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Chapter 1: Introduction

This thesis investigates the proof of concept of using Computer Aided Design (CAD)
paired with digital human modeling (DHM) in early car pillar design to quantify the
percent area of visibility of a target plane which represents a pedestrian. This concept
may be used to help quantify different car pillar designs without the need of costly physical
prototypes. Additionally, this thesis uses a Design of Experiments (DoE) to further this
understanding by providing cuts in these car pillars in the hopes of improving percent
area of visibility.

This proof of concept integrates CAD and DHM to incorporate a rudimentary struc-
tural analysis and ergonomics analysis to the early concept development or design evalu-
ation phase. This methodology and DoE are to quantify percent area of an obstruction
zone based on binocular vison using JACK a DHM tool. This proof of concept and
experiment uses four different cars, four separate pillar designs, six different driver an-
thropometries and four different pedestrian anthropometries. Full scale models of each
of the cars used, sports car, sedan, SUV and pickup truck. These models are based on
vehicle blue prints and preexisting surface models found on GrabCAD and other online
sources [1–4]. The proof of concept includes a brief case study to show how using DHM
can quantify percent area of an obstruction zone. Additionally, this includes a rudimen-
tary structural analysis of the pillar designs used on the sports car A-pillar (because it
only has four pillars and would experience the most force) to make sure they meet or
are close to the roof crash test FMVSS standards. With the concept being proved a full
DoE was done with a Kruskal Wallis test to measure whether design variables (cuts in
pillars) have significant effects on visual obstructions.

Car pillars are the vertical supports of the windows which connects and provides
structural support to roof and the body of the car. These are designated as A, B, C
or D pillars respectively working from the front of the car to the back of the car [5].
These car pillars provide a crucial role in the car’s aerodynamics, driving dynamics, and,
most importantly, passenger safety by protecting drivers from harm in the event of a car
crash or rollover. With safety increasing in importance for car design, car pillars have
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been getting thicker to provide a higher factor of safety for structural support and to
allow for air bagels and other features to be placed within the pillars [5]. However, with
the car pillar thickening the visibility of the driver becomes more limited. Literature
suggests that traditional car pillars designs obstruct the vision of a driver [6]. This also
can be seen in accident reports where the driver “looked but failed to see” a pedestrian
walking across the street, pedestrian on a bike or other drivers [7]. Literature has briefly
examined the issue of car pillar obscuration and some state-of-the-art solutions have
been suggested to solve or mitigate this issue. Some of these solutions involve using
cameras with integrated displays, changing pillar position and changing pillar geometry
[8–10]. However, these solutions have proven to be costly and require extensive physical
prototyping.

The prototyping stage in the engineering design process can be an expensive and
extensive process. Additionally, testing different designs and making design changes
can be difficult with physical prototypes especially with the vehicle design industry.
Computational models used in the early design stages has proven to be a valid method to
test and iterate designs [11]. Pairing the computational methods of CAD and DHM in
early design stages is becoming more popular as literature suggests it is a valid method
for testing and validating designs for ergonomic factors like reach, comfort and visibility
(visibility obscuration) [12].

This research investigates a methodology for testing and quantifying car pillar vision
obscuration based on binocular vision using CAD integrated with DHM. Additionally,
this research investigates different pillar designs on different cars and different scenes to
quantify if car pillar visibility can be improved using cuts made in the pillar to create
see-through car pillars.
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Chapter 2: Obscuration Analysis of Car Pillars Using Digital Human
Modeling: A Proof Of Concept

2.1 Abstract

Many automobile accidents involving pedestrians in city driving at roundabouts, intersec-
tions, and crossings are related to blind spots, where the driver looked but failed to see
the traffic due to the vision obstruction caused by the pillars—vertical posts that tie the
body of the car to the roof. Literature has addressed this by suggesting using cameras
with integrated displays, changing the position of pillars, or modifying vehicle geometry.
However, these solutions can be expensive due to the overall design changes needed and
still do not eliminate the obstruction caused by the pillar geometry. This paper provides
a proof-of-concept digital prototyping methodology based on digital human modeling
(DHM) research that explores A- and D-pillar vision obstructions and introduces an
alternative approach to human subject data collection and physical prototyping. This
study replicates typical driving conditions by creating a simulation environment that
includes two different traffic scenes, two cars, four pillar designs with geometric cuts
(see-through pillars), six driver anthropometries, and four pedestrian anthropometries.
Overall, the objective of this research is twofold (1) to perform coverage zone analyses
to assess the percent area visible of the pedestrian and (2) computationally evaluate
the performance of traditional and see-through pillar designs in terms of improvements
in forward (A-pillar) and rear (D-pillar) blind spots. The results show that pillar cuts
improve the driver’s visibility up to 54.46 percent without compromising the Federal
Motor Vehicle Safety Standards (FMVSS) 216 roof crush standards.

2.2 Introduction

In 2018, 6,283 pedestrians were killed by a vehicle, and in those reports, drivers claimed
that they had checked for pedestrians but failed to see them. After accident investigation
and scene reenactment, it was found that a large number of drivers failed to see the
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pedestrians because of the obstruction caused by the A-pillar [6]. Automobile pillars
are a crucial part of vehicle design due to their contribution to aerodynamics, driving
dynamics, and, most importantly, passenger safety by protecting drivers from harm in
the event of a car crash or rollover. However, the literature shows that automobile
pillars have a negative effect on visibility by causing vision obstruction and not allowing
drivers to assess their surroundings properly. For example, Ford has spent an average
of 7.5 billion dollars on research and development on their cars in the past four years.
Yet, there has been little to no change in the pillar design besides structural changes,
like material selection and manufacturing [13]. This paper provides a proof-of-concept
digital prototyping methodology based on digital human modeling (DHM) research that
explores A- and D-pillar vision obstructions and introduces an alternative cost-effective
approach to human subject data collection and physical prototyping. DHM has been
largely used in the early stages of product design, mainly assessing the ergonomics of a
product. The methodology proposed in this paper enables designers to quantify drivers’
visibility for a combination of different conditions, including pedestrians, automobiles, and
anthropometries. The case study presented in this paper aims to analyze and compare
the vision obscuration of current car pillars and suggests improvements via a see-through
pillar design that includes pillars with different geometric cuts. Finally, the impact of
the geometric cuts on the structural integrity is assessed via a low-fidelity finite element
analysis (FEA) study based on the FMVSS 216 roof crash test standards.

2.3 Literature Review and Background

Before addressing the computational prototyping design approach introduced in this
proof-of-concept study, a brief background is provided to highlight the visual obstruc-
tion of vehicles, current research that focuses on the problem, and examples showing
implementations of DHM in early engineering design.

2.3.1 Vision in Driving

Since drivers are often only on the lookout for other cars in surrounding road traffic, they
can easily miss pedestrians, cyclists, vehicles approaching from unexpected directions,
road elements, and obstacles. Prior research shows that although drivers may look in
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the direction of obstacles, they sometimes fail to see them [14]. These cognitive errors
are a cause of late detection in vehicular collisions and can be attributed to human focus
being very selective [14]. Perceptual detection errors are categorized as the failure to
detect vehicles due to impaired vision from one’s periphery in conditions like insufficient
lighting [15]. Binocular vision is sight from both eyes combined and has a significant
effect on obscuration caused by objects nearby [13].

The position of a driver’s head affects what region of their field of view is obstructed.
Head position can differ between drivers of different anthropometries as their height and
the individual adjustment for seat comfort varies. Without adjustable seats, shorter
drivers in a study experienced 3% more blind spot regions while their taller counterparts
experienced only about a 1% [16]. Like many automobile components such as mirrors,
dashboards, and steering wheels, pillars have been a major element that causes blind
spot regions (vision obscuration), leading to automotive collisions. Pillars are the vertical
supports on vehicles, often with two around the windshield (A-pillar), between the
doors (B- and C- pillars), and two around the back glass (D-pillar). Manufacturers have
increased A-pillar thickness and pillar rake angles to improve structural integrity and
aerodynamic performance in the last decade [6]. Any pillar that exceeds the width
between the driver’s eyes obscures a significant portion (Obscuration angle) of the road
ahead and any obstacles, vehicles, motorists, or pedestrians in their path [13]. This can be
seen in figure 2.1 below. Likewise, slopped or slanted windshield designs implemented to
decrease further drag coefficient create additional forward blind spots. Overall, increasing
A-pillar width and placement away from straight-ahead increase the chances of lane-
change crashes [17, 18] and visual obscuration in turning [19].

2.3.2 Potential Solution to Pillar Obstruction Issue

The problem of car pillars causing a problem for drivers is not a novel concept in research.
Currently, there is quite a few state-of-the-art technologies and solutions. This section
lists some of these technologies and solutions that are seen in literature. These will
include the most common practices used for pillar design and the vision obstruction they
cause.

Traditional and Past solutions Traditional solutions to the problem of vision
being obstructed by car pillars was to change the position of car to make the view of the
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Figure 2.1: Car Pillar Obstructions

driver wider or out of the "main problem points" [20]. Additional traditional ways that
this problem has been handled was using thin pillars to minimize the obstruction angle
and to split the pillar to provide gaps [6].

