

AN ABSTRACT OF THE DISSERTATION OF

Murugeswari Issakkimuthu for the degree of Doctor of Philosophy in Computer Science

presented on September 17, 2021.

Title: Learning and Improving Policies for Probabilistic Planning Problems

Abstract approved:

Alan P. Fern

In this work, we study the problem of learning and improving policies for probabilistic
planning problems. In the first part, we train neural network policies for probabilis-
tic planning problems modeled as factored Markov decision problems. The objective is
to train problem-specific neural networks via supervised learning to imitate the action
choices of expert planners. In the second part, we focus on the problem of online policy
improvement, where we try to improve on a given base policy via online search. Since
search trees for these problems tend to be huge, in practice, action branches need to
be pruned, which can affect policy improvement adversely. We formalize this notion by
introducing the choice function framework and establish sufficient conditions on actions
expanded in search trees for guaranteed policy improvement. In the next part, we draw
attention to the fact that theoretical guarantees of policy improvement can fail when
the ideal conditions assumed in theory do not hold in practice. We propose benchmark
problems, baselines and metrics to assess the empirical performance of online policy im-
provement algorithms. In the final part, we focus on approximation via state aggregation

in MDPs and study the theoretical guarantees of several aggregation schemes.

©C0pyright by Murugeswari Issakkimuthu
September 17, 2021
All Rights Reserved

Learning and Improving Policies for Probabilistic Planning
Problems

by

Murugeswari Issakkimuthu

A DISSERTATION
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Doctor of Philosophy

Presented September 17, 2021
Commencement June 2022

Doctor of Philosophy dissertation of Murugeswari Issakkimuthu presented on

September 17, 2021.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Murugeswari Issakkimuthu, Author

ACKNOWLEDGEMENTS

I would like to thank my Ph.D. advisor, Prof. Alan Fern, for the great learning experience
I have had as his student, and my Ph.D. committee members, Prof. Thomas Dietterich,
Prof. Prasad Tadepalli, Prof. Jinsub Kim and Prof. Kyle Niemeyer, for their time and
support. I would like to thank Prof. Thomas Dietterich for his review comments on this
dissertation.

I would like to acknowledge the sources of support I have received for my studies. I
would like to thank Prof. Ben Lee for giving me the opportunity to teach an undergrad-
uate class this summer, and the OSU, EECS and IT staff for the help they have given
me on several occasions.

I would like to thank all my teachers, mainly, Prof. N. S. Narayanaswamy and Prof.
Deepak Khemani at II'T Madras, and Prof. Anselm Blumer at Tufts University, for their
influence on my intellectual growth. I have benefited a lot from the textbooks and online
lectures of Prof. Dimitri Bertsekas and Prof. Gilbert Strang at MIT. I would like to
thank them for that.

Finally, T would like to express my gratitude to the students in our research group,

my friends, and my family members, mainly, my mom, my brother, and my sister.

CONTRIBUTION OF AUTHORS

Prof. Prasad Tadepalli shared his thoughts about the work in meetings and discussions.

TABLE OF CONTENTS

Page

(L__Introductionl 1
[2° Training Deep Reactive Policies for Probabilistic Planning Problems| 5
I ADstractl. 5
2.2 Introduction] 5
2.3 Related Workl 0o o 7
2.4 RDDL Planning Problems|. 0000 . 7
[2.5 Architectures for Deep Reactive Policies| 8
[2.6 Supervised Training of DRPs| 00, 13
2.7 BExperiments| oL 17

[3 The Choice Function Framework for Online Policy Improvement| 23
BI ADbstracll.o 23
3.2 Introduction] 23
8.3 Related Workl o oo 24
[3.4 Problem Setup| 25
3.5 The Choice Function Frameworkl 28
3.6 Performance Guaranteel Lo oL 31
[3.7 Limited Discrepancy Choice Functions| 36
[3.8 Ilustrative Empirical Results| 38
..................................... 41

[4 Online Policy Improvement for Probabilistic Planning: Benchmarks and Baselines| 43
I ADStractl. o oo 43
4.2 Introduction] L 43
|4.3 Background and Related Work| 44
4.4 Online Policy Improvement| 46
45 OPI Baselinesl. 48
4.6 Benchmarks oo o 51
4.7 Experiments| 56

TABLE OF CONTENTS (Continued)

Page

[> Theoretical Results Related to Aggregation in MDPs| 60
B ABSIractl. . . . o v e 60
(.2 Tntroductionl 60
5.3 Background| 61
5.4 The Whitt Frameworkl 63
5.5 The Feature-based Aggregation Frameworkl 76
[6__Conclusionl 80
Append 82

[7.1 The Choice Function Framework: Supplementary Materiall. 82
[7.2 Aggregation in MDPs: Proofs|. 0 0. 94

LIST OF FIGURES

Figure Page
2.1 Single-channel FC-DRP, Single-channel 5-DRP, Multi-channel 5S-DRP| . . 9
|3.1 Figure shows a search tree constructed by an unspecified search procedure |

| for the shown deterministic MDP. The base policy 1s shown and the leaf |

| nodes are assigned the value of the base policy and every internal state |
| node includes the base-policy action. The grayed out part of the tree is the |
| part not expanded by the search procedure. The values of the internal |
| state nodes have been computed via Bellman backup using a discount |
| factor of 0.9. The best action at the root is a since it leads to the depth |
| 1 state with the highest value. The text describes how this choice is not |

[m-safed ..o 26
[3.2 Pertormance vs time-per-step for LCDF' choice functions applied to linear |

| (left) and non-linear (right) base policies.| 39
4.1 Normalized Mean Scores tor DAG Policy Rollout| 53
4.2 Normalized Mean Scores for MC Policy Rollout| 53
4.3 Normalized Percentile Scores for DAG Policy Rollout|. 54
4.4 Normalized Percentile Scores for MC Policy Rollout| 54

