(
ε+ γ · ε

∣∣S̄∣∣
2
· 1

1− γ

)
.
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Theorem 6. For a given value vector V̄ of the abstract MDP M̄

K(V̄ ) ≤ Kr + γ · Kq

2
· δ(V̄ ).

Proof.

K(V̄ ) = max
s∈S, as∈As

∣∣∣QX[V̄ ](s, as)− Q̄V̄ (φ(s), ψs(as))
∣∣∣ .

= max
s∈S, as∈As

∣∣∣∣R(s, as) + γ
∑
s′∈S

Pss′(as) ·X[V̄ ](s′) −

R̄(φ(s), ψs(as))− γ
∑
s̄′∈S̄

P̄φ(s)s̄′(ψs(as)) · V̄ (s̄′)

∣∣∣∣.
≤ max

s∈S, as∈As

∣∣∣∣R(s, as)− R̄(φ(s), ψs(as))

∣∣∣∣ + γ

max
s∈S, as∈As

∣∣∣∣∑
s̄′∈S̄

(∑
s′∈s̄′

Pss′(as)− P̄φ(s)s̄′(ψs(as))

)
· V̄ (s̄′)

∣∣∣∣.
≤ Kr + γ max

s∈S, as∈As

∣∣∣∣∑
s̄′∈S̄((∑

s′∈s̄′
Pss′(as)−min

{∑
s′∈s̄′

Pss′(as), P̄φ(s)s̄′(ψs(as))

})
· V̄ (s̄′) −

(
P̄φ(s)s̄′(ψs(as))−min

{∑
s′∈s̄′

Pss′(as), P̄φ(s)s̄′(ψs(as))

})
· V̄ (s̄′)

)∣∣∣∣. (7.1)

In order to simplify equation (7.1) above, let

Cs̄′(s, as) = min

{∑
s′∈s̄′

Pss′(as), P̄φ(s)s̄′(ψs(as))

}
,

Ds̄′(s, as) =
∑
s′∈s̄′

Pss′(as) − Cs̄′(s, as),

Es̄′(s, as) = P̄φ(s)s̄′(ψs(as)) − Cs̄′(s, as).
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Therefore, from equation (7.1), we get

K(V̄ ) ≤ Kr + γ max
s∈S, as∈As

∣∣∣∣∑
s̄′∈S̄

Ds̄′(s, as) ·max
s̄′∈S̄

V̄ (s̄′)−
∑
s̄′∈S̄

Es̄′(s, as) ·min
s̄′∈S̄

V̄ (s̄′)

∣∣∣∣.
Both Ds̄′(s, as) and Es̄′(s, as) are non-negative for all s ∈ S, as ∈ As and s̄′ ∈ S̄. Since∑

s̄′∈S̄
∑

s′∈s̄′ Pss′(as) = 1 and
∑

s̄′∈S̄ P̄φ(s)s̄′(ψs(as)) = 1 for all s ∈ S and as ∈ As,∑
s̄′∈S̄

Ds̄′(s, as)−
∑
s̄′∈S̄

Es̄′(s, as) = 0 ⇒
∑
s̄′∈S̄

Ds̄′(s, as) =
∑
s̄′∈S̄

Es̄′(s, as)

and also

∑
s̄′∈S̄

Ds̄′(s, as) +
∑
s̄′∈S̄

Es̄′(s, as) =
∑
s̄′∈S̄

∣∣∣∣∣∑
s′∈s̄′

Pss′(as)− P̄s̄s̄′(ψs(as))

∣∣∣∣∣ = Kq −∆(s, as)

for some ∆(s, as) ≥ 0. Therefore

K(V̄ ) = Kr + γ max
s∈S, as∈As

∣∣∣∣Kq −∆(s, as)

2
·max
s̄′∈S̄

V̄ (s̄′)− Kq −∆(s, as)

2
·min
s̄′∈S̄

V̄ (s̄′)

∣∣∣∣.
= Kr + γ max

s∈S, as∈As

∣∣∣∣Kq −∆(s, as)

2
· δ(V̄ )

∣∣∣∣.
≤ Kr + γ · Kq

2
· δ(V̄ ).
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Theorem 7. For any deterministic, stationary policy π̄ of M̄

‖X[Q̄π̄]−QX[π̄]‖∞ ≤
1

1− γ
(

1− Kq
2

) (Kr + γ · Kq

2
· Rmax −Rmin

1− γ

)
,

where [Rmin, Rmax] is the range of the reward functions of both the original and abstract

MDPs.

