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Marine debris is a chronic and increasingly pervasive problem for coastal regions around the 

world. Debris poses environmental risks, threats to wildlife, and degradation of the natural 

environment. Recent research has shown the advantages of uncrewed aircraft systems (UAS) for 

detection and recognition of marine debris, including the ability to efficiently collect data over 

large stretches of coast. To date, most UAS imagery acquisition is performed with red-green-

blue (“natural color”) imagery only. Polarimetric imaging, which captures information on the 

polarization state of electromagnetic radiation received at the camera, in addition to purely 

spectral information, has been shown beneficial in detection of human-made objects. This thesis 

investigates the ability to improve detection of marine debris using polarimetric imagery (PI). It 

is shown that PI bands increase the information content above and beyond spectral (RGB) bands 

and aid in visual detection and recognition of marine debris. Additionally, results of supervised 

classification revealed that classification accuracy improves through inclusion of image bands 

derived from the polarimetric information. While commercially available PI cameras are still 

very new and not quite operationally ready for installation on UAS, follow-on research using PI 

cameras on UAS is anticipated to greatly facilitate operational use of this new technology for 

marine debris mapping and management.   
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1. Introduction 

 

Marine debris accumulation plagues coastal areas worldwide and presents both immediate and 

long-term risks to humans and wildlife. The debris is any man-made, persistent solid material 

that either directly or indirectly ends up in the marine environment from land or ocean-based 

sources (Sheavly and Register, 2007; Pawar et al., 2016). Understanding spatial densities and 

distributions of marine debris in different regions, as well as the proportions of different debris 

types, and how these variables are changing over time is key to developing policies and directing 

resources for cleanup and mitigation efforts. To this end, NOAA’s Office of Response and 

Restoration (OR&R) Marine Debris Program (MDP), the lead agency in the U.S. for addressing 

marine debris, maintains a Marine Debris Monitoring and Assessment Project (MDMAP), in 

which external partners and volunteers conduct periodic debris surveys (Opfer et al., 2012; 

Banford, 2013).  

Marine debris surveys entail walking randomly-selected transects, searching for debris within a 

specified distance on either side of the transect centerline, and characterizing and recording 

debris items (Burgess et al., 2021). Recently, studies have documented the capability of 

uncrewed aircraft systems (UAS) to aid in marine debris detection and recognition (Brooke et al., 

2015; Gonçalves et al., 2020; Taddia et al., 2021). Benefits of UAS for marine debris surveys 

include the ability to collect data rapidly, efficiently, and safely for large stretches of coast that 

might be inaccessible on foot. Additionally, automating the detection of debris items in UAS 

imagery may assist in reducing some of the subjectivity of the in-situ surveys and in providing 

contiguous data (sometimes called “wall-to-wall coverage”), in comparison to random transects.  

To date, UAS data acquisition for marine debris projects has primarily included only red-green-

blue (RGB) imagery. However, an emerging technology—namely, low-cost, commercially-

available polarimetric imaging (PI) cameras—offers the promise of potentially improving 

detection and recognition of marine debris, due to its potential to distinguish between natural and 

human-made features. Polarization sensors reveal information about surface textures, shape, 

shading, and roughness, thus making it a valuable tool in both research and field applications 

(Tyo et al., 2006). Islam et al. (2019) found that unique signatures contained within polarimetric 

data reliably improved separation of man-made objects using supervised classification methods. 
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This study, however, did not utilize multiband combination of polarimetric and RGB data for 

analysis. Furthermore, Zhao et al. (2008) suggests that combining spectral and polarimetric 

information greatly enhances object detection and identification performance. They conclude 

that spectropolarimetric image analysis efficiently separates objects and background features. 

Though useful for determining surface characteristics, polarimetric sensor technology has rapidly 

evolved over the last three decades to fit an expansive scope of disciplines. Traditional 

employment of polarimetry ranges from atmospheric remote sensing to astronomy, to military 

target detection, and even biomedical diagnostics. It is a crucial technique for characterization of 

aerosol particles, discernment of circumstellar structures, detection of camouflaged military 

vehicles, and diagnostics for tissue measurements. The expansive list of applications includes 

agriculture, forensics, coastal management, robotic vision, and more as polarimetry’s uses 

continue to develop each year (Snik et al. 2014).  

Polarization is one key property of light along with intensity, wavelength, and coherence (Tyo et 

al., 2006). Light has five potential polarization states: natural (non-polarized), linearly polarized, 

partially polarized, circularly polarized, and elliptically polarized. Natural light becomes 

polarized when it reflects off a surface, and the resultant angle of polarization is parallel to that 

surface. The degree and orientation (angle) of polarization observed from object reflectance are 

affected by surface structure, texture, chemical composition, water content, and angle of 

incidence (Yan et al, 2020). Objects on land produce unique polarized signals during reflectance, 

and this idea forms the basis for evaluating the efficacy of polarimetry in marine debris 

detection.  

