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a quaternion rotation algorithm. This enables the fusion of the IMU and RF positioning
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Chapter 1: Introduction

The technique of indoor navigation is universally applied, attracting researchers around

the world. Still, there remains a considerable challenge to improve the performance of

such systems.

The navigation system falls into two categories, indoor and outdoor navigation. The

most common use of navigation system is about global position system (GPS) [5]. Yet,

it does not work well on some occasions, such as underground, urban areas, tunnels, and

indoor environments. The indoor navigation system aims to provides navigation within

buildings, under the ground, and some places where the GPS malfunctions. That is

where an indoor positioning system (IPS) comes in.

Indoor navigation [2–4, 29] relies either on beacon-based or beacon-free methods.

The beacon-based system requires some infrastructure such as radio frequency (RF),

for example, ultra-wideband signals [7–16], and infrared ray techniques. For the RF-

based system, Wi-Fi signal is the most widely used type due to their extensive coverage.

With known anchor points and transmitter point, trilateration is used to obtain position

data based on the RF signal information such as time-of-arrival (TOA) [17,19], or time-

different-of-arrival (TDOA) [18]. Although these devices can provide accurate location

information, due to the high cost of the device, deployment is delicate, readily affected

by environments and rarely useful on a large scale.

As a contrast, beacon-free system is based on the inertial measurement unit (IMU).

The IMU is an inertial sensor based on the latest micro electro mechanical systems tech-

nology(MEMS) [1]. It includes accelerometers, gyroscopes, and magnetometers. Yet,

Magnetometers are sensitive to environmental factors, including environmental metals

and magnetic field disturbances, making magnetometers not used alone in indoor naviga-

tion systems. In spite of that, the magnetometer can be combined with the accelerometer

and gyroscope to produce a piece of stable positional information.

Furthermore, accelerometers measure acceleration in three dimensions. First, the

gyroscope can measure the angular velocity of a three-dimensional space. The dead

reckoning is based on fusing the acceleration and gyroscope and heading direction dur-
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ing time step to determine displacement and direction of the user has moved from the

last known position. In this process, the influence gravity needs to be considered. By

combining accelerometers, gyroscopes, and magnetometers, the effect of gravity on each

axis can be eliminated. However, accelerometers are susceptible to motion and do not

necessarily come from the motion of the target carrying the IMU. It is also possible to

come from the vibration of the target. Overall, IMU can deliver accurate tracking perfor-

mance within a relatively small displacement, and the errors add up as the sensors drift

over time. Still, the accuracy can be enhanced up to a higher level with filter algorithms,

decreasing the drift error.

In some indoor environments, due to the uncertainty of surroundings, it is challenging

to offer accurate position information by relying solely on a separate navigation system.

At this time, incorporating the data from different navigation systems and obtaining a

useful precision position information through fusion algorithm is key. Both the RF-based

and IMU-based systems have their strengths and weakness. The combined system can

further improve the reliability and accuracy of the positioning system. In this thesis, we

propose a combined indoor navigation and position (CINP) system for combining the

advantages of both the RF and IMU system. Meanwhile, the combiner system using

a microcontroller equipped with an inertial measurement unit (IMU) is used to collect

data. Finally, data fusion is used to obtain more accurate locations.
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Chapter 2: Background

2.1 IMU Location

Chapter 2 starts by introducing IMU from a broader perspective as well as the essential

workings of IMU. To be specific, sensor refers to an electronic device that can be used

in conjunction with other electronic devices to detect changes in some factors in certain

environment, such as light, sound, temperature, humidity, magnetic field, wind speed,

air pressure or motion. The sensor then passes this information back to the connected

microprocessor, which processes and then produces valid data that ultimately matches

the actual situation.

IMU is a particular type of sensor that measures angular velocity, force, and also

measures magnetic fields. The general IMU consists of a three-axis accelerometer and

a three-axis gyroscope, which can be called a six-axis IMU. Sometimes they can also

include an additional 3-axis magnetometer, which will be called a 9-axis IMU. It is an

abbreviation for inertial measurement components, which is usually adopted in conjunc-

tion with sensor fusion algorithms to combine data from multiple sensors to provide

direction and heading and trajectory measurements. In this case, IMU can be a combi-

nation of sensor and sensor fusion algorithms, which is also called the attitude heading

reference system (AHRS) in the field of attitude solving.

In the field of IMU development, low-precision IMUs are commonly used in GPS nav-

igation systems, in monitoring vibration and direction in consumer electronics such as

cell phones, wireless mouse and keyboard, game remotes, pedometers, or in augmented

reality. The user’s limb movement is detected in the augmented reality (AR) and virtual

reality (VR) systems. IMU’s motion and direction functions are also suitable for main-

taining the balance of the drone in the air or balancing the balance of the car on the

ground; IMU combines with the laser sensor to improve the direction of the sweeping

robot, as well as other IoT and home connectivity appliances.

In addition, the medium-precision IMU is mainly used in industrial and automo-

tive grade products, such as automotive electronic stability systems (ESP or ESC) [36]
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and GPS-assisted navigation systems. It can help locate antennas or other equipment,

measure the vehicle attitudes, and control the robots and autonomous vehicle.

Furthermore, high-precision MEMS inertial sensors are taken as military and aerospace

grade products such as communication satellite radio, aircraft flight control, attitude

control, and the like.

For example, some companies have added IMU to the remote control of the enter-

tainment system. In addition to the touch function, it also increases the accessibility of

the system as a whole. This method is used by the LG Smart TV Remote Control [25],

which allows the user to control the TV’s user interface through intuitive clicks instead

of the ubiquitous direction button controls.

Through these discussions, it figures out the possibility of IMU for future applications,

and it will be tightly integrated with more sensors, such as radio frequency (RF), laser

radar (light detection and ranging) technologies. These emerging technologies make it

possible to locate people, vehicles, and equipment both indoors and outdoors accurately.

This article is to discuss the possibility of IMU in indoor positioning centered on IMU.

2.1.1 How IMU Works

The IMU studied in this paper provides nine degrees of freedom, which refers to the

number of different ways an object can move in three-dimensional space. The nine

degrees of freedom include a 3-degree translational motion along each axis (front/rear,

right/left, up/down) on a plane, and a 3-degree rotational motion on each of the x, y,

and z-axes, and the 3-degree magnetic field strength of the x, y, and z-axes.

The raw data collected from the IMU provides some information about the world

around it, and it can be processed for more messages. Sensor fusion is a (mathemat-

ical) art that combines the data of each sensor in an IMU to create a more complete

device orientation and pattern. Take an instance, when viewing the motion information

of the rotation and acceleration of the gyroscope, the gravitational component of the

accelerometer can be removed to create an inertial reference frame. Information about

the Earth’s magnetic field can also be added to align the entire sensor with the Earth’s

ground reference frame.
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2.1.2 Accelerometer

The most commonly used motion sensor is the accelerometer. The acceleration measured

by the accelerometer is the rate of change of the speed of a device relative to time. Its

unit is (m/s2), and it measures the change in acceleration on one axis, just like stepping

on a brake or suddenly dropping a phone. The accelerometer sensor follows the sensor’s

inertial coordinate system. Put it another way, when the device is in free-fall motion, the

acceleration in the descending direction is 0m/s2. When a device is lying flat on a table,

the acceleration in the upward direction is equal to the Earth gravity, i.e. g = 9.8m/s2,

and it measures the acceleration of the device pushing up.

The accelerometer itself is of little use because the noise generated by the raw data

containing gravity can have an indeterminate effect on each axis. Therefore, accelerom-

eters often participate in the work of other sensors. Still, the use of accelerometers alone

does have some merits, such as recording vibration.

Linear acceleration is of attention as well, which refers to the acceleration applied to

the device where the sensor is located. Without gravity, gravity removal is called gravity

compensation.

For accelerometers, we usually care about the value of the more significant change

in acceleration. To avoid the effects of noise, such as gravity, some filters are usually

needed to process the data. For example, high-pass filters are often adopted to help

isolate linear acceleration, and low-pass filters are used to isolate gravity. Saying that

though, this approach introduces a certain amount of delay into the data, resulting in a

certain amount of offset in the data output. Afterwards, we will gradually discuss how

to remove the effects of gravity.

2.1.3 Gyroscope

Accelerometers measure acceleration but cannot evaluate torsional or rotational motion.

However, the gyroscope can sense the angular velocity, relative to itself; so, it measures

its rotation, using the inertial force called the Coriolis effect. The gyroscope can measure

the angular acceleration of three axes: pitch (x-axis), roll (y-axis), and yaw (z-axis). The

gyroscope oscillates at a relatively high frequency to measure angular velocity changes

during motion and is, therefore, one of the most power-hungry motion sensors. This also
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means that they are susceptible to other vibrations, such as vibrating motors or speakers

on the same device.