Proof. For every state-action pair (s, as) of the original MDP M

X[Q̄π̄](s, as)−QX(π̄)(s, as) = Q̄π̄(φ(s), ψs(as))−QX[π̄](s, as).

= R̄(φ(s), ψs(as)) + γ
∑
s̄′∈S̄

P̄φ(s)s̄′(ψs(as)) · V̄ π̄(s̄′) − R(s, as) −

γ
∑
s′∈S

Pss′(a) · V X[π̄](s′).

≤ Kr + γ
∑
s̄′∈S̄

(
P̄φ(s)s̄′(ψs(as)) · V̄ π̄(s̄′)−

∑
s′∈s̄′

Pss′(as) · V X[π̄](s′)

)
.

≤ Kr + γ
∑
s̄′∈S̄

(
P̄φ(s)s̄′(ψs(as)) · V̄ π̄(s̄′)−

(∑
s′∈s̄′

Pss′(as)

)
·min
s′∈s̄′

V X[π̄](s′)

)
. (7.2)

In order to simplify equation (7.2) above, let

Cs̄′(s, as) = min

{∑
s′∈s̄′

Pss′(as), P̄φ(s)s̄′(ψs(as))

}
,

Ds̄′(s, as) =
∑
s′∈s̄′

Pss′(as) − Cs̄′(s, as),

Es̄′(s, as) = P̄φ(s)s̄′(ψs(as)) − Cs̄′(s, as).

Therefore equation (7.2) can be written as

X[Q̄π̄](s, as)−QX(π̄)(s, as) ≤ Kr + γ
∑
s̄′∈S̄

((
Es̄′(s, as) +Cs̄′(s, as)

)
· V̄ π̄(s̄′) −
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(
Ds̄′(s, as) + Cs̄′(s, as)

)
· min
s′∈s̄′

V X[π̄](s′)

)
.

≤ Kr + γ
∑
s̄′∈S̄

(
Cs̄′(s, as) · ‖V X[π̄] −X[V̄ π̄]‖∞ +

Es̄′(s, as) ·
Rmax
1− γ

−Ds̄′(s, as) ·
Rmin
1− γ

)
.

Both Ds̄′(s, as) and Es̄′(s, as) are non-negative for all s ∈ S, as ∈ As and s̄′ ∈ S̄. Since∑
s̄′∈S̄

∑
s′∈s̄′ Pss′(as) = 1 and

∑
s̄′∈S̄ P̄φ(s)s̄′(ψs(as)) = 1 for all s ∈ S and as ∈ As,∑

s̄′∈S̄

Ds̄′(s, as)−
∑
s̄′∈S̄

Es̄′(s, as) = 0 ⇒
∑
s̄′∈S̄

Ds̄′(s, as) =
∑
s̄′∈S̄

Es̄′(s, as)

and also

∑
s̄′∈S̄

Ds̄′(s, as) +
∑
s̄′∈S̄

Es̄′(s, as) =
∑
s̄′∈S̄

∣∣∣∣∣∑
s′∈s̄′

Pss′(as)− P̄s̄s̄′(ψs(as))

∣∣∣∣∣ = Kq −∆(s, as)

for some ∆(s, as) ≥ 0, which implies

∑
s̄′∈S̄

Cs̄′(s, as) = 1−
∑
s̄′∈S̄

Ds̄′(s, as) = 1− Kq −∆(s, as)

2
.

Therefore

X[Q̄π̄](s, as)−QX(π̄)(s, as) ≤ Kr + γ

((
1− Kq −∆(s, as)

2

)
· ‖V X[π̄] −X[V̄ π̄]‖∞ +

Kq −∆(s, as)

2
·
(
Rmax −Rmin

1− γ

))
.

≤ Kr + γ

((
1− Kq

2

)
· ‖V X[π̄] −X[V̄ π̄]‖∞ +

Kq

2
·
(
Rmax −Rmin

1− γ

))
.

