

AN ABSTRACT OF THE THESIS OF

Abhishek Ramamurthy for the degree of Master of Science in Electrical and Computer

Engineering presented on November 19, 2018.

Title: Characterizing On-Chip Traffic Patterns in Throughput Processors: A Deep

Learning Approach.

Abstract approved:

__

Dr. Lizhong Chen

The machine learning and deep learning models have been very lightly explored in

analyzing the behavior of On-Chip network traffic. These models have proven their

potential in pattern recognition, classification etc... In this paper we analyze the

spatial pattern that each workload exhibits in its life cycle during execution. We

address the problems with current studies in analyzing workload behavior and

provide a refined path with less variables to tackle while analyzing the behavior. We

have identified the abstraction at which analyzing the traffic behavior will result in

low loss of information and could still use image recognition like approach to solve

the On-Chip traffic pattern characterizing problem.

©Copyright by Abhishek Ramamurthy

November 19, 2018

Characterizing On-Chip Traffic Patterns in Throughput Processors: A Deep Learning

Approach

by

Abhishek Ramamurthy

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented November 19, 2018

Commencement June 2019

Master of Science thesis of Abhishek Ramamurthy presented on November 19, 2018

APPROVED:

Dr. Lizhong Chen, representing Electrical and Computer Engineering

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Abhishek Ramamurthy, Author

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Dr. Lizhong Chen of the Electrical and

Computer Engineering at Oregon State University. Professor Chen always encouraged

me in coming up with new approaches in solving the problem and supported me with

needed guidance when I had any question related to research or writing. He consistently

allowed this paper to be own my work but steered me in right direction whenever he

thought I needed it.

I would like to express my deep gratitude to Yunfan Li PhD candidate at Oregon State

University, for his continuous support in completing this project. The Idea in

consideration of this work was first proposed by him, and he always gave the guidance

needed in understanding the expected result of the project. Along with giving me the

project guidance, he also helped in understanding how to present the work done and

gave valuable inputs in making this thesis a presentable work.

My friends have supported me, in listening to all the problems that I have during the

completion of the project. They have even spent time discussing about ideas on how to

solve the problems and even suggested approaches that could best fit the problem I was

trying to solve. Risheek, Anurag and Durga have always given me feedback and

suggested techniques to try, in searching better results.

Finally, I must express my very profound gratitude to my parents for providing me with

unfailing support and continuous encouragement throughout my years of study and

writhing this thesis. This accomplishment would not have been without them Thank

you.

Abhishek Ramamurthy.

CONTRIBUTION OF AUTHORS

The end goal of the project is to formulate a generic intelligent model to help Network

on Chip (NoC) designers in deciding the kind of architecture to employed to achieve

better performance for the application under consideration. In this project, we have

proposed Traffic Pattern (TP) of throughput processors as an independent entity in

studying the performance of the throughput processors. The measure of similarity in

TP between high performance computing applications (HPC) can be used a metric to

in designing NoC architectures to achieve better performance in applications with high

similarity on a common hardware. To collect the NoC traffic data needed for analysis

we have used GPGPU-Sim simulator. We have successfully achieved transforming the

normalizing the collected data to be visually analyzable. The visual analysis of the

collected dataset has revealed that there exists similarity in traffic pattern between HPC

benchmarks in consideration (RODINIA, PARBOIL and NVIDIA SDK). We have

trained supervised machine learning and deep learning models on the visually

analyzable data set and validated the visually obtained labels using un-supervised

learning models.

TABLE OF CONTENTS

Chapter 1: Introduction .. 1

Chapter 2: Background and Motivation ... 3

2.1 Limited existing characterization .. 3

2.2 Benefits of characterization .. 4

2.3 Challenges ... 6

Chapter 3: Transforming Traffic data for Deep Learning .. 12

Chapter 4: Traffic Type Identification ... 18

4.1 Visual Identification ... 18
4.1.1 Column Pattern .. 19
4.1.2 Row Pattern .. 20
4.1.3 RC Pattern ... 20
4.1.4 Group Pattern ... 21
4.1.5 Diagonal Pattern ... 21
4.1.6 Stair Pattern ... 22
4.1.7 Split Pattern .. 22
4.1.8 Chessboard Pattern .. 23

4.2 T-SNE Validation Schemes ... 23

Chapter 5: Evaluation Methodology and Results ... 26

5.1 Training and Verification of CNN Model ... 26

Chapter 6: Conclusion ... 30

Bibliography .. 32

LIST OF FIGURES

1. Plot of Prinicpal Component Analysis by transforming raw traffic pattern to a

suitable form. .. 7

2. Plot of T-Distributed Stochastic Neighboring embedding by transforming raw

traffic pattern to a suitable form.. 8

3. Column Pattern observed in Gaussian benchmark ... 19

4. Row Pattern observed in BFS benchmark ... 20

5. RC Pattern observed in Sorting Networks benchmark 20

6. Group Pattern observed in Reduction benchmark ... 21

7. Diagonal Pattern observed in AlignedType bechmark 21

8. Stair Pattern observed in Histogram benchmark ... 22

9. 9 Split Pattern observed in AlignedType benchmark 22

10. Chessboard Pattern observed in CFD benchmark ... 23

11. Convolutional Neural Network model used for feature extraction and

classification ... 26

12. Final features used for making decision on diagonal pattern 27

13. Training and Validation loss plot ... 28

14. Training and Validation plot with K-Fold Cross Validation 29

15. Clusters obtained by using T-SNE dimensional reductionality on 128-bit

feature vector .. 29

file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553792
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553792
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553793
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553793
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553794
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553795
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553796
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553797
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553798
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553799
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553800
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553801
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553802
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553802
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553803
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553804
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553805
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553806
file:///C:/Users/Abhishek/Downloads/thesis_template2018.docx%23_Toc531553806

LIST OF TABLES

1. Cumulative Pattern of Gaussian benchmark [4] .. 4

2. Kernel-3 Pattern of Gaussian benchmark collected between 600-700

Execution cycles [4] .. 5

3. Kernel-1Pattern of Gaussian benchmark [4].. 6

4. Kernel-3 Pattern of Gaussian benchmark [4]... 6

5. Cumulative Pattern of Sorting Networks benchmark [1] 10

6. Pattern Collected between 75k-85k execution cycles of Sorting Networks

benchmark [1] ... 10

file://///Users/abhishekramamuthy/Downloads/thesis_template2018.docx%23_Toc530669122
file://///Users/abhishekramamuthy/Downloads/thesis_template2018.docx%23_Toc530669123
file://///Users/abhishekramamuthy/Downloads/thesis_template2018.docx%23_Toc530669123
file://///Users/abhishekramamuthy/Downloads/thesis_template2018.docx%23_Toc530669124
file://///Users/abhishekramamuthy/Downloads/thesis_template2018.docx%23_Toc530669125
file://///Users/abhishekramamuthy/Downloads/thesis_template2018.docx%23_Toc530669126
file://///Users/abhishekramamuthy/Downloads/thesis_template2018.docx%23_Toc530669127
file://///Users/abhishekramamuthy/Downloads/thesis_template2018.docx%23_Toc530669127