Image projection onto pillar: Using camera technology and projecting images
of the obscured regions onto the interior of the pillar has been an explored solution.
Potential visual differences in color and appearance of the projected images versus the
actual environment could cause an added distraction to drivers [8, 21].

Birds-eye view camera: Birds-eye view cameras serve as an added assistance to
drivers that do not camouflage the pillar. This system captures and stitches together
images from various cameras on the vehicle. The vehicle and surrounding obstacles on
the road can be viewed on an in-screen display. This technology has been implemented
in cars like the Mitsubishi Pajero and some Nissan vehicles [9, 16].

Geometric cutouts from pillars: Lattice-like cutouts in A-pillars can increase
visibility while maintaining necessary pillar strength [8]. The Insurance Institute for
Highway Safety (IIHS) requires vehicles to be able withstand four times its weight before
the roof crushes 127 mm (5 inches). The National Highway Traffic Safety Administration’s
2016 Federal Motor Vehicle Safety Standard requires that vehicles must withstand three
times its weight. Inner pillars must also abide by the federal head-impact standards that
require foam or other soft material to be used if a passenger collides with it [10]. This
has prevented see-through, plexiglass style designs from making it past the concept stage
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in the past [22].

2.3.3 Designing with Digital Human Models

Implementing design thinking and human-centered design (HCD) has been a growing
interest in the automotive industry to increase user involvement early in the design
process to create a desirable experience rather than imposed upon users by the system [23].
Regarding the pillar obscuration issue discussed in prior sections, there is a lack of injecting
human factors engineering (HFE) attributes early in design. The obscuration and blind
spots caused by the pillars continue to cause usability and safety issues in drivers’ field-of-
view by contributing to fatal and non-fatal accidents, particularly involving pedestrians.

One of the current design practices conducted in automotive involves a human-in-
the-loop approach that designers explore users’ (e.g., drivers and passengers) comfort,
usability, and safety-related attributes via human subjects data collection on early physi-
cal mockups. The limitation behind the human-in-the-loop design is often the need to
have a wide variety of human subjects to observe their interaction with the system to de-
termine the best solution for the broadest range of users and the effects of design changes.
Likewise, engineers can only run a limited number of human subject design experiments
due to time, cost, and safety-related restrictions. Within the past decades, computational
human modeling research, more commonly referred to as DHM, has gained popularity
in product development. DHM uses advanced visualization and analysis modules based
on computer-aided engineering (CAE) platforms and includes computational analysis
modules such as biomechanics and ergonomics toolkits to predict safety and performance.
DHM is widely recognized as an alternate solution to costly and time-consuming human
subject data collection activities on physical mockups. The flexibility of running “what-if”
scenarios via digital mockups (e.g., CAE models) and creating digital manikins based
on anthropometric libraries enable engineers to inject ergonomics early in product devel-
opment. Although the initial heightened cost of implementing DHM in the design cycle
does have a long-term payoff, numerous case studies have shown that designing with
DHM improves the overall ergonomics of the final design by reducing the risk of safety
and reliability-related concerns [24].

For example, DHM, along with computer-aided design (CAD) technology, has been
used to account for pilot’s visual fields in the design of jet aircraft cockpits. This approach
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has dramatically reduced the need for early physical dummy modeling, prototyping, and
human subject data collection, which would result in costly mock-ups. Through DHM
and CAD integration, engineers were able to create scenarios to determine what displays
were entirely obscured by cockpit components, what displays were visible within different
focal ranges, and what areas of the aircraft exterior were visible to the pilot. Overall,
making design decisions based on data from target anthropometries and operational
requirements before building costly physical prototypes has proved effective in injecting
ergonomics into cockpit design [11].

DHM has also been used to account for and analyze large goods vehicle blind spots.
This uses volumetric projections to establish the cause and nature of blind spots. This
study used six top selling trucks in the UK that have a range of sizes. Additionally, the
other design variables that this study considered were the various drivers eye hieghts
(driver anthropometry) and mirror designs. This research developede a novel CAD based
projection technique which allowed for identification and quantification of key blind spots.
This data on the blind spots were then demonstrated to have potential association with
scenes that were identified in accident data [25].

2.4 Methodology

This paper introduces an early design digital prototyping approach that integrates DHM
and CAD tools to quantify pillar obscuration. Different than prior ergonomics studies that
only focused on pillar obscuration with minimal coverage of the actual design parameters,
this paper factors numerous variables, including driver and pedestrian anthropometry,
type of vehicles, traffic scenes, and different pillar designs, into account.

In this research, two traffic scenes, a crosswalk and turning right, were constructed
as CAD models to represent the scenarios taken from the literature where pedestrians
are blocked by the A- or D-pillar, respectively. These scenes represent situations that a
pedestrian is situated within the pillar obscuration angle; thus, the driver looked but failed
to see the pedestrian due to the vision obstruction caused by the pillar. Furthermore,
digital replicas (CAD models) of two generic vehicles, a sports car and a sports utility
vehicle (SUV), were created based on body-in-white reference models (GrabCad files [1,
2]).

All models created used Solidworks and were stored as Initial Graphics Exchange
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Specification (IGES) models to prevent CAD file transfer incompatibilities. These models
were imported and positioned into Siemens Jack, the DHM software, to create obscuration
simulations with manikin models representing drivers and pedestrians with different
anthopometries. Jack’s built-in occupant packaging toolkit was used to positioning the
drivers via reference points (e.g., pedal and steering wheel). More information about
the simulation elements is provided in detail in the following sections. Additionally, a
flowchart of the simulation setup, how to run and how to modify simulations for different
design variables is provided in Appendix A.

2.4.1 Highway Scene Setup

The highway scenes constructed in this simulation represent some of the most frequently
occurring “looked but failed to see” cases that represent typical A- and D-pillar obscu-
rations. These scenes follow highway standards for crosswalks, minor intersections, and
bike lanes [14], as shown in figure 2.2.

Figure 2.2: Scene Setups for Crosswalk and Intersection with Bike Lanes

The crosswalk scene illustrates a common mishap or accident that happen due to
the driver failing to see the pedestrian on the crosswalk. The scene includes a two-lane
highway with a crosswalk. The pedestrian is positioned on the forward blind spot, located
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diagonal left of the driver’s line of sight. In the second traffic scene, a four-lane highway
intersection with a bike lane was created. The bicyclist is located within the rear blind
spot generated due to the passenger side D-pillar.

2.4.2 Car Models and Pillar Cuts

The two vehicles (a muscle car and an SUV) were chosen intentionally to represent the
current trend (thickening pillar) observed in automotive designs. These cars used can be
seen in figure 2.3 below.

Figure 2.3: (a) Sports Car, (b) SUV

Thicker, rollover, and aerodynamics friendly pillar designs represented in these generic
vehicle models cause larger front (A-pillar) and rear (D-pillar) blind spots. In addition
to the traditional (opaque - no cut) pillars found in regular vehicles, the simulation
environment also included three see-through pillar designs with different geometric cuts:
ellipse cut, triangle cut, and honeycomb cut (See figure 2.4). The geometric cuts represent
structural elements typically used in buildings, bridges, and other static structures. These
cuts focus on material removal from the traditional pillars while sustaining comparable
structural integrity. For example, honeycomb is known to provide sufficient strength in
natural and human-made structures. The form factor is widely used to lighten structures,
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particularly in automotive and aviation domains. Furthermore, to keep the data analysis
consistent, the area removal is standardized. The geometric cuts made in each pillar have
the same surface area removed, approximately 172 cm2.

Figure 2.4: (a)A-pillar Ellipse Cut, (b)A-pillar Triangle Cut, (c)A-pillar Honeycomb Cut

2.4.3 Manikin Anthropometry

The study includes six computational manikins created via the Anthropometric Survey of
U.S. Army Personnel (ANSUR) anthropometric database. The simulation environment
includes 5th, 50th, and 95th percentile male and female drivers to reproduce a broader
coverage of drivers. Each manikin was positioned in both vehicles (muscle car and SUV)
using Siemens Jack software’s prebuilt occupant packaging tools, which use occupant
packaging blueprints with specific reference points [1, 2]. This toolkit enables us to assign
a fixed standard driving posture to each DHM manikin. Therefore, it eliminates the need
to adjust body joints manually and reduces the possibility of having incorrect driving
postures.

Furthermore, four different pedestrian anthropometries based on the ANSUR database
were used in the scene setup to represent pedestrians. In addition to 5th percentile female,
50th male, and 95th percentile male, a 12-year-old male child model was used in this
study to represent an even smaller target that is highly likely to be obscured by pillars
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Table 2.1: Pedestrian Heights

Pedestrian Anthropometry Standing Height (cm) Bike Height (cm)
Child 158 166
5th Female 161 168
50th Male 181 197
95th Male 196 207

during road crossing and intersections. Table 2.1 presents standing and on bike heights
associated with pedestrian anthropometries.