≤ Kr + γ

(
1− Kq

2

)
· ‖QX[π̄] −X[Q̄π̄]‖∞ + γ · Kq

2
·
(
Rmax −Rmin

1− γ

)
.
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Similarly, we can derive

QX(π̄)(s, as)−X[Q̄π̄](s, as) ≤ Kr + γ

(
1− Kq

2

)
· ‖QX[π̄] −X[Q̄π̄]‖∞ +

γ · Kq

2
·
(
Rmax −Rmin

1− γ

)
.

Therefore

‖X[Q̄π̄]−QX(π̄)‖∞ ≤ Kr + γ

(
1− Kq

2

)
‖QX[π̄]−X[Q̄π̄]‖∞ + γ · Kq

2
·
(
Rmax −Rmin

1− γ

)
.

which implies

‖X[Q̄π̄]−QX(π̄)‖∞ ≤
1

1− γ
(

1− Kq
2

) (Kr + γ · Kq

2
· Rmax −Rmin

1− γ

)
.
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Corollary 2. For any deterministic, stationary policy π̄ of M̄

‖X[V̄ π̄]− V X[π̄]‖∞ ≤
1

1− γ
(

1− Kq
2

) (Kr + γ · Kq

2
· Rmax −Rmin

1− γ

)
,

where [Rmin, Rmax] is the range of the reward functions of both the original and abstract

MDPs.

Proof.

‖X[V̄ π̄]− V X[π̄]‖∞ = max
s∈S

∣∣∣X[V̄ π̄](s)− V X[π̄](s)
∣∣∣

= max
s∈S

∣∣∣X[Q̄π̄](s,X[π̄](s))−QX[π̄](s,X[π̄](s))
∣∣∣

≤ max
s∈S, a∈As

∣∣∣X[Q̄π̄](s, as)−QX[π̄](s, as)
∣∣∣

= ‖X[Q̄π̄]−QX[π̄]‖∞

≤ 1

1− γ
(

1− Kq
2

) (Kr + γ · Kq

2
· Rmax −Rmin

1− γ

)
.



104

Proposition 4. For an MDP M = 〈S,A, P,R〉 with discount factor γ, the max-norm

distance between a given vector V and the optimal value vector V ∗ of M is

‖V ∗ − V ‖∞ ≤
1

1− γ
‖B[V ]− V ‖∞,

where B is the Bellman optimality operator.

Proof.

‖V ∗ − V ‖∞ =
∥∥∥ lim
n→∞

Bn[V ]− V
∥∥∥
∞

= lim
n→∞

‖Bn[V ]− V ‖∞

= lim
n→∞

∥∥∥∥∥
n−1∑
k=0

(
Bk+1[V ]−Bk[V ]

)∥∥∥∥∥
∞

≤ lim
n→∞

n−1∑
k=0

∥∥∥Bk+1[V ]−Bk[V ]
∥∥∥
∞

≤ lim
n→∞

n−1∑
k=0

γk ‖B[V ]− V ‖∞ , by the contraction property of B

≤ 1

1− γ
‖B[V ]− V ‖∞
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Theorem 8. For any deterministic, stationary policy π̄ of M̄

‖X[V̄ π̄]− V X[π̄]‖∞ ≤
1

1− γ
·K(V̄ π̄).

Proof. The proof follows from a bound on ‖BX[π̄][X[V̄ π̄]] − X[V̄ π̄]‖∞. For any state

s ∈ S

∣∣BX[π̄][X[V̄ π̄]](s)−X[V̄ π̄](s)
∣∣ =

∣∣∣∣QX[V̄ π̄ ](s,X[π̄](s))− V̄ π̄(φ(s))

∣∣∣∣
=

∣∣∣∣QX[V̄ π̄ ](s,X[π̄](s))− Q̄V̄ π̄(φ(s), π̄(φ(s)))

∣∣∣∣
=

∣∣∣∣QX[V̄ π̄ ](s,X[π̄](s))− Q̄V̄ π̄(φ(s), ψs(X[π̄](s)))

∣∣∣∣
≤ max

as∈As

∣∣∣∣QX[V̄ π̄ ](s, as)− Q̄V̄ π̄(φ(s), ψs(as))

∣∣∣∣
≤ max

s∈S, as∈As

∣∣∣∣QX[V̄ π̄ ](s, as)− Q̄V̄ π̄(φ(s), ψs(as))

∣∣∣∣
≤ K(V̄ π̄).