LIST OF TABLES

Table Page
2.1 Sysadmin, Game of Life and Skill Teaching Results| 14
2.2 Tamarisk Results| oo 15
2.3 Wildfire Resultsl. o 16
2.4 FC-DRP vs S-DRP vs R-DRP Results 19

1 -of- - Best Normalized reward. |. 41
4.1 Performance of the two base policies| 47
4.2 W'TL Scores for DAG Policy Rollout| 52

4.3 WTL Scores for MC Policy Rollout|. 52

Chapter 1: Introduction

Many realistic sequential decision-making problems have huge state and action spaces
with highly stochastic state-transition dynamics. The state and action spaces of these
problems are usually defined in a factored manner using a set of state and action variables.
The state-transition dynamics are specified as Dynamic Bayesian Networks (DBN) [48]
over these variables, and the reward function is defined as a function of state and action
variables. The framework of factored Markov Decision Processes (MDP) [42] is used to
model these problems mathematically, and the language RDDL ([49]) was designed to
encode factored MDPs compactly. We focus on RDDL probabilistic planning problems
with binary state and action variables in this work.

Probabilistic planning differs from Reinforcement Learning (RL) in that the plan-
ning agent has access to a precise model of the environment in the form of a factored
MDP. The MDP is usually too large for exact offline solution techniques such as value
iteration, policy iteration and linear programming [42]. A typical solution technique
for probabilistic planning is online search such as Monte Carlo Tree Search (MCTS) [9]
with an environment simulator that can return a sample next state and reward for any
state-action pair. The state-of-the-art planner for benchmark RDDL problems, PROST
([28]), performs MCTS with the Upper Confidence bound for Trees (UCT) [31] heuristic
for expanding the search tree.

Online search methods make an action choice only for the current environment state
as opposed to offline methods that compute a policy for the entire state space. The action
selected for the current state is immediately executed to get to the next environment state
at which the online search process is repeated. Although very effective in practice, online
search can take considerable time to make good action choices for the states encountered
in the online search process, which can be a problem in applications that require fast
decision making. A good alternative to both online planning and exact offline methods
for these applications is high-quality reactive policies compactly encoded for the entire
state space that can be applied instantly at any given state. We explore the possibility

of using deep learning to train such reactive policies.

In the first part of our work, we train reactive Deep Neural Network (DNN) policies
via supervised learning for probabilistic planning problems. We train several problem-
dependent network architectures to imitate the action choices of two high-quality expert
planners. The key feature of our work is a sparse network architecture with connections
mirroring the DBN defining the state-transition dynamics of the problem. This is similar
in spirit to Convolutional Neural Network (CNN) architectures taking advantage of the
spatial proximity of pixels in images. This work was published in the proceedings of the
28th International Conference on Automated Planning and Scheduling (ICAPS) [23]. It
can be found in section [2] of the thesis.

Reactive policies can be applied instantly at any state to make action decisions really
quickly. However, in practice, we may have more time to make action decisions than
what we need to just apply a reactive policy. The extra time, which might not be enough
for a complete online search for optimal actions, can be utilized to search around the base
policy to find better actions. We refer to this process of improving on a given base policy
via online search as Online Search for Policy Improvement (OSPI). An OSPI procedure
performs online search with the objective of computing a policy that is better than or
at least as good as the given base policy.

Online search is typically done by constructing a search tree with the state for which
an action decision is to be made as the root of the tree. The tree is used to estimate
the state-action values of actions at the root and the action with the maximum value
is returned for the state. Online search trees tend to be huge, so, in practice, action
branches in the tree need to be pruned, which can affect policy improvement adversely.
An OSPI procedure can return a policy that is worse than the base policy when actions
are pruned in its search tree. We illustrate this with an example and formalize the idea
with the choice function framework.

A choice function is a function from nodes in a search tree to action subsets. It returns
a subset of applicable actions for a given node in a search tree. An OSPI procedure can
be completely specified by a choice function and the leaf evaluation function when the
state-transition dynamics in the search tree are exact. Since action pruning in OSPI
search trees is entirely defined by the choice function, we can identify properties of
choice functions that affect policy improvement.

In the second part of our work, we establish sufficient conditions on choice functions

for guaranteed policy improvement in OSPI procedures. We also introduce a param-

eterized choice function called Limited Discrepancy Choice Function (LDCF), which
satisfies the sufficient conditions and covers several existing OSPI procedures as special
cases. This work was published in the proceedings of the 34th AAAI Conference on
Artificial Intelligence [24]. It can be found in section [3| of the thesis.

There are several existing OSPI procedures that come with theoretical guarantees of
policy improvement under ideal conditions. However, these procedures can fail when the
ideal theoretical assumptions cannot be satisfied in practice. In the third part our work,
we draw attention to the issue of policy degradation, which happens when the online
policy returned by an OSPI procedure performs worse than the base policy. In order
to understand the empirical performance of OSPI procedures, we propose benchmark
domains with base policies, baseline OSPI procedures and evaluation metrics that take
policy degradation into consideration. This work was published in the Workshop on
the International Planning Competition (WIPC) in the 31st International Conference
on Planning and Scheduling [21]. It can be found in section [4] of the thesis.

Most realistic probabilistic planning problems lead to factored MDPs with large state
and action spaces. Such large MDPs are usually solved approximately as exact offline
solution methods are impractical for large state and action spaces. State aggregation in
MDPs is an approximate solution technique, where states and even actions of an MDP
are grouped together to form a smaller aggregate problem. The aggregate problem is
then solved and the solution is extended to the original MDP. The approximate solution
thus obtained for the original MDP will usually be sub-optimal with the degree of sub-
optimality depending on the precise definition of the aggregate problem.

