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Emergence of highly accurate Convolutional Neural Networks (CNNs) with

the capability to process large datasets, has led to their popularity in many appli-

cations, including safety/security-sensitive (e.g., disease recognition, self-driving

cars). Despite the high accuracy of convolutional neural networks, they have been

found to be susceptible to adversarial noise added to benign examples and out-

distribution samples that are classified confidently into in-distribution classes. The

applications of CNNs in surveillance services necessitate the need for secure and

robust CNNs. On the other hand, despite the benefits of CNNs to surveillance

applications, they pose a privacy threat as they are able to undertake image face

recognition on a large scale. Coupled with the availability of large image datasets

on online social networks and at image storage providers, this poses a serious pri-



vacy threat. Emergence of Super Resolution Convolutional Neural Networks (SR-

CNNs) which improve the image resolution for face recognition classifiers further

exacerbates this threat.

In this dissertation, we address both these problems. We first propose taking

advantage of CNNs vulnerability to adversarial perturbations by adding adversarial

noise to images to fool CNNs to protect privacy of images in cloud image storage

setting. We propose and evaluate two adversarial-based protection methods: (i)

a semantic perturbation-based method called, k-Randomized Transparent Image

Overlays (k-RTIO), and (ii) a learning-based method called, Universal Ensemble

Perturbation (UEP). These methods can thwart unknown face recognition models

(i.e., black-box) while requiring low computational resources. We then evaluate

the practicality of adversarial perturbations learned for CNNs on SRCNNs and

show that adversarial perturbations are transparent to SRCNNs.

In the last part of our dissertation, We propose mechanisms to make CNNs

robust against adversarial and out-distribution examples by rejecting suspicious

inputs. In particular, we propose an Augmented CNN (A-CNN) with an extra

class that is trained on limited out-distribution samples, which can improve CNNs

resiliency against adversarial examples. Further, to protect pre-trained highly ac-

curate CNNs, we propose using adversarial profiles, perturbations that misclassify

samples of a source class (not other classes) to a target class, as a post-processing

step to detect out-distribution examples.
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Chapter 1: Introduction

In the last two decades, access to considerable computational power (e.g., GPUs)

and large data resources, as well as the advent of complex models, has led to

remarkable improvements in deep neural networks in vision tasks such as image

classification and object recognition [47]. For example, Convolutional Neural Net-

works (CNNs) have been shown to achieve high accuracy on large datasets (e.g.,

98% top-5 accuracy on the ImageNet dataset, which includes more than 1M im-

ages [102]). In addition to image classification, these deep neural networks can

be used to improve image quality and create high resolution images with valuable

details from low resolution images [23].

The remarkable performance of CNNs led to the popularity of these tools in

many applications, such as safety-sensitive applications (e.g., auto-pilot car or dis-

ease recognition). While these tools provide benign and beneficial services to users,

they also pose a significant privacy threat. The advent of social networks and cloud

as a popular platforms for image sharing and storage respectively led to millions of

photographs (especially personal images) to be shared or stored online. One can

use this large set of available images to learn highly accurate face recognition and

super resolution models to track user relationships or activities [108].

Despite the high accuracy of CNNs, it has been demonstrated that they are

highly susceptible to adversarial examples, especially when dealing with high di-
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mensional inputs such as images [121; 119; 36; 57; 18; 82]. An adversarial image

is one that has been perturbed with a noise signal designed to fool CNNs. Fur-

thermore, another serious challenge for CNN-based systems is that when a test

sample comes from a different concept or class that is not part of the training set

(i.e., in-distribution samples), then CNNs assign them to one of the predefined

classes they are trained on, often with high confidence. Due to the significant role

of CNNs in many safety-sensitive applications, it is necessary to make them robust

against such inputs. On the other hand, the vulnerability of CNNs to adversarial

noise might be useful for preserving privacy in image sharing platforms. Here, we

aim to answer following questions:

Is adversarial perturbation practical for preserving image privacy? Adversarial

perturbations [35; 36] have the nice property that the perturbed images are per-

ceptually recognizable for humans while they are misclassified by a CNN. Recently

adversarial image perturbation has been proposed as a way to preserve image pri-

vacy by fooling the CNNs [51; 105]. However, these methods are not practical

for the real world due to their unrealistic assumptions, such as having access to

the target CNN or needing to create large CNNs to generate adversarial perturba-

tions. In other words, these methods did not consider the practical issues of low

computational cost and image recoverability.

Therefore, here we first identify the practical requirements that a perturbation-

based privacy-preserving approach should satisfy. Then we propose two novel

schemes for adversarial perturbation of images that satisfy the identified require-

ments and do not require special knowledge of the target CNNs. One scheme is
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based on learned adversarial perturbations [18], while the other is based on seman-

tic adversarial perturbations [48]. In particular, we propose Universal Ensemble

Perturbation (UEP) approach where we learn a single perturbation that can be ap-

plied to multiple images, without requiring special knowledge of the target CNN

and with minimal loss in the recovery process. Compared to previous adversarial

perturbation learning techniques, our UEP approach uses fewer and smaller local

CNNs trained over a smaller training set. Also, we propose k-Randomized Trans-

parent Image Overlays (k-RTIO), an approach that derives many unique image

perturbations from a small number of overlay source images and a secret key. This

semantic adversarial perturbation approach does not require special knowledge of

the target CNN and does not require users to train their own CNNs.

Can adversarial perturbations learned only on CNNs survive through super res-

olution convolutional neural networks? Super Resolution Convolutional Neural

Networks (SRCNNs) were designed to generate/recover a high resolution image

from its low resolution image. To the best of our knowledge there is no work

that investigated the survivability of adversarial noises or perturbations learned

for fooling CNN classifiers through SRCNNs. Here we first define the surviv-

ability of adversarial images through SRCNNs, then introduce our methodology

and metrics for evaluating the survivability of adversarial examples (white-box)

and perturbations (black-box) learned on CNN classifiers. Finally we demonstrate

that adversarial noises propagate through SRCNNs and that generated high resolu-

tion images from low resolution of adversarial examples and adversarial perturbed

images can fool CNNs successfully.
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How to reduce CNNs’ misclassification rate? Reducing the misclassification rate

of CNNs is critical for developing secure and dependable CNN-based intelligent

systems, particularly in hostile environments. It has been shown training CNNs

along with adversarial examples can improve the resiliency of CNNs against adver-

sarial examples [74]; however, this approach is not practical for large and complex

CNNs [17], and is not able to address out-distribution samples. Accordingly, re-

jecting suspicious inputs has become a desirable solution (which aligns with our

privacy-preserving goal as well). There are two main approaches to reject adver-

sarial and/or out-distribution examples: (i) re-training CNNs on in-distribution

samples along with auxiliary data such as adversarial examples (e.g., [74; 64]) or

(ii) adding a post-processing step to reject suspicious samples [80; 68]. Most pro-

posed methods following the first approach need to be trained on a wide range

of adversarial/out-distribution samples [74]. Here, we show that adding an addi-

tional dustbin class containing limited natural out-distribution samples (i.e., natu-

ral examples that are statistically and semantically different from in-distribution

samples), and interpolated in-distribution data (created by interpolating selected

pairs of in-distribution samples from two different classes) can lead to an aug-

mented CNN with lower error rate (i.e., misclassification rate) in the presence of

adversarial examples.

There are a lot of highly accurate CNNs for different tasks, and users would

prefer to improve these available networks to make them robust to out-distribution

samples (by employing the second approach) rather than train new CNNs. Ac-

cordingly, we propose to create a set of such targeted adversarial perturbations(
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called adversarial profile) to detect out-distribution and adversarial samples. More

precisely, we propose to learn a set of adversarial perturbations (adversarial pro-

file) for each in-distribution class and leverage such profiles to identify and reject

adversarial samples.

The rest of the dissertation is organized as follows: In Chapter 2 we present

some preliminaries on CNNs, SRCNNs and adversarial attacks. We introduce

our adversarial learning based approach, Universal Ensemble Perturbation (UEP)

and our semantic adversarial perturbation approach, k Randomized Transparent

Overlays (k-RTIO) approach in Chapter 3. We evaluate the survivability of ad-

versarial images learned to fool CNN classifiers through SRCNNs. In Chapter 5,

we introduce our proposed methods for adversarial and out-distribution examples

detection. Finally we summarise our achievements in Chapter 6.
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Chapter 2: Preliminaries and Background

In this chapter, we first introduce Convolutional Neural Network (CNN) classifiers,

Super-Resolution Convolutional Neural Networks (SRCNN) and then we describe

methods for learning adversarial examples and perturbations.

2.1 Convolutional Neural Network Classifiers

Convolutional Neural Networks (CNNs) as modern deep learning models are able

to achieve nearly human-level performance on several computer vision tasks such

as face detection [122], optical character recognition [37], object recognition [120],

and object detection [101; 99]. A CNN is a series of convolution, pooling, non-

Figure 2.1: VGG-16 Convolutional Neural Network [14].

linear activation layers that are followed by a few fully connected layers. For a

K-class classification task, usually a CNN is terminated by a softmax activation

layer to map the logit layer (with K outputs) into conditional class probabili-
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ties. Concretely, a CNN can be denoted by a function F (.; θ) : X → Y , where

X = RD1 and Y = [0, 1]K are input and output spaces, repressively, with θ com-

pactly denoting parameters of the CNN. Feeding the CNN (i.e. F (., θ)) with an

input sample x ∈ RD, it returns a vector of conditional class probabilities over K

classes s.t. ∑K
k=1 Fk(x; θ) = 1. To learn the parameter θ, cross-entropy loss function

J(., .; ) : (XxY) → R+ is minimized over N i.i.d. training samples, i.e. (xi, ti)Ni=1,

where ti ∈ {0, 1}K , as the true class associated with i-th input, is a binary vector

with a single one at its k-th element. Formally, the cross-entropy is defined for a

given sample (x, t)2 as follows:

J(x, t; θ) =
K∑
k=1

tk logFk(x; θ) (2.1)

2.2 Super Resolution Convolutional Neural Networks (SRCNNs)

Super Resolution Convolutional Neural Networks (SRCNNs) are deep convolu-

tional neural networks were proposed to generate high Resolution (HR) images

from their low resolution (LR) counterpart[136; 73; 115] with the aim of increas-

ing the visual quality of HR images. In general, SRCNNs optimize Peak Signal to

Noise Ratio (PSNR), Minimum Square Error (MSE) or Structural Similarity Index

(SSIM) [138] between the original high resolution images and the reconstructed HR

images as a objective functions. Here we use hr(.) to denote an SRCNN which

takes low resolution of image I (Ilr) and generates a high resolution image of it.
1For image samples, usually the input space is [0, 1]D
2For simplicity in notation, the superscript i is dropped from (xi, ti)
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2.3 Adversarial Examples and Perturbations

Adversarial generation methods find and add a small adversarial noise (δ) to an

image that will cause the target CNN to misclassify it.

min
δ
‖δ‖2 + J(F (x, θ))

s.t. argmax F (x+ δ) 6= y∗, x+ δ ∈ [0, 1]d
(2.2)

where δ, x, y∗ and J(.) are the adversarial noise, given input image, true label

of input image, and the loss function, respectively. Since the this noise is im-

perceptible to human eyes, benign images with adversarial noise called adversarial

examples. Many methods have been proposed to generate a small adversarial noise

for a known CNN (e.g., [36; 82; 18; 121]), but they suffer from low transferability

to unknown CNNs. Therefore, transferable perturbation generation methods were

proposed to address this issue. Transferable adversarial perturbations are visible,

but the perturbed images with adversarial perturbation are still recognizable for

human eyes, but can fool any CNN classifiers with high probability.

Fast Gradient Sign (FGS) [36]: This method aims to minimize the maximum

changes in each pixel for a untarget attack. More precisely, it tends to minimize

L∞. Therefore, it uses the sign of gradient of loss function as follows:

xnew = x+ ε.sign(∇J(F (x, θ), y∗)) (2.3)
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In that, y∗ is the true label and ε is a constant small coefficient which controls the

maximum changes of pixels.

Deepfooling [82]: Unlike the fast gradient sign method, this method is for untar-

geted attack. This method is a fast and efficient method to find a small pertur-

bation for a given image. Similar to L-BFGS, it minimizes ‖δ‖2. This method is

based on an iterative linearization of the loss function.

Carlini and Wagner (C&W) Attack [18]: In contrast to previous methods, this

method does not use loss function to find a perturbation. Authors of [18] intro-

duced a new objective function based on minimum difference between the proba-

bilities assigned to the true class and other classes such that the objective function

has lower value if a CNN misclassifies the image with higher confidence as follows:

f(x) = max(max{Y (x)j : j 6= y∗} − Y (x)y∗ ,−κ) (2.4)

where Y (x) is the probability vector assigned by CNN to the input(x). Also, y∗ and

κ denote the real label of the input and confidence parameter, respectively. Larger

value for confidence parameter leads the classifiers to assign the image to a new

class different from the true one with higher probability such that the difference

between the probability of the new class and others is κ at least. Moreover, previous

methods add perturbation directly to images. Therefore, finding a perturbation

that keeps the final value of images in acceptable rage [0, 1] is difficult. To simplify
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the problem, they suggested using the alternative term of 1
2(tanh(z) + 1) whose

value is always in [0, 1]. More precisely, the perturbation δ is added to arc-tangent

hyperbolic value of an image instead of added directly images. As one can see

in equation 3.3, the user does not add the noise (δ) to her images directly. The

variable δ can get any values from [−∞,∞].

xi,pert = 1
2(tanh (arctanh (2× (xi − 0.5)) + β × δ)) + 0.5 (2.5)

where xi,pert is the perturbed version of the image xi and δ is the learned per-

turbation.

FGS for SRCNNs: Similar to FGS attack for CNN classifiers, this method is used

to learn adversarial noise for SRCNNs, but the objective function is to maximize

the difference between a generated high resolution image and its original high

resolution image with minimum perturbation on the low resolution image:

min
δ
‖δ‖p − dist(hr(Ilr + δ)− I) (2.6)

where δ, I, Ilr, hr and dist are adversarial noise, the original high resolution

image, the low resolution image, an SRCNN’s function which generates the high

resolution of a given image and the distance function which measures the difference

between two images, respectively. Peak signal to noise ratio (PSNR), minimum

square error or norm p can be used as distance function here.
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Chapter 3: Adversarial Perturbation as Image Privacy Defense

3.1 Introduction

Integration of high-resolution cameras into ubiquitous handheld devices (e.g., mo-

biles, tablets) has made it easy to capture everyday moments in digital photos.

Combined with the availability of fast mobile networks many of the captured dig-

ital images and videos are shared over the network or transmitted to third-party

storage providers. It has been reported that users of social networks share more

than 1.8 billion new photos each day [2]. While cloud-based photo storage and

sharing platforms provide virtually unlimited storage space for saving and sharing

images and are highly reliable and available, such services also raise privacy con-

cerns. Although most social networks and photo storage and sharing platforms

now provide privacy settings to limit public accessibility of images, they are often

complicated and insufficient [91; 108]. Furthermore, those platforms have direct

access to users’ images and it is not inconceivable for such service providers to

exploit the users’ image data for their own benefit [104; 113].

The advent of scalable Convolutional Neural Networks (CNNs) for automated

face detection and recognition [61; 116; 127; 78; 56] exacerbates this concern.

While such tools provide benign and beneficial service to users, they neverthe-

less pose a significant privacy threat. For example, Shoshitaishvili et al. [108]
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Figure 3.1: From left to right: original image, UEP perturbed image, and k-RTIO
perturbed image.

recently proposed a method for tracking relationships among people by analyzing

pictures shared on social platforms using face recognition and detection CNNs. Re-

cently, a face-recognition based image search application, Clearview AI app [44],

has emerged that can take a given picture of a person and search a database of

more than 3 billion images scraped from Facebook, YouTube and millions of other

websites and provide matching images along with links to websites containing

those photos. News of the use of this application by law enforcement agencies has

raised concerns about severe erosion of privacy. Emergence of such applications

combined with the ineffective privacy settings of social networks, necessitates the

development of practical tools that allow end users to protect their privacy against

automated classifiers. In this chapter, we primarily focus on thwarting automated

face recognition.

Adversarial image perturbation has been recently proposed as a way to pro-

tect against automated face recognition by fooling CNNs into misclassifying the

image [51; 105; 33]. Adversarial perturbations [35; 36] have the nice property that

the perturbed images are perceptually indistinguishable from the original image
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but are misclassified by a CNN. Thus adversarial perturbation provides a nice

balance of privacy against automated classifiers without degrading the usability

of the images for end users. However, these methods are not always practical

for real-world use due to the unrealistic assumption of full knowledge about the

adversaries’ CNNs (i.e., white-box model).

While black-box approaches for adversarial perturbations do exist (e.g., [71; 83;

93]), they either assume that end users have access to large datasets (e.g., millions

of images) and can train large local CNNs (e.g., with thousands of classes), or

that they can query the target CNN making them unrealistic as well. Semantic

adversarial perturbations [49; 48] are a newer class of adversarial perturbations that

can target unknown CNNs. They do not require any learning and are therefore

computationally very efficient. However, they are not reversible making them

unsuited for image storage applications.

Contributions: In this chapter, we explore the practicality of adversarial perturba-

tions to thwart automated image classification by CNNs, and make the following

contributions:

1. We identify key requirements for practical adversarial perturbation based

image privacy against automated face recognition.