Therefore ‖BX[π̄][X[V̄ π̄]]−X[V̄ π̄]‖∞ ≤ K(V̄ π̄) and by proposition 4

‖X[V̄ π̄]− V X[π̄]‖∞ ≤
1

1− γ
·K(V̄ π̄).
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Corollary 3. For any deterministic, stationary policy π̄ of M̄ and its stochastic exten-

sion X [π̄] given by

X [π̄](s, as) =
π̄(φ(s), ψs(as))

|{a′ ∈ As : ψs(a′) = ψs(as)}|

for all s ∈ S and as ∈ As, we have

‖X[V̄ π̄]− V X [π̄]‖∞ ≤
1

1− γ
·K(V̄ π̄).

Proof. The proof follows from a bound on ‖BX [π̄][X[V̄ π̄]] − X[V̄ π̄]‖∞. For any state

s ∈ S

∣∣BX [π̄][X[V̄ π̄]](s)−X[V̄ π̄](s)
∣∣ =

∣∣∣∣ ∑
as∈As

X [π̄](s, as) ·QX[V̄ π̄ ](s, as)− V̄ π̄(φ(s))

∣∣∣∣
=

∣∣∣∣ ∑
as∈As

X [π̄](s, as) ·QX[V̄ π̄ ](s, as)− Q̄V̄ π̄(φ(s), π̄(φ(s)))

∣∣∣∣
=

∑
as∈As

X [π̄](s, as)

∣∣∣∣QX[V̄ π̄ ](s, as)− Q̄V̄ π̄(φ(s), ψs(as))

∣∣∣∣
≤
∑
as∈As

X [π̄](s, as) ·K(V̄ π̄)

= K(V̄ π̄).

Therefore ‖BX [π̄][X[V̄ π̄]]−X[V̄ π̄]‖∞ ≤ K(V̄ π̄) and by proposition 4

‖X[V̄ π̄]− V X [π̄]‖∞ ≤
1

1− γ
·K(V̄ π̄).



107

Theorem 9. For the optimal value vectors V ∗ and V̄ ∗ of the original MDP M and the

abstract MDP M̄ , we have

‖V ∗ −X[V̄ ∗]‖∞ ≤
1

1− γ
·K(V̄ ∗).

Proof. The proof follows from a bound on ‖X[V̄ ∗]−B[X[V̄ ∗]]‖∞. For any state s ∈ S

B[X[V̄ ∗]](s)−X[V̄ ∗](s) = max
as∈As

{
R(s, as) + γ

∑
s′∈S

Pss′(as) ·X[V̄ ∗](s′)

}
− V̄ ∗(φ(s))

= max
as∈As

{
R(s, as) + γ

∑
s′∈S

Pss′(as) ·X[V̄ ∗](s′)− V̄ ∗(φ(s))

}

= max
as∈As

{
R(s, as) + γ

∑
s′∈S

Pss′(as) ·X[V̄ ∗](s′)− B̄π̄∗ [V̄ ∗](φ(s))

}

= max
as∈As

{
R(s, as) + γ

∑
s′∈S

Pss′(as) ·X[V̄ ∗](s′)−
(
R̄(φ(s), π̄∗(φ(s))) +

γ
∑
s̄′∈S̄

P̄φ(s)s̄′(π̄
∗(φ(s))) · V̄ ∗(s̄′)

)}

≤ max
as∈As

{
R(s, as) + γ

∑
s′∈S

Pss′(as) ·X[V̄ ∗](s′)−
(
R̄(φ(s), ψs(as)) +

γ
∑
s̄′∈S̄

P̄φ(s)s̄′(ψs(as)) · V̄ ∗(s̄′)
)}

= max
as∈As

{
QX(V̄ ∗)(s, as)− Q̄V̄ ∗(φ(s), ψs(as))

}
≤ max

s∈S, as∈As

∣∣∣∣QX(V̄ ∗)(s, as)− Q̄V̄ ∗(φ(s), ψs(as))