In the final part of our work, we study existing aggregation methods for approximate
solution of MDPs. We consider two basic aggregation frameworks and the associated
theoretical results on the sub-optimality of the aggregate solutions. We then relate
several aggregation schemes to the two frameworks with the objective of presenting a
unified view of the theoretical bounds. This part of our work can be found in section
of the thesis.

Training Deep Reactive Policies for Probabilistic Planning Problems

Murugeswari Issakkimuthu, Alan Fern and Prasad Tadepalli

Proceedings of the 28th International Conference on Automated Planning and Scheduling
(ICAPS-2018)

AAAT Press

Palo Alto, CA, USA

Chapter 2: Training Deep Reactive Policies for Probabilistic

Planning Problems

2.1 Abstract

State-of-the-art probabilistic planners typically apply look-ahead search and reasoning
at each step to make a decision. While this approach can enable high-quality decisions,
it can be computationally expensive for problems that require fast decision making. In
this paper, we investigate the potential for deep learning to replace search by fast reac-
tive policies. We focus on supervised learning of deep reactive policies for probabilistic
planning problems described in RDDL. A key challenge is to explore the large design
space of network architectures and training methods, which was critical to prior deep
learning successes. We investigate a number of choices in this space and conduct experi-
ments across a set of benchmark problems. Our results show that effective deep reactive
policies can be learned for many benchmark problems and that leveraging the planning

problem description to define the network structure can be beneficial.

2.2 Introduction

Many real-world planning problems involve large factored state spaces with highly stochas-
tic exogenous and endogenous dynamics. The Relational Dynamic Influence Diagram
Language (RDDL) was designed to model such problems by compactly defining large
Dynamic Bayesian Networks (DBNs) over state and action variables. Current state-of-
the-art planners for RDDL problems are based on online search, where at each step some
combination of search and reasoning is used to select an action. For example, there are
planners based on sample-based tree search [28], [32], §], symbolic variants [13}, 45} 2], and
those that construct and solve integer linear programs at each step [22]. These planners
can require non-trivial computation time per step, which can make them inapplicable to

problems that require fast decisions.

One approach to support fast decisions is via reactive policies that can be applied
online to quickly select actions. Offline Symbolic Dynamic Programming (SDP) has re-
cently been explored for producing such policies for RDDL problems [43], 44]. SDP [I8]
uses symbolic operations to produce a symbolic policy representation that can be effi-
ciently evaluated at any state. Unfortunately, while there have been significant advances,
scalability is still an issue with SDP.

Reactive policies can also be produced via supervised learning or reinforcement learn-
ing. Most recently, state-of-the-art results have been achieved in a variety of domains by
learning deep neural networks (DNNs) to represent reactive policies. Examples include
learning to play Atari games directly from pixel input [38], robotic control (e.g., [34]),
and the game of Go [52, [54]. These results motivate the investigation of learning such
Deep Reactive Policies (DRPs) for planning problems described in RDDL. We note that
the impressive successes of DRPs are not due to the blind application of off-the-shelf
tools and DNN architectures. Rather, the successes were enabled by significant exper-
tise and manual exploration of architectures and training methods. The objective of
this paper is to present an initial exploration of the DRP design space for RDDL bench-
mark problems via an extensive empirical investigation covering five domains with some
theoretical guarantees about the expressiveness of the architectures.

We describe three classes of architectures that support problem-specific DRPs by
leveraging the RDDL problem definition. We train our DRPs to imitate the action
choices of more expensive non-reactive planners by supervised learning. We consider
two different choices for generating data and two different ways to optimize DRPs based
on the data. Our experiments shed light on the following questions. Can we learn DRPs
that are competitive with the planners that they are learned from? Can the RDDL
problem definition be used to define more effective network architectures? Are there
any consistently superior DRP architecture choices across RDDL problems? Are some
supervised training signals and loss functions more effective in general than others? We
note that this study is focused on learning DRPs for individual planning problems using
supervised learning. It is an interesting future direction to consider learning DRPs that
generalize across problems within an entire planning domain. However, such a step
requires additional architectural considerations, which we believe should be informed by
the study of individual problems. We also note that other training mechanisms such as

reinforcement learning will be interesting to consider in future work.

2.3 Related Work

There is a long history of work on integrating machine learning and automated planning
136l 63] 26]. Much work focuses on learning control knowledge (heuristics and pruning
rules) to speed up a planner and/or improve the plan quality. While these approaches
have shown promise, they are not guaranteed to reduce planning times and can even
result in net slow down of a planner [37]. An important exception is the prior work on
learning reactive policies in the form of relational rule lists for deterministic STRIPS
domains [29]. Extensions to the work include using richer rule representations [35, [14],
iterative learning algorithms [16], and application to probabilistic STRIPS [62]. While
these approaches are promising in many domains, it has been a challenge to demonstrate
their robustness across a wide range of domains. One difficulty is that the rule languages,
once selected, are inflexible and can not always capture key concepts. This motivates
investigating DNNs for planning, since, in principle, they can induce deep features and
concepts as needed.

The most closely related prior work is the Factored Policy Gradient (FPG) planner
[10], which represents reactive policies using simple neural networks, most commonly
a linear network per action for computing action probabilities. The network parame-
ters are tuned using policy-gradient reinforcement learning where each learning episode
begins from the starting state of the problem being considered. Promising results were
demonstrated for a number of planning domains including probabilistic PDDL (PPDDL)
benchmark problems. Interestingly, for most problems there was no perceived benefit
to using multi-layer networks over simple linear networks. Our experiments also show
that for some RDDL benchmarks linear networks are as good as or better than more
complex networks. Most recently, concurrent work [57] is the first to learn deep networks
for relational generalization across problems of PPDDL planning domains. PPDDL and
RDDL are qualitatively different languages, however, which makes it difficult to apply
that approach directly to many RDDL domains.

2.4 RDDL Planning Problems

We assume familiarity with the basic framework of Markov Decision Processes (MDPs).