1

Chapter 1: Introduction

The advent of machine learning and deep learning models have paved a way to

find solutions to the problems which exhibit characteristics that are unique and

specific to the data set in consideration. Image recognition is one such

application in the machine and deep learning models. These models have

become so matured that even slightest of variation could be picked when trained

accurately for a data set. This trending methodology has given an alternative

way for solving problems which deal with identifying patterns and enabling use

of computers to extract pattern information, in contrast to establishing complex

mathematical relations to achieve the same. Characterizing an On-Chip traffic

can be treated like the image recognition application by representing

characteristic feature in a 2D space.

In recent days research on characterizing workload behavior to analyze the

traffic pattern of On-Chip network is focused towards analyzing group of

metrics such has dynamic instruction count, memory usage, number of CTAs

and PTXs [2][3][8]. Since there is no one area to be focused, it is not feasible

to represent instruction count, number of CTAs, PTXs and memory usage as

2D matrix to employ Image recognition methodology to extract unique features.

In addition, each pixel in an image has relationship between its neighbors. With

the above metrics it is difficult to establish a reasonable 2-Dimensional

relationship like that of an image, to employ image recognition like approach

to analyze patterns.

The Processing Elements and Memory controller’s arrangement in On-Chip

network is like that of an Image when represented as matrix, i.e. each pixel

position as Processing elements in relation with Memory controllers (adjacency

matrix of a graph). Instead of light intensity each position in the graph is filled

with memory requests from Processing Elements during execution of a given

application. Creating an adjacency like matrix between Memory Controllers

and Processing elements with number of memory requests as data, it is easier

to visualize the local hot spots. The adjacency matrix can be transformed to a

heat map image. Transforming memory requests matrix to image opens the

2

opportunity in solving the pattern identification using methods like that of

image recognition application.

Optimizing On-Chip network design is a critical part to obtain better

performance out of the throughput processors. Critical resource distribution to

cater memory requests plays a major role in reducing traffic congestion in On-

Chip network. The applications executed on throughput processors have

assumed to exhibit Many-to-few-to-Many memory request pattern in recent

days research. This approach doesn’t give any insight on the characteristics that

could be extracted to optimize the On-Chip network design for application

specific designs. In this paper, we study the memory request pattern behavior

at different granularities to come up with a reasonable level to study the

information with minimal loss. This will help us analyze the traffic pattern

behavior at better extent to identify hot spots generated by application over the

execution period and allocating more resources to these hot spots for faster

processing of memory requests.

3

Chapter 2: Background and Motivation

2.1 Limited existing characterization

Recent studies toward analyzing workloads of high-performance computing

treat the traffic pattern of all benchmarks as strict many-to-few-to-many

(M2F2M). The memory requests of Gaussian benchmark [4] is represented in

Table 1, the X-axis of the table describes different processing elements (PEs)

and Y-axis denotes the memory controllers (MCs). This kind of table in the

following sections are referred as memory request tables (MRTs). Each number

that is populated in a cell of Table 1 is accumulated over the execution cycle

time of Gaussian to quantitatively exhibit the total communication between a

pair of PE-MC. The pattern that is demonstrated in Table 1 is inferred as

M2F2M traffic pattern. However, if the collection of traffic pattern statistics is

fine-grained, i.e. if traffic patterns are collected over a few hundreds of cycles

during the execution of a benchmark, the situation could be more sophisticated

than a naive M2F2M pattern. Table 2 shows the request traffic in the kernel-3

of Gaussian benchmark [4] during 600-700 cycles. In these 100 cycles, only

PE-19 sends requests to MC-1, MC-2 and MC-3. This example indicates that

in some periods, a Few-to-Many-to-Few pattern is formed in the NoC of a

throughput processor. Preliminary experimental results across wide range of

benchmarks from Rodinia [4], NVIDIA SDK [1] and Parboil [11] clearly

demonstrate that the M2F2M pattern does not always exist especially when

fine-grained collection is employed. It is thus the NoC designs of throughput

processors which primarily focus on M2F2M pattern do not always serve the

purpose of complete coverage to achieve optimized resource utilization,

reduction in occupancy area and minimized power consumption.

A majority of the previous studies propose metrics which are driven by the

factors such as number of PTXs, CTAs, dynamic instruction count, memory

usage which are architecture independent as claimed by Goswami et al. and

architecture dependent metrics proposed by Adhinarayan et al. for a given

benchmark using unsupervised learning like principal component analysis

4

(PCA) [13] and hierarchical clustering method to identify similarities across

benchmarks in the same suites [2, 3, 8]. . The studies till now, have not

considered analyzing the traffic flow in NoC as it is classified as M2F2M

pattern. In the proposed approach, NoC traffic is dissected to identify the

individual components which make up the M2F2M. Another potential NoC

architecture design parameter that could impact the performance is traffic

pattern, current research for analyzing the workloads do not consider this

parameter when characterizing.

This paper emphasizes analyzing the common features of traffic pattern which

exist among the benchmarks presented in Rodinia, NVIDIA SDK and Parboil.

The experimental results of the paper serve as a purpose to design NoC

architectures optimized for the identified common traffic patterns, to achieve

improved performance in areas of power consumption, resource utilization and

reduced on-chip area for NoC.

2.2 Benefits of characterization

Traffic patterns of a benchmark in throughput processors can be considered as

a single metric in the system, which directly exposes the intensity of the reply

packets that are flowing across the NoC. By characterizing this metric to a

limited group based on the common features that are observed, it is possible to

cluster the benchmarks into a single or multiple group obtained by treating

traffic pattern as a single metric. This opens up the opportunity of designing a

 PE1 PE30 PE31 PE56

 MC1 1 1 3 5

MC2 3 2 3 2

MC3 4 3 6 2

MC4 1 2 5 3

MC5 0 1 1 1

MC6 2 0 2 0

MC7 4 2 4 0

MC8 0 2 5 7

Table 1 Cumulative Pattern of Gaussian benchmark [4]

5

NoC optimized to specific group to derive maximum performance out of

throughput processors for the specified benchmarks.

The MRTs collected from the tested benchmarks clearly illustrate some

common patterns which will be presented later. On the basis of the common

patterns, the MRTs are capable of classifying to a few categories. Hence, the

NoC in throughput processors can be optimized based on the categories instead

of based on naive M2F2M pattern. Thus, the designers are able to focus on some

specific areas in the NoCs to emphasize the features of those non-M2F2M

patterns, and the system performance can be improved significantly as the NoC

tuning is more fine-grained.

