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Introduction
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Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is

a progressive neurodegenerative disease that currently affects more than 12,000

American, with around 6,000 people diagnosed each year. As the most common

motor neuron disease around the world, ALS causes the brain nerve cell (upper

motor neuron) or the spinal cord (lower motor neuron) to degenerate and weakens

the links that transport signal from the brain to voluntary muscles across the

body. As the result, the patients will gradually lose the ability to perform day-to-

day activities such as waking, coordinating hand movement, swallowing, speaking,

etc. According to reports from the National Institute of Neurological Disorders

and Stroke, the life expectancy of ALS patients is around three to five years after

diagnosis, and only 10% of them can live more than ten years [1]. At this moment,

there is still no definitively known cause for the disease. Additionally, there are no

effective cures available either [2].

As the disease progresses, around 80% of the patients will develop dysarthria

and eventually lose their ability to communicate. The condition tends to cause a

large amount of stress and discomfort to the patients as they cannot have mean-

ingful conversations nor verbally express feelings toward their loved ones during

their final moments [3]. To help those patients, researchers around the world have

created a speech synthesizer device called the Augmentative and Alternative Com-

munication (AAC) device. These machines allow people with speech impairments

to convey their thoughts and intentions to others by inputting them to a computer,

which will synthesize the message into a spoken response. There are multiple ver-

sions of AAC devices, with the oldest and simplest version of the devices including
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only pictures that represented basic needs of the patients, such as needing an assis-

tant, feeling cold, wanting to eat, or expressing happiness etc. [4]. Recent versions

of the device incorporate a text to speech function, which can greatly improve the

patients′ communicative attempts. The input mechanisms of those devices range

from typing with keyboard to using eye gaze detection to select characters from a

screen [5]. As a result of the increase in variety and usability of the devices, almost

96% of ALS patients who are recommended an AAC intervention accept the device

and use it to the end of their life [6].

Assistive devices allow ALS patients to reconnect with their family members

and continue to communicate with others. It is a small step in the right direction,

but many improvements are still needed for developing a better and more com-

fortable social experience for AAC users. Multiple AAC users report that AAC

device invokes boredom, loss of interest, and lower perception of trustworthiness

from their communicative partners. The root of those uncomforted feeling can be

contributed to the mechanical and impersonal tone of computerized voice of the

device. [7] [8] [9]. This problem has plagued the AAC since its development. For-

tunately, various potential solutions have slowly emerged over the years, such as

better speakers with a wider range of pitch and customized voices [10].

Unfortunately, there exists another major drawback of AAC devices that has

not yet been remedied. When a patient uses an AAC device, she or he needs to

type her or his response out, which is an extremely slow process that can greatly

extend the duration of typical pauses in normal conversations [11] [12]. Only a few

seconds of those atypical pauses are enough to cause confusion and discomfort to
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the communication partner [13] [14].

This prolonged response time impacts other aspects of the conversation as well.

Multiple studies in conversation with AAC users showed that their exchanges are

dominated by a) closed end, yes-no questions from the AAC users’ communication

partners, b) a lack of initiation from AAC users, and c) a lack of interpersonal

coordination in turn-taking between AAC users and their partner [15] [16] [17].

Many AAC users report being aggravated by the fact that they are unable to

properly convey their ideas [15]. As a result, AAC users suffer from low quality

of face-to-face conversations, especially with strangers. This, in turn, limits the

amount of rapport they can achieve with others.

The ultimate goal of this research program, where the current report is its first

step, is to improve the quality of life for ALS patients by creating technology that

allowing them to have a more coordinated and natural conversation with others.

The thesis consist of three major states: 1) gathering initial data and ideas from

the AAC users, 2) designing and validating the prototype generated from those

ideas, and 3) summarizing the findings and suggesting future directions.
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Part II

Gather Initial Data and Ideas

from Users
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This chapter starts with a background information on the important of at-

tention in building rapport during conversations and our approach in designing a

better systems for the AAC users. The next section covers the first study that is

designed to gather behaviors data from interactions between the AAC users and

their communication partners. Finally, we ends with a description about a focus

group study in which we brainstorm design ideas for our system with actual AAC

users.

Chapter 1 Background Information

1.1 The roles of attention in building rapport

It is not uncommon for people to interact with strangers as though they have

known each other their whole life. In contrast, there are cases where long-time

acquaintances behave as if they are complete strangers. The first case is an example

of high rapport interaction when people just click with each other and become a

harmony and unified group. On the other hand, the second case would be described

as an interaction devoid of rapport; one that feels disconnected and awkward. In

social psychology, rapport is a construct that is associated with the quality of the

relation or connection between individuals at a group level ([18]). Linda Tickle-

Degnen and Robert Rosenthal (1990) have identified three different components

to rapport within face-to-face interactions: emotional positivity, coordination, and

attention [19].
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Emotional positivity represents the good feelings toward people that an in-

dividual is interacting with. It is an individual’s first impression of his or her

communication partners that can set an initial tone for the interaction. For exam-

ple, people tend to enjoy conversation with attractive individuals more than their

counterpart [20].

After the first impression period, the outcome of the interaction relies more

heavily on the coordination between the participants. Coordination can be under-

stood in terms of the “chemistry” between people; how well they understand the

conversation by regulating the turn-taking exchanges and having smooth flows of

verbal and nonverbal behaviors [21].

Last but not least is attention. Attention plays a major role throughout the

interaction by acting as the bridge connecting emotional positivity and coordina-

tion. At the beginning of the interaction, the attention is focused on identifying

the positive cues from the interactants based on their biological appearance. As

the conversation begins, the attention slowly shifts to the topic of the conversation

and nonverbal cues such as eye gaze, hand moment, body position, etc. to create

a more cohesive interaction. Hence, in the conversational setting, attention is the

most important role in the development of rapports between people [19].

1.1.1 What is attention?

Attention is a common and important cognitive process in daily social interaction,

but although it is an intuitive construct, its precise nature remains elusive. E. Bruce
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Goldstein (2011, p.82), a cognitive psychologist at University of Pittsburgh who

has published multiple textbooks on the topic, defines it vaguely as, “the ability to

focus on specific stimuli or location” [22]. Alternatively, Daniel Kahneman (1973,

p.2), a harbinger in studying attention, whose book, Attention and Effort, is cited

by thousands of researchers around the world, views attention as “a label for some

of the internal mechanisms that determine the significance of stimuli” [23]. In

other words, attention is more of a label we ascribe to an inferred causal agent

than it is a reference to an objectively describable neural event. It’s not always

clear, for example, whether scientists operationalize attention by measuring what

is interesting to us, or operationalizing what is interesting to us by measuring what

we appear to be attending to.

1.1.2 Measuring attention in the conversational setting

For capturing signs of attention, psychologists have applied multiple methods, from

measuring brain signals, detecting reaction delay, to coding eye gaze behaviors [18]

[24] [25] [26] [27] [28]. Brain signals are analyzed through a recording device im-

planted into the primary visual cortex, which in turn measures the firing rate of

the neuron in order to evaluate the attention level [24] [25]. Due to the intrusive

nature of the technique, it is used mostly on animals to gain understandings of the

physiological reaction in our brain. The second popular technique to identify atten-

tion is the detection of reaction delay. This method is mainly used for task-oriented

experiments in which participants perform certain cognitive activities while under
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the influences of different stimuli. The times for finishing each activity are recorded

and analyzed to show whether participants are distracted by the stimuli or not [28].

Therefore, eye gaze is the most appropriate methods to measure the attention in

a setting meant to simulate social conversations [18] [27].

Adam Kendon (1967) used gaze to study attention in typical conversations

[11]. He recorded multiple films of people having conversations and annotated

their eye movement in each frame. His study showed that people looked at the

communicative partners around 41% of the time while talking and 58% of the time

while listening. These numbers are similar to a later study conducted by Argyle

and Ingham (1972) in which the participants gazed at their partners is 37% of the

time while talking and 68% of the time while listening [29]. It means that in a

typical conversation, people spend around 50% of all their time looking at their

partners. Specifically, they tend to look at their partners less while speaking than

while listening to the other person. These important studies demonstrate how an

investigation studying the impact of attention people pay to one another during a

conversation can be compared to baseline normal conversations.

1.2 Our approach in designing the systems

There have been studies that analyze behaviors of people in natural conversations

through time [29] [11], but no one has yet looked at the actions of individuals in

interactions between AAC users and their communicative partners. Therefore, we

designed our first study to gather behaviors data from conversants in this unique
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setting. The study will give us a better understanding of the people’s behaviors

in this unusual interaction, and valuable data for a future program that we might

want to develop.

While the results in the first study is a great starting point, the study used

convenience participants whom might not have any experiences with AAC devices.

A second study was conducted to gather design inputs from people that had ex-

periences with an AAC device. This new study was inspired by Hee Rin Lee et.

al.’s paper [30] on how to use participatory design (PD) method to incorporate

technologies into people’s daily life. The PD method emphasizes the important of

including the users into the designing process to ensure the technology will fit the

users’ needs.

Chapter 2 First Study: Gathering Behaviors Data

The study consisted of three five-minute interactions between a pair of participants.

One of the two participants was assigned to be an AAC user, who had to use a

text-to-speech device to communicate, while the other participant could converse

normally. In the first interaction, the AAC user typed his or her response using

the keyboard. In the second interaction, the same setting was employed except the

AAC user worked with an Xbox controller instead of a keyboard. The purpose of

always having the Xbox controller interaction after the keyboard interaction was

that we wanted the participants to familiarize themselves with the experimental

setting and the communication system. In order to increase the external validity of
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the study as a simulation of normal AAC usage, we could not put naive participants

immediately into a situation where the technological constraints were so novel and

challenging that it would overwhelm any other psychological phenomenon we were

interested in assessing. Furthermore, as most people in our current generation

utilize some sort of communication technology such as texting, Skype, Facebook

Messenger, etc., in their daily activities, we expected that the first interaction

would come as second nature to them, which would not be far different from their

typical conversation. Between each interaction, participants were given a packet

of surveys to measure the rapport between them. Finally, a third conversation

was held where participants could freely talk to each other. The purpose of this

interaction was a mean for participants to fully express themselves without any

handicap and was not relevant to the goal of this study.

2.1 Materials

2.1.1 Survey

In this experiment, we employed nine different surveys. However, for the analysis in

this thesis, we focused solely on the demographic survey and interaction assessment

survey, which measured the rapport between two participants (Appendix A).
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2.1.2 Hardware and software

The study involved three cameras: two of them recording each participant’s face

and the third one recording both participants from the side. We had a set of

computer system, which included a NUC computer system, a monitor, a speaker,

a keyboard, a mouse, and an Xbox controller. The monitor was the only equipment

visible on the table. All other parts of the computer were hidden under the table

to prevent any unnecessary distraction. The monitor was pushed a little to the side

and turned toward the AAC user to prevent it from turning into an unintentional

wall between the pair of participants, which could disrupt their ability to perceive

their partner’s nonverbal cues (Figure 2.1). Additionally, this setting was more

aligned with how most AAC system is set up in the real world.

Figure 2.1: The setting for an Xbox controller interaction

For the text-to-speech program, we modified the Festival software from Black

Alan [31] and used voices from the CMU Database [32] with the voice named

RMS for male participants and SLT for female participants. Another open-source
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software named Xboxdrv was utilized to allow us to operate the Xbox controller

as a mouse and type by clicking on a virtual keyboard (Figure 2.1). All of the

software was on an Ubuntu operating system.

We used Adobe Premiere Pro software to create split-screen videos by combin-

ing videos from the two cameras that were recording the participants’ face (Figure

2.2). According to a meta-analysis from [27], the assessment of gaze can be im-

proved if it is done on split-screen videos and has a slow-motion option.

Figure 2.2: Split-screen videos created from 2 cameras recording participants in an
interaction

2.2 Participants

This experiment recruited 160 participants (33 males and 127 females,Mage = 19.7)

from Oregon State University. Participants were from introduction psychological

courses open to students in any major. They received extra credits for their con-

tribution to the study.

We took out ten dyads in which there were technical issues happened during
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the interaction, two dyads in which the participants had already participated in

previous interaction, and nine dyads in which the participants knew each other 1.

The reason that we took out participants that already knew each other was that

we wanted to focused on the interaction between two strangers. Table 2.1 shows

the decomposition of the gender of the participants that would be used for the

analysis.

Table 2.1: Gender of participants in the study

Dyads Frequency
Male (AU) - Male (CP) 2
Male (AU) - Female (CP) 9
Female (AU) - Male (CP) 16
Female (AU) - Female (CP) 41

2.3 Procedure

When the participants arrived at the lab the first participant was always assigned

to be the AAC user, called Participant AC, and the second participant was his or

her communication partner, called Participant CP. This was done because more

time was needed to teach the participant on how to use an AAC device. There

were two experimenters for each session, and each of them was assigned to one of

the participants throughout the entry study.

Each participant was lead into a different room and was advised not to talk

to each other outside of the interaction to prevent any unaccounted influence on

1These were participants who rated 4 or higher in the Final Question Survey (Appendix A)
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their rating. Participants were given a brief introduction of the study and a consent

form. After the participants fully understood and signed the consent form, both

participants were given the background information surveys to complete (Appendix

A). Additionally, participant AC received a training on the AAC device after he

or she finished the surveys. Then, participant CP was lead to the computer room

where participant AC was sitting in. The experimenters began the first interaction

and asked the participants to remove their hat or glasses because those could

obstruct or reflect the light toward the camera.