2. We propose two novel schemes for adversarial perturbation of images that do

not require special knowledge of the target CNNs (i.e., black-box adversarial

methods) and that satisfy the identified requirements.

(a) Our learning-based Universal Ensemble Perturbation (UEP) approach
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(2nd image in Figure 3.1) learns a single transferable adversarial per-

turbation that can be applied to multiple images. Compared to pre-

vious adversarial perturbation learning techniques, our UEP approach

requires fewer and smaller local CNNs trained over smaller (by an order

of magnitude) training sets.

(b) Our k-Randomized Transparent Image Overlays (k-RTIO) is a novel

semantic adversarial perturbation [48] approach that generates many

unique image perturbations (3rd image in Figure 3.1) using only a small

number of overlay source images and a secret key, and without requiring

users to train their own CNNs. In contrast to previous semantic adver-

sarial perturbation approaches, k-RTIO perturbations are reversible.

3. We evaluate the effectiveness of both methods against highly accurate celebrity

recognition and face detection models from clarifai.com, Google Vision API,

and DeepFace [96], two state-of-the-art online classifiers and one offline classi-

fier, respectively. Our results show that while UEP and k-RTIO are effective

at thwarting automated face recognition, k-RTIO is computationally much

cheaper than UEP.

4. We discuss potential counter measures against our schemes and demonstrate

one effective countermeasure against UEP.

The rest of this chapter is organized as follows: We discuss related work in

Section 3.2. In Section 3.3, we present the system model and requirements for

a practical privacy mechanism based on adversarial perturbations. We present
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some preliminaries on adversarial examples and transferable adversarial methods

in Section 3.4. We introduce our two proposed approaches in Section 3.5 and

evaluate them in Section 3.6. In Section 3.7, we discuss our findings and some

future directions. Finally, we conclude in Section 3.8.

3.2 Related Work

Many cryptographic and non-cryptographic techniques for protecting image pri-

vacy have been proposed. Here we primarily focus on works most relevant to the

problem of thwarting recognition by automated classifiers while allowing recogni-

tion by humans.

Adversarial Perturbations: The problem of thwarting recognition by automated

classifiers while allowing recognition by humans has recently received attention

in the research community [51; 76; 123; 33; 105]. Adversarial perturbation based

approaches [51; 33; 105] among them are most closely related to this chapter.

While those approaches can fool CNNs and preserve images’ recognizability by

humans they have some limitations. Oh et al. [51] assume that end users have

full knowledge about and access to target CNNs (i.e., white-box model). Other

works [33; 105], while they use a black-box model, assume users are able to train

large CNNs to learn perturbations. However, in real-world settings, users typically

do not have access to the target CNNs or other automated tools used by adversaries

or online service providers to analyze images. Moreover, all those approaches

learn a perturbation for each image making it expensive to protect a large set
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of images. Fawkes [105] aims to perturb images to prevent target CNNs from

learning a model on them and can be complementary to our effort. Semantic

adversarial perturbations [49; 48] that can fool unknown CNNs without requiring

any learning have been recently proposed. As they do not require any learning,

they are computationally very efficient. However, they are not reversible making

them ill-suited for image storage applications. In contrast, we aim to propose

practical methods for generating reversible transferable perturbations that do not

need high computation or storage resources.

Image Encryption: Encryption techniques specifically designed for protecting im-

age privacy have also been proposed (e.g., [97; 126]). These techniques obfuscate

the entire image and as a consequence images are rendered unrecognizable even by

their owners making them unable to distinguish between images without first de-

crypting them. Further, it has been shown that P3 [97] is vulnerable to automated

face recognition [79].

To address the problem of searching through encrypted images, Pixek App [1]

uses image encryption with embedded searchable tags. However, such schemes

require modifications at the service providers (this is the same for encrypted file

system [34; 53] based solutions as well) and need additional effort on part of end

users to tag and browse images using tags. In contrast, our focus is on tech-

niques that are not only reversible but also allow end users to manage their image

repositories naturally (i.e., visually rather than using keywords/tags).

Thumbnail Preserving Encryption (TPE) schemes [128; 76; 123] have been

proposed to preserve privacy of images while allowing image owners to distinguish
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between ciphertexts of different images naturally (i.e., visually) without having

to decrypt them. They achieve this by ensuring that the ciphertext is itself an

image with the same thumbnail as the original image. Depending on the size of

the thumbnail preserved, TPE schemes are capable of thwarting recognition by

CNNs [76; 123] while still allowing image owners to distinguish between encrypted

images. Their goal was to thwart recognition by any end user other than those who

are already familiar with the image, and hence preserve thumbnails with very low

resolution. In contrast, our work aims to thwart only classifiers and not humans.

Irreversible Obfuscations: An early approach to thwarting facial recognition soft-

ware while preserving facial details was face deidentification (e.g., [87; 39; 40; 27;

52; 117]) that was proposed to provide privacy guarantees when sharing deanonymized

video surveillance data. In this approach instead of obfuscating the image or parts

of it, faces in the image are modified to thwart automated face recognition algo-

rithms. These approaches extend the k-anonymity [118] privacy notion to propose

the k-same family of privacy notions for images. At a high-level, to provide k-same

protection for a face in an image it is replaced with a different face that is con-

structed as an average of k faces that are the closest to the original face. These

approaches have the benefit of providing mathematically well-defined protection

against face recognition algorithms. However, these approaches have the downside

that these modify the original image and the transformation is typically not re-

versible. Further, the perturbed image is typically not correctly recognizable by

humans. A slightly different but related approach is where a face that needs privacy

protection in an image is replaced with a similar one from a database of 2D or 3D
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faces (e.g., [13; 70]). AnonymousNet [66] is recent de-identification approach using

generative adversarial networks (GANs). These approaches are also irreversible.

In contrast, we aim to create reversible perturbations where the perturbed images

are recognizable by humans.

Approaches like blurring, pixelation, or redaction have long been used for pro-

tecting privacy in images and text (e.g., [137; 60]). However, such techniques

are not only irreversible but have been shown to be ineffective especially against

automated recognition methods [137; 60; 87; 45; 79].

Approaches that remove people or objects from images (e.g., [54; 11; 98]) or

that abstract people or objects (e.g., [22; 124]), or that replace faces [114] also

exist. However, those approaches are also irreversible. Further, it has been shown

that even if redaction techniques like replacing faces with black space are used, it

may be possible to deanonymize using person recognition techniques [90].

3.3 System Model and Requirements

In this chapter, our focus is on practical adversarial perturbation approaches

that make scalable automated image analysis by service providers more difficult.

Thwarting recognition by humans is not a goal. In fact, we aim to develop ap-

proaches that allow image recognition by end users so they can interact with im-

ages naturally. We assume that image storage and sharing service providers do not

have access to meta-data or auxiliary information and treat them as an honest-

but-curious or semi-honest adversary [89]. We assume that the service provider
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has trained an image classification CNN either using publicly available user images

or images that the users have already stored with the service. A user’s goal is to

perturb the images that they upload to the service to prevent automated recogni-

tion or classification of their images. To be practical the perturbation mechanism

should satisfy the following requirements.

Black-box Scheme: In practice, end users will not have access to the CNNs used by

third-party service providers and typically will not have detailed knowledge of the

target CNNs parameters and weights. Thus, any viable perturbation mechanism

should not require any special knowledge of the target CNN, eliminating the use

of white-box adversarial perturbation techniques. We assume that the user does

not know anything about the structure of the target CNN, not even all the classes

that the CNN is able to classify images into (i.e., it is a black-box), and assume

that the user does not have query access to the CNN.

Recognizability: While white-box (i.e., full knowledge of target CNN) adversarial

perturbations typically are very small and imperceptible [36], black-box perturba-

tions on the other hand can be significant and are typically perceptible [83]. To be

viable, the perturbed images should be perceptually recognizable by end users but

not recognizable by automated classifiers. Users should be able to browse through

perturbed images naturally using the standard interface, without having to reverse

the perturbation.

Recoverability or Reversibility: For image storage applications, end users must

be able to reverse the perturbation in order to recover the original image with

minimum to no distortion, i.e., no loss of perceptual quality. At the same time,
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the service provider should not be able to remove or reduce the perturbation.

Low Computational Cost: Since end users need to create the perturbations, learn-

ing or creating perturbations should not require excessive computational effort or

large volumes of training data. We assume that, while an individual user may

have access to their own images and some images of other potential users of the

platform (either publicly available or those of friends using the same platform),

a user does not have access to the entire dataset used by the service provider for

training the target CNN.

Low Storage Cost: The storage requirements of the scheme should be small and

should not increase with the number of images. Any information needed to reverse

the perturbation should take up minimal storage at the end user.

Compatibility: Since service providers have incentives to learn and profit from

user data, proposed schemes should not depend on their support and should be

compatible with existing services to ease adoption. Hence, using embedded thumb-

nails, encrypted file systems (e.g., [34; 53]) and more advanced solutions such as

searchable encryption for images [1] are not practical. Most of the popular storage

services that we tested such as Google Drive, iCloud, etc. do not support embedded

thumbnails.

3.4 Preliminaries

As discussed in Chapter 2, Convolutional Neural Networks (CNNs) are vulnerable

to adversarial noise, however white-box adversarial noise are not transferable to
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other CNNs. To address this issue, transferable adversarial perturbations have

been proposed. In this section we introduce the well-known approaches for gener-

ating adversarial perturbations.

Ensemble Method: Ensemble methods to create transferable perturbations were

proposed in [71; 8]. Those works learn a perturbation for a given image on several

local CNNs, instead of using only one CNN, such that the learned perturbation

fools all local CNNs. They established that such perturbations are transferable

and can fool unknown CNNs with high success rate. In other words, a perturba-

tion for an image is generalized by learning it on multiple CNNs. To show the

transferability of perturbations, authors assessed their method on, clarifai.com,

a state-of-the-art online classifier.

Universal Perturbation: Moosavi-Dezfooli et al. [83], showed that it is possible

to find a single (universal) perturbation that can be applied to multiple images to

successfully fool a CNN into misclassifying all of them. Universal perturbation is

defined as a noise pattern δ which leads a CNN misclassifying most of the input

images (x’s) with probability of p (p-value) when added to those input images.

This work showed that a universal perturbation is transferable to other CNNs

with different structures but trained on the same dataset as the original. Further,

the perturbation is added directly to images which causes significant loss during

image recovery because of rounding the pixels’ value to 0 or 1 if they are not in

range of [0, 1].

Query-Based Black-Box Attack: An interactive attack was proposed for accessible

but unknown (black-box) CNNs [93]. In this approach, the authors trained a
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substitute CNN on a synthetic dataset created by sending queries to the target

CNN. They revealed that the substitute CNN can approximate the target CNN’s

function F very well. Nonetheless, the number of the queries required to create a

CNN increase with size of the images and target CNN. Moreover, the accessibility

of the target CNN to make queries is essential in this approach. Furthermore, a

perturbation has to be learned for each specific image.

While all of these approaches are black-box approaches, (i) they either need

to train and learn on multiple (4 − 5) large local CNN(s) (see Summary in Sec-

tion 3.6.1) to create a transferable perturbation(s) [71; 8; 83] or (ii) generate one

perturbation per image [71; 8] and do not meet low computation and low storage

cost requirements. Further, they add the perturbation directly to image’s pixel

value leading to significant losses during recovery.

3.5 Proposed Approaches

In this section, we introduce two methods to perturb images in order to fool any

unknown CNN. The first method is a learning-based approach called Universal

Ensemble Perturbation (UEP). The second method is a semantic perturbation

method called k-Randomized Transparent Image Overlays (k-RTIO). We motivate

each approach and describe how we generate and apply the perturbations.
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3.5.1 Universal Ensemble Perturbation

As discussed in Section 3.3, any viable perturbation approach for image privacy

should be black-box as users are unlikely to have access to or knowledge about

CNNs used by service providers. Since black-box perturbations tend to be signif-

icant and perceptible, reversibility of perturbations becomes important to recover

the original image. Storing the perturbations used for each image so the original

can be recovered will require nearly the same order of storage as storing the original

images themselves. Therefore, in our approach we aim to generate a single pertur-

bation that can be applied to several images to successfully fool an unknown CNN,

that is, both universal and transferable. We achieve this by using an ensemble ap-

proach through learning on a few local CNNs. Unlike previous work [83; 71], our

approach uses fewer and smaller CNNs, and requires significantly smaller training

datasets than the one used to train local CNNs (see Section 5.4).

Perturbation Learning: We create our Universal Ensemble Perturbation (UEP)

approach by building on the ideas from the ensemble approach [71], universal

perturbation approach [83], and CW perturbation optimization and addition ap-

proach [18].

UEP learns a highly transferable, universal, and reversible perturbation using

an ensemble of a few small local CNNs. Moreover, to prevent the target CNN from

reducing the impact of the perturbation by using a reduced resolution version of

the image [26], we learn a perturbation which works for different image resolutions

by training each local CNN on different resolutions of the image. For this work, we
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Figure 3.2: From bottom to top: The last row shows the original images of celebri-
ties. The middle row represents the UEP perturbed images. The first row displays the
recovered images.

used three small CNNs with only 10 classes each (see Section 3.6). We empirically

found that using fewer than three CNNs makes learning transferable perturba-

tions harder, while using more than three CNNs makes learning a perturbation

computationally expensive without significant improvement in success rate.

After learning a few (in our case only 3) local CNNs on different image resolu-

tions, we learn a universal perturbation which can fool all the local CNNs with a

given probability of p (∈ [0, 1]). To optimize the misclassification rate, we extend

the objective function introduced in [18] for an ensemble of CNNs and a universal
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UEP(Y1(x), · · · , Ym(x), x1, · · · , xn, p):
δ = inf
// finding the true label of each image
∀ i y∗i = argmax(Y (xi))
lbound = 0.001, upbound = 100000
while lbound < upbound:
c = (upbound+ lbound)/2
∀ i, zi = xi
while ∑

i

∏
k σ(Yk(zi) 6= y∗i ) < p×N

δ′ ← minδ ‖δ‖2 + cf(z1, · · · , zN)
zi = 1

2(tanh (arctanh (2× (xi − 0.5)) + δ′)) + 0.5
if ‖δ′‖2 < ‖δ‖2:
δ ← δ′

upbound = (upbound+ lbound)/2
else
lbound = (upbound+ lbound)/2

return δ

Figure 3.3: UEP method learns a universal perturbation δ on a few local CNNs
(Y1, · · · , Yc) for set of given inputs x1, · · · , xn.

attack as follows:

f(x1, · · · , xN) =
∑
l

∑
i

max(max{Yl(xi)j : j 6= y∗i } − Yl(xi)y∗i ,−κ) (3.1)

where Yl(xi) is the probability vector assigned by the lth CNN to the ith input

which shows the probability of the input image belonging to each category. And

y∗i denotes the true label of xi. We aim to minimize the perturbation amount as

well as maximize the misclassification confidence (κ). The problem can be defined
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as follows:

min
δ
‖δ‖2 + cf(x1,perturbed, · · · , xN,perturbed) (3.2)

A large value for coefficient c causes the resulting perturbation to have a larger

value (to force all CNNs to misclassify it), while a very small value for this param-

eter may lead to null solution space since it tries to fool all CNNs for all inputs

with a small perturbation. We optimize the perturbation for different coefficient

c values using a binary-search (see Figure 3.3) and pick the smallest perturbation

that can fool p×N of total samples (N).

Perturbation Addition: In the universal perturbation approach [83], the pertur-

bation vector is added directly to all images, and if the new value of pixels are not

in the range of [0, 1], then the new values are rounded to the nearest acceptable

values (0 or 1). However, rounding a pixel’s value leads to information loss during

image recovery. Therefore, we add the learned perturbation to the arc-tangent

hyperbolic value of an image instead of adding directly to the images as in [18]:

xi,pert = 1
2(tanh (arctanh (2× (xi − 0.5)) + β × δ)) + 0.5 (3.3)

where xi,pert is the perturbed version of the image xi and δ is the learned pertur-

bation. Here β is a weighting factor that tunes transferability versus perturbation

amount. While this does not eliminate rounding losses completely, it significantly

reduces such loss.

Further, unlike the traditional adversarial approaches, UEP perturbation can
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be added in with different weights to the image to control the trade-off between

transferability and recognizability. While learning UEP on local CNNs, we set β =

1 to create a powerful perturbation. But, when applying the learned perturbation

to an image, we can set β value to trade-off between fooling success rate and

recognizability (see Section 3.6). The original image is recovered by reversing

the process on the perturbed image. Adding the perturbation to the arc-tangent

hyperbolic value of an image, both simplifies the objective function and alleviates

information loss during image recovery [18].

Practicality of UEP: As the preceding discussion shows, UEP is designed to be

a black-box perturbation approach that produces highly transferable and univer-

sal perturbations. It meets the reversibility and low storage cost requirements

identified in Section 3.3 as perturbations can be reversed by storing only the uni-

versal perturbation. While the perturbations produced by UEP are significant and

perceptible, as seen in Figure 3.2, the perturbed images are still recognizable for

humans and can be recovered with very low loss by removing perturbation. Fur-

ther, since UEP uses three small local CNNs with only 10 classes and does not

require users to have access to large datasets. UEP is also computationally more

efficient compared to previous approaches as will see in Section 5.4. Further, UEP

does not require any changes to the service provider and can work with existing

services.
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3.5.2 k-Randomized Transparent Image Overlays

While our UEP approach requires lower computational resources compared to pre-

vious learning-based approaches, learning perturbations is still computationally

expensive (see Section 3.6.1). Semantic perturbations [49] on the other hand do

not rely on learning and tend to be computationally cheaper. Different semantic

perturbation approaches target different weaknesses of CNNs (e.g., coverage of

training data, reliance on inter-pixel dependencies etc.) [48].