∣∣∣∣
= K(V̄ ∗)
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and

X[V̄ ∗](s)−B[X[V̄ ∗]](s) = V̄ ∗(φ(s))− max
as∈As

{
R(s, as) + γ

∑
s′∈S

Pss′(as) ·X[V̄ ∗](s′)

}

= B̄π̄∗ [V̄
∗](φ(s))− max

as∈As

{
R(s, as) + γ

∑
s′∈S

Pss′(as) ·X[V̄ ∗](s′)

}
= R̄(φ(s), π̄∗(φ(s))) + γ

∑
s̄′∈S̄

P̄φ(s)s̄′(π̄
∗(φ(s))) · V̄ ∗(s̄′) −

max
as∈As

{
R(s, as) + γ

∑
s′∈S

Pss′(as) ·X[V̄ ∗](s′)

}
≤ R̄(φ(s), π̄∗(φ(s))) + γ

∑
s̄′∈S̄

P̄φ(s)s̄′(π̄
∗(φ(s))) · V̄ ∗(s̄′) −

{
R(s,X[π̄∗(φ(s))]) + γ

∑
s′∈S

Pss′(X[π̄∗(φ(s))]) ·X[V̄ ∗](s′)

}
= Q̄V̄ ∗(φ(s), ψs(X[π̄∗(φ(s))]))−QX(V̄ ∗)(s,X[π̄∗(φ(s))])

≤
∣∣∣∣QX(V̄ ∗)(s,X[π̄∗(φ(s))])− Q̄V̄ ∗(φ(s), ψs(X[π̄∗(φ(s))]))

∣∣∣∣
≤ max

s∈S, as∈As

∣∣∣∣QX(V̄ ∗)(s, as)− Q̄V̄ ∗(φ(s), ψs(as))

∣∣∣∣
= K(V̄ ∗)

Therefore ‖X[V̄ ∗]−B[X[V̄ ∗]]‖∞ ≤ K(V̄ ∗) and by proposition 4

‖V ∗ −X[V̄ ∗]‖∞ ≤
1

1− γ
·K(V̄ ∗).
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Theorem 10. For the optimal value vector V ∗ of the original MDP M and the optimal

value vector V̄ ∗ and optimal policy π̄∗ of the abstract MDP M̄ , we have

‖V ∗ − V X[π̄∗]‖∞ ≤
2

1− γ
·K(V̄ ∗).

Proof.

‖V ∗ − V X[π̄∗]‖∞ = ‖V ∗ −X[V̄ ∗] + X[V̄ ∗]− V X[π̄∗]‖∞

≤ ‖V ∗ −X[V̄ ∗]‖∞ + ‖X[V̄ ∗]− V X[π̄∗]‖∞

From theorems 8 and 9 we have

‖V ∗ −X[V̄ ∗]‖∞ ≤
1

1− γ
·K(V̄ ∗)

and

‖X[V̄ ∗]− V X[π̄∗]‖∞ = ‖X[V̄ π̄∗ ]− V X[π̄∗]‖∞ ≤
1

1− γ
·K(V̄ π̄∗) =

1

1− γ
·K(V̄ ∗).

Therefore

‖V ∗ − V X[π̄∗]‖∞ ≤
2

1− γ
·K(V̄ ∗).
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Theorem 11. For a given ε ≥ 0, if

φ(s) = φ(ṡ) ⇒ |V ∗(s)− V ∗(ṡ)| ≤ ε

for all s, ṡ ∈ S, then ‖V ∗ −X[V̄ ∗]‖∞ ≤
ε

1− γ
.

Proof. Based on the proof of theorem 1 (part b) in [58].

Let V̄ be such that for all s̄ ∈ S̄

V̄ (s̄) = max
s∈s̄

V ∗(s) − ε

2
.

Then ‖V ∗ −X[V̄ ]‖∞ ≤
ε

2
.