Next, the experimenters started the calibration process and asked each partic-

ipant to follow a moving finger to several specific locations with their eyes while

keeping their head still in order to calibrate the video images of their gaze to

standard fixed locations (e.g., right eye of partner, left eye of partner, chest of

partner, middle of the table, monitor, empty area to the right of his or her part-

ner, and empty area to the left of his or her partner). After the calibration, the

experimenters went to the room next door and signaled the start of the interaction

by turning on the headlight in the computer room. Throughout all interactions,

if the AAC user faced any technical difficulty, she or he could raise her or his

hand and an experimenter would come to aid her or him. After five minutes, the

experiments turned the light off and waited five seconds before coming back into

the room. This procedure ensured that each conversation across all experimental

sessions was constant in duration.

After each conversation, the experimenter in charge of participant CP led him

or her to the room next door while participant AC remained in the same spot. The
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experimenters gave them a set of Post Conversation Survey that has the Interaction

Assessment Scale (Appendix A) to complete. After the pair was done with their

survey and participant AC received her training for the X-box controller condition,

participant CP was guided back to the computer room and began the same process

as the first interaction: calibrating eye gaze, interacting for five minutes, separating

to a different room, and working on a set of Post Conversation Survey that included

the Interaction Assessment Scale. The same process was repeated for the third

time, but both participants, at that moment, could talk normally. Additionally,

instead of the Post Conversation Survey, the participants were given a set of Post

Experiment Survey that had a question about whether the participants knew each

other (Appendix A). Participant CP was then led back to the computer room one

last time and an experimenter would start the debriefing process. After making

sure both participants did not have any concerns or questions about the study, the

experimenters lead the participants outside and thanked them for their time.

2.4 Coding process

The study implemented two different coding processes: talking code and eye gaze

code.
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2.4.1 Talking code

For the talking code, there were five different categories: speaking, typing, self-

simultaneous speech (SSS), hovering, and no speaking (NS). Speaking was coded the

moment the participant CP speak or the computer started to synthesize Participant

AC′s response; typing was coded when participant AC hit the keyboard or clicked

on the Xbox controller; SSS was coded when participant AC was typing while the

computer was speaking at the same time; hovering was coded when Participant

AC had his or her hand on top of the keyboard or the controller but had yet to

actually hit or type anything; and NS was coded for the actions that did not belong

to any of the four previous categories. The experimenters annotated the talking

behaviors for both participants in the first and second interaction.

2.4.2 Eye gaze code

For eye gaze location coding, there were four different locations coded: face, mon-

itor, keyboard, and other (e.g., looking around): face was coded when participant

CP was looking at the upper half of his or her partner′ face (the red region in

Figure 2.3); keyboard included the body of the participant AC toward the middle

of the table (the yellow region in Figure 2.3); monitor was coded when participant

CP looked at the monitor direction including from the top of the screen to the base

on the table (the blue region in Figure 2.3); and around was participant CP look-

ing around the room or to places that did not belong to the other three categories

(the green region in Figure 2.3). The coders pinpointed the precise frame when the
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gaze location change and marked it with the name of the new gaze location.

Figure 2.3: Coding schema for eye gaze location

2.4.3 Coder agreement

Several different coders were needed because it took over fifteen hours to measure

each interaction. In order to assess coder reliability, all coders coded the same two

interactions generating a very large sample of 18,000 (30 frames/sec * 60 sec/min

* 5 min/conversation * 2 conversations/pair of participants) measurements per

pair of participants in which their agreement could be assessed. We computed the

reliability of each of the four gaze categories and each of the five taking categories

individually by dummy coding the nine-category nominal scale into nine separate

binary (present/absent) scales. For example, a Face gaze variable was created where

a frame was coded as 1 if the target was looking at his or her partners′ face and

coded as 0 if the target was looking at the monitor, the keyboard, or anything else.

When two or more coders coded the 36, 000th frames from two pairs of participants,

intercoder reliability can be estimated by a simple correlation coefficient calculated
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with the number of measurements made by the two coders [33].

2.4.3.1 Gaze coding

Table 2.2: Correlations between coders coding on gaze location

Coder ID
A D L R

D 0.87 –
Face L 0.90 0.79 –

R 0.76 0.81 0.72 –
S 0.95 0.80 0.90 0.64
D 0.84 –

Around L 0.93 0.90 –
R 0.73 0.91 0.72 –
S 0.96 0.95 0.94 0.59
D 0.86 –

Monitor L 0.85 0.67 –
R 0.44 0.71 0.39 –
S 0.86 0.85 0.80 0.41
D 0.49 –

Keyboard L 0.82 0.59 –
R 0.60 0.53 0.52 –
S 0.84 0.54 0.79 0.61

For the gaze categories, we were mainly interested in the coders’ agreement

of face and around gaze. The reason was that face gaze could be a sign for when

attention was directed to the AAC user (Participant AC) and around gaze could be

an indicator of distraction. Gazing at the monitor and keyboard was an interesting

behavior as it could be interpreted as either inattention or mutual attention. In

Table 2.2, the average correlation of coder agreement is greater than .70. Thus, we
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believed that it was acceptable to use the data from the coders for our analysis.

2.4.3.2 Taking coding

Table 2.3: Correlations between coders on coding talking

Coder ID
H M R

Participant AC M 0.91 –
NS R 0.66 0.65 –

A 0.82 0.82 0.67
M 0.94 –

Speaking R 0.92 0.92 –
A 0.88 0.87 0.87
M 0.93 –

Typing R 0.86 0.85 –
A 0.82 0.83 0.80
M Null –

Hovering R Null 0.56 –
A Null 0.24 0.29
M Null –

SSS R Null 0.56 –
A Null 0.24 0.29

Participant CP M 0.82 –
NS R 0.69 0.73 –

A 0.78 0.82 0.72
M 0.82 –

Speaking R 0.69 0.73 –
A 0.78 0.82 0.72

Note. NS: no speaking; SSS: self-simultaneous speech;
Null: we cannot calculate the result as coders do not code them

In this talking annotation, the three important characteristics of the conversa-

tion were non-speaking (NS), speaking, and typing. Self-simultaneous speech (SSS)
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or hovering tag were created for certain specific occasions and appeared only for

a short amount of time. From Table 2.3, it is shown that the correlations between

coders at NS, speaking, and typing were relatively high, as most of them were

above .65. For this reason, we believed it was acceptable to use their data for the

analysis.

2.5 Analysis and hypotheses

There were three different aspects of the data that were analyzed in this study:

the typing and gaze behaviors from the CP participant; the rapport from the

participants in the dyad; and the relationship between the gaze behaviors and the

rapport in the interaction.

For the typing and gaze behaviors, this analysis focused on two characteristics

of the data: 1) the total duration of a certain behavior in a time interval, and 2)

the average duration for each time the action appears during that time interval.

We applied a log-transformation to those behavior characteristics because their

distributions were highly skewed. Employing a logarithm function on a skewed dis-

tribution will make it resemble a normal distribution2. Finally, due to the logarithm

function performs differently between values smaller than one and values greater

than one, we added one to our original data before applying the transformation to

ensure consistent behaviors across our data (log(time+ 1)).

2A separate analysis using the un-transformed data were conducted in Appendix D
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2.5.1 Typing behaviors

This analysis aimed to confirm whether our stimulus worked as we intended such

that the participants needed more time to construct their response using an Xbox

controller than a keyboard. Our hypotheses were that 1) the total typing of AAC

users was greater in the second conversation than the first interaction, 2), on

average, the AU participants needed more time to construct each response using

the Xbox controller than typing with the keyboard, and 3) the composing time,

both total and average, in the first interaction and the second interaction were

correlated to each other.

2.5.2 Gaze behaviors

For the gaze behaviors, we focused mainly on two instances: 1) when the CP

participants looked at the AU participants′ face and 2) when the CP participants

were inattentive (looking around the room). Besides analyzing the relationship of

the gaze behaviors between the two interactions, we also looked at the change of

those behaviors over the course of each interaction. We divided the 5-minute (300-

second) interaction into three 100-second intervals and analyzing the relationship

between the first 100 seconds and the last 100 seconds in the interaction.
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2.5.2.1 The whole interaction

We expected the second interaction would produce longer waiting time than the

first interaction. As a result, our first hypothesis would be that the CP participants

would look at the AU participants less, both overall and on average, in the second

interaction than the first interaction. Additionally, our second hypothesis was that

the communication partner would be more inattentive, both overall and on average,

in the second interaction than the first interaction.

Between the two conversations, we believed that the gaze behaviors of the CP

participants would be consistent. Our third hypothesis was that there would be

correlations in the gaze behaviors between the keyboard and Xbox conditions.

2.5.2.2 Within the interaction

We anticipated that the and awkward long pauses from using a speech synthesizer

device would have a bigger impact on the gaze behaviors in the later state of the

interaction than the beginning of the interaction. Hence, for both conversations,

we first hypothesized that the communication partners look the AAC users less

at the end of the interaction than at the beginning of the interaction. Our second

hypothesis was that the communication partner would be more inattentive at the

end of the interaction than at the beginning of the interaction.

Furthermore, we also expected that the gaze behaviors of the communication

partner to be consistent across the interaction. This led to our third hypothesis

that there would be correlations in the gaze behaviors between the start and the
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end of both conversations.

2.5.3 Rapport

This analysis aimed to learn about how rapport changed between two interactions

and between two partners. Our first hypothesis was that the rapport rating in the

first interaction would be higher than the second interaction for both the AAC

users and their partners because of the longer pauses in the second interaction.

Secondly, we hypothesized that the AAC users would rate the rapport lower than

their communicative partner in both interactions because they would have to com-

municate through a text-to-speech device. Next, the third hypothesis was that

there would be a positive correlation in rapport rating between first and second

conversation for both AU and CP participants. Finally, we hypothesized that there

would be a positive correlation in the rapport ratting of the AAC users and their

communicative partners in both interactions.

2.5.4 Relationship between gaze behaviors and rapport

It is suggested that rapport is associated with how much a person pay attention

toward the other [19]. Our first pair of hypotheses was that there was a positive

correlation between the amount of time, total and average, CP participants look

at their partner and the rapport of both participants toward the interactions; and

a negative correlation between the inattentive duration from CP participants and
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how both participants rate the rapport from the interactions. As we anticipated

that the stimulus, which is using an speech synthesizer, had not influenced the

rating of rapport in both conditions yet. We hypothesized that there would be

no correlation between the gaze behaviors of the CP participants and how both

participants rated the rapport of each interaction. However, we believed that the

gaze behaviors of the CP participants at the end of the interaction would indicate

the rapport rating of both participants. Our last pair of hypotheses was that there

was a positive correlation between the face gaze from the communication partners

at the end of the conversation and the rapport rating for both interactions; and

a negative correlation between the inattentive behaviors of the communication

partners and how both participants rated their rapport in both interactions.

2.6 Results

2.6.1 Typing behaviors

The Figure 2.4 and Table 2.4 show descriptive information about the typing time

in the first and second interaction.

Table 2.4: Descriptive statistics on typing behavior in the whole interaction (log
time)

Interaction Duration N Mean SD
1 Total Duration 59 5.01 0.19

Average Duration 59 2.17 0.39
2 Total Duration 59 5.52 0.11

Average Duration 59 3.38 0.41
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(a) Total duration of typing (b) Average time of typing

Figure 2.4: Log time graph for typing behavior

From Table 2.5 the AU participants spent significantly longer, in total, con-

ducting the response in the second interaction than in the first interaction (t(58) =

21.83, p < .001). The average composing time for each response in the second in-

teraction was significantly greater than the average composing time in the first

interaction (t(58) = 29.19, p < .001).

Table 2.5: Paired t-test on typing between the interaction (log time)

Mean SD DF t-value p
Total Duration (Int. 2 - Int. 1) 0.52 0.18 58 21.83 <.001
Average Duration (Int. 2 - Int. 1) 1.21 0.32 58 29.19 <.001

Table 2.6 shows that there was significant and positive correlation between the

total composing time in the first interaction and the second interaction (r(59) =

0.37, p < .01); and between the average composing time in the first interaction and

the second interaction (r(59) = 0.68, p < .001).
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Table 2.6: Pearson (r) correlation on typing between the interaction (log time)

N r p
Total Duration (Int. 2 and Int. 1) 59 0.37 .004
Average Duration (Int. 2 and Int. 1) 59 0.68 <.001

2.6.2 Gaze behaviors

2.6.2.1 The whole interaction

The Figure 2.5 shows us the box-plot of the four coded gaze behaviors: around

(inattentive), face, keyboard, and monitor. However, we focused solely on the face

gaze and inattentive gaze, which had the descriptive statistics displayed in Table

2.7.

(a) Total duration of gaze (b) Average time of gaze

Figure 2.5: Log time graph for gaze behavior in the whole 5 minutes interaction

Face Gaze

For the whole interaction, CP participants looked at the AU participants signifi-
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Table 2.7: Descriptive statistics on gaze behavior in the whole interaction (log time)

Gaze Type Int. Duration N Mean SD
Face gaze 1 Total Duration 59 4.91 0.48

Average Duration 59 1.15 0.33
2 Total Duration 59 4.53 0.67

Average Duration 59 1.12 0.40
Around gaze 1 Total Duration 59 3.98 0.62

Average Duration 59 0.99 0.28
2 Total Duration 59 4.18 0.88

Average Duration 59 1.28 0.51

Table 2.8: Paired t-test on face gaze behaviors between the interaction (log time)

Mean SD DF t-value p
Total Duration (Int. 2 - Int. 1) -0.38 0.44 58 -6.65 <.001
Average Duration (Int. 2 - Int. 1) -0.02 0.22 58 -0.76 .449

cantly less in the second interaction than in the first interaction (t(58) = −6.65, p <

.001). The duration of each time in which the CP participants looked at the AU

participants in the second interaction was similar to that of the first interaction.