The main component of CNNs are kernels in the convolutional layers. Kernels

are small windows moving over image space and measuring dependencies among

adjacent pixels to find a pattern or a feature. Transparent image overlay-based

Figure 3.4: k-RTIO Scheme. ID of main image is used to select k overlay images from
the set S and then ID of selected images are used to generate a permutation. Both
overlay selection and block permutation algorithm use the user’s secret key.
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Figure 3.5: Left to right: original, k-RTIO perturbed and recovered images.

approach tends to decrease the pixel dependencies and makes features invisible to

CNN kernels. Here we build on this transparent overlays based approach that was

originally proposed for fooling Google Video API [49]. When translated to images,

this approach adds a weighted overlay image to the original image as follows:

Ipert = α× Iorg + (1− α)× Iovl (3.4)

where α is mixing parameter, and Ipert, Iorg and Iovl are perturbed, original, and

overlay images.

Despite the high transferability (success in fooling unknown CNNs) especially

at low values of α, direct application of this technique has the following drawback.

If the same overlay image is used for perturbing multiple original images then the

original images can potentially be recovered through a well known signal processing

technique called Blind Signal Separation [15] (see Figure B.2 in Appendix B.2).

If a different overlay image is used for each original image, then all those overlay

images need to be stored locally to be able to recover the original images defeating
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the purpose of cloud-storage and violating our low storage requirement. Further,

we need to make sure that perturbed image is recognizable by end users. To

overcome this problem, we propose k-Randomized Transparent Image Overlays

which generates a unique overlay for every image using only a small set of initial

overlay images, a secret seed and a pseudorandom function.

Perturbation Generation: To generate unique overlays for each original image, we

first choose a random subset of k (typically 3 or 4) candidate overlay images from a

set S of stored initial overlay images. This set S is relatively small (30 images) and

can be stored encrypted on a cloud platform or locally. The choice of this set does

not significantly change the fooling performance of k-RTIO; we discuss selection of

this set in Section 3.6.2. As shown in Figure 3.4, to select these k images for each

source image, users use their secret key and ID of the original image (each image

has a different ID) as inputs to a pseudorandom function. More concretely, we

employ AES as the pseudorandom function. Let key denote a 128-bit seed and let

id be a unique identifier for the given source image (e.g., a filename or timestamp).

Then the choice of the jth overlay image (out of |S| = m possibilities) is made

according to:

AES(key, id‖0‖j) mod m.

After selecting k random candidate images, the k chosen images are divided into

b blocks each and these blocks are permuted using a pseudorandom permutation.

The permutation of blocks is based on the candidate overlay image ID, source

image ID, and user’s secret key. Specifically, the blocks of the jth overlay image
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are permuted using the Fisher-Yates shuffling algorithm [32]. Recall that in the

ith iteration of Fisher-Yates, the algorithm chooses a random value in the range

{0, . . . , b− i}, where b is the number of items being shuffled. This random choice

can be derived in a repeatable way (for the jth overlay image) via:

AES(key, id‖1‖j‖i) mod b− i+ 1.

As long as the ids of a user’s images are distinct, then all inputs to AES are

distinct. Use of a pseudorandom function guarantees that all its outputs are indis-

tinguishable from random, when invoked on distinct inputs. Using this approach,

the user needs to store only the short AES key, and the set of initial images S

from which all unique overlay images can be re-derived as needed for recovering

the original image (see Figure. 3.7).

The final overlay image is simply the average of these k images with permuted

blocks. Although the pool S of base overlay images may be small, the number of

derived overlay images that result from this process is very large. For example, for

an image set of |S| = 10, k = 4 and b = 12, the number of possible overlay images

is 10!
10!(10−4)! × (12!)4 ≈ 7.3 × 1031 making it hard for the target CNN to correctly

guess the overlay used even if S is known.

Perturbation Addition: As shown in Figure 3.4, the generated overlay is added to

the source image as follows:

Ipert = α× Iorg + (1− α)
k

∑
Iovli

∈Overlays(key,id,b,S)
Iovli
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Figure 3.6: UEP recognizability vs. β that controls noise level

where Overlays(key, id, b, S) is a function that takes secret key, image id, number

of blocks and overlays set S and returns k overlays images with permuted blocks.

The perturbation can be removed to recover the original image using the reverse

process as follows:

Iorg = Iper
α
− (1− α)

k × α
∑

Iovli
∈Overlays(key,id,b,S)

Iovli

Practicality of k-RTIO: As the preceding discussion shows, k-RTIO does not re-

quire knowledge of the target CNN, nor does it require support from the service

provider. Further, k-RTIO generates semantic perturbations and does not require

learning using any CNNs and is therefore computationally cheaper than UEP (see

Section 3.6.2). Since the perturbations are efficient to generate, end users do not

need to store individual perturbations for recovering original images but can re-

create them using a secret key and a small set of initial overlay images leading

to low near constant storage overhead. The recognizability of images perturbed

using k-RTIO is a function of α, b and k. In Section 3.6.2 we will explore val-

ues of these parameters such that k-RTIO can thwart recognition by automated

classifiers while providing reasonable recognizability for humans.
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3.6 Evaluation

In this section, we evaluate the success rate of the two proposed methods against

two state-of-the-art online image classifiers (www.clarifai.com and Google Vision

API) and a state-of-the-art offline recognition and detection model DeepFace [96].

We then discuss the computational costs of each approach. Finally, we explore dif-

ferent filtering techniques that classifiers could potentially use as countermeasures

against the proposed perturbations.

Overlays(key, id, b, S):
K = ∅
for j = 1 to k:
// randomly choose k overlay candidates
v = AES(key, id‖0‖j) mod |S|
IMG = vth element of S
remove vth element from S

// keyed Fisher-Yates shuffle on blocks
for i = 1 to b:
t = AES(key, id‖1‖j‖i) mod b− i+ 1
swap blocks b− i and t in IMG

add IMG to K
return K

Figure 3.7: Pseudorandom method for creating overlay images with permuted blocks for
an image with identifier id. # of blocks per overlay image is b. Set of candidate overlay
images is S.
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3.6.1 UEP Performance

UEP Simulation Setup: UEP requires training a few small local CNNs. We trained

3 small CNNs, two VGG-16 [111] and one Facescrub CNN [79] using random

initialization points. VGG-16 has 5 convolutional layers and 2 fully connected

layers (see Figure 2.1) and FaceScrub CNN has 3 convolutional layers and 2 fully

connected layers (more details of the CNNs are in Appendix A.1). Recall that, to

prevent the target CNN from reducing the impact of the perturbation by using a

lower resolution version of the image [26], we train each local CNN on different

image resolutions and learn a perturbation over them. To implement a resolution

reduction or a thumbnail function, we used an additional convolutional layer size

of 2× 2 with values of 1
2×2 = 0.25 to resize input images before rendering them to

CNNs. For example, as shown in Figure 3.8, by setting up the stride value to 2×2

we can have a thumbnail function that reduces the size of the image to 1
2×2 = 0.25

of original size .

Figure 3.8: Using a convolutional layer with stride value of (2, 2) and kernel values of
0.25, one can implement a thumbnail function to reduce the size of an image to 25% of
original size.
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We used the FaceScrub [88] dataset, an image dataset of 530 celebrities (classes)

and ≈ 100K images for our evaluations. We selected 10 classes, uniformly at

random, from among 230 classes of FaceScrub that have at least 150 images in

the training dataset. The use of only 10 classes for training local CNNs is keeping

inline with our assumption of limited end user access to data and computational

capacity. To detect celebrity faces and crop them, we used DeepFace face detector

CNN [96]. For each of the 10 celebrities (classes), we randomly selected 150− 200

images from the training dataset and learned three local CNNs, two at 224× 224

pixel resolution and one at 112 × 122 pixel resolution. We then chose 200 (N)

images in total over these 10 celebrities (classes) from the training dataset and

learned a universal ensemble (UEP) perturbation over these images across the

three local CNNs that we trained. As shown in Figure 3.3, to find the best value

for c parameter (see Equation 3.2), which controls the perturbation amount, we

used binary search in the range of [0.001, 100000] and set p = 0.7.

UEP Effectiveness: We evaluate UEP against Google Vision API’s face detection

model, and face detection and recognition models of clarifai.com and Deep-

Face [96]. To this end, we selected more than 1000 FaceScrub images in total from

all the 530 classes (not just the 10 classes on which local CNNs were trained).

Then we cropped (Note: all adversarial perturbation methods learn on a specific

image size that depends on the CNNs’ input size.) faces with DeepFace face de-

tector model [88] and then applied UEP generated perturbation. Moreover, we

can control the transferability of UEP perturbation by using different weighting

(β) parameter (see equation 3.3). We evaluate our method for different values of
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Figure 3.9: UEP performance on Google Vision API face detection model, and DeepFace
face detector and recognition models.

β parameter.

UEP vs. Google Vision API: Google Vision API was able to detect 98.8% of

faces in cropped benign images. As shown in Figure 3.9 (dashed blue line), for

a small value of β, UEP perturbation exhibited low transferability (i.e., success

rate) against Google Vision API. However, for larger β values, Google Vision API’s

face detection rate decreases significantly (≤ 30% at β = 5). While larger β

values can fool face detection models, they also decrease recognizability for humans.

Figure 3.6 shows the recognizability of the images for different values of β. Thus,

there is a trade-off between fooling success rate and human recognizability. Note

that, this is a face detection model and not a recognition model.
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UEP vs. Clarifai.com: Clarifai.com’s face detection could detect more than 99%

of faces and recognize 87.25% faces of unmodified images. Clarifai.com was able to

detect 98% of perturbed faces with UEP perturbation even with β = 5. However,

its face recognition was able to recognize fewer than 6% of faces for β = 3 (green

dash-and-dot line in Figure 3.9). In other words, face recognition model is more

sensitive to perturbations. While small values of β are not good enough to thwart

recognition by unknown CNNs, with β = 2, face recognition model of clarifai.com

was able to recognize only 37% of faces and this comes down to less than 6% for

β = 3. As seen in Figure 3.6, perturbed faces still remain recognizable for β = 3.

UEP vs. DeepFace Models: We also evaluated UEP against DeepFace face de-

tection and recognition models. We sampled more than 1000 images of celebrities

from FaceScrub dataset that are known to DeepFace face recognition model (about

186 classes). This model was able to detect all faces in unperturbed images and

recognize 97.28% of them. We then tested DeepFace with perturbed images with

different levels of perturbation (β values). As shown in Figure 3.9, the face de-

tection and face recognition models have low accuracy, less than 20% (for both

detection and recognition) for larger values of β(≥ 3).

Recoverability/Reversibility: UEP does not add the perturbation directly to pixels

but adds it in the arc-tangent hyperbolic space (see equation 3.3). When mapping

back to the pixel space (integers values in [0, 255]), we may need to round the

pixel’s value. However, this loss is not perceptually recognizable as measured by

the structural similarity index (SSIM) [138] between the original and recovered

images. SSIM is a popular measure used to compare perceptual image similarity.
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For two identical images SSIM value will be 1. Our results show that the average

SSIM measured over the 1000 original and recovered images is 0.99 (SD = 0.0038).

A distribution of SSIM values for UEP recovered images is shown in Figure 3.14.

UEP Computational Cost: Our universal transferable perturbation is learned us-

ing only 200 randomly selected images but can be applied to any other image.

Compared to previous approaches [71; 83], our hybrid approach requires signifi-

cantly less computational effort and time and achieves better results. But even

training small CNNs is computationally expensive operation. For instance, train-

ing three small local CNNs and learning a universal transferable perturbation using

200 images took 13 hours on a standard desktop with 64GB RAM and an Intel

Xeon E5-1630v4 3.70GHz quad-core CPU, and a GTX 1080 Ti GPU with 11GB

RAM (Appendix A.1 has network details). Training the 3 local CNNs took less

than 1 hour and learning the universal transferable perturbation over 200 images

took about 12 hours. However, this is a one-time computation cost that can be

expended offline. The learned perturbation can be used for perturbing multiple

images and hence the learning cost is amortized over all the images.

Since a single perturbation can be applied for a batch of images, the cost for

storing the learned perturbations in order to recover the original image is only a

small fraction of the storage required for the images. For example, in our evaluation

we created a universal perturbation for 200 images and hence the additional cost

for local storage is one perturbation (1/200th of total image storage).

Summary: We showed that even with access to a small dataset, 10 classes and

at most 200 images per class, one can learn small CNNs and generate a universal
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perturbation with high transferability. This is in contrast with Liu et al. [71] who

train 4 large CNNs (with 1000 classes each) using a training dataset (ILSVRC [102])

of 1.2M images to achieve only 76% transferability (over 200 test images) on

Clarifai.com. Similarly, Moosavi-Dezfooli et al. achieved only 70% fooling rate

even after using 4000 images to learn a universal perturbation. When using only

1000 images to learn a perturbation they achieved less than 40% fooling rate (see

Figure 6 in [83]). In contrast, UEP can learn an effective universal perturbation

using only 200 images and achieve ≥ 94% fooling rate.

Our evaluation of UEP, on more than 1000 images and 3 different face detection

and 2 different face recognition models, shows that fooling face detection models

is harder than face recognition models. In other words, face recognition models

are more sensitive to perturbations. Also, a β = 3 showed sufficient fooling capa-

bility on face recognition models while keeping the images recognizable. Our UEP

method also has less loss compared to other transferable perturbation generation

approaches because perturbation is added in the arc-tangent hyperbolic space of

the images instead of directly to their pixel values.

3.6.2 k-RTIO Performance

k-RTIO Simulation Setup: Recall that k-RTIO requires a set S of initial overlay

images. We observed empirically that the choice of this set of images did not

significantly alter the fooling performance of k-RTIO. However, we felt that in-

cluding images with human faces may reduce recognizability. So we chose a set
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of 30 random images from the Internet that did not include faces from our initial

set S (this set is shown in Figure B.1 in Appendix B.1). Similar to UEP evalu-

ation, we selected 1000 images from the FaceScrub dataset uniformly at random

and applied k-RTIO perturbations that were generated using different values for α

(mixing parameter), k (number of overlay source images), and b (number of blocks

in an overlay image).

Effectiveness of k-RTIO: Similar to UEP evaluation, to assess k-RTIO, we eval-

uated it against Google Vision API’s face detection model, online face detection

and recognition models of Clarifai.com, and face detection and recognition models

of DeepFace.

k-RTIO vs. Google Vision API : Google Vision API detected faces in less than

40% of original unperturbed images (here we did not crop the faces but rather

submitted the original images). Then we perturbed those images for which Google

Vision API correctly detected faces with k-RTIO approach. Note that unlike UEP

that needs to resize images to apply perturbation, k-RTIO does not need to resize

the main image (just overlay images should be resized to main image’s size). As

shown in Figure 3.10, Google Vision API only can detect faces in less than 35% of

images when k = 3 and α ≤ 0.5 for small block sizes (less than 10). Increasing α

value or number of overlay images (k) leads face detection success rate to increase.

This is because a larger α value implies more of the original image is present in the

perturbed image and thus can increase recognizability for both humans and auto-

mated classifiers. This can be seen in Figure 3.12 where the image becomes clearer

for higher α values for every block size. Increasing the number of overlay images
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Figure 3.10: Google Vision API face detection model performance on kRTIO images for
k=3 and k=8.

used (k) leads k-RTIO perturbation to look like random noise as the different

overlay images are averaged, and therefore the perturbation becomes ineffective.

This is evident from Figure 3.13 where for k values greater than 4 images become

easy to perceptually recognize for all block sizes. Interestingly, both Figures 3.12

and 3.13 show that smaller block sizes seem to produce less obfuscated images for

humans while still thwarting automated classifiers.

k-RTIO vs. Clarifai.com: Clarifai.com’s face detection model was able to detect

faces in all original images sampled from the FaceScrub dataset. Clarifai.com’s

face recognition model was able to recognize ≈ 82% of the celebrities in these

images. To evaluate the k-RTIO performance on face recognition model, we used

only the images that were recognized by Clarifai.com’s face recognition model. As

shown in the top row of Figure 3.11, similar to Google Vision API, for small values

of α ≤ 0.45 and small block sizes clarifai.com’s face recognition model is able to
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detect faces in very few images (< 7%) even when face detection model is able to

detect faces in more than 80% of images successfully.

k-RTIO vs. DeepFace Models: We also evaluated k-RTIO against DeepFace face

detection and recognition models. As in the case of UEP, we selected more than

1000 images from FaceScrub dataset that DeepFace classified correctly. We per-

turbed the selected images using k-RTIO with different α values and block sizes

and tested them against DeepFace. As shown in the bottom row of Figure 3.11,

both models showed low performance for k-RTIO perturbed images with a small

block size (even for larger α values).

Recoverability/Reversibility: We can always regenerate the exact overlay image

that was added to original images using the secret key. However, k-RTIO still

needs to round up the pixel values after adding overlay images leading to some loss.

However, this loss is not perceptually recognizable. To measure the perceptual

similarity, we again used SSIM to evaluate the similarity between the original

and recovered images. Our results show that SSIM measure between original and

recovered images averaged over the 1000 tested images is 0.96 (SD=0.07). A

distribution of SSIM values k-RTIO recovered images is shown in Figure 3.14. k-

RTIO recovered images tend to exhibit lower SSIM values as the perturbation is

applied to the whole image and not just the faces as is done for UEP. For this

experiment, we set the k-RTIO parameters as k = 3, block-size= 8 and α = 0.45

(a sweet spot for fooling unknown face recognition models).