In a throughput processor, request traffic pattern and reply traffic pattern are

symmetric (i.e. request packets are same in number as reply packets). This paper

analyzes and characterizes the traffic pattern of throughput processors by

considering the reply traffic that is sent from each MC to each PE. The collected

traffic pattern is analyzed at defined stages of granularity i.e. towards the

completion of execution, defined execution cycle period and at CUDA kernel

of a given benchmark. The best granularity is then selected for identifying a set

of basic traffic patterns for varies of benchmarks. Our testing results obtained

by studying reply traffic is applicable for request traffic as pattern is symmetric,

thus it serves as a complete package to analyze the overall traffic pattern

characteristic of throughput processors.

Table 2 Kernel-3 Pattern of Gaussian benchmark collected between 600-700 Execution cycles

[4]

 PE1 PE18 PE19 PE20

MC1 0 0 1 0

MC2 0 0 2 0

MC3 0 0 2 0

MC4 0 0 0 0

MC5 0 0 0 0

MC6 0 0 0 0

MC7 0 0 0 0

MC8 0 0 0 0

6

However, there is very limited importance given to traffic patterns in

characterizing the workload in recent research. This gives the opportunity to

understand the impact of traffic patterns on NoC performance. Although there

are many different mathematical approaches that can be potentially used for

identifying similarities i.e. to group the observed traffic patterns on some

similar characteristic features. The particularity and complexity of traffic

pattern data in throughput processors drive the selection of the mathematical

method to be more challenging.

2.3 Challenges

The traffic patterns of benchmarks exhibit variety of characteristics for patterns

collected at different granularity. For instance, the traffic pattern collected over

a range of execution cycles is not same as that of cumulative pattern collected

at the completion of execution. Similarly, the traffic pattern collected at

individual kernel rarely exhibit similarity to the cumulative pattern. As will be

 PE1 PE2 PE3 PE4 PE5 ...

 MC1 0 5 0 0 0 ...

MC2 0 3 0 0 0 ...

MC3 0 2 0 0 0 ...

MC4 0 2 0 0 0 ...

MC5 0 2 0 0 0 ..

MC6 0 2 0 0 0 ...

MC7 0 2 0 0 0 ...

MC8 0 2 0 0 0 ...

Table 4 Kernel-3 Pattern of Gaussian benchmark [4]

 PE1 ... PE19 PE20 PE21 ...

 MC1 0 ... 4 0 0 ...

MC2 0 ... 3 0 0 ...

MC3 0 ... 2 0 0 ...

MC4 0 ... 2 0 0 ...

MC5 0 ... 2 0 0 ..

MC6 0 ... 2 0 0 ...

MC7 0 ... 2 0 0 ...

MC8 0 ... 2 0 0 ...

Table 3 Kernel-1Pattern of Gaussian benchmark [4]

7

discussed in Section III, the traffic pattern collected at kernel level retains the

important characteristic features for a given benchmark and is applicable across

the benchmark suites.

In this research, the MRTs collected are treated as matrices due to the number

of options available for processing to extract similarities. Transforming

matrices to a suitable form provides options for visual analysis and could be

used as an input for deep learning models.

The problem to be addressed once having the accurate granularity for collecting

the MRTs is on grouping similar data set based on the unique characteristics

observed. The existing mathematical methodologies for finding similarities

across matrices like correlation, identifying eigen vectors and single value

decomposition (SVD) cannot be appropriately employed to classify MRTs. The

correlation co-efficient of MRTs is very low, MRTs which look similar are not

relative in their position of similarity occurrence thus Eigen Value changes for

similar MRTs and SVD is suited in identifying similarity in a given matrix and

not between two matrices. Thus, leading to usage of advanced methods which

are proven in extracting and analyzing similarity information.

Figure 1 Plot of Prinicpal Component Analysis by transforming raw traffic pattern to a

suitable form.

8

The correlation coefficient is used to measure the similarity between matrices.

However, the MRTs collected are not correlated as there are cases where we

observe the MRTs of similar type to be not exactly same due to the mis-match

in the position of occurrence (i.e. the MCs and PEs involved are completely

different). In Table 3 and Table 4 it is clearly evident that traffic pattern of

Kernel-1 of Gaussian [4] is like that of Kernel-3. Although the kernels 1 and 3

have similarities in their traffic pattern, the PEs involved in generating the

traffic pattern are not the same, thus when using correlation to find similarities

between kernel-1 and kernel-3 the mathematical result would show them as

non-similar traffic pattern since correlation is position dependent. The traffic

patterns are not square matrices and the matrix meaning changes due to the

linear and horizontal shift that could be observed for matrices of similar type

thus employing eigen method would yield different characteristic roots for

similar traffic patterns.

The existing unsupervised machine learning model such as PCA, t-distributed

stochastic neighbor embedding (T-SNE) would be an alternative approach for

one to identify similarities between matrices which cannot be observed with

Figure 2 Plot of T-Distributed Stochastic Neighboring embedding by transforming raw traffic

pattern to a suitable form.

9

human visual inspection and obtain groups of similar MRTs. The results

obtained by using PCA and T-SNE do not yield good results as can be observed

in Figure 1and Figure 2. PCA results presented in Figure 1 do not help us in

identifying principle traffic pattern types as majority of the points lie on a

common straight line. After visual inspection of the data points on the straight

line, it appears that there are several mixed traffic patterns that exist. This means

the straight line does not represent a group of similar traffic pattern. The same

circumstance also happens in other small clusters appear in Figure 1. Thus,

usage of PCA to identify clusters on raw MRTs is not a feasible solution. The

T-SNE results referenced in Figure 2 does a better job than PCA, there are

different clusters appear in the figure. However, in our visual inspection to all

MRTs, the clusters which circled in red belongs to the same type, but other

clusters circled in yellow, brown and green consist of various traffic patterns.

Therefore, the T-SNE algorithm still cannot provide a reasonable result to the

traffic pattern classification task.

To use any supervised learning methodology such as support vector machines

(SVM) or convolutional neural network (CNN), the MRTs should be

transformed to a suitable format which can be used as an input and must be

labeled before training in SVM or CNN. SVM works on the principle of curve

fitting in a high dimensional space with pre-verified and labeled dataset but

does not provide any feature extraction benefits which could be used for label

validation to catch missing labels or identify wrong labels as the pre-defined

labels are collected manually.

