

AN ABSTRACT OF THE THESIS OF

Mihai Dan for the degree of Master of Science in Computer Science presented on

June 12, 2019.

Title: Spreadsheet Explanation Through Table Abstraction

Abstract approved:

Martin Erwig

Spreadsheets are a pervasive technology throughout personal and industrial use. Often

times, the user is not the author, contributing to a lack of understanding of the purpose

and functionality of a spreadsheet. Furthermore, the lack of understanding is a major

reason for mistakes in the use and maintenance of spreadsheets.

I present an approach, called explanation sheets, which eases the understanding and

maintenance of spreadsheets. I identify the notion of explanation soundness and show

that explanation sheets which conform to simple rules of formula convergence provide

sound explanations. I also present a practical evaluation of explanation sheets based on

samples drawn from widely used spreadsheet corpora and based on a small user study.

In addition to facilitating the understanding of spreadsheets, I describe the process of

inferring explanation sheets from a spreadsheet. By means of assessing example spread-

sheets, I present a set of inference rules to describe the relationship between a spreadsheet

and its explanation.

c©Copyright by Mihai Dan
June 12, 2019

All Rights Reserved

Spreadsheet Explanation Through Table Abstraction

by

Mihai Dan

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented June 12, 2019

Commencement June 2019

Master of Science thesis of Mihai Dan presented on June 12, 2019.

APPROVED:

Major Professor, representing Computer Science

Head of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Mihai Dan, Author

ACKNOWLEDGEMENTS

I would like to thank my adviser Martin Erwig for giving me the opportunity to pursue

higher learning while providing me with guidance and help through any problems I had

faced. I would also like to thank Jácome Cunha, Danila Fedorin, and Alex Grejuc for

their help in shaping explanation sheets.

Lastly, I’d like to thank my parents and friends for giving me encouragement and

being there when I needed advice or a helping hand.

TABLE OF CONTENTS
Page

1 Introduction 1

2 Literature Review 5

2.1 Calculation View . 5

2.2 A Domain Terms Visualization Tool for Spreadsheets 7

2.3 Visualizing Spreadsheets using Dataflow Diagrams 8

2.4 Excel Extensions . 10

2.5 Explanations in Other Domains . 11

3 Explanation Language for Spreadsheets 13

3.1 Spreadsheets . 13

3.2 Explanation Principles . 13

3.3 Explanation Sheets . 15

3.4 Explaining Spreadsheets with Explanation Sheets 17

4 Artifact Evaluation and User Study 20

4.1 Artifact Evaluation . 20

4.1.1 Guiding the Design of Explanations 20

4.1.2 Applicability and Impact . 21

4.2 User Study . 21

4.2.1 Design . 22

4.2.2 Results . 24

4.2.3 Discussion . 25

5 Explanation Inference 27

5.1 Development of the Inference Rules . 27

5.2 Evaluation of Explanation Inference . 32

6 Comparison to Related Works 36

7 Conclusion 40

Bibliography 41

TABLE OF CONTENTS (Continued)
Page

Appendices 45

A Explanation Inference in Prolog . 46

LIST OF FIGURES
Figure Page

1.1 Payroll Spreadsheet . 2

1.2 Top: Payroll Spreadsheet with Label Abstraction; Bottom: Explanation

Sheet for the Payroll Spreadsheet, demonstrating label abstraction and a

zoom. 3

2.1 Calculation View . 6

2.2 Visualization of a Sales Report spreadsheet. 8

2.3 Example Data Flow Diagrams . 9

3.1 Earnings Per Share Spreadsheet . 16

3.2 Formula Explanations . 18

3.3 Explanation Semantics . 19

4.1 Errors found by the Explanation Checker 21

5.1 Grade-Book Example . 28

5.2 Explanation Inference, Version 1 . 29

5.3 Modified Grade-Book Example . 29

5.4 Modified Grade-Book Example . 30

5.5 Explanation Inference . 32

LIST OF TABLES
Table Page

4.1 Data about the study participants. 23

4.2 Average times and scores in the empirical study 24

LIST OF ALGORITHMS
Algorithm Page

Chapter 1: Introduction

Studies estimate that software maintenance costs make up 60% [26] to 80% [28] of the

total cost of software over its life cycle. Complementary research also shows that software

developers spend most of their time trying to understand source code [29].

Spreadsheets are a versatile tool used by companies and individuals with a wide

range of applications. However, many of the users are not the original creators of the

spreadsheets they work with, incurring overhead cost in trying to parse and understand

the content presented by the spreadsheets. Studies focused on spreadsheet usage have

shown that 85% of study participants did not create the spreadsheet they frequently

use, instead had them handed down from other colleagues or past coworkers [16]. The

same study shows that 70% of those who use these legacy spreadsheets have trouble

understanding and using spreadsheets, spending hours browsing them.

Previous research has sought out solutions to some of these problems. Kankuzi

extensively studied the mental model of spreadsheet users and promotes techniques and

tools that reflect these models, such as the abstraction of cell references in formulas

to user defined names [23]. Other approaches in this regard have tried to support the

maintenance of spreadsheets by systematizing their evolution [7, 11, 8]. However, these

techniques require learning and adoption of new languages and tools to be effective,

which is likely to cause unnecessary overhead cost. Moreover, applying these techniques

to legacy spreadsheets is difficult as they exhibit an inherent structure.

Therefore, I propose an alternative approach to understanding spreadsheets, so-called

explanation sheets. Explanation sheets are themselves a type of spreadsheet, with certain

details abstracted to highlight the underlying computational structure. An explanation

sheet does not require the user to adopt new languages, rather uses the inherent structure

of a spreadsheet to aid understanding, leading to less difficulty while maintaining and

using spreadsheets. Explanation sheets can also be retroactively applied to existing

spreadsheets, tackling the issue of misunderstanding of legacy spreadsheets.

When people try to understand a spreadsheet, they commonly face the time-consuming

and error-prone task of resolving cell references to make sense of what formulas in a

2

Figure 1.1: Payroll Spreadsheet

spreadsheet do. This task is often exacerbated in spreadsheets which contain a distract-

ing and overwhelming volume of data and by the fact that referenced cells often contain

formulas that reference other cells in different parts of the spreadsheet.

This process of “reference chasing” in spreadsheets is necessary, since references are

specified using row and column indexes, which do not provide any information about the

value or meaning of the referenced cell. Therefore, to make sense of what a reference

represents, the user has to scan the spreadsheet for the indicated row and column. This

may require a user to scroll a long distance and in many cases jump across multiple cells

to make sense of the initial reference.

To address this issue, I introduce label abstraction in the spreadsheet explanation

model, which replaces raw index references with labeling information when possible.

With this abstraction, formula references become more clear, thus making the spread-

sheet easier to understand.

Consider Figure 1.1, which shows the formula view of a spreadsheet with payroll

information for employees within a company. The spreadsheet was adapted from a

study on spreadsheet error detection and correction [4] and is a simplified version of

a real-world scenario; one can imagine a similar spreadsheet be used for hundreds of

employees and tracking other data such as commission earned. The regular pay for each

employee is calculated by multiplying their regular hours and pay rate. Similarly, the

overtime pay is calculated by multiplying overtime hours, 1.5, and pay rate. The total

is simply calculated by adding the results of regular and overtime pay computations.

Columns C-G contain a sum of the respective category in row 8.

Applying label abstraction to the payroll spreadsheet results in the spreadsheet shown

3

Figure 1.2: Top: Payroll Spreadsheet with Label Abstraction; Bottom: Explanation
Sheet for the Payroll Spreadsheet, demonstrating label abstraction and a zoom.

in Figure 1.2. For example, the original formula to compute overtime pay for Adams is

=B3*1.5*D3

where cell B3 refers to the Pay Rate and cell D3 refers to the Overtime Hours. The

equivalent formula in the explanation sheet is

=Pay Rate*1.5*Overtime Hours

Label abstraction increases readability by giving context to computation, especially as

formula complexity increases. Labels are more expressive than cell references in providing

meaning for a formula, removing the need for reference chasing.

We can observe that while the values in rows 3-6 differ, the formulas with labels are

all identical. Such a pattern occurs quite frequently. The different values in the differ-

ent rows do not contribute much to the understanding of the represented computation.

Furthermore, the redundancy that results from the repetition is rather distracting.

To address this shortcoming, I introduce the concept of a zoom, which is the result of

compressing sections of a spreadsheet with similar content. This compression can be ob-

served in Figure 1.2, where rows 3-6 from the original spreadsheet have been compressed

into one row. Such compressed rows contain two kinds of information. First, columns

(such as E-G) that contain in the uncompressed sheet a single repeated formula contain

just that single formula. Second, columns (such as A-D) with different values in different

4

rows contain a range that captures all values found in the respective column. The same

zoom compression technique can, of course, be applied to repeated columns.

It is important to note that both transformations preserve the essential structure and

key computing elements of the spreadsheet. This preservation is intentional and signifi-

cant to explaining spreadsheets, since users will already be familiar with the structure.

A spreadsheet that is the result of label abstraction and zoom compression is called an

explanation sheet.

This thesis makes the following contributions.

1. A new approach to facilitating understanding of spreadsheets through the con-

cept of explanation sheets, discussed in Chapter 3, along with principles observed

through the process of creating explanation sheets which can be applied to expla-

nations in other domains.