Computational Costs of k-RTIO: Unlike transferable perturbation generation, the

k-RTIO method is computationally much more efficient. While it does involve
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Figure 3.11: Clarifai.com (online) and DeepFace (offline) face recognition and detection
models on k-RTIO perturbed images for k = 3.

(k × b) + k AES invocations for generating a unique overlay for each image, AES

is computationally inexpensive especially with hardware instruction set support.

For example, generating a permutation for 500 blocks takes 9× 10−5 milliseconds

and permuting an overlay image with 625 blocks of 40 × 40 pixels each took less

5 × 10−4 milliseconds (wall-clock time) with no special optimizations or effort.

Further, creation of unique overlays can easily be parallelized when perturbing

multiple images. End users need only store the secret key (128 bits) and a small
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Figure 3.12: Different α values vs. size of block for k = 3 overlay images. Overlay images
were chosen randomly but the same overlay images were used in all cases.

image set S used in the creation of unique overlays to recover the original images.

Thus, storage costs remain constant irrespective of the number of images that are

perturbed.

Summary: Similar to the case of UEP, we find that fooling face detection models

is harder than fooling face recognition models. As shown in Figures 3.10 and 3.11,

face detection models can detect faces better for larger block sizes (i.e., smaller

number of blocks (b)) even at lower α values. However, k-RTIO is able to effectively

thwart face recognition models. For small block sizes (4×4 or 8×8), face recognition
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Figure 3.13: Different number of overlay images vs. different number of block sizes for
α = 0.6. Used same overlay images per row.

models recognize 15% of faces at best for α ≤ 0.5. For lower alpha values, say

α = 0.4, face recognition rate does not go above 15% for any block size. Thus, the

mixing parameter α and the number of blocks b are critical factors that impact face

recognition. Similarly, as shown in Figures 3.13 and 3.10, number of overlay images

used is also a critical factor as using more overlays leads to a final perturbation

that looks like random noise and therefore ineffective.
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Figure 3.14: SSIM histogram for recovered UEP and k-RTIO images. In contrast to
k-RTIO, UEP only perturbs faces in an image, therefore it has larger SSIM on average.

3.6.3 Potential Attacks Against UEP and k-RTIO

We explore different countermeasures that can potentially be deployed against the

proposed perturbation approaches. We show that using one perturbation for sev-

eral images provides adversaries with an opportunity to estimate the perturbation

and recover classifiable images (if not original images). This is a downside of using

a single semantic perturbation for multiple images and led to the k-RTIO approach

which uses a unique perturbation per image. We also explore a countermeasure

where the target CNNs learns on perturbed images.

Perturbation Estimation and Removal: Let us assume that the perturbation is

added directly to images (x′i = xi + δ) and an adversary wants to find δ given

only the perturbed images. Adversaries can treat δ as the main signal and the

images as noise added to the main signal. In this case, the noise signal is not

independent or zero mean (but rather images of faces). However, target CNNs
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do not need to recover the exact perturbation as they do not have to recover the

exact original image. They only need to recover enough of a likeness to the original

image to be able to classify the image correctly. To get a rough estimate of the

perturbation, a target CNNs can compute the median of pixels in all perturbed

images to approximate the δ. It can then add the inverted median to a perturbed

image as a new layer (x = λ× x′i + (1− λ)× inv(δ′)).

Figure 3.15: UEP perturbation estimation and removal. The first image is the perturbed
image, the second one is median of 200 perturbed images. The third image is inverted
median and the final image is the recovered image by an adversary (λ = 0.42).

As shown in Figure 3.15, using this approach a target CNN can obtain an image

close to the original and that seems to be sufficient for recognition. We have as-

sessed 200 images after removing the perturbation with median estimation method

and submitted it to the clarifai.com’s celebrity face detection model. As shown

in Figure 3.16, clarifai.com’s success rate for different values of λ (0.40 to 0.56)

is as high as 70% (for λ ∈ [0.44, 0.48]) - more than tenfold improvement! In the

worst case scenario, if we assume that the target CNN can know when it classified

correctly then it can vary λ for every image and reach an accuracy as high as 80.5%

with access to only 35 images modified using the same perturbation. Thus, using a

single UEP perturbation for several images may allow target classifiers to estimate
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Figure 3.16: Target CNN can recover 60% of the images by using Perturbation Estima-
tion and Removal method just with 5 images using the same perturbation. By setting λ
value to 0.48, an adversary can improves its success rate to 70%.

the perturbation and recover classifiable images. As shown in the Figure 3.16, an

automated classifier can improve their classification accuracy to 70% by estimating

perturbation using as few as 10 perturbed images.

Unlike UEP that uses a single perturbation for several images, k-RTIO gener-

ates a unique perturbation for each image, hence this perturbation estimation and

removal approach is not effective against k-RTIO.

Robust CNNs: Many methods have been proposed to detect and reject adversarial

examples (e.g., [80; 131; 112; 4; 6]). These methods are suitable for safety sensi-

tive application such as disease recognition and autonomous cars in which making

wrong decision may cause huge consequences. However, such approaches are not

useful as defenses against UEP or k-RTIO as those methods want to detect and

reject perturbed images as much as possible which aligns with our goal of pre-

venting automated classifiers from correct classification. Other proposed methods
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Figure 3.17: The accuracy of the CNN of TinyImageNet on perturbed images by k-RTIO
images for k = 3 (left) for the original CNN learned on benign images, and (right) robust
CNN which is learned on the k-RTIO images.

tend to make learning white-box attacks harder for an adversary [7; 93]. However,

such defenses are still vulnerable to black-box attacks in which an adversary learns

highly transferable perturbations on using local CNNs. Another approach is to

train robust CNNs that are able to classify adversarial images correctly [74] by

re-training the network on both benign and adversarial images. However, it has

been shown that this approach does not make CNNs robust against all kinds of

adversarial examples even for small CNNs [106]. Here we aim to assess the clas-

sification accuracy improvement on k-RTIO perturbed images when one trains a

CNN both on benign and k-RTIO perturbed images.

For this, we selected TinyImageNet [62] with 200 classes, 100000 training-set

images, and 10000 test-set images as the target CNN. We trained an Xception

Convolutional Neural Network [24] on this dataset. In 100 training epochs, this

CNN achieved 65.42% accuracy on the test-set images. We then added 100000 and

10000 k-RTIO perturbed images to training and test respectively, and retrained the
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Xception CNN. We used the same learning rate and same random seed number to

initialize the CNN weights. The robust Xception CNN achieved 68.50% accuracy

on benign test-set images and 32.1% accuracy on average on k-RTIO images (α ∈

{0.45, 0.5}, block − size ∈ {4, 8, 16, 64}).

As shown in Figure 3.17, learning on k-RTIO images can improve accuracy.

However, the accuracy on images with low alpha values α = {0.4, 0.45} was still

less than 29% and 39% respectively. In other words, robust CNNs can improve

their accuracy on k-RTIO perturbed images but not significantly for small α values.

Note that we used the same overlay set for perturbing images in the training and

test sets to evaluate the robust CNN. This simulates a situation when the target

CNN has access to a user’s overlay set S.

Figure 3.18: Filtering results on DeepFace face detection and celebrity recognition models
for α = 0.45 and k = 3.

Noise Reduction Techniques: Adversarial training showed good performance against

adversarial examples for small CNNs, but this approach has been shown to be com-
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putationally expensive at large scale [7] and not a desirable solution for dealing

with adversarial samples.

Approaches to recover classifiable images from perturbed ones using different

filtering techniques have been explored [26]. Note that CNNs do not need to

recover original images to classify them correctly. They only need to reduce the

impact of the perturbation to obtain a correct classification. Here, we explore

filtering approaches that can reduce perturbation noise sufficiently to make them

recognizable for CNNs. To evaluate robustness of k-RTIO, we applied different

filters such as Blurring [100], Median Filter [50], Grayscale Filter and Gaussian

Filter to reduce noise or distortion. As shown in Figure 3.18, none of these methods

could improve image quality for DeepFace face recognition classifier significantly.

3.7 Discussion and Future Work

Adversarial perturbation is being studied as a way to address privacy concerns

with scalable automated face recognition by CNNs [51; 105; 33]. In this work, we

proposed some practical requirements for such defenses and proposed two pertur-

bation schemes, UEP and k-RTIO, that meet those requirements. However, these

schemes have their limitations.

Downside of Universal Perturbation: UEP generates a single transferable pertur-

bation that can be used on multiple image to successfully fool an unknown CNN.

The rationale for designing UEP, a universal transferable perturbation scheme,

was to amortize the cost of learning a perturbation across multiple images, and
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to be able to reverse the perturbation with a low storage cost of just storing one

perturbation. However, the use of a single perturbation across multiple images

opens up the possibility of a target CNN estimating or learning this perturbation

by observing multiple perturbed images. Indeed, as described in Section 3.6.3, we

show that it is possible to filter the perturbation sufficiently enough to allow cor-

rect classification. This leads us to observe that cost-efficient approaches to learn

and store image-specific perturbations need to be developed before learning-based

perturbation approaches can become practical defense tools against automated

classification. Alternatively, if multiple independent universal perturbations can

be computed and used, it may be possible to leverage them to thwart the pertur-

bation estimation approach discussed in Section 3.6.3. Both these remain open

problems.

Efficiency of Semantic Perturbations: In contrast to adversarial-learning ap-

proaches such as UEP, our semantic approach k-RTIO reduces the efficiency of

a CNN in recognizing features, by reducing the similarity of adjacent pixels. k-

RTIO is as a better choice than UEP, given that k-RTIO is both computationally

cheaper and found to be more effective. We are encouraged by the feasibility to

find cheaper techniques to thwart recognition by existing classifiers. While our

initial evaluation shows k-RTIO is robust against common filtering techniques, it

is not an exhaustive list and further work is needed in this direction.

Re-training a CNN on adversarial examples has been shown to improve the

CNN’s robustness against such examples [74] and is a potential defense against

k-RTIO. Although this approach is not computationally feasible for large scale
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datasets [7], we did evaluate its effectiveness against k-RTIO using TinyImagenet

dataset to train a CNN on both clean and k-RTIO perturbed images. Our evalu-

ation showed that for small values of α, this robust CNN’s accuracy on perturbed

images has not improved significantly (< 30% and 40% for α = 0.4 and 0.45,

respectively).

Recognizability: Our findings indicate a sweet spot for k-RTIO parameters (k = 3,

α = 0.45, and b < 20) where classifiers have low success while the images remain

visually recognizable (see Figure 3.12). However, it would be good to empirically

evaluate the recognizability of k-RTIO perturbed images through user studies and

to characterize the boundaries for human recognition in terms of parameter values

for k, α, and b.

Lack of Strong Guarantees: Besides learning a robust CNN, online service providers

may also be able to rely on other channels of information other than the image it-

self to infer information that can help them classify correctly, such as where, when,

and with whom the image was shared. Further, an adversary may be able to use

the structure present in overlay images to reduce their effort required to recreate

the unique overlay image. While this can be done using visual clues manually,

it may also be feasible to automate this although we are not aware of a specific

way to efficiently achieve that. Similarly, it may be possible to find a smoothing

filter that allows an adversary to correctly classify a k-RTIO image without re-

versing the perturbation. In other words, unlike traditional privacy mechanisms

like encryption, perturbation-based defenses are not yet able to provide provable

guarantees. This is especially the case as it is hard to quantify the information
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leaked by perturbed images (especially since we require it to be sufficient enough

for human recognition). At least in the case of ideal TPE schemes [123] the leaked

bits can be succinctly characterized. While differential-privacy based perturbation

approaches are emerging (e.g., [29; 30]) they are currently not reversible. Per-

turbation schemes that thwart one pre-specified classifier while allowing another

pre-specified classifier to classify correctly (e.g., [51; 130]) have also been proposed.

However, those approaches are also not reversible. Further, it is not clear how they

fare against an unknown classifier. This lack of defined guarantees is not specific

to just UEP or k-RTIO but seems to be true for adversarial perturbation based

defenses in general. This is an open question that needs to be explored for image

perturbation based privacy defenses to become practical.

Finally, while problems that are hard for AI and easier for humans have been

explored in the context of distinguishing between humans and robots on the web

(e.g., CAPTCHAs), there seems to be a need to revisit such a paradigm for privacy

against automated classifiers.

3.8 Conclusion

Given that users tend to store and share photos with friends and family using

cloud-based platforms with weak access control options, the emergence of scal-

able and automated image classification is a serious threat to user privacy. In this

chapter, we explored two reversible image perturbation techniques that can thwart

classification and tracking by automated classifiers while at the same time allow-
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ing recognition by humans. We showed that our k-Randomized Transparent Image

Overlays (k-RTIO) approach is not only very effective but also computationally

cheaper in contrast to learning-based perturbation methods. However, more work

is needed before perturbation based approaches can truly become practical.
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Chapter 4: Adversarial Examples against Super Resolution

Convolutional Neural Networks

4.1 Introduction

Single-image Super-Resolution Convolutional Neural Networks (SRCNNs) [115;

73; 136] were originally designed to generate/recover a High Resolution (HR) im-

age from its Low Resolution (LR) counterpart. Compared to traditional simple

interpolation methods for generating high resolution images such as bilinear and

bicubic interpolations [75], SRCNNs return high resolution images with better per-

ceptual quality and more visually plausible details. Consequently, SRCNNs have

become widely popular in a diverse range of applications including medical image

analysis to improve diagnostic accuracy [107], satellite imaging for remote sens-

ing and resource detection where it is important to distinguish between two or

more similar objects [125], and surveillance applications [132]. While SRCNNs

have legitimate and beneficial applications in different domains, they introduce

privacy issues that need to be addressed. Previously, low resolution images were

considered to provide some level of image privacy against recognition by either hu-

mans and classifiers [123; 46; 77; 129]. However, SRCNNs’ ability to generate high

resolution images from the low resolution ones for face recognition [103; 139; 21]

poses a threat to previous approaches such as thumbnail-preserving encryption
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SRCNN Function 
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SRCNN Function 
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Adversary’s CNN(s)

Adversary’s CNN(s)

(a) Ideal system: perturbing of an adversary’s SRCNN’s output

(b) Real system: perturbing the input of an adversary’s SRCNNs

Figure 4.1: An adversary uses an SRCNN to generate HR images and gives it to an image
CNN classifier for classification. (a) shows an ideal system in which the adversary’s
SRCNN is known and a user can add adversarial noise to generated HR by the SRCNN,
(b) shows an real system in which the adversary’s SRCNN is unknown and a user perturbs
her LR images directly.

(TPE) [123; 129; 77] that leak low resolution thumbnails for usability purposes.

The privacy threat posed by AI-based face-recognition is real as evidenced by

the emergence of image search applications such as Clearview AI Facial Recogni-

tion app [44], which can take a given picture of a person and search a database

of more than 3 billion images scraped from Facebook, YouTube and millions of

other websites to provide matching photos along with links to websites containing

those photos. The emergence of powerful SRCNNs that can be utilized for face

recognition from low resolution images exacerbates this threat.

Despite of high accuracy of CNNs, recently it has been shown that they are

vulnerable to adversarial perturbations, and consequently adversarial perturbation

has been explored as a promising image privacy protection mechanism against
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automated face recognition by convolutional neural networks (CNNs) [51; 20; 28].

However, these approaches do not explicitly consider low-resolution images or take

SRCNNs into account. Here, we aim to assess the survivability of the adversarial

images trained on CNNs through SRCNNs

SRCNN	
Function	hr(.)

Local	
CNN(s)

Down-Scaling		
Function	T(.)

Attack	
Model

SRCNN	
Function	hr(.)

Local	
CNN(s)

Down-Scaling		
Function	T(.)

Attack	
Model

(a)	Learning	Adversarial	Examples	on	HR	images

(b)	Learning	Adversarial	Examples	on	LR	images

Figure 4.2: Two different approaches for generating low resolution adversarial examples
for unknown SRCNNs using only a local CNN(s). In (a), an adversarial example is gen-
erated on a clean HR image and the down-scaled adversarial image is given to SRCNNs
as input. In (b), an adversarial example is generated on an LR clean image and is given
to SRCNNs as input. Target CNNs may or may not be known for users, but the target
SRCNN(s) is unknown.

Contributions: In this chapter, we hypothesize and empirically show that adver-

sarial perturbations targeting only CNN Classifiers can survive the processing by

SRCNNs. We evaluate the survivability of both white-box and black-box adversar-

ial perturbations through the state-of-the-art SRCNNs and demonstrate that joint

optimization over both SRCNNs and CNNs is not necessary to learn low resolution
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adversarial images (see Figure 4.1) in order to thwart target CNN classifiers. In

summary, we make the following contributions:

• We hypothesize survivability of adversarial perturbations through SRCNNs.

• We assess the survivability of white-box and black-box adversarial perturba-

tions. We then demonstrate that both (i) perturbations learned on LR, and

(ii) down-scaled HR adversarial images can survive state-of-the-art SRCNNs.

• We demonstrate that a user can learn imperceptible noise for low resolution

images on her small CNN(s) to make SRCNNs generate low quality high

resolution images that lead CNNs to misclassify them.

