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CONTRIBUTION OF AUTHORS 

The end goal of the project is to formulate a generic intelligent model to help Network 

on Chip (NoC) designers in deciding the kind of architecture to employed to achieve 

better performance for the application under consideration. In this project, we have 

proposed Traffic Pattern (TP) of throughput processors as an independent entity in 

studying the performance of the throughput processors. The measure of similarity in 

TP between high performance computing applications (HPC) can be used a metric to 

in designing NoC architectures to achieve better performance in applications with high 

similarity on a common hardware. To collect the NoC traffic data needed for analysis 

we have used GPGPU-Sim simulator.  We have successfully achieved transforming the 

normalizing the collected data to be visually analyzable. The visual analysis of the 

collected dataset has revealed that there exists similarity in traffic pattern between HPC 

benchmarks in consideration (RODINIA, PARBOIL and NVIDIA SDK). We have 

trained supervised machine learning and deep learning models on the visually 

analyzable data set and validated the visually obtained labels using un-supervised 

learning models.   
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Chapter 1: Introduction 
 

The advent of machine learning and deep learning models have paved a way to 

find solutions to the problems which exhibit characteristics that are unique and 

specific to the data set in consideration. Image recognition is one such 

application in the machine and deep learning models. These models have 

become so matured that even slightest of variation could be picked when trained 

accurately for a data set. This trending methodology has given an alternative 

way for solving problems which deal with identifying patterns and enabling use 

of computers to extract pattern information, in contrast to establishing complex 

mathematical relations to achieve the same. Characterizing an On-Chip traffic 

can be treated like the image recognition application by representing 

characteristic feature in a 2D space. 

In recent days research on characterizing workload behavior to analyze the 

traffic pattern of On-Chip network is focused towards analyzing group of 

metrics such has dynamic instruction count, memory usage, number of CTAs 

and PTXs [2][3][8]. Since there is no one area to be focused, it is not feasible 

to represent instruction count, number of CTAs, PTXs and memory usage as 

2D matrix to employ Image recognition methodology to extract unique features. 

In addition, each pixel in an image has relationship between its neighbors. With 

the above metrics it is difficult to establish a reasonable 2-Dimensional 

relationship like that of an image, to employ image recognition like approach 

to analyze patterns.  

The Processing Elements and Memory controller’s arrangement in On-Chip 

network is like that of an Image when represented as matrix, i.e. each pixel 

position as Processing elements in relation with Memory controllers (adjacency 

matrix of a graph). Instead of light intensity each position in the graph is filled 

with memory requests from Processing Elements during execution of a given 

application. Creating an adjacency like matrix between Memory Controllers 

and Processing elements with number of memory requests as data, it is easier 

to visualize the local hot spots. The adjacency matrix can be transformed to a 

heat map image. Transforming memory requests matrix to image opens the 
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opportunity in solving the pattern identification using methods like that of 

image recognition application.  

Optimizing On-Chip network design is a critical part to obtain better 

performance out of the throughput processors. Critical resource distribution to 

cater memory requests plays a major role in reducing traffic congestion in On-

Chip network. The applications executed on throughput processors have 

assumed to exhibit Many-to-few-to-Many memory request pattern in recent 

days research. This approach doesn’t give any insight on the characteristics that 

could be extracted to optimize the On-Chip network design for application 

specific designs. In this paper, we study the memory request pattern behavior 

at different granularities to come up with a reasonable level to study the 

information with minimal loss. This will help us analyze the traffic pattern 

behavior at better extent to identify hot spots generated by application over the 

execution period and allocating more resources to these hot spots for faster 

processing of memory requests. 
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Chapter 2: Background and Motivation 

 
2.1 Limited existing characterization 

 

Recent studies toward analyzing workloads of high-performance computing 

treat the traffic pattern of all benchmarks as strict many-to-few-to-many 

(M2F2M). The memory requests of Gaussian benchmark [4] is represented in 

Table 1, the X-axis of the table describes different processing elements (PEs) 

and Y-axis denotes the memory controllers (MCs). This kind of table in the 

following sections are referred as memory request tables (MRTs). Each number 

that is populated in a cell of Table 1 is accumulated over the execution cycle 

time of Gaussian to quantitatively exhibit the total communication between a 

pair of PE-MC. The pattern that is demonstrated in Table 1 is inferred as 

M2F2M traffic pattern. However, if the collection of traffic pattern statistics is 

fine-grained, i.e. if traffic patterns are collected over a few hundreds of cycles 

during the execution of a benchmark, the situation could be more sophisticated 

than a naive M2F2M pattern. Table 2 shows the request traffic in the kernel-3 

of Gaussian benchmark [4] during 600-700 cycles. In these 100 cycles, only 

PE-19 sends requests to MC-1, MC-2 and MC-3. This example indicates that 

in some periods, a Few-to-Many-to-Few pattern is formed in the NoC of a 

throughput processor. Preliminary experimental results across wide range of 

benchmarks from Rodinia [4], NVIDIA SDK [1] and Parboil [11] clearly 

demonstrate that the M2F2M pattern does not always exist especially when 

fine-grained collection is employed. It is thus the NoC designs of throughput 

processors which primarily focus on M2F2M pattern do not always serve the 

purpose of complete coverage to achieve optimized resource utilization, 

reduction in occupancy area and minimized power consumption. 

A majority of the previous studies propose metrics which are driven by the 

factors such as number of PTXs, CTAs, dynamic instruction count, memory 

usage which are architecture independent as claimed by Goswami et al. and 

architecture dependent metrics proposed by Adhinarayan et al. for a given 

benchmark using unsupervised learning like principal component analysis 
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(PCA) [13] and hierarchical clustering method to identify similarities across 

benchmarks in the same suites [2, 3, 8]. . The studies till now, have not 

considered analyzing the traffic flow in NoC as it is classified as M2F2M 

pattern. In the proposed approach, NoC traffic is dissected to identify the 

individual components which make up the M2F2M. Another potential NoC 

architecture design parameter that could impact the performance is traffic 

pattern, current research for analyzing the workloads do not consider this 

parameter when characterizing. 