A factored MDP describes the state space by a finite set of binary variables (z1, z9, ..., xy)

and the action space by a finite set of binary variables (a1, ag, ..., ay). In this work, we
focus on the case where actions are constrained to have exactly one of the action vari-
ables set at any time and view each a; as a distinct ground action. Most current RDDL
benchmarks already have this constraint. The reward function R specifies a mapping
from the state and action variables to real-valued rewards. We assume that the transition
function T is compactly described as a DBN which specifies the probability distribution
over each state variable z; in the next time step, denoted z, given the values of a sub-

') in the current time step, in particular,

7

T(s,a,s") =11, Pr(z}|parents(z;)). RDDL [49] is a high-level specification language for

compactly representing such DBN domains in a relationally-factored form using param-

set of the state and action variables parents(x

eterized state and action variables. Individual problem instances then specify a set of
domain objects that instantiate the state and action variables. A policy 7 is a mapping,
possibly stochastic, from the state space to actions. We focus on optimizing the expected

finite-horizon total reward of a policy.

2.5 Architectures for Deep Reactive Policies

A Deep Reactive Policy (DRP) is a policy encoded as a deep neural network. DRPs

are reactive as they can be quickly evaluated in a single feed-forward pass. Our DRP

architectures are organized into L+1 layers of nodes. Z! = {z,lf} denotes layer [, where ch

is the k’th node in layer [and its value is denoted by o(zi). The input layer Z° contains
0

n nodes, each taking the value of one state variable, i.e., o(2;y) = x;. Layers 1 through
L —1 are hidden layers each containing C' x n nodes, where C' parameterizes the number
of channels which allows for scaling the DRP size with the number of state variables.
The output layer ZF = {zé,zlL,zQL,...,z,%} contains m + 1 nodes, where zf,...,zﬁl
correspond to the m RDDL actions and zé—J corresponds to the NOOP action. In all the
architectures the final hidden layer Z%~! is fully connected to the output layer Z%.

For single-channel networks (C' = 1) we have Z! = {z},2}, ..., 21} for all the hidden
layers. Each hidden node zfg is connected to a set of nodes (I li) in the previous layer
Z'=1 via real-valued weights, where wﬁy i is the weight from zll-_l to zi and bfg is the bias

parameter to zé We use ReL U activation functions as the non-linearity for hidden nodes

o ‘ 2 O ED—— g

k’l{“}\\'{ k’fl; “ - \V // ‘?\//// a a
2 OO SREA

SO o S L R0 A4 . By
1 ORIy I n O\l \@ n O

ag

SRR\ 3 RE —(
e //,“\\g//\\g})"“. a3 o ‘\);}\’ '«fg} a3

[e /‘ o

Figure 2.1: Single-channel FC-DRP, Single-channel S-DRP, Multi-channel S-DRP

so that the value of zfg is

o(zL) = ReLU Z o(zéfl)wé’k + 0 |- (2.1)
pell

The output layer is a softmax layer computing a probability distribution over the m + 1

actions ZE-1]
o(ek) = — P2t oy +b) (2.2)
k) — ZL—1 _ : ’
>t el‘p(ZL:l (s Dy +bf)

For multi-channel networks (C' > 1) Z! = {X! XL ..., X!} for all the hidden layers.
The set of nodes in Z! is partitioned into n subsets, where subset X ,i corresponds to zfc in
a single-channel network with |X ,i| = (. If the hidden layers of single-channel networks
are (column) vectors of size n then those of multi-channel networks are matrices with
C such (column) vectors. The k** row of the matrix corresponds to nodes in X ,lg All
nodes in X]l€ receive the same set of input connections from the previous layer though
with different weights. If zé_l is connected to node zfg in a single-channel network then

the entire subset of nodes X]l[l are connected to zfc in a multi-channel network.

Fully-Connected DRPs (FC-DRPs). FC-DRPs are the traditional fully-connected
networks in which each hidden node at layer [is connected to each hidden node in layer
I—1,ie., foralll >1and k, Il = {1,...,|Z"71|}. Weuse FC(L,C) to denote a FC-DRP

architecture with layer and channel parameters L and C.

10

Sparse DRPs (S-DRPs). The large number of FC-DRP parameters raises the poten-
tial for overfitting. CNNs reduce the number of parameters, while remaining expressive
by attaching spatial semantics to hidden nodes and only allowing connections to spa-
tially close nodes. In analogy, S-DRPs associate hidden nodes with state variables and
only connect nodes whose variables have probabilistic dependencies. S(L,C) denotes an
S-DRP with the associated layer and channel parameters. The nodes in hidden layer Z
are partitioned into n sets X{, Xé, e ,X,ll, each having C' hidden units. We interpret
the nodes in X! as being associated with state variable ;. A hidden node 2} € X! is
connected only to nodes in Z!~! that are associated with state variables that z; depends
iparents(a!) X]l.*l, where parents(x})
is the set of state variables in the current time step that can influence the transition

on in the transition function. In particular, I li =U

probability of x;. Thus, the S-DRP connectivity mirrors the DBN local dependency
structure across time steps. Figure illustrates an FC-DRP and S-DRP with single

and multiple channels.

Representation Capacity of S-DRPs. The potential advantage of sparsity is better
generalization, while the potential disadvantage is representation capacity. Consider an
MDP with two binary state variables x1 and xo with independent transition dynamics.
Let policy 7(z1,22) = XOR(x1,22), which is not linearly representable. The hidden
layers for any S-DRP will not be able to compute features that combine x; and x5
and hence the final linear softmax layer will not be able to represent m. In general,
when policies involve complex dependencies among state variables that have independent
transition dynamics, S-DRPs may be inadequate. We provide an initial result that
characterizes a class of policies that is S-DRP representable subject to MDP restrictions
and also describe a small S-DRP modification that supports any policy.