When the gyroscope is integrated with other sensors, the gyroscope can be used to

determine the orientation of the object in three dimensions. Although the gyroscope does

not have an initial frame of reference (such as an inertial gravity frame of reference), it

can combine its own data with the accelerometer data to measure the angular position.

In order to obtain the rotation (angle) from the gyroscope, that is, to process the data

of the gyroscope, it is necessary to perform one integration on the original data.∫
cos (2π) =

(
1

2π ∗ f

)
∗ sin (2π ∗ ft) . (2.1)

However, in the process of integration, the noise will also be integrated into a drift. As

shown in the above formula, the integral gets 1/f outside, which means that the high

frequency (f) noise will disappear with the integration, i.e. the frequency noise will

drop by 100 times. However, the shallow frequency will be amplified, suggesting that

the gyroscope will drift over time. Put it another way, if only a gyroscope is used, the

data it outputs will drift more and more over time. Some drift compensation calibrates

most gyro sensors on the hardware known low frequencies caused by adjacent hardware

on the device. For example, the gyroscope previously introduced is combined with an

accelerometer for calibration.

2.1.4 Magnetometer

Magnetometers, as the name suggests, measure magnetic fields. It can detect the fluctu-

ation of the Earth’s magnetic field by measuring the magnetic flux density at the point of

the space where the sensor is located in the air. This indicates that if there is no strong

magnetic field nearby, it can sense the Earth’s magnetic field through these fluctuations.

The Earth’s magnetic field is, more or less, pointing to the north, but not the exact

north. This can be combined with accelerometer and gyroscope data for identifying

absolute heading.

As just mentioned, the magnetometer is very sensitive to the surrounding environ-

ment, just like anything on the table that is slightly magnetized. It can even be affected

by other things inside the device, although the device manufacturer can make compen-
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sation. However, in practice, these sensors work very well in most natural environments.

As long as there is nothing magnetized around it, the magnetometer reading is stable

enough to isolate the gravity mentioned in subsection of Accelerometer.

The magnetometer is a three-axis sensor, which means it gives a three-dimensional

vector pointing to the most active magnetic field. In the meantime, it suggests that it

does not force a specific direction to work. However, to know how the device is being

held, a gravity vector is needed. In the case of filtering, the gravity vector requires

at least one accelerometer. If a more accurate reading is needed, then a gyroscope is

required. This is called tilt compensation. The most common example is the use of a

magnetometer sensor as part of the IMU data fusion to generate a geostationary-based

directional sensor, or a compass, which can be directed to the true north by modulating

the deviation with other sensors.

As has been mentioned, the IMU is an inertial sensor that integrates an accelerometer,

a gyroscope, and a magnetometer. The IMU is used to measure acceleration, angular

velocity, and magnetic field. When combined with sensor fusion algorithms, they can

be used to determine motion, direction, and heading. Below we will continue to discuss

how to handle the data, and data integration.

2.2 Technical Challenges with IMU Positioning

When the IMU appears as an assisted positioning system in an indoor environment,

there are three technical challenges to be addressed.

a. The sensor drift problems. Given that the consumer-level IMU itself has a certain

degree of system drift, the accelerometer and gyroscope data are not zero and drift with

time when the IMU is stationary.

b. Reduce unnecessary error accumulation. Because the IMU data is relatively inde-

pendent, the IMU cannot identify the error and the actual valid data during the IMU

movement. As a result, some invalid data appears in the positioning system.

c. IMU assisted positioning systems to produce stable data (e.g., attitude angle, posi-

tioning information), and then combine with other indoor positioning systems. In other
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words, the IMU system can generate independent and stable positioning trajectory data.
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Chapter 3: Proposed Solutions to the Technical Challenges

3.1 IMU Assisted Position System Description

As described in the introduction, it is inefficient for the indoor environments to solely rely

on GPS as the primary navigation tool in that GPS signal inside buildings is too weak to

penetrate the building structures. In the indoor environments, there are multiple ways

to determine the location of a target object , although each of them are not technically

perfect. It generally falls into two categories including absolute and relative position.

To determine the absolute position, the observer is required to provide observed posi-

tion data, such as a radio frequency signal, which provides an absolute rough position.

However, for the complexity of indoor positioning environments, RF signals are often

interfered by uncertain factors. This will affect the outcome of the final positioning. The

relative position is suitable for indoor positioning and is less expensive. To measure the

relative position, it is only necessary to detect the change in position of the target object

from the starting point.

One possible solution for relative position detection of indoor positioning is based on

the IMU. The IMU, as an auxiliary indoor positioning system, improves the accuracy

of the indoor positioning system. The IMU is an independent, low-power, the highly

miniaturized sensor that collects data from internal motion without any external refer-

ence. By using an IMU system with accelerometers, gyroscopes, and magnetometers, the

relative position and orientation of objects in all three dimensions can be measured. By

combining these data with the RF positioning system, a relatively stable target location

is obtained. This paper, in the next few sections, will mainly discuss the feasibility of

IMU as an auxiliary positioning system in indoor environments.

a. Calibrating the sensor is a critical step in the IMU’s startup. It can reduce the initial

sensor drift. Based on this, this thesis proposes a 6-side calibration method, rotate every

axis to +z-axis(gravity) direction to figure out the offset, in this case, calibration can

reducing the error of the IMU itself.
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b. Detecting motion is key to reducing unnecessary errors during the IMU’s motion.

By detecting the motion state of the IMU, it can effectively reduce the error caused by

the self-jitter of the IMU, the IMU movement path bump, and the IMU instantaneous

inertia start and stop.

c. The stable data output of the IMU is important to the IMU’s ability to be an assisted

positioning system. Using the appropriate integration method to calculate the relative

displacement and direction of the object, the IMU can generate a referenced and accu-

rate movement trajectory, thereby achieving the purpose of assisting other positioning

systems (RF).

The development of the IMU assistant positioning system includes hardware devel-

opment and software algorithm.

Hardware development consists of inertial measurement unit (IMU), micro-controller

of Arduino UNO and Raspberry Pi, as shown in figure 3.1

Figure 3.1: Hardware development.

Arduino reads the real-time data of BNO055 through I2C bus, which is transmitted

to Raspberry Pi through a serial port. Finally, Raspberry Pi transmitted the IMU data

to the server through TCP wireless network. This hardware configuration provides nine
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degrees of freedom of real-time data to calculate the position and trajectory of the current

object in two-dimensional space.

IMU software development consists of coordinate system conversion module and po-

sitioning algorithm module. The coordinate transformation module USES, the direction

rotation matrix algorithm and sensor compensation algorithm work together to generate

original stable sensor data. The localisation algorithm module includes the object motion

detection algorithm and integral displacement algorithm, which can help to determine

the moving trajectory of the object. The development of IMU software needs to consider

gyro drift correction, accelerometer gravity elimination and yaw Angle magnetic course

correction.

The IMU auxiliary positioning system module calculates the current position and

direction based on the accelerometer, gyroscope, and magnetometer. First, the linear

displacement is calculated by using a complementary filter to remove the acceleration

data affected by gravity. Moreover, integrating the acceleration by trapezoid method to

compute the velocity and the displacement. The accelerometer, gyroscope, and magne-

tometer data are combined with a quaternion algorithm to calculate the course of the

current position. Finally, the trajectory of the object is calculated by using the Kalman

Filter. Figure 3-2 shows the block diagram of the soft development module.

Figure 3.2: Software development.

The next section will describe these solutions one by one.
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3.2 Calibration

This subsection will explain what an accelerometer, gyroscope, and magnetometer drafts

and errors is. Also, how to set the offset to reduce these kinds of errors will be included

as well.

MEMS IMU devices are microdevices, which are easily affected by external factors

(as described in the Background). Because of the system drift of the devices, they are

inaccurate, which tend to be the feature of inertial sensors. This characteristic means

that even when the device is stable, the accelerometer, gyroscope, and magnetometer

will still output data other than zero. Similarly, each sensor has its reasons for such

drifts or errors. In this case, therefore, different offset methods and correction methods

are designed according to the different reasons for their errors, which are named sensor

calibration.

3.2.1 IMU Offset

Accelerometer There are two causes explaining the accelerometer’s measuring a three-

axis physical acceleration with a large offset. First, the acceleration itself is very sensitive,

while the other is that the Earth has a gravitational field. Gravity is known (9.81m/s2)

when the object is stationary and horizontal, and the direction of gravity is the same as

the z-axis of the accelerometer. So, the effect of gravity on the component of gravity is

easily removed. However, when the object moves, since the car does not stay horizontal

all the time, this component of gravity will affect the x, y, z three axes at the same time.