2. A study focused on assessing the expressiveness of explanation sheets, as well as

the applicability to real-world examples, discussed in Chapter 4.

3. A set of inference rules used to automate the process of creating explanation sheets,

discussed in Chapter 5.

I will discuss related works in Chapter 2 and provide a comparison with explanation

sheets in Chapter 6. Lastly, I discuss conclusions drawn from this thesis and potential

future work in Chapter 7.

5

Chapter 2: Literature Review

In this chapter, I introduce and describe research related to explanation sheets. The

related works mostly reside within the spreadsheet domain, however there are aspects of

explanations in other domains which can be applied to spreadsheets. A comparison to

explanation sheets is provided in Chapter 6.

The most prominent feature expressed by explanation sheets and not found in the

related works is the facilitating of spreadsheet explanation while retaining the original

structure of the spreadsheet. While these works, as well as explanation sheets, provide

an alternate representation of the computational structure found within a spreadsheet,

explanation sheets play on the user familiarity of the spreadsheet form. This structure

preservation is an essential key to providing good explanations as it allows the user to

remain in the same context as the original spreadsheet and create a mental mapping of

the computational structure.

2.1 Calculation View

Sarkar et al. describe an approach to preventing spreadsheet errors by presenting the

underlying computational structure to a user [27]. While spreadsheets are a great tool

for displaying data, they come with the cost of abstracting away from the computation

that created the data. For example, a user may see the value 42 in cell E7, but the

underlying formula is B7*C7+D7. This aspect makes spreadsheets harder to understand,

debug or explain.

While this research does not directly aim at providing explanations, it offers a more

concrete representation of the computational structure of the spreadsheet. The research

focuses on capturing this structure in a so-called Calculation View, presented to the

user in addition to the original spreadsheet. The Calculation View can be used to

set range assignments to specific formulas, define and reference names for cells, and

view calculations more directly. Figure 2.1 shows an example of cell naming and range

assignments in the Calculation View. While some of the functionality presented by the

6

Figure 2.1: Calculation View

Calculation View already exists in spreadsheets, it is hard to perform with the current

tools such as Excel.

The Calculation View presents the user with an alternative representation of the

spreadsheet, which can often be useful when dealing with complicated formulas and

large sheets. While formulas can be viewed in the traditional Excel representation, it

is more verbose and difficult to parse as spreadsheet complexity and size increase. This

system encapsulates the computation in a potentially more usable interface. By allow-

ing user-defined names in the Calculation View, this approach provides the user with

a familiar representation of their data. A user may also notice reoccurring patterns

throughout their spreadsheet structure that would be otherwise missed with the tradi-

tional Excel representation. These factors can play a significant role in understanding

the computational structure of a spreadsheet, thus helping to prevent errors.

The Calculation View is a preventive approach to dealing with spreadsheet errors,

rather than trying to fix them after they have happened. The preemptive approach has

the potential to prevent time-consuming errors from occurring while editing or creating

spreadsheets. When tested in a user study, the Calculation View scored better than

the traditional Excel formula view in task efficiency while creating and debugging a

spreadsheet, cognitive load, and self-efficacy. Sarkar et al. showed that the Calculation

View helps users better understand spreadsheets, even if they were not the original

author.

7

2.2 A Domain Terms Visualization Tool for Spreadsheets

Kankuzi and Sajaniemi introduced a visualization tool for spreadsheets intended to re-

lieve users from spreadsheet details and allow them to focus on the application domain

[21]. In earlier research, Kankuzi and Sajaniemi discovered that spreadsheet authors have

(at least) three mental models of a spreadsheet: the real-world model, which is comprised

of general knowledge, the domain model, which contains knowledge about the problem

domain, and the spreadsheet model, which contains knowledge of the expressions and

data relationships in a spreadsheet [20].

The tool presented by the authors aims to ease the mapping between the problem

domain and the spreadsheet by injecting the domain narrative into the spreadsheet. The

domain narrative is inferred using the labels found throughout the spreadsheet.

The tool achieves this abstraction through a series of five steps. First, the tool

displays formulas with cell references abstracted to label information in a box below

the original formula cell. As shown in Figure 2.2, the formula in cell C9, originally

SUM(C5:C8), is shown as SUM(Jan | James Bourne ... Jan | Jasmine Hunt), with column

and row names being separated by “|”. Second, a change in the domain narrative, such

as renaming a label, is automatically reflected in the spreadsheet visualization. Third,

in an effort to aid recognition of related cells, any cells referenced in a formula are

automatically highlighted such that their background color matches that of the formula,

also shown in Figure 2.2.

Fourth, all formula cells are marked with a pink right border to help distinguish

between plain text cells and formula cells. The pink highlighting can also give a general

overview of the computational structure found in the spreadsheet. Fifth, the tool is

superimposed on the spreadsheet display, instead of existing as a separate entity. This

feature alleviates the need to consult a separate visualization and determine its corre-

spondence to the spreadsheet.

This tool was implemented as an add-on to Microsoft Excel in order to take advantage

of users familiarity with existing tools. The tool has potential in aiding a user while

creating or editing a spreadsheet, by highlighting the computational flow and underlying

structure of the spreadsheet in terms derived from the user-created domain narrative.

Leveraging the familiarity expressed through the visualization, the tool also has the

potential to aid with spreadsheet comprehension. However, this aspect was not assessed

8

Figure 2.2: Visualization of a Sales Report spreadsheet.

in the authors’ research.

2.3 Visualizing Spreadsheets using Dataflow Diagrams

Hermans et al. describe an alternative approach to aid the understanding of spreadsheets

by using data-flow diagrams [17]. The authors were able to discern how to best represent

a spreadsheet in a compact and easy-to-understand way by studying the problems and

information needs of professional spreadsheet users via data-flow diagrams [18].

Data-flow diagrams model how data moves from one process to another, as well as

display the relationships amongst processes and data. The authors describe three differ-

ent data-flow views: global, worksheet, and formula. The global view shows worksheets

within a spreadsheet and the dependencies between them. An example of this can be

observed in Figure 2.3a. An arrow from worksheet A to worksheet B indicates that a

formula in B refers to a cell found in A.

The authors noticed that data tends to be segmented into data blocks within a

worksheet, usually separated by empty space. The worksheet view shows data blocks

within a worksheet and the dependencies between them. An example of this view can

be observed in Figure 2.3b, where the worksheet main exam was expanded to worksheet

view. The formula view explicitly shows the relationship between a formula and all cells

it depends on. Each formula in the worksheet can be expanded to this view.

The data-flow diagrams are created through a series of steps, using the spreadsheet

structure and labeling information. The labeling information is used to create a mapping

9

(a) Global view for exam spreadsheet. (b) Worksheet View of main exam.

Figure 2.3: Example Data Flow Diagrams

from cell references to associated label names, later used for abstracting away from cell

references to names familiar to the user. The spreadsheet structure is used to infer the

relationships between different entities found within the spreadsheet, more specifically

cells, formulas, data blocks, and worksheets, as well as create data-flow diagrams. The

cell references found in the data-flow diagrams are then replaced with their corresponding

labels, creating a standalone representation of the computational flow of the spreadsheet.

The authors conducted a study to evaluate the usefulness of data-flow visualization

[18] and found that it has potential to help users understand spreadsheets more easily

than just using the traditional Excel tools. The study also concluded that data-flow

diagrams can be used to observe the computational structure of the spreadsheet, without

having to click on each individual cell to determine dependencies. On top of helping

understand spreadsheets, data-flow diagrams could also be used to spot mistakes in

spreadsheets through observing the various dependencies between spreadsheet entities.

10

2.4 Excel Extensions

Microsoft Excel is a widely used interface for creating, editing, and visualizing spread-

sheets. Due to its ubiquity, users are often familiar with the interface and find it easier

to use compared to other platforms [15]. Therefore, it is reasonable for an application

with the purpose of aiding understanding to be implemented as an extension to Excel.

Canteiro and Cunha present SpreadsheetDoc, an Excel add-in aimed at creating doc-

umentation to improve spreadsheet maintenance and transition between several authors

[5]. The application allows users to identify input and output cells, document ranges

or sections of a spreadsheet, as well as describe computation that occurs in formula

cells. SpreadsheetDoc does not directly alter the spreadsheet structure to provide its

functionality, but is instead integrated into the Excel layout.

Through SpeadsheetDoc, spreadsheet authors are given the ability to document their

computational flow and intended purpose, which could be helpful for future users. Fur-

thermore, the documentation provided by SpreadsheetDoc has the potential to save users

time in understanding the design and functionality of a spreadsheet.

Amalfitano et al. introduce a tool, named EXACT, intended to support the com-

prehension of spreadsheets heavily dependent on Visual Basic for Applications (VBA)

macros [3]. VBA is an event-driven programming language that extends Excel’s built-in

functionality to perform more complex calculations. Spreadsheets are created with the

intent of encoding domain-specific policies and allowing a simple structure to provide

complex functionality. To this end, many users create VBA macros to accomplish vari-

ous specific tasks. Similarly to spreadsheets, VBA programs increase in complexity over

time and as they evolve to accommodate to the problem domain.