The first step is to derive a bound on ‖B̄[V̄ ]− V̄ ‖∞. For all s̄ ∈ S̄

∣∣B̄[V̄ ](s̄)− V̄ (s̄)
∣∣ =

∣∣∣∣∣∑
s∈s̄

Ws̄(s)

(
max
a∈As

R(s, a) + γ
∑
s′∈S

Pss′(a) ·X[V̄ ](s′)

)
− V̄ (s̄)

∣∣∣∣∣ .
=

∣∣∣∣∣∑
s∈s̄

Ws̄(s)

(
B[X[V̄ ]](s)−X[V̄ ](s)

)∣∣∣∣∣ .
≤
∑
s∈s̄

Ws̄(s) ·
∥∥B[X[V̄ ]]−X[V̄ ]

∥∥
∞ .

=
∥∥B[X[V̄ ]]−X[V̄ ]

∥∥
∞ .

=
∥∥B[X[V̄ ]]−B[V ∗] +B[V ∗]−X[V̄ ]

∥∥
∞ .

≤
∥∥B[X[V̄ ]]−B[V ∗]

∥∥
∞ +

∥∥V ∗ −X[V̄ ]
∥∥
∞ .

≤ γ
∥∥X[V̄ ]]− V ∗

∥∥
∞ +

∥∥V ∗ −X[V̄ ]
∥∥
∞ .

≤ (1 + γ) · ε
2
.
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Combining this with proposition 4 in the appendix, we get

‖V̄ ∗ − V̄ ‖∞ ≤
1

1− γ
· ‖B̄[V̄ ]− V̄ ‖∞ ≤

1

1− γ
· (1 + γ) · ε

2
,

which implies

∥∥V ∗ −X[V̄ ∗]
∥∥
∞ =

∥∥V ∗ −X[V̄ ] +X[V̄ ]−X[V̄ ∗]
∥∥
∞ .

≤
∥∥V ∗ −X[V̄ ]

∥∥
∞ +

∥∥X[V̄ ]−X[V̄ ∗]
∥∥
∞ .

=
∥∥V ∗ −X[V̄ ]

∥∥
∞ +

∥∥V̄ − V̄ ∗∥∥∞ .
≤ ε

2
+

1 + γ

1− γ
· ε

2
.

=
ε

1− γ
.
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Theorem 12. For a given ε ≥ 0, if

φ(s) = φ(ṡ) ⇒ |V ∗(s)− V ∗(ṡ)| ≤ ε

for all s, ṡ ∈ S, then

‖V ∗ − V πX[V̄ ∗]‖∞ ≤
2εγ

(1− γ)2
.

Proof. Based on the proof of theorem 1 (part c) in [58].

The definition of πX[V̄ ∗] is

πX[V̄ ∗](s) ∈ arg max
a∈As

R(s, a) + γ
∑
s′∈S

Pss′(as) ·X[V̄ ∗](s′).

for all s ∈ S.

‖V ∗ − V πX[V̄ ∗]‖∞ =
∥∥V ∗ −B[X[V̄ ∗]] +B[X[V̄ ∗]]− V πX[V̄ ∗]

∥∥
∞ .

=
∥∥∥B[V ∗]−B[X[V̄ ∗]] +BπX[V̄ ∗] [X[V̄ ∗]]−BπX[V̄ ∗] [V

πX[V̄ ∗] ]
∥∥∥
∞
.

≤
∥∥B[V ∗]−B[X[V̄ ∗]]

∥∥
∞ +

∥∥∥BπX[V̄ ∗] [X[V̄ ∗]]−BπX[V̄ ∗] [V
πX[V̄ ∗] ]

∥∥∥
∞
.

≤ γ
∥∥V ∗ −X[V̄ ∗]

∥∥
∞ + γ

∥∥X[V̄ ∗]− V πX[V̄ ∗]
∥∥
∞ .

≤ γ
∥∥V ∗ −X[V̄ ∗]

∥∥
∞ + γ

∥∥X[V̄ ∗]− V ∗ + V ∗ − V πX[V̄ ∗]
∥∥
∞ .

≤ γ
∥∥V ∗ −X[V̄ ∗]

∥∥
∞ + γ

∥∥X[V̄ ∗]− V ∗
∥∥
∞ + ‖V ∗ − V πX[V̄ ∗]‖∞ .

≤ 2εγ

1− γ
+ γ ‖V ∗ − V πX[V̄ ∗]‖∞ .

Therefore

‖V ∗ − V πX[V̄ ∗]‖∞ ≤
2εγ

(1− γ)2
.
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