2.4.4 Coverage Zone Analysis

After CAD models were imported into Jack software and manikins were created, the next
step was to set scene simulations to quantify percent obscuration. The simulation model
included scene, car, pillar cut, and anthropometry combination in Jack. Table 2.2 shows
a tabulated version of these variables. This table shows the simulation variables used.
Listing each categorical variable as xmn, where x1n = Scenes, x2n = Cars, x3n = Cuts,
x4n = Driver Anthropometry and x5n = Pedestrian Anthropometry. This table shows
all variables used which all possible combinations were used in this study. A total of 384
scenes were simulated. To quantify obscuration percent loss, Coverage Zone Analysis was
used. The toolkit addresses what percent of a target plane is not obscured by objects in
the way from the point of reference. To run this analysis, the Coverage Zone Analysis
needs four inputs; target plane, point of reference, horizontal and vertical resolution. The
analysis outputs the percent visible and a visual representation, based on how much of
the opaque surfaces (imported CAD models) obscure the manikins’ peripheral vision.

For this study there are a lot of steps which are needed to setup the coverage zone
analysis. As discussed above the coverage zone analysis need four inputs in order to
output the percent area obscured. These inputs can be seen in figure 2.5 below. To
create the target plane you must open the coverage zone analysis window and then select
create target plane. Then to dimension the plane you have to create rulers that measure
the height and width you desire because the target plane does not have a way to make
it the exact dimensions you need. Then once the target plane has dimensions it needs it
is positioned where the pedestrian is positioned. Following this the eye point needs to
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Table 2.2: Variables Used in Case Study

Scene (x1n) Car (x2n) Cut (x3n) Driver
Anthro. (x4n)

Pedestrian
Anthro. (x5n)

5th Maleno cut Child

50th MaleTwo Lane Muscle Car

Ellipse cut 95th Male 5th Female

5th FemaleTriangle cut 50th male

50th FemaleTurning Right SUV

Honey comb cut 95th Female 95th male

be selected which is done by going into the object hierarchy and selecting the manikin
and segments. There is no selecting the actual eyes within JACK so one has to select
a part of the head that it would project from. For this study the back of the head was
used because of trails done with other segments. Finally, the resolution needs to be
setup which requires a horizontal and vertical resolution. Unfortunately, this resolution
does not work the way one would expect instead the max resolution is can have is the
dimensions of the target plane. Therefore, the resolution dimensions match that of the
target plane used in the simulation. Additionally, "Ignore Human Geometry and Highlight
Obstruction Segments" need to be selected to ensure the simulation outputs the percent
area obstructed correctly. This Coverage Zone Analysis setup requires a lot of additional
setups in order to run and proved to be more problematic to setup correctly. The output
of the percent area visible was recorded and tabulated in excel for future analysis.

2.4.5 Structural Analysis

Finally, a simplified FEA study of the pillar model was performed based on the FMVSS
216 roof crash test standards. The reaction forces and displacements associated with the
static loading condition were evaluated to check whether pillar models with see-through
geometric cuts meet roof-crush test requirements. FMVSS 216 roof crash test standards
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Figure 2.5: Coverage Zone Analysis Window

state that a vehicle must withstand a load of 1.5 times the unloaded vehicle’s weight.
Although the FEA study was not the focus of the proof of concept study presented in this
paper, further data regarding structural integrity provided additional information about
the pillar models’ performance from the percent obscuration and structural integrity
perspective. sssdsd For this study, the muscle car model was used due to the lack of
D pillar as compared to the SUV model; thus, it would experience a more significant
static loading. The FEA study follows assumptions based on previous research and tests
done on pillar strength analysis [26, 27]. Furthermore, high-strength alloy steel was used
based on research articles addressing A-pillar structure design [28]. This simplified FEA
was performed in Solidworks.

The total force applied on a single A-pillar was assumed to be approximately around
one-fourth of the vehicle’s total weight, which is about 1672 kg; thus, the roof crash test
load applied normal to the pillar upper tip was equal to 4.2 kN. The Von Mises stress
was then calculated and compared to the yield strength. Additionally, the displacement
was calculated and compared to the standards and no cut model.

2.5 Results and Discussion

This section contains the results of the case study that was done with the proposed
methodology. This is to provide validation for the methods used and to see how different
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pillar cuts perform in a small case study. The results include the results of the cover-
age zone analysis done for both the Sport Car’s and the SUV’s A and D pillar. This
analysis output percent area visible of the target plane (the pedestrian) which has been
tabulated and plotted for observation, further analysis, and discussion. Following these
general descriptive statistics of the results us provided with a discussion to give a deeper
understanding of the tabulated data. Finally, to ensure the pillars in the case study meet
the FMVSS roof crash test standards.

2.5.1 Coverage Zone Analysis

The coverage zone analysis is analysis that analyzes how much of target plane is visible.
This will then out put a percentage based on eye point, resolution, and target plane
geometry. To determine the target plane, the pedestrian’s anthropometry was used with
a five percent increase on the height and the width is kept at a width of 55cm. This five
percent increase is used to account for a range of anthropometries. The Coverage Zone
Analysis was done for all possible combination of the variables, see in the Methodology
section. Each output of percent area visible was then recorded for future analysis.

To help with understanding of the coverage zone analysis and what the output looks
like, figure 2.6 shows the a snapshot of what the result of the coverage zone analysis
look like for the SUV at the crosswalk scene.This coverage analyses shown in the figures
were done for the 50th percentile driver and pedestrian anthropometry and shows the
crosswalk scene for the SUV. The coverage zone analysis output shows the percent area
visible and highlights the parts which are obstructed with red and the visible parts with
green. For the example, the honeycomb cut had the largest increase compared to the
Triangle cuts

Once the Coverage Zone Analysis was done and collected for all possible scene com-
binations for these two cars. The data was plotted on histograms to better understand
the data and the trends. The histograms for the sport car’s scenes can be seen in figures
2.7 and 2.8 and the SUV’s can be seen in figures 2.9 and 2.10 below.

These plots show the percent visible on the x-axis and a count of results that were
near that percentage on the y-axis. These histograms show that the trend for each group
for all cars and scenes seem to be similar with certain spikes in the percent area visible
and some reflecting normal trend and others with a log-normal. Overall, the graphs show
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Figure 2.6: SUV Coverage Zone Analysis Results for Crosswalk Scene 50th Percentile
Male Driver and 50th Percentile Male Pedestrian

Figure 2.7: Histogram for Sports Car Crosswalk scene (A-pillar)
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Figure 2.8: Histogram for Sports Car Turning Right Scene (D-pillar)

Figure 2.9: Histogram for SUV Crosswalk Scene (A-pillar)
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Figure 2.10: Histogram for SUV Turning Right Scene (D-pillar)
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that percent area visible is improved when provide cuts in the pillars. However, the main
thing to take away from these plots are the differences between the A pillar scenes (two
lane highway crosswalk) and the D pillar scenes (turning right). They show that the cuts
made in the A pillar, although having the same area removed for each cut, have different
results based on the geometry. Where the D pillar shows similar results between all cut
geometries. This helps understand that the A pillar is more significantly affected by the
cuts made in the pillars, which is also reflected in the percent area visible with the A
pillar having higher overall percentages.

After creating histograms for a visual analysis and understanding a brief statistical
analysis using general statistics table was done for further understanding. Below in table
2.3 and 2.4 mean, variance, and standard deviation of the entire case study has been
tabulated. These results show an overall increase in percent area visibility for the cuts
made in the pillars compared to the traditional, no cut, pillar. Additionally, Coverage
Zone Analysis results for the A pillar show the largest overall increase in visibility for the
ellipse pillar cut for the sports car with an overall mean of 49.49% and the honeycomb
pillar cut for the SUV with an overall mean of 34.05%. The lowest increase in visibility
was the triangular cut for both the sports car with an overall mean of 21.28% and the SUV
with an overall mean of 24.48%. Coverage Zone Analysis results for the D-pillar show
the largest overall increase in visibility for the ellipse pillar cut for the sports car with an
overall all mean of 5.92% and the triangle pillar cut for the SUV with an overall mean
of 8.60%. The least increase in visibility was the honeycomb pillar cut for both vehicles
with an overall mean of 2.89% for the sports car and 7.19% for the SUV. Although it
may seem like the honeycomb performed the worst for visibility it had the least variance,
with 2.26 for the A-pillar in the sports car and 4.24 for the A-pillar in the SUV.

The plotted and tabulated results show that the cuts made in the SUV for both the
A and D pillar that the holes provided similar vision improvements. Where for the sports
car’s A and D pillar there is one that clearly performed the best. This can especially be
seen in the plots created for the ellipse cut for the sports car Two Lane Crosswalk scene.
When comparing the results of the A to D pillars the A-pillar had a larger percent area
visibly than the D-pillar, due to the driver manikin being positioned closer to the cut
made in the pillar, allowing for a larger range of vision. Although the cuts performed
differently compared to each other, the results were definitive that cuts made in pillars
improve visibility. However, some cuts performed better or worse depending on the driver
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Table 2.3: Mean, Variance and Standard Deviation for Sports Car

Sports Car Mean Variance Standard Deviation
A-Pillar 2.56 1.54 1.81No Cut D-Pillar 0.50 0.10 0.31
A-Pillar 49.48 12.84 3.66Ellipse Cut D-Pillar 5.92 1.32 1.17
A-Pillar 21.28 3.42 1.89Triangle Cut D-Pillar 4.16 3.41 1.85
A-Pillar 26.30 2.26 1.54Honeycomb Cut D-Pillar 2.89 1.22 1.13

Table 2.4: Mean, Variance and Standard Deviation for SUV

SUV Mean Variance Standard Deviation
A-Pillar 1.49 8.33 0.82No Cut D-Pillar 0.66 0.33 0.57
A-Pillar 30.95 25.77 5.19Ellipse Cut D-Pillar 6.87 2.74 1.69
A-Pillar 24.48 54.11 7.51Triangle Cut D-Pillar 8.60 0.69 0.83
A-Pillar 34.06 4.24 2.10Honeycomb Cut D-Pillar 7.19 0.54 0.75
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and pedestrian anthropometry.