CNN establishes classification relationship by capturing features using several

filter masks and moving the masks across the input matrix to produce

corresponding output feature matrices. A simple CNN usually consists of many

convolutional layers, pooling layers and a fully connected layer (neural network

layer) which uses the output feature matrices to produce multi-label

classification. Each convolution layer extracts some features from an image

which are representative of a part of the image, such as a unique pattern, edge

10

of main object etc. The feature extraction is done by moving a number of

definitive sized filters over the image. The extracted features are fed into a

pooling layer to down sample the feature map matrix generated from previous

convolution layers, to achieve reduction in dimensionality and avoid risk of

over fitting the model. After passing through several convolutional and pooling

layer combinations, the final output matrices serve as input of the fully

connected layer to make the final classification.

This study analyzes the benchmarks presented in RODINIA [4], NVIDIA SDK

[1] and PARBOIL [11], transform the traffic pattern of each benchmark to a

suitable format for deep learning, and identify the common features in these

traffic patterns. We extend our study to analyze the behavior the same

benchmarks and the effects observed on the traffic patterns due to architectural

changes introduced and present a common subset of features which is used to

represent majority of the traffic patterns observed as combination of identified

basic types. This study will help the further research in designing NoC which

 PE1 PE2 PE3 PE4 PE5 ...

 MC1 86523 85687 86495 85261 86167 ...

MC2 86246 85417 86224 84988 85897 ...

MC3 86823 85975 86797 85546 86455 ...

MC4 86264 85435 86242 85006 85915 ...

MC5 85884 85608 85248 85950 85336 ..

MC6 85168 85349 84988 85688 85077 ...

MC7 86486 86194 85838 86559 85921 ...

MC8 85861 85585 85225 85927 85313 ...

Table 5 Cumulative Pattern of Sorting Networks benchmark [1]

 PE1 PE2 PE3 PE4 PE5 ...

 MC1 0 4 10 11 6 ...

MC2 0 5 9 10 6 ...

MC3 0 4 9 11 5 ...

MC4 0 4 9 10 6 ...

MC5 0 4 8 11 5 ..

MC6 0 3 10 11 8 ...

MC7 0 5 8 12 8 ...

MC8 0 5 11 11 8 ...

Table 6 Pattern Collected between 75k-85k execution cycles of Sorting Networks benchmark

[1]

11

is optimized to the traffic pattern behavior discovered to get optimized

performance

12

Chapter 3: Transforming Traffic data for Deep Learning

This section discusses the traffic pattern data collecting and transforming

process. The traffic pattern data is collected from a cycle-accurate simulator

GPGPUSim in which an ideal NoC configuration is employed to remove the

impact from the architecture of interconnect network. As mentioned before, the

behavior of the traffic pattern is decomposed and analyzed at cumulative stats

collected at the end of execution of each benchmark (cumulative pattern), at a

defined range of execution cycles (cycle-ranged pattern) and at a granularity of

kernel (kernel pattern). The experimental results show that kernel pattern is the

most suitable granularity to reflect runtime traffic flow in a benchmark without

losing any detailed traffic information. The aggregated data also needs to be

augmented to images to fulfill the input requirement of a deep convolution

network.

First, an ideal NoC (any packet can travel through a network in 1 cycle without

any conflict) is configured in experiments based on impact consideration.

Interconnection network in throughput processors has various topologies,

routing policies, scheduling or allocating schemes. All the configurations have

significant performance effect on a throughput processor system. To better

focus on the traffic statistical data and to lower the impact from NoC in a

throughput processor, a perfect interconnection network is thus employed

during the following experiments.

Before digging into the data analysis, it is imperative to have a proper

granularity to collect end-to-end communication data firstly as different

granularity could emerge different traffic pattern. This research is eventually

for understanding runtime traffic status so that it is possible to optimize

interconnection network based on this information. Therefore, an accurate but

not redundant granularity is urgently needed. Previous research considers the

traffic flow in a throughput processor mainly as M2F2M because the Cumulated

Pattern in most of benchmarks show this feature. For example, the Table 5 is a

Cumulative Pattern collected at the completion of SortingNetwork [1], which

shows an exact M2F2M pattern. Other benchmarks explicitly display the same

13

result as SortingNetwork as well. However, these results (tables) do not

comprehensively offer detailed runtime traffic status. Table 6 gives the traffic

behavior from cycle 75000 to 85000 of SortingNetwork. This preliminary test

presents that during the execution of SortingNetwork, the intermediate traffic

flow could be different from the Cumulated Pattern. Not only SortingNetwork,

but also some other benchmarks have the same characteristic. Therefore, a more

fine-grained granularity should be proposed to provide accurate runtime traffic

information.

The most fine-grained granularity is cycle accurate which means that the MRTs

would be generated in each execution cycle. However, a benchmark could have

thousands of thousands cycles and not every cycle has MRs, some cycles have

only few MRs. This naive approach of analyzing every cycle would lead to a

huge dataset and some of the data points are meaningless. Although considering

this research is going to use CNN as a classifier so the dataset for training a

CNN model should be as large as possible, the data redundancy should also be

considered and kept as low as possible to avoid CNN model over-fitting

problem, this can also be considered as over-fine-grained issue. The preliminary

tests on several benchmarks show that continuous cycles would have same

traffic performance; in other words, all these cycles can be combined and be

treated as one MRT. Therefore, to efficiently reduce the dataset redundancy, it

is better to group continuous cycles together so that less duplicated data points

are existing in the dataset.

There are three typical methods that can be employed for grouping cycles

together. The first and the most accurate method is that manually track all cycles

in each benchmark, then group those continuous cycles with similar traffic

pattern together. After grouped, the new traffic pattern table is an accumulated

table throughout these cycles. As each individual cycle in this group has the

same traffic pattern, the newly generated cumulated table has exactly same

traffic pattern as any single cycle in the group. However, the major drawback

of this approach is the time consuming. To accurately group continuous cycles

together, a manual action should be taken to monitor every cycle in each

14

benchmark. Considering that there are at least 30,000 more total execution

cycles in each benchmark, the hours that are spent on this manual action is not

acceptable. Since the most accurate method cannot be exploited due to the

unsustainable high time consuming, an efficient cycle grouping scheme is

needed. The second approach of grouping scheme is group cycles by a fixed

number or fixed percentage of the total cycles. This fixed grouping scheme is

much faster than the first one, but it is not accurate and may cause some

information loss or mixture. This is because if a fixed number of cycles is

decided e.g. 1000 cycles, the granularity of this number is various across

different benchmarks. For example, in CFD benchmark, it has in total

2263660634 cycles, which 1000 is only 4.41×10−5% of benchmark. Therefore,

a fixed number of cycles is not a feasible approach. An alternative method is to

determine a fixed percentage of the total execution cycles. This method is to

address the granularity issue that happens in the fixed number of cycles

approach. With a fixed percentage, the granularity across all benchmarks is

decided, but this scheme could lead to over-fine-grained issue. Taking Gaussian

benchmark [4] as example, it has in total 27447 cycles, if the percentage is

determined as 10%, then every 2745 cycles an MRT is generated. But the

preliminary test on the Gaussian, during the 2745 cycles, only a few MRs is

generated, which cannot be correctly recognized as a comprehensive pattern.