EXACT has the ability to extract information about the computation existing within

a spreadsheet, as well as dependencies between cells, and expose it in an interactive inter-

face. This tool has the potential to explain the relationships between a spreadsheet and

its corresponding computational structure, specifically computation achieved through

VBA. While it does not directly explain the purpose of the data, this tool could serve

as a means of documentation and facilitate the understanding of computation.

11

2.5 Explanations in Other Domains

Explanations have been sought after in other domains as well. Walkingshaw and Erwig

present a domain-specific embedded language (DSEL) that models complex casual re-

lationships between events and functions [30]. Cause and effect have been extensively

studied by philosophers for over 2000 years and are fundamental concepts upon which

science and our concept of understanding and explanation rely on. The DSEL allows for

the creation of visual representations of casual relationships to aid researchers examine

causation, as well as model related scenarios with respective outcomes. Furthermore,

the DSEL allows users to extend the notation and add constructs specific to the problem

they are facing.

The DSEL is derived from neuron diagrams, a visual notation used in causation ex-

planation and research. Since researchers in this field are already familiar with neuron

diagrams, the transition process to using the DSEL should be fairly straightforward.

The DSEL can be a powerful explanatory tool because it provides an alternative repre-

sentation of complex relationships, and does so by using artifacts from the domain, with

which an intended user should be familiar with.

Erwig and Walkingshaw employ explanation-oriented programming to create Prob-

ula, a domain-specific, visual language for explaining probabilistic reasoning [13].

Explanation-oriented programming refers to the paradigm of assessing not just what

result a program produced, but how it achieved the result. Probula uses story telling

techniques to guide the user through a probabilistic reasoning problem, from some ini-

tial state to a final state. Furthermore, the language can create equivalent explanations

from one explanation instance, in the event that the user is not satisfied or does not

understand the problem with the current explanation visualization.

Similar to the previous domain-specific language, Probula can be a powerful explana-

tory tool as it creates an alternative representation of complicated probabilistic reason-

ing problems. Additionally, Probula presents the problem in a sequential and easily

digestible format, such that users should not be overwhelmed with information. More-

over, Probula provides additional explanatory value with the ability to create equivalent

explanations when the one presented does not suffice.

In order to further develop the paradigm of explanation-oriented programs, Erwig

and Walkingshaw present a visual language for explaining strategies in game theory

12

[12]. The visual language is based off of the normal form representation of game theory,

which is well known in the economical and social sciences domains. The normal-form is

a matrix representation of possible outcomes dependent on a finite set of possible choices

available to the players of a game. Additionally, the visual language employs the notion

of game traces, which represent a sequence of decisions that result in a certain state.

The language design focuses on the cognitive dimension of traceability, which mea-

sures a notations ability to represent and to relate to its semantics. A notation exhibits

a high degree of traceability when it maps closely to the semantics it is derived from.

Moreover, a notation with high traceability will provide insight in understanding not

just what decision was made, but what steps were taken to get there.

This language can be used as an explanatory tool for game theory as it uses notation

familiar to a user, and provides a sequential flow of how the end result was achieved.

13

Chapter 3: Explanation Language for Spreadsheets

The findings and experiments described in Chapters 3 and 4 were conducted with the help

of my co-authors in [6]. In Sections 3.1 and 3.3 we define spreadsheets and explanation

sheets, respectively. In 3.2 we discuss the principles observed that should guide the

development of explanations. In Section 3.4 we introduce a relationship between the two

languages that captures the notion of explainability.

3.1 Spreadsheets

A spreadsheet is a rectangular grid of cells that contain formulas and values. We can

represent spreadsheets s ∈ S as partial mappings from addresses A = N×N to formulas.

Formulas are either plain values (v ∈ Val), application of operations (ω) to other formu-

las, or references to cells (a ∈ A). The set of values includes an empty value t, which

allows us to distinguish undefined cells that are part of the spreadsheet from undefined

cells on the outside.

f ∈ Fml ::= v | ω(f, . . . , f) | a

Abstracting from the contents of cells, we use the type constructor �α = A → α to

represent sheets indexed by addresses and storing values of type α. A spreadsheet �Fml

is then simply a sheet of formulas. Formulas are evaluated to values Val, and we call the

result of the evaluation of a spreadsheet a value sheet, which is a sheet of values �Val.

The semantics of a spreadsheet language are given by a function J·K : �Fml → �Val that

maps spreadsheets to value sheets.

3.2 Explanation Principles

Informed in part by previous work on explanations [10, 30], but also by the experience

during the creation of spreadsheet explanations, we have identified a number of general

principles that we believe should guide the development of explanations. These principles

are presented in a separate section, so that they can also inform the design of explanations

14

for other languages.

In general, explanations can take on many different forms. Taking a programming

language perspective, we have found it useful to conceptualize an explanation system as

consisting of two languages: (A) the language whose programs are to be explained and

(B) the language in which explanations are expressed. We call the former the subject

language and the latter the explanation language. Correspondingly, we call programs

of the subject language subject programs (or programs for short), and we call programs

of the explanation language explanation programs (or explanations for short). In the

context of spreadsheet explanations, this means that we refer to spreadsheets sometimes

as subject (spread)sheets and that we call their explanations explanation (spread)sheets.

The following four principles were derived from the work on explanation sheets, but

can and should be applied to the design of explanation languages in other domains.

(1) Structure Preservation. An explanation language should retain key subject lan-

guage structures. Subject language structures can provide easy access to an ex-

planation, since users are already familiar with these structures. Moreover, reused

structures facilitate the alignment of explanations with subject programs.

(2) Abstraction. An explanation language should aim at high-level descriptions that

abstract from details of the subject language. Abstraction makes explanations faster

to absorb. It also allows explanations to provide summaries of subject programs.

(3) Partiality. An explanation language should support partial explanations. In other

words, an explanation should not be required to cover all of a subject program.

Partiality supports a gentle-slope approach to explanations, since it allows the incre-

mental construction of more and more complete explanations. Moreover, partiality

allows one to ignore parts that cannot be explained (because they are not under-

stood) or are trivial or unimportant.

(4) Compositionality. An explanation language should support constructing bigger ex-

planations from smaller ones. This requires composition operators for explanations.

Compositionality supports the systematic construction of explanations and the reuse

of explanations. Together with partiality, compositionality supports the distributed

creation of explanations by different people who understand different parts of the

subject program.

15

Note that the first two principles are sometimes in conflict with each other because

abstraction calls for ignoring structures in the subject language. Moreover, there is a

trade-off between the benefits that can be gained from abstraction and the explicitness

and simplicity offered by a detailed and concrete description of a computation. As

illustrated in [10], this problem can be addressed by providing for one subject program

a set of explanations that are related and can be explored in a systematic way.

3.3 Explanation Sheets

Following the structure preservation principle from Section 3.2, we design an explanation

of a spreadsheet to be itself a kind of spreadsheet, a so-called explanation sheet that stores

formula explanations in cells. Following the abstraction principle, an explanation sheet

should abstract from some of the details of the spreadsheet and should thus be smaller

in size. We therefore need a definition that allows one cell in an explanation sheet to

explain many cells in a spreadsheet.

To explain formulas, we need explanations for values, references, and expressions

built by operations applied to other formulas. Since the values in a spreadsheet are

either numbers or strings, which are both ordered domains, we can summarize a set of

values from different cells by a value range (v̄ ∈ Val = Val × Val). Similarly, a set of

references can be summarized by an address range ā ∈ A = A×A). The two addresses

of a range represent opposing corners of a rectangular area, and the region denoted by a

range is given by the function ρ : A → A, which is defined as follows (↓/↑ compute the

minimum/maximum of two numbers).

ρ(((x1, y1), (x2, y2)) = {(x, y) | x1↓x2 ≤ x ≤ x1↑x2
∧ y1↓y2 ≤ y ≤ y1↑y2}

Since labels have been successfully employed in the past for annotating and explaining

cells [9, 2, 24, 22], we use labels to explain a set of references by one or two (row and/or

column) labels ` ∈ Lab = Val ∪ Val × Val. More precisely, we can define a binary

relationship L ⊆ A×A where (a, a′) ∈ L whenever the value S(a) in cell a is considered

to be a label for cell a′. Moreover, we can define a partial labeling function L : A→ Lab

which identities values as labels for cells.

16

Figure 3.1: Earnings Per Share Spreadsheet

L(a′) =

{
S(a) if L−1(a′) = {a}
(S(a1), S(a2)) if L−1(a′) = {a1, a2}

The first case of the labeling function represents examples in which cell a′ is labeled

by a single value S(a). This case occurs when a cell is labeled by either a column or row

label. As a concrete example, recall the payroll spreadsheet in Figure 1.1 in Chapter 1.

Applying the labeling function to cell A3 yields the following.

L(A3) = S(A2) = "Name"

Alternatively stated, the cell A3 is labeled by the value of cell A2, which is "Name".