The rest of this chapter is organized as follows: We describe our assumptions

and the system model in Section 4.2 and discuss related work in Section 4.3. We

introduce our methodology for generating LR adversarial images and evaluating

their survivability through SRCNNs in Section 4.4. We finally present our results

in Section 4.5. We discuss future work in Section 4.6 , and conclude in Section 4.7.

4.2 System and Adversary Model

In this chapter, we consider a situation where an adversary aims to classify low

resolution images using their convolutional neural network classifiers. In order to

improve their classification performance, the adversary passes the low resolution

images through a super resolution convolutional neural network first, to generate

a higher resolution image, and then uses a CNN classifier. Figure 4.1 depicts
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such an adversary’s classification pipeline. We assume that the adversary’s image

classification CNN is pre-trained (e.g., using images scraped from the Internet; or

using images stored or shared by users on online storage or sharing platforms).

Our goal is to help owners of the (low resolution) images (e.g., users’ of social

networks or image sharing platforms) thwart these unauthorized automated clas-

sification pipelines using image perturbation. Here the perturbation needs to be

applied to the low resolution to cause SRCNNs to generate high resolution image

that is misclassified by the CNN classifier.

However, it is unlikely that the image owners have any a prior knowledge of

the SRCNNs and CNNs that may be used against their images in an adversary’s

pipeline. Thus we assume that users do not have any knowledge about the SR-

CNN(s) that an adversary might use. For the image classification CNN, we consider

the following two scenarios:

• A user does not have any knowledge about the adversary’s image classifica-

tion CNN. This is the more likely case in real-world use. For example, in

image sharing platforms, end users do not know what classifiers may be used

by service providers or other curious users. This scenario requires perturba-

tions for the images to be learned in a black-box setting.

• We also consider a scenario where we have access to the target CNN or can

estimate the CNNs’ function by sending queries. In this case, perturbations

for images can be learned using white-box adversarial learning techniques.

While this scenario is not quite realistic, we do consider this to study whether
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white-box perturbations have an advantage over black-box perturbations or

vice-versa.

4.3 Related Work

We covered the significant works on image privacy in Chapter 3.2. Here we focus

on approaches that learn adversarial noise for SRCNNs.

Recently, an attack model has been proposed for generating adversarial noise

on low resolution images to decrease the quality of HR images generated by SR-

CNNs [23]. Similar to FGS attack for CNN classifiers, this method tends to learn

adversarial noise for SRCNNs, but the objective function is to maximize the dif-

ference between a generated high resolution image and its original high resolution

counterpart with minimum perturbation on the low resolution image as follows:

min
δ
‖δ‖p − dist(hr(Ilr + δ)− I) (4.1)

where δ, I, Ilr, hr, and dist are adversarial noise, the original high resolution

image, the low resolution image, an SRCNN’s function which generates the high

resolution of a given image and the distance function which measures the difference

between two images, respectively. Peak signal to noise ratio (PSNR) or minimum

square error can be used as distance function. This method assumes that the

target SRCNN is known and accessible for the adversary. Moreover, the generated

HR images from perturbed low resolution images are not necessarily able to fool
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a CNN, since their goal is degradation of generated image’s quality, not fooling a

CNN classifier. A joint optimization has been proposed for learning adversarial

noise on low resolution images in [133], such that a target CNN will misclassify

the generated high resolution images by a given SRCNN. This method finds an

optimum adversarial noise for fooling a given CNN classifier. But, it assumes that

both target SRCNN and CNN classifier are known.

4.4 Methodology

4.4.1 Overview

In this section, we first introduce our approaches for generating LR adversarial

images and define the notation of survivability of adversarial images through SR-

CNNs1. Then we introduce our approach for evaluating the survivability. Briefly,

we will see the following topics in this section:

• In Section 4.4.2, we first introduce our approaches for generating low res-

olution adversarial images using a local CNN classifier(s). Images’ owners

want to generate LR adversarial images which lead SRCNNs to generate HR

adversarial images that are misclassified by the adversary’s classifier(s). As

discussed in Section 4.2, the adversary only have access to LR images.

• In Section 4.4.3, we define survivability of adversarial images through SRC-
1Here, we call generated adversarial examples with either white-box or black-box attack mod-

els adversarial images.
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NNs and then introduce our approach for assessing that.

• Finally, in Section 4.4.4, we introduce our metrics used to assess survivability

of adversarial images.

4.4.2 Generating Low Resolution Adversarial Images

As we discussed in Section 4.2, we assume that images’ owners share Low Resolu-

tion (LR) images and an adversary uses an SRCNN(s) to generate High Resolution

(HR) images to feed them to her CNN classifier(s). Therefore, the images’ owners

aim to perturbed their LR images such that the adversary’s SRCNN(s) generates

adversarial HR images which will be misclassified by the adversary’s CNN classifier.

To generate adversarial LR images, we consider two different scenarios:

• Generating adversarial noise/perturbation on high resolution images and

down-scaling them: as shown in Figure 4.2 (a), to generate LR adversarial

images, one can learn adversarial noise/perturbation on a local CNN(s) for

high resolution images, then down-scale the adversarial images. The down-

scaled adversarial images will be passed through SRCNNs by the adversary

to generate HR images for CNNs classifiers.

• Learning adversarial noise/perturbation on low resolution images: a user

may only have a small set of images and may not be able to learn a large

CNN. As shown in Figure 4.2 (b), for this case, one can train a small CNN(s)

on LR images and learn adversarial noises/perturbations on that small local
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CNN(s).

The adversarial images can be learned in a black-box or a white-box setting [36;

82; 84]. If a user has access to the adversary’s target CNN or can estimate the target

CNNs [93] by sending queries, white-box adversarial examples are better choice

since the generated noise is imperceptible for human eyes. However, adversarial

perturbations are black-box attacks and they are more suitable (compared to white-

box adversarial noise) for image privacy, since they are designed to fool unknown

CNNs with high probability .

4.4.3 Survivability Evaluation

There are several adversarial learning methods for generating adversarial images [37;

36; 18; 83]. Here, we aim to evaluate the survivability of adversarial images through

SRCNNs. A low resolution adversarial image survives through SRCNNs if its gen-

erated HR image has the same properties as the original HR adversarial image.

Adversarial images have two nice properties: (i) the ability to fool CNNs, and (ii)

preserving the true class of adversarial image 2. To evaluate the ability of fooling

CNNs for generated high resolution images by SRCNNs, we use misclassification

rate as transferability metric. For assessing the perceptual survivability of gen-

erated high resolution images from low resolution adversarial images, we use the

similarity metrics which quantify the quality of a reconstructed image from its low

resolution image using SRCNNs. The similarity metrics compare the quality of
2The adversarial images belong to the class of original clean HR image perceptually
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Figure 4.3: Two approaches of selecting a reference image for similarity metrics: (i) The
original HR adversarial image, and (ii) Directly perturbed generated HR image.

the generated high resolution with a reference image. We consider two different

scenarios for selecting the reference image to evaluate the perceptual quality of a

generated high resolution images by SRCNNs as follows:

• Original HR adversarial perturbed image as reference image: SRCNNs tend

to reconstruct the original high resolution image of a given input. The orig-

inal HR adversarial image is the target image that a user wants an SRCNN

to generate from its down-scaled. Therefore, the original HR image (see

equation 4.2) can be used as a reference image.

Sim(hrk(T (I + δ)), I + δ) (4.2)

where I, δ, hrk, and T are a benign image, adversarial perturbation, kth
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SRCNN function which returns the high resolution of a given image and

down-scaling function, respectively. To measure the similarity of two im-

ages, we utilize different similarity metrics (Sim(.,.)) that are introduced

in Section 4.4.4.

• Directly perturbed high resolution image generated from a clean image as

reference image: Even though SRCNNs aim to generate the exact high res-

olution of the given input, the generated high resolution image is different

from its original high resolution counterpart, and usually has a small noise.

The similarity between directly perturbed high resolution image generated

from a clean image (hrk(T (I))+δ) and generated high resolution image from

LR adversarial image (hrk(T (I + δ))) (see equation 4.3) gives better estima-

tion of the survivability of adversarial noise/perturbation, since both carry

a SRCNN’s noise. In other words, the noise added by an SRCNN is not

considered in the similarity estimation.

Sim(hrk(T (I)) + δ, hrk(T (I + δ))) (4.3)

where I, δ, hrk, and T are the clean image, adversarial perturbation, kth

SRCNN function which returns the high resolution of a given image and a

down-scaling function, respectively.
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4.4.4 Metrics

In this section, we define the transferability metric and introduce the similarity

metrics of Peak Signal to Noise Ratio (PSNR), Structural Similarity Index [65]

and perceptual similarity [135].

Transferability (TR): To measure the transferability of generated high resolution

images, we consider the misclassification rate which is defined as follows:

TR = 1
N

N∑
i=1

I(argmaxF (hrk(I ′i)) 6= Y ∗I′i) (4.4)

where I ′i, hrk(I ′i), and Y ∗I′i are the i
th perturbed image, the high resolution image of

generated by kth super resolution convolutional neural network (SRCNN) and the

true label of the perturbed image, respectively. Also, F (x) returns the probability

vector generated by a CNN classifier for image x and I(t) is the identity function

which returns one when t is true, and zero otherwise.

Peak Signal to Noise Ratio (PSNR): This metric uses the normalized Minimum

Square Error (MSE) between two images. Unlike MSE that depends on the scale

of pixels’ value of images, PSNR considers the ratio of the maximum possible value

for a pixel to difference between pixels as described below:
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MSE =
M,N∑
i,j

[I1(i, j)− I2(i, j)]2
M ∗N

PSNR = 10 log10
R2

MSE

(4.5)

where I1 and I2 are two reference and reconstructed images, respectively, M and

N are the resolution (number of rows and columns) of the images and R is the

maximum pixel’s values. For two identical images MSE converges to 0 and there-

fore PSNR value converge to a large value. In other words, if two images’ pixels

value are too close, their PSNR would have a very large value.

Structural Similarity Index(SSIM): Unlike PSNR, SSIM is based on visible struc-

tures in the image, since human visual perception depends on structural informa-

tion existing in an image and not pixel’s values alone. Therefore, this metric focuses

on local pattern of pixel intensities that have been normalized for luminance and

contrast. SSIM metric returns a value between [0, 1] and for two identical images

it returns value of one, and by increasing the difference between two images, it

returns smaller values.

Perceptual Similarity (PerSim): Both PSNR and SSIM are susceptible to noise

and a small amount of noise could cause a significant degradation on these met-

rics, while the images would not change perceptually. To address this problem,

perceptual similarity was proposed in [135], which measures the similarity not in
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the image space (similarity between pixel values), but rather in a feature space.

Feature space is the output of intermediate layers of a CNN. This metric considers

two images similar if for a given CNN they generate similar values in feature space.

This metric returns a value in the range of [0, 1] and for two identical images it

returns zero, by increasing the difference between images, it returns a larger value.

In this section, we introduced our methodology for generating LR adversarial

images and how we evaluate the survivability of them through SRCNNs. We

present our evaluation results in Section 4.5.

4.5 Evaluation

In this section, we evaluate the survivability of adversarial images through SRCNNs

for two different attack models of white-box and black-box attacks and for both

methods of generating LR adversarial images (See Figure 4.2). We choose two

state-of-the-art black-box attacks to generate adversarial perturbations; Universal

Ensemble Perturbation (UEP) proposed in Section 3.5 designed for image privacy

and Universal Perturbation (UP) [83] designed for fooling unknown CNNs. We also

use Fast Gradient Sign (FGS) to generate adversarial images with imperceptible

noise. Compared to adversarial perturbation generation methods (e.g., UEP and

UP), FGS has less transferability but it creates imperceptible noise for LR images.

Table 4.1 shows different scenarios we consider for our evaluations. For instance,

we use FGS for generating white-box HR adversarial images and black-box LR
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adversarial images on a local small CNN3.

Learning LR
Adversarial Images

Down-Scaling HR
Adversarial Images

Bl
ac
k-
Bo

x

FGS (Section 4.5.3) & Universal
Perturbation
(Section 4.5.2)

Universal Ensemble
Perturbation (Section 4.5.2) &

FGS (Section 4.5.3)

W
hi
te
-B

ox

NA FGS (Section 4.5.3)

Table 4.1: Evaluation scenarios. We consider two attack models of white-box and black-
box attacks with different approaches of generating LR adversarial images.

4.5.1 Simulation Setup

SRCNNs: We select four state-of-the-art super resolution convolutional neural

networks of (i) RCAN [69; 136], (ii) CAR [115] which obtained the best PSNR,

(iii) SPSR [73] whose objective function minimizes perceptual similarity, and (iv)

deep face super-resolutions [72] which is trained only on faces. SPSR is trained for

scale of 4 4 and Deep Face SRCNN is trained for scales of 4 and 8. Both CAR and

RCAN support scales of 2, 4 and 8.

Datasets: We consider two different datasets, (i) a set of 1000 celebrities images
3Note that here we assume an adversary has a large CNN trained on HR images. Therefore,

we do not have white-box attacks for Learning LR adversarial images.
4An SRCNN with scale of 4 generates a HR image with resolution of 4M × 4N from a LR

image with resolution of M ×N .
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sampled from Facescrub dataset [88], and (ii) a set of 1000 images sampled from

ImageNet dataset [102]. ImageNet dataset contains more than 1000 classes and

1M images. For our evaluations, we select 1000 images from the 10 easiest classes

for classifications which are less sensitive to noises and consequently, more difficult

to misclassify.

Classifiers: To measure the transferability of the adversarial noise and perturba-

tion, we consider a state-of-the art online face recognition model for celebrities

called clarifai.com and pre-trained ImageNet classifiers trained on ResNet101

CNN and ResNet152 CNN [42]. Also, to train the adversarial noise on low resolu-

tion images, we train a small CNN with VGG-11 [109] structure on the 10 easiest

classes of ImageNet dataset. Samples from these classes are less sensitive to noise

and are more difficult to misclassify.

4.5.2 Adversarial Perturbations

Here, we evaluate the survivability of two different adversarial perturbation meth-

ods of universal perturbation and universal ensemble perturbations. Both of these

methods generate transferable perturbations at the cost of adding more noise. We

first evaluate the universal ensemble perturbation learned on different resolutions

specially for image privacy. Then we assess the universal perturbation learned on

LR images on a small CNN with 10 classes only.
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Figure 4.4: Each column shows the density distributions for a similarity metric to com-
pare (i) the generated high resolution images from down-scaled clean images and original
HR images (Sim(I, hrk(T (I)))), (ii) the generated high resolution images from down-
scaled UEP perturbed images and original UEP perturbed images (Sim(I + δ, hrk(T (I +
δ)))), and (iii) the generated high resolution images from down-scaled UEP perturbed
images and the directly UEP perturbed high resolution images generated from down-
scaled clean images (Sim(I + δ, hrk(T (I)) + δ)). Sim function is a similarity function,
PSNR, SSIM or perceptual similarity (PerSim). Two more similar images return higher
values for PSNR and SSIM and lower value for perceptual similarity.

Universal Ensemble Perturbation (UEP): To evaluate the survivability of UEP

through SRCNNs, we use Facescrub dataset since this perturbation is designed

for image privacy and is learned on faces. For misclassification rate, we use the

clarifai.com celebrities face recognition model.
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Baseline: Before evaluating the survivability of UEP through SRCNNs, we as-

sess the performance of SRCNNs on generating recognizable high resolution im-

ages from clean LR images for the target classifier, clarifai.com face recognition

model. So we use the 1000 sampled face images from Facescrub dataset that are

all recognizable for clarifai.com and give the down-scaled images to SRCNNs.

Table 4.2 presents the accuracy of clarifai.com on high resolution images scaled

up by SRCNNs for different scales of 2 and 4. SRCNNs could not generate clas-

sifiable high resolution images for larger scale 8. As shown, 86.16% of LR images

can be reconstructed (using CAR (x4)) such that they are recognizable for the

celebrity face recognition model.

Baseline UEP Transferability
SRCNNs (scale) Face Detection Face Recognition Face Detection Face Recognition

CAR (x2) 100% 87.44% 99.8% 1.72%
CAR (x4) 100% 86.16% 99.75% 0.5%
RCAN (x2) 99.26% 71.74% 99.8% 1.61%
RCAN (x4) 88.73% 33.05% 100% 0.4%
SPSR (x4) 100% 69.25% 99.65% 0.129%

Deep Face SRCNN (x4) 100% 71.82% 99.61% 1.66%

Table 4.2: Accuracy of clarifai.com celebrity face detection and recognition models for
generated high resolution images from clean images (Baseline) and generated high reso-
lution images from down-scaled UEP perturbed images.

We also use 3 similarity metrics of PSNR, SSIM and perceptual similarity in-

troduced in Section 4.4.4 to assess the quality of generated high resolution images

by SRCNNs. As shown in 4.4, we measure the density for each similarity met-

rics. The first row in Figure 4.4 shows the similarity between an original high

resolution image and the generated high resolution counterpart. CAR (x2), Deep

Face SRCNN and CAR (x4) generate more similar images to original ones. These



74

results are compatible with the face recognition model’s accuracy presented in Ta-

ble 4.2. In other words, these three SRCNNs generate more recognizable images

for clarifai.com face recognition model. As we expected, CAR (x2) obtained

larger PSNR and SSIM values and smaller values for perceptual similarity. For the

scale of 8, CAR, RCAN and Deep Face SRCNNs could not generate recognizable

images for the face recognition model.