(Table 2.8)

Table 2.9: Pearson (r) correlation on face gaze behaviors between the interaction
(log time)

N r p
Total Duration (Int. 1 and Int. 2) 59 0.75 <.001
Average Duration (Int. 1 and Int. 2) 59 0.83 <.001

From Table 2.9, there were strong and positive correlation between the duration

of time that CP participants focused on the AU participants in the first and second
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interaction for both overall time (r(59) = 0.75, p < .001) and average time (r(59) =

0.83, p < .001).

Inattentive Gaze

Table 2.10: Paired t-test on inattentive gaze behaviors between the interaction (log
time)

Mean SD DF t-value p
Total Duration (Int. 2 - Int. 1) 0.20 0.63 58 2.43 .018
Average Duration (Int. 2 - Int. 1) 0.29 0.34 58 6.62 <.001

Overall, CP participants were moderately more inattentive toward AU partici-

pants in the second interaction than in the first interaction (t(58) = 2.43, p < .05).

The average time for each moment that the CP participants were unfocused in

the Xbox controller condition was significantly longer than the average unfocused

time in the keyboard condition (t(58) = 6.62, p < .001) (Table 2.10).

Table 2.11: Pearson (r) correlation on inattentive gaze behaviors between the in-
teraction (log time)

N r p
Total Duration (Int. 1 and Int. 2) 59 0.70 <.001
Average Duration (Int. 1 and Int. 2) 59 0.77 <.001

Table 2.11 showed us that there were strong and positive correlation between

the duration of time CP participants did not paid attention toward the AU patic-

ipants between the first and second interaction for both overall time (r(59) =

0.70, p < .001) and average time (r(59) = 0.77, p < .001).



31

2.6.2.2 Within the interaction

The Figure 2.6, and Table 2.12 shows descriptive information about the typing

time in the first and second interaction.

(a) Total Duration of Gaze (b) Average Time of Gaze

Figure 2.6: Log time graph for gaze behavior at the beginning 100s and at the end
100s of the two interaction

Face Gaze

For the first interaction, the Table 2.13 shows us that the total time for face

gaze behaviors of the communication partners at the end of the conversation was

shorter than that of the beginning of the conversation (t(58) = −5.48, p < .001).

On average, the duration of face gaze from the communication partners at the

start of the interaction was similar to that of the end of the interaction.

For the second interaction, there were no differences in gaze behaviors of the

CP participants between the beginning and the end of the interaction, for both

total duration and average duration (Table 2.13).

There were strong and positive correlations between the total time that the
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Table 2.12: Descriptive statistics on gaze behavior within the first interaction and
second interaction (log time)

Int. Gaze Type Moment Duration N Mean SD
1 Face gaze First 100s Total Duration 59 3.93 0.41

Average Duration 59 1.17 0.41
Last 100s Total Duration 59 3.70 0.57

Average Duration 59 1.11 0.32
Around gaze First 100s Total Duration 59 2.51 0.76

Average Duration 59 0.84 0.27
Last 100s Total Duration 59 3.13 0.60

Average Duration 59 1.06 0.35
2 Face gaze First 100s Total Duration 59 3.47 0.66

Average Duration 59 1.09 0.45
Last 100s Total Duration 59 3.43 0.68

Average Duration 59 1.15 0.40
Around gaze First 100s Total Duration 59 2.83 1.08

Average Duration 59 1.15 0.55
Last 100s Total Duration 59 3.19 0.93

Average Duration 59 1.27 0.54

Table 2.13: Paired t-test on face gaze behaviors within the first interaction and
second interaction (log time)

Int. Duration Mean SD DF t-value p
1 Total (Last 100s - First 100s) -0.23 0.33 58 -5.48 <.001

Average (Last 100s - First 100s) -0.06 0.31 58 -1.49 .142
2 Total (Last 100s - First 100s) -0.03 0.33 58 -0.72 .476

Average (Last 100s - First 100s) 0.05 0.26 58 1.55 .126

communicative partners focusing at the AAC user at the start and at the end

of first conversation (r(58) = .82, p < .001), and second conversation (r(58) =

.88, p < .001) (Table 2.14).

From Table 2.14, the average time for each moment the conversational partners
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Table 2.14: Pearson (r) correlation on face gaze behaviors within the first interac-
tion and second interaction (log time)

Int. Duration N r p
1 Total (Last 100s and First 100s) 59 0.82 <.001

Average (Last 100s and First 100s) 59 0.68 <.001
2 Total (Last 100s and First 100s) 59 0.88 <.001

Average (Last 100s and First 100s) 59 0.82 <.001

looking at the AAC user′s face at the start of first and second interaction were

strongly and positively correlated with that of the end of first (r(68) = .68, p <

.001) and second interaction (r(68) = .82, p < .001), respectively.

Inattentive Gaze

Table 2.15: Paired t-test on inattentive gaze behaviors within the first interaction
and second interaction (log time)

Int. Duration Mean SD DF t-value p
1 Total (Last 100s - First 100s) 0.62 0.47 58 10.14 <.001

Average (Last 100s - First 100s) 0.22 0.26 58 6.47 <.001
2 Total (Last 100s - First 100s) 0.36 0.67 58 4.10 <.001

Average (Last 100s - First 100s) 0.13 0.40 58 2.44 .018

From Table 2.15, CP participants spent significantly more time, overall, looking

around the room at the end of the first conversation comparing to the beginning of

the interaction (t(58) = 10.14, p < .001). On average, the communicative partners

looked around longer at the end of the first interaction than at the beginning of

the interaction (t(58) = 6.47, p < .001)

For the second interaction, the conversational partners spent more time, in

total, wandering their gaze at the end of the conversation comparing to the start
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of the conversation (t(58) = 4.10, p < .001). On average, the duration of each time

the partners looked around the room at the end of the interaction was often longer

than the start of the interaction (t(58) = 2.44, p < .05) (Table 2.15).

Table 2.16: Pearson (r) correlation on inattentive gaze behaviors within the first
interaction and second interaction (log time)

Int. Duration N r p
1 Total (Last 100s and First 100s) 59 0.78 <.001

Average (Last 100s and First 100s) 59 0.67 <.001
2 Total (Last 100s and First 100s) 59 0.79 <.001

Average (Last 100s and First 100s) 59 0.73 <.001

The Table 2.16 shows us that there were strong and positive correlations be-

tween the total times that the conversational partners were unfocused at the be-

ginning and at the end of the keyboard interaction (r(59) = .78, p < .001); and

between the total times that the partners were inattentive at the beginning and at

the end of Xbox controller interaction (r(59) = .79, p < .001).

The average time of each moment the conversational partners of the AAC

users looking around at the room at the beginning of first interaction and second

interaction were significantly and positively correlated with that of at the end of

first interaction (r(59) = .67, p < .001) and second interaction (r(59) = .73, p <

.001), respectively (Table 2.16).
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2.6.3 Rapport

The Graph 2.7 and Table 2.17 displayed the descriptive statistics on rapport ratting

for both participants in the interaction.

Figure 2.7: Rapport rating graph

Table 2.17: Descriptive statistics on rapport

Role Interaction N Mean SD
CP 1 59 4.87 1.15

2 59 3.92 1.24
AU 1 59 4.66 1.25

2 59 3.38 1.36

The communicative partners and the AAC users rapport ratings in the sec-

ond interaction were less than the rating in the first interaction (CP: t(58) =

−7.60, p < .001; AU t(58) = −9.34, p < .001). There were no differences in rap-

port rating between the communicative partners and the AAC users in the first

conversation. However, the t-test suggested that the AAC users felt worse in the
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Table 2.18: Paired t-test on rapport between the interactions and between the par-
ticipants

Mean SD DF t-value p
Int. 2 CP - Int. 1 CP -0.94 0.95 58 -7.60 <.001
Int. 2 AU - Int. 1 AU -1.28 1.05 58 -9.34 <.001
Int. 1 AU - Int. 1 CP -0.20 1.46 58 -1.08 .286
Int. 2 AU - Int. 2 CP -0.54 1.70 58 -2.46 .017

second interaction comparing to their partners (t(58) = −2.46, p < .05)) (Table

2.18).

Table 2.19: Pearson (r) correlation on rapport between the interactions and between
the participants

N r p
Int. 1 CP and Int. 2 CP 59 .68 <.001
Int. 1 AU and Int. 2 AU 59 .68 <.001
Int. 1 AU and Int. 1 CP 59 .26 .040
Int. 2 AU and Int. 2 CP 59 .15 .270

From Table 2.19, there were strong and positive correlations in rapport rating

between first interaction and second interaction for both the AAC users (r(59) =

.68, p < .001) and their communicative partners (r(59) = .68, p < .001). There

was a moderate and positive correlation in rapport rating between the AAC users

and their partners in the first conversation (r(59) = .26, p < .05). However, the

rapport rating between the AAC users and their partners were similar in the second

interaction.
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2.6.4 Relationship between gaze behaviors and rapport rating

2.6.4.1 Face gaze and rapport

First Interaction

Table 2.20: Pearson (r) correlation between rapport and face gaze behaviors in first
interaction

Rapport of CP Rapport of AU
N r p r p

Whole interaction Total 59 .31** .016 .20 .132
Average 59 .19 .148 .16 .227

Start of interaction Total 59 .27** .039 .16 .220
Average 59 .20 .122 .14 .282

End of interaction Total 59 .30** .021 .16 .221
Average 59 .15 .261 .19 .152

* p <.1; ** p <.05; *** p <.01

Table 2.20 shows a moderate and positive correlation between the rapport

rating of the CP participants in the first interaction and the total amount of time

that they focused at the AU participants in the first interaction (r(59) = .31, p <

.05). The rapport rating of the CP participants was significantly and positively

correlated with the total time that they focused at the AAC user at the beginning

(r(59) = .27, p < .05) and at the end (r(59) = .30, p < .05) of the first conversation.

There were no correlations between the average duration of face gaze in the first

interaction from the CP participants and their rapport rating.

Overall, the face gaze behaviors of the communicative partners were not corre-

lated with the rapport of the AAC users.
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Second Interaction

Table 2.21: Pearson (r) correlation between rapport and face gaze behaviors in
second interaction

Rapport of CP Rapport of AU
N r p r p

Whole interaction Total 59 .19 .147 .11 .407
Average 59 -.02 .900 -.05 .726

Start of interaction Total 59 .19 .154 .03 .798
Average 59 -.01 .945 -.11 .389

End of interaction Total 59 .18 .169 .13 .337
Average 59 -.04 .737 .003 .985

* p <.1; ** p <.05; *** p <.01

The Table 2.21 shows no correlations between face gaze behaviors of the com-

municative partners in the second interaction and the rapport rating of both par-

ticipants.

2.6.4.2 Inattentive gaze and rapport

First Interaction

The Table 2.22 shows that the rapport rating of the communicative partner in

the first interaction was negatively and significantly correlated with the average

time that they were unfocused (r(59) = −.38, p < .01). Additionally, there was a

weak correlation between the rapport rating of the communicative partners and

their overall inattentive behaviors in the first interaction (r(59) = −.23, p < .1).

At the beginning of the first interaction, the rapport rating of the CP par-

ticipants were moderately and negatively correlated with the average duration of
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Table 2.22: Pearson (r) correlation between rapport and inattentive gaze behaviors
in first interaction

Rapport of CP Rapport of AU
N r p r p

Whole interaction Total 59 -.23* .081 -.02 .886
Average 59 -.38*** .003 -.19 .160

Start of interaction Total 59 -.21 .103 -.05 .681
Average 59 -.29** .026 -.19 .153

End of interaction Total 59 -.28* .035 -.07 .592
Average 59 -.42*** <.001 -.14 .289

* p <.1; ** p <.05; *** p <.01

inattentive behaviors of them (r(59) = −.29, p < .05); and were weakly and neg-

atively correlated with the total inattentive time of the communicative partner

(r(59) = −.21, p = .1).

At the end of the fist interaction, the rapport rating of the communicative part-

ners were strongly and negatively correlated with the average duration of the inat-

tentive gaze from the CP partners (r(59) = −.42, p < .01); and were moderately

and negatively correlated with the total inattentive time of the CP participants

(r(59) = −.28, p < .05).

Overall, the inattentive gaze behaviors of the communicative partners were not

correlated with the rapport of the AAC users in the first interaction.

Second Interaction

The rapport rating of the communicative partners in the second interaction was

negatively and significantly correlated with the average time that they spent look-

ing around in the second interaction (r(59) = −.36, p < .01). Additionally, the rap-
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Table 2.23: Pearson (r) correlation between rapport and inattentive gaze behaviors
in second interaction

Rapport of CP Rapport of AU
N r p r p

Whole interaction Total 59 -.18 .168 .04 .768
Average 59 -.36*** .006 -.12 .368

Start of interaction Total 59 -.09 .495 .11 .403
Average 59 -.30** .023 -.03 .841

End of interaction Total 59 -.19 .148 .04 .771
Average 59 -.32** .013 -.05 .703

* p <.1; ** p <.05; *** p <.01

port rating of the communicative partners significantly and negatively correlated

with the average time they were inattentive at the beginning (r(59) = .30, p < .05)

and at the end (r(59) = .32, p < .05) of the second conversation. There were no

correlations between the total duration of inattentive gaze in the second interaction

from the CP participants and their rapport rating (Table 2.23)

Finally, the inattentive gaze behaviors of the communicative partners were not

correlated with the rapport of the AAC users in the second interaction.

2.7 Discussion

2.7.1 Typing behavior

Our stimulus was working as we intended, and the AC participants needed to use

significantly more time (around 22.26 seconds more for each typing moment 3)

3From Table D.2 in Appendix D
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to construct their responses to using the Xbox controller instead of the keyboard.