So, the accelerometer does not measure linear acceleration. Rather, it is a composite

acceleration. The following formula can express this combined acceleration.

A(t) = Al − g +Ba(t) +Na(t), (3.1)

where A(t) represents the composite acceleration, Al represents the linear acceleration,

Ba(t) is the accelerometer bias, Na(t) is the noise.

According to (3.1), it is easily found that if a stable linear acceleration is to be

obtained, the sensor data must minus the gravity component on the three-axis through

the attitude of the sensor. On the other hand, the velocity and displacement of the

object will become more significant with the integration of the acceleration data. Due
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to the integration of the fundamental error, the speed and displacement of each update

of the object will be proportional to the time of the initial position. This error is the

well-known integral drift problem of the inertial navigation system. The average data

output of the sensor is read 500 times by the 6-sided calibration method, thereby the

accelerometer’s offset can be obtained.

Magnetometer The offset calibration of the magnetometer guarantees the estimated

performance of the sensor heading. On the flip side, unlike accelerometers and gyro-

scopes, magnetometers need to sense the Earth’s magnetic field strength to determine the

direction of motion of the object. When measuring the Earth’s magnetic field strength,

the central disturbances can be divided into two groups, hard iron, and soft iron distor-

tion [24].

Assuming that the magnetic field, which is not affected by the distortion of hard and

soft iron, is a circle which is centred in the axis. See figure 3.3.

Figure 3.3: The ideal situation of the magnetic field shape.

Hard iron distortion Objects that generate magnetic fields produce hard iron

distortion. To be specific, hard iron distortion is easy to calibrate as they are constant

regardless of the orientation and position of the device. A simple way to determine this

offset is to slowly rotate the sensor in three dimensions and then read the average of

the maximum and minimum values for each axis of the 500 data of the magnetometer.

The new value in this is the offset of the hard iron deformation of the magnetometer.
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It should be noted that hard iron distortion only results in permanent deviations in the

output. Put simply, the hard iron distortion will only cause the center of the magnetic

field to deviate from the origin. See figure 3.4.

Figure 3.4: The ideal situation of hard iron distortion shape.

Soft iron distortion Compared with the effect of hard iron distortion, the effect of

soft iron distortion is difficult to detect and correct. Since it is believed to be the deviation

and variation in the existing magnetic field. Usually, some metals will either strengthen or

block the magnetic field, and they will change with the direction of change. However, the

geomagnetic field will not change, causing different magnetic field deviations in diverse

positions. So, this change stretches or distorts the geomagnetic field itself. See figure

3.5.

The method of measuring the soft iron error is to rotate the magnetometer 36 times

in a two-dimensional space, 10◦each time, and record the magnetometer output data.

In the case of soft iron distortion, the magnetic field scales of the x, y, and z-axes are

different, and some direction produces a stronger or weaker magnetic field. This makes

the distribution of the magnetic field appear an elliptical shape. By calibrating the effects

of hard iron distortion, elliptical dots can return to the origin of the coordinates. The

next step is to calculate the difference in the ratio between the ellipse and the perfect

circle, that is figure out the scaling of each magnetic axis relative to the coordinate

axis. Finally, the raw data multiply the scale factor and rotation matrix to obtain the

distribution of the magnetic field, which approximates the circle.
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Figure 3.5: The ideal situation of soft iron distortion shape.

Gyroscope The gyroscope compensation is the simplest among the three calibration

methods, and this can be accounted for by the fact that it does not need to calibrate

the scale error but to calibrate the deviation of the zero motion. Putting the device

on the stable horizontal planet and make sure the device does not move. Under such

circumstances, the gyroscope’s data output should be the zero angular velocity. If the raw

data does have a non-zero component, it is the offset of the gyroscope. The correct offset

will be calculated from the average of 500 outputs raw gyroscope data. Also, subtract

these non-zero values from the raw data whenever the data are collected. Eventually,

more efficient data is generated corresponding to the gyroscope motion.

3.2.2 Result

Gyroscope The result of the gyroscope offset calibration is shown in Figure 3.6. The

blue waveforms in the Figure 3.6 give un-calibrated values, and these values’ center is

not zero. The red waveform in the Figure 3.6 indicates the calibrated value, shows the

data near the zero value, and the calibration is complete.

Accelerometer The result of accelerometer offset calibration is shown in Figure 3.7.

The blue waveforms in the Figure 3.7 give un-calibrated values. The red waveform in

the Figure 3.7 gives the calibrated value, as same as the gyroscope. The Accelerometer

calibration is complete.
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Figure 3.6: Calibration data with gyroscope.

Magnetometer As described in the method of calibrating the magnetometer, the

original magnetometer data, when the device rotates 360◦, is shown in Figures 3.8(1)

and 3.8(2). It can be seen that the circle does not rotate around the center of the

plane because of the error of hard iron distortion. It can also be seen that these circles

are slightly elliptical, and this can be attributed to the error of soft iron distortion.

The calibrated data is shown in Figure 3.8(3). Figure 3.8(4) shows the magnetic field

distribution of the magnetometer under ideal conditions.

Because the experimental environment removes metals which might be produced

soft iron, the effects of soft iron distortion in the Figure 3.8(1) and Figure 3.8(2) are not

apparent. However, reports suggest that the soft iron distortion still affects the magne-

tometer in the environment. It is worth notice that the magnetic field influence is the

difference in the real application environment. Moreover, some objects, which produce

soft iron distortion, cannot be removed. Therefore, the magnetometer must be recali-

brated whenever the experimental environment changes, and magnetometer calibration

is complete.



17

Figure 3.7: Calibration data with gyroscope.

3.3 Complementary Filter

In order to calculate the direction and position of the mobile robot, the IMU data must

be combined. In order to make combined data more effective, some filters are commonly

used, such as Kalman filter [22] and COMPLEMENTARY filter [27].

The Kalman filter is useful but also very complex [26] in the meanwhile. There are

two challenges: First, it is difficult to determine the noise parameters; Second, it is tricky

to realize some microcontrollers.

As the noise in indoor environments is complex and changeable, these noise parame-

ters and Kalman filter need much calculation, which will slow down the operation of the

microcontroller and thus causing an inevitable delay to real-time data. Much computing

is not easy to do on microprocessors. Compared with the Kalman Filter, the comple-

mentary filter is simpler to implement and does not need to calculate a large number of

noise parameters. Moreover, the complementary filter gives the same result [31].

The value of the gyroscope will drift over time, and that makes it a short-term sensor.

The accelerometer data is only reliable for the long-term ones. The complementary filter

gives the best of both worlds. In the short term, the data of the gyroscope is used

because it is very accurate and is not affected by external forces. In the long term, as a

contrast, the data from acceleration is mainly adopted for it does not drift. Put simply,

the complementary filter filters out short-term fluctuations through a low-pass filter,
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Figure 3.8: Calibration data with magnetometer.

allowing long-term changes to be preserved, i.e., averaging over time. The integrator

obtains the relative direction of the sensor by integrating the angle. The high-pass filter

filters out long-term changes and keeps transient changes that can cause the gyroscope

to filter out drift.

3.3.1 Implementation

Roll, pitch, and yaw can determine the direction of the object. The distribution of the

three angles is shown in Figure 3.9. [23]Yaw indicates that the object rotates around the

z-axis, pitch indicates that the object rotates around the y-axis, and roll indicates that

it rotates around the x-axis. Roll, pitch, and yaw are also direct output values of the

gyroscope.

The filter formula is shown below.

Angle (t) =K ∗ (Angle (t− 1) +GyroscopeData (t− 1) ∗ dt)

+ (1−K) ∗ accAngle (t− 1) .
(3.2)

Angle represents the relative angle of the current object, K represents the filter

coefficient of the complementary filter between 0 and 1, GyroscopeData represents the
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Figure 3.9: Yaw, roll, and pitch

gyroscope data, dt represents the sampling time between two iterations, and accAngle

represents the angle value after converting the current acceleration. A trigonometric

function can represent the angle of the current accelerometer. Because the acceleration

is calculated in radians, therefore, it must be converted to an angle, the process of which

is shown as following.

accRoll = arctan

(
ay√

ax2 + az2

)
∗ 180

pi
. (3.3)

accP itch = arctan

(
−ax√

ay2 + az2

)
∗ 180

pi
. (3.4)

The Roll and Pitch of the gyroscope after complementary filtering can be calculated

according to the following formula.