The comprehensive approach for using number of cycles or percentage of total

cycles is to decide number of cycles/percentages of total cycles for each

benchmark. However, this is also a time-consuming approach as a proper

number of cycles/percentages of total cycles should be decided by a manual

action which performs on each benchmark. This manual action will take the

same time as the first approach (manual group approach) since the proper

number or percentage can only be determined after all cycles are evaluated

individually. Therefore, these 2 approaches are either time consuming or cannot

accurately reflect traffic pattern.

After carefully analyzing the preliminary results, the Kernel Pattern approach

is proposed to address the previous 2 issues. Each MRT that is generated as a

15

cumulative traffic at each kernel execution ensures that the results collected are

easy to analyze and consumes less time due to limited dataset. This approach

gives the base for fixing the granularity for analysis, because usually every

kernel in a benchmark has a unique task, such as loading data into the device

memory, or processing a part of the computation in an algorithm (e.g.

processing a part of a graph in Breath-First-Search algorithm). Therefore,

within one kernel, the traffic flow is almost the same, so an MRT of a kernel

has abundant information (number of request packets) to form an obvious traffic

pattern. In another words, the Kernel Pattern represents the traffic flow within

a program kernel, which in addition, if a NoC design is optimized to the traffic

pattern of the kernel, the design is optimized to all program kernels with the

same behavior. At the same time, there are more than 5000 kernels in total for

all benchmarks, which indicates that even though the original data points (in

terms of Cycle Accurate Pattern) are shrunk, there are still relatively large

dataset that is enough for training a simple CNN model. Even though by

employing the Kernel Pattern approach, a proper granularity of the traffic

pattern is collected, the raw MRT cannot be directly used by any CNN model

because of its specific characteristics which will be discussed in the following

paragraph.

The input of a CNN model should be a matrix, the MRT serves this purpose.

As introduced before, the first dimension of a MRT represents the MCs and the

second dimension is the PEs, in the experiments of this paper, there are 56 PEs

and 8 MCs, which implies that the dimension size of a MRT is 8×56. This

dimension size is smaller than a typical input size of a CNN model, such as

224×224, and cannot be divided by a typical convolutional filter size perfectly.

The smaller input size leads to obscure features in a traffic pattern which

eventually considerably impacts the recognition accuracy of a CNN model. And

non-divisible dimension size also affects the model suitability to this traffic

pattern dataset. To address these 2 issues concurrently, a data augmentation for

MRT should be proposed. Another major challenge that causes a MRT cannot

be directly feed in a CNN model is data normalization. It is obvious that

16

different kernels in a benchmark have different density of the E2E traffic, and

different benchmarks also have different number of kernels, with various of

total traffic loads. For example, AlignedType benchmark [1] has about 1461367

cycles in its Kernel-275 while BFS benchmark [4] has only 9826 cycles in its

Kernel-2. Since the traffic pattern is determined in a kernel-based unit, all

kernels will form a dataset and be treated equally, this means that every kernel

(MRT) is considered as an independent data point in the dataset. The criteria of

a CNN model training dataset should have been normalized to reduce the effect

of data and make the model focus on the data variation trend. The traditional

data normalization scheme is based on the entire dataset, which is the scheme

would firstly flatten all matrices in a dataset to a row vector, and then combine

all row vectors together to be a new 2D matrix and finally normalize each

column in this new matrix individually. This approach potentially treats each

column in the new matrix as the same. However, in the traffic pattern analysis,

every element only depends on its own vector, which is the original MRT, so

the traditional normalization approach could add unnecessary information, even

some misleading information after it is applied on the Kernel Pattern dataset.

Therefore, the proposed augmentation scheme should not lose any information

that appears in an MRT, because any information loss could potentially lead to

wrong traffic pattern recognition in CNN model, and provide a proper data

normalization method as well. An approach that could augment a matrix

without losing detailed information is heat map coloring.

Heat map coloring scheme can achieve tinting every element in a matrix based

on the matrix variation trend [5]. After applying heat map on a matrix, a new

image would be generated where each color block represents an original

element in the matrix as seen in Figure 10. The lighter a color block is, the

higher the traffic intensity original element has. Therefore, by employing heat

map scheme, all MRTs are transformed to images which contain a lot of color

squares. This scheme can directly eliminate data normalization problem

because all images are generated only based on the corresponding matrix, all

color squares are in proportion to the original elements in the matrix. Therefore,

17

the generated images reflect the data variation trend in the corresponding

matrices directly, but all data points now are ranged in 0-255. When an original

element is transformed to a color square, the data is also augmented. The

dimension size of the original matrix, as mentioned before, is 8×56, and each

of the element is transferred to a color square with dimension size of 8×8. When

heat map tinting is completed on a matrix, the size of the generated image

becomes 69×495 which achieves data amplification without losing original

information. Another benefit comes with heat map transformation is that the

generated image is more convenient and intuitive to do manual visualized

identification and validation.

When all MRTs are transformed to Heat Map Images (HMIs), half of the deep

learning dataset is created. However, CNN model needs pre-labeled dataset to

perform backpropagation training process. Therefore, a manual data labeling

should be used firstly and then a scientific label validation approach is also

employed to ensure the pre-label dataset is convincing.

18

Chapter 4: Traffic Type Identification

This chapter focuses on adding correct label to each data in the dataset. As

emphasized before, any dataset that needs to be used for a CNN model has 2

major parts, one is the data itself (or matrix), the other is the corresponding label

which stands for the category that this data (matrix) belongs to. It is important

to have an accurate label for each data in a dataset because the training process

(backpropagation training) relies on the loss between the predicted label and the

ground truth label. Therefore, an accurate and correct ground truth label affects

the final CNN model accuracy and reliability significantly. In this section, there

are 2 steps to generate a convincing dataset with correct label for each data

point. The first step is labelling all data with visualized evaluation, it is

understandable since there is no previous research or work on this field. The

second step is to ensure the previous visual labeled data is correct and

convincing

4.1 Visual Identification

Although the color tinting scheme is introduced in the previous section, gray

scale tinting scheme is referred in this research when generating a Heat Map

Image. This is because the gray scale tinting scheme is more proper to the

original raw data (MRT) which are single channel (2D) matrices. When a MRT

is transformed to a colored (RGB-based) image, it becomes a 3 channels matrix.