The Q-function Q™ (s, a) of m gives the value of executing action a from state s and
then following policy . We say that a policy 7 is Q-representable if there is a policy 7’
such that 7(s) = argmax, Q™ (s,a) and that for each state the maximizing Q-value is
unique. Examples of Q-representable policies include optimal policies that have unique
optimal actions in each state, policies computed by the Rollout algorithm for any base
rollout policy 7/, or any policy from the standard policy iteration sequence. A reward
function R is said to be independently additive if R(s) =), R;(x;). A transition function
is DBN-representable if it has the form T'(s,a,s') =[], Pr(z;|parents(z})).

11

Theorem 1. For any MDP with independently additive rewards and DBN-representable

transition function, if w is Q-representable, then ™ can be represented as a finite S-DRP.

Proof. The proof uses the concept of Krylov basis for MDPs [40]. Let P be the transition
probability matrix over ground MDP states for 7 and R be the reward vector over ground
states. The Krylov basis function of order ¢ is given by b = P'R. The component of
vector b for state s gives the expected reward at step t if 7 is followed from s. For a
finite K the value function V™ of m can be represented as a linear combination of the
basis functions 8°, ..., b% [20]. It follows that for every action a € A, the vector, Q™(.,a),
consisting of the Q-values of all the states for action a, can also be linearly represented
with a basis of the same dimension K.

To relate the Krylov basis to S-DRPs, it is possible to show that for DBN-representable
transition functions and independently additive rewards, each Krylov basis function has
the form b'(s) = >, R;(z;) P (zf|parents!), where z! is the value of state variable z;

after ¢ steps from the initial state being conditioned on parentst, the set of state vari-
¢

ables at the initial time step that influence z7j, i.e., the t-step influencers of x;. Thus,
the Krylov basis decomposes linearly into a set of functions that depend on the t-step
influencers of each z;. Now consider any S-DRP hidden node z € XiL_1 in the last layer
that is associated with x;. It is easy to see that the output o(z) is a function of only the
input state variables that are L-step influencers of x; under any policy. Thus, each such
z can be viewed as computing a potentially complex non-linear feature of the L-step
influencers of x;. For large enough L and C this allows for the S-DRP to represent the
above decomposition of the Krylov basis and applying a softmax layer will then return

the actions of . O

By changing the activation function of the output layer we can represent any policy
under mild conditions. In particular, an RBF S-DRP is a DRP where the softmax output
layer is replaced by having a radial basis activation function (RBF) for each output node.
The only constraint on the RBF is that it is maximized when the affine transformation
of its input is zero (e.g., a Gaussian). An RBF S-DRP selects the action in the output
layer with the highest node activation. In the following a policy 7 is said to be Q-distinct
if for any state s and any a # 7(s), Q™ (s, 7(s)) # Q7 (s, a).

Theorem 2. For any MDP with independently additive rewards and DBN-representable
transition function, if w is Q-distinct then w can be represented via a finite RBF S-DRP.

12

Proof. (Sketch) The proof is similar to the previous theorem. Since V7™ is linearly repre-
sentable via Krylov basis functions, so is the vector V™ — Q™ (., a) for any action a € A.
Since 7 is Q-distinct, this expression is zero iff 7(s) = a. This means that applying an
RBF to the above difference for each a will identify 7(s). The rest of the proof follows

along the same lines as above. O

When the reward function is not independently additive, it may decompose into
factors over groups of state variables. In such cases, we can get a similar result by
extending the S-DRPs to include one or more fully connected layers between the last

sparse hidden layer and the output layer.

Relational Weight Sharing DRPs (R-DRPs). An R-DRP is constructed by con-
straining all weights in the S-DRP that are relational matchings to have the same value.
Intuitively, (s,¢) and (u,v) are relational matchings when the probabilistic dependency
between s and ¢ is structurally similar to that from u to v. Sharing is limited to weights
between state-fluent nodes in adjacent layers. The bias parameters and the weights
of the fully-connected layer at the end are not shared. Two connections are similar if
the (start-node, end-node) pairs of the connections are similar. For example, in the
blocksworld domain, the pairs (clear(A), on(A, B)) and (clear(C), on(C, D)) are seman-
tically similar. Since nodes in the input and hidden layers of R-DRPs represent state

fluents the (start-node, end-node) pairs (z/1, 2}) are instantiated first-order predicates.

r v
-1 1

Consider weights wé. . and wfw between (zé_l W, zy) respectively, where

(zé_l,z,lc) = (qj(jl,jg,...jnj), qr(k1, ko, ...ky,)), and (zf[l,zf)) = (qu(ui,uz,...up,),
qv(v1,v2,...0,,)). Let J = (jl,jg,...jnj),K = (kl,kQ,...knk),U = (u1,ug,...uy,), and
V = (v1,v2,...0,,). Weights wék and wfw are constrained to be the same if (1) g; = ¢u
and ¢ = ¢y and (2) J x K = U x V. |J x K| = njn; and J x K is defined as

the cross-product of ordered tuples J and K giving an ordered tuple of binary val-

,2L) and (=

ues. The 1% n;, entries of J x K are computed by comparing j; with each element of
(k1, k2, ..., k). The 2nd p, entries of J x K are computed by comparing jo with each
element of (ki, ks, ..., kn,). The last ny entries of J x K are computed by comparing
Jn; With each element of (k1, kg, ..., ky,). The components of both J and K are strings
representing objects in the problem and when j; is compared to kq the result is 1 if the
strings match and 0 otherwise. For example, if zéfl = clear(A) and z! = on(A, B) then
J x K = (1,0) because A # B and the second component is 0.

13

2.6 Supervised Training of DRPs

We use supervised learning to train DRPs for individual RDDL problems. This involves

generating training data and optimizing the parameters of a chosen DRP architecture.