Survivability of UEP: To evaluate survivability of UEP through SRCNNs, we per-

turb original high resolution images using UEP with β = 3 (as suggested in Sec-

tion 3.6.1). To generate perturbed LR images, we down-scale UEP perturbed

images by getting average of each block and use the state-of-the-art SRCNNs to

generate high resolution images.

As shown in Table 4.2, at least 98%(1 − 1.79) of the generated HR images

from down-scaled UEP perturbed images can fool clarifai.com face recognition

model successfully. To measure survivability, we consider three different similarity

metrics of PSNR, SSIM and perceptual similarity. As shown in Figure 4.4, CAR

(x2) and RCAN (x2) generate more similar HR images to benign perturbed HR

images. For example, the perceptual similarity between generated high resolution

images by CAR (x2) from down-scaled UEP perturbed images, and the original

perturbed images is less than 0.15 for more than 75% of them (see the figure in

second row and the last column).

As discussed, the generated high resolution images by SRCNNs are not exactly

the same as their benign HR images and they contain small amount of noise which
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leads the similarity metrics to degrade. Therefore, to assess only the survivability

of an adversarial noise/perturbation, we consider the similarity between directly

perturbed HR images generated from clean LR images (as reference image) and

generated HR images from low resolution of adversarial images. As shown in the

last row of Figure 4.4, when we use directly perturbed generated HR image from

low resolution clean as reference image, the similarity metrics’ values improve. For

example, most of perceptual similarity values for CAR (x4) are less than 0.3 when

the directly perturbed HR images are used as reference images, while the original

adversarial images are used as reference images (in the second row), most of per-

ceptual similarity values for CAR (x4) are around 0.4.

Universal Perturbation: To evaluate the survivability of universal adversarial per-

turbation in black-box setting, we train a small CNN on the 10 easiest classes

on low resolution images (56 × 56). We train a universal perturbation with

ε = 0.03 which was able to fool the small CNN for 80.1% of images. Then we

use CAR (x4) to generate high resolution images for ImageNet classifiers (Both

ResNet101 and ResNet152). The high resolution images could fool ImageNet clas-

sifiers of ResNet101 and ResNet152 for 92.4% and 91.8% of the times, respectively.

Here, since we learn an adversarial perturbation for LR images, we use generated

HR from clean LR images as reference images. In this case, we do not have orig-

inal HR adversarial images for comparison. The average (std) of PSNR, SSIM

and perceptual similarity are 12.3(1.66), 0.325(0.139), 0.408(0.104), respectively.

Since we consider generated HR from LR clean images as reference images, PSNR
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and SSIM similarity metrics have lower values and perceptual similarity has higher

value. Note that the smaller values are better for perceptual similarity.

Clean FGS Attacks
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Figure 4.5: The first row shows the low resolution of the second row images and the
third row shows generated HR images of low resolution images shown in the first row
by CAR(x4). The first column of images shows the clean images and the rest column
shows the adversarial examples generated for benign high resolution images with FGS
attack and different ε values. I, δ, T (.) and hr(.) are the original image, adversarial
noise, down-scaling function and SRCNN function which returns high resolution of a
given images, respectively.

4.5.3 Adversarial Examples

There are many models for generating adversarial examples which can fool a known

target CNN with imperceptible noise. To evaluate the survivability of adversarial
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examples through SRCNNs, we use the samples taken from the 10 easiest class of

ImageNet dataset. As discussed in Section 4.4.3, we consider two different scenar-

ios for generating low resolution adversarial examples: (i) generating adversarial

examples on high resolution images and down-scaling them, (ii) learning adversar-

ial noise on low resolution images using a small CNN(s) trained on low resolution

images.

Before evaluating adversarial examples, we assess the quality of generated high

resolution images by SRCNNs for the ImageNet CNN classifier. For this, we use

low resolution version of these images as input to SRCNNs and give the generated

HR images to ImageNet classifier. Our experiments show that the generated high

resolution images by CAR (x2), RCAN (x2) and CAR (x4) have 86%, 69.9% and

39% accuracy on the ImageNet ResNet101 CNN classifier, respectively, and SPSR

(x4) and RCAN (x4) could not generate classifiable images. We choose the images

that are classified correctly and learn adversarial examples on them, then we eval-

uate them on SRCNNs. We describe our results for each scenario of generating

low resolution adversarial examples below:

Survivability of Down-Scaled Adversarial Examples: To generate adversarial ex-

amples, we select the images classified correctly by each SRCNN to learn adver-

sarial noise using Fast Gradient Sign (FGS) attack on ImageNet classifier trained

on ResNet101 for different values of step size (ε ∈ {0.001, 0.01, 0.02, 0.04, 0.05}).

We measure transferability for both white-box attack in which the target CNN is

ImageNet classifier trained on ResNet101 and black-box attack in which the target
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CNN is ImageNet classifier trained on ResNet152. We also consider transferability

rate for two different HR adversarial images namely (i) generated HR adversarial

images from down-scaled HR adversarial examples (when SRCNNs are not known),

and (ii) directly perturbed generated HR images from LR cleans (when SRCNNs

are known). As shown in table 4.3, for black-box attacks the transferability is

lower, since adversarial example generation methods create less perturbation at

cost of losing transferability. Also, the transferability of generated HR adversarial

images from down-scaled HR adversarial examples (when SRCNNs are not known)

is very close to transferability of directly perturbed generated HR images from LR

cleans. In other words, it shows having access to SRCNNs to directly perturb their

output does not increase the transferability.

To measure the survivability, we use similarity metrics and consider two differ-

ent scenarios for calculating similarity metrics (i) the original adversarial examples

as reference images (ii) directly perturbed HR images generated from clean low

resolution images as reference images.

Original adversarial example as reference image: As shown in Table 4.4, for the

small values of ε, the adversarial noise does not transfer well. However, the larger

ε values have higher transferability (misclassification rate) but lead to more distor-

tion in generated high resolution images even though the adversarial noise in low

resolution images is imperceptible. (see Figure 4.5). Consequently, larger values

of ε lead the similarity metrics to degrade. For example, the adversarial images

generated for ε = 0.01 and ε = 0.03 (the second row in Figure 4.5) are perceptually
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Black-Box
(ResNet152)

White-Box
(ResNet101)

ε TRR TRI TRR TRI

C
A
R

(x
4)

0.001 20.94% 20.65 % 15% 15.63%
0.01 29.2% 24.78 % 28.31% 19.76%
0.02 43.95% 26.55% 42.3% 26.54%
0.03 56.63% 28.02% 58.7% 28.61%
0.04 66.37 % 29.45% 69.32% 31.56%
0.05 75.51 % 31.27% 76.7% 37.46%

C
A
R

(x
2) 0.01 27.86% 16.9% 38.32% 23.96%

0.02 39.05 % 23.96% 52.43 % 38.81 %
0.03 50.85% 28.47% 59.97% 47.32%
0.04 57.29% 35.89 % 64.84% 52.92%
0.05 64.72% 41.24% 69.09% 57.42%

RC
A
N

(x
2) 0.01 50.33% 48.82% 55.03% 55.87%

0.02 66.78 % 66.61% 68.79% 71.14%
0.03 57.05 % 56.71% 57.88% 62.08%
0.04 68.28 % 66.94% 70.80% 69.46%
0.05 77.68 % 77.18% 77.18% 77.34%

Table 4.3: Transferability of generated HR from down-scaled adversarial examples (TRR)
and transferability of directly perturbed HR images generated from LR clean images
(TRI) for both black-box (ResNEt152) and white-box setting (ResNEt101)

similar but the generated high resolution images (the third row in Figure 4.5) from

their low resolution images are different (the perceptual similarity value of CAR

(x4) for ε = 0.01 and ε = 0.03 are 0.276 and 0.446 in average).

Directly perturbed HR image generated from an LR clean sample as a reference

image: SRCNNs do not generate the exact high resolution image of a given in-

put and add small amount of noise. Therefore, we also consider the similarity

between the directly perturbed high resolution images generated from LR clean

images (hr(T (I)) + δ) as references images) and the generated high resolution im-
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Original HR adversarial
Image as reference

Directly Perturbed
HR Image as reference

FGS(ε) PSNR (avg (std)) SSIM (avg (std)) PerSem PSNR(avg (std)) SSIM(avg (std)) PerSim (avg (std))

C
A
R

(x
2)

0.01 26.65 (2.97) 0.869 (0.034) 0.1 (0.024) 33.07 (2.09) 0.946 (SSIM) 0.027 (0.018)
0.02 25.84 (2.34) 0.82 (0.03) 0.12 (0.024) 28.92 (1.46) 0.87 (0.04) 0.055 (0.024)
0.03 24.77 (1.83) 0.78 (0.034) 0.143 (0.029) 26.48 (1.16) 0.82 (0.047) 0.09 (0.035)
0.04 3.64 (1.45) 0.742 (0.038) 0.167 (0.034) 24.65 (0.98) 0.775 (0.05) 0.124 (0.042)
0.05 22.53 (1.166) 0.712 (0.04) 0.189 (0.039) 23.16 (0.84) 0.7396 (0.05) 0.156 (0.047)

C
A
R

(x
4)

0.001 20.22 (3.23) 0.677 (0.105) 0.231 (0.059) 47.9 (2.76) 0.999 (0.0004) 0.0008 (0.0005)
0.01 20.07 (3.12) 0.638 ( 0.086) 0.276 (0.056) 29.41 (2.23) 0.91 (0.023) 0.067 (0.041)
0.02 19.62 (2.77) 0.564 (0.056) 0.366 (0.079) 325.22 (1.74) 0.785 (0.058) 0.1762 (0.089)
0.03 19.02 (2.36) 0.50 (0.047) 0.446 (0.096) 22.88 (1.39) 0.688 (0.079) 0.273 (0.114)
0.04 18.36 (1.98) 0.457 (0.047) 0.51 (0.104) 21.18 (1.146) 0.616 (0.088) 0.353 (0.12)
0.05 17.69 (1.66) 0.422 (0.048) 0.562 (0.11) 19.83 (0.97) 0.56 (0.09) 0.418 (,0.132)

RC
A
N

(x
2)

0.01 18.73 (4.41) 0.61 (0.153) 0.356 (0.186) 24.44 ( 8.82) 0.85 (0.159) 0.072 (0.077)
0.02 16.58 (4.22) 0.552 (0.164) 0.446 (0.2) 19.79 (6.47) 0.778 (0.15) 0.0958 (0.066)
0.03 18.68 (4.69) 0.572 (0.164) 0.333 (0.2) 22.69 (6.3) 0.852 (0.094) 0.092 (0.07)
0.04 17.63 (4.3) 0.55 ( 0.155) 0.35 (0.17) 19.1 (5.78) 0.7 (0.17) 0.147 (,0.09)
0.05 15.39 (3.41) 0.47 (0.134) 0.41 (0.173) 16.64 (4.68) 0.649 (0.16) 0.183 (0.086)

Table 4.4: Similarity metrics for evaluating adversarial examples survivability through
SRCNNs. We measure PSNR, SSIM and perceptual similarity for generated HR images
from down-scaled of adversarial examples for two different cases of (i) original adversarial
examples as reference images (Sim(hr(T (I + δ)), I + δ), and (ii) directly perturbed HR
images generated from clean low resolution images (Sim(hr(T (I)) + δ, I + δ) as reference
images.

ages from the down-scaled adversarial examples (hr(T (I + δ))). Since both have

SRCNN’s noise, the similarity between these images are higher. For example for

ε = 0.03 and CAR (x4), the average of perceptual similarity improves to 0.273

from 0.446.

Survivability of Directly Generated Low Resolution Adversarial Examples: As

discussed in Section 4.4, we want to evaluate if one can train a small CNN on low

resolution images and learn adversarial noises which can survive through SRCNNs.

To this end, we train a small CNN (VGG-11) on low resolution images of the 10

easiest classes of ImageNet. To learn a small CNN, we reduce the resolution of the
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images to 56 × 56 and use CAR (x4) as a target SRCNN. Here, we assume that

an adversary has a large ImageNet classifier (the one with 1000 classes with input

size of 224x224) and she wants to classify the users’ images.

We select 300 low resolution images for which ImageNet classifier classifies their

generated high resolution images by CAR (x4) correctly. We then learn FGS attack

for different ε(∈ {0.01, 0.015, 0.02, 0.03, 0.04, 0.05}) values on those low resolution

images. To measure the survivability, we evaluate the misclassification rate on

the ImageNet classifier (ResNet101) and the similarity between high resolution

images generated from clean images as reference images and high resolution images

generated from adversarial examples. As shown in Figure 4.6, the adversarial noise

in LR resolution images are imperceptible to human eyes even for large ε values,

while it causes the SRCNNs to generate adversarial perturbed HR images which

are misclassified by a CNN classifier.

ε TR PSNR SSIM PerSim
0.01 88.8% 30.34(1.37) 0.86(0.04) 0.145 (0.079)
0.15 90% 27.24 (1.05) 0.744 (0.07) 0.24 (0.10)
0.02 92.8% 25.02 (0.85) 0.64 (0.1) 0.32 (0.11)
0.03 95.8% 21.83 (0.67) 0.51 (0.11) 0.42 (0.11)
0.04 99.4% 19.57 (0.63) 0.413 (0.11) 0.48 (0.1)
0.05 99.7% 17.85(0.65) 0.35( 0.1) 0.52 (0.09)

Table 4.5: Evaluating the survivability of white-box attacks learned on low resolution
images for CAR (x4) SRCNN. The first column shows the ε value for FGS attack.
The second column shows transferability of high resolution images generated from low
resolution adversarial examples and the rest of columns show similarity between the HR
generated from clean LR image and the generated HR image from its LR resolution
adversarial example.
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Figure 4.6: The first column shows a clean low resolution image and its high resolution
images by CAR (x4) and the rest columns show the adversarial examples generated
on low resolution images and their high resolution images by CAR (x4). As shown by
increasing the ε values leads the adversarial noise to increase and the quality of generated
high resolution images to decrease.

As shown in Table 4.5, for even small values of ε(= 0.01), the adversarial

noise learned on small CNN is transferred well through CAR (x4) and fooled the

the larger CNN classifier for more than 88% of the images. In Figure 4.6, the

high resolution images generated from LR adversarial examples with ε = 0.01

have imperceptible noise and large values for PNSR and SSIM metrics, and a low

value for perceptual similarity metric. Note that the small values for perceptual

similarity metric and large values for SSIM show that the high resolution images

generated from adversarial examples are very similar to the high resolution images

generated from clean samples.
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4.6 Future Work

In this chapter we showed that one can learn adversarial images for SRCNNs using

only a local CNN. Here we introduce some interesting directions for future work.

Survivability of Other Adversarial Attack Models: In this chapter, we only con-

sidered FGS attack to generate adversarial examples, since this method is compu-

tationally cheap. For future work, one could consider exploring other adversarial

models, like C&W attack [18] and DeepFool attack [82]. These methods can gen-

erate smaller amount of noise and have higher transferability compared to FGS

model.

Survivability of Random Noises: In this chapter, we focused on image privacy

against automated image classifiers. However, there are other kind of privacy

concerns like minimizing the chances of identifying a single record in a release of a

large databases, called differential privacy. Random noise like Laplacian noise can

provide measurable image privacy guarantee for example for differential privacy.

Differential privacy is a popular privacy concept. Evaluating the survivability of

random noise that guarantees differential privacy can be a valuable future work

direction for this work.

Evaluating Against Robust CNNs: It has been empirically shown that adversarial

images can fool unknown CNNs but there is no guarantee that they have the

same transferability on robust CNNs. There are many approaches tend to make

CNN robust by learning them on adversarial examples. These approaches aim
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to train robust CNNs with ability of classifying adversarial examples correctly.

Even though these approaches are still vulnerable to adversarial perturbations

and computationally expensive [17], evaluating the generated HR resolution images

from LR adversarial images can be a valuable direction as future work.

4.7 Conclusion

In this chapter, we empirically showed that adversarial noise/perturbations learned

only on CNNs can lead super resolution convolutional neural networks to gener-

ate adversarial high resolution images which fool CNN classifiers. We evaluated

both with-box adversarial noise and black-box adversarial images’ survivability

through SRCNNs. We showed that even for imperceptible white-box noise trained

on a small local CNNs trained on limited images, the quality of generated high

resolution images by SRCNNs degrades significantly.
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Chapter 5: Detection and Rejection of Adversarial Examples and

Out-Distribution Samples

5.1 Introduction

Convolutional Neural Networks (CNNs) have become popular due to their high

accuracy for image and video analysis. Despite their strong performance, it has

been demonstrated that they are highly susceptible to adversarial examples, espe-

cially when dealing with high dimensional inputs such as images [121; 119]. An

adversarial image as previously discussed is one that has been perturbed with a

noise signal designed to fool the CNN. While CNNs confidently misclassify such ad-

versarial examples1, they are perceptually similar to the original image and easily

recognizable by humans (See Figure 5.1).

Many algorithms for generating adversarial examples have been proposed (e.g.,

[38; 59; 18; 85]). Those algorithms can broadly be classified as either white-box

or black-box attack algorithms. In white-box attacks, an adversary knows the

target classifier’s exact model parameters and learns adversarial examples over

it. In contrast, in black-box attacks, an adversary does not have any knowledge

about the target classifier. Therefore, in a black-box attack setting, an adversary

learns adversarial examples over a local CNN without access to the target classifier.
1We use the terms adversarial image and adversarial example interchangeably.
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Figure 5.1: Adversarial examples for MNIST (first row) and CIFAR-10 (second row).
From left to right: original images, T-FGS, FGS, DeepFool, and C&W (L2) adversarial
examples

However, due to the transferability [121] of black-box adversarial images, target

CNNs can still be highly vulnerable to them [121; 43].