2.5.2 Structural Analysis

The results from the structural analysis show that all pillars meet the minimum require-
ment of a deflection, which can be seen in figures 2.11 and table 2.5. However, since
this is a simplified A-pillar a test the pillars will be compared to the A-pillar without
cuts. The pillars with the ellipse cuts performed the best with a max deflection of 0.3227
mm and a Von Mises stress of 23.87 Mpa. Where the Honeycomb performed the worst
with a max deflection of 0.9578 mm and max stress of 93.8 Mpa. These results were not
expected. The pillars with the triangle and honeycomb cuts were anticipated to perform
the best based on their structural uses within buildings and within nature (trusses and
beehives). Although the results were not expected, all pillar designs did not exceed the
127mm displacement meetings the FMVSS 216 standards.

Figure 2.11: Visuals of Deflection from FEA

Based on the results, hole cuts on car pillars can provide a means to help alleviate
obscuration that traditional car pillars cause. Although different cuts performed better
than others when looking at driver anthropometry, ellipse cuts performed the best overall.
Ellipse cuts provided the best visibility for the A-pillar, consistent results for the D-pillar
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Table 2.5: Max Stress and Deflection of A-Pillar

Cut TypeFEA Results No Cut Ellipse Cut Triangle Cut Honeycomb Cut
Max Stress (Mpa) 9.057 23.87 65.84 93.8
Deformation (mm) 0.1727 0.3227 0.3789 0.9578

and provided the greatest structural integrity with the lowest max deformation and lowest
max Von Mises stress. However, the honeycomb cut provided the most consistent results
for the coverage zone analysis. Therefore, it would be worth examining different setups
for the honeycomb cuts, like size of hexagon, how many hexagons and their orientations.

2.6 Conclusion and Future Work

This proof of concept has shown to be a successful implementation of using Digital Human
Modeling (DHM) to analyze and improve car pillar design.The case study used in this
proof of concept used a combination of different variables to create different scenes found
in literature. The variables included; scene, car type, pillar type, cut type and driver
and pedestrian anthropometry. The highway created and imported into Jack was either
a crosswalk (which is associated with the A-pillar simulations) or a turning right (which
is associated with the D-pillar simulations). The vehicles imported and positioned into
the Jack scene were either the muscle car or the SUV. The manikins were generated in
Jack for the driver and the pedestrian and positioned based on occupant packaging or
literature. Setting up for the Coverage Zone Analysis involved creating a target plane
which was generated based on the pedestrian’s anthropometry and position, selecting
an eye point and resolution. Once an eye point, target plane and resolution are defined,
These results were then recorded and analyzed. Additionally, a simplified structural
analysis was done to make sure the pillar cuts met the necessary standards.

The results showed that cuts made in the A and D pillar help alleviate the vision
obstruction. However, A-pillar cuts had a much larger impact on improving vision than
the cuts made in the D-pillar. The cuts that performed the best depended on the car
and the scene, but the ellipse cut seemed to perform best overall and the honeycomb
cut performed the worst but outputted the most consistent. A similar result was seen
with the structural analysis using the FEA where the ellipse pillar cut was the most
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structurally sound and honeycomb pillar cut was the least.
This research and methodology has a number of limitations. This research requires a

lot of manual manipulation of the variables which can have lots of human error associated
with it. Automation could fix this problem and possible allow for more simulations to
be run with a varity of different variables, but JACK does not allow for any easy way
to automate vision analysis. Additionally, the positioning of manikins in the simulation
were done using standards found in literature or done based on the researchers intuition.
However, most drivers do not have the same driving setup which makes standardizing
posture and position a large assumption and requires some sort of physical prototyping.
Furthermore, providing cuts in a car pillar may seem to be a good design in theory but
requires further testing and analysis because pillar design and manufacturing is far more
complex and may cause some design limitations. There are a number of other limiations
within this research and methodology but this provides a basis for future researchers to
work off of which may lead to improved car pillar design.

The next phase in this research is to increase the number of computational simulations
done through increasing the number of scenes, cars and anthropometries used.Currently,
work is being done on increasing the coverage zone data set to include a total of four
scenes and four vehicles.This data set can then be used to increase understanding and
potentially surrogate models to have predictive models that allow for interpolation of the
results. Since currently this simulation cannot be automated this predictive model could
allow for a means to understand untested variables (e.g. anthropometries in between
tested one and different cut sizes). Additionally, this research could use the coverage zone
data collected and higher fidelity structural analysis of the A-pillar to do multi-objective
optimization to look at the best pillar design possible. These scenes could also be used
in virtual or augmented reality (VR or AR) to test human subjects rather than virtual
manikins.Data collected from the coverage zone analysis, surrogate model, optimization
model or all could be used to compare computational methods to VR and/or AR to
create a better understanding of how accurate the computational methods are. This
research has a lot of potential and could be taken many directions.
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Chapter 3: Obscuration Analysis of Car Pillar Designs using Digital
Human Modeling: Design of Experiments

3.1 Abstract

Many drivers who are involved in accidents involving pedestrians and cyclists have fallen
victim to the looked but failed to see due to a vision obstruction caused by the pillars-
vertical posts that connect the car bodies to the roof. There have been many solutions
proposed in literature to solve this issue, from conventional ways of moving the pillar and
thinning the pillar to even suggesting the use of cameras or augmented reality. These
solutions prove to be expensive due to the changes needed in the vehicle design and
the physical prototyping required to test these solutions. Additionally, some of these
solutions have been found not to eliminate the obstruction caused by pillar geometry.
This paper works off a previous proof of concept that proposes a methodology based on
digital human modeling (DHM) research that explores A- and D-pillar vision obstructions
to mitigate the need for human subject testing and physical prototyping. The previous
proof of concept paper does a small case study which looks at different car pillar designs
comparing the traditional car pillar to three other car pillar designs with geometric cuts
for a sports car and SUV. This paper provides a more in depth look at this methodology
using a Design of Experiments (DoE) which provides a deeper understanding to the
methods used. This DoE uses a coverage zone analysis to quantify obscuration of a
combination of four cars, four different traffic scenes, four pillar designs with geometric
cuts, six driver anthropometries and four pedestrian anthropometries. The coverage zone
data is collected as percent area visible data and is analyzed using a non-parametric
variance analysis and a pairwise comparison using the Kruskal Wallis test and Wilcoxon
Rank Sum comparison. Overall, the objective of this research is to (1) to perform and
evaluate coverage zone analyses to assess the percent area visible of a pedestrian, (2)
computationally compare and evaluate the performance of traditional car pillars and
those with geometric cuts in terms of improvement in blind spots caused by A-pillars
and D-pillars and (3) provide statistical proof that car with see-through pillars perform
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better than traditional car pillars in terms of vision obstruction. The results of this DoE
and research show that there is overwhelming evidence that car pillars with geometric
cuts made (see-through pillars) improve visibility of blind spots caused by traditional car
pillars.

3.2 Introduction

The focus of this paper is to better understand how visibility while driving can be
improved by creating cuts in car pillars. This is done by creating a Design of Experiment
(DoE) of different cars in different scenarios with other independent variables to see how
visibility changes with a combination of these variables. This experimentation is purely
computational and focuses on using Digital Human Modeling (DHM), Siemen’s Jack, to
evaluate the different cars and pillar designs. Data is then collected for each possible
combination of the independent variables to understand the response. This data for
each car and scene was collected and analyzed using a non-parametric variance analysis,
Kruskal-Wallis, to analyze the cuts made to the original pillars. Once these analyses were
completed, they were tabulated and a Post Hoc test was done for the Kruskal-Wallis.
These analyses are to increase the understanding of how cuts within car pillars may
improve the driver’s visiblity. They will then be examined to see if they meet the null or
alternative hypotheses of the analyses. Since the Kruskal-Wallis tests compares medians
of k groups, the null hypothesis is the medians of the group are equal and the alternative
is that they are not equal.

3.3 Literature Review and Background

This section is to provide a background about the need for this research and experimen-
tation. It provides an understanding of why the scenes used were chosen, why the A
and C/D pillar are being focused on and how digital human modeling (DHM) can used
to run experiments to understand human interaction and visibility. As well as why the
statistical models were used. Finally, a summary of what state of the art methods are
being used to try to solve the vision obstruction caused by the car pillars
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3.3.1 Car Pillar Vision Obstruction

Within vehicle design there is a strong need for car pillars to be reevaluated to improve
visibility. Literature suggests car design used to focus on engine performance, design,
and structure [13, 29]. However, more modern vehicle design has focused on comfort and
safety of the passengers. Visibility falls into both categories with higher visibility making
the driver and passengers better understand and prepare for the environment around
them. A large portion of environmental information is gathered through by human eye,
up to 90% in most cases [15, 30]. This makes it increasing important to consider visibility
in early vehicle design. One of the largest limiting factors in vision for car design are
the car pillars seen in figure 3.1 [31]. These pillars provide structure support and the
number of pillars and their geometry vary depending on the car; like having large pillars
or steep pillar angles [1, 2, 31]. Although these pillars are a crucial element of the car
design, they cause blind spots which limit the vision of the driver making it make it more
difficult to see and detect pedestrians while. Making it necessary to reevaluate how these
pillars are designed and implemented.