The second case of the labeling function represents examples in which cell a′ is labeled

by a pair of values (S(a1), S(a2)). This case occurs when a cell is labeled by both a

column and row label. Consider a simplified version of an Earnings Per Share (EPS)

spreadsheet depicting the EPS for three companies over four quarters, shown in Figure

3.1. Applying the labeling function to cell D4 yields the following.

L(D4) = (S(D2), S(A4)) = ("Quarter 3", "Company B")

Alternatively stated, the cell D4 is labeled by the values of cells D2 and A4, which

are "Quarter 3" and "Company B", respectively. Lastly, L(a′) is undefined whenever

L−1(a′) = ∅. This only occurs when there are no cells which label cell a′.

We explain sets of formulas that share a common structure and differ only in their

references by a formula with labels abstracting the references. Finally, we represent

unexplained areas using the special value ⊥ (“unexplained”), which allows us to reduce

potentially large chunks of a spreadsheet to a single row, column, or cell.

17

Thus we obtain the following definition of explanation formulas and the derived

notion of explanation sheets �Xpl .

x ∈ Xpl ::= v | v̄ | a | ā | ` | ω(x, . . . , x) | ⊥

The structure preservation embraced by �Xpl aligns the structure and composition of an

explanation sheet with that of the explained spreadsheet.

3.4 Explaining Spreadsheets with Explanation Sheets

The principal idea of explaining spreadsheets with explanations sheets is to decompose

the spreadsheet into different rectangular areas and then associate with each area a

smaller area of the explanation sheet. In the following we formalize this idea.

A spreadsheet explanation is captured by a so-called zoom X
η
2S, which consists of

an explanation sheet X, a spreadsheet S, and a total function η ⊆ A × A that embeds

the spreadsheet into the explanation, that is, dom(η) = dom(S) ∧ rng(η) = dom(X).

We also require that the explanation formulas in the zoom explain the formulas of the

spreadsheet. The totality of η ensures that every cell in S is covered by a cell in X. We

don’t require zooms to be surjective to allow for “filler cells” in the explanation sheets

that serve no other purpose than to turn explanation sheets into rectangular areas. In

many cases η will actually be surjective, and then it follows that |dom(S)| ≥ |dom(X)|.
The purpose of zooms is to explain a number of similar cells by one cell. Specifi-

cally, when η−1(a) = {a1, . . . , ak}, we use cell a to summarize, or explain, all the cells

a1, . . . , ak. We can formalize this idea through the notion of formula explanation, which

is defined as a binary relationship x 2 f that says an explanation formula x explains a

spreadsheet formula f , see Figure 3.2.

a2 a1, . . . , a2 ak

Rule Value states that any value explains itself. Rule Value Range requires that

a value v explained by a value range (v1, v2) is within the lower-bounding value v1 and

upper-bounding value v2. Similarly, Rule Address Range requires that a cell address

a explained by an address range (a1, a2) resides within the lower-bounding address a1

and the upper-bounding address a2.

Rule Formula requires that the explanation and explained formulas have the same

18

Value

v 2 v

Value Range
v1 ≤ v ≤ v2
(v1, v2) 2 v

Address Range
a1 ≤ a ≤ a2
(a1, a2) 2 a

Formula
x1 2 f1 . . . xn 2 fn

ω(x1, . . . , xn) 2 ω(f1, . . . , fn)

Label
L(a) = `

`2 a

Empty Value

(v1, v2) 2 t
Empty Formula

ω(x1, . . . , xn) 2 t
Unexplained

⊥2 f

Figure 3.2: Formula Explanations

structure. The premise in the rule Label ensures that a label exists. The rules Empty

Value and Empty Formula allow empty values to be explained by ranges and formu-

las, respectively, and the rule Unexplained allows any formula to be left unexplained.

The necessity of the rules Empty Value and Empty Formula is evident when com-

pressing rows or columns which contain empty cells amongst values. This pattern can

be observed when data is missing for certain entries or when empty values are purposely

used for presentation.

For a zoom X
η
2S we require that every formula in X explain all formulas in S that

are mapped to it, that is:

∀a′ ∈ dom(X), ∀(a, a′) ∈ η : X(a′) 2 S(a)

Based on the semantics of spreadsheets, we can define the semantics for explanation

sheets as follows. Since explanation formulas include ranges of values and addresses,

they will generally evaluate to ranges of values.1 To resolve references the semantics

need access to the explanation sheet. Since we also have to account for ⊥ formulas,

the semantics of explanation formulas is of type J·K : Xpl → �Xpl → Val∪{⊥}. The

definition is shown in Figure 3.3. We use the function lV = (↓V, ↑V) to compute the

minimally enclosing range for a set of values V . We also use it for addresses.

The semantics of explanation sheets are then given by the following function

1A single value v can always be represented by a trivial range (v, v).

19

JvKX = (v, v) Jv̄KX = v̄ JaKX = JX(a)KX JāKX = l{JX(a)KX | a ∈ ρ(ā)}

J`KX = lL−1(`)
JxiKX = (v1i , v

2
i) v1i ≤ vi ≤ v2i

Jω(x1, . . . , xn)KX = l{Jω(v1, . . . , vn)KX}
J⊥KX = ⊥

Figure 3.3: Explanation Semantics

J·K : �Xpl → �Val∪{⊥}.

JXK = {(a, v̄⊥) | (a, x) ∈ X ∧ JxKX = v̄⊥}

Note that the semantics also depends on the underlying subject sheet S and a labeling

relationship L to resolve labels (`) in explanation formulas.

Next we introduce the notion of zoom soundness. This is essentially the 2 relationship

for value ranges and values applied to whole sheets that are connected via a function

η. We say that an explanation X is sound for a spreadsheet S under η if JXK
η
2JSK.

This relationship captures the notion that an explanation sheet X covers all cases of the

explained spreadsheet S and that the evaluation of S holds no surprises.

Now we can present our main result, which says that zooms are sound.

Theorem 1 (Soundness) X
η
2S =⇒ JXK

η
2JSK

Note that for any spreadsheet S we always can find a trivial explanation through

the zoom S
id2S,2 which means that any spreadsheet trivially explains itself. However,

such a zoom is not really useful, since it does not achieve any abstraction. Employing

a straightforward ordering on zooms based on the size of the explanation sheet, we can

define that a zoom X1
η12S achieves a higher explanatory reduction than a zoom X2

η22S
if |dom(X1)| < |dom(X2)|. Note that this relationship defines a partial order, and there

isn’t necessarily a single smallest explanation.

2Here id denotes the identity function.

20

Chapter 4: Artifact Evaluation and User Study

4.1 Artifact Evaluation

We employed real-world spreadsheets from two spreadsheet corpora in the design and

evaluation of our approach. We used a 2-step process comprised of refining a preliminary

definition of explanation sheets, discussed in Section 4.1.1, and evaluating the resulting

definition, discussed in Section 4.1.2.

4.1.1 Guiding the Design of Explanations

The design of our spreadsheet explanations was guided in part by real-world example

spreadsheets. With a preliminary definition of explanation formulas and zooms we set

out to explain existing spreadsheets from two repositories.

Specifically, we analyzed 20 randomly selected spreadsheets from [25], which are gen-

erally well-designed spreadsheets created by experts, plus 20 randomly selected spread-

sheets from the Enron spreadsheets corpus [16], which includes more than 15,000 spread-

sheets.

We manually created an explanation spreadsheet for each of the 40 spreadsheets.

The main purpose of this exercise was to see whether explanation formulas are general

enough or maybe even unnecessarily too general and whether our definition of zooms

worked as anticipated.

During this testing phase, the explanation model was revised several times. Specif-

ically, we removed a number of explanation formulas that we originally thought to be

useful because the anticipated situations did either not occur at all or only once or twice

and thus were not justifying a more elaborate notion of explanation formulas. We also

simplified the definition of zooms, which originally were defined recursively allowing for

nested zooms to explain nested loop structures in spreadsheets. But since such a nested

loop structure occurred only in one of the selected examples, we traded the more general

definition for a simpler one.

21

4.1.2 Applicability and Impact

In order to analyze the applicability and effect of spreadsheet explanations, we randomly

selected a new set of spreadsheets from the two sources and used 41 worksheets from 36

different spreadsheets.

We observed that 78% (32/41) of worksheets contained areas that could be com-

pressed and explained by zooms (20 worksheets contained row zooms, 10 worksheets

contained column zooms, and 2 worksheets contained both row and column zooms). Ig-

noring three huge spreadsheets that were basically used as databases and that would

lead to a misleadingly high average, the average size compression achieved by zooms was

64%, and the minimal/maximal achieved compression was 25%/99%.

N Error Type
4 Value (value in S is mapped to a different value in X)
7 Range (value in S is not covered by the range in X)
4 Reference (undefined references in mappings)
1 Label A (value of the label does not match the value in S)
8 Label B (labeling does not correctly abstract reference)

Figure 4.1: Errors found by the Explanation Checker

To verify that the generated explanations were correct, we developed an explanation

checker that implements the definitions from Section 3.4, specifically Figure 3.2. This

explanation checker was applied to all explanations and helped to correct at least one

error in 24 of the 41 manually created explanation sheets. Most of the errors were due to

simple typos, but the checker also found several incorrect range mappings in zooms and

other reference errors. A summary of the kinds of errors that were detected is shown in

Figure 4.1.

4.2 User Study

In this section we describe an initial empirical evaluation we performed to assess the

extent to which explanation spreadsheets help facilitate understanding of computation

in spreadsheets. We describe the design of the user study in Section 4.2.1. The results

are shown in Section 4.2.2 and discussed in Section 4.2.3.