Roll(t) =K ∗ (Roll(t− 1) +Gyroscopex(t− 1)

∗ dt) + (1−K) ∗ accRoll(t− 1).
(3.5)
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Pitch(t) =K ∗ (Pitch(t− 1) +Gyroscopey(t− 1)

∗ dt) + (1−K) ∗ accP itch(t− 1).
(3.6)

Because the z-axis of the accelerometer measures gravity, which remains constant,

the yaw axis cannot be compensated by the accelerometer. A magnetometer measures

the geomagnetic field perpendicular to gravity and thus determines the rotation in the

horizontal plane. So yaw can be compensated with a magnetometer[10]. The formula is

shown below.

a = −ymag ∗ cos(Roll) + zmag ∗ sin(Roll), (3.7)

b = xmag ∗ cos(Pitch), (3.8)

c = ymag ∗ sin(Pitch) ∗ sin(Roll), (3.9)

d = zmag ∗ sin(Pitch) ∗ cos(Roll), (3.10)

yawMag = arctan(
a

b+ c+ d
) ∗ 180

pi
. (3.11)

The Yaw of the gyroscope after complementary filtering can be calculated according to

the following formula.

Y aw(t) =K ∗ (Y aw(t− 1) +Gyroscopez(t− 1) ∗ dt)+

(1−K) ∗ yawMag(t− 1).
(3.12)

The following formula determines the coefficients of the complementary filter.

K =
tau

tau+ dt
. (3.13)

tau is the desired time constant how fast the IMU reading to response, dt is the

sampling time, which is the same with the complementary filter. However, the specific

K value still needs to be selected in the experiment. In the project, K was set as 0.02.

This is based on the results of different K values.
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3.3.2 Result

According to the selection of the complementary filter coefficients, the IMU is placed at

the horizontal table for 42 seconds to observe the drift of the gyroscope. As shown in

Figure 3.10, the gyroscope drift compensates for different K values. It can be found that

when the K value becomes small and K-1 becomes large, the drift of the gyroscope can

be effectively reduced.

Figure 3.10: The effect of complementary filter coefficients.

The function in the code implements the complementary filter according to the for-

mula in this section. Firstly, the calibration is carried out to ensure that the data of

three axes of the gyroscope is approximately 0. The experimental rotation direction is

shown in Figure 3.9. Because the chip is not completely aligned with the gravity axis,

there is some drift in the rotation of the IMU. The first thing is rotating the YAW axis.

This project sets the rotation range of yaw as 0◦-360◦ because it can better match the di-

rection of the mobile robot in certain context. As mentioned above, yaw is compensated

by complementary filtering of the magnetometer so that the initial value will indicate

the direction of an absolute value of the Earth’s magnetic field. At the beginning of the

test, ensure that the output Angle of the yaw axis is 0, rotate 90◦ every 30 sampling

points, and the sampling time is 0.01s. See figure 3-11.

The rotation of the yaw axis is shown by sampling points 900 to 1010. The IMU was

initially stationary at about 270◦, then rotated counterclockwise 90◦ for sample interval
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Figure 3.11: Testing of yaw rotation.

930 to 950, and then continued to rotate counterclockwise90◦ to 90◦for sample interval

950 to 980. Finally, rotate 90◦ to 360◦, sample interval 970 to 1010.

The second one is rotating the Roll axis. Remove the Yaw display for a more intuitive

view of Roll’s Angle change, as shown in figure 3.12.

As with the Yaw rotation test, it is time to ensure that the initial Roll axis output is

0, and select sample points 650 to 760 for display. According to the actual situation of

the roll axis, the rotation range is from −180◦ to +180◦.Rotate 90◦ for every 15 sample

points.

The third point is to rotate the pitch axis. Remove the Yaw and Roll display for a

more intuitive view of Roll’s Angle change, as shown in Figure 3.13.

As with the Roll rotation test, ensure the initial Pitch axis output is 0, and select

sample points 980 to 1080 for display. According to the actual situation of the roll axis,

the rotation range is from −90◦ to+90◦. Rotate 90◦ for every 20 sample points.



23

Figure 3.12: Testing of roll rotation.

Figure 3.13: Testing of pitch rotation.
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Table 3.1: The Average Error of Rotation

Axis Name The Error of Rotate from 0◦ to 360◦

Yaw 5◦ - 20◦

Roll 2◦ - 6◦

Pitch 5◦ - 10◦

3.3.3 Discussion

According to the experimental results of rotation, the average error is calculated, as

shown in table 2. It can be seen from table 2 that the complementary filter has a

good compensation effect for Roll and Pitch, because the accelerometer compensation is

stable. However, the Yaw axis has a large error in some directions, which is caused by the

uneven distribution of the magnetic field, and certain electromagnetic interference exists

in some angles of the indoor environments. Therefore, each time the complementary

filter is used to correct Yaw, multiple magnetic field calibration must be performed on

the test site in order to reduce the interference of the current environment to IMU.

3.4 Position and Direction Calculation

In the lead up section, the attitude of IMU was known by calculating Roll, Pitch, and

Yaw. However, this kind of attitude is only for IMU’s body coordinate system. In order

to obtain the accurate attitude and displacement of the mobile robot, the reference

coordinate system needs to convert from the body coordinate system to the ground

coordinate system. The transformation of the coordinate system requires the model of

a quaternion rotation matrix. Moreover, the quaternion rotation matrix can remove the

influence of gravity on the accelerometer and calculate the linear acceleration. With this

linear accelerometer and quaternion, the displacement and direction of mobile robots

can be calculated. Eventually, the displacement and direction data are sent to the server

and displayed. This section mainly introduces the quaternion rotation matrix and the

displacement calculate algorithm.
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3.4.1 Coordinate System Transformation

IMU is created in their body spaces, and that means the IMU output their data based

on the Body Coordinate System. This is in that the indoor positioning system is built

based on the ground coordinate system. Through the direction and displacement relative

to the ground, the robot can be accurately positioned. So that is why the IMU Body

coordinate system needs to convert to the Ground Coordinate, shown as the Figure 3.14.

Figure 3.14: The relationship between ground coordinate system and IMU body coordi-
nate system.

The blue axes represent the ground coordinate system, the three orange axes rep-

resent the different positions of the mobile robot, and the yellow arrows represent the

position of the robot relative to the ground coordinate system. That is why the rotation

representation is important.

3.4.2 Quaternion

The quaternion [21, 33, 39] is the number system that extends the complex numbers.

The Irish mathematician William Rowan Hamilton is the first person who described in

1843 and applied to mechanics in three-dimensional space. The quaternion provides a

measurement that is unaffected by the gimbal lock. A quaternion is a quaternion vector

that can be used to encode any rotation in a coordinate system. Its form is similar

to a complex number. The quaternion axes i, j, and k are defined with the following
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relationship:

i2 = j2 = k2 = ijk = −1. (3.14)

The quaternion q is denoted as

q = w0 + xi+ yj + zk. (3.15)

The q from BNO055 is defined as the unit vector from the body frame of the sensor

to the ground frame, where w is the rotation around its axis in radians relative to

the reference frame, and x, y, z are familiar coordinates used to indicate the three-

dimensional vector. Rotation (w) is important for tracking the direction of the object.

In most mechanical models, the rotation of the vector is tracked by the amount of rotation

around the reference frame axis, so x rotation is the rotation of the vector around the

x-axis, y rotation is the rotation of the vector around the y-axis, and z-rotation is

the vector around the z-axis Rotate. Three rotations around the axis can then give a

complete three-dimensional rotation. If using roll, pitch, and yaw to calculate rotation

directly, there will be Gimbal-Lock problems [38]. The quaternion does not have this

problem. This makes the quaternion very suitable for the calculation of this project

because it will eliminate unnecessary rotation errors and problems. Moreover, it can

help mobile robots track their movement direction under different movement conditions.

Then, there are the basic quaternion operations needed to figure out the direction.

First, construct an expression that quaternions can use from the angles which is calcu-

lated roll, pitch, yaw by the last section.

w0 = cos(
pitch

2
) cos(

yaw

2
) cos(

roll

2
) + sin(

pitch

2
) sin(

yaw

2
) sin(

roll

2
), (3.16)

x = sin(
pitch

2
) cos(

yaw

2
) cos(

roll

2
)− cos(

pitch

2
) sin(

yaw

2
) sin(

roll

2
), (3.17)

y = cos(
pitch

2
)sin(

yaw

2
) cos(

roll

2
) + sin(

pitch

2
) cos(

yaw

2
) sin(

roll

2
), (3.18)
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z = cos(
pitch

2
) cos(

yaw

2
) sin(

roll

2
)− sin(

pitch

2
) sin(

yaw

2
) cos(

roll

2
). (3.19)

moreover, if the vectorvb = (vx, vy, vz)
T is defined as the axis of the rotation of the

sensor, using the quaternion rotation the vector to the ground frame can be expressed

as the following relationship.

vi = q ∗
(

0

vb

)
∗ q−1. (3.20)

Wherein vi is the output vector after quaternion transformation. q−1 is the conjugate

of quaternion q.

q−1 = [w,−x,−y,−z] . (3.21)

Based on this equation, IMU can obtain sensor data relative to the ground coordinate

system. Quaternion multiplication has its definition. Shown below.