Training Data Generation. Following prior work (e.g., [29, B35 [62]) we generate
training data using ¢mitation learning, which aims to learn a policy that imitates the
actions of an expert. In our case, the expert is a non-reactive online planner that can
select an action at any state. More precisely, given a planning problem with initial
state s and horizon H, we use the planner to generate multiple trajectories, each one
starting in sp and then following a sequence of actions selected by the planner until
the horizon. Each of the stochastic trajectories gives a sequence of state-action pairs
(so0,a0), (s1,a1),.--,(SH—1,am—1), which can be combined to create a standard super-
vised training set. A disadvantage of learning from just state-action pairs is that the
learning algorithm is unable to make informed trade-offs when perfect accuracy is not
possible. To address this, we can augment the training examples with Q-value estimates
for each action when available from the planner. Here the Q-value of a state action pair
Q(s,a) is the expected finite horizon reward of starting in state s, taking action a, and
then acting optimally thereafter. This idea of leveraging Q-values for supervised policy

learning has been shown to be effective in prior work, e.g., [16].

Expert Planners. We consider imitation learning from two RDDL planners. The first
is the state-of-the-art planner, Prost [28] (IPPC-2011), which is based on Monte-Carlo
Tree Search with various heuristics and pruning mechanisms. Prost does not generate
Q-value estimates for all actions in a state due to pruning mechanisms. Thus, when
using Prost, the training data only contains state-action pairs. The second planner is
Rollout, which performs policy rollout [56] using a random base policy. Given a state s,
Rollout produces a very rough estimate of Q(s, a) for each action a as follows. Simulate
N trajectories that each start at s, then select action a followed by random actions until
a fixed horizon. Q(s,a) is estimated to be the average cumulative reward across the
trajectories, and the Rollout planner returns the action that maximizes Q(s,a). Since
Rollout produces Q-value estimates for all actions, we include those values in the training
data. Rollout can be viewed as computing a policy that is equivalent to performing one

step of policy iteration starting from a random policy. In practice, Rollout is often

Table 2.1: Sysadmin, Game of Life and Skill Teaching Results

Sysadmin
Planners TRN(Rollout, 0/1) TRN(Rollout, Q) TRN(Prost, 0/1)

Problem # Prost Rollout Tlin * L TA Tlin * T TA Tlin T T TA
1 339 332 342 346 344 344 341 346 341 341 342 347 344 341
R310 F110 F110 R110 F310 Lin S310 F310 F15

2 301 290 302 315 309 313 313 319 311 313 311 321 321 316
S510 S110 S15 S110 S310 R110 S310 S310 F110

3 553 523 562 575 559 559 559 576 557 562 570 570 561 554
F110 S110 S15 S110 S310 S55 Linear F110 S35

4 489 463 502 504 492 504 495 510 501 501 496 513 490 486
F110 S110 F110 F110 S310 S35 F11 S110 F15

5 573 588 625 645 631 618 625 649 628 634 620 650 637 638
S15 S110 R110 R310 S310 S110 S15 S110 F110

6 527 532 583 598 590 598 583 597 597 595 576 601 578 573
S15 S110 S15 S310 S310 R110 S310 S110 F15

7 618 658 724 734 733 714 727 737 730 737 709 730 723 711
S310 S15 R35 S310 S110 S310 R35 S15 S35

8 498 522 589 591 589 569 596 600 584 579 583 591 591 583
S15 Linear R11 F11 S110 S15 S15 S15 Linear

9 728 811 872 889 875 872 884 893 883 877 832 849 833 849
R35 S15 Linear R310 S110 R35 F11 S15 F11

10 546 580 643 645 641 643 639 655 643 624 608 624 608 624
F11 S15 Linear F11 S110 R15 S11 Linear S11

%A Prost 0 1.62 9.82 11.72 10.21 9.81 10.22 12.55 10.43 10.21 8.32 11.18 9.23 8.82
%A Rollout | -1.32 0 8.00 9.88 8.37 8.03 8.38 10.69 8.59 8.40 6.63 9.44 7.50 7.06

Game of Life

1 210 188 7 196 196 196 70 202 197 199 49 191 191 188
F310 F310 F310 F510 S510 S310 S310 S310 F310

2 130 122 96 125 125 125 98 135 135 121 85 129 126 129
F510 F510 F510 F510 F510 F55 F510 F310 F510

3 150 134 128 146 146 141 121 148 148 148 119 149 148 149
F510 S510 F310 R510 S510 S510 F510 S310 F510

4 347 347 225 331 331 331 227 339 338 338 206 321 304 321
S310 S310 S310 S55 S510 S510 S310 S35 S310

5 309 295 240 285 285 280 234 304 304 304 229 299 287 299
S35 S35 S510 S510 S510 S510 S510 S310 S510

6 283 266 253 268 267 263 252 277 276 274 245 277 275 277
S510 S310 S55 F35 S35 S510 S310 S35 S310

7 486 500 330 455 449 447 308 481 481 481 280 435 421 435
S510 S35 S310 S510 S510 S510 S510 S35 S510

8 435 450 330 431 431 431 337 449 446 446 313 408 408 406
S55 S55 S55 S55 S510 S510 S35 S35 S510

9 410 412 340 416 414 416 344 429 419 419 335 402 399 402
S310 S35 S55 S510 S55 S55 S55 S35 S55

10 575 602 263 488 486 488 252 531 531 531 280 513 483 476
S510 S310 S510 S510 S510 S510 S510 S35 S310

%A Prost 0 -2.58 | -29.91 -5.06 -5.33 -5.93 | -31.18 -0.72 -1.36 -2.37 | -35.31 -5.20 -6.02
%A Rollout 2.98 0| -27.74 -2.20 -2.45 -3.12 | -29.09 2.23 1.56 0.49 | -33.43 -2.27 -3.07