22

4.2.1 Design

Spreadsheets. For this study, we have semi-randomly selected 4 spreadsheets from

3 different sources. The selection process was semi-random in the sense that after ran-

domly choosing a spreadsheet from the source we analyzed it to verify if we could work

with it. The process of analyzing and choosing appropriate spreadsheets is discussed in

the following paragraph. If the spreadsheet was unfit for our purpose, then we would

randomly select another one from the set. The random mechanism used was an Excel

formula on the names of the spreadsheets.

We selected two spreadsheets from the EUSES spreadsheet corpus [14] which has been

extensively used for evaluation of spreadsheet techniques and tools. In this case several

spreadsheets were selected until two appropriate spreadsheets were found. The first two

spreadsheets were discarded as they contained labels, but were otherwise empty, namely

inventory/Inventory-ChangeForm.xls and inventory/MoveEquip.xls. Also, some

were simple databases, which again, are not interesting. Obviously, we can work with

such spreadsheets, but without computations or formulas they are of little interest for this

study. We also obtained a couple of spreadsheets, namely grades/i01.0203.xls and

financial/ExampleFinancial#A8079.xls, that have references to unlabeled ranges of

cells which we cannot yet cope with. We discarded inventory/poult budg.XLS as it

is too big to create its explanation by hand. Finally, the first worksheet from spread-

sheet database/ProQuestUsage2002-03.xls and the only worksheet with content from

spreadsheet homework/G140W04.xls have no restrictions and were used for the study.

The former will be called database and the latter homework.

We initially selected another spreadsheet from [25], namely C9/Butson.xls. How-

ever, this spreadsheet was discarded as it contains references to unlabeled ranges of cells.

We then randomly selected C7/DataSets/Applicants.xls, but since it contains no for-

mulas as it is mostly a database, it was also discarded. Finally, the random selection

elected C9/Data.xls, from which we used the first worksheet, removing the remaining

one from the workbook so we could direct the participants focus to be in line with the

scope of the experiment. We will call this spreadsheet the book spreadsheet.

Finally, we have selected a spreadsheet from the Enron corpus, namely

john arnold 15184 Daily Vega.xlsx. This first spreadsheet has no limitations and

so we used its first worksheet, which required adding the final worksheet as it was a

23

Spreadsheets Created
ID Gender Age Occupation High school College Work Personal

Group 1
11 Male 29-31 researcher 2-3 5-10 >20 >20
12 Male >32 post-doc >5 >10 >20 >30
3 Female 26-28 phd student 6 1 0 5
14 Male 29-31 researcher 20 5 20 15
17 Male 29-31 researcher >20 >10 >10 >10
Group 2
2 Male >32 researcher 0 0 >100 >100
5 Male 23-25 sw. developer >10 >10 >100 >100
6 Female >32 post-doc many many many few
7 Male 26-28 phd student 0 4-5 >30 >30
8 Male 29-31 researcher 5 5 0 20

Table 4.1: Data about the study participants.

dependency. We will call this spreadsheet the enron spreadsheet.

With these spreadsheets we try to have a representative set of real-world spreadsheets.

Indeed, we are using spreadsheets from the Enron corpus, a former energy company, from

EUSES, which contains spreadsheets gathered from the internet, and also from a book

on modeling spreadsheets, which presents well designed spreadsheets.

Subjects Participants were recruited from two different universities. All the invita-

tions were done via email and participants conducted the study on their own. They are

all in the computer science graduate school or are already post-doctoral (referred to as

researcher or post-doc in Table 4.1), except one which as already finished his studies.

Most of them are quite experienced in the use of spreadsheets as they declared to

have created from a few spreadsheets to more than 100 in different stages of their lives

(last four columns in Table 4.1). The total number of participants resulted in 13, which

were divided into two groups, as discussed in the following subsection.

Procedure For each spreadsheet, we created the corresponding explanation. We then

created Package 1 with four spreadsheets: subject database, explanation of homework ,

subject book , and explanation of enron. We also created Package 2 with four comple-

mentary spreadsheets: explanation of database, subject homework , explanation of book ,

24

average time average score
subject explanation subject explanation

database
Q1 1.3 2.1 2.2 2.4
Q2 1.1 2.2 3.0 2.8

homework
Q1 3.1 2.9 2.0 2.6
Q2 2.5 3.7 2.0 1.8

book
Q1 2.1 1.8 3.0 1.0
Q2 1.0 2.9 2.4 1.4

enron
Q1 3.6 5.4 1.2 1.4
Q2 6.8 3.3 1.8 2.0

Table 4.2: Average times and scores in the empirical study

and subject enron. We randomly assigned Package 1 or Package 2 to participants until

we got 6 participants for Group 1 and 7 for the Group 2, so we could have an even

distribution (as much as possible).

This distribution of the spreadsheets was meant to have some participants starting

with explanation sheets (Package 2) and others with subject spreadsheets (Package 1)

so we could eliminate learning effects, if any. We obtained an equal amount of responses

from both groups, providing an even distribution of results.

Furthermore, we prepared a one-page tutorial about spreadsheet explanations. The

participants were instructed to review the tutorial before answering any questions.

For each of the four spreadsheets we asked two questions (instantiated for each par-

ticular case):

Q1 What is being calculated in row/column/cell X?

Q2 How are the values in row/column/cell X calculated?

4.2.2 Results

We present the results of the study in Table 4.2. For each spreadsheet, we present the

average time (in minutes) participants took to answer each of the two questions and the

average score of the answers. We scored each answer with a value from 0 to 3, 0 meaning

wrong answer and 3 meaning entirely correct.

25

4.2.3 Discussion

The user evaluation produced mixed results. Explanation sheets led to higher scores in

3 out of the 4 scenarios, with the exception of book , which produced significantly lower

results. Here we note that the explanation sheet for book employed a column header (S)

as a label where none was provided by the subject spreadsheet. As the participants had

no prior knowledge of explanations, this could have made it hard to infer the meaning

of the column reference, thus impacting understandability.

There is no significant difference between the average times it took participants to

answer the questions. With the exception of enron, participants were able to determine

how a computation was performed faster using the explanation. However, explanations

were only faster at explaining what a computation calculated in cases homework and

book .

For spreadsheet enron, participants that received the explanation sheet got a better

score. Moreover, the participants were also faster at answering the questions presented

in the experiment. This was the most difficult spreadsheet, as participants were asked

to discern the following formula:

IF(

ISERROR(

ROUND(

INDEX(Vega.(Post ID&Ref Period&Vega);

MATCH(Month;Vega.Ref Period;0);

3)/1000;

4

)

);

0;

ROUND(INDEX(Vega.(Post ID&Ref Period&Vega);

MATCH(Month;Vega.Ref Period;0);

3)/1000;

4

)

)

26

Interestingly, participants took longer to answer questions for simple spreadsheets

using explanations. This can possibly be attributed to the fact that the participants

have had extensive experience with spreadsheets, while none with explanations. This

also seems to indicate that explanation sheets are probably more useful for complex

spreadsheets.

These results indicate the potential of explanation sheets for providing a better un-

derstanding of complex spreadsheets, given that a user has some existing knowledge of

how explanation sheets abstract data. In their answers to a post-study survey eight out

of ten participants said that they found explanation sheets somewhat or very helpful.

For the two other participants, they did not make a difference. Moreover, eight of the

participants would want to use explanation sheets in the future.

27

Chapter 5: Explanation Inference

In this chapter, I introduce a set of inference rules to infer explanation sheets from a

spreadsheet, discussed in Section 5.1. More specifically, the inference rules infer the

total mapping function η ⊆ A×A, which maps cells in an subject spreadsheet S to the

corresponding cells in a explanation sheet X. The judgment (a, a) ∈ η states that a cell

a ∈ S is explained by a cell a ∈ X. Cell addresses in explanation sheets are marked with

an over-line (i.e. A1) to differentiate from those cells which belong to subject sheets.

The inference rules rely on the assumption that the labeling relationships LS and

LX are given. These labeling relationships could be obtained by using previous work on

automatic label inference [1].

Then, in Section 5.2, I present an artifact evaluation which evaluates the correctness

of the inference rules on examples of real-world spreadsheets.

5.1 Development of the Inference Rules

Explanation sheets have the potential to aid spreadsheet understanding, but are tedious

and error prone to create manually. Therefore, I introduce a set of inference rules to

infer explanations from a spreadsheet. These rules rely on the inherent structure and

relative positioning of cells in the spreadsheet, as well as the content within each cell.

The inference rules describe the binary relationship between some cell addresses a and

a, part of the total mapping η that embeds a spreadsheet S into an explanation sheet

X.

Consider the example in Figure 5.1, which depicts a simplified version of a grade-

book spreadsheet, accompanied by its explanation sheet. Through the notion of formula

explanation described in Section 3.4, rows 2 and 3 of the subject sheet S1 have been

compressed to row 2 in the explanation sheet X1, which is captured by a zoom X1
η12S1,

where η1 = {(A1, A1), (A2, A2), (A3, A2), (B1, B1), (B2, B2), (B3, B2)}.
To formulate rules for inferring explanation sheets, we can make several observations

that help to establish necessary conditions. Examining the contents of cells A3 and A2,

28

(a) Subject Sheet S1 (b) Explanation Sheet X1

Figure 5.1: Grade-Book Example

we can observe that S1(A3) = Bill and X1(A2) = [Aaron...Bill]. By using the Value

Range rule from Figure 3.2, we can derive that the explanation formula X1(A2) explains

the spreadsheet formula S1(A3), since Bill is contained within the range [Aaron...Bill].