Additionally, if the participants struggled with using the keyboard, they were likely

to perform worse in the second interaction than other participants.

2.7.2 Gaze behavior

The face gaze and inattentive gaze behaviors of the communication partner were

consistent across and between interactions

Face gaze Between the two interactions, CP participants gazed at the AU par-

ticipants around 38.14 seconds less, in total,4 in the second interaction than the

first interaction. However, the duration of each time the CP participants looked

at the AU participants was similar between the two interactions. This suggested

a decrease in the frequency of how often the communicative partner looked at the

AAC user from interaction 1 to interaction 2. Looking at the first interaction, the

data also suggested a decrease in the frequency of how often CP participants look

at the AU participants from the start of the interaction to the end of the inter-

action. Furthermore, this showed that the average gaze duration was consistent

and around 2.36 seconds 5, which was a little less than the number reported from

Argyle and Ingham [29] (2.95 seconds).

4From Table D.5 in Appendix D
5From Table D.4 in Appendix D
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Inattentive gaze Between the two interactions, CP participants were attentive

toward their partner around 24.72 seconds more, in total,6 in the second interaction

than the first interaction. Additionally, CP participants, on average, spent around

1.39 seconds more looking around the room in the second interaction than the

first interaction. Within both interactions, the communicative partners were less

attentive near the of the end of the conversation than at the beginning of the

conversation. Additionally, each distracting moment lasted longer at the end of

the interaction than at the beginning of the interaction.

In conclusion, the long pauses in the second interaction seemed to only have

an effect on the inattentive behaviors of the communicative partners than on how

often they focused on the AAC users. They might not know where to focus when

waiting for responses from the AAC users.

2.7.3 Rapport

As we hypothesized, both participants felt worse about the conversation in the

Xbox condition than the keyboard condition due to the long pauses in the Xbox

condition.

Both participants felt similar to each other in the first interaction, which sug-

gested that using the keyboard to communicate did not have any major impacts

to the interactions. However, typing with the Xbox controller influenced the AAC

users and made them felt worse about the interaction than their partners.

6From Table D.12 in Appendix D
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While both participants felling toward the interaction was associated with each

other in the keyboard condition, they were completely out of sync with each other

in the Xbox controller condition. We expected the complexity of typing with an

Xbox controller made it difficult for both participants to connect with each other.

2.7.4 Relationship between rapport and gaze behaviors

In the first interaction, the CP participants looked at their partner less often and

gaze around longer if they felt less rapport toward the interaction. In the second

interaction, only the inattentive gaze was associated with the CP participants′

feeling toward the interaction. Against our hypothesis, the effect of the speech

synthesizer on the communicative partners had already happened in the first 100

seconds of both conversations.

Interestingly, the gaze behaviors of the CP participants had no influences on

how the AAC users felt toward the interaction. An explanation for this result could

be that the participants were not used to communicate with a speech synthesizer

device and had to pay additional attention to composing the response instead of

on their partners. Furthermore, as the visual attention of the AU participants were

majorly occupied by the typing tasks, the verbal cues from the CP participants

might become a larger influence on how the AAC users felt toward the interaction.
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2.7.5 Limitations and future work

The analysis suggested that the frequency would be an important characteristic of

the gaze behaviors. However, this was not included in this analysis and should be

looked at in the future. Additionally, further examination on the gaze behaviors of

the communicative partners while waiting for the AAC users′ response would be

needed, because the long pauses were the unique aspect of this kind of interactions.

Another major limitation of the study was that the AAC users were not familiar

with the technology. The unfamiliar and laborious typing task could potentially

impact how participants felt and behaved in our study. A future study with people

that had experiences with AAC devices would be needed to get a clearer picture

of how speech synthesizer is used in daily conversation.

Chapter 3 Second Study: Gathering Ideas from the Users

The study was a 90-minute focus group and aimed to understand how the be-

haviors of the communication partners in the first study affect people that had

experience with speech synthesizers. Participants of the focus group watched clips

from the first study and discussed actions of the communication partners in the

clips. The topic of discussion included: what behaviors of the communication part-

ners were good; what behaviors of the communication partners were bad; and how

a person could help to signal the communication partners to stop doing those bad

behaviors. Afterward, an experimenter gave them a brief introduction about assis-

tive robots and then started a new discussion about how a robot could nudge the



45

communication partners to behave better.

3.1 Materials

3.1.1 Survey

A demographic survey was used to get the basic information of the participants.

Additionally, the survey was designed to have a lot of white space around each

answer because we wanted to accommodate people that lost the ability to control

their fine muscle and could not precisely circle the answer (Appendix B).

3.1.2 Videos

The study used six videos from the first study. The videos were picked by us

under three criteria: 1) the rapport rating of the participants in those video should

be diverse because we wanted to capture both bad and good interaction; 2) the

actions of the participants in those video should be largely different to each other

because the author believed it would give a diverse behaviors of the communication

partners; 3) they were solely from the second interaction because they had a lot of

long and awkward pauses (Table 3.1).
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Table 3.1: Rapport rating of videos used in the study

Rapport
Video ID AU CP
12 3.11 4.44
33 1.17 5.39
36 2.50 3.67
62 2.72 4.00
67 4.17 3.44
79 2.89 5.11

3.2 Participants

For this study, we explicitly recruited participants who had experiences with AAC

devices through either using or interacting with it. There were ten participants (4

males and 6 females, Mage = 55.3 ) came to two focus groups: nine people in the

first focus group and one person in the second group. The groups included four

people with ALS, four caretakers, and two people that were neither of them at the

moment but had experiences with speech synthesizer devices. Participants were

recruited from an ALS support group through the group organizer. They received

$20 for their participant in the study.

3.3 Procedure

The first focus group took place in a conference room at Salem Hospital and the

second focus group took place at OSU. Participants were seated around a table

with a moderator (the author) in the middle . As the moderator was not familiar
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with jargon in the ALS community, the support group organizer, who had spent

a long time working with ALS patients, had agreed to help as a translator for the

discussion. The role would include explaining the ALS jargon, rephrasing the dis-

cussion questions from the moderator to make it more related to the participants,

and repeating the responses from participants that had trouble verbalizing their

responses.

When all of the participants had arrived at the determined location, the ex-

perimenter went over the consent form again with the participants and made sure

that the participants understand the consent form. Next, the participants com-

pleted a demographic survey (Appendix B). Before starting the discussion, the

experimenter looked at the survey to make sure that all of the participants were

comfortable being recorded 1. If any of the participants said no in the survey, we

would close the lid of all of our camera, except the one that focused on the experi-

menter. The reason was that we wanted to link between the experimenter behaviors

and the showed stimulus (the videos), with the comments from the participants.

Finally, the researchers asked the participants to only use their first name in the

discussion to maintain the privacy of the participants.

The study officially started with the participants watched interaction clips from

the first study. Throughout the clips, the experimenter would ask the participants

to identify important moments or behaviors. Key moments or behaviors were de-

fined as the moments or behaviors from the communicative partner in the clips

1The consent explicitly mentioned that the whole discussion would be audio recorded. The
video record is optional and it only happens if all of the participants consented to its
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(a) Fetch Robot (b) Blossom Robot

Figure 3.1: Robots in the second study

that were deemed inappropriate or appropriate from the participants. For each

inappropriate moments or behaviors, the whole group would discuss why those

behaviors were inappropriate and how a person typically fix those situations. De-

pending on how many ideas were generated, the experimenter might not be able

to discuss all videos. The videos discussion would stop after forty-five minutes or

an hour. Next, the focus group would start generating ideas about how a robot

could be used to mediate those inappropriate behaviors. The experimenter gave a

brief presentation about assistive robots and the available robots in our lab, which

was the Fetch and Blossom robot, that could be used for this study (Figure 3.1).

The purpose of the presentation was to let the participants get some basic ideas

about the appearance and capability of the robots. Then the group discuss about

the designs of the robot and potentially actions that a robot could do to medi-

ate those inappropriate actions mentioned in the previous section. At the end of
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the study, the experimenter would give the participants their compensations and

thanked them for sharing their thoughts.

3.4 Coding Process

The purpose of this coding schema was to record how the group think about

the behaviors of the communicative partners in the clips and their ideas on how

technologies could improve the bad interactions.

The transcripts of both focused groups were made by the author and a lab mem-

ber. We used a categorizing strategy mentioned in Maxwell’s Qualitative research

design book to develop our coding scheme in the list below [34].

1. Behavior: Verbal and nonverbal communication actions of the conversation

partners in the clips that the participants in the focus group like and dislike,

such as: looks, smile, yawn, ... There are three coding subcategories: Good,

Bad, and Neutral.

2. Attitude: The participants’ comments about the feelings or emotions dis-

played by the communication partners in the clips, such as: happy, bored,

interested, ... There are three coding subcategories: Good, Bad, and Neutral.

3. Limitation: Any comments of the participants on the limitation of the stim-

ulus, such as: video quality, characteristics of the people in the clips, ...

4. Improvement: Any comments of the participants on how the interaction

can be improved either from a person, a robot, or an AAC device function.
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There are three coding subcategories: person, robot, and AAC device.

5. Design/Implementation: Practical design and implementation ideas of the

robot such as sizes and locations of the robot.

6. Miscellaneous comments; Any interesting comments that do not belong

to the other categories.

3.5 Result and Discussion

In this section, I will focus on the good and bad behaviors of the communications

partners. Then, I will talk about the design ideas for the the robot and ideas for

additional feature for the speech synthesizers.

3.5.1 Good behaviors

The people in the focus group seemed to prefer communicative partners to actively

lead the conversations. They would like the communicative partners to “[take]

control of the [interaction]” and “anticipate [the ACC] next questions and answer

that as part of [their] response”. That would be extremely useful at the beginning

of the interaction when the two people were trying to understand each other. As

we expected, the participants seemed to appreciate attentive behaviors such as

“maintain[ing] eye contact” and leaning toward the AAC user. However, as it took

a lot of effort and time to compose a response, the people in the focus group highly

valued the genuineness and empathy from the communicative partners in the clips.
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They wanted the partners to only “ask what [the partners] really care” to know

about the AAC users, be “truly interested in [the AAC users]”, and be patient for

the response.

3.5.2 Bad behaviors

People in the focus groups seemed to disapprove of the impatience and indifference

from the communicative partners. A person in the focus group was frustrated to

see the communicative partners “[kept] looking at the monitor screen and [tried]

to guess the word” every few seconds. They also did not like it when the com-

municative partners were looking around and inattentive toward the interactions.

Furthermore, the focus group had strong opinions when the communicative part-

ners laughed at the effort to communicate by the AAC users.

3.5.3 Design ideas for robot

The participants preferred the robot to be small, portable, and attachable to their

wheelchair. The big robot would “draw a lot of attention” and might interfere with

their daily activities. Interestingly, participants mainly fixated on how to cue the

communicative partners using “the eyes” of the robots. It was suggested that the

“eyeball could flash and then move ... to refocus someone′s attention”. The groups

were a little skeptical about letting the robot verbally tell the communicative

partners to focus on the AAC users because it could easily be perceived as being
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rude. A interesting idea coming from the discussion was that the robot should not

only prevent bad behaviors but also promote positive behaviors. Furthermore, it

was suggested from the discussion that verbal cues would be better for positive

feedback and nonverbal cues would be preferred for negative feedback. Lastly, a

participant mentioned that:

“She was just too nervous and then make the whole interaction bad

between two people. So, like if somehow we can make her less nervous

and less uncomfortable when interacting with the AAC users, then it

would be really nice, they will have a better interaction.”

Therefore, it would be preferable if the robot could shorten the nervousness and

discomfort of the novice communicative partners at the beginning of the interac-

tion.

3.5.4 Design ideas for features of speech synthesizers

The “quickfire” function was highly suggested throughout the discussion. It was the

feature that allowed the users to pre-compose common responses and save it to a

hot-key in their AAC users. The group also suggested to “forget perfect English

and drop it down to the basics” while typing out responses. An algorithm that

could predict a whole sentence from a few words would be a potential solution for

this problems.

As for the long pauses caused by using the AAC device, there were two ideas

coming from the discussion. The first idea was that the communication partner



53

could see the monitor of the AAC device and help guess what the AAC user was

trying to say. However, it was noticed that it was only done with someone the AAC

users knew and trusted because there were some communicative partners who made

guesses in every second. A feature that could speak out comprehensive phrases or

filler words in a response composing by an AAC users could be a solution. The

reason was that it still allowed the communicative partners to keep up with the

AAC users while lowering the risk of them being disruptive and invasive. Secondly,

there could be a waiting screen showed up on the back of the AAC device such as

the flashing "dot dot dot" bubble while you were waiting for a text.

Finally, the researcher noticed that the group truly disliked the impatient and

rude communication partners. However, they also realized that not everyone could

pay full attention to the AAC users in every moment of the interaction. Therefore,

if we could develop a feature on either a robot or an AAC device that could get

the communicative partners attention back right before the speech synthesizer

verbalized the responses, for instance: a “ding before the [AAC user] speaks”.

3.5.5 Limitations of the study

A few people in the group mentioned the quality of the voice from the speech

synthesizer used in the video clips. However, we believed that it did not have a lot

of impact on the communicative partners in those critical moments in which they

were just waiting for the response from the AAC users.

Another drawback of the study was the size of the group. Two people in the
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groups, who had trouble speaking and used an AAC device instead of just inter-

acted with, were not able to give a lot of feedback in the discussion. We had tried

to eliminate this by conducting the study with people in the same focus group,

who knew how to interact around each other. However, we believed our group was

a little crowded to get any in-depth feedback from the actual AAC users.