This paper emphasizes analyzing the common features of traffic pattern which 

exist among the benchmarks presented in Rodinia, NVIDIA SDK and Parboil. 

The experimental results of the paper serve as a purpose to design NoC 

architectures optimized for the identified common traffic patterns, to achieve 

improved performance in areas of power consumption, resource utilization and 

reduced on-chip area for NoC. 

 

2.2 Benefits of characterization 

Traffic patterns of a benchmark in throughput processors can be considered as 

a single metric in the system, which directly exposes the intensity of the reply 

packets that are flowing across the NoC. By characterizing this metric to a 

limited group based on the common features that are observed, it is possible to 

cluster the benchmarks into a single or multiple group obtained by treating 

traffic pattern as a single metric. This opens up the opportunity of designing a 

 PE1 .... PE30 PE31 .... PE56 

 MC1 1 .... 1 3 .... 5 

MC2 3 .... 2 3 .... 2 

MC3 4 .... 3 6 .... 2 

MC4 1 .... 2 5 .... 3 

MC5 0 .... 1 1 .... 1 

MC6 2 .... 0 2 .... 0 

MC7 4 .... 2 4 .... 0 

MC8 0 .... 2 5 .... 7 
 

Table 1 Cumulative Pattern of Gaussian benchmark [4] 
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NoC optimized to specific group to derive maximum performance out of 

throughput processors for the specified benchmarks. 

The MRTs collected from the tested benchmarks clearly illustrate some 

common patterns which will be presented later. On the basis of the common 

patterns, the MRTs are capable of classifying to a few categories. Hence, the 

NoC in throughput processors can be optimized based on the categories instead 

of based on naive M2F2M pattern. Thus, the designers are able to focus on some 

specific areas in the NoCs to emphasize the features of those non-M2F2M 

patterns, and the system performance can be improved significantly as the NoC 

tuning is more fine-grained. 

In a throughput processor, request traffic pattern and reply traffic pattern are 

symmetric (i.e. request packets are same in number as reply packets). This paper 

analyzes and characterizes the traffic pattern of throughput processors by 

considering the reply traffic that is sent from each MC to each PE. The collected 

traffic pattern is analyzed at defined stages of granularity i.e. towards the 

completion of execution, defined execution cycle period and at CUDA kernel 

of a given benchmark. The best granularity is then selected for identifying a set 

of basic traffic patterns for varies of benchmarks. Our testing results obtained 

by studying reply traffic is applicable for request traffic as pattern is symmetric, 

thus it serves as a complete package to analyze the overall traffic pattern 

characteristic of throughput processors. 

Table 2 Kernel-3 Pattern of Gaussian benchmark collected between 600-700 Execution cycles 

[4] 

 PE1 .... PE18 PE19 PE20 .... 

MC1 0 .... 0 1 0 .... 

MC2 0 .... 0 2 0 .... 

MC3 0 .... 0 2 0 .... 

MC4 0 .... 0 0 0 .... 

MC5 0 .... 0 0 0 .... 

MC6 0 .... 0 0 0 .... 

MC7 0 .... 0 0 0 .... 

MC8 0 .... 0 0 0 .... 
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However, there is very limited importance given to traffic patterns in 

characterizing the workload in recent research. This gives the opportunity to 

understand the impact of traffic patterns on NoC performance. Although there 

are many different mathematical approaches that can be potentially used for 

identifying similarities i.e. to group the observed traffic patterns on some 

similar characteristic features. The particularity and complexity of traffic 

pattern data in throughput processors drive the selection of the mathematical 

method to be more challenging.  

 

2.3 Challenges 

The traffic patterns of benchmarks exhibit variety of characteristics for patterns 

collected at different granularity. For instance, the traffic pattern collected over 

a range of execution cycles is not same as that of cumulative pattern collected 

at the completion of execution. Similarly, the traffic pattern collected at 

individual kernel rarely exhibit similarity to the cumulative pattern. As will be 

 PE1 PE2 PE3 PE4 PE5 ... 

 MC1 0 5 0 0 0 ... 

MC2 0 3 0 0 0 ... 

MC3 0 2 0 0 0 ... 

MC4 0 2 0 0 0 ... 

MC5 0 2 0 0 0 .. 

MC6 0 2 0 0 0 ... 

MC7 0 2 0 0 0 ... 

MC8 0 2 0 0 0 ... 
 

Table 4 Kernel-3 Pattern of Gaussian benchmark [4] 

 PE1 ... PE19 PE20 PE21 ... 

 MC1 0 ... 4 0 0 ... 

MC2 0 ... 3 0 0 ... 

MC3 0 ... 2 0 0 ... 

MC4 0 ... 2 0 0 ... 

MC5 0 ... 2 0 0 .. 

MC6 0 ... 2 0 0 ... 

MC7 0 ... 2 0 0 ... 

MC8 0 ... 2 0 0 ... 
 

Table 3 Kernel-1Pattern of Gaussian benchmark [4] 
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discussed in Section III, the traffic pattern collected at kernel level retains the 

important characteristic features for a given benchmark and is applicable across 

the benchmark suites. 

In this research, the MRTs collected are treated as matrices due to the number 

of options available for processing to extract similarities. Transforming 

matrices to a suitable form provides options for visual analysis and could be 

used as an input for deep learning models.  

The problem to be addressed once having the accurate granularity for collecting 

the MRTs is on grouping similar data set based on the unique characteristics 

observed. The existing mathematical methodologies for finding similarities 

across matrices like correlation, identifying eigen vectors and single value 

decomposition (SVD) cannot be appropriately employed to classify MRTs. The 

correlation co-efficient of MRTs is very low, MRTs which look similar are not 

relative in their position of similarity occurrence thus Eigen Value changes for 

similar MRTs and SVD is suited in identifying similarity in a given matrix and 

not between two matrices. Thus, leading to usage of advanced methods which 

are proven in extracting and analyzing similarity information.  