This observation leads to the formulation of the condition X(a) 2 S(a), which says the

explanation formula in cell a must explain the spreadsheet formula in cell a.

The following observation relies on the labeling relationships for the subject and

explanation sheets, LS and LX , respectively. By looking at the structure of both sheets

in Figure 5.1, we can notice that every cell in X1 shares the same label content with

the cell it explains in S1. For example, the content of the cell that labels A3 is Name,

which is the same as the content of the cell that labels A2. This observation leads to the

requirement that there exist addresses b and b such that b labels a, b labels a, and the

contents of b and b are identical. Formally, (b, a) ∈ LS , (b, a) ∈ LX , and S(b) = X(b)

must hold true for X to explain S.

Thus far, we have only considered cases in which the cell has a label, but this notion

does not capture label cells themselves. To this extent, we need a new rule to differentiate

between the inference of label cells and those cells which have a label.

According to a case study on best spreadsheet practices, each column or row should

contain a single unique label [19]. Based on this assumption, the relationship between

label cells in η is quite straightforward. A label cell in the explanation sheet explains a

label cell in the subject sheet if they have identical content. This observation leads to

the first version of the explanation inference rules, shown in Figure 5.2. Rule Identical

Content captures the relationship between label cells, while rule Same Label captures

the relationship between cells that have labels.

The assumption that each label is unique does not hold when assessing real world

spreadsheets, as many tend not to follow best practices. To this end, we can eliminate

29

Same Label
X(a) 2 S(a) (b, a) ∈ LS (b, a) ∈ LX S(b) = X(b)

(a, a) ∈ η

Identical Content
S(a) = X(a)

(a, a) ∈ η

Figure 5.2: Explanation Inference, Version 1

(a) Subject Sheet S2 (b) Explanation Sheet X2

Figure 5.3: Modified Grade-Book Example

this assumption by assessing the relative positioning of label cells in the subject sheet to

label cells in the explanation sheet.

We can employ a row-wise ordering of addresses when comparing relative positioning

of cells in a spreadsheet, which means the row value takes priority over the column value.

As a concrete example, a cell with the address B2 is considered to be smaller than a cell

with the address A3, but greater than a cell with the address C1, that is A3 > B2 > C1.

This was an arbitrary decision inspired by the examples studied in Section 4.1.

Consider the modified grade-book spreadsheet shown in Figure 5.3, where the author

added a separate table to record grades of students from another class. The explanation

relationship is captured by a zoom X2
η22S2, where

η2 = {(A1, A1), (A2, A2), (A3, A2), (A5, A5), (A6, A6), (A7, A6), (B1, B1), (B2, B2),

(B3, B2), (B5, B5), (B6, B6), (B7, B6)}

Notice that by using the rule Identical Content as described in Figure 5.2, it

is possible to deduce that (A1, A4) ∈ η2, which says that cell A4 explains cell A1. The

30

(a) Subject Sheet S3 (b) Explanation Sheet X3

Figure 5.4: Modified Grade-Book Example

derivation is as follows:

S(A1) = X(A4)

(A1, A4) ∈ η2

Even though the two cells have the same content, this conclusion is incorrect as they

label different sections of the spreadsheet, a notion which needs to be captured in the

relationship.

Note that one of the ways an explanation sheet X achieves abstraction of a spread-

sheet S is through compression, thus the size of X cannot exceed the size of S, i.e.

|dom(X)| ≤ |dom(S)|. It follows that the address of an explanation cell in X is less than

or equal to the address of all cells it explains in S. More generally,

∀(a, a) ∈ η : a ≤ a

With this new premise, (A1, A4) 6∈ η2, since address A4 > A1. However, (A1, A1) ∈ η2 will

hold true because A1 ≤ A1.

Another issue has to be addressed before we can obtain a complete definition of

explanation inference. Consider another variant of the grade-book spreadsheet shown

in Figure 5.4, where the author added grades for a new semester. The explanation

relationship is captured by a zoom X3
η32S3, where

η3 = {(A1, A1), (A2, A2), (A3, A2), (B1, B1), (B2, B2), (B3, B2), (C1, C1), (C2, C2), (C3, C2)}

Using the modified version of the rule Identical Content, it is possible to conclude

that cell B1 explains cell C1 because they share the same content and B1 ≤ C1. The

31

derivation is as follows:
S(C1) = X(B1) B1 ≤ C1

(C1, B1) ∈ η3

However, this does not capture the true notion of explanation as cell B1 does not

explain cell C1, but rather explains cell B1. This issue can be alleviated by comparing

the addresses of the candidate explanation cells and selecting the closest to the address

of the cell being explained.

The set of cells {a, a′, . . . , a′′} which explain some cell a under the current definition

of the rule Identical Content are referred to as candidate explanation cells. As a

concrete example, the candidate explanation cells for cell C1 are {B1, C1}, since they all

share the same content Grade, B1 ≤ C1, and C1 ≤ C1. For clarity as to why both cells B1

and C1 explain cell C1, the derivation is as follows:

S(C1) = X(B1) B1 ≤ C1

(C1, B1) ∈ η3

S(C1) = X(C1) C1 ≤ C1

(C1, C1) ∈ η3

As per the previous observation, an explanation cell a can only explain a spreadsheet

cell a if a ≤ a, therefore the address of each candidate explanation cell {a, a′, . . . , a′′} will

be less than or equal to the address of the cell a being explained. Referring back to the

example, this claim holds true as B1 ≤ C1 and C1 ≤ C1.

Sorting the candidate explanation cells in ascending order and comparing them to

the subject sheet cell a results in

a < a′ < · · · < a′′ ≤ a

Applying this observation to the example results in

B1 < C1 ≤ C1

From this comparison, it is easy to see that a′′ (or C1 in the example) is closest to

the address of the cell a (or C1 in the example) being explained. Therefore, the notion

of closest address can be defined as the maximum address of all candidate explanation

cells. With this condition, explanation inference can conclude that (C1, C1) ∈ η3, since

C1 is the maximum cell address out of the candidate explanation cells {B1, C1}.

32

Same Label
X(a) 2 S(a) (b, a) ∈ LS (b, a) ∈ LX S(b) = X(b) a ≤ a

(a, a) ∈ γ

Identical Content
S(a) = X(a) a ≤ a

(a, a) ∈ γ

Figure 5.5: Explanation Inference

The final version of the explanation inference rules is shown in Figure 5.5. The can-

didate mapping γ ⊆ A×A is a mapping from cells in a subject sheet to their respective

candidate explanation cells in an explanation sheet. Rule Same Label describes the

relationship between cells in a subject sheet that have labels and their candidate expla-

nation cells, captured by the candidate mapping γ. Rule Identical Content describes

the relationship between label cells in a subject sheet and their candidate explanation

cells, also captured by the candidate mapping γ.

Based on γ, we can define η as follows:

η = {(a, a) ∈ γ | (a, a′) ∈ γ ⇒ a′ < a}

Due to the variety of spreadsheet structures found in real-world examples, explanation

inference can derive several different explanation sheets for a spreadsheet, that is, the

relationship between spreadsheets and explanations is one-to-many. We can impose an

ordering on explanations based on their resulting size. The goal of explanations is to

present the computational structure of a spreadsheet such that a user is not overwhelmed

with data and can easily understand desired information. Therefore, an explanation X

achieves more explanatory power than an explanation X ′ if |dom(X)| ≤ |dom(X ′)|.

5.2 Evaluation of Explanation Inference

In this section, I present an evaluation of explanation inference conducted on the corpus

described in Section 4.1. The goal of this evaluation is to assess the expressiveness of

explanation inference, as well as check the correctness of the manually created explana-

33

tions.

The corpus consists of 41 worksheets which exemplify real-world usage of spread-

sheets. Each worksheet is accompanied by a manually created explanation. In Section

4.1, an explanation checker was used to decide if the generated explanations were correct.

The formula errors indicated by the explanation checker were fixed before employing in-

ference checking in order to reduce redundancy in the results.

Moreover, explanation checking also discovered errors with the spreadsheet labeling

relationship LS . As part of data preparation, this relationship was corrected so that it

accurately captured the intended structure of the spreadsheet. From the explanation,

I was able to manually create labeling relationship LX for all sheets in the corpus.

These labeling relationships, along with the sheets themselves, yielded all the necessary

information to derive the total cell mapping η using explanation inference. Additionally,

I manually created cell mappings for all sheet and explanation pairs to serve as the

ground truth for comparison.

I encoded the explanation inference rules in Prolog, shown in Appendix A. The

flags SL and IC are used to differentiate between the rules Same Label and Identical

Content. Using this encoding of explanation inference, I created a script to infer

the mapping between all cells in a spreadsheet to their respective explanation cells.