There have q1 and q2, q1 = (w1 + x1 + y1 + z1) and q2 = (w2 + x2 + y2 + z2). Then

the quaternion product q1q2 is given by:

q1q2 =


w1w2 − x1x2 − y1y2 − z1z2
w1x2 + x1w2 + y1z2 − z1y2
w1y2 − x1z2 + y1y2 + z1x2

w1z2 + x1y2 − y1x2 + z1w2.

 (3.22)

Since the 3D vector can be regarded as a quaternion, where the first element is

equal to zero, it is possible to define a certain degree of a 3D vector around the axis by

multiplication of the quaternion. Quaternion is an excellent and clean representation of

the rotation between the two coordinates, or the direction of the vector. It is accessible

to develop in coding, and the quaternion is not affected by any error and mistakes from

Roll, Pitch and Yaw. Therefore, select the quaternion as the coordinate transformation

tool in this project. Therefore, IMU sensor data rotate from body frame to the ground

frame.
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3.4.3 Acceleration to Displacement

To determine the movement of a mobile robot, the change in the position must be known.

In the other word, the displacement must be calculated through acceleration. Use the

quaternion to find the acceleration relative to the ground. The data output by the

accelerometer is in g (9.8m/s2), so the acceleration data must first be converted to data

in meter. This subsection describes the use of quaternion to find linear acceleration, uses

the trapezoidal integral method to find the displacement [32], and finally adopts motion

detection to distinguish the static state of the mobile robot from the motion state.

3.4.3.1 Linear acceleration

Acceleration measurements include gravity component, as described in chapter 3 and

background. If to compute linear acceleration, the gravitational component must first

be removed from the accelerometer. The change in gravity component is shown in the

figure below.

Figure 3.15: Gravity changed in rotation.

Figure 3.15 suggests that if the mobile robot moves on a completely horizontal plane,

its gravity component is shown on the left of Figure 3.15. However, in normal environ-

ments, it is almost impossible for the mobile robot to make it, and its gravity component

is shown on the right in Figure 3.15. Put it another word, the gravity component affects

the measurement data of the accelerometer, explaining why the gravity component needs

to be removed from the accelerometer.
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The component of gravity can be expressed as G = [0, 0, g].

Each gravity component is estimated from the attitude value of the current quater-

nion. It is used to compare the gravity components actually measured by the accelerom-

eter to achieve the correction of the four-axis attitude [42]. gx

gy

gz

 =

 q1 ∗ q3 − q0 ∗ q2
q0 ∗ q1 + q2 ∗ q3

q0 ∗ q0 − q1 ∗ q1 − q2 ∗ q2 + q3 ∗ q3

. (3.23)

Linear acceleration can be expressed as

LinearAcc =

 ax − gx
ay − gy
az − gz

, (3.24)

where ax, ay, and az is the raw data from the accelerometer.

3.4.3.2 Displacement

The acceleration is integrated as a velocity vector, tracking the velocity throughout the

process. The velocity vector is then integrated again to give the offset in one iteration.

The following equation does this:

dv = dt ∗ a, (3.25)

ds = dt ∗ dv, (3.26)

where dv is the velocity vector, a is the acceleration, ds is the displacement vector,

dt is sample time between two acceleration changed. However, mobile robots require

real-time displacement updates and use discrete input values. Therefore, the trapezoidal

integration method is used to calculate velocity and displacement. The following methods

can determine the trapezoidal integral:

The First integration:

velocity(1) = velocity(0) +
(acceleration(1)− acceleration(0)

2
∗ dt. (3.27)
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The second integration:

position(1) = position(0) +
(velocity(1)− velocity(0)

2
∗ dt. (3.28)

In this equation velocity[1] and position[1] are the integrated output, velocity[0] and

position[0] are the previous input, dt is the sample time like the previous description.

Figure 3.16 shows the integrated different between general integral method and trape-

zoidal integral method [34].

Figure 3.16: The general integral method and trapezoidal integral.

3.4.3.3 Motion detection

It is optimal to use the magnitude of the accelerometer to judge the motion state of the

IMU. The following equation shows the relationship.

magnitude =
√
a2x + a2y + a2z. (3.29)

If the IMU is not moving, then the only acceleration it will feel will be due to the

Earth’s gravity. However, the calibrated IMU data ideally has a triaxial acceleration of

0. Therefore, the magnitude is also 0. In actual cases, the data generated by the three

axes of the accelerometer will have slight fluctuations, and at this time, IMU can use

the magnitude to calculate a threshold. The magnitude infers the motion state (moving

or stationary) of the IMU by comparison with this threshold. If the magnitude is larger

than the threshold, it means the mobile robot is in the moving situation. Whereas
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when the magnitude is smaller than the threshold, this shows the mobile robot stays

in a stable situation. For the movement end check, the magnitude of the accelerometer

determines the starting condition, and the value of the accelerometer determines the end

of motion detecting. The movement end check is accomplished by continually reading

the acceleration and comparing it to zero. If this is the case during a certain number of

samples, then the speed returns to zero. Motion detection can effectively suppress the

origin drift in the static state and has a simple function of filtering data.

3.4.3.4 Result

To test the displacement algorithm, the IMU is placed on a horizontal table, and the

displacement sum can be used to figure out the distance of the IMU moves during the

test. Then the test distance is compared with the actual distance to get the accuracy

and error of the algorithm. This test has been combined with the motion detection of

IMU. When the motion detection of IMU determines the IMU activity, then the server

displays the movement change relationship of IMU.

The first testing is the IMU moving on the X-axis. Figure 3.17 shows the relationship

between acceleration, velocity, and displacement of the x-axis.

Figure 3.17: x-axis testing of the accelerometer.

The IMU moved 25 centimeters 15 times at x-axis direction across the horizontal

table. In Figure 3.17, the blue line is the acceleration, the red line is the velocity, and
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the green line is the displacement of the IMU at x-axis between sampling times 180 and

300.

The second testing is the IMU moving on the y-axis. Figure 3.18 shows the relation-

ship between acceleration, velocity, and displacement of the y-axis.

Figure 3.18: y-axis testing of the accelerometer

The IMU moved 10 centimeters 15 times at y-axis direction across the horizontal

table. In Figure 3.18, the blue line is the acceleration, the red line is the velocity, and

the green line is the displacement of the IMU at x-axis between sampling points 1000

and 1200.

3.4.4 Discussion

Through the experimental results, it can be found that the trapezoidal integral method

and the quaternion can track the displacement of the IMU very well. However, it will

also be found that after a certain number of movements, the IMU displacement cannot

be tracked, that means, the displacement will drift. For example, the sampling range

from 260 to 280 in Figure 3.17. And the sampling range from 1070 to 1080 in Figure

3.18

There are two reasons for drift. First, because the distribution of the magnetic field

is not uniform, the direction of the yaw axis changes, so that the quaternion rotation

matrix changes, resulting in the drift of the IMU. Second, the delay of IMU motion
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detection is mainly reflected in the fact that when the acceleration is zero, the speed

cannot be zeroed in time, and additional displacement is generated from the time to

cause the IMU to drift.The improvement is to improve the accuracy of motion detection.

Avoid motion detection delays. Alternatively, add other filters to filter the data.
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Chapter 4: Experimental results

4.1 System Structure

In previous chapters, complementary filtering, quaternion and displacement integral al-

gorithms are introduced. This chapter mainly introduces the indoor test results of IMU

positioning system of a mobile robot combined with all data processing methods. Using

Arduino Uno to read out the data from BNO055 through serial communication, and

using Raspberry Pi to send data to the server to display the trajectory by TCP [40]

communication. The overall system structure diagram is shown in Figure 4.1.

4.2 Test Environment Setting

The indoor positioning of the mobile robot was tested in an indoor laboratory at Oregon

State University. The testing ground is in a laboratory with an area around 6 meters

by 6 meters with a grid layout on the floor exclusively for positioning tests. figure 4.2

shows the setup at the testing ground.

The IMU is considered as an add-on to the RF positioning system. Some experimental

tests are completed to evaluate the IMU performance. The IMU connects to a micro

controller that processes the sensor measurements and sends the data to the server

through the wireless network. Then, the server back-end code estimates the position

based on the sensor measurement to recover the target moving trajectory. The Figure

4.3 shows the overview of the mobile robot. Figure 4.4 reveals the setting of IMU on the

mobile robot.