Figure 3.1: Labeled Car Pillars[]

3.3.2 Traffic Scenes and Cars

Vision obstructions caused by car pillars is a crucial element in this research. However,
it is also important to know in what traffic situations these car pillars cause the most
vision obstruction. Literature suggests through various case studies that pedestrians on
foot, pedestrians on a bicycle and changing lanes are the most impacted by these vision
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obstructions [29]. These accidents heavily relate to yielding crosswalks and turning left
or right at an intersection (A-pillar for turning left and C/D pillar for turning left) [31].
Mainly, these accidents are due to a “looked but failed to see” affect where the driver
looked in the direction of the pedestrian but either failed to register the pedestrian or
the pedestrian was obscured [15, 31].

Since all cars have varying geometry and different pillar positions and types, it is
important to understand what kinds of cars have been addressed and related to poor
vision. According to a 1996-2003 database the main kind of cars to be involved in pillar
related accidents were two door sedans, SUV and pickup trucks [32]. Additionally, four
door cars tend to have larger pillars due to there being less pillars and can cause a
decent amount of vision obstruction, however they were not considered in the database.
Furthermore, the study these researchers conducted found that most lane change and
intersection crashes related to the A and C/D pillar obstructions [32].

3.3.3 Current Solutions

Although it may not seem the vision obstruction caused by car pillars has not been
addressed, it is not a novel topic of research. The understanding of the vision obstruction
caused by the A-pillar is well documented and researched. Additionally, there has been
several solutions that have been proposed to address the issue. These solutions include
but are not limited to:

• Slimming A-pillar to improve driver’s field of vision [29]
• Changing location to change influence of A-pillar on driver visibility [31]
• Detection systems that use cameras to show the driver what is behind or next to

the pillar [33]
• Transparent car pillars [34]
These solutions provide a way to solve the issue of the vision obscuration caused by

car pillars. The slim A-pillar provides a smaller obscuration angle than the traditional
A-pillar, some vehicle designs have begun to implement this slim designs [29]. However,
there is a concern for the structural integrity it provides and for there not being room to
add additional safety features such as air bags [33]. As for the changing the location of the
pillar itself, it is a quick solution that helps increase the driver’s vision by providing a wider
range of vision but does not altogether take care of the issue of the pillar causing a vision
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obscuration [31]. Finally, the idea of using detection systems and creating transparent
car pillars seems to be a sufficient method of eliminating the vision obstruction caused by
the car pillars. However, as the research suggests, the use of cameras and/or augmented
reality is a costly solution and as for the transparent pillar case, has a long way to go
before this could become close to being commercially available [34].

3.3.4 Digital Human Modeling for Vison Analysis and Experimenta-
tion

DHM has been a growing tool withing early design stages and is continuing to grow.
For instance, within industrial engineering DHM has continued to be a reliable tool to
predict and assess how human interaction will play out [24, 25]. In many cases DHM is
used to see how different postures while running and maintaining operations affect the
person performing the task [12]. Allowing for a deeper understanding of the human and
machine relationship. Additionally, DHM has been begun to be used in vision assessment
relating to vehicle design. In fact, in one paper addresses using DHM to assess how well
a driver can see using mirror and trying to look past the A-pillar [35]. This not only
confirms that A-pillars cause an obscuration to vision but also provides evidence that
DHM vision assessment is a very useful tool to address and analysis the site of a driver
[20, 35]. Additionally, it is mentioned that researchers and vehicle manufactures should
provide a more in-depth study of how vision is affected by A-pillars in different scenarios
and should find ways to improve or minimize the size of the A-pillar. Providing further
need for this DoE and for deeper understanding of how car pillars affect driver vision
and assess ways to help solve this problem.

3.4 Methodology

This paper uses a DoE to setup, run and analyze car pillar design in various cars, scenes
and with varying driver and pedestrian anthropometries. This set up includes several
assumptions for the DoE and the Analysis. It assumes cars are stopped, drivers stay in
the same posture and positions, pedestrians remain in the same position for each scene
setup and this is a static not a dynamic simulation. The setup for these experiments
will be laid out along with the specifics of how the variables were created and setup.
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The setup for the DoE uses four cars, four cuts, four scenes, six driver anthropometries
and four pedestrian anthropometries. A total of 1,536 were created and analyzed. A
flowchart explaining the experiment’s hierarchy of branches can be seen in figure 3.2
below. This flow chart breaks each step into different categories for each variable. Each of
these categories are further explained in the follow sections to show how they were setup
and why they were chosen. All these variables are considered independent variables.

Figure 3.2: Diagram of DoE Setup

3.4.1 Variable Setup

These next subsections describe how each independent variable was setup. These various
setups were used in combination to create the scene for each simulation.

Setup 1: Car Model The first part to be setup was the car models. A total of four
car models were chosen: a sports car, sedan, SUV, and a pickup truck. These models
were created using SolidWorks surface modeling which were based on the blueprints of
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the vehicles chosen. Additionally, models found on Grabcad were used to help increase
the accuracy of these models [1–4]. An image of these car models can be seen below in
figure 3.3. .

Figure 3.3: Car Models Used

Setup 2: Cuts The second part to be setup was the cuts on each of the car models.
There are a total of four cuts on each cars A and C/D pillar. These cuts consist of none,
ellipse, triangle, and honeycomb cut. Each of these cuts consist of the same total area
removed, 172 cm2̂. These cuts were cut based the designers’ preferences for placement
and form factor. Meaning that the size, count, and position of these cuts are assumed
to differ but only the geometry of the cut will be focused on for this experimental setup.
The kinds of cuts can be seen below in figure 3.4.

Setup 3: Scenes The third part to be setup were the scenes. These scenes chosen
were the ones seen in literature which can be seen in the literature review above in
the Literature Review section. The scenes chosen are split into scenes focusing on the
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Figure 3.4: Car Pillars Cuts used: Ellipse, Triangle and Honeycomb

A-pillar and scenes focusing on the C/D-pillar. The scenes chosen for the A-pillar were a
four-way intersection with the vehicle turning left with an oncoming biker being blocked
by the A-pillar and a vehicle driving on a two-lane intersection with a pedestrian crossing
the street and being blocked by the A-pillar. The scenes chosen for the D-pillar were a
four-way intersection with a car turning right and a pedestrian coming up from behind
on a bike and a car attempting to parallel park with a pedestrian standing the parking
spot. These scenes were based on highway standard for intersections, crosswalks, bike
lanes and highways (reference). Depictions of these scenes can be seen below in figure
3.5.

Setup 4: Driver Anthropometry A total of six driver anthropometry were used.
Trying to get a wide range of anthropometries the 5th, 50th and 95th percentile male
and female from the ANSUR database were used. These drivers were then positioned
according to occupant packaging of the vehicle used. The manikins were first setup by
using a tool in the occupant packaging toolkit called Posture Prediction. The Posture
Prediction uses predefined posture based on dimensions of stored vehicle information.
The postures chosen were the closest relating to the that of the vehicle being used in the
scene. The car used in the scene setup and the posture prediction used can be seen below
in table 3.1. Once posture prediction was used the manikins were placed according to
the vehicle standards.

Setup 5: Pedestrian Anthropometry With these being manual simulations and
the simulation count increasing it was decided that four pedestrian anthropometries
would be used. It was decided the smallest, median, and tallest driver anthropometries
would be used; 5th percentile Female and 50th and 95th percentile male, respectively.
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Figure 3.5: Traffic Scenes Used: Left - Crosswalk Two lane Highway, Right - Intersection
with Bike Lane

Table 3.1: Posture Prediction for Each Car

Vehicle Type Car Model Used Posture Prediction – Existing Vehicle
Sedan Volkswagen Jetta Toyota Camry
Sports Car Chevy Camaro Chevy Camaro
SUV Audi Q7 Jeep Grand Cherokee
Pickup Truck Toyota Hilux Ram Pickup
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For the fourth anthropometry a 12-year-old male child was used because children are
some of the most difficult to see for drivers.

3.4.2 Coverage Zone Analysis

Once the independent variables were setup a coverage zone analysis was done for each
possible combination, creating the dependent variable. A coverage zone analysis assesses
the percent area visible of a target plane (user defined) visible from a target from an eye
point site and how much the target plane is being obscured by an object. This analysis
requires additional setup beyond the dependent variables, requiring setup of the target
plane, defining the eye point, and defining resolution for the analysis. It is important to
note that this analysis uses a static 2D plane, so it does not consider the dynamics or 3D
geometry of the real world but allows for a snapshot moment of the scene. The window
display for the coverage plane analysis can be seen in figure 3.6 below.