3.6 Summary

For the design ideas of a mediator robot, the group would prefer to have a small and

friendly appearance. It was suggested that the robot should give verbal feedback

for positive behaviors and nonverbal feedback for negative behaviors. Additionally,

it would be nice if the robot could shorten the nervousness of the novice commu-

nicative partners at the beginning of the interaction.

For developing features of the AAC devices, the first idea would be an algorithm

that could generate a whole sentence based on a few keywords. Next, we should

consider another feature that could speak out comprehensive phrases or filler words

in a response composing by an AAC user.

Overall, the group wanted the technology to stop bad behaviors and encourage

good behaviors from the communicative partners, to make the waiting time shorter

and less awkward, and to signal the communicative partners before the speech

synthesizer starts to speak.
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Part III

Design and Validate the

Prototype
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This chapter focuses on designing technologies from the suggestions of the AAC

users in the previous state. The background research and implement of those ideas

are in the first section. The next section describes another focus group study to

validate those designs.

Chapter 4 Creating the Prototype

The first section of this chapter covers the background research for choosing the

appearances and behaviors of the robots. Then, we explain the implementation of

the algorithm used in our feature for the AAC device in the second section.

4.1 Choosing the appearance of robots

In this section, we will first look at the traditional intervention techniques that are

used in conversation with a speech synthesizer. The next part will look at some

prior work on robots that are used to mediate human-human interaction. Finally,

we will describe the two prototypes that we have chosen in the last section.

4.1.1 Traditional intervention techniques

The traditional intervention techniques require the communication partners to par-

ticipate in a communication program tailored to AAC users [17] [15] [35] [36]. There

are two main techniques that are incorporated into the training. The first technique

uses the ImPAACt program, which is a communication partner instructional pro-
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tocol [35]. The training focuses on four types of prompting techniques to encourage

AAC users to take their time for typing out the responses. The program also ap-

plies a contingent responding technique to reinforce communicative attempts and

supports utterance expansion from the AAC users.

The second technique is the Milieu Teaching techniques [36] used for children

with neurodegenerative diseases. The descriptions of all the techniques can be

accessed in Ann Kaiser and Courtney Wright’s paper. However, there are some

relevant techniques that can be implemented into a robot such as respond to child

communication using the child’s mode and words, imitate child actions and model

with the AAC mode, using mirroring and mapping including the ACC: Imitate

child actions and model with the AAC mode and spoken words.

Those programs require the caretakers or the communication partners to go

through a long training process [35] [36]. Therefore, it would not be applicable in

the situation where the AAC users need to talk with a stranger. By using a robot

as a mediator, we want to nudge the communicative partners toward the right

behaviors without going through the long training process.

4.1.2 Related work on mediator robot in human-human interaction

Robots as a mediator in a human-human interaction is a new research area with

multiple potential perspectives to explore. Most of the work on robots in human-

human interaction tends to focus on how the robot can fit in a human group [37]

[38]. As the robot’s goal is to maintain the dynamic of the group, it only carries out
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actions that fit our social norm and does not take any initiative toward improving

the interaction between human in the group.

KIP1, designed by Hoffman et al. is one of the first social robots that aim to

remedy the conflict in human-human conversation. By using implicit cues such

as nonverbal behaviors, KIP1 can make people aware of their own behaviors and,

hence, nudge the people to fit their behaviors without compromising the natural

communication flow between the two people [39].

On the other hand, another robot designed by Ronald Arkin’s group uses an

explicit approach, such as verbally asking an individual to do certain actions. The

robot’s job is to intervene in the conversation if it detects conflicts between the

patient and the caregiver [40] [41].

There seems to be two type of robotics design that either has a non-humanoid

appearance or resemble a person. The actions from non-humanoid robot tend to

be implicit and less have minimal impact on the natural flow of the interaction

[39]. Adversely, the behaviors and expressions of a humanoid robot are easy for

a human to read and understand as it can be used to teach emotions expression

for kids with autism [42] [43]. Following the participatory design in the previous

section, we create two different robot prototypes: a non-humanoid robot and a

humanoid robot, to ask the AAC users about their preference.
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4.1.3 The robot prototypes

4.1.3.1 Non-humanoid robot: Blossom robot

The robot is designed and developed in Dr. Guy Hoffman’s lab at Cornell Univer-

sity [44]. I choose this robot because of several reasons which are that anyone can

build this robot, and it is cheap and easy to customize. Finally, is that the robot

is small, which is a characteristic that the participants in the first focus group

wanted. Figure 4.1 is a Blossom Robot that has been built in our lab.

Figure 4.1: Blossom robot
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4.1.3.2 Humanoid robot: Furhat avatar

We choose an interactive avatar for the humanoid robot because the software is

available for us and it can be small depending on the monitor 1. The avatar is

developed by Dr. Gabriel Skantze at KTH Royal Institute of Technology in Sweden

[45] (Figure 4.2). We pick an avatar display because some robots do use a displayed

screen for their face such Baxter and Furhat.

Figure 4.2: Furhat avatar

4.2 Potential algorithms for improving the typing speech

To shorten the long and awkward pauses in conversation with AAC users, we

propose an idea that the AAC device can automatically vocalize portions of the

1This specific avatar robot is suggested by Dr. Olov Engwall at KTH Royal Institute of
Technology, Sweden
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user’s written response after a certain time. Furthermore, the spoken units to be

comprehensible and sensible. It is similar to how people usually speak in their daily

life, we often just speak out comprehensive phrases as we simultaneously construct

the rest of our response. To achieve this, we investigate methods for "chunking"

sentences into understandable chunks or phrases. Since the sentences will not be

fully constructed when the AAC device needs to vocalize understandable chunks,

we specifically investigate methods for chunking incomplete sentences.

There exist many methods for chunking complete sentences and one of the most

common methods is noun phrase chunking (NP-chunking) in which the algorithm

search for chunks corresponding to individual noun phrases. There are multiple

approaches to NP-chunking task such as graphical models or support vector ma-

chine(SVM). For graphical models, the majority of the works have been done on

two popular models: Hidden Markov Model (HMM)[46] and Conditional Random

Field (CRF)[47]. The HMM model made predictions on whether a word belongs to

a phrase by looking at preceding words. In contrast, the CRF model looks not only

at preceding words but also the proceeding words. While the graphical model gives

a generative model approach to our problem, SVM shows a different direction by

applying the discriminative model to the chunking task[48]. The algorithm simply

looks at the entire input that is the incomplete sentence in this case and categorize

the words in that sentence as to whether it is the beginning of a new phrase or a

part of an ongoing phrase.2

2The author collaborated with Christopher Eriksen from Oregon State University and Wuga
at the University of Toronto to examine the accuracy of those three algorithms in a class project.
Appendix F is a copy of the development and testing the algorithms of the project.
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In this project, we chose the CRF algorithm as our method to develop because

it has better accuracy than HMM (Appendix F) and because we need a real-time

prediction, which is hard to achieve with SVM. We use a software toolkit named

CRF++[49] for our CRF chunking because it is one of the best available toolkits

for working with CRF algorithm.

Chapter 5 Third Study: Validating the Design

We wanted to create a study to gather feedback about our prototypes that we

were working with. The focus group was designed to get ideas about appearance

and behavior of two different type of robots (Blossom robot and Furhat avatar);

and a feature for the AAC device. We assumed that some of the participants were

not in the first focus group, and created a summary video to get them up-to-

date. The video consisted of the first thirty or forty-five seconds of the five clips

in the prior focus group. The goal of the videos was to show the participants

the bad, common, and good behaviors of typical communicative partner while

interacting with an AAC user. Afterward, the moderator would show the first

robot design and ran a demo to show the capabilities of the robot. If it was the

Blossom robot, the demo would consist of the robot as a "movie partner" in which

the robot would "watch" the movie with you and react to the scenery and emotions

of the characters in the movie. If it was the Furhat avatar, the demo would be a

guessing game in which the group would guess a number from one to ten and the

robot would give a response after each guess. After the first demo, we controlled
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the robot to display three different emotions (anger, sad, and happy). We picked

those three emotions because we wanted the robot to display anger emotion if the

communicative partners were being rude such as disrupting or ignoring the AAC

users; sad emotion if the communicative partners unintentionally misbehaved such

as looking at the floor while waiting because they did not know whether they should

look at the AAC users; and happy emotion if the communicative were attentive and

the AAC users wanted to reinforce those behaviors. Then, the moderator would

give out the Impression toward Robot Survey to the participants (Appendix C).

Next, the moderator would do the same things for the second robot design. The

demo and the emotional expressions of both robots that used in this study were

made by the original creator. We used the original version from the creator instead

of our own version because we wanted to avoid our bias to either the designs.

Between the focus group, we tried to counterbalance the order of our demo based

on the number of attendees in each group.

The discussion about what the participants like or dislike about each of the

designs started after the two demos. We stopped the discussion twenty minutes

before the end of our ninety-minute study. Then, we gave the participant the

Ranking Characteristics of Robots survey (Appendix C). The survey was used to

cover certain characteristics of the robot that we missed during the discussion.

After the participants had finished the survey, we showed them a video demo of

the phrase-chunking feature for the AAC device. The moderator reminded the

participant to give feedback on the feature using the online survey that would be

sent out later in the day. The online survey was created in case we did not have
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time to talk about the program. We discussed the feature until the end of the

study.

5.1 Materials

5.1.1 Surveys

We incorporated four different surveys in this study. The first survey was a demo-

graphic survey, which collected basic information about the participants. Next, we

wanted to measure the impression of the participants toward our robots. We looked

at three difference scale: the Negative Attitudes towards Robots Scale (NARS) [50],

the Godspeed Questionnaire [51], and the Robotic Social Attributes Scale (RoSAS)

[52]. The NARS looks at the negative attitudes toward 1) situations and inter-

actions with robots, social influence of robots, and emotions in interaction with

robots. The Godspeed Questionnaire measures perceived safety, perceived intelli-

gence, likeability, animacy, and anthropomorphism. Lastly, warmth, competence,

and discomfort are measured in the RoSAS. Because we did not have enough time

in our study for the participant to do all three surveys, we chose to use the RoSAS

in our study. We believed that the constructs in the RoSAS were closely related

to what we wanted to know from the users. Additionally, our population included

people that had lost fine motor skills and would need more time to fill out a survey

than typical participants. As the result, we decided to use only three items from

each subcategory in the RoSAS. The total scale included ten items: emotion, social,
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and compassionate for the warmth subcategory; interactive, reliable, and capable

for the competence subcategory; scary, awkward, and aggressive for the discomfort

subcategory; and an extra question asking about the usefulness of the robots. Our

third survey was a ranking survey which listed various of characteristics of the

robot and asked participants to rank them. Finally, we had a short online survey

to gather final thoughts about our feature for the AAC device (Appendix B).

5.1.2 Video

We combined the first thirty or forty-five seconds of the five clips that were in

the prior focus group together. The first two clips displayed the behaviors that

the prior group indicated as rude behaviors. The communicator partner in the

next two clips displayed typical behaviors. The focus group thought the some of

partners′ behaviors, such as looking down for too long, were inappropriate but

acceptable because they knew the partner did not mean to be rude for the AAC

users. Finally, the last clip was the one that the focus group enjoyed the behaviors

of the communication partner.

5.1.3 Prototype

5.1.3.1 The emotions displayed by robot behaviors

For the Blossom robot, the robot displayed anger behaviors by turning sharply to

one side and the other. The sadness was portrayed by the robot slowly looking
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down. Finally, The robot moved its head up and down rapidly as a display of

happiness.

Figure 5.1 was a snapshot of the three emotions displayed by the avatar.

Figure 5.1: Facial expression of the avatar

5.1.3.2 The feature for the AAC device

For this project, we used a CRF++[49] for our CRF chunking algorithm. The

algorithm is set to speak after fifteen seconds. We prerecorded how the program

worked to make sure that our demo would be consistent across multiple focus

groups 1.

5.2 Participants

For this study, we also explicitly recruited participants who had experiences with

AAC devices through either using or interacting with it. There were thirteen par-

ticipants (5 males and 8 females, Mage = 53.8) came to four focus groups: two

people in the first focus, three people in the second and third focus group, and five

1This is the link for the video demo: ttps://drive.google.com/file/d/
1rP6vq9Yn8F4vBZMUgGo6ZDREcz6dPicR/view?usp=saring
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people in the last focus group. The population included five people with ALS, six

caretakers, and two people that were neither of them at the moment but had expe-

riences with speech synthesizer devices. Participants were recruited from an ALS

support group in Salem and Eugene through the group organizer. As they have to

drive to Oregon State University from either Salem or Eugene to participate in the

study, we compensated them $100 for each family group, which tends to consist of

an ALS patient and a caretaker.

5.3 Procedure

The study took place in a conference room at Oregon State University. Similar

to the second study, the study had the support group organizer as an assistant.

When all the participants arrived at the room, the moderator gave a little intro-

duction about the study. The short video was showed to summarize the first focus

group. Afterward, the moderator brought out the first robot prototype and started

the demo programs. The program consists of an interactive demo from the orig-

inal creator and the robot expresses three emotions: anger, sad, and happy. The

Impression toward Robot Survey was given to the participants afterward. When

the participant finished the survey, the moderator started the demo for the other

robot prototype. Like the first demo, the Impression toward Robot Survey was

given to the participants after the demo. Then, the experimenter started the dis-

cussion on what participants like or dislike about each prototype and how it could

be improved. The discussion was stopped twenty minutes before the end of the
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study and the experimenter gave the participants the Ranking Characteristics of

Robots Survey. The video on the feature for the AAC device was showed after

the survey. The moderator reminded the participants to write down feedback on

the feature using the online survey that would be sent out later in the day, and

then discussed the feature until the end of the study. Before the participants left,

the experimenter gave the participants their compensations and thanked them for

sharing their thoughts.