Figure 1 Plot of Prinicpal Component Analysis by transforming raw traffic pattern to a 

suitable form. 
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The correlation coefficient is used to measure the similarity between matrices. 

However, the MRTs collected are not correlated as there are cases where we 

observe the MRTs of similar type to be not exactly same due to the mis-match 

in the position of occurrence (i.e. the MCs and PEs involved are completely 

different). In Table 3 and Table 4 it is clearly evident that traffic pattern of 

Kernel-1 of Gaussian [4] is like that of Kernel-3. Although the kernels 1 and 3 

have similarities in their traffic pattern, the PEs involved in generating the 

traffic pattern are not the same, thus when using correlation to find similarities 

between kernel-1 and kernel-3 the mathematical result would show them as 

non-similar traffic pattern since correlation is position dependent. The traffic 

patterns are not square matrices and the matrix meaning changes due to the 

linear and horizontal shift that could be observed for matrices of similar type 

thus employing eigen method would yield different characteristic roots for 

similar traffic patterns.  

The existing unsupervised machine learning model such as PCA, t-distributed 

stochastic neighbor embedding (T-SNE) would be an alternative approach for 

one to identify similarities between matrices which cannot be observed with  

Figure 2 Plot of T-Distributed Stochastic Neighboring embedding by transforming raw traffic 

pattern to a suitable form. 
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human visual inspection and obtain groups of similar MRTs. The results 

obtained by using PCA and T-SNE do not yield good results as can be observed 

in Figure 1and Figure 2. PCA results presented in Figure 1 do not help us in 

identifying principle traffic pattern types as majority of the points lie on a 

common straight line. After visual inspection of the data points on the straight 

line, it appears that there are several mixed traffic patterns that exist. This means 

the straight line does not represent a group of similar traffic pattern. The same 

circumstance also happens in other small clusters appear in Figure 1. Thus, 

usage of PCA to identify clusters on raw MRTs is not a feasible solution. The 

T-SNE results referenced in Figure 2 does a better job than PCA, there are 

different clusters appear in the figure. However, in our visual inspection to all 

MRTs, the clusters which circled in red belongs to the same type, but other 

clusters circled in yellow, brown and green consist of various traffic patterns. 

Therefore, the T-SNE algorithm still cannot provide a reasonable result to the 

traffic pattern classification task. 

 

To use any supervised learning methodology such as support vector machines 

(SVM) or convolutional neural network (CNN), the MRTs should be 

transformed to a suitable format which can be used as an input and must be 

labeled before training in SVM or CNN. SVM works on the principle of curve 

fitting in a high dimensional space with pre-verified and labeled dataset but 

does not provide any feature extraction benefits which could be used for label 

validation to catch missing labels or identify wrong labels as the pre-defined 

labels are collected manually. 

CNN establishes classification relationship by capturing features using several 

filter masks and moving the masks across the input matrix to produce 

corresponding output feature matrices. A simple CNN usually consists of many 

convolutional layers, pooling layers and a fully connected layer (neural network 

layer) which uses the output feature matrices to produce multi-label 

classification. Each convolution layer extracts some features from an image 

which are representative of a part of the image, such as a unique pattern, edge 
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of main object etc. The feature extraction is done by moving a number of 

definitive sized filters over the image. The extracted features are fed into a 

pooling layer to down sample the feature map matrix generated from previous 

convolution layers, to achieve reduction in dimensionality and avoid risk of 

over fitting the model. After passing through several convolutional and pooling 

layer combinations, the final output matrices serve as input of the fully 

connected layer to make the final classification. 

This study analyzes the benchmarks presented in RODINIA [4], NVIDIA SDK 

[1] and PARBOIL [11], transform the traffic pattern of each benchmark to a 

suitable format for deep learning, and identify the common features in these 

traffic patterns. We extend our study to analyze the behavior the same 

benchmarks and the effects observed on the traffic patterns due to architectural 

changes introduced and present a common subset of features which is used to 

represent majority of the traffic patterns observed as combination of identified 

basic types. This study will help the further research in designing NoC which 

 PE1 PE2 PE3 PE4 PE5 ... 

 MC1 86523 85687 86495 85261 86167 ... 

MC2 86246 85417 86224 84988 85897 ... 

MC3 86823 85975 86797 85546 86455 ... 

MC4 86264 85435 86242 85006 85915 ... 

MC5 85884 85608 85248 85950 85336 .. 

MC6 85168 85349 84988 85688 85077 ... 

MC7 86486 86194 85838 86559 85921 ... 

MC8 85861 85585 85225 85927 85313 ... 
 

Table 5 Cumulative Pattern of Sorting Networks benchmark [1] 

 PE1 PE2 PE3 PE4 PE5 ... 

 MC1 0 4 10 11 6 ... 

MC2 0 5 9 10 6 ... 

MC3 0 4 9 11 5 ... 

MC4 0 4 9 10 6 ... 

MC5 0 4 8 11 5 .. 

MC6 0 3 10 11 8 ... 

MC7 0 5 8 12 8 ... 

MC8 0 5 11 11 8 ... 
 