Figure 3.6: Coverage Zone Analysis Window with Example of 95% Male Driver and 50%
Male Biker

Target Plane Setup: First, was setting up the coverage plane which was based
on anthropometry of the driver. This means a total of eight coverage planes need to
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Table 3.2: Target Plane Dimensions

Anthropometry of Pedestrian Standing Target
Plane Dimensions

Biker Target
Plane Dimensions

Child 55 cm x 158 cm 55 cm x 165 cm
5th Percentile Female 55 cm x 162 cm 55 cm x 168 cm
50th Percentile Male 55 cm x 181 cm 55 cm x 197 cm
95th Percentile Male 55 cm x 196 cm 55 cm x 207 cm

be setup because there are a total of four pedestrian anthropometries but two scenes
the pedestrian is standing and in the other two the pedestrian is riding a bike. Then
to account for changes between anthropometry and variability between anthropometry
movement, the coverage plane was made 5% taller than the pedestrians height on and
off a bike. Additionally, a standard width of 55cm was used for all coverage zones. A
table containing the target plane dimensions can be seen in table 3.2.

Eye Point Setup: Setting up the eye point required selecting a point on the driver
manikin to project from. Different segments of the manikin can be seen in the object
hierarchy, seen in figure 3.7 below. It was found the best segment to select for this eye
point was the back of the head of the driver manikin.

Figure 3.7: Object Hierarchy Window

Resolution Setup: The final aspect to setup for this analysis was the resolution
which needs a vertical and horizontal resolution. For this experiment it was desired
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to have the highest resolution possible without drastically affecting the output. Some
testing was done to see what the best possible resolution was. It was discovered that
the resolution does not do what was expected. Instead, the largest resolution could be
without compromising the shape of the target plane was 1cm x 1cm. This means the
resolution max used in the analysis was the dimensions of the target plane, horizontal
resolution: 55 and vertical resolution: the height of the target plan used.

3.4.3 Statistical Analysis

With all independent variables and coverage zone setup the analysis could be run. The
results of the analysis give a percent area of the coverage plane. The values of each
coverage zone analysis were then stored on an excel table which separates each car, cut
and scene. These tabulated data was then reformatted to get ready to be analyzed and
compared. This data was setup in such a way that each car was analyzed based on scene,
cut, driver anthropometry and pedestrian anthropometry.

Using the tabulated data set a statistical analysis was done to better understand the
data collected, to allow for direct comparison, to look at significance and to help draw
statistical conclusions. These focus on looking how the cuts compared to the original
pillars and how the cuts performed compared to each other but also ask questions of how
different anthropometries affect overall visibility.

To address the data, set categorical variables needed. Categorical variables are
variables which assign each unit observation to a particular group or nominal category
based on a qualitative property. Therefore, variables like cut type, driver anthropometry
and pedestrian anthropometry can be used in variance analyses. With the categorical
variables setup and organized, analyses could begin. The first thing that needed to be
addressed was how the cuts performed compared to the original pillars. It is assumed
that the No Cut will have a drastically different variance than of the cuts made so a
non-parametric method to compare the distribution and significance. The method chosen
was the Kruskal–Wallis which does not assume a normal distribution of the residuals.
Once a statistical analysis of the cut type compared to the original pillar was done, the
original pillar was removed from the dataset to allow for a comparison between cut types.
This cut comparison was done using Wilcoxon Rank Sum Post Hoc pairwise comparison.
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3.5 Results

With the DoE being completed and the data compiled it could now be addressed and
analyzed. This data will be assessed based on observations, plots, and statistical analyses.
Whether cuts improved vision compared to the standard pillar, what pillar performed
the best for each car and scene and what driver anthropometry was impacted the most
by the pillar changes will all be addressed throughout this section.

3.5.1 DoE: Coverage Zone Analysis

The initial result of this experiment was the output of the coverage zone analysis itself.
Below in figure 3.8 there are four coverage zone analyses along with driver field of vision
for original pillar and the three different pillar cuts.

Figure 3.8: Coverage Zone Analysis Examples for the Crosswalk A-pillar Scene for Each
Cut and the 95th Percentile Driver and 50th Percentile Pedestrian

Although the cuts themselves changed, all the other independent variables were kept
the same for the simulations in the figure; Camaro, turning left scene, 95th percentile
male driver and 50th percentile male pedestrian. When looking at the figure the pillar
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with the ellipse cut performed the best for this scene and car. However, the results tend
to vary depending on the scene and car used along with different combinations of the
other independent variables.

All possible combinations along with the percent area visible results and standardized
results have been tabulated. After looking at the fully tabulated data set it can be
assumed the driver’s vision is increasing as cuts are made in the pillars. It can also
be noted, through observation of the tabulated data, that the A-pillars vision is more
significantly affected by the cuts made in the pillar.

3.5.2 DoE: Plots of Scenes

After addressing the initial observations made of the data, histograms were created for
each scene and the cuts. These histograms were created for all pillar types (including
the original pillar). Plots for each car and scene can be seen in Appendix A. These show
the count of the percent area visible of the target planes for each scene and car. This it
to provide a visual representation of how the cuts made in the pillar improve the overall
vision of the drivers.

Looking at the observed data it can be noted that all the cuts seem to improve the
visibility of the driver. Additionally, it can be noted that the cuts increased the visibility
more for the A-pillar scenes compared to the C/D pillar scenes. After collecting and
plotting the data a deeper understanding is needed. Therefore, there is a need for a
statistical analysis. This also allows for the hypotheses to be addressed.

3.5.3 DoE: Statistical Analysis

Following the initial observations and initial plots created a statistical analysis was run
to better understand the data set and to allow for statistical conclusions to be drawn.
Before the statistical analysis can be drawn a further understanding of the data set is
needed. To do this, box plots were created for each of the vehicles and the scenes. Then
normality and variance were addressed based on initial observations made of the box
plots. Plots for the muscle car, SUV, sedan, and pickup truck can be seen in Appendix
A.

When addressing the data plotted on the box plots the variance is drastically different
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for the A-pillar no cut and the rest of the cuts. Additionally, most of the data did not
follow a normal distribution. This means a non-parametric variance analysis is needed
so it does not need to rely on normal data and allows for different variances. With this
understanding, Kruskal-Wallis Analysis was chosen to compare the dataset to each other
mainly focusing on the comparison between cuts and the standard pillar.

3.5.4 Kruskal-Wallis Analysis

The Kruskal-Wallis test is a non-parametric variance analysis or comparison which is
used to determine if the medians of two or more groups. This helps provide evidence the
cuts made in car pillars improve visibility. For this kind of comparison there are four sets
of assumptions that must be checked. These assumptions are as follows:

Assumption 1: Dependent variable should be measured at the ordinal or continuous
level.

Assumption 2: Independent variable should consist of two or more categorical
independent groups.

Assumption 3: Each observation should be independent.
Assumption 4: Each group has same or similar shape. This means the same

variability.
Assumptions 1 through 3 are easily observed and should be followed as the experiment

is being setup and conducted. As for the 4th assumption, the distributions must be
compared. Additionally, this assumption does not need to be met in order to run the
Kruskal-Wallis variance analysis, this just determines if conclusion are drawn about
medians if met or means if not met. This has already been done above in the histograms
and box plots seen in the Appendix. After comparing the distributions of the plots above,
it can be concluded that the plots do not meet assumption 4.

The next step of the Kruskal-Wallis variance analysis was to state the hypotheses to
know what is to be expected from the test conducted. The hypotheses can be seen below.
For this dataset, the null hypothesis states the mean of the no cut percent area visibility
is equal to the mean of the percent area visibility of each cut. Where the alternative
hypothesis states the mean of the no cut percent area visibility is not equal to the mean
of the percent area visible of each cut. The null hypothesis was examined for each car
and scene. Based on initial observations of the data and plots created it can be assumed
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that the data will confirm the alternative hypotheses rather than the null hypotheses.
Additionally, following the Kruskal-Wallis test a pairwise comparison using the Wilcoxon
Rank Sum test with a continuity correction was done for a better understanding of the
significance of how the cuts differed from each other and how each to the original pillar
of the car.

H0: mean(nocutpercent) = mean(cutpercent)
HA: rejected
Appendix A has tables which provide a summary of the statistics for each car show-

ing the results for each scene and cut. Providing the population size, mean, standard
deviation, median and interquartile range (IQR).

The Kruskal-Wallis test run for each car can be seen below in table 3.3, which
contains all scenes for the vehicle. Below each table is a discussion of the tables to help
with understanding of the analysis.

For all cars and all scenes there is overwhelming evidence that the percent visibility
changed when adding cuts in the pillars compared to not having cuts in the pillars, with
an average p-value of 1.85e-13 for the Sports car, 8.77e-13 for the SUV, 1.61e-13 for the
Sedan and 2.20e-16 for the Pickup. This supports the alternative hypothesis that the
means are not equal.

3.5.5 Pairwise Comparison: Wilcoxon Rank Sum

To further understand how all the cuts compared in this experiment the results of the
Wilcoxon Rank Sum test for each car and can be seen in tables 3.4, 3.5, 3.6 and
3.7 . Additionally, below each table is a discussion of the results to create a better
understanding.