For example, an original MRT is 8×56×1, the generated image size will be

69×495×3, where the 3 is the Red, Green and Blue channel respectively.

However, because MRT only has one channel, this augmentation does not

provide more information, and on contrary, the data variance would decrease

due to the more color channels. The meaning of employing Heat Map scheme

is to normalize the original MRT and to augment the data variance without

information loss. The gray scale tinting scheme only generates a single channel

image which every pixel is from 0 to 255. This approach is suitable to the

original MRT of dimension 8×56×1 and can reflect data variance within a table

accurately. In a gray scale scheme, the brighter the block, the more intense the

19

communication between the pair (MC and PE). In another words, a white block

represents intensive communication between the corresponding MC-PE pair

and a black block means there is no traffic communication existing in the pair.

The heat map images are evaluated independently to find out each

distinguishable traffic pattern image category. Figure 3 to Figure 10 represent

8 different categories which have been classified manually, they are: 1) Column

Pattern; 2) Row Pattern; 3) Row+Column Pattern (RC Pattern); 4) Group

Pattern; 5) Diagonal Pattern; 6) Step Pattern; 7) Split Pattern; 8) Checkerboard

Pattern. Each Image represents a Heat Map of the transformed MRT collected

at kernel granularity. Not all images can be classified into the 8 categories, the

rest images which cannot be visually classified is temporally put aside and will

be evaluated their correct affiliation later. These manually identified traffic

pattern categories would be strictly verified its correctness and generalization

in the follow subsection.

To get more insight of these traffic pattern categories, especially to understand

architecture level meaning of a pattern, every category of traffic pattern is

analyzed in detailed about their meaning and formation reason.

4.1.1 Column Pattern

A Column Pattern represented in Figure 3 only 1 PE sends requests and receives

replies from all MCs during the execution of a kernel. This traffic pattern can

be considered as a Few-to-Many-to-Few pattern and it leads to a distribution

and receiving hotspot. The main reason that causes this pattern is due to the

smaller number of thread blocks. Usually only one thread block is generated in

the kernels which have Column Pattern, and the thread block is assigned to a

PE and eventually only this specific PE has communication with MCs. A

special case is more than one MCs do not have communication, this situation

Figure 3 Column Pattern observed in Gaussian benchmark

20

happens when data addresses in the thread block are only distributed in some

given memory chips.

4.1.2 Row Pattern

Figure 4 shows a Row Pattern, which means that only 1 MC sends replies to all

PEs in a kernel. This is a typical M2F2M pattern because the very few (1 or 2)

MCs have traffic communication with all PEs. The pattern is generated mainly

because of imbalanced memory accessing or data address mapping scheme. For

example, in BFS application, every kernel processes a layer of a graph. Because

of the different number of nodes in each layer, the traffic intensity for each

kernel is highly variance. And when the dataset of BFS is loaded into the main

memory of a throughput processor, all the nodes of a layer is loaded into a given

memory chip, which causes in a specific kernel, the corresponding memory chip

that is stored the data of the processing layer, is accessed much frequently than

other memory chips (around 4X in our experiments). This is a typical memory

accessing imbalance which caused Row Pattern.

4.1.3 RC Pattern

A RC Pattern is typically looking like a combination of Row Pattern and

Column Pattern as Figure 5 represents. This pattern means that one memory

chip is accessed more than any other chips and some PEs have intensive

memory accessing to all MCs. According to the analysis in Row Pattern, the

row pattern part in the RC Pattern is also because of imbalanced memory

accessing (data address mapping). The column pattern behavior could be

potentially caused by different reasons. One reason is that the thread block

scheduling policy assigns more thread blocks to some special PEs due to its

Figure 4 Row Pattern observed in BFS benchmark

Figure 5 RC Pattern observed in Sorting Networks benchmark

21

own mechanism. For example, if a simple Round-Robin scheduling is

employed in the experimental system, and some PEs finish the first-round

assigned thread blocks earlier than other PEs, then the thread block scheduler

would assign more thread blocks onto these PEs in a Round-Robin fashion, if

some PEs always finish their assigned thread blocks faster than other PEs, the

faster PEs would be assigned more thread blocks than other PEs, consequently

these PEs would have more communication which results in lighter block in

these columns. RC Pattern can be considered as a M2F2M pattern but with one

or multiple hotspots in the interconnection network.

4.1.4 Group Pattern

As depicted in Figure 6, Group Pattern is a pattern with a continuous group of

PEs have communication with all MCs. In general, Group Pattern is a more

generalized case of Column Pattern. However, in manual labeling process,

these 2 classes are not very similar, this is the reason why this 2 patterns are

classified in 2 different categories, and this assumption will be further

validated in the following subsection.

4.1.5 Diagonal Pattern

The Figure 7 describes a typical Diagonal Pattern. In this pattern, it is obvious

that each MC has its own corresponding PE array. The index of start PE in each

array is continuous and every array has the same interval. This distinctive

pattern happens usually due to each thread block processes a part of the dataset

and the whole dataset is evenly distributed in all memory chips. It is noteworthy

that Figure 7 only gives a typical Diagonal Pattern, which means that in this

category, some other similar cases may exists, but they could have different

Figure 6 Group Pattern observed in Reduction benchmark

Figure 7 Diagonal Pattern observed in AlignedType bechmark

22

interval and start PE indices. However, the interval in all arrays should be the

same and the start PE indices should be an increasing sequence.

4.1.6 Stair Pattern

In Figure 8, a general case of Stair Pattern observed in histogram benchmark.

From the description of benchmark obtained in [1], demonstrates interop of

rendering targets between Direct3D10 and CUDA. In the observed stair pattern,

each SM interacts with 3 contiguous MCs i.e one possible MCs sequence is 0,1

and 2. The pattern is observed in some kernels of the histogram benchmark,

since the nature of this benchmark is to deal with 3D values, the possible reason

for 3 MCs serving a SM is to improve the processing speed of 3D vectors which

are placed in 3 separate DRAMS connected to individual MC.

4.1.7 Split Pattern

In Figure 9 presents an Ideal case for Split pattern observed in Aligned Type

Benchmark. In the considered architecture of 8 MCs and 56 SMs, the observed

Split Pattern each SM either requests data packets from upper half (0,1,2,3) or

lower half (4,5,6,7) MCs leaving the other half unused. The even distribution

of traffic pattern intensity across upper or lower half of MCs is mainly due to

the distribution of CTAs to SMs; based on the data collected with preliminary

research its appears that each SM in Kernel-65 of AlignedType benchmark has

75 CTAs assigned to it. The AlignedType benchmark tests the performance of

the GPGPU on aligned and mis-aligned data types, the preliminary results

reveal that the data of interest for each thread block are accessed in DRAMs in

sequential order. This explains the reason as to why a particular SM raises equal

Figure 8 Stair Pattern observed in Histogram benchmark

Figure 9 Split Pattern observed in AlignedType benchmark

23

number of memory requests to MCs of a given half. Interestingly the pattern

observed reveals that, if a SM raises memory requests to the upper half of MCs,

then its neighboring SM will keep the lower half of MCs busy.