Table 6 Pattern Collected between 75k-85k execution cycles of Sorting Networks benchmark 

[1] 
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is optimized to the traffic pattern behavior discovered to get optimized 

performance 
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Chapter 3: Transforming Traffic data for Deep Learning 

This section discusses the traffic pattern data collecting and transforming 

process. The traffic pattern data is collected from a cycle-accurate simulator 

GPGPUSim in which an ideal NoC configuration is employed to remove the 

impact from the architecture of interconnect network. As mentioned before, the 

behavior of the traffic pattern is decomposed and analyzed at cumulative stats 

collected at the end of execution of each benchmark (cumulative pattern), at a 

defined range of execution cycles (cycle-ranged pattern) and at a granularity of 

kernel (kernel pattern). The experimental results show that kernel pattern is the 

most suitable granularity to reflect runtime traffic flow in a benchmark without 

losing any detailed traffic information. The aggregated data also needs to be 

augmented to images to fulfill the input requirement of a deep convolution 

network. 

First, an ideal NoC (any packet can travel through a network in 1 cycle without 

any conflict) is configured in experiments based on impact consideration. 

Interconnection network in throughput processors has various topologies, 

routing policies, scheduling or allocating schemes. All the configurations have 

significant performance effect on a throughput processor system. To better 

focus on the traffic statistical data and to lower the impact from NoC in a 

throughput processor, a perfect interconnection network is thus employed 

during the following experiments. 

Before digging into the data analysis, it is imperative to have a proper 

granularity to collect end-to-end communication data firstly as different 

granularity could emerge different traffic pattern. This research is eventually 

for understanding runtime traffic status so that it is possible to optimize 

interconnection network based on this information. Therefore, an accurate but 

not redundant granularity is urgently needed. Previous research considers the 

traffic flow in a throughput processor mainly as M2F2M because the Cumulated 

Pattern in most of benchmarks show this feature. For example, the Table 5 is a 

Cumulative Pattern collected at the completion of SortingNetwork [1], which 

shows an exact M2F2M pattern. Other benchmarks explicitly display the same 



13 

 

 

result as SortingNetwork as well. However, these results (tables) do not 

comprehensively offer detailed runtime traffic status. Table 6 gives the traffic 

behavior from cycle 75000 to 85000 of SortingNetwork. This preliminary test 

presents that during the execution of SortingNetwork, the intermediate traffic 

flow could be different from the Cumulated Pattern. Not only SortingNetwork, 

but also some other benchmarks have the same characteristic. Therefore, a more 

fine-grained granularity should be proposed to provide accurate runtime traffic 

information. 

The most fine-grained granularity is cycle accurate which means that the MRTs 

would be generated in each execution cycle. However, a benchmark could have 

thousands of thousands cycles and not every cycle has MRs, some cycles have 

only few MRs. This naive approach of analyzing every cycle would lead to a 

huge dataset and some of the data points are meaningless. Although considering 

this research is going to use CNN as a classifier so the dataset for training a 

CNN model should be as large as possible, the data redundancy should also be 

considered and kept as low as possible to avoid CNN model over-fitting 

problem, this can also be considered as over-fine-grained issue. The preliminary 

tests on several benchmarks show that continuous cycles would have same 

traffic performance; in other words, all these cycles can be combined and be 

treated as one MRT. Therefore, to efficiently reduce the dataset redundancy, it 

is better to group continuous cycles together so that less duplicated data points 

are existing in the dataset. 

There are three typical methods that can be employed for grouping cycles 

together. The first and the most accurate method is that manually track all cycles 

in each benchmark, then group those continuous cycles with similar traffic 

pattern together. After grouped, the new traffic pattern table is an accumulated 

table throughout these cycles. As each individual cycle in this group has the 

same traffic pattern, the newly generated cumulated table has exactly same 

traffic pattern as any single cycle in the group. However, the major drawback 

of this approach is the time consuming. To accurately group continuous cycles 

together, a manual action should be taken to monitor every cycle in each 
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benchmark. Considering that there are at least 30,000 more total execution 

cycles in each benchmark, the hours that are spent on this manual action is not 

acceptable. Since the most accurate method cannot be exploited due to the 

unsustainable high time consuming, an efficient cycle grouping scheme is 

needed. The second approach of grouping scheme is group cycles by a fixed 

number or fixed percentage of the total cycles. This fixed grouping scheme is 

much faster than the first one, but it is not accurate and may cause some 

information loss or mixture. This is because if a fixed number of cycles is 

decided e.g. 1000 cycles, the granularity of this number is various across 

different benchmarks. For example, in CFD benchmark, it has in total 

2263660634 cycles, which 1000 is only 4.41×10−5% of benchmark. Therefore, 

a fixed number of cycles is not a feasible approach. An alternative method is to 

determine a fixed percentage of the total execution cycles. This method is to 

address the granularity issue that happens in the fixed number of cycles 

approach. With a fixed percentage, the granularity across all benchmarks is 

decided, but this scheme could lead to over-fine-grained issue. Taking Gaussian 

benchmark [4] as example, it has in total 27447 cycles, if the percentage is 

determined as 10%, then every 2745 cycles an MRT is generated. But the 

preliminary test on the Gaussian, during the 2745 cycles, only a few MRs is 

generated, which cannot be correctly recognized as a comprehensive pattern. 

The comprehensive approach for using number of cycles or percentage of total 

cycles is to decide number of cycles/percentages of total cycles for each 

benchmark. However, this is also a time-consuming approach as a proper 

number of cycles/percentages of total cycles should be decided by a manual 

action which performs on each benchmark. This manual action will take the 

same time as the first approach (manual group approach) since the proper 

number or percentage can only be determined after all cycles are evaluated 

individually. Therefore, these 2 approaches are either time consuming or cannot 

accurately reflect traffic pattern. 