Any values which are lower than 0.05 provide evidence that the two pillar cuts being
compared are statistically different. Based on the tables above all pillar cuts for all cars
have overwhelming evidence that the mean percent area visibility is different from the
pillars with no cuts. Based on the values of percent area visibility being close to zero for
the no cut pillar this implies the pillars that do have cuts will provide better visibility.
Then further analysis of the results shows how each cut type compare to each other for
each car and scene. All different pillar cuts showed overwhelming or strong statistical
difference between cuts, except for the Honeycomb cut for the parallel parking scene
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Table 3.3: Kruskal Wallis Results for Each Car and Scene

Sedan- Kruskal-Wallis Sports Car - Kruskal-Wallis

Scene Chi-
Squared df p-value Scene Chi-

Squared df p-value

Turning
Left 59.532 3 7.40E-13 Turning

Left 59.532 3 7.40E-13

Two Lane
Highway 61.439 3 2.90E-13 Two Lane

Highway 88.35 3 2.20E-16

Turning
Right 61.439 3 2.90E-13 Turning

Right 88.35 3 2.20E-16

Parallel
Parking 61.439 3 2.90E-13 Parallel

Parking 88.35 3 2.20E-16

SUV - Kruskal-Wallis Pickup - Kruskal-Wallis

Scene Chi-
Squared df p-value Scene Chi-

Squared df p-value

Turning
Left 60.725 3 4.11E-13 Turning

Left 87.806 3 2.20E-16

Two Lane
Highway 61.878 3 2.33E-13 Two Lane

Highway 87.487 3 2.20E-16

Turning
Right 87.487 3 2.33E-13 Turning

Right 87.487 3 2.20E-16

Parallel
Parking 87.487 3 <2.2e-16 Parallel

Parking 87.487 3 2.20E-16
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Table 3.4: Sports Car Wilcoxon Rank Sum Pairwise Comparison

Sports Car - Wilcoxon Rank Sum Test
Scene Cuts No Ellipse Triangle

Turning Left
Ellipse 3.70E-09 - -
Triangle 3.70E-09 3.70E-09 -

Honeycomb 3.70E-09 3.70E-13 5.00E-09

Two Lane Highway

Cuts No Ellipse Triangle
Ellipse 3.70E-09 - -
Triangle 3.70E-09 3.70E-13 -

Honeycomb 3.70E-09 3.70E-09 1.30E-08

Turning Right

Cuts No Ellipse Triangle
Ellipse 6.00E-09 - -
Triangle 6.00E-09 0.0227 -

Honeycomb 6.00E-09 1.50E-08 0.0033

Parallel Parking

Cuts No Ellipse Triangle
Ellipse 6.10E-09 - -
Triangle 6.10E-09 0.07 -

Honeycomb 6.10E-09 0.757 0.051

Table 3.5: SUV Wilcoxon Rank Sum Pairwise Comparison

SUV - Wilcoxon Rank Sum Test
Scene Cuts No Ellipse Triangle

Turning Left
Ellipse 6.10E-09 - -
Triangle 6.10E-09 2.07E-02 -

Honeycomb 6.10E-09 4.64E-01 2.80E-04

Two Lane Highway

Cuts No Ellipse Triangle
Ellipse 6.10E-09 - -
Triangle 6.10E-09 1.05E-01 -

Honeycomb 6.10E-09 1.52E-01 2.10E-04

Turning Right

Cuts No Ellipse Triangle
Ellipse 6.10E-09 - -
Triangle 6.10E-09 1.30E-04 -

Honeycomb 6.10E-09 1.80E-01 2.30E-06

Parallel Parking

Cuts No Ellipse Triangle
Ellipse 6.10E-09 - -
Triangle 6.10E-09 0.07 -

Honeycomb 6.10E-09 0.757 0.051
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Table 3.6: Sedan Wilcoxon Rank Sum Pairwise Comparison

Sedan - Wilcoxon Rank Sum Test
Scene Cuts No Ellipse Triangle

Turning Left
Ellipse 4.90E-09 - -
Triangle 4.90E-09 2.38E-03 -

Honeycomb 4.90E-09 1.40E-03 5.79E-02

Two Lane Highway

Cuts No Ellipse Triangle
Ellipse 3.50E-09 - -
Triangle 3.50E-09 1.58E-01 -

Honeycomb 3.50E-09 1.80E-04 3.74E-02

Turning Right

Cuts No Ellipse Triangle
Ellipse 5.90E-07 - -
Triangle 1.90E-06 7.90E-01 -

Honeycomb 9.40E-06 7.90E-01 9.00E-01

Parallel Parking

Cuts No Ellipse Triangle
Ellipse 8.50E-05 - -
Triangle 1.10E-05 0.194 -

Honeycomb 4.70E-06 0.014 0.194

Table 3.7: Pickup Wilcoxon Rank Sum Pairwise Comparison

Pickup - Wilcoxon Rank Sum Test
Scene Cuts No Ellipse Triangle

Turning Left
Ellipse 6.60E-10 - -
Triangle 6.60E-10 1.80E-08 -

Honeycomb 6.60E-10 8.70E-08 4.60E-09

Two Lane Highway

Cuts No Ellipse Triangle
Ellipse 9.00E-10 - -
Triangle 9.00E-10 3.90E-08 -

Honeycomb 9.00E-10 5.50E-08 4.60E-09

Turning Right

Cuts No Ellipse Triangle
Ellipse 3.50E-10 - -
Triangle 3.50E-10 3.70E-13 -

Honeycomb 3.50E-10 7.80E-01 3.70E-09

Parallel Parking

Cuts No Ellipse Triangle
Ellipse 6.10E-09 - -
Triangle 6.10E-09 0.0459 -

Honeycomb 6.10E-09 0.9753 0.0078
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which has no statistical difference. For the SUV for the cuts that had no statistical
difference were the ellipse compared to the honeycomb for the Turning left scene, the
honeycomb and triangle cut for the Two-Lane Highway scene, the ellipse compared to
the Honeycomb for the Turning Right scene and all cuts for parallel parking scene. For
the Sedan, the pillar cuts that had not statistical difference were the ellipse cut compared
to the triangle cut for the Two-Lane Highway scene, all cuts for the Turning Right scene
and all cuts for the Parallel parking scene. Finally, for the pickup truck the cuts that had
not statistical difference were the ellipse cut and honeycomb cut for the Turning Right
scene and the ellipse cut and honeycomb cut for the Parallel Parking Scene.

The results of these statistical analyses run show that there is overwhelming evidence
that cuts made in car pillars improve mean percent area of visibility, proved by the
comparisons having a p-value of less than 0.05. Additionally, the cuts made in the pillars
that had the same area removed but different geometric shaped seemed to perform better
for some cars. Based on the results this seems to relate mostly with the A-pillar. This
is probably due to the A-pillar being so close to the driver, so differences are easily seen
when the cuts are changed. As for the D-pillar it is further away from the driver and may
be hard to tell the difference and in some cars the D-pillar is set more vertical making
cuts with the same area have similar results.

3.6 Conclusion

With a great deal of research providing evidence that car pillars are a leading cause of
“looked but failed to see” accidents, research regarding how to understand and improve
visibility is ever more prevalent. Additionally, providing a way to understand the pillars
visibility problems and how modifications would affect the visibility is even more crucial.
This allows for the for money to be saved and time to be saved later down the engineering
design process during the prototyping phase. The research not only shows how to setup
a design of experiments using different cars, traffic scenes, pillar types and cuts, different
driver anthropometry and pedestrian anthropometry, but also provides with the use of
statistical testing and analyses provides evidence that visibility can be improved using
cuts made in the car’s pillars. The tests which were done were the Kruskal-Wallis test and
the Willcoxon Rank Sum for a post hoc pairwise comparison. The Kruskal-Wallis test
provided overwhelming evidence that adding a cut to a pillar changes the mean percent
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area visibility for the driver and that since the no cut experiments ran had approximately
zero visibility, it provides evidence the cuts improved visibility. This supported the
alternative hypothesis that the mean values of the groups were not the same. While the
Wilcoxon Rank Sum test provided evidence that some cuts made for different cars and
scenes, although having the same area removed, differ in percent visibility output. This
pairwise comparison highlights some of the limitations with research and provides a need
for future work to be continue this research.

This research has created a need for pillar designs that include cuts to be examined.
Additionally, this research provides evidence that assessing pillar design and visibility is
possible in early stages of the design process with the help of CAD and DHM models
and simulations. Making alternative methods to pillar vision obstruction needing to be
re-evaluated because methods such as cameras or sensors, although effective, are costly
and require physical prototyping. There are a lot of directions this research can go but it
is important to understand the limitations first. Although this research provided evidence
that pillar visibility can be improved using cuts made in the pillars, it does not provided
evidence to what the best cut design is. This research only took into consideration four
cars, four scenes and most importantly four pillar designs with different geometries but
the same area removed. This research/ experiment did not examine different size pillar
cuts, various cut locations and tapering of the cut. Furthermore, full pillar designs were
not examined. Only thickened versions of the Body in White structures were used which
means not including the assemblies and pieces like air bags, covers and wiring. Also,
another limitation includes the driver and pedestrian positioning being determined my
researcher. These are not all the contributions and limitations but just a few of the major
ones.