4.1.8 Chessboard Pattern

The Chessboard Pattern is a special pattern which in our experiment only exists

in CFD benchmark. Its characteristics are like the features of Diagonal Pattern,

but in the manual classification we consider it as a new class because of its

formation reason. Different from the reason of Diagonal Pattern, Chessboard

Pattern forms because of the CFD has intra-PE communication through device

memory. Therefore, the light block pairs indicate that for a specific PE, either

odd or even index memory chips contain the needed data.

The previous 8 categories do not cover all images, some other images have no

clear pattern, so they have been temporarily classified into a class called

Random. The coverage rate (the total number of classified images over the total

number of images in dataset) will be evaluated later in the Evaluation section.

The current 8 types are not the final decision since they are not scientifically

verified with a comprehensive and convincible approach. In the next

subsection, such a method is proposed to validate the correctness and accuracy

of manual labeling process

4.2 T-SNE Validation Schemes

This scheme adopts T-SNE algorithm on linear-divided row vectors which

represent MRIs. These vectors are projected to a 2D or 3D coordinate system

that is suitable for human interpretation [6]. A cluster dividing, and combination

action is then performed after the projection step, which essentially is to find

out all potential clusters from the projected dots and analyze whether each

Figure 10 Chessboard Pattern observed in CFD benchmark

24

cluster is a new category in addition to the previous 8 types or it belongs to any

of an original type. The dividing and combination action would generate a new

set of clusters which can be considered as correct labels (reasons will be

discussed later).

In a CNN model, all Convolution layers, Max-Pooling/Average-Pooling layers

and Dropout layers work together to compress a raw image to a series of

matrices which are going to be fed into a simple neural network (NN) to get

final classification. In the NN, there will be one input layer, some hidden layers

and one output layer. The last hidden layer (right before the output layer)

generates the important decision features of an input (MRI). For example, if a

NN has 128 nodes in its last hidden layer, every input has a 1×128 row vector

which exhibits the most important decision-making features of an image.

As discussed in Section II, applying T-SNE on raw images does not provide a

reasonable result. This is mainly due to the T-SNE tries to linearly classify the

raw image dataset which is not linearly divided. The original images has

different pattern, rotation and translation which causes the dataset seems like

randomly distributed in its own hyperspace. Nevertheless, the row vector that

is generated by the last hidden layer in a NN is ensured linear-divided. The

observation comes from the analysis of the Activation layer (the output layer of

a NN). The Softmax function that is utilized in this layer is a linear classifier,

which implies that the input of this layer should be linear-divided to activate

the Softmax function. Based on the observation, the row vector which is the

input of the Activation layer is then linear-divided.

According to the previous analysis and observation, now 2 basic conclusions

are summarized:

1. The row vector that is generated by the last hidden layer is the key

decision-making features of the final Activation layer, and at the same time, it

is linear-divided.

2. To employ T-SNE to a dataset, the dataset should be linear-divided.

Thus, the T-SNE can comprehensively reduce the data dimension to a visually

identifiable coordinate system.

25

The first conclusion clearly indicates that, the original traffic pattern images can

be replaced by the row vectors without any misleading. And the new dataset

which contains all row vectors of MRIs, is ensured linear-divided. Then the new

dataset can be fed into the T-SNE algorithm to perform data point projection

from a hyperspace to a 2D or 3D space and get a visually identifiable coordinate

system. The reason why 2D is chose in this paper instead of 3D is because there

is not much differences between a 2D result and a 3D result.

There would be many clusters in the coordinate system (more than 8). After

analyzing each of the clusters respectively, we find that the images that should

be in the same category are distributed in different area in the coordinate

system. This phenomenon happens usually because of the background noise

affect. Therefore, the last step is to combine these distributed images together

as pure mathematical theory (T-SNE) cannot correctly group similar MRIs

together in one boundary clear area. Before combination processing, the data

dots should be divided into as many clusters as possible. Then the detailed

segmented clusters could be combined to form some new clusters due to their

common features or similar patterns from human visualized method.

Practical application of this validation scheme is discussed in Chapter 5. A to

validate our proposed original 8 patterns.

26

Chapter 5: Evaluation Methodology and Results

5.1 Training and Verification of CNN Model

CNN has proven to be a successful in dealing with multi-label classification of

images with distinct features, i.e. well-defined edges and visually identifiable

patterns [7] [10] [12]. In this paper the CNN model presented in Figure 11 is

used for multi-label classification of the input traffic pattern image to the

identified basic types discussed in Chapter 4. The model contains 8 layers

including output layer. The model employed for traffic pattern classification

uses two layers of convolution with each having 32 filters of size 5×5 and a

stride length of 1, generating a feature map matrix of dimension 32×61×487.

The Max-Pooling layer uses a 3×3 filter with a stride length of 1, this reduces

the dimension of feature map matrix from 32×61×487 to 32×20×162 retaining

enough feature information. The features learned can be visualized on a trained

model by backtracking on to the input image in consideration. The mapping of

features on to an original diagonal pattern image is shown in Figure 12, the top

image is the original image and the bottom image is the feature extracted by the

CNN model for classification. The dots in the feature map image are the

diagonal edges of the original image. The down sampled feature map matrix is

flattened to a vector of length 103680. This flattened vector is fed into a Neural

network with an input layer, hidden layer and output layer, in Figure 11. The

input and hidden layer is referred to a fully connected layer which generates the

final classification.

Figure 11 Convolutional Neural Network model used for feature extraction and

classification

27

The CNN model in Figure 11 provides the probability weights of a given

random input traffic pattern with respect to identified eight basic types. The

weights obtained identifies the closeness of the input with the basic types

described in Chapter 4. The closeness information is useful in understanding if

the random input image has only one significant pattern or if it is a mix of more

than one identified type. There could be cases where the traffic pattern is

equiprobable and significant (i.e. consider the output probabilities obtained are

[2/8,2/8,2/8,1/24,1/24,1/24,1/24,1/24,1/24] for a given input image, the

equiprobable and significant out patterns are with probabilities 2/8,2/8 and

2/8).This means that the given random input image has properties of the 3 basic

types which are equal in significance, and this property can be considered in

designing NoC.