After carefully analyzing the preliminary results, the Kernel Pattern approach 

is proposed to address the previous 2 issues. Each MRT that is generated as a 
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cumulative traffic at each kernel execution ensures that the results collected are 

easy to analyze and consumes less time due to limited dataset. This approach 

gives the base for fixing the granularity for analysis, because usually every 

kernel in a benchmark has a unique task, such as loading data into the device 

memory, or processing a part of the computation in an algorithm (e.g. 

processing a part of a graph in Breath-First-Search algorithm). Therefore, 

within one kernel, the traffic flow is almost the same, so an MRT of a kernel 

has abundant information (number of request packets) to form an obvious traffic 

pattern. In another words, the Kernel Pattern represents the traffic flow within 

a program kernel, which in addition, if a NoC design is optimized to the traffic 

pattern of the kernel, the design is optimized to all program kernels with the 

same behavior. At the same time, there are more than 5000 kernels in total for 

all benchmarks, which indicates that even though the original data points (in 

terms of Cycle Accurate Pattern) are shrunk, there are still relatively large 

dataset that is enough for training a simple CNN model. Even though by 

employing the Kernel Pattern approach, a proper granularity of the traffic 

pattern is collected, the raw MRT cannot be directly used by any CNN model 

because of its specific characteristics which will be discussed in the following 

paragraph. 

The input of a CNN model should be a matrix, the MRT serves this purpose. 

As introduced before, the first dimension of a MRT represents the MCs and the 

second dimension is the PEs, in the experiments of this paper, there are 56 PEs 

and 8 MCs, which implies that the dimension size of a MRT is 8×56. This 

dimension size is smaller than a typical input size of a CNN model, such as 

224×224, and cannot be divided by a typical convolutional filter size perfectly. 

The smaller input size leads to obscure features in a traffic pattern which 

eventually considerably impacts the recognition accuracy of a CNN model. And 

non-divisible dimension size also affects the model suitability to this traffic 

pattern dataset. To address these 2 issues concurrently, a data augmentation for 

MRT should be proposed. Another major challenge that causes a MRT cannot 

be directly feed in a CNN model is data normalization. It is obvious that 
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different kernels in a benchmark have different density of the E2E traffic, and 

different benchmarks also have different number of kernels, with various of 

total traffic loads. For example, AlignedType benchmark [1] has about 1461367 

cycles in its Kernel-275 while BFS benchmark [4] has only 9826 cycles in its 

Kernel-2. Since the traffic pattern is determined in a kernel-based unit, all 

kernels will form a dataset and be treated equally, this means that every kernel 

(MRT) is considered as an independent data point in the dataset. The criteria of 

a CNN model training dataset should have been normalized to reduce the effect 

of data and make the model focus on the data variation trend. The traditional 

data normalization scheme is based on the entire dataset, which is the scheme 

would firstly flatten all matrices in a dataset to a row vector, and then combine 

all row vectors together to be a new 2D matrix and finally normalize each 

column in this new matrix individually. This approach potentially treats each 

column in the new matrix as the same. However, in the traffic pattern analysis, 

every element only depends on its own vector, which is the original MRT, so 

the traditional normalization approach could add unnecessary information, even 

some misleading information after it is applied on the Kernel Pattern dataset. 

Therefore, the proposed augmentation scheme should not lose any information 

that appears in an MRT, because any information loss could potentially lead to 

wrong traffic pattern recognition in CNN model, and provide a proper data 

normalization method as well. An approach that could augment a matrix 

without losing detailed information is heat map coloring. 

Heat map coloring scheme can achieve tinting every element in a matrix based 

on the matrix variation trend [5]. After applying heat map on a matrix, a new 

image would be generated where each color block represents an original 

element in the matrix as seen in Figure 10. The lighter a color block is, the 

higher the traffic intensity original element has. Therefore, by employing heat 

map scheme, all MRTs are transformed to images which contain a lot of color 

squares. This scheme can directly eliminate data normalization problem 

because all images are generated only based on the corresponding matrix, all 

color squares are in proportion to the original elements in the matrix. Therefore, 
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the generated images reflect the data variation trend in the corresponding 

matrices directly, but all data points now are ranged in 0-255. When an original 

element is transformed to a color square, the data is also augmented. The 

dimension size of the original matrix, as mentioned before, is 8×56, and each 

of the element is transferred to a color square with dimension size of 8×8. When 

heat map tinting is completed on a matrix, the size of the generated image 

becomes 69×495 which achieves data amplification without losing original 

information. Another benefit comes with heat map transformation is that the 

generated image is more convenient and intuitive to do manual visualized 

identification and validation. 

When all MRTs are transformed to Heat Map Images (HMIs), half of the deep 

learning dataset is created. However, CNN model needs pre-labeled dataset to 

perform backpropagation training process. Therefore, a manual data labeling 

should be used firstly and then a scientific label validation approach is also 

employed to ensure the pre-label dataset is convincing. 
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Chapter 4: Traffic Type Identification 

This chapter focuses on adding correct label to each data in the dataset. As 

emphasized before, any dataset that needs to be used for a CNN model has 2 

major parts, one is the data itself (or matrix), the other is the corresponding label 

which stands for the category that this data (matrix) belongs to. It is important 

to have an accurate label for each data in a dataset because the training process 

(backpropagation training) relies on the loss between the predicted label and the 

ground truth label. Therefore, an accurate and correct ground truth label affects 

the final CNN model accuracy and reliability significantly. In this section, there 

are 2 steps to generate a convincing dataset with correct label for each data 

point. The first step is labelling all data with visualized evaluation, it is 

understandable since there is no previous research or work on this field. The 

second step is to ensure the previous visual labeled data is correct and 

convincing 

 

4.1 Visual Identification 

Although the color tinting scheme is introduced in the previous section, gray 

scale tinting scheme is referred in this research when generating a Heat Map 

Image. This is because the gray scale tinting scheme is more proper to the 

original raw data (MRT) which are single channel (2D) matrices. When a MRT 

is transformed to a colored (RGB-based) image, it becomes a 3 channels matrix. 

For example, an original MRT is 8×56×1, the generated image size will be 

69×495×3, where the 3 is the Red, Green and Blue channel respectively. 