Furthermore, another serious challenge for CNN-based systems is that when a

test sample comes from a different concept or class that is not part of the training

set (i.e., in-distribution samples), then CNNs assign them to one of the predefined

classes they are trained on, possibly with high confidence. We call such samples

as natural (i.e., not synthetically generated) out-distribution samples as they are

semantically and statistically different from the in-distribution samples. From a

decision-making perspective, this is of great concern as CNNs show confidence

that is clearly inappropriate, particularly for security sensitive tasks. This behav-

ior demonstrates that neural networks do over-generalization in some regions that

are empty of in-distribution samples (i.e., belonging to out-distribution samples).

In general, there are two approaches of (i) training robust CNNs, and (2) adding

a post-processing step to existing CNNs, to detect and reject such examples. The
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first approach tends to revise the decision boundaries of CNNs by adding auxil-

iary training data, while the second approach tends to make the current CNNs

robust without re-training them. In this chapter, with the aim of addressing these

challenges, we propose two different methods of (i) Augmented CNNs trained on

a small set of auxiliary data (out-distribution samples and interpolated samples)

which follows the first approach and, (ii) Adversarial profiles, a post-processing

mechanism for adversarial and out-distribution examples detection.

In brief, our contributions are as follow:

• We propose to to add an additional dustbin class containing (i) natural

out-distribution samples (i.e., natural samples that are statistically and se-

mantically different from in-distribution samples), and (ii) interpolated in-

distribution data (created by interpolating selected pairs of in-distribution

samples from two different classes) to train an augmented CNN . This ap-

proach:

– is a simple yet effective approach to reduce misclassification rate of

CNNs for black-box adversarial examples by adding a dustbin class to

learn a better feature space.

– unlike previous approaches, i) does not need access to adversarial exam-

ples for training, ii) does not require additional networks (e.g., CNNs,

autoencoders etc.) to detect adversarial examples, and iii) does not

noticeably sacrifice accuracy on clean samples.

– is robust against well-known attacks (see Chapter 2 for details of at-
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tacks and Section 5.4 for our results) and can either reject or classify

adversarial examples correctly > 95% of the time for MNIST and > 75%

of the time for CIFAR-10 on average.

• We propose to add a post-processing detection mechanism that uses a set of

universal perturbations called adversarial profiles:

– to make existing CNNs robust against out-distribution examples with-

out retraining them or requiring any out-distribution or adversarial sam-

ples for learning.

– which makes the MNIST CNN robust against out-distribution samples

and can detect adversarial examples for this dataset at-least > 59% of

the time.

The rest of this chapter organized as follows: In Section 5.2, we discuss related

work and in Section 5.3, we introduce and evaluated our proposed method of

Augmented CNNs to learn robust CNNs and in Section 5.5, we introduce and

evaluate our Adversarial Profile method, a post-processing approach for detection

and rejection of suspicious inputs. Finally we discuss future work and conclude in

Section 5.6 and Section 5.7, respectively.

5.2 Related Work

It has been shown that adversarial examples are easy to generate and they are very

successful in fooling even CNNs whose parameters are not known to the adversary
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(i.e., black-box attacks) [121; 58; 36]. Here, we introduce works that address adver-

sarial examples in image classification for both white-box and black-box attacks.

Detection and Rejection: To mitigate the risk of adversarial examples, detection

procedures have been proposed for identifying and rejecting adversarial exam-

ples [67; 31; 81; 41; 3]. For instance, [67; 41] stated that adversarial samples are

actually statistically different from clean samples. So [41] augments the output of

a CNN with an extra dustbin label (a.k.a. reject option), then train it on clean

training samples and their corresponding adversarial samples (assigned to dustbin)

in order to enable CNNs to detect and reject such adversarial samples. However,

this assumes that all adversarial sample generation approaches are known and that

a diverse set of adversarial samples are accessible for training. Li [67] utilized a

cascade classifier to detect adversarial examples, however [17] demonstrated that

this method is not always effective. In [31], authors used kernel density estimation

in the feature space to identify adversarial samples, with mixed results given that

some of the adversarial samples still become entangled with clean samples, which

appears difficult to handle by kernel methods. In [80] one or more autoencoder

networks are used for detecting adversarial examples by using the reconstruction

error for adversarial examples. In [131], authors proposed detecting adversarial ex-

amples by looking at the difference between the prediction of three CNNs trained

on the original images, modified images with reduced the color bit depth of pixels,

and modified images that are spatially. Further, in addition to learning two or

more additional CNNs, they need to learn a threshold for detection over adversar-

ial examples which may change from one dataset to another.
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Robust CNNs: In [95], authors reduce the effectiveness of adversarial samples

by using distillation networks. Also, in [94], authors reduce the sensitivity of the

CNNs to noise by producing very small gradients at the cost of sacrificing accuracy.

However, both those methods are not effective for transferable perturbations and

further it has been shown that they can be broken easily [16]. There are couple of

works which employed a pre-processing step to denoise inputs in order to classify

adversarial examples correctly. For example, in [12], authors used PCA to reduce

feature space and remove unnecessary information including noise, and in [25] au-

thors used JPEG compression to remove noise from images and then classify the

compressed images. However, both reduce the the accuracy of the CNN and are

therefore not practical on large datasets.

(a) MLP (b) Augmented MLP

Figure 5.2: Two-moons synthetic dataset.(a) MLP trained on only in-distribution sam-
ples (b) the augmented MLP trained on both in-distribution and some out-distribution
samples
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5.3 Augmented Convolutional Neural Network

It has been argued that a central element explaining the success of deep neural

networks is their capacity to learn distributed representations [9]. Indeed, this

allows such models to perform well in the regions that are only sparsely sampled

in the training set, especially in a very high dimension space. However, neural

networks make totally arbitrary decisions in the regions that are outside of the

distribution of the learned concepts, leading to over-generalization. For instance,

the classification regions achieved from two MLPs on the well-known two-moons

dataset are illustrated in Fig. 5.2. Adding a dustbin class by including some out

of distribution samples to the training set leads to more accurate decision regions,

and therefore the over-generalization effect in these out-distribution regions can

be reduced. Here, we leverage this to reduce over-generalization by training an

augmented CNN with a dustbin class for which available natural out-distribution

images are used as training samples. We then investigate the effect of this over-

generalization reduction on five known powerful adversarial attacks (discussed in

Chapter 2). Indeed, as seen in Figure 5.3, we find that the over-generalization re-

duction leads to a more expressive feature space where all natural out-distribution

samples along with many black-box adversarial examples are separated from in-

distribution samples to be classified as belonging to the dustbin class. Further,

some adversarial instances are even placed very close to their corresponding true

class, leading the augmented CNNs to classify them correctly.

Interpolated Data: To increase the rejection power of the augmented CNN on
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adversarial examples generated using powerful attack algorithms that generate a

small amount of smart adversarial perturbations (e.g. DeepFool and C&W at-

tacks), we utilize some interpolated images that are generated from in-distribution

samples as training sample for dustbin class. Our intuition is that an adversarial

example simultaneously contains the relevant features from two classes (i.e., the

target class and the true class), where the features of the fooling class are hardly

visible while the features related to the true class can be recognizable for human

observers. Accordingly, we interpolate some images from in-distribution samples

and ensure each resulting image has the features from two different classes. To

create interpolated data, we simply add two weighted images together as follows:

Ici,cj ,α = αIci
+ (1− α)Icj

(5.1)

Here, Ici
and Ici

are images from source and target classes. Also, α is a mixing-

ratio parameter.

Pair Selection: For generating interpolated data, considering all possible combina-

tions of classes for all training samples of a large-scale dataset and using them for

training can be computationally expensive. Therefore, we randomly select a subset

of samples from each source class (choosing 1500 samples out of 5000 samples in

our simulation). Then, for each selected source sample, its nearest neighbor which

is located in another class is found. To do so, we exploit the penultimate layer

of a naive CNN as a feature extractor [10; 9] so that we can accurately measure

the similarity between images in the feature space rather than in the pixel space.
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Furthermore, finding nearest neighbors in feature space is considerably faster than

finding them in pixel space due to noticeably smaller dimensionality of feature

space (e.g., 512 vs. 3072 for CIFAR).

Finally, using α = 0.5, we generate an interpolated sample for each pair of the

source image and its target image. Therefore, we can say that interpolated image

samples belong equally to the source and target classes. Larger (or smaller) values

for α leads the accuracy of CNNs to drop and false positive rate to increase, since

interpolated data would be very similar to clean samples.

Out-Distribution Samples: To choose out-distribution samples, we considered im-

ages with objects that are totally different from objects in training and test set

images. The number of out-distribution samples added to the dustbin class de-

pends on the number of clean examples and the number of classes. A very large

dustbin class compared to other classes leads the generalization error to increase

and a small one does not improve the resiliency of our augmented CNN. For our

evaluation, we increased the training set by 50%.

5.4 Evaluation

Using MNIST [63] and CIFAR-10 [55], we empirically evaluated our proposed

method against black-box adversarial samples which are generated using five dif-

ferent well-known attack algorithms. Specifically, we compared the error rates of

augmented CNNs with that of naive CNNs for adversarial examples. Here the error

rate represents the percentage of wrong decisions made by CNNs for adversarial ex-
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amples. That is, where the adversarial examples are neither rejected nor correctly

classified. Therefore, we compute the error rate as 1−(accuratecalssificationrate+

rejectionrate). We also compared the accuracy of the naive and augmented CNNs

for clean samples.

MNIST with NotMNIST: MNIST is a popular machine learning dataset that

contains labeled gray scale images, where each image holds a hand-written digit.

As out-distribution samples for MNIST, we considered NotMNIST dataset2

that consists of 18,724 letters A-J printed with different font styles. Images of

both MNIST and NotMNIST datasets have the same size images (28× 28 pixels).

We used a CNN named cuda-convnent that has three convolution layers with 32,

32, and 64 filters of 5 × 5, respectively, and one Fully Connected (FC) layer with

softmax activation function3. In addition, dropout with p = 0.5 is used at the

FC layer for regularization. To train an augmented version of cuda-convnet, we

utilized a training set comprising 50K MNIST training samples as in-distribution

data and 10K randomly selected samples from NotMNIST dataset along with 15K

interpolated samples (see Section 5.3) generated from MNIST training samples

as out-distribution samples. The remaining samples from NotMNIST (≈8K) in

conjugation with MNIST test samples are considered for evaluating the augmented

CNN.

CIFAR-10 with CIFAR-100: Training and test sets of CIFAR-10 contain 50K and

10K RGB images (32× 32 pixels each).
2Available at http://yaroslavvb.blogspot.ca/2011/09/notmnist-dataset.html.
3To read more about the configuration of this CNN, the readers should refer to

https://github.com/dnouri/cuda-convnet/blob/master/example-layers/layers-18pct.cfg
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As out-distribution samples for CIFAR-10, we consider CIFAR-100 dataset. To

reduce a conceptual overlap between the labels from CIFAR-10 and CIFAR-100,

we ignore super-classes of CIFAR-100 that are conceptually similar to CIFAR-10

classes. So, vehicle 1, vehicle 2, medium-sized mammals, small mammals, and

large carnivores are excluded from CIFAR-100. Note, all the images are scaled to

[0, 1], then normalized by mean subtraction over the CIFAR-10 training set. For

CIFAR-10, we chose VGG-16 [110] architecture that has 13 convolution layers with

filter size 3x3 and three FC layers. To train an augmented VGG-16, 15K randomly

selected samples from the non-overlapped version of CIFAR-100 along with 15k

interpolated samples from CIFAR-10 training set (labeled as dustbin class) are

appended to CIFAR-10 training set.

Evaluation: As adversarial examples are transferable to other CNNs [121; 93], we

learned adversarial examples using T-FGS, FGS and DeepFool approaches over

independently trained instances of cuda-convnet CNN for MNIST and VGG16 for

CIFAR-10. All correctly classified test samples from each dataset are regarded for

adversarial example generation by each of the aforementioned attack algorithms.

For FGS and T-FGS attacks, we utilized ε = 0.2 for MNIST and ε = 0.03 for

CIFAR-10. For I-FGS attacks, ε = 0.003 along with α = 0.05 for CIFAR-10

and ε = 0.02 along with α = 0.2 for MNIST are used. To generate targeted

Carlini attack (called C&W) [18], we used the authors’ github code. Due to large

time complexity of C&W, we considered 100 randomly selected images for each

dataset. For each selected image, as was done in previous work [131], two targeted

adversarial samples are generated, where the target classes are the least likely
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and most likely classes according to the predictions provided by the underlying

CNN. Thus, in total 200 C&W adversarial examples are generated per dataset. To

increase transferability of C& W, we utilized κ = 20 for MNIST and κ = 10 for

CIFAR-10 (see Fig.5.1 for some adversarial examples).

Training set: <in-dist, out-dist.> <MNIST, —> <MNIST, NotMNIST> <MNIST, NotMNIST+intrpl.> <CIFAR-10, —> <CIFAR-10, CIFAR100> <CIFAR-10, CIFAR100+intrpl.>

Model Naive CNN Augmented CNN Augmented CNN Naive VGG Augmented VGG Augmented VGG
In-dist. test Acc. 99.5 99.47 99.48 90.53 88.58 86.65
Out-dist. test Rej. - 99.96 99.98 - 95.36 96.21

FGS
Acc 35.14 19.15 0.35 36.16 27.65 23.94
Rej – 65.19 99.59 - 38.94 49.23
Err 64.86 15.66 0.06 63.84 33.41 26.83

I-FGS
Acc 16.37 30.97 0.0 50.34 45.98 41.92
Rej - 27.08 100 - 18.57 25.88
Err 83.63 41.95 0.0 49.66 35.45 32.2

T-FGS
Acc 19.99 1.17 0.0 36.24 27.06 24.2
Rej - 95.92 100 - 40.54 50.77
Err 80.01 2.91 0.0 63.76 32.4 25.03

DeepFool
Acc 1.89 11.45 5.37 56.82 45.63 42.31
Rej - 4.72 89.84 - 31.0 38.86
Err 98.11 83.83 4.8 43.18 23.37 18.83

C&W (L2)
Acc 22.49 27.5 7.5 42.5 46.5 39
Rej - 5.99 77.49 - 18.5 39.5
Err 77.51 66.51 15.01 57.5 35 21.5

Average Error rate 80.82 42.17 3.97 55.59 31.92 24.88

Table 5.1: Performance on black-box adversaries attacks. “Acc.” corresponds to accuracy
(the rate of correctly classified samples), “Rej.” is the rejection rate, while “Err.” is the
misclassification rate All results reported are percentages (%).

The results are shown in Table 5.1, where, "Acc." denotes the accuracy of

models in classification of adversarial examples, and column “Rej.” represents the

percentage of adversarial samples rejected by the augmented CNNs (i.e., classified

as dustbin). Finally, "Err" (= 1 − (”Acc.” + ”Rej.”)) shows the misclassification

rate (i.e. the percentage of wrong decisions). As seen in Table 5.1, augmented

CNN maintains the same accuracy as naive CNN for clean MNIST test samples,

while accuracy of augmented VGG on clean CIFAR-10 test samples drops by ≈ 4%

points when compared to naive VGG.

Even though our augmented CNNs are not trained on adversarial inputs gen-

erated using any specific algorithm, they were able to reject (classify as dustbin)
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Figure 5.3: Visualization of some randomly selected test samples and their corresponding
adversaries (FGS and T-FGS) in the feature spaces (the penultimate layer) learned by
a naive CNN and an augmented CNN. To produce and manipulate the 3D plots refer
to https://github.com/mahdaneh/Out-distribution-learningFSvisulization

most of the adversarial inputs generated using 5 well-known attack algorithms

proposed in literature, and even correctly classify a small portion of them. For

example, our augmented CNN either rejected or correctly classified almost 96%

of the adversarial examples on average, while the Naive CNN misclassified 79%

of them. Similarly, for CIFAR-10, the misclassification rate reduces to 24% for

augmented VGG when the Naive VGG misclassifies 55% of the adversarial sample
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on average.

Further, as shown in this table, adding interpolated data to dustbin class im-

proved the adversarial sample detection rate over just using natural out-distribution

data.

Compared to the most recent defense approach [131], we achieved a lower error

rate on average over FGS, I-FGS and DeepFool attacks against CIFAR-10 and

MNIST. For FGS attacks against MNIST, our error rate was 1% more than what

was reported in [131] (0%). However, unlike the approach in [131] we achieved the

low error rate (1%) without having to learn additional CNNs. For C&W attacks

though, our method had higher error rate (15.1% for MNIST and 21.5% for CIFAR-

10) compared to what was reported in [131] (0%). However, apart from not having

to learn additional CNNs, we also used a higher4 value for κ (κ = 20 for MNIST;

κ = 10 for CIFAR-10) to generate more transferable attacks. For example, for

κ = 0 our naive MNIST CNN itself was able to correctly classify 97% of C&W

adversarial samples as compared to only 22.49% of C&W adversarial samples for

κ = 20.

Moreover, to show how adding a dustbin class can effect the feature space

learned by a CNN, we plotted the feature spaces obtained from the last convolu-

tional layers of a naive CNN and its corresponding augmented CNN for clean test

samples and their corresponding black-box FGS and T-FGS adversarial examples.