4.3 Hardware Components Used in Experiment

4.3.1 The IMU

In this thesis, the BNO055 [35] will be used (Figure 2.1) that includes accelerometers,

gyroscopes, and magnetometers.



35

Figure 4.1: Overall system structure.



36

Figure 4.2: Overall system structure.

Figure 4.3: The overview of the testing environment.
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Figure 4.4: The setting of IMU on the mobile robot.

Figure 4.5: The IMU (BNO055).

Bosch Sensortec BNO055 is a 9-Axis Absolute Orientation Sensor. The BNO055

is integrating a three-axis 14-bit accelerometer with a range of ±2g, ±4g, ±8g, and

±16g. A three- axis 16-bit gyroscope with a range switchable from ±125 degrees per

second to ±2000 degrees per second, and a three-axis geomagnetic sensor. These chipsets

are integrated into a 28-pin LGA 3.8 mm x 5.2 mm x 1.1 mm housing. For improved

system integration, the BNO055 is equipped with digital bidirectional I2C and UART

interfaces. BNO055 also includes a 32-bit ARM Cortex M0+ microcontroller for running

Bosch Sensortec sensor fusion software. The figure below shows the System Architecture

of BNO055 [28].

BNO055’s internal processor integrates the accelerometer, gyroscope and magne-
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Figure 4.6: System architecture of BNO055.

tometer data, transmits it to the server via I2C, and finally waits for further processing

by the server algorithm.

There is an Arduino Uno library provided by Adafruit to readout the BNO055 with

use of the I2C bus [20]. And there also need I2C library to drive BNO055. This I2C

library can be downloaded in the Arduino Library Management. The BNO055 library

helps to initialize the I2C bus, and there also have different functions to read out the

data from the FIFO buffer. Also, the BNO055 library provides some functions to help

with a sensors data reading, some of those data will be used to implement the calculation

of the position and orientation of the vehicle, described in section 3.6. More about the

I2C bus background can be found in the next subsection.

The reason to select this IMU over others is because of its comprehensive implemen-

tation in combination with the Arduino, meaning that all subsystems can be able to

communicate with each other subsystem. And many examples and libraries can be used

as a sample. BNO055 data have a better measurement accuracy and stability compared

to other IMU; the. On top of that, it is small enough to fit into the robot and takes up

minimal space.

4.3.2 Communications Module

I2C was proposed by Philips and is currently widely used for communication between

multiple ICs in a system. I2C is a bus capable of supporting multiple devices, including
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a two-wire serial data line SDA and a serial clock line SCL. Each device connected to the

bus has a separate address which the host can use to access different devices. The host

finds the slave through the SDA line transmission device address (SLAVE-ADDRESS).

The SLAVE-ADDRESS can be 7 or 10 bits. A data bit following SLAVE-ADDRESS is

used to indicate the data transmission direction, that is, the 8th or 11th bit. When it is

0, it means to write data; whereas when it is 1, it means to read data. The master device

does not require an address because it generates a clock signal (via SCL) and processes

the individual I2C slave device.

The data on the SDA line must be stable during the high period of the clock, and

the high or low state of the data line can only be changed when the clock signal on the

SCL line is low. In other words, when SCL is high, it indicates valid data. SDA is high

for “1” and low for “0”. When SCL is low, it means invalid data. At this time, SDA will

switch state and prepared the data for the next time. Figure 2-3 [41]shows the timing

diagram of data validity.

Figure 4.7: I2C protocol.

Start condition S: When SCL is high, SDA is switched from high level to low level;

Stop condition P: SDA transitions from low to high when SCL is high.

The host typically generates “start” and “stop” conditions. The bus is busy after the

start condition, followed by the address of the slave (B1). If bit 0 of the address byte is

set to 0, the master will write to the slave (B2). Once all bytes (Bn) are read or written,

the master generates a Stop condition (P). After some time of the stop condition, the

bus is idle again, and another device may use the bus.

The I2C communication is implemented by using the I2C dev library and the

BNO055 library from Bosch and Adafruit. With using the functions of I2C writeBytes,

I2C writeWords, I2C readBytes, and I2C readWords from the I2C dev library, the I2C

is initialized and used to read out the BNO055. To collect data from the BNO055, the

Arduino first indicates which registers are needed to be Readout. The BNO055 then puts
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these registers bytes in the FIFO buffer to be accessed by the I2C Bus. The Arduino

then reads out the First in First Out (FIFO) [37]buffer and puts the right bytes in the

corresponding variables.

The single read mode is to read the data of each sensor of the BNO055 once, put

it into the read register and issue an end signal, and enter the sleep mode again. With

the single read mode, Arduino reads the data from the read register and sends data to

the server. A small advantage of the single read mode is that the readout frequencies of

BNO055 and Arduino are synchronized because Arduino reads the BNO055 data only

when BNO055 is ready for new data.

Table 4.1: The Pin Set of BNO055

BNO055 Arduino Uno

SCL Analog 5
SDA Analog 4
VDD 3.3V DC

Ground Common Ground

To test if I2C communication is working, connect BNO055 to Arduino, according

to Table 2.1. Turn on the power and read the values of the accelerometer, gyroscope,

and magnetometer, then print them on the serial monitor of the IDE Arduino interface.

When reading the data, the BNO055 is turned in all directions according to the x, y,

z-axis of Accelerometer, Gyroscope, and magnetometer to check if the readings are as

expected. The output of the accelerometer, gyroscope, and magnetometer corresponds to

the expected value. Under such circumstances, it is concluded that I2C communication

is effective.

4.4 Trajectory Test Result

In the first experiment, the IMU was fixed on a mobile robot, and the mobile robot

made a circular motion with a radius of 1.5 meters. The IMU collects data and performs

real-time data transmission, and finally displays the trajectory on the server. The test

results are shown in Figure 4.5.

The black point is the estimated trajectory of the mobile robot, and the blue line is

the preset trajectory of the mobile robot. According to the experimental results, when
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Figure 4.8: The a circular trajectory of the IMU.

the robot moves to some angles, the trajectory will have a great draft. The other angles,

the preset trajectories, and the estimated trajectories match well.

In the second experiment, the robot followed a 1.5m by 1.5m square counterclockwise

trajectory.See figure 4.6.

The black point is the estimated trajectory of the mobile robot, and the blue line is

the preset trajectory of the mobile robot. According to the track results of test 2, it is

found that both test 2 and test 1 have the same track drift problem.

4.5 Discussion

According to the experimental results, it is found that the mobile robot’s motion esti-

mation trajectory matches the preset trajectory, but the motion estimation trajectory

still drifts in some directions. This result is consistent with the yaw angle error analysis

in Section 3.5.2.

There have two reasons that cause estimated trajectory drifts. The first reason is

that the laboratory still exists soft iron distortion in a certain direction. This magnetic

field distortion causes errors in the yaw angle compensated by the magnetometer, which

causes the quaternion rotation matrix to occur deviation. Eventually, the estimated

trajectory drifted. The second reason is that when the value of the accelerometer becomes
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Figure 4.9: The straight-line trajectory of IMU.

0 during the experiment, the speed is not zero in time (about around 1s delay). This 1s

delay causes the speed to output additional displacement data. Thereby the estimated

trajectory drifts.

According to the test results and analysis, the IMU positioning system has the possi-

bility of becoming an assistant positioning system for RF. The IMU positioning system

exchanges data with the RF positioning system. In a short time, the RF system updates

and corrects the position of the IMU. The IMU supplements the estimated displacement

of the RF. Thereby achieving the purpose of the IMU positioning system to assist RF

positioning system.
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Chapter 5: Discussion and Conclusions

5.1 Discussion

It is widely known that wearable sensors with an IMU have become the new trend in the

field in positioning technology. As has been introduced at the very beginning, the IMU

is able to be linked to a wireless transmission device, through which the users are allowed

both to supervise and process the motion-related variables in a distant way. This research

is of paramount importance in that it fills the research gap caused by the insufficiency of

simply using a radio frequency positioning system, and this can be mainly attributed to

the complexity and uncertainty of signals in some cases. Under such circumstances, in

order to offer more accurate, reliable and effective positioning function for a good variety

of applications in modern society, the IMUs positioning system has to come and play a

determinant role.

Before going any further, this thesis does find some difficulties encountered when

using IMU positioning, and it turns out these barriers do affect the experimental result

afterwards. The IMU is not positioned accurately and correctly mainly due to 2 reasons.

First and foremost, the attitude inaccuracy leads to the outcome that the effects of

gravity cannot be removed. Under such circumstances, it is no wonder why the errors are

accumulated in a constant way. In addition to the attitude, the drift of the device itself

cannot be avoided. To this problem, the general processing method is to remove with

high-pass filtering, but the high-pass filtering only obtains relative motion relationship,

and cannot get accurate position information. Therefore, in actual application, the

corresponding processing method can be designed according to the real situation. For

example, in gait positioning, motion still judgment can be used [30].