However, because MRT only has one channel, this augmentation does not 

provide more information, and on contrary, the data variance would decrease 

due to the more color channels. The meaning of employing Heat Map scheme 

is to normalize the original MRT and to augment the data variance without 

information loss. The gray scale tinting scheme only generates a single channel 

image which every pixel is from 0 to 255. This approach is suitable to the 

original MRT of dimension 8×56×1 and can reflect data variance within a table 

accurately. In a gray scale scheme, the brighter the block, the more intense the 
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communication between the pair (MC and PE). In another words, a white block 

represents intensive communication between the corresponding MC-PE pair 

and a black block means there is no traffic communication existing in the pair. 

The heat map images are evaluated independently to find out each 

distinguishable traffic pattern image category. Figure 3 to Figure 10 represent 

8 different categories which have been classified manually, they are: 1) Column 

Pattern; 2) Row Pattern; 3) Row+Column Pattern (RC Pattern); 4) Group 

Pattern; 5) Diagonal Pattern; 6) Step Pattern; 7) Split Pattern; 8) Checkerboard 

Pattern. Each Image represents a Heat Map of the transformed MRT collected 

at kernel granularity. Not all images can be classified into the 8 categories, the 

rest images which cannot be visually classified is temporally put aside and will 

be evaluated their correct affiliation later. These manually identified traffic 

pattern categories would be strictly verified its correctness and generalization 

in the follow subsection. 

To get more insight of these traffic pattern categories, especially to understand 

architecture level meaning of a pattern, every category of traffic pattern is 

analyzed in detailed about their meaning and formation reason. 

 

4.1.1 Column Pattern 

A Column Pattern represented in Figure 3 only 1 PE sends requests and receives 

replies from all MCs during the execution of a kernel. This traffic pattern can 

be considered as a Few-to-Many-to-Few pattern and it leads to a distribution 

and receiving hotspot. The main reason that causes this pattern is due to the 

smaller number of thread blocks. Usually only one thread block is generated in 

the kernels which have Column Pattern, and the thread block is assigned to a 

PE and eventually only this specific PE has communication with MCs. A 

special case is more than one MCs do not have communication, this situation 

Figure 3 Column Pattern observed in Gaussian benchmark 
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happens when data addresses in the thread block are only distributed in some 

given memory chips. 

4.1.2 Row Pattern 

Figure 4 shows a Row Pattern, which means that only 1 MC sends replies to all 

PEs in a kernel. This is a typical M2F2M pattern because the very few (1 or 2) 

MCs have traffic communication with all PEs. The pattern is generated mainly 

because of imbalanced memory accessing or data address mapping scheme. For 

example, in BFS application, every kernel processes a layer of a graph. Because 

of the different number of nodes in each layer, the traffic intensity for each 

kernel is highly variance. And when the dataset of BFS is loaded into the main 

memory of a throughput processor, all the nodes of a layer is loaded into a given 

memory chip, which causes in a specific kernel, the corresponding memory chip 

that is stored the data of the processing layer, is accessed much frequently than 

other memory chips (around 4X in our experiments). This is a typical memory 

accessing imbalance which caused Row Pattern. 

4.1.3 RC Pattern 

A RC Pattern is typically looking like a combination of Row Pattern and 

Column Pattern as Figure 5 represents. This pattern means that one memory 

chip is accessed more than any other chips and some PEs have intensive 

memory accessing to all MCs. According to the analysis in Row Pattern, the 

row pattern part in the RC Pattern is also because of imbalanced memory 

accessing (data address mapping). The column pattern behavior could be 

potentially caused by different reasons. One reason is that the thread block 

scheduling policy assigns more thread blocks to some special PEs due to its 

Figure 4 Row Pattern observed in BFS benchmark 

Figure 5 RC Pattern observed in Sorting Networks benchmark 
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own mechanism. For example, if a simple Round-Robin scheduling is 

employed in the experimental system, and some PEs finish the first-round 

assigned thread blocks earlier than other PEs, then the thread block scheduler 

would assign more thread blocks onto these PEs in a Round-Robin fashion, if 

some PEs always finish their assigned thread blocks faster than other PEs, the 

faster PEs would be assigned more thread blocks than other PEs, consequently 

these PEs would have more communication which results in lighter block in 

these columns. RC Pattern can be considered as a M2F2M pattern but with one 

or multiple hotspots in the interconnection network. 

4.1.4 Group Pattern 

As depicted in Figure 6, Group Pattern is a pattern with a continuous group of 

PEs have communication with all MCs. In general, Group Pattern is a more 

generalized case of Column Pattern. However, in manual labeling process, 

these 2 classes are not very similar, this is the reason why this 2 patterns are 

classified in 2 different categories, and this assumption will be further 

validated in the following subsection.  

4.1.5 Diagonal Pattern 

The Figure 7 describes a typical Diagonal Pattern. In this pattern, it is obvious 

that each MC has its own corresponding PE array. The index of start PE in each 

array is continuous and every array has the same interval. This distinctive 

pattern happens usually due to each thread block processes a part of the dataset 

and the whole dataset is evenly distributed in all memory chips. It is noteworthy 

that Figure 7 only gives a typical Diagonal Pattern, which means that in this 

category, some other similar cases may exists, but they could have different 

Figure 6 Group Pattern observed in Reduction benchmark 

Figure 7 Diagonal Pattern observed in AlignedType bechmark 
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interval and start PE indices. However, the interval in all arrays should be the 

same and the start PE indices should be an increasing sequence. 

4.1.6 Stair Pattern 

In Figure 8, a general case of Stair Pattern observed in histogram benchmark. 

From the description of benchmark obtained in [1], demonstrates interop of 

rendering targets between Direct3D10 and CUDA. In the observed stair pattern, 

each SM interacts with 3 contiguous MCs i.e one possible MCs sequence is 0,1 

and 2. The pattern is observed in some kernels of the histogram benchmark, 

since the nature of this benchmark is to deal with 3D values, the possible reason 

for 3 MCs serving a SM is to improve the processing speed of 3D vectors which 

are placed in 3 separate DRAMS connected to individual MC. 