5.4 Pre-analysis for the RoSAS surveys

The RoSAS in this study did not have all of the items and should be checked

for the relationship between each item in the subcategory using principal compo-

nent analysis. However, it is recommended from the principal component analysis

chapter in A step-by-step approach to using SAS for factor analysis and structural

equation modeling that "the minimal number of subjects providing usable data

for the analysis should be the larger of 100 subjects or five times the number of

variables being analyzed" [53]. We only had 26 responses total (each participant

did the survey two times) for a total of nine variables in our study. Therefore,

we decided to only calculate the correlations between items in each category. This

would allow us to have a rough estimate of whether the items were still measured

the same construct.

Warmth:

The Table 5.1 shows us the descriptive statistics of the items in the warmth
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Table 5.1: Descriptive statistics on items in warmth component

N Mean SD
Emotion 26 5.08 1.65
Social 26 4.88 1.80
Compassion 26 4.00 1.70

Table 5.2: Pearson (r) correlations between items in warmth component (N = 26)

Emotion Social Compassion
Emotion 1
Social .72*** 1
Compassion .59*** .56*** 1

* p <.1; ** p <.05; *** p <.01

subcategory. From Table 5.2, it showed that all of the components were highly

correlated to each other. Therefore, those items seemed to belong in the same

construct.

Competence:

Table 5.3: Descriptive statistics on items in competence component

N Mean SD
Interactive 26 4.88 1.86
Reliable 26 5.00 1.41
Capable 26 5.35 1.55

The Table 5.3 displays the descriptive statistics of the items in the competence

subcategory. From Table 5.4, reliable item was strongly correlated with the capable

item, however, those two prior items were only correlated with the interaction item

moderately. As the average correlation was still high (around .59), we believed that
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Table 5.4: Pearson (r) correlations between items in competence component (N =
26)

Interactive Reliable Capable
Interactive 1
Reliable .46** 1
Capable .53** .79*** 1

* p <.1; ** p <.05; *** p <.01

the three items were still related to each other and measured the same component.

Discomfort

Table 5.5: Descriptive statistics on items in discomfort component

N Mean SD
Scary 26 2.04 1.61
Awkward 26 3.54 1.75
Aggressive 26 2.08 1.38

Table 5.6: Pearson (r) correlations between items in discomfort component (N =
26)

Scary Awkward Aggressive
Scary 1
Awkward .55*** 1
Aggressive .81*** .38* 1

* p <.1; ** p <.05; *** p <.01

The descriptive statistics of the items in the competence subcategory is showed

in Table 5.5. From Table 5.6, scary item was significantly correlated with the

awkward item and the aggressive item. There existed a weak correlation between
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the awkward and aggressive item. As the average correlation was still high (around

.58), those three items could be treated as items in the same component.

5.5 Analysis and hypotheses

5.5.1 RoSAS survey and useful questionnaire

The warmth, competence, and discomfort categories were calculated by taking the

average of the components in them. As the robot had a more friendly appearance

than the avatar, we hypothesized that the robot would be perceived as warmer and

less discomfort than the avatar. However, because facial expressions and verbal cues

are easier to read than nonverbal cues from the body, we hypothesized that the

avatar would be rated higher than the robot on competence category and useful

category.

5.5.2 Ranking survey

We picked out the top five characteristics that the participants mentioned in each

of the four categories: Most important (IM), wanted (WA), most undesired (UD),

and unwanted (UW). We also created two weighted categories which were good

characteristics (G) and bad characteristics (B). The formulas for them are below:

G = 2 ∗ IM +WA

B = 2 ∗ UD + UW
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5.5.3 Online survey and transcript

The online survey would give us information for our discussion about people′s

opinions on our feature for the AAC device. Due to the lack of time, we were

unable to complete all the transcripts from the audio of the study and would rely

mostly on observation notes from the moderator at the end of each focus group to

give additional information in the discussion section.

5.6 Result

5.6.1 Impression toward robots: RoSAS and the Useful questionnaire

Table 5.7 and Figure 5.2 show a general statistical description of the components

in our Impression toward Robots survey.

Figure 5.2: Graph for the impression survey toward robot items

From the paired t-test, there were not any differences in the warmth, com-
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Table 5.7: Descriptive statistics on items in impression toward the robot survey

N Mean SD
Robot Warmth 13 4.79 1.16

Competence 13 5.15 1.18
Discomfort 13 2.28 0.77
Useful 13 5.25 1.29

Avatar Warmth 13 4.51 1.79
Competence 13 5.00 1.59
Discomfort 13 2.82 1.72
Useful 13 5.08 1.89

Table 5.8: Paired t-test on items in the impression toward robot survey between the
robot and the avatar

Mean SD DF t-value p
Warmth (Robot - Avatar) 0.28 1.60 12 0.63 .538
Competence (Robot - Avatar) 0.15 1.55 12 0.36 .728
Discomfort (Robot - Avatar) -0.58 1.93 12 -1.00 .335
Useful (Robot - Avatar) 0.33 2.02 12 0.57 .578

petence, discomfort, and useful rating between the robot and the avatar (Table

5.8).

5.6.2 Characteristics ranking

This section displayed the ranking results of the most important characteristics

(Table 5.9), the wanted characteristics (Table 5.10), the weighted good character-

istics (Table 5.11), the most undesired characteristics (Table 5.12), the unwanted

characteristics (Table 5.13), and the weighted bad characteristics (Table 5.14).
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Table 5.9: Ranking for most important characteristics

Rank Characteristics Frequency
1 Easy to use 7
2 Be able to talk 4
3 Easy to troubleshoot 3
4 Inexpensive 3
5 Durable 3

From Table 5.9, the group thought that it was important for the robot to be

easy to use and trouble, be able to talk, durable, end inexpensive.

Table 5.10: Ranking for wanted characteristics

Rank Characteristics Frequency
1 Portable 7
2 Long battery time 5
3 Durable 4
4 Be able to hear command 4
5 Easy to use 3

The group wanted their robot to be portable and durable, have long battery

time, be able to hear verbal commands and be easy to use (Table 5.10).

Table 5.11: Ranking for weighted good characteristics

Rank Characteristics Weighted Frequency
1 Easy to use 17
2 Portable 11
3 Durable 10
4 Be able to talk 10
5 Easy to trouble shoot 9

Overall, the participants highly prioritized the easy-to-use, portability, dura-
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bility, ability-to-talk, and easy to troubleshoot (Table 5.11)

Table 5.12: Ranking for most undesired characteristics

Rank Characteristics Frequency
1 Break easily 12
2 Expensive 5
3 Manual control 2
4 Short battery time 1
5 Not have professional appearance 1

From Table 5.12, the group would not purchase the robot if it was easy to break,

expensive, manually controlled, and have short battery time and unprofessional

appearance.

Table 5.13: Ranking for unwanted characteristics

Rank Characteristics Frequency
1 Casual/Childish appearance 4
2 Hard exterior 3
3 Soft exterior 3
4 Expensive 2
5 Manual Control 2

The group did not want their robot to have child appearance, manual control,

or high price tag. They had different opinions about the hard and soft exterior of

the robot (Table 5.13).

Overall, the participants did not want their robot to break easily, be expensive,

have a childish appearance, manual control, nor hard exterior (Table 5.14).
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Table 5.14: Ranking for weighted bad characteristics

Rank Characteristics Weighted Frequency
1 Break easily 25
2 Expensive 12
3 Casual/childish appearance 6
4 Manual Control 6
5 Hard exterior 5

5.7 Discussion

5.7.1 Design of the robots

The data showed that the people in the group perceived the two robots similar to

each other. There were two possible explanations for this phenomenon. The first

explanation would be that our survey did not work as we intended. The RoSAS

is designed and validated with only avatar robots and has not been validated

with physical robots [52]. To test our theory, a post hoc analysis was done in

Appendix E. Instead of looking at the correlation between items for both robot

and avatar condition, this analysis calculated the correlation between the items

for the robot condition and avatar condition separately. The data suggested that

while the avatar condition was able to maintain a high correlation between the

elements in each subcategory, there were almost no correlations between some items

in those subcategories. This suggested that the RoSAS might perform differently

with physical robots that did not have a facial display. Another explanation would

be the prior positive feeling of the participants toward the prototypes. As the goal

of the study was to improve their lives, the participants might look at the robots
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more positive than normal. Table 5.7 showed that the participants rated the good

quality (warmth and competence) above the average of the scale, and rated the

bad quality (discomfort) below the average of the scale.

However, from our memos after each focus group, it was suggested that the

participants who had trouble speaking seemed to prefer the avatar and its ability

to talk while the other participants prefer the approachable appearance of the

physical robot. A participant mentioned that she “would prefer to have the avatar

now than wait for a perfect avatar”. Those participants, who could not speak

clearly, seemed to lose more control of their facial muscles than the other, and

therefore, saw the ability to express facial emotions of the avatar more than just a

mediator in their interaction. They perceived it as a way for them to express their

emotions again. In contrast, most of the care-takers or other ALS patient could

not overlook the uncanny appearance of the avatar. Finally, the group agreed that

the nonverbal behaviors of the robot were harder to read than the facial cues of

the avatar. We thought it could be because human is better at reading facial cues

than body language. A further research on the behaviors of a physical robot would

be needed before it could fully be applied in the actual settings.

For the characteristics of the robots, the group highly prioritized the durability

and portability of the robot. Additionally, as the participants were in Oregon, they

also mentioned that the robot should be weather-proof. They preferred the robot to

be autonomous, and easy to use and troubleshoot. The participants had different

preferences about the exterior of the robot, but they would prefer the robot to not

have a childish appearance.
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5.7.2 Feedback on the feature for the AAC device

For the phrase chunking program, all the participants said that they would use

this feature. However, they preferred the ability to turn on and off this feature.

The focus groups also commented on the accuracy of the phrases that spoke out.

5.7.3 Limitation and future work

One of our potential drawbacks was the possible inconsistency of our robots. We

did not experience any technical issues in all of our focus group. However, because

it was a live demo instead of a video clip, there was a possibility that the demo was

different from each other. We originally planned to let the participant interact with

the robots because we wanted them to have a full experience with the robots. Our

study confirmed the importance of a live demo as one of the participants mentions

that they like the “3-D” physical body of the Blossom Robot.

Our result suggests that future work that validates the RoSAS survey for phys-

ical robots would be needed. It is essential that the validation study should recruit

a wider range of population than this study to eliminate any prior biases. Because

we have not done a full analysis of the transcripts, an analysis that incorporates

information from the transcripts would be needed. Finally, additional research and

development on the robot behaviors would be needed to create better nonverbal

cues for the robots.
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Part IV

Summary and Future Work
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Chapter 6 Summary

From the first study, we have learned that the conversation partners tend to look

at the AAC user less frequently but get distracted longer when they do not feel

interested in interactions that have short pauses. However, for interactions that

are made up of long pauses, the inattentive time is the sole indicator for the lack

of interest toward the conversations. Additionally, it seems that the AAC users are

unaffected by the gaze behaviors of their partner. Interestingly, the second study

suggests that the AAC users are often not aware of their partner′ behaviors while

they are typing because they have to focus on the monitor. The few moments that

the AAC users notice their partners is when they finished typing.

The second study suggests that the AAC users want a technology that can

prevent bad behaviors and encourage good behaviors from the communication

partners, to make the waiting time shorten and less awkward, and to signal the

communicative partners before the speech synthesizer starts to speak.

Finally, it is suggested in our third study that most of the people who have

trouble speaking prefer the avatar robot than the Blossom robot. As they start

to lose their ability to control their facial muscle, they see the ability to express

facial emotions of the avatar more than just a mediator in their interaction. They

think it as a way for them to express their emotions again. In contrast, most of

the care-takers or other ALS patient cannot overlook the uncanny appearance of
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the avatar and prefer the Blossom robot which is more approachable.

Chapter 7 Future Work

For the first study, we need a future analysis on the correlations between gaze

behaviors of the communication partners and how the AAC users feel toward

the interaction when the speech synthesizer started to verbalize, and while the

AAC users are typing. For the third study, an in-deed analysis on the transcript

of the study is needed because the author was not able to analyze on completed

transcripts, instead he used his notes at the end of each focus group for the analysis.

For developing better behaviors for the Blossom robot, a meta-analysis on robot

behaviors is needed to understand the different behaviors have been implemented

and its impact on a person. For the feature in the speech synthesizer, we need to

try different state-of-the-art learning algorithm such as deep learning to improve

our prediction. Additionally, to test the effect of our system with a communication

partner, we would want to reproduce the first study to include the robot and speech

synthesizer. Finally, the end goal of this research would be to have a completed

system for the AAC users and examine its impact on their daily conversation in a

long-term study.
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DEMOGRAPHIC INFORMATION

1. How old are you? years months

2. Sex(Please circle one) FEMALE MALE OTHER

3. Is English your first language? Yes No

4. Please indicate which of the following race and ethnicity group best describe

you

American Indian or Alaskan Native Asian or Pacific Islander
African American Hispanic
Caucasian/White Other

5. How many years have lived in the United States? years

6. How much experience do you have with a computer keyboard?

a. I’ve never used one before.

b. I’ve used one a few times in my life.

c. I use one every couple of months.

d. I use one weekly.

e. I use one daily.

7. How much experience do you have with X-box type controllers?

a. I’ve never used one before.
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b. I’ve used one a few times in my life.

c. I use one every couple of months.

d. I use one weekly.

e. I use one daily.
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Interaction Assessment

This next section does not apply to you or your partner as individuals. Instead,

we’d like to get your assessment of the conversational event. Please rate the inter-

action between you and your partner on the following characteristics. Circle the

number that you think best describes the quality of the interaction.