Generally speaking, therefore, this paper aims to explore the possibility of IMU

providing assisted location for RF positioning system. After reviewing extensive relevant

literature and experiment reports, this thesis develops and then examines a complete,

independent, and lightweight indoor IMU-aided RF positioning system by conducting an

experiment. To be specific, in the case of the mobile robot, the moving data of the IMU is
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collected, compared and then analyzed to estimates the trajectory of the mobile robot.

This data can be processed and then display the movement trajectory of the mobile

robot on the server side. The objective of this experiment is to enhance the accuracy

of the system in indoor environments for mobile robotics up to a higher level. This

thesis mainly integrates the measurements of the accelerometers, gyroscopes, as well as

magnetometer from an IMU through a complementary filter. Furthermore, a calibration

algorithm has been developed, which is used to minimize the IMU drift and error, which

will be elaborated later. With the calibrated data, the trapezoidal integration method

is able to utilize and then process the accelerometer data so as to evaluate the velocity

and displacement of the mobile robot. Another major task throughout this experiment

is: in order to transform the data in the coordinate system of the IMU mounted on

the mobile robot body to the ground positioning coordinate that RF positioning uses, a

quaternion rotation algorithm is operated. This is so in that it helps enable the fusion

of the IMU and RF positioning estimates to accurately determine the moving trajectory

of the mobile robot and guide its moving directions.

In addition, this research not only provides theoretical foundations which are neces-

sary but also carries out experimental verification in a quantitative method. The key

findings of this experiment can be demonstrated as following:

First, the complementary filter can make up for the output of the gyroscope heading

angle very well. In addition, it has been found that the quaternion algorithm also works

effectively for converting IMU body frames to ground frames. As far as the displacement

is concerned during the experimental process, the IMU’s motion detection accurately

identifies the motion and rest of the IMU. The problem is, however, that the overall

displacement remains inconsistent with the actual situation from time to time, and it

turns out that the IMU will have certain drift on some occasions. What should be

noticed is that this drift will increase over time. After analysis and tracking, it has been

figured out that the core of the problem is still the complexity of the indoor ambient

noise, and it can be amplified by the integration of velocity and displacement, which

affects the accuracy of the result in the end. Under such circumstances, therefore, this

key finding shows that although the IMU assisted positioning system is working within

a short range of motion, it cannot run and operate for a longer period of time. In order

to make up for this, it is advisable to re-initialize the data of the IMU within a certain

period of time.
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In addition, another point to be taken into consideration is that great chances are

that the IMU positioning system might fail in complex motion trajectories. To explain,

assuming that the IMU cannot find the dominant direction of movement within a long

period of time, then it is much likely that the displacement trajectory will be misaligned.

Although in theory, an electronic compass can be used as an additional source of data,

some instruments or signals can interfere with the magnetic field in an indoor environ-

ment, making the electronic compass work abnormally. And this can be attributed to

the unavoidable noise uncertainty. Saying that though, the short-range displacement

results of the IMU lay a solid foundation for sensor fusion study in the coming research,

especially when it comes to the fusion and incorporation between RF and IMU. With the

complementary cooperation between RF and IMU, it is expected that the displacement

status can be upgraded. In this respect, the possibility, accuracy as well as reliability of

the trajectory tracking of mobile robots can be expected in the foreseeable future.

5.2 Conclusions

It is widely known that wearable sensors with an IMU have become the new trend in

the field in positioning technology. As has been introduced at the very beginning, the

IMUs is able to be linked to a wireless transmission device, through which the users

are allowed both to supervise and process the motion-related variables in a distant way.

This research is of paramount importance in that it fills the research gap caused by

the insufficiency of simply using a radio frequency positioning system, and this can be

mainly attributed to the complexity and uncertainty of signals in some cases. Under such

circumstances, in order to offer more accurate, reliable and effective positioning function

for a good variety of applications in modern society, the IMUs positioning system has to

come and play a determinant role.

The short-range displacement results of the IMU lay a solid foundation for sensor

fusion study in the coming research, especially when it comes to the fusion and incor-

poration between RF and IMU. With the complementary cooperation between RF and

IMU, it is expected that the displacement status can be upgraded. In this respect, the

possibility, accuracy as well as reliability of the trajectory tracking of mobile robots can

be expected in the foreseeable future.
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Appendix A: Positioning Diagram

Figure A.1: Positioning Diagram
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Appendix B: Source Code

More source code at https://github.com/zhangshengkai520/MasterThesisSourceCode

B.1 The Code of Positioning Information

# The relationship between acceleration, velocity , and displacement

import socket, pickle , time

import matplotlib.pyplot as plt

from math import sqrt

import numpy as np

from scipy import signal

font2 = {’family ’: ’Times New Roman’,

’weight’: ’normal’,

’ size ’: 24,

}
def server program():

host = ’192.168.2.198’

print(host)

port1 = 5656

server socket1 = socket.socket(socket.AF INET, socket.SOCK STREAM)

server socket1 .bind((host, port1))

server socket1 . listen (10)

print(”Server is ready to receive data .....”)

conn1, address1 = server socket1.accept()

print(”Connect from : ” + str(address1))

lin accel old = np.zeros((1, 3))

linVel old = np.zeros((1, 3))

linVel new = np.zeros((1, 3))
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linPos old = np.zeros((1, 3))

linPos new = np.zeros((1, 3))

steptime = 0.12

i = 0

plt .grid()

plt . ion()

P x = []

P y = []

# plotting

Steptime = []

Time = 0

ax = []

ay = []

az = []

vx = []

vy = []

vz = []

px = []

py = []

pz = []

Euler = []

#

samplePeriod = 1/100

ACCELEROMETER DRIFT WHEN STATIONARY = 2.3e−26

countaccX = 0

countaccY = 0

while True:

plt .grid()

start = time.time()

data1 = conn1.recv(5 ∗ 1024 ∗ 1024)

data package1 = pickle.loads(data1)

euler , accel , lin acc ,q = read imu(data package1)
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if i > 20 :

accMagnitude = sqrt((lin acc[0] ∗ lin acc [0]) + (lin acc [1] ∗ lin acc [1]) + (lin acc

[2] ∗ lin acc [2]) )

# print(accMagnitude)

# Use a high−pass filter to remove some noise

filterCutoff = 0.001

butterFilterB, butterFilterA = signal.butter(1, (2 ∗ filterCutoff ) / (1 /

samplePeriod), ’highpass’)

accMagnitudeFiltered = signal. filtfilt (butterFilterB, butterFilterA, [accMagnitude,

accMagnitude], padlen=1)

# Take the absolute value of the filtered magnitude

accMagnitudeFiltered = abs(accMagnitudeFiltered)

# print(accMagnitudeFiltered)

# Use a low−pass filter to remove some noise

filterCutoff = 5

butterFilterB, butterFilterA = signal.butter(1, (2 ∗ filterCutoff ) / (1 /

samplePeriod), ’lowpass’)

accMagnitudeFiltered = signal. filtfilt (butterFilterB, butterFilterA,

[accMagnitudeFiltered, accMagnitudeFiltered], padlen=1)

# Are we actually stationary?

stationary = accMagnitudeFiltered <

ACCELEROMETER DRIFT WHEN STATIONARY

print(stationary , ’ stationary ’, accMagnitudeFiltered)

# If we are stationary , don’t bother doing anything

if stationary .any():

linVel new =np.zeros((1, 3))

linPos new += linVel new ∗ steptime

P x.append(linPos new[0, 0])

P y.append(linPos new[0, 1])

lin accel old = np.zeros((1, 3))



55

linVel old = np.zeros((1, 3))

continue

Time += steptime

Steptime.append(Time)

Acc = [lin acc [0] ∗ 9.81, lin acc [1] ∗ 9.81, lin acc [2] ∗ 9.81]

acc new = np.matrix(quaternrotate(Acc, quaternconj(q)))

# Trapezoidal rule

# Current velovity

leakRateAcc = 1

linVel new = linVel new ∗ leakRateAcc + ((lin accel old + ((acc new − lin accel old)

/2)) ∗ steptime)

lin accel old = acc new

# movement end check window for

Acceleration

if −0.12 < acc new[0,0] < 0.12:

acc new[0,0] = 0

acc new[0,1] = 0

elif −0.12 < acc new[0,1] < 0.12:

acc new[0,1] = 0

acc new[0, 0] = 0

# X−axis

if acc new[0,0] == 0:

countaccX +=1

else : #reset counter

countaccX = 0

if countaccX > 1:

linVel new [0,0] = 0

linVel old [0,0] = 0

countaccX = 0

# Y −axis

if acc new[0,1] == 0:
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countaccY += 1

else :

countaccY = 0

if countaccY > 1:

linVel new [0,1] = 0

linVel old [0,1] = 0

countaccY = 0

print(linVel new)