4.1.7 Split Pattern 

In Figure 9 presents an Ideal case for Split pattern observed in Aligned Type 

Benchmark. In the considered architecture of 8 MCs and 56 SMs, the observed 

Split Pattern each SM either requests data packets from upper half (0,1,2,3) or 

lower half (4,5,6,7) MCs leaving the other half unused. The even distribution 

of traffic pattern intensity across upper or lower half of MCs is mainly due to 

the distribution of CTAs to SMs; based on the data collected with preliminary 

research its appears that each SM in Kernel-65 of AlignedType benchmark has 

75 CTAs assigned to it. The AlignedType benchmark tests the performance of 

the GPGPU on aligned and mis-aligned data types, the preliminary results 

reveal that the data of interest for each thread block are accessed in DRAMs in 

sequential order. This explains the reason as to why a particular SM raises equal 

Figure 8 Stair Pattern observed in Histogram benchmark 

Figure 9 Split Pattern observed in AlignedType benchmark 
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number of memory requests to MCs of a given half. Interestingly the pattern 

observed reveals that, if a SM raises memory requests to the upper half of MCs, 

then its neighboring SM will keep the lower half of MCs busy.  

4.1.8 Chessboard Pattern 

The Chessboard Pattern is a special pattern which in our experiment only exists 

in CFD benchmark. Its characteristics are like the features of Diagonal Pattern, 

but in the manual classification we consider it as a new class because of its 

formation reason. Different from the reason of Diagonal Pattern, Chessboard 

Pattern forms because of the CFD has intra-PE communication through device 

memory. Therefore, the light block pairs indicate that for a specific PE, either 

odd or even index memory chips contain the needed data. 

 

The previous 8 categories do not cover all images, some other images have no 

clear pattern, so they have been temporarily classified into a class called 

Random. The coverage rate (the total number of classified images over the total 

number of images in dataset) will be evaluated later in the Evaluation section. 

The current 8 types are not the final decision since they are not scientifically 

verified with a comprehensive and convincible approach. In the next 

subsection, such a method is proposed to validate the correctness and accuracy 

of manual labeling process 

 

4.2 T-SNE Validation Schemes 

This scheme adopts T-SNE algorithm on linear-divided row vectors which 

represent MRIs. These vectors are projected to a 2D or 3D coordinate system 

that is suitable for human interpretation [6]. A cluster dividing, and combination 

action is then performed after the projection step, which essentially is to find 

out all potential clusters from the projected dots and analyze whether each 

Figure 10 Chessboard Pattern observed in CFD benchmark 
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cluster is a new category in addition to the previous 8 types or it belongs to any 

of an original type. The dividing and combination action would generate a new 

set of clusters which can be considered as correct labels (reasons will be 

discussed later). 

In a CNN model, all Convolution layers, Max-Pooling/Average-Pooling layers 

and Dropout layers work together to compress a raw image to a series of 

matrices which are going to be fed into a simple neural network (NN) to get 

final classification. In the NN, there will be one input layer, some hidden layers 

and one output layer. The last hidden layer (right before the output layer) 

generates the important decision features of an input (MRI). For example, if a 

NN has 128 nodes in its last hidden layer, every input has a 1×128 row vector 

which exhibits the most important decision-making features of an image. 

As discussed in Section II, applying T-SNE on raw images does not provide a 

reasonable result. This is mainly due to the T-SNE tries to linearly classify the 

raw image dataset which is not linearly divided. The original images has 

different pattern, rotation and translation which causes the dataset seems like 

randomly distributed in its own hyperspace. Nevertheless, the row vector that 

is generated by the last hidden layer in a NN is ensured linear-divided. The 

observation comes from the analysis of the Activation layer (the output layer of 

a NN). The Softmax function that is utilized in this layer is a linear classifier, 

which implies that the input of this layer should be linear-divided to activate 

the Softmax function. Based on the observation, the row vector which is the 

input of the Activation layer is then linear-divided. 

According to the previous analysis and observation, now 2 basic conclusions 

are summarized:  

1. The row vector that is generated by the last hidden layer is the key 

decision-making features of the final Activation layer, and at the same time, it 

is linear-divided.  

2. To employ T-SNE to a dataset, the dataset should be linear-divided. 

Thus, the T-SNE can comprehensively reduce the data dimension to a visually 

identifiable coordinate system.  
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The first conclusion clearly indicates that, the original traffic pattern images can 

be replaced by the row vectors without any misleading. And the new dataset 

which contains all row vectors of MRIs, is ensured linear-divided. Then the new 

dataset can be fed into the T-SNE algorithm to perform data point projection 

from a hyperspace to a 2D or 3D space and get a visually identifiable coordinate 

system. The reason why 2D is chose in this paper instead of 3D is because there 

is not much differences between a 2D result and a 3D result. 

There would be many clusters in the coordinate system (more than 8). After 

analyzing each of the clusters respectively, we find that the images that should 

be in the same category are distributed in different area in the coordinate 

system. This phenomenon happens usually because of the background noise 

affect. Therefore, the last step is to combine these distributed images together 

as pure mathematical theory (T-SNE) cannot correctly group similar MRIs 

together in one boundary clear area. Before combination processing, the data 

dots should be divided into as many clusters as possible. Then the detailed 

segmented clusters could be combined to form some new clusters due to their 

common features or similar patterns from human visualized method. 

Practical application of this validation scheme is discussed in Chapter 5. A to 

validate our proposed original 8 patterns. 
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Chapter 5: Evaluation Methodology and Results 

 

5.1 Training and Verification of CNN Model 

CNN has proven to be a successful in dealing with multi-label classification of 

images with distinct features, i.e. well-defined edges and visually identifiable 

patterns [7] [10] [12]. In this paper the CNN model presented in Figure 11 is 

used for multi-label classification of the input traffic pattern image to the 

identified basic types discussed in Chapter 4. The model contains 8 layers 

including output layer. The model employed for traffic pattern classification 

uses two layers of convolution with each having 32 filters of size 5×5 and a 

stride length of 1, generating a feature map matrix of dimension 32×61×487. 