NOT AT ALL EXTREMELY
0 1 2 3 4 5 6 7 8 WELL-COORDINATED

0 1 2 3 4 5 6 7 8 BORING

0 1 2 3 4 5 6 7 8 COOPERATIVE

0 1 2 3 4 5 6 7 8 HARMONIOUS

0 1 2 3 4 5 6 7 8 UNSATISFYING

0 1 2 3 4 5 6 7 8 UNCOMFORTABLY PACED

0 1 2 3 4 5 6 7 8 COLD

0 1 2 3 4 5 6 7 8 AWKWARD

0 1 2 3 4 5 6 7 8 ENGROSSING

0 1 2 3 4 5 6 7 8 UNFOCUSED

0 1 2 3 4 5 6 7 8 INVOLVING

0 1 2 3 4 5 6 7 8 INTENSE

0 1 2 3 4 5 6 7 8 UNFRIENDLY

0 1 2 3 4 5 6 7 8 ACTIVE

0 1 2 3 4 5 6 7 8 POSITIVE

0 1 2 3 4 5 6 7 8 DULL

0 1 2 3 4 5 6 7 8 WORTHWHILE

0 1 2 3 4 5 6 7 8 SLOW
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FINAL QUESTIONS

1. How well did you know the person you interacted with today before showing

up for today’s study? (Circle 1)

1. Never met them before today.

2. I’ve seen them but we’ve never talked.

3. We’ve talked but I don’t know them well.

4. We are well acquainted.

5. We are friends and know each other well.
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Chapter B Surveys in Second Study
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DEMOGRAPHIC INFORMATION

1. Are you a caregiver, a patient with ALS, or other?

CAREGIVER
PATIENT WITH

ALS
OTHER

2. How old are you?

YEARS

. 0

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9 9

3. Sex

FEMALE MALE OTHER
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4. Are you fluent in English?

YES NO

5. If you are a patient with ALS, how long ago were you diagnosed?

YEARS MONTHS

0
0

1 1
1

2 2
2

3 3
3

4 4
4

5 5
5

6 6
6

7 7
7

8 8
8

9 9
9

10

11

12
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6. Have you had experiences with speech synthesizer devices (AAC device, text-

to-speech device, Tobii device, etc) from either interacting with or using it?

YES NO

7. In your consent form, you have consented to be audio recorded throughout

the focus group. Would you be willing to be video recorded as well in order

to aide in the collection of data? All audio and video recording will remain

confidential and only used for the purpose of this study.

YES NO
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Chapter C Surveys in Third Study
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DEMOGRAPHIC INFORMATION

1. Are you a caregiver, a patient with ALS, or other?

CAREGIVER
PATIENT WITH

ALS
OTHER

2. How old are you?

YEARS

. 0

1
1

2
2

3
3

4
4

5
5

6
6

7
7

8
8

9 9

3. Sex

FEMALE MALE OTHER
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4. Are you fluent in English?

YES NO

5. If you are a patient with ALS, how long ago were you diagnosed?

YEARS MONTHS

0
0

1 1
1

2 2
2

3 3
3

4 4
4

5 5
5

6 6
6

7 7
7

8 8
8

9 9
9

10

11

12
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6. Have you had experiences with speech synthesizer devices (AAC device, text-

to-speech device, Tobii device, etc) from either interacting with or using it?

YES NO

7. In your consent form, you have consented to be audio recorded throughout

the focus group. Would you be willing to be video recorded as well in order

to aide in the collection of data? All audio and video recording will remain

confidential and only used for the purpose of this study.

YES NO

8. Have you been to the previous support group?

YES NO
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IMPRESSION TOWARD ROBOT

Using the scale provided, how closely are the words below associated with the robot?

1 = definitely not associated to 7 = definitely associated

a. Emotion

1 2 3 4 5 6 7

b. Social

1 2 3 4 5 6 7

c. Compassionate

1 2 3 4 5 6 7

d. Interactive

1 2 3 4 5 6 7

e. Reliable

1 2 3 4 5 6 7

f. Capable

1 2 3 4 5 6 7

g. Scary

1 2 3 4 5 6 7

h. Awkward

1 2 3 4 5 6 7
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i. Aggressive

1 2 3 4 5 6 7

j. Useful

1 2 3 4 5 6 7
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IMPRESSION TOWARD AVATAR

Using the scale provided, how closely are the words below associated with the avatar?

1 = definitely not associated to 7 = definitely associated

a. Emotion

1 2 3 4 5 6 7

b. Social

1 2 3 4 5 6 7

c. Compassionate

1 2 3 4 5 6 7

d. Interactive

1 2 3 4 5 6 7

e. Reliable

1 2 3 4 5 6 7

f. Capable

1 2 3 4 5 6 7

g. Scary

1 2 3 4 5 6 7

h. Awkward

1 2 3 4 5 6 7
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i. Aggressive

1 2 3 4 5 6 7

j. Useful

1 2 3 4 5 6 7
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RANKING CHARACTERISTICS OF ROBOTS

Please read the following characteristics of the robots

A. Easy to troubleshoot B. Be able to talk

C. Animal-like appearance D. Easy to use

E. Humanoid appearance F. The robot is autonomous

G. Price-how expensive the robot is H. The robot is manual control

I. Professional appearance J. Having a physical body

K. Casual/childish appearance L. Portable

M. Soft exterior (yarn, wool) N. Durable

O. Hard exterior (plastic, wood, metal) P. Friendly appearance

Q. Break easily R. Having an avatar display

S. Battery time T. Be able to hear command

Please select the 2 most important characteristics in your opinion (You will not buy the

robot if it does not have it)

Please select 3 important characteristics (it would be nice to have it)

Please select the 2 most undesired characteristics in your opinion (You will not use the

robot if it have it)

Please select 3 undesired characteristics (it would be nice to not having it)

Extra comment on next page
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If you have one other characteristic that is most important to use, please list them below

and explain why (optional)

If you have one other characteristic that is most undesired for you, please list them below

and explain why (optional)
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ONLINE SURVEY

Do you want the speech synthesizer autonomously speak for you?

• Yes

• No

Why do you choose the answer above (optional)?

Do you think that you will use this function on your speech synthesizer?

• Yes

• No

Why do you choose the answer above (optional)?

Any additional comments?
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Chapter D Analysis for Normal Time in Study 1

D.1 Typing

(a) Total duration of typing (b) Average time of typing

Figure D.1: Normal time graph for typing behavior

Table D.1: Descriptive statistics on typing behavior in the whole interaction (nor-
mal time)

Interaction Duration N Mean SD
1 Total Duration 59 150.9 26.78

Average Duration 59 8.44 3.94
2 Total Duration 59 250.2 24.52

Average Duration 59 30.71 13.25
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Table D.2: Paired t-test on typing between the interaction (normal time)

Mean SD DF t-value p
Total Duration (Dyad 2 - Dyad 1) 99.38 28.21 58 27.05 <.001
Average Duration (Dyad 2 - Dyad 1) 22.26 11.35 58 15.06 <.001

Table D.3: Pearson (r) correlation on typing between the interaction (normal time)

N r p
Total Duration (Dyad 1 and Dyad 2) 59 0.40 =.001
Average Duration (Dyad 1 and Dyad 2) 59 0.60 <.001

D.2 Gaze Behavior

D.2.1 The whole dyad

(a) Total Duration of Typing (b) Average Time of Typing

Figure D.2: Normal time graph for gaze behaviors in the whole 5 minutes interac-
tion
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Table D.4: Descriptive statistics on gaze behavior in the whole interaction (normal
time)

Gaze Type Interaction Duration N Mean SD
Face gaze 1 Total Duration 59 148.20 59.28

Average Duration 59 2.33 1.25
2 Total Duration 59 110.00 60.25

Average Duration 59 2.38 1.85
Around gaze 1 Total Duration 59 62.55 37.81

Average Duration 59 1.79 0.89
2 Total Duration 59 87.27 60.36

Average Duration 59 3.19 2.87

Face Gaze

Table D.5: Paired t-test on face gaze behaviors between the interaction (normal
time)

Mean SD DF t-value p
Total Duration (Dyad 2 - Dyad 1) -38.14 39.46 58 -7.42 <.001
Average Duration (Dyad 2 - Dyad 1) 0.05 1.02 58 0.37 .710

Table D.6: Pearson (r) correlation on face gaze behaviors between the interaction
(normal time)

N r p
Total Duration (Dyad 1 and Dyad 2) 59 0.78 <.001
Average Duration (Dyad 1 and Dyad 2) 59 0.85 <.001
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Inattentive Gaze

Table D.7: Paired t-test on inattentive gaze behaviors between the interaction (nor-
mal time)

Mean SD DF t-value p
Total Duration (Dyad 2 - Dyad 1) 24.72 43.75 58 4.34 <.001
Average Duration (Dyad 2 - Dyad 1) 1.39 2.31 58 4.62 <.001

Table D.8: Pearson (r) correlation on inattentive gaze behaviors between the inter-
action (normal time)

N r p
Total Duration (Dyad 1 and Dyad 2) 59 0.69 <.001
Average Duration (Dyad 1 and Dyad 2) 59 0.72 <.001
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D.2.2 Within the dyad

(a) Total Duration of Typing (b) Average Time of Typing

Figure D.3: Normal time graph for gaze behaviors at the beginning 100s and at the
end 100s of the interaction



114

Table D.9: Descriptive statistics on gaze behavior within the first interaction and
second interaction (normal time)

Int. Gaze Type Moment Duration N Mean SD
1 Face gaze First 100s Total Duration 59 54.24 19.61

Average Duration 59 2.58 2.29
Last 100s Total Duration 59 45.40 21.52

Average Duration 59 2.20 1.09
Around gaze First 100s Total Duration 59 14.68 10.70

Average Duration 59 1.40 0.70
Last 100s Total Duration 59 26.28 16.58

Average Duration 59 2.08 1.23
2 Face gaze First 100s Total Duration 59 37.43 21.53

Average Duration 59 2.39 2.22
Last 100s Total Duration 59 36.56 20.82

Average Duration 59 2.50 2.39
Around gaze First 100s Total Duration 59 24.72 19.99

Average Duration 59 2.76 3.10
Last 100s Total Duration 59 31.83 20.88

Average Duration 59 3.19 2.79

Face Gaze

Table D.10: Paired t-test on face gaze behaviors within the first interaction and
second interaction (normal time)

Int. Duration Mean SD DF t-value p
1 Total (Last 100s - First 100s) -8.84 11.32 58 -6.00 <.001

Average (Last 100s - First 100s) -0.38 1.95 58 -1.50 .140
2 Total (Last 100s - First 100s) -0.87 10.78 58 -0.62 .540

Average (Last 100s - First 100s) 0.11 1.97 58 0.44 .659
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Table D.11: Pearson (r) correlation on face gaze behaviors within the first inter-
action and second interaction (normal time)

Int. Duration N r p
1 Total (Last 100s and First 100s) 59 0.85 <.001

Average (Last 100s and First 100s) 59 0.53 <.001
2 Total (Last 100s and First 100s) 59 0.87 <.001

Average (Last 100s and First 100s) 59 0.64 <.001

Inattentive Gaze

Table D.12: Paired t-test on inattentive gaze behaviors within the first interaction
and second interaction (normal time)

Int. Duration Mean SD DF t-value p
1 Total (Last 100s - First 100s) 11.60 11.19 58 7.96 <.001

Average (Last 100s - First 100s) 0.68 0.92 58 5.65 <.001
2 Total (Last 100s - First 100s) 7.11 12.35 58 4.42 <.001

Average (Last 100s - First 100s) 0.43 2.47 58 1.34 .186

Table D.13: Pearson (r) correlation on inattentive gaze behaviors within the first
interaction and second interaction (normal time)

Int. Duration N r p
1 Total (Last 100s and First 100s) 59 0.74 <.001

Average (Last 100s and First 100s) 59 0.67 <.001
2 Total (Last 100s and First 100s) 59 0.82 <.001

Average (Last 100s and First 100s) 59 0.65 <.001
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Chapter E Post Analysis for Study 3

This is the post analysis between items for each component in the RoSAS for the robot

condition and the avatar condition.

Items in Warmth Components

Table E.1: Pearson (r) correlations between items in warmth component for both
robot and avatar (N = 13)

Robot
Emo. Soc. Com.

Emotion 1
Social .49* 1
Compassion .41 .40 1

Avatar
Emo. Soc. Com.

Emotion 1
Social .85*** 1
Compassion .67** .66** 1

* p <.1; ** p <.05; *** p <.01

Items in Competence Components

Table E.2: Pearson (r) correlations between items in competence component for
both robot and avatar (N = 13)

Robot
Int. Rel. Cap.

Interactive 1
Reliable .20 1
Capable .14 .76*** 1

Avatar
Int. Rel. Cap.

Interactive 1
Reliable .70*** 1
Capable .80*** .83*** 1

* p <.1; ** p <.05; *** p <.01

Items in Discomfort Components

.
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Table E.3: Pearson (r) correlations between items in discomfort component for both
robot and avatar (N = 13)

Robot
Sca. Awk. Agg.

Scary 1
Awkward .26 1
Aggressive .70*** .19 1

Avatar
Sca. Awk. Agg.