#

leakRatevel = 1

# linPos new = linPos old + ((acc new + lin accel old) / 4) ∗ steptime ∗ steptime +

linVel old ∗ steptime

linPos new = linPos new ∗ leakRatevel + (linVel old + ((linVel new − linVel old)/2))

∗ steptime

linVel old = linVel new

# data ploting

# print(linVel new, linVel old , linPos new, linPos old , lin acc )

# print(linVel new)

Euler.append(euler[0])

ax.append(acc new[0, 0])

ay.append(acc new[0, 1])

az.append(acc new[0, 2])

vx.append(linVel new[0,0])

vy.append(linVel new[0,1])

vz.append(linVel new[0,2])

px.append(linPos new[0,0])

py.append(linPos new[0,1])

pz.append(linPos new[0,2])

a = plt.subplot(1,1,1)

plt .xlim(i − 100, i )

# plt.ylim(−3, 3)

a.plot(px, ”b”, linewidth=2.0)

a.plot(vx, ”r”, linewidth=2.0)
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a.plot(ax, ”g”, linewidth=2.0)

a.plot(Euler, linewidth=2.0)

a.plot(vy, linewidth=2.0)

a.plot(ay, linewidth=2.0)

a.xaxis.grid(True, which=’major’)

a.yaxis .grid(True, which=’major’)

a.legend ([’ px’, ’vx’, ’ax ’], loc=’upper left ’)

# b = plt.subplot(3,1,2)

# b.plot(ay , ”b”, linewidth=2.0)

# b.plot(vy, ”r”, linewidth=2.0)

# b.plot(py, ”g”, linewidth=2.0)

# b.xaxis.grid(True, which=’major’)

# b.yaxis.grid(True, which=’major’)

# b.legend([’ay ’, ’vy’, ’py ’], loc=’upper left ’)

# c = plt.subplot(3,1,3)

# c.plot(Time,px[−1] , ”b”, linewidth=2.0)

# c.plot(Time,py[−1], ”r”, linewidth=2.0)

# c.plot(Time,pz[−1], ”g”, linewidth=2.0)

# c.xaxis.grid(True, which=’major’)

# c.yaxis.grid(True, which=’major’)

# c.legend([’px’, ’py’, ’pz ’], loc=’upper right’)

#

P x.append(linPos new[0, 0])

P y.append(linPos new[0, 1])

# linVel old, linPos old = linVel new, linPos new

# print(P x[−1], P y[−1])

# if i == 200:

# linVel old , lin accel old , linPos old = reset data()

# P x [:] = []
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# P y [:] = []

# P x.append(0)

# P y.append(0)

# i = 0

plt . scatter (P y, P x, s=20, label=’Trajectory’, c=’k’)

plt . scatter (P y [0], P x [0], s=100, label=’Start’, c=’g’)

plt . scatter (P y[−1], P x[−1], s=100, label=’Goal’, c=’r’)

plt .legend(loc=’upper left ’)

plt . axis (’equal’)

plt .pause(0.00000000000001)

plt .show()

plt . clf ()

i += 1

# print(i)

def read imu(data package1):

euler data = [data package1[0],data package1[1], data package1[2]]

accel data = [data package1[3]/9.81,data package1[4]/9.81, data package1[5]/9.81]

linear data = [data package1[6]/9.81, data package1[7]/9.81, data package1[8]/9.81]

q = [data package1[9], data package1[10], data package1[11], data package1[12]]

# q = [ data package1[10], data package1[11], data package1[12],data package1[9]]

return euler data , accel data , linear data , q

def quaternconj(q):

q = [q [0], −q[1], −q[2], −q[3]]

return q

def quaternprod(a ,b):

ab = [0, 0, 0, 0]

ab[0] = a[0] ∗ b[0] − a[1] ∗ b[1] − a[2] ∗ b[2] − a[3] ∗ b[3]

ab[1] = a[0] ∗ b[1] + a[1] ∗ b[0] + a[2] ∗ b[3] − a[3] ∗ b[2]
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ab[2] = a[0] ∗ b[2] − a[1] ∗ b[3] + a[2] ∗ b[0] + a[3] ∗ b[1]

ab[3] = a[0] ∗ b[3] + a[1] ∗ b[2] − a[2] ∗ b[1] + a[3] ∗ b[0]

return ab

def quaternrotate(acc, q):

x = quaternprod(q, [0, acc [0], acc [1], acc [2]])

y = quaternprod(x , quaternconj(q))

z = np.array([y [1], y [2], y [3]])

return z

def reset data() :

lin accel old = np.zeros((1, 3))

linVel old = np.zeros((1, 3))

linPos old = np.array((−2.4, 0, 0))

return linVel old , lin accel old , linPos old

if name == ’ main ’:

server program()

B.2 Data Record

import socket

import pickle

import datetime

import csv

outputFilename1 = ”IMU Values {0}.csv”.format(int(datetime.datetime.now().strftime

(”%Y%m%d%H%M”)))

outputFilename2 = ”Compass Values {0}.csv”.format(int(datetime.datetime.now().

strftime(”%Y%m%d%H%M”)))

headers1 = [’DT’, ’TP’, ’A x’, ’A y’, ’A z’, ’G x’, ’G y’, ’G z’]
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headers2 = [’DT’, ’x out ’, ’y out ’, ’z out ’, ’ x digital out ’, ’ y digital out ’, ’

z digital out ’, ’ x digital out ’, ’Bearing’]

with open(outputFilename1, ’w’, newline=’’) as csv a:

writer a = csv.DictWriter(csv a, fieldnames=headers1)

writer a .writeheader()

csv a. close ()

with open(outputFilename2, ’w’, newline=’’) as csv c:

writer c = csv.DictWriter(csv c, fieldnames=headers2)

writer c .writeheader()

csv c . close ()

def server program():

host = ’192.168.2.198’

print(host)

port1 = 5656

port2 = 6565

server socket1 = socket.socket(socket.AF INET, socket.SOCK STREAM)

server socket2 = socket.socket(socket.AF INET, socket.SOCK STREAM)

server socket1 .bind((host, port1))

server socket2 .bind((host, port2))

server socket1 . listen (10)

server socket2 . listen (10)

print(”Server is ready to receive data .....”)

conn1, address1 = server socket1.accept()

conn2, address2 = server socket2.accept()

print(”Connect from : ” + str(address1),”Connect from : ” + str(address2) )

while True:

global i

i=0

data1 = conn1.recv(5 ∗ 1024 ∗ 1024)
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data2 = conn2.recv(5 ∗ 1024 ∗ 1024)

data package1 = pickle.loads(data1)

data package2 = pickle.loads(data2)

print(data package1, data package2)

write csv imu(data package1)

write csv com(data package2)

# read csv()

#plotting(ax)

i = i + 1

def write csv imu(data package1):

Temp=data package1[0]

Accle x = data package1[1]

Accle y = data package1[2]

Accle z = data package1[3]

Gyro x= data package1[4]

Gyro y = data package1[5]

Gyro z = data package1[6]

Datetime = datetime.datetime.now().strftime(’%Y−%m−%d %H:%M:%S’)

rows = [{’DT’: Datetime, ’TP’: Temp, ’A x’: Accle x, ’A y’: Accle y, ’A z’: Accle z,

’G x’: Gyro x, ’G y’: Gyro y, ’G z’: Gyro z}]
with open(outputFilename1, ’a+’, newline=’’) as csv imu:

writer w = csv.DictWriter(csv imu, delimiter=”,”, lineterminator=’\n’, dialect=’

excel ’, fieldnames=headers1)

writer w.writerows(rows)

def write csv com(data package2):

X out = data package2[0]

Y out = data package2[1]

Z out = data package2[2]

X digital out = data package2[3]

Y digital out = data package2[4]

Z digital out = data package2[5]
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Bearing = data package2[6]

Datetime = datetime.datetime.now().strftime(’%Y−%m−%d %H:%M:%S’)

rows = [{’DT’: Datetime, ’x out’: X out, ’y out ’: Y out, ’z out ’: Z out, ’

x digital out ’: X digital out ,

’ y digital out ’: Y digital out , ’ z digital out ’: Z digital out , ’Bearing’: Bearing}]
with open(outputFilename2, ’a+’, newline=’’) as csv com:

writer c = csv.DictWriter(csv com, delimiter=”,”, lineterminator=’\n’, dialect=’

excel ’, fieldnames=headers2)

writer c .writerows(rows)

if name == ’ main ’:

server program()