The Max-Pooling layer uses a 3×3 filter with a stride length of 1, this reduces 

the dimension of feature map matrix from 32×61×487 to 32×20×162 retaining 

enough feature information. The features learned can be visualized on a trained 

model by backtracking on to the input image in consideration. The mapping of 

features on to an original diagonal pattern image is shown in Figure 12, the top 

image is the original image and the bottom image is the feature extracted by the 

CNN model for classification. The dots in the feature map image are the 

diagonal edges of the original image. The down sampled feature map matrix is 

flattened to a vector of length 103680. This flattened vector is fed into a Neural 

network with an input layer, hidden layer and output layer, in Figure 11. The 

input and hidden layer is referred to a fully connected layer which generates the 

final classification.  

Figure 11 Convolutional Neural Network model used for feature extraction and 

classification 
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The CNN model in Figure 11 provides the probability weights of a given 

random input traffic pattern with respect to identified eight basic types. The 

weights obtained identifies the closeness of the input with the basic types 

described in Chapter 4. The closeness information is useful in understanding if 

the random input image has only one significant pattern or if it is a mix of more 

than one identified type. There could be cases where the traffic pattern is 

equiprobable and significant (i.e. consider the output probabilities obtained are 

[2/8,2/8,2/8,1/24,1/24,1/24,1/24,1/24,1/24] for a given input image, the 

equiprobable and significant out patterns are with probabilities 2/8,2/8 and 

2/8).This means that the given random input image has properties of the 3 basic 

types which are equal in significance, and this property can be considered in 

designing NoC. 

The training and test data set are obtained by transforming the traffic pattern 

images. The types obtained as discussed in Chapter 4 are very similar in nature 

(i.e. traffic pattern belonging to diagonal pattern almost look alike in major 

cases when seen them as an image). This is a serious problem during training 

as the data set obtained is not significantly huge to isolate the problem by dis-

regarding the duplicate images. The model trained with this characteristic  

dataset over-fits very easily (i.e. model designed only to solve a particular  

Figure 12 Final features used for making decision on diagonal pattern 
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dataset, when new types are introduced behavior is unpredictable). The model 

is considered over-fit when the training loss is less than validation loss. The  

Figure 13 is the training and validation loss plot for 10 epochs, it clear that the 

validation loss crosses training loss at epoch 2. The CNN model easily over-fits 

with minimal training epochs. KFold Cross Validation mechanism is proven to 

perform better with limited data set and are similar in nature [9]. Figure 14 

shows the plot of training loss and validation loss of the trained CNN model 

with KFold Cross Validation with 10 folds. The final model uses the weights 

which produces best results of the 10 folds (iterations). The model achieves 

96.6% training accuracy and 98.8% validation accuracy on training and 

validation data set. A 94.24% accuracy on test dataset. This is better than 93% 

precision obtained with SVM using rbf kernel. The main advantage of CNN 

model is that, it provides an opportunity to verify the visual classification which 

is not possible with with SVM.The results obtained are based on the 

classification obtained by visual classification.  

To validate the visual classification and identify new types if missed any in 

visual classification, the method discussed in Chapter 4 to discover new cell 

types is used. In this method the final feature vector of the fully connected layer 

is fed into the unsupervised clustering algorithm T-SNE to visualize and 

Figure 13 Training and Validation loss plot 
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identify new clusters. In the paper under discussion we have used the 128-bit 

final decision vector for identifying new clusters. The Figure 15 is the plot of 

T-SNE applied on 128-bit vector feature vector used for final decision in 

classification. From the plot we can clearly identify seven clusters. 

 

 

 

 

 

 

Figure 14 Training and Validation plot with K-Fold Cross 

Validation 

Figure 15 Clusters obtained by using T-SNE dimensional reductionality on 

128-bit feature vector 
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Chapter 6: Conclusion 

In this study, we have identified that the traffic patterns in NoC is not just a 

mere M2F2M but consists of many definitive patterns which are revealed on 

collecting the traffic data at various granularities. We have nailed down the 

granularity at which most of the pattern information is retrieved with minimal 

loss of information, collecting the traffic data at Kernel level. To have more 

visual intuition the collected traffic data is represented as matrices. 

Representing the collected data in matrices opens wide variety options for 

processing and classifying the collected data into groups based on some unique 

characteristics. The unique characteristics used could be eigenvalues, 

correlation coefficients, visual appearance based on transforming the matrices 

to image etc.., grouping based on visual characteristic is more suitable due to 

the properties exhibited by the collected data set. 

The visually based grouping obtained by transforming collected traffic matrices 

can be used as an input to CNN models which have proven their ability in 

obtaining features and classifying the images. Usage of CNN gives the 

opportunity of validating the initial visual based classification/grouping used 

for training the CNN model, by connecting the final feature vector of the fully 

connected layer of CNN as an input to an unsupervised learning model such as 

T-SNE.  

The basic traffic patterns obtained initially is based on the default configuration 

as show in (default configuration table). The basic traffic patterns identified 

could be impacted by changes in scheduling policy, network size and memory 

controller placement. Executing same set of benchmark application with 

changing simulator configuration yields interesting results, there is no change 

in the patterns observed it remains same as that of the default simulator 

configuration.  

The CNN model used for classifying input traffic pattern to be identified into 

eight classifications yields an accuracy of 96.6% on training data set, 98.8% on 

validation data set and an 94.2% accuracy on the test data set. The results 
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obtained are promising and encourages usage of deep learning techniques in 

identifying the similarity in studying traffic pattern behavior.  
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