The training and test data set are obtained by transforming the traffic pattern

images. The types obtained as discussed in Chapter 4 are very similar in nature

(i.e. traffic pattern belonging to diagonal pattern almost look alike in major

cases when seen them as an image). This is a serious problem during training

as the data set obtained is not significantly huge to isolate the problem by dis-

regarding the duplicate images. The model trained with this characteristic

dataset over-fits very easily (i.e. model designed only to solve a particular

Figure 12 Final features used for making decision on diagonal pattern

28

dataset, when new types are introduced behavior is unpredictable). The model

is considered over-fit when the training loss is less than validation loss. The

Figure 13 is the training and validation loss plot for 10 epochs, it clear that the

validation loss crosses training loss at epoch 2. The CNN model easily over-fits

with minimal training epochs. KFold Cross Validation mechanism is proven to

perform better with limited data set and are similar in nature [9]. Figure 14

shows the plot of training loss and validation loss of the trained CNN model

with KFold Cross Validation with 10 folds. The final model uses the weights

which produces best results of the 10 folds (iterations). The model achieves

96.6% training accuracy and 98.8% validation accuracy on training and

validation data set. A 94.24% accuracy on test dataset. This is better than 93%

precision obtained with SVM using rbf kernel. The main advantage of CNN

model is that, it provides an opportunity to verify the visual classification which

is not possible with with SVM.The results obtained are based on the

classification obtained by visual classification.

To validate the visual classification and identify new types if missed any in

visual classification, the method discussed in Chapter 4 to discover new cell

types is used. In this method the final feature vector of the fully connected layer

is fed into the unsupervised clustering algorithm T-SNE to visualize and

Figure 13 Training and Validation loss plot

29

identify new clusters. In the paper under discussion we have used the 128-bit

final decision vector for identifying new clusters. The Figure 15 is the plot of

T-SNE applied on 128-bit vector feature vector used for final decision in

classification. From the plot we can clearly identify seven clusters.

Figure 14 Training and Validation plot with K-Fold Cross

Validation

Figure 15 Clusters obtained by using T-SNE dimensional reductionality on

128-bit feature vector

30

Chapter 6: Conclusion

In this study, we have identified that the traffic patterns in NoC is not just a

mere M2F2M but consists of many definitive patterns which are revealed on

collecting the traffic data at various granularities. We have nailed down the

granularity at which most of the pattern information is retrieved with minimal

loss of information, collecting the traffic data at Kernel level. To have more

visual intuition the collected traffic data is represented as matrices.

Representing the collected data in matrices opens wide variety options for

processing and classifying the collected data into groups based on some unique

characteristics. The unique characteristics used could be eigenvalues,

correlation coefficients, visual appearance based on transforming the matrices

to image etc.., grouping based on visual characteristic is more suitable due to

the properties exhibited by the collected data set.

The visually based grouping obtained by transforming collected traffic matrices

can be used as an input to CNN models which have proven their ability in

obtaining features and classifying the images. Usage of CNN gives the

opportunity of validating the initial visual based classification/grouping used

for training the CNN model, by connecting the final feature vector of the fully

connected layer of CNN as an input to an unsupervised learning model such as

T-SNE.

The basic traffic patterns obtained initially is based on the default configuration

as show in (default configuration table). The basic traffic patterns identified

could be impacted by changes in scheduling policy, network size and memory

controller placement. Executing same set of benchmark application with

changing simulator configuration yields interesting results, there is no change

in the patterns observed it remains same as that of the default simulator

configuration.

The CNN model used for classifying input traffic pattern to be identified into

eight classifications yields an accuracy of 96.6% on training data set, 98.8% on

validation data set and an 94.2% accuracy on the test data set. The results

31

obtained are promising and encourages usage of deep learning techniques in

identifying the similarity in studying traffic pattern behavior.

32

Bibliography

[1] CUDA 9.2 Now Available, 2018.

[2] V. Adhinarayanan and W.-c. Feng, "An automated framework for characterizing and subsetting

GPGPU workloads," in Performance Analysis of Systems and Software (ISPASS), 2016 IEEE

International Symposium on, 2016.

[3] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang and K. Skadron, "A characterization

of the Rodinia benchmark suite with comparison to contemporary CMP workloads," in

Workload Characterization (IISWC), 2010 IEEE International Symposium on, 2010.

[4] S. Che, B. M. Beckmann, S. K. Reinhardt and K. Skadron, "Pannotia: Understanding irregular

GPGPU graph applications," in Workload Characterization (IISWC), 2013 IEEE International

Symposium on, 2013.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee and K. Skadron, "Rodinia: A

benchmark suite for heterogeneous computing," in Workload Characterization, 2009. IISWC

2009. IEEE International Symposium on, 2009.

[6] M. B. Eisen, P. T. Spellman, P. O. Brown and D. Botstein, "Cluster analysis and display of

genome-wide expression patterns," Proceedings of the National Academy of Sciences, vol. 95,

pp. 14863-14868, 1998.

[7] P. Eulenberg, N. Köhler, T. Blasi, A. Filby, A. E. Carpenter, P. Rees, F. J. Theis and F. A. Wolf,

"Reconstructing cell cycle and disease progression using deep learning," Nature

communications, vol. 8, p. 463, 2017.

[8] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich feature hierarchies for accurate object

detection and semantic segmentation," in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2014.

[9] N. Goswami, R. Shankar, M. Joshi and T. Li, "Exploring GPGPU workloads: Characterization

methodology, analysis and microarchitecture evaluation implications," in Workload

Characterization (IISWC), 2010 IEEE International Symposium on, 2010.

[10] A. Kerr, G. Diamos and S. Yalamanchili, "A characterization and analysis of ptx kernels," in

Workload Characterization, 2009. IISWC 2009. IEEE International Symposium on, 2009.

[11] R. Kohavi and others, "A study of cross-validation and bootstrap for accuracy estimation and

model selection," in Ijcai, 1995.

[12] L. v. d. Maaten and G. Hinton, "Visualizing data using t-SNE," Journal of machine learning

research, vol. 9, pp. 2579-2605, 2008.

[13] A. Sharif Razavian, H. Azizpour, J. Sullivan and S. Carlsson, "CNN features off-the-shelf: an

astounding baseline for recognition," in Proceedings of the IEEE conference on computer vision

and pattern recognition workshops, 2014.

[14] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu and W.-m.

W. Hwu, "Parboil: A revised benchmark suite for scientific and commercial throughput

computing," Center for Reliable and High-Performance Computing, vol. 127, 2012.

[15] Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao and S. Yan, "Hcp: A flexible cnn

framework for multi-label image classification," IEEE transactions on pattern analysis and

machine intelligence, vol. 38, pp. 1901-1907, 2016.

[16] S. Wold, K. Esbensen and P. Geladi, "Principal component analysis," Chemometrics and

intelligent laboratory systems, vol. 2, pp. 37-52, 1987.