Scary 1
Awkward .65** 1
Aggressive .81*** .44 1

* p <.1; ** p <.05; *** p <.01
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Chapter F Design for the Phrase Chunking Algorithm

In this project, we investigate how well previous chunking approaches to complete sen-

tence chunking translate to the incomplete sentence domain. Following the pattern set

by Sha and Pereira[47], we consider 1.) a HMM implementation to represent classical,

generative probabilistic models, 2.) a Support Vector Machine (SVM) implementation to

represent the best of classical, discriminative classifiers, and 3.) a CRF implementation

to represent more recent approaches as proposed by Sha and Pereira. While chunking

prediction needs to be performed in real-time for our purposes, we note that the models

can be pre-trained. While model training often takes a considerable amount of time for

the approaches we consider, prediction is performed significantly faster, and the predic-

tion time for a single example as found in our context is negligible. Additionally, we note

that the chunking task often involves a pre-processing step of tagging the sentence to-

kens with part of speech (POS) markers. Since POS tagging is an easier task with many

robust existing implementations, we assume POS tagging has already been performed in

our experiments (in fact, our training data includes the tokens’ POS tags).

This document is structured as follows. Section F.1 presents our general framework

and contains background information on the chunking models we consider. In Section F.2,

we briefly describe the dataset we use and discuss our experimental approach. Results

and discussion is presented in Section F.3. Finally, we end with some conclusions and

considerations for future work in Section F.4.
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F.1 Methodology

In this section, we present our approach for investigating the efficacy of popular chunk-

ing models in the incomplete sentence domain. Specifically, we test whether chunking

performance on incomplete sentences improves when the proposed models are trained on

incomplete rather than complete sentences. We also compare the performance from the

different models to see which performs best for incomplete sentences. For our models, we

test the classical approaches of using a generative probabilistic model or a discrimina-

tive classifier as well as a more modern approach of using a CRF. To represent classical

approaches, we use a HMM chunker implementation found in the LingPipe toolkit[54]

and a SVM chunker implementation presented by Kudo and Matsumoto[55]. For the

more modern approach, we use a CRF chunker implementation found in the OpenNLP

toolkit[56].

In the following subsections, we first propose our mathematical formalization for

measuring chunking performance on incomplete sentences. Subsequently, we describe

how the HMM, SVM, and CRF models are adapted to the chunking domain. The details

of our experimental evaluation are presented in Section 3.

F.1.1 Formalization

In this subsection, we formalize the learning model for our chunking task. Generally, we

try to maximize the following likelihood function:

argmaxChunkingSequenceP (ChunkingSequence|ObservedSentence) (F.1)
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However, this objective must be adapted to fit the model for each approach that we

investigate.

Classical classification algorithms can only output a single classification label. There-

fore, direct inference and sequential prediction is difficult. We modify the objective as

shown below:

argmaxy

T∏
y=1

P (yi|φ(x)) (F.2)

Note that the best prediction sequence is not equivalent to the product of best predicted

labels, yi. Such an approach is limited as compared to a structured prediction approach.

Since HMM’s support exact inference of the joint likelihood, we use the joint likeli-

hood as our objective. The joint likelihood is proportional to the conditional likelihood

as shown in equation F.3.

argmaxChunkingSequenceP (ChunkingSequence,ObservedSentence) (F.3)

Due to increased complexity in the model, CRF’s on the otherhand are able to

maximize the likelihood function found in equation F.1 directly.

F.1.2 SVM

We use a classical Support Vector Machine (SVM) model adapted for the chunking

context, as proposed by Kudoh and Matsumoto[55]. The model was introduced for the

CoNLL 2000 Shared Task on Chunking[57].

Generally, the goal of a SVM is to maximize the margin of support vectors close

to the decision boundary. The input format for a SVM is a vector and the output is
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a single label. In this implementation, chunk classification for each token is performed

sequentially, and the input features for each classification include local word tokens, POS

tags, and previous classifications provided by the model. The input vector is defined as

follows:

x =



x1 : token:− 2

x2 : token:− 1

...

x5 : token: + 2

x6 : pos:− 2

x7 : pos:− 1

...

x10 : pos: + 2

x11 : chunk: + 1



(F.4)

The SVM implementation provided by the authors is an open-source package named

Yet Another Multipurpose CHunk Annotator (YamCha). We note that this implemen-

tation can be trained with any polynomial kernel and can use either pairwise comparison

or a one verses all approach for its multi-class classification. This model also performed

best in the CoNLL 2000 Shared Task.

F.1.3 HMM

One argument for using a structured model is that the most likely sequence of predic-

tions is not equivalent to the best set of predictions for each latent variable. Classical

approaches ignore the correlation between latent variables.
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A Hidden Markov Model (HMM) is a generative structured graphic model, which,

similarly to Naive Bayes, predicts the joint probability of observations and a latent

sequence. One serious limitation of this model is its strong assumption of conditional

independence amongst the observations, which is often not true.

Despite this, HMM model is often used to perform sequential prediction because it

is easy to implement. Training a HMM is straightforward using the Expectation Max-

imization algorithm, and model inference is similarly easy using the Viterbi algorithm,

or more generally the max-product algorithm.

Figure F.1: HMM model

The joint likelihood of a HMM can be expressed as follows:

P (O,S) = P (S1)

T∏
i=2

P (St|St−1)
T∏

j=1

P (Ot|St)

The HMM chunking task is described with two line variables as shown in Figure

F.1. The observations are POS tags and the latent variables are chunking tags. Here,

in Figure F.1, to simplify, each latent variable has only one observation. However, it is

possible to have multiple observations for single latent variable.

Training this model is normally achieved by using the EM algorithm. First we need

to guess an initial parameter sequence that determines the transition probability and
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fix it to maximize latent variables. Then, we fix learned latent variables to optimize

parameters.

The flexibility of the HMM model is strictly limited by Markov assumptions, which

means it is unable to take more than one observation into consideration at each time

step. It is thus more of a baseline algorithm for our work.

For our analysis, we use a HMM chunking implementation provided in the LingPipe

Java Natural Language Processing package[54] .

F.1.4 CRF

In the Natural Language Processing field, Conditional Random Fields (CRF) have be-

come more common in tackling POS tagging and chunking problems. The relation be-

tween a CRF and HMM is similar to that of Logistic Regression and a Naive Bayes

Classifier.

A CRF is a deterministic model which tries to maximize the conditional probability

of P (Y |X) directly rather than assuming the probability of observations.

Figure F.2: CRF model

Factorization of an undirected graphical model is more focused on compatibility

among variables. Therefore, the complexity of the CRF model depends on the number
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of variables considered.

V x =
1

Z

T∏
t=1

exp{
K∑
k=1

θkfk(yt, yt−1, xt)} (F.5)

Computing the partition function of the CRF is difficult, which makes using the

undirected graphical model to compute the joint likelihood intractable. However, com-

puting the conditional probability P (Y |X) will directly eliminate the partition function.

P (y|x) = P (y,x)∑
y′ P (y

′,x)

=

∏T
t=1 exp{

∑K
k=1 θkfk(yt, yt−1, xt)}∑

y′
∏T

t=1 exp{
∑K

k=1 θkfk(y
′
t, y
′
t−1, xt)}

(F.6)

In this project, we use a Java implementation of a CRF chunker provided in the

OpenNLP toolset[56]. The package provides code for training and testing a CRF chunker.

F.2 Experiment

F.2.1 Data

We decide to use data provided by the CoNLL 2000 Shared Task on Chunking[57]. This

task provides a standard metric for assessing the performance of chunkers on complete

sentences. This data is furthermore useful since the YamCha and OpenNLP implemen-

tations we use are constructed to accept data following its format. The task provides a

corpus of 211,727 token-POS-chunk instances used for training and a corpus of 47,377

instances for testing.

The structure for CoNLL 2000 data is shown in F.1. The data is contained in a single
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Table F.1: Data sample

Confidence NN B-NP
in IN B-PP
the DT B-NP
pound NN I-NP
is VBZ B-VP
widely RB I-VP
expected VBN I-VP
to TO I-VP
take VB I-VP
another DT B-NP
sharp JJ I-NP

file and includes three columns: word token, POS tag, and chunk tag. Chunk tags begin

with either a "B" or "I", specifying whether the given token begins a new chunk or

continues an existing chunk. The prefix is followed by the chunk identifier. A separate

"O" tag is used to identify punctuation. For our purposes, we say that a word is chunked

correctly if it is correctly assigned the correct tag (prefix and chunk identifier) as found

in the test set.

We use the CoNLL training and test sets as bases for generating datasets with in-

complete sentences. Specifically, we bootstrap examples from the original corpus and

randomly select a word in the sentence to split on. The first half of the sentence is then

treated as an incomplete sentence example. We take this bootstrapping approach to ran-

domly generate incomplete sentences from the original data. In order to construct similar

training sets for complete and incomplete sentences, for every bootstrapped example, we

save the unaltered version of the example in a complete sentence training set and the

randomly split version in an incomplete sentence training set. We construct a testing

set of incomplete sentences in a similar manner. We choose to bootstrap a number of
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examples equal to a chosen multiplier multiplied by the size of the original data set.

F.2.2 Approach

To test the performance of our proposed models on chunking incomplete sentences, we

first generate two separate training sets containing complete or incomplete sentences

as described in the previous subsection. For each of the proposed models, we train a

separate version on each of the training sets. To assess the robustness of each model to

the size of the training set, we use a variety of bootstrap multipliers for training.

The test set was generated by bootstrapping the CoNLL 2000 Shared Task test data

with a bootstrap multiplier of 5, splitting each example at a random index to produce

incomplete sentences. This produced a test set of 139,084 token-POS-chunk instances

in a similar format to that of the CoNLL 2000 shared task, but with incomplete rather

than complete sentences. We chose a bootstrap multiplier of 5 since it was high enough

such that we are expected to sample almost all (99%) of the examples at least once.

F.2.3 Parameter Tuning

While the HMM and CRF chunker tools did not have tunable parameters, the SVM

implementation had the option of specifying the polynomial order of the kernel, C value

for slack weighting, and multi-class classification strategy (pairwise or one versus rest).

To perform this tuning, we split off 80% of the original CoNLL training data as training

data and the other 20% as validation data for testing the effects of parameter variation.

From each set, we then bootstrapped training examples using a bootstrap multiplier of 5.

After determining the best parameters by comparing performance on the bootstrapped
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validation set, we retrained the SVM model using the optimal parameters on data boot-

strapped from the whole CoNLL training dataset for our model comparison evaluation.

We note that we do not perform cross-validation due to time constraints and the large

time cost of training the SVM models.

Figure F.3: F1 performance of SVM when trained with a polynomial kernel of
various orders. Performance using both pairwise and one verses rest multi-class
classification strategy is shown.

Figures F.3 and F.4 show the results of performing parameter tuning on the SVM

model. Due to the large training time overhead, we used a greedy approach by first

tuning the polynomial order and then tuning the C value using the optimal polynomial

parameter value. We found that using a polynomial order of 2 and a C value of 0.1 was

optimal for both multi-class classification strategies. Furthermore, we chose to use the

one versus rest approach since it performed optimally in the best case.
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Figure F.4: F1 performance of SVM when trained with different C values. Perfor-
mance using both pairwise and one verses rest multi-class classification strategy is
shown.

F.3 Results and Analysis

Figure F.5 shows the test performance of each of the proposed models after training

on either complete or incomplete sentences. To evaluate the robustness of each model

to the size of the training data, we vary the bootstrap multiplier used to generate the

training data. We choose to represent performance using the F1 score, a standard metric

in natural language processing for combining the information provided by precision and

recall. For each model, we see that the version trained on incomplete sentences performs

better than the version trained on complete sentences in almost all cases. This breaks

down slightly for the HMM model, where the version trained on complete sentences

performs better for smaller amounts of data. Still, on average, we see a 0.34% point

increase in performance for the SVM, 3.86% point increase for the HMM, and 0.81%

point increase for the CRF when the model is trained on incomplete rather than complete

sentences. This suggests that training a chunking model on incomplete sentences will
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lead to increased performance in chunking incomplete sentences over a model trained on

complete sentences.

Figure F.5: F1 performance on incomplete sentences for HMM, SVM, and CRF
models. A version of each model was trained on complete sentences and a separate
version was trained on incomplete sentences.

We also see that both versions of the SVM model perform better than the CRF

models, which in turn perform significantly better than the HMM models. While it is

surprising that the SVM model outperforms the CRF model, we note that this particular

implementation of a SVM chunker was developed specifically for the CoNLL 2000 shared

task (it in fact won the competition), and thus was probably tuned specifically for this

data set. We also note Sha and Perier mention in their paper that their CRF chunker did

not outperform the YamCha implementation on complete sentences[47]. In any case, we

note that both the SVM and CRF significantly outperform the HMM models, suggesting

that these more advanced models are preferred for the chunking task. We also note

that HMM performance (especially when trained on complete sentences) drops off with
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too much data. This might be because of the fact that the HMM assumes conditional

independence between the features, which breaks down with too much data (particularly

since all examples are generated from the same original data set).

F.4 Conclusions

In this project, we examined how three different approaches (namely SVM, HMM, and

CRF) of complete sentence chunking translated to the incomplete sentence domain. The

experimental results suggest that training on incomplete rather than complete sentences

leads to improved performance for all models. We also find that the CRF and SVM im-

plementations have comparable performance, with the SVM chunker performing slightly

better. Both models, however, significantly outperform the HMM chunker.

We do, however, note a number of limitations in our approach. First, the SVM tool

that we used was tailored specifically for our data set and, due to time constraints and

the large time cost of model training, we used only that data set for our experiments.

This might have led to unfair bias in favor of the SVM model. In any case, testing on

multiple datasets or even generating multiple training sets from the source text would

lead to an increase in the validity of our results. Second, for each method, we only used one

implementation in our experiments. There might be other SVM, HMM, or CRF tools that

outperform our models, but we only considered available open-source implementations.

Additionally, we note that advanced structured prediction models such as a structured

SVM (which had been used to great effect for tasks like parsing) were not considered in

our experiments. Adapting such advanced models could lead to improved performance

in the incomplete chunking domain.