This DOE is just the beginning of this research and is just trying to lay the foundation
for future researchers to work off. First off, this research should be done with more
dependent and independent variables to increase the significance of the findings. Example,
size and shape of the cuts should be varied, more anthropometries should be use, different
angles and tappers of the cuts and more scenes and cars would be of value as well.
Additionally, this DOE should now be setup in a virtual reality and/or augmented reality
lab to compare the data collected using DHM to allow for a better understanding of the
accuracy of using DHM for visibility of car pillars. This research would pair well with the
use of optimization techniques as well. It would be worth re-running this experiment with
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the increased variables and the variable area removed and using some sort of surrogate
modeling to create a predictive model about the untested setups. Another way this could
be paired with optimization techniques is by using something like topology optimization
to have material optimally removed from the pillar to ensure the pillar meets safety
standards. Then this pillar design could be tested against the geometric pillar designs
already tested to see how they compare. There are many paths and directions this
research could go. This experiment and the results should be used by future researchers
to further this field of study.
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Chapter 4: Conclusions

The purpose of this research was to quantify vision obstruction of car pillars and was
to provide a method to assess car pillar design improvements using DHM analysis and
to observe the significance effects on these design parameters on visibility using CAD
and Jack DHM simulation. The proof of concept allowed for observations on how car
pillars performed in various scenarios and how cuts made in the pillars improve visibility.
Then to further observe and provide preliminary statistical proof that vison obscuration
is improved by making cuts in car pillars a DoE was conducted. Which showed that any
form of cuts improves percent visibility based which was proved using the Kruskal Wallis
test and pairwise comparison of each pillar design using the Wilcoxon Rank Sum test.
Although this DoE provided statistically accurate results the statistical significance and
deeper understanding would be improved using physical experiments using human-subject
testing. Additionally, this research would further benefit for the use of automation process
which would allow for highly accurate and repeatable experiments. This would allow for
a higher fidelity experimentation, more experiments, and setups to be conducted and
for a larger data set which would allow for better and more accurate conclusions to be
drawn.

This methodology and results would greatly benefit if it was to be continued by pairing
automation, optimization, and physical experimentation. For example, if processes like
CAD/ solidworks models (vehicles and scene environments), Coverage zone analyses and
statistical analyses were to be automated then they could be shared and easily repeated for
duplications of the experimentation or for future experiments. If optimization techniques
were used for both pillar design and for the results of automated experiments, then
optimized pillar structures which meet the roof crash FMVSS standards and provide
the least visibility could be extrapolated. However, this may create another challenge of
manufacturability. Finally, with physical prototypes either virtual or augmented reality
would allow for a better testing of these car pillar designs and give a proof of how well
the computational methods perform for testing these designs. This research and thesis
provide a good start for how to evaluate different car pillars vision obstruction and
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provides a way to evaluate these designs computationally. Furthermore this research
through computational methods proved creating cuts in preexisting car pillar designs can
minimize vison obstruction and help decrease looked but failed to see accidents.
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Figure A.1: Proof of concept Work Flow for Simulation
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Figure A.2: Sports Car Crosswalk Histogram
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Figure A.3: Sports Car Turning Left Histogram
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Figure A.4: Sports Car Turning Right Histogram
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Figure A.5: Sports Car Parallel Parking Histogram
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Figure A.6: SUV Crosswalk Histogram
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Figure A.7: SUV Turning Left Histogram



60

Figure A.8: SUV Turning Right Histogram
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Figure A.9: SUV Parallel Parking Histogram
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Figure A.10: Sedan Crosswalk Histogram
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Figure A.11: Sedan Turning Left Histogram
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Figure A.12: Sedan Turning Right Histogram
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Figure A.13: Sedan Parallel Parking Histogram
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Figure A.14: Pickup Crosswalk Histogram
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Figure A.15: Pickup Turning Left Histogram
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Figure A.16: Pickup Turning Right Histogram
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Figure A.17: Pickup Parallel Parking Histogram
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Figure A.18: Sports Car Crosswalk Box Plot
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Figure A.19: Sports Car Turning Left Box Plot
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Figure A.20: Sports Car Turning Right Box Plot
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Figure A.21: Sports Car Parallel Parking Box Plot
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Figure A.22: SUV Crosswalk Box Plot
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Figure A.23: SUV Turning Left Box Plot
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Figure A.24: SUV Turning Right Box Plot
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Figure A.25: SUV Parallel Parking Box Plot
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Figure A.26: Sedan Crosswalk Box Plot
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Figure A.27: Sedan Turning Left Box Plot
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Figure A.28: Sedan Turning Right Box Plot
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Figure A.29: Sedan Parallel Parking Box Plot
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Figure A.30: Pickup Crosswalk Box Plot
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Figure A.31: Pickup Turning Left Box Plot
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Figure A.32: Pickup Turning Right Box Plot
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Figure A.33: Pickup Parallel Parking Box Plot
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Table A.1: Sports Car General Statistics

Sports Car - General Statistics
Scene Cuts Count Mean sd Median IQR

Turning
Left

No 24 2.95 2.95 1.14 5.01
Ellipse 24 47.6 4.37 47.1 6.18
Triangle 24 23.6 2.2 23.3 2.98
Honeycomb 24 30.8 3.14 29.2 5.15

Two Lane
Highway

No 24 2.92 1.27 2.8 1.6
Ellipse 24 49.6 3.66 48.7 5.63
Triangle 24 21.4 1.89 21.1 2.59
Honeycomb 24 26.3 1.54 25.9 2.12

Turning
Right

No 24 0.6 0.32 0.54 0.45
Ellipse 24 6.02 1.17 5.7 1.24
Triangle 24 4.57 1.85 4.94 3.58
Honeycomb 24 3.09 1.13 2.88 1.85

Parallel
Parking

No 24 0.98 0.58 1 0.92
Ellipse 24 10.2 3.35 10.2 6.15
Triangle 24 12.8 4 11.4 6.65
Honeycomb 24 10.4 3.74 9.64 6.45
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Table A.2: SUV General Statistics

SUV - General Statistics
Scene Cuts Count Mean sd Median IQR

Turning
Left

No 24 1.39 0.3 1.38 0.47
Ellipse 24 29.5 6.82 29.9 7.6
Triangle 24 25.6 5.1 25.8 7.68
Honeycomb 24 31.3 3.72 31.9 4.68

Two Lane
Highway

No 24 2.95 1.27 2.8 1.6
Ellipse 24 31.4 3.66 48.7 5.63
Triangle 24 25.5 1.89 21.1 2.59
Honeycomb 24 34.1 1.54 25.9 2.12

Turning
Right

No 24 0.98 0.58 1 0.92
Ellipse 24 7.05 1.69 6.51 1.76
Triangle 24 8.64 0.83 8.41 0.95
Honeycomb 24 7.23 0.75 7.32 1.14

Parallel
Parking

No 24 0.98 0.58 1 0.92
Ellipse 24 11.1 2.86 11.1 4.13
Triangle 24 12.6 1.56 11.9 2.62
Honeycomb 24 11 2.4 10.2 3.46
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Table A.3: Sedan General Statistics

Sedan - General Statistics
Scene Cuts Count Mean sd Median IQR

Turning
Left

No 24 0.57 1.13 0.08 0.2
Ellipse 24 48.9 7.76 50.2 12
Triangle 24 46.3 8.01 47 12
Honeycomb 24 41.9 7.33 45.8 12

Two Lane
Highway

No 24 0.37 0.97 0 0
Ellipse 24 47.8 5.58 46.4 8.4
Triangle 24 44 6.98 45.6 8.2
Honeycomb 24 40 5.83 42.7 7.7

Turning
Right

No 24 13.3 2.14 13.6 2.2
Ellipse 24 18.1 2.05 18.6 2.3
Triangle 24 17.7 3.08 18.2 2.6
Honeycomb 24 17.8 3.71 18 2.6

Parallel
Parking

No 24 4.35 4.81 3.08 5.3
Ellipse 24 11.2 4.52 10.1 6.2
Triangle 24 13.3 5.37 11.8 7
Honeycomb 24 14.6 5.18 13.1 6
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Table A.4: Pickup General Statistics

Pickup - General Statistics
Scene Cuts Count Mean sd Median IQR

Turning
Left

No 24 0.0075 0.37 0 0
Ellipse 24 40.9 5.6 40.1 7.43
Triangle 24 27.1 5.98 27.7 6.92
Honeycomb 24 51.7 1.89 51.7 2.45

Two Lane
Highway

No 24 0.0417 0.18 0 0
Ellipse 24 43.1 6.15 42.8 8.93
Triangle 24 26.2 7.42 27.3 11
Honeycomb 24 53.2 1.76 52.8 3.03

Turning
Right

No 24 0 0 0 0
Ellipse 24 10.2 2.46 9.55 4.07
Triangle 24 21.9 3.15 22.6 5.38
Honeycomb 24 10.1 0.96 10.3 1.54

Parallel
Parking

No 24 0.975 0.58 1 0.92
Ellipse 24 11.1 2.86 11.1 4.13
Triangle 24 12.6 1.56 11.9 2.62
Honeycomb 24 11 2.4 10.2 3.46