Subsequently, I compared the inferred mapping to the ground truth to gauge the accuracy

of inference. In this instance, accuracy is defined as the number of correctly inferred

explanation cells divided by the total number of cells in the spreadsheet.

Results In most cases, explanation inference correctly derived the cell mapping be-

tween the spreadsheet and explanation. The average inference accuracy was 98.90%,

with a minimum of 81.29% and a maximum of 100%. In fact, there were only 5 work-

sheets in which explanation inference did not achieve 100% accuracy. The cases in which

explanation inference failed were due to poor labeling practices and discussed in further

detail in the following section.

It is important to note that this evaluation excludes three of the spreadsheets from

the corpus as each of them contains 52,000+ cells. The sheer size of these sheets caused

the script to crash due to lack of memory. However, I can assume that explanation

inference would have derived the correct mapping by looking at examples of sheets with

similar structure. These sheets are structured similarly to a relational database, with

34

each column containing some values with a label at the top. Within the corpus, there

are 7 other spreadsheets which follow the same structure pattern, all of which resulted in

100% inference accuracy. Since explanation inference is proven to capture this structure

pattern correctly, it is safe to assume that it would have derived the correct mapping for

the larger spreadsheets.

The explanation inference evaluation did not yield any sub-optimally compressed

explanation sheets. While this was not the direct goal of the explanation inference

evaluation, it is important to note. The generated explanations were aligned with the

manually created ones and conformed to the most compressed version of possible expla-

nation sheets for each spreadsheet.

Discussion The cases in which explanation inference failed were due to poor labeling

practices found in the spreadsheets. More specifically, explanation inference failed in

sections of the subject sheet that lacked a proper label. This discovery came as no

surprise, since explanation inference relies on the labeling information to determine the

mapping between the subject and explanation.

However, this finding shows that explanation inference can be used to detect labeling

errors in a spreadsheet. Many of these errors can go by unnoticed especially as spread-

sheet size and complexity increase. Explicitly pointing out instances of missing labels

can potentially save a spreadsheet user from having to manually make assumptions of

what the data represents.

The evaluation also brought to light some structural mistakes within the subject

and explanation sheets. For example, a common mistake was a column or row being

offset by some amount of indices. The evaluation found structural mistakes in 6 of the

38 worksheets. These structural mistakes were introduced when manually encoding the

spreadsheets in Prolog from the Excel environment and do not represent mistakes made

by the original spreadsheet authors. However, for the purposes of this evaluation, it is

important that these mistakes were caught and adjusted for.

The structural mistakes were not caught by explanation checking, since only the con-

tents of the cells were checked. Since the explanations were created based on the subject

sheets, the mistakes persisted; so while the positioning was incorrect, the cells in the

subject sheet still ‘correctly’ mapped to their explanation counterpart. These structural

discrepancies were identified through the manually created cell mappings which served

35

as the ground truth. The mappings were created based on the original Excel representa-

tion of the spreadsheets, thus pointing out any flaws in the Prolog encoding. Moreover,

the mistakes were more evident with inference checking, as the positioning of cells is as

important as the contents.

Based on this artifact evaluation, we can conclude that explanation inference is ap-

plicable to real-world spreadsheets and can determine the correct mapping if the labeling

information on the subject sheet is accurate.

36

Chapter 6: Comparison to Related Works

In this chapter, I provide a comparison between explanations and the related works

discussed in Chapter 2. The comparison is based on the explanation principles discussed

in Section 3.2 as well as the explanatory value brought forth by each piece of work.

Calculation View Though the Calculation View [27] does not directly aim at facil-

itating understanding in a spreadsheet, it exhibits similarities to explanations. Most

importantly, the Calculation View presents the user with an abstract representation of

the underlying computation found within a spreadsheet. Abstraction from the subject

language, in this case a spreadsheet, provides a user with an alternative view that omits

certain details which may make it difficult to understand the purpose of the computation.

Similarly, explanations abstract from details of the spreadsheet to provide a high-level

description of the intended purpose of the spreadsheet.

However, this abstraction is presented differently in the two approaches. Explana-

tions use labeling information within a spreadsheet to replace cell references. The Cal-

culation View does not restrict this abstraction to information found in the spreadsheet,

but instead allows the user to define names for cells or a range of cells. The Calculation

View offers more granularity when replacing cell references with user-defined names, as

the names do not rely on the inherent structure of the spreadsheet.

A subtle difference between these approaches can be observed by assessing their in-

tended purpose. The Calculation View focuses on error prevention during the creating of

a spreadsheet, while explanations focus on discerning the intended meaning of a spread-

sheet after it has been created. These approaches are complementary, as they facilitate

understanding at different parts of a spreadsheet’s life cycle.

Calculation View potentially provides a more welcoming spreadsheet environment to

users with a programming background as it offers a more systematic representation of the

underlying computational structure. However, the representation completely abstracts

away from the spreadsheet structure and does not play on the user’s familiarity with the

spreadsheet form to facilitate explanations.

37

A Domain Terms Visualization Tool For Spreadsheets The tool presented by

Kankuzi and Sajaniemi [21] facilitates understanding by overlaying additional informa-

tion on the original spreadsheet, while explanations do so by providing a separate entity.

However, these two approaches are very similar in how they achieve abstraction of a

spreadsheet. Both approaches use the labeling information found within a spreadsheet

to abstract from cell references to names recognizable by a user.

Similarly to explanations, the tool offers partiality of explanations by allowing a user

to only look at specific cells or sections of a spreadsheet. This attribute is essential,

especially as spreadsheets increase in size and complexity, since it allows a user to focus

on sections of the sheet which evoke confusion. Moreover, both approaches display

structure preservation as the original spreadsheet is not altered.

Visualizing Spreadsheets using Dataflow Diagrams Hermans et al. use data-flow

diagrams in their approach to explaining the relationships between entities in a spread-

sheet [17]. Similarly to explanations, data-flow diagrams focus on providing an abstract

representation of the computational flow in a spreadsheet. Data-flow diagrams preserve

the inherent computational structure of the spreadsheet, but provide an alternative view

of how cells and worksheets interact with one another. Moreover, data-flow diagrams

use labeling information of the spreadsheet to replace cell references with names familiar

to a user.

Data-flow diagrams differ from explanations in the granularity expressed through the

visual representation. Data-flow diagrams explain the relationships of not only cells in

a worksheet, but data blocks within a worksheet and even worksheets themselves. Ex-

planations focus on displaying the underlying computational structure and relationship

between cells in a single worksheet.

Data-flow diagrams employ partiality by allowing a user to only examine parts of the

spreadsheets which evoke confusion. For example, a user can expand a single formula

cell into a data-flow diagram view to see what computation is taking place, without

considering parts of the spreadsheet which do not directly influence said cell.

Moreover, the data-flow diagram approach provides the user with information on

dependencies between worksheets in a spreadsheet, which explanation sheets cannot do.

These dependencies become important when data is shared between worksheets, a feature

not captured by explanation sheets.

38

Explanations and data-flow diagrams can be used complementary to get a clear

representation of the intent of a spreadsheet.

Explanations in Other Domains The principles discovered through creating spread-

sheet explanations can be observed in explanation design for other domains explained

in Section 2.5. Similarly to explanations, these approaches retain certain aspects of the

subject language to facilitate understating, aspects which an intended user should be fa-

miliar with. For example, the DSEL that models complex casual relationships between

events and functions [30] is derived from neuron diagrams, a notation familiar with re-

searchers in the intended field. The ubiquitous nature of these approaches can provide

easy access to explanations, as users do not have to accustom to a whole new language.

However, these approaches do not include all aspects of the underlying subject lan-

guage, but rather provide an abstracted view. For example, the previously mentioned

DSEL provides the user with a simplified version of the neuron diagrams, as to not

overwhelm them with information that is not pertinent to the problem at hand. Ab-

straction from unnecessary details allows the user to more easily digest an explanation,

and potentially lead to better understanding.

Explanations allow for partiality, meaning that sections of a spreadsheet can be

explained individually from another. The aforementioned approaches exhibit partiality

by allowing only certain parts of the subject language to be explained. For example, the

DSEL for explaining strategies in game theory [12] allows a user to view segments of the

decision making which may be hard to understand, without having to explain the whole

sequence of decisions.

Moreover, partiality allows for the incremental construction of more and more com-

plete explanations, which leads to the principle of compositionality. As a concrete ex-

ample, the game theory DSEL allows for the composition of multiple representations of

decisions to be combined to create a sequence of decisions which took place in a game.

Similarly, compositionality is exhibited in explanation sheets by allowing the explana-

tion of parts of a spreadsheet to be combined to create an abstract representation of the

whole spreadsheet.

Furthermore, an interesting observation can be made about these approaches to

explanations in other domains. Each approach makes the underlying computation visible

via some representation ubiquitous to targeted users. To this extent, explanation sheets

39

are similar to these approaches as they also provide a user with a different representation

of the computation structure found within a spreadsheet.

40

Chapter 7: Conclusion

In this thesis, I have introduced an approach to aid spreadsheet understanding through

explanation sheets and describe their creation process, guided by examples of real-world

spreadsheets. An explanation sheet provides an abstract view of a subject sheet, with

the intent to expose the computational structure without diving into the details of each

formula. Additionally, I have described explanation principles derived from studying

and creating explanation sheets, which can guide the creation of explanations in other

domains.