Skill Teaching

1 67 65 66 67 67 66 64 67 66 64 67 68 65 65
F11 S510 F31 F15 S53 S55 R110 F55 F55

2 80 76 76 78 76 78 76 78 75 Y 78 80 e M
R35 R510 R35 F110 S53 S31 F31 F310 F310

3 74 85 83 94 85 82 80 98 92 78 87 106 89 89
S15 R55 F31 R31 S55 F11 F15 S510 S510

4 101 84 62 104 101 82 56 110 91 89 114 114 93 91
R51 R55 R15 R31 R510 S35 F110 F55 R35

5 10 -10 -28 -4 -23 -39 -14 -4 -42 -19 17 36 -1 -1
R51 R53 S310 R55 R310 R53 R31 F35 F35

6 -11 -11 31 33 -1 -6 17 24 -25 9 5 21 -4 -4
S51 R310 F110 F51 R510 S110 F310 F35 F35

7 -48 -83 -68 -46 -89 -49 -59 -40 -60 -51 -44 -23 -62 -62
R53 R55 S310 R53 R510 S510 F31 R310 R310

8 -141 -210 -191 -142 -163 -212 -155 -139 -156 -156 -154 -109 -144 -134
F310 R55 F110 F110 R55 R55 F510 S310 S55

9 -145 -155 -160 -138 -161 -162 -146 -122 -155 -155 -167 -122 -156 -172
510 R35 R55 S35 R35 R35 S15 F15 F510

10 -214 -212 -216 -194 -226 -240 -247 -188 -268 -279 -228 -178 -214 -194
F310 R53 R31 F11 R510 F15 R15 F110 F53

%A Prost 0 -34.46 | -13.40 28.75 -35.04 -54.41 -9.29 24.70 -72.14 -18.76 21.96 71.06 -8.41 -8.12
%A Rollout | 29.01 0 19.23 57.26 -0.21 -20.93 | 20.93 52.84 -38.46 12.03 | 50.17 94.30 22.03 22.11

14

15

Table 2.2: Tamarisk Results

Planners TRN (Rollout, 0/1) TRN (Rollout, Q) TRN(Prost, 0/1)

Problem # Prost Rollout Tlin m* T TA Tlin T L A Tlin T T TA
1 -137 -160 -177 -124 -142 -142 -173 -127 -145 -145 -162 -123 -142 -142
F35 S310 S310 S55 S35 S35 F15 S310 S310

2 -469 -524 -587 -469 -485 -475 -571 -473 -502 -484 -532 -427 -486 -472
R15 S35 R35 R15 S35 S310 F31 S510 S310

3 -210 -243 -244 -198 -211 -211 -274 -207 -207 -207 -256 -186 -209 -200
S15 S310 S310 S310 S310 S310 R15 S310 S35

4 -744 -783 -786 -650 -705 -705 -805 -669 =719 -719 -782 -694 -701 -694
R110 S35 S35 S15 R310 R310 R310 S35 R310

5 -568 -646 -671 -560 -615 -560 -640 -547 -588 -588 -645 -526 -558 -579
S35 S310 S35 S510 R310 R310 R510 S310 S35

6 -1005 -977 -940 -834 -883 -886 -969 -866 -882 -891 | -1100 -893 -938 -938
S110 8310 R310 S55 S310 R310 S55 S35 S35

7 -862 -829 -834 -662 -669 -669 -809 -677 -687 -677 -875 -679 -709 -709
S510 S310 S310 S53 S310 S53 S110 S310 S310

8 -1380 -1229 | -1210 -1087 -1139 -1165 | -1203 -1104 -1131 -1144 | -1361 -1228 -1243 -1243
R510 S35 S310 R110 S55 S35 F51 S35 S35

9 -1010 -827 -803 -686 =797 -736 -867 -681 -735 -681 -961 =752 -818 -821
F11 S310 S510 R510 S510 R510 R310 S310 S53

10 -1548 -1228 | -1259 -1064 -1124 -1095 | -1254 -1057 -1201 -1201 | -1528 -1375 -1394 -1595
S110 S35 S310 F11 F510 F510 S53 S35 F510

%A Prost 0 -0.72 | -3.27 15.39 8.99 10.73 | -4.39 14.14 8.87 9.71 | -7.56 12.48 6.38 5.52
%A Rollout | -1.16 0| -2.15 15.87 9.52 11.28 | -3.33 14.69 9.40 10.30 | -7.70 11.91 6.15 4.90

surprisingly effective and it is often competitive or better than Prost, especially for

larger planning problems.

Parameter Optimization. For each problem we use both Prost and Rollout to gen-
erate a training data set of size 10,000 state-action pairs for three domains and up to
32,000 for the other two domains (Sysadmin and Game-of-life) depending on the problem
size. The data was generated by producing trajectories with horizon H = 40. Given
one such dataset, we optimize the parameters of a DRP by defining a loss function
over the training data and applying stochastic gradient descent. In this work, for all
problems and networks we use the Adam optimizer built into the Tensorflow framework
with a batch size of 40 and initial learning rate of 1075, We train for 2000 iterations
and compute the accuracy on a validation set every 500 iterations and stop if there is
no improvement in two successive stages. Training times vary significantly for different
problems and architectures, which can be improved with additional hardware and further
optimizations.