In Figure 5.3, one can see that adversarial examples are located very close to the
4This is assuming that the authors of [131] used κ value of 0 for C&W attacks as they did not

explicitly report the κ value other than saying they used the original implementation of C&W
which sets κ = 0 by default. A lower value of κ leads to lower transferability.
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in-distribution samples in the feature space of a Naive CNN. While our augmented

CNN, which is trained on both in-distribution and natural out-distribution sam-

ples, is able to disentangle the adversarial samples from in-distribution samples in

its feature space even though it was not trained on adversarial examples generated

using any specific attack approach.

5.5 Adversarial Profile for Out-Distribution Samples Detection

Similar to ODIN [68], we proposed to employ an adversarial attack itself in ser-

vice of detecting out-distribution and adversarial samples, but instead of training

an adversarial example for each input, we trained a set of adversarial perturba-

tions for each class. In other words, we proposed to create a set of such targeted

adversarial perturbations for each source class, where each perturbation is de-

signed to move an instance of the source class to a different target class. We

refer to this set of adversarial perturbations as an adversarial profile of the source

class. Let assume that the given in-distribution samples belong to c classes. For a

given CNN, adversarial profile of ith class (Ci) is a set of adversarial perturbations

{δi,1, · · · , δi,i−1, δi,i+1, · · · , δi,c} that satisfy the following two properties: i) adding

δi,j to any clean sample from class i leads the target CNN to misclassify that sample

to class j (i.e., if x ∈ ci, argmaxF (x+δi,j) = j) with high probability; and ii) adding

δi,j to any clean sample from other classes (6= i), would lead the CNN to misclassify

that sample to any other class except j (i.e., if x /∈ ci, argmax F (x+ δi,j) 6= j).

How to Learn Adversarial Profile: Finding an adversarial perturbation δi,j that is
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be able to fool all samples from class i to target class j is hard and computationally

expensive. Therefore, we only use n randomly selected samples from each source

class to learn an adversarial perturbation and accept it for use in the adversarial

profile if it can fool the CNN for at least p ∗ n of them (0 < p < 1).

We extended C&W [18] attack model to generate an adversarial perturbation

that is able to work for a batch of images and get them misclassified to a targeted

class as below.

δi,j = min
δ

∑
xt∈X

max(max
k,k 6=j

{F (xpert.,t)k} − F (xpert.,t)j ,−κ) (5.2)

where X is set of n inputs belonging to class i ({xt ∈ Ci|t = 1 · · ·n}) used for

learning adversarial profiles.

How to Use Adversarial Profile to Detect: To detect out-distribution and ad-

versarial examples, we evaluate the behaviour of input data after applying an

adversarial profile. All perturbations in an adversarial profile do not have same

effect. To assess a perturbation’s effectiveness we define two metrics, Intra-Class

Transferability and Inter-Class Transferability.

• intra-class transferablity(pi,j) : The probability of fooling CNN to the target

class j for samples from source class i is pi,j (i.e., p(argmax F (x + δi,j) ==

j|x ∈ Ci) = pi,j).

• inter-class-transferablity(ei,j): The probability of fooling the CNN to the

target class j for samples from other classes ( 6= i) is ei,j (i.e., p(argmax F (x+
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δi,j) == j|x /∈ Ci) = ei,j).

To estimate intra-class transferability (pi,j) of a perturbation δi,j, we sample

from source class i and apply the perturbation δi,j on the samples and measure

how many of them are misclassified to the target class j. To estimate inter-class

transferability (ei,j), we sample from other classes (6= i) and apply adversarial

profile δi,j on them. Then we measure how many of them are misclassified to the

target class j.

pi,j =
∑n
i I(argmax F (x+ δi,j) == j)

n
, ei,j =

∑n
i I(argmax F (x+ δi,j) == j)

n

(5.3)

Out-distribution samples do not belong to in-distribution space and therefore

they do not have source or target class features. Hence applying an adversar-

ial perturbation designed for in-distribution samples to out-distribution samples

should induce a different behavior than expected. To detect out-distribution sam-

ples, we apply the perturbations from the adversarial profile associated with the

assigned class on the input sample and compute a score that measures how close

its behaviour is to that expected of an in-distribution sample of the assigned class.

Unlike out-distribution samples that may not have any in-distribution class

features, adversarial samples tend to have features of both original class (albeit

weakened) and fooling class. Hence, when an adversarial profile associated with

the fooling class is applied it tends to work well making it hard to distinguish from

clean samples. However, unlike with clean class samples, for adversarial samples

adversarial profile associated with other classes also tends to work well because of
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weakened features due to the perturbation. We leverage this difference to detect

adversarial samples. To increase the accuracy, we test every input sample with

the adversarial profile of the assigned class, and also using adversarial profiles of

K other randomly selected classes.

For a received input classified to class i, we compute its score as following:

score = 1∑
j(pi,j − ei,j)

∑
j

(pi,j − ei,j)× I(argmax F (x) == j) (5.4)

For a clean in-distribution sample, and an ideal adversarial profile this score will

be close to 1 as all perturbations will take the sample to the expected target class.

For out-distribution samples, with high probability this will be less than 1. We

find and use a detection threshold to distinguish between in- and out-distributions

samples.

5.5.1 Evaluation

We evaluated our proposed method on MNIST [63] dataset. We learned a CNN

that reached to 99.2% accuracy on test data. We sampled 100 images for each

class from test data to create adversarial profiles with p value of 0.9 which means

adversarial profiles can successfully fool at least 90% of samples used for training

to the target class. To assess learned adversarial examples, we randomly took

n = 100 samples from each class and applied its adversarial profile on them. we

estimate the intra-class transferability (pi,j) and inter-class transferability (ei,j).
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(a) Intra-class transferability (b) Inter-class transferability

Figure 5.4: Intra and Inter class transferability matrices. The element at [i, j] in Inter
class transferability matrix represents the value of pi,j . Similarly, the element at [i, j]
in intra class transferability matrix represents the value of ei,j . The larger value for pi,j
and lower value for ei,j are preferred.

The estimated pi,j and ei,j values for MNIST dataset are shown in Figure 5.4.

For example, adversarial perturbation δ5,4 has intra-class transferability value of

0.885 which means that this adversarial profile can cause 88.5% of the samples

of class 5 to be misclassified to class 4. Moreover this adversarial perturbation

causes samples from other classes to misclassify to target class 4 with probability of

71%. Therefore, this adversarial perturbation is not ideal and will have less weight

(0.885− 0.71 = 0.175) in our decision-making process. On the other hand, δ0,8 is a

good perturbation because it has a high intra-class transferability of 93% and a low

inter-class transferability of 10% and will be weighted more (0.93 − 0.10 = 0.83).

To estimate the best threshold τ , we minimized false positive rate and maximized
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Table 5.2: Adversarial and out-distribution detection rates.

Input Detection Rate Parameters
SVHN 97% -

ImageNet 92% -
CIFAR-100 92% -

LSUN 97% -
FGS [36] 63% ε = 0.2

T-FGS [36] 65% ε = 0.2
DeepFool [82] 59%
I-FGS [57] 64% ε = 0.02, α = 0.2 # of iter. = 20

detection rate on in-distribution samples as follow:

τ = max
τ

∑
i

1
2[I(score(xi+δi,j|xi ∈ Ci) > τ)+I(score(xi+δi,j|xi /∈ Ci) < τ)] (5.5)

To estimate score(xi + δi,j|xi ∈ Ci) > τ , we took 100 samples from different

classes and then applied out-distribution method detection with their true label.

Similarly, to estimate and score(xi + δi,j|xi /∈ Ci) < τ , we used the same samples

with labels different from true labels, therefore adversarial profiles of the fake labels

will be applied on them (to satisfy condition of xi /∈ Ci).

We considered the 4 datasets, SVHN [86], ImageNet [56], LSUN [134] and

CIFAR-100 [55] as out-distribution samples to evaluate our method. We sampled

100 images from each dataset and applied our detection algorithm on them. As

shown in Table 5.2, our proposed method is able to reject at least 92% of out-

distribution samples from ImageNet and CIFAR-100, and as high as 97% from

SVHN and LSUN. Similar to out-distribution samples, we used 4 different at-

tack models (FGS,T-FGS,DeepFool,I-FGS) to generate n = 100 adversarial test
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examples. As shown in Table 5.2, our method can detect between 59% − 65% of

adversarial examples (DeepFool and T-FGS respectively). Compared to previously

proposed methods (e.g. [4; 131]), our approach has a lower detection rate. But in

contrast to previous work, we do not need to retrain the CNN, and we do not

need to have access to a lot of out-distribution or adversarial samples. The only

thing we need is a small in-distribution set to make a given CNN robust against

out-distribution samples and majority of adversarial samples.

5.6 Future Work

Here we discuss two interesting future directions for developing robust CNNs.

Learning a Synthetic Protective Out-distribution Set: Here, we showed that

adding a small set of out-distribution set along with interpolated images can make

CNNs significantly robust against adversarial perturbations. In [5], it has been

shown that the selection of out-distribution set can affect on the performance

of augmented CNNs, so they proposed metrics to select the most suitable out-

distribution set for a given in-distribution task. However, the main question is

if one can create a synthetic out-distribution samples or enrich the existing out-

distribution one with synthetic data?

Extending Adversarial Profile for Larger Datasets: In this chapter, we showed

that one can learn adversarial profile for a small pre-trained CNN to detect out-

distribution and adversarial samples. It would be interesting to explore this method

for larger CNNs and improve the false positive rate using a Encoder-Decoder neu-
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ral networks. Also, here we used C& W attack [18] for generating adversarial

profile. Other approaches for learning these targeted universal perturbation can

be investigated for future work.

5.7 Conclusion

The popularity of CNNs in safety and security sensitive applications necessitate

the need for the robust and secure CNNs which can detect and reject suspicious

inputs. Here, we proposed two different approaches of making CNNs robust, lean-

ing Augmented CNNs on a few out-distribution samples and Adversarial Profile,

a post-processing method used a small set of adversarial perturbations. Both this

methods are simple and efficient and can detect unseen adversarial examples and

out-distribution samples.
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Chapter 6: Conclusion

In this dissertation, we proposed two simple and effective adversarial perturba-

tion generation methods as image privacy defense, one learning-based adversar-

ial perturbation method called Universal Ensemble Perturbation (UEP), and one

semantic-based adversarial perturbation method called k-Randomized Transparent

Image Overlays (k-RTIO). We showed that these two methods satisfy all usabil-

ity requirements and they are practical for real-world applications. We evaluated

these two methods on well-known offline and online classifiers and demonstrated

for specific hyper-parameters, our methods can fool CNN classifiers for at least

85% of perturbed images. We also investigated the methods that an adversary

may use to reduce the adversarial perturbations and observed that an adversary

can use estimation removal method to estimate UEP perturbation and obtain clas-

sifiable images for UEP perturbed images. In addition, she can improve her CNN

classifier’s accuracy on k-RTIO images by using robust CNNs trained on being and

k-RTIO perturbed images which is computationally expensive.

We also evaluated the survivability of adversarial perturbations including UEP

and adversarial examples through super resolution convolutional neural networks.

We observed both down-scaled adversarial perturbation/noise and learned adver-

sarial perturbations/noises for LR images lead SRCNNs to generated HR adversar-

ial images that can fool CNN classifiers. We also demonstrated an imperceptible
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adversarial noise learned over only a small local CNN(s) leads the quality of gen-

erated HR images by SRCNNs to downgrade significantly.

Finally, the popularity of CNN classifiers in safety sensitive applications neces-

sitates the need for developing robust and secure CNNs. Therefore, we proposed

two methods of Augmented CNNs and Adversarial profiles for adversarial exam-

ples and out distribution samples detection and rejection. We demonstrated that

our Augmented CNNs can improve adversarial examples detection and rejection

significantly just by adding a small set of out-distribution samples to training set.

Moreover, our adversarial profiles can detect out-distribution samples on a small

pre-trained CNN using a set of universal targeted perturbations for each class that

only work for samples belonging to this class.
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Appendix A: UEP Setups

A.1 Neural Networks

We trained small convolutional neural networks on limited faces (10 classes of

faces). To minimize the network dependencies, we utilized two different CNNs

structures trained on different images sizes.

VGG16:

model = Sequent i a l ( )

model . add (Conv2D(128 , (5 , 5 ) ,

input_shape=shape_image ) )

model . add ( Act ivat ion ( ’ r e l u ’ ) )

model . add (MaxPooling2D ( poo l_s i ze =(2 ,2) ,

s t r i d e s =(2 ,2) , padding=’ va l i d ’ ) )

model . add (Conv2D(256 , (3 , 3 ) ) )

model . add ( Act ivat ion ( ’ r e l u ’ ) )

model . add (MaxPooling2D ( poo l_s i ze =(2 , 2 ) ,

s t r i d e s =(2 ,2) , padding=’ va l i d ’ ) )

model . add (Conv2D(512 , (3 , 3 ) ) )

model . add ( Act ivat ion ( ’ r e l u ’ ) )

model . add (MaxPooling2D ( poo l_s i ze =(2 , 2 ) ,
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s t r i d e s =(2 ,2) , padding=’ va l i d ’ ) )

model . add (Conv2D(512 , (2 , 2 ) ) )

model . add ( Act ivat ion ( ’ r e l u ’ ) )

model . add (MaxPooling2D ( poo l_s i ze =(2 , 2 ) ) )

model . add (Conv2D(512 , (2 , 2 ) ) )

model . add ( Act ivat ion ( ’ r e l u ’ ) )

model . add (MaxPooling2D ( poo l_s i ze =(2 , 2 ) ,

s t r i d e s =(2 ,2) , padding=’ va l i d ’ ) )

model . add ( Flat ten ( ) )

model . add (Dropout ( 0 . 5 ) )

model . add (Dense (200 ) )

model . add ( Act ivat ion ( ’ r e l u ’ ) )

model . add (Dropout ( 0 . 5 ) )

model . add (Dense ( s e l f . num_classes ) )

FaceScrub:

model = Sequent i a l ( )

model . add (Conv2D(32 , (3 , 3 ) ,

input_shape=shape_image ) )

model . add (LeakyReLU( alpha =.01))

model . add (MaxPooling2D ( poo l_s i ze =(2 ,2)))

model . add (Conv2D(64 , (3 , 3 ) ) )

model . add (LeakyReLU( alpha =.01))
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model . add (MaxPooling2D ( poo l_s i ze =(2 , 2 ) ) )

model . add (Dropout ( 0 . 5 ) )

model . add (Conv2D(128 , (3 , 3 ) ) )

model . add (LeakyReLU( alpha =.01))

model . add (MaxPooling2D ( poo l_s i ze =(2 , 2 ) ) )

model . add (Dropout ( 0 . 5 ) )

model . add ( Flat ten ( ) )

model . add (Dense (200 ) )

model . add (LeakyReLU( alpha =.01))

model . add (Dropout ( 0 . 5 ) )

model . add (Dense ( s e l f . num_classes ) )
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Appendix B: k-RTIO Setups and Extra Evaluation

B.1 Overlay Images

We used different images of objects, landscape etc. in our set S (initial set of

overlay images). We did not have any constraints on selecting the images except

not having human faces in there. Because using an image with faces in there may

reduce the recognizability of the images by end users. 2
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Figure B.1: Set S of the overlay images used in generating k-RTIO images

Set of overlay images used in our experiments are shown in Figure B.1.
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B.2 Blind Signal Separation

Blind signal separation (BSS) is used to extract independent signalsX = [xT1 , · · · , xTn ]

which are mixed together by a mixing matrix (Am×n) from the resulting signals

B = A×X. The solution would be easy if the adversary knows the mixing matrix

(Am×n). However, this matrix is unknown. The adversary can use blind signal

separation method to recover the original signal only by considering the correla-

tion between the signals B.

Let, I = [I1, · · · , Im] be a set of original images where we want to add the image I ′

as a new layer with the weight of α (bj = αIj + (1− α)I ′j). The user first converts

the images to raw data in the form that a signal is represented by as follows:

X =



I11 . . . I1n

I21 . . . I2n

... ... ...

Im1 . . . Imn

I ′11 . . . I ′1n


, A =



α 0 0 . . . 1− α

0 α 0 . . . 1− α
... ... ... ...

0 0 . . . α 1− α


(B.1)

and then creates matrix A. The user obtains the perturbed images by multiplying

matrix X by A.

The adversary only has access to the mixed signal B and wants to recover the

original images. As shown in Figure B.2, we used FastICA [92; 19] method (variant

of BSS for images) to recover the I ′ or the images. As shown in this Figure, the

adversary can easily recover the original images from the mixed images. Because
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this method initializes the correlation matrix randomly, the final recovered images

are different. But it is possible to recover one of the pictures well. It is obvious

that just by having one image, we can recover the other images easily. However,

in k-RTIO we apply different overlay images for each original image. Further, we

also select uniformly at random k overlay images used for any given image from a

larger pool of S overlay images which makes finding blocks overlaid with same k

blocks difficult. Therefore, BSS is not effective against k-RTIO.

Input1 Input2 Input3

Mixed1 Mixed2 Mixed3

Restored1 Restored2 Restored3

Input3 Input2 Input1

Mixed3 Mixed2 Mixed1

Restored3 Restored2 Restored1

(a) BSS on Transparent Overlay
Image Method (b) BSS on k-RTIO Perturbed Images

Figure B.2: Blind Signal Separation can recover perturbed images by transparent over-
lays technique. Generating overlay images by permuting the original overlay images’
blocks randomly leads BSS to not be able to recover images.