Moreover, I have presented a set of inference rules which describe the relationship

between a spreadsheet and an accompanying explanation sheet, along with an evaluation

of the expressiveness of these rules. The evaluation shows the applicability of explanation

inference to real-world spreadsheets, but also exposes its limitations. Shown through the

user study, explanation sheets have the potential to aid spreadsheet understanding and

reduce the overhead incurred as spreadsheets grow and change authors.

Spreadsheets are ubiquitous and widely used at a personal and industrial level. In

some cases, users are not the original author of a spreadsheet, leading to confusion and

lack of understanding while trying to understand the intended purpose and computation

structure of a spreadsheet.

Many approaches have intended to document and prevent errors during the creation

of a spreadsheet [5, 27], but none which can be retroactively applied to existing sheets

to ease understanding and maintenance. To this extent, explanations are a novel first

step towards mitigating the aforementioned problems.

However, explanations have some short-comings which limit their use to spreadsheets

with well-defined labeling information. A possible solution to address this issue could lie

in the inclusion of external information found in a spreadsheet, such as notes left by the

author. Another possible approach to resolving this issue is requesting additional input

from the user before creating an explanation.

Another potential area for future work is the integration of explanation sheets into

a platform ubiquitous to spreadsheet users, such as Excel. The implementation could

41

employ a human-in-the-loop model to allow for live feedback from the user in the creation

of explanation sheets. Such an integration could allow a user to easily transition to using

explanation sheets to further improve their understanding of spreadsheets.

42

Bibliography

[1] R. Abraham and M. Erwig. UCheck: A Spreadsheet Unit Checker for End Users.
Journal of Visual Languages and Computing, 18(1):71–95, 2007.

[2] R. Abraham, M. Erwig, and S. Andrew. A Type System Based on End-User Vocab-
ulary. In IEEE Int. Symp. on Visual Languages and Human-Centric Computing,
pages 215–222, 2007.

[3] Domenico Amalfitano, Vincenzo De Simone, Anna Rita Fasolino, and Porfirio Tra-
montana. Exact: A tool for comprehending vba-based excel spreadsheet applica-
tions. Journal of Software: Evolution and Process, 28(6):483–505, 2016.

[4] Brian Bishop and Kevin McDaid. An empirical study of end-user behaviour in
spreadsheet error detection & correction. CoRR, abs/0802.3479, 2008.

[5] Jácome Cunha and Diogo Canteiro. Spreadsheetdoc: An excel add-in for docu-
menting spreadsheets. In 6th National Symposium on Informatics (INForum 2015),
2015.

[6] Jácome Cunha, Mihai Dan, Martin Erwig, Danila Fedorin, and Alex Grejuc. Ex-
plaining spreadsheets with spreadsheets (short paper). In Proceedings of the 17th
ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences, GPCE 2018, pages 161–167, New York, NY, USA, 2018. ACM.

[7] G. Engels and M. Erwig. ClassSheets: Automatic Generation of Spreadsheet Ap-
plications from Object-Oriented Specifications. In 20th IEEE/ACM Int. Conf. on
Automated Software Engineering, pages 124–133, 2005.

[8] M. Erwig, R. Abraham, I. Cooperstein, and S. Kollmansberger. Automatic Genera-
tion and Maintenance of Correct Spreadsheets. In 27th IEEE Int. Conf. on Software
Engineering, pages 136–145, 2005.

[9] M. Erwig and M. M. Burnett. Adding Apples and Oranges. In 4th Int. Symp. on
Practical Aspects of Declarative Languages, LNCS 2257, pages 173–191, 2002.

[10] M. Erwig and E. Walkingshaw. A Visual Language for Explaining Probabilistic
Reasoning. Journal of Visual Languages and Computing, 24(2):88–109, 2013.

43

[11] Martin Erwig, Robin Abraham, Steve Kollmansberger, and Irene Cooperstein. Gen-
cel: A program generator for correct spreadsheets. J. Funct. Program., 16(3):293–
325, May 2006.

[12] Martin Erwig and Eric Walkingshaw. A visual language for representing and ex-
plaining strategies in game theory. page 101108, 2008.

[13] Martin Erwig and Eric Walkingshaw. A visual language for explaining probabilistic
reasoning. J. Vis. Lang. Comput., 24(2):88–109, April 2013.

[14] Marc Fisher and Gregg Rothermel. The EUSES Spreadsheet Corpus: A Shared
Resource for Supporting Experimentation with Spreadsheet Dependability Mecha-
nisms. SIGSOFT Softw. Eng. Notes, 30(4):1–5, May 2005.

[15] T. A. Grossman. Source Code Protection for Applications Written in Microsoft
Excel and Google Spreadsheet. arXiv e-prints, Jan 2008.

[16] Felienne Hermans and Emerson Murphy-Hill. Enron’s Spreadsheets and Related
Emails: A Dataset and Analysis. In 37th Int. Conf. on Software Engineering, pages
7–16, 2015.

[17] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Breviz: Visualizing
spreadsheets using dataflow diagrams. CoRR, abs/1111.6895, 2011.

[18] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Supporting professional
spreadsheet users by generating leveled dataflow diagrams. In Proceedings of the
33rd International Conference on Software Engineering, ICSE ’11, pages 451–460,
New York, NY, USA, 2011. ACM.

[19] Amy Hodge. Case study: Spreadsheets. https://library.

stanford.edu/research/data-management-services/case-studies/

case-study-spreadsheets.

[20] B. Kankuzi and J. Sajaniemi. An empirical study of spreadsheet authors’ mental
models in explaining and debugging tasks. In 2013 IEEE Symposium on Visual
Languages and Human Centric Computing, pages 15–18, Sep. 2013.

[21] B. Kankuzi and J. Sajaniemi. A domain terms visualization tool for spreadsheets.
In 2014 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 209–210, July 2014.

[22] B. Kankuzi and J. Sajaniemi. Visualizing the problem domain for spreadsheet users:
A mental model perspective. In IEEE Symp. on Visual Languages and Human-
Centric Computing, pages 157–160, 2014.

44

[23] Bennett Kankuzi and Jorma Sajaniemi. A mental model perspective for tool de-
velopment and paradigm shift in spreadsheets. International Journal of Human-
Computer Studies, 86:149 – 163, 2016.

[24] B. A. Nardi and J. R. Miller. Int. journal of man-machine studies. pages 161–184,
1991.

[25] Stephen G. Powell and Kenneth R. Baker. The Art of Modeling with Spreadsheets.
John Wiley & Sons, Inc., New York, NY, USA, 2003.

[26] R. Pressman. Software Engineering: A Practitioner’s Approach (5th ed.). McGraw-
Hill, New York, NY, 2001.

[27] Advait Sarkar, Andrew D. Gordon, Simon Peyton Jones, and Neil Toronto. Calcu-
lation view: multiple-representation editing in spreadsheets. pages 85–93, 10 2018.

[28] C. Verhoef. How to Implement the Future. In 26th Euromicro Conference, pages
32–47, 2000.

[29] A. von Mayrhauser, M. Vans, and A. Howe. Understanding Behaviour During
Enhancement of Large-scale Software. Journal on Software Maintenance: Research
and Practice, 9(5):299–327, 1997.

[30] Eric Walkingshaw and Martin Erwig. A dsel for studying and explaining causation.
In Proceedings IFIP Working Conference on Domain-Specific Languages, Bordeaux,
France, 6-8th September 2011, volume 66 of Electronic Proceedings in Theoretical
Computer Science, pages 143–167. Open Publishing Association, 2011.

45

APPENDICES

46

Appendix A: Explanation Inference in Prolog

/* SAME LABEL */

ex(AX, AS, SL, X, S, LX, LS) :- labels(BX, AX, LX),

labels(BS, AS, LS),

label_eq(BX, BS, X, S),

bor(AS, AX),

explains(AX, AS).

/* IDENTICAL CONTENT */

ex(AX, AS, IC, X, S, _, _) :- label_eq(AX, AS, X, S),

bor(AS, AX).

/* Finding max(AX) out of possible cell addresses */

forallAX(AX, AS, Flag, X, S, LX, LS) :-

findall(AXp, ex(AXp, AS, Flag, X, S, LX, LS), AXs),

maxAX(AXs, AX).

/* (L, A) are part of the set Ls */

labels(L, A, Ls) :- member((L, A), Ls).

/* X[A] = S[B] */

label_eq(A, B, X, S) :- member((A, L), X),

member((B, L), S).

/* AX =< AS*/

bor((C, R), (XC, XR)) :- XC =< C,

XR =< R.

47

/* Maximum address in a list */

maxAX([(C, R)], (C, R)).

maxAX([(C, R), (_ , Ro)|S], Max) :- R > Ro,

maxAX([(C, R)|S], Max).

maxAX([(C, R), (Co, Ro)|S], Max) :- C > Co,

R = Ro,

maxAX([(C, R)|S], Max).

maxAX([(C, R), (Co, Ro)|S], Max) :- C < Co,

R = Ro,

maxAX([(Co, Ro)|S], Max).

maxAX([(_, R), (Co, Ro)|S], Max) :- R < Ro,

maxAX([(Co, Ro)|S], Max).