Training with 0/1 Loss. Our first loss is defined over just state-action pairs. Given
a state s, a DRP produces a probability distribution over actions, P(als), which we
will denote by the vector P(s). Given a training state-action pair (s,a), let ¢(s) denote

the 0/1 target probability distribution over actions that assigns probability 1 to action

16

Table 2.3: Wildfire Results

Planners TRN(Rollout, 0/1) TRN(Rollout, Q) TRN(Prost, 0/1)

Problem # Prost Rollout Tlin ™ L TA Tlin s L TA Tlin s L TA
1 -275 -439 -481 -256 -603 -603 -522 -368 -368 -368 -950 -159 -238 -208
S110 S35 S35 R510 F15 F15 F35 R15 S510

2 -8856 -8913 -9466 -8621 -8900 -8783 -8989 -8674 -9078 -9078 -8807 -8428 -9034 -9034
S55 F15 S15 R110 S15 S15 F11 F15 F15

3 -1899 -1547 -1354 -1131 -1131 -1373 -2037 -976 -1285 -1517 -1355 -802 -1747 -1490
R510 R510 F11 S15 F11 R310 F15 S35 R310

4 -8756 -8986 -8572 -7808 -8136 -8459 -8840 -7757 -8040 -8040 -8888 -7693 -7693 -9121
R110 R510 S55 R310 S35 S35 S35 S35 F31

5 -3220 -585 -1331 -467 -716 -1100 -800 -497 -497 -723 -1552 -1552 -2959 -2517
R15 S11 R510 F11 F11 S35 Linear S110 F510

6 -15878 -7079 -7370 -6548 -7465 -6820 -7132 -6480 -7221 -7221 | -15313 -10948 -14056 -11975
F15 F11 S35 R15 R55 R55 F15 S110 F510

7 -7731 -6169 -5483 -4885 -5169 -6479 -5452 -5178 -5648 -5882 -7327 -6270 -9259 -9259
S15 S11 F510 S310 S15 F510 R31 F510 F510

8 -13673 -10192 -9975 -9389 -9389 -10840 -9411 -9305 -9529 -9828 | -13053 -11235 -16661 -16661
S11 S11 S53 S110 F11 S15 R11 F510 F510

9 -16129 -5551 -4941 -4152 -6662 -6662 -4317 -4310 -5911 -5911 | -17962 -17036 -17556 -17556
R310 F510 F510 R51 F510 F510 F35 F510 F510

10 -25459 -12049 | -11238 -9763 -12030 -12030 | -10586 -9683 -11113 -11113 | -31343 -29047 -30061 -30061
R35 F510 F510 F11 F510 F510 F53 F510 F510

%A Prost 0 25.68 24.26 40.90 23.44 18.39 22.30 37.24 32.04 29.59 | -18.67 21.66 -1.74 1.74
%A Rollout | -91.75 0 -9.91 18.54 -2.45 -13.43 -3.35 15.99 7.12 1.09 | -81.34 -44.79 -93.72 -82.48

a. We measure the 0/1 cross entropy loss of a prediction]5(3) as the cross-entropy
H(P(s),t(s)) between P(s) and t(s), where for probability vectors P and Q, H(P,Q) =
— >, Pilog(Q;). H(P,Q) is minimized when P = @, and hence the 0/1 loss encourages
P(s) to increase the probability of the action.

Training with Q-Loss. When Q-values are available in the training data, we incor-
porate them by defining a Q-Loss function that prefers predictions]3(5) that assign
higher probabilities to actions with higher Q-values. In particular, we use the Q-values
for a state s to define a Boltzmann probability distribution over actions P(a | s) =
% with temperature equal to one. Here P assigns higher probability to
actions with higher Q-values. Our Q-loss function for a training example is then sim-
ply H (P(s),P(-\s)), which is minimized when the predicted probabilities match the

Boltzmann probabilities.

Doing Better than the Expert. In our experiments, we will sometimes see the
learned DRPs outperforming the expert planners. The exact reasons for this is not fully
clear. However, results from imitation-learning theory offer a potential explanation.
First, it is important to note that Prost and Rollout are both stochastic planners due
to running Monte-Carlo simulations. One way to model the stochasticity is by starting

with a deterministic policy 7* that captures the typical action choices of the planner

17

and then creating a stochastic policy & that follows 7* with 1 — € probability and uses
a randomized action choice with e probability. It has been shown by Ross et al. [47]
that the finite-horizon reward of # can be worse than 7* by as much as eH?, where H
is the horizon. Thus, even if Prost and Rollout typically select actions according to a
high-quality 7*, their actual performance can be substantially worse. We can now think
of the training data as being generated by 7*, but corrupted with some amount of noise.
If our learning procedure is robust to the noise, then it is possible for the learned DRP
to provide a better approximation of 7* than the planners. In particular, if the learned
approximation has an error rate of ¢ < ¢, then the learned policy has the potential to

achieve a performance closer to 7* than the planner.

2.7 Experiments

Benchmark Problems and Architectures. We selected five RDDL benchmark do-
mains: Sysadmin, Game-of-Life, Skill Teaching, Tamarisk, and Wildfire. Each domain
comes with a standard set of ten problems ranging from quite small to quite large. While
computational constraints prevented including additional domains, there are some bench-
mark domains that are not a good match for DRPs. For example, the Navigation domain
contains state variables that only provide the robot location. To be successful a planner
needs to reason about the probabilistic navigation grid to eventually find a determinis-
tic optimal path. In such domains, there is no room to benefit from the generalization
ability of a DNNs. All the selected domains appear to offer non-trivial opportunities to
learn policies that generalize across states.

We trained FC-DRPs, S-DRPs, and R-DRPs for all combinations of L = 1,3,5 and
C = 1,5,10 along with a linear policy (no hidden layers). Each architecture was trained
using three strategies: Rollout as the planner with 0/1 loss, Rollout with Q-loss, and
Prost with 0/1 loss. The strategies are denoted by TRN(Rollout,0/1), TRN(Rollout, @),
and TRN(Prost, 0/1) respectively. In total this resulted in training 27 x 3 networks for
each of the 50 problems.

Description of Results Tables. Tables contain our main set of experimental
results for each domain. Throughout our experiments, the expected total reward of a

policy or planner is estimated using a horizon of 40 averaged over 100 simulations. In

18

each table the top 10 rows give results for individual problems, where larger problem
numbers tend to correspond to larger problems. The s