PI cameras work by including sensors employing a combination of filters with different angular 

orientations. Specifically, chip sensors have been developed that are overlayed with specific 

filter orientations to capture both the degree and angle of polarization. A combination of pixel 

filters, arranged at angles of 0, 45, 90, and 135 degrees, are typically overlayed atop the sensor in 

repeating 2-pixel blocks as shown in Fig. 1. This combination of 2×2-pixel filter blocks is then 

extrapolated for the full sensor size. To characterize the polarization of light, measurements from 

all four angles of polarization are required. To achieve this for each pixel on the sensor requires 

an interpolation process where data from adjacent pixels is combined. This procedure is 

analogous to how data from adjacent red, green, and blue pixels is combined on color sensors to 
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produce RGB values for each pixel via a Bayer filter. Modern sensors, such as the Sony 

IMX250MZR used in this study, provide unique opportunities with a total payload of less than 

100 grams, opening the door to UAS platform integration. 

 

Figure 1: Polarizing filters overlaid on sensor in repeating pixel blocks (adapted from FLIR, 

2021). 

Despite the potential benefits of UAS-mounted polarimetric imaging cameras for marine debris 

detection and recognition, because affordable, commercially-available PI cameras are so new, 

this topic has not yet been studied. To that end, the goal of this thesis is to investigate and 

quantify potential improvement in marine debris detection and recognition using polarimetric 

imagery. The study utilized PI collected at four field sites and includes both visual and 

quantitative analysis. The visual analysis consists of viewing standard RGB imagery along with 

PI-derived image information to test whether the PI information improves detection of debris. 

Meanwhile the quantitative analysis includes both image band distance metrics (with the PI 

information treated as additional image bands) and supervised image classification, both with 

and without PI information included. The results indicate that PI information can, in fact, 

improve the detection of marine debris.  
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2. Methods 

2.1. Equipment 

Selection of a PI camera and development of the processing procedures were critical initial tasks 

in this study. The following sections detail the equipment and procedures. 

The FLIR Blackfly S USB3 5-megapixel polarimetric camera was selected for use in this study 

to evaluate the efficacy of marine debris detection. It was paired with a Fujinon 12.5-mm focal 

length C-mount lens (Figure 2). The FLIR camera was secured to an extendable pole in all 

fieldwork scenarios to achieve the desired height above ground level. Two different poles were 

utilized, both outfitted with a 6.35-mm (¼”) camera adapter for the FLIR to maintain nadir 

perspective. The first pole type was a plastic, extendable painter pole which secured to a 

weighted stand. The second was an extendable, metal survey rover pole which provided ample 

rigidity when extended to heights greater than 3.5m. This rigid configuration was essential for 

image quality when subjected to movement and wind gusts, which are common in many coastal 

locations. The pole was then either held by a crew member over debris object(s) or fixed in a 

weighted stand (Figure 3). The reason for operating the camera from a pole mount, rather than a 

UAS, in this research was that the lack of autonomous camera function meant that computer 

software was essential for not only saving images, but also adjusting the camera parameters. The 

camera required constant hardwired connection to the field laptop via a 5-m USB3.0 cable to 

perform any live parameter adjustments on the SpinView GUI (Teledyne Inc.) software, making 

it a two-person operation. The exposure settings were determined to be imperative for 

polarimetric quality, but needed to be changed frequently with changing illumination conditions 

(e.g. sun angle, clouds, shadows, etc.). These factors led to the need for meticulous manual 

adjusting of the PI camera parameters during acquisition.  
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Figure 2. (a-b) FLIR Blackfly S and Fujinon 12.5-mm focal length lens. (a) Camera and lens 

held in hand; (b) Camera and lens attached to pole. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a-b) Camera configurations used in fieldwork scenarios. (a)  fixed setup used at O.H. 

Hinsdale Wave Research Lab (left); (b) mobile setup used in Corpus Christi TX (right). 

(a) (b) 

(b) (a) 
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2.2. Processing Procedures 

The first step in processing the data from the PI camera was to compute the Stokes parameters 

(Stokes, 1852), which describe the complete or partial polarization state of light.  The Stokes 

vector, Eq. 1, consists of four parameters with three of them being mutually independent (Yan et 

al., 2020). The nature of these parameters is particularly well suited for the analysis of partially 

polarized light which is almost always observed in an outdoor environment (Snik et al., 2014).  

The four Stokes parameters, defined in Eq. 1, form the basis of all results generated in this study 

and serve as input to the calculations of the degree of linear polarization (DoLP) and the angle of 

linear polarization (AoLP). This four-dimensional vector can describe the status of any 

polarization state and degree (Yan et al., 2020): 

𝑆 =  [

𝑆0

𝑆1

𝑆2

𝑆3
2

] =

[
 
 
 
 
⟨Ẽ𝑥

2(𝑡)⟩ + ⟨Ẽ𝑦
2(𝑡)⟩

⟨Ẽ𝑥
2(𝑡)⟩ − ⟨Ẽ𝑦

2(𝑡)⟩

⟨2Ẽ𝑥(𝑡)Ẽ𝑦(𝑡)𝑐𝑜𝑠𝛿⟩

⟨2Ẽ𝑥(𝑡)Ẽ𝑦(𝑡)𝑠𝑖𝑛𝛿⟩]
 
 
 
 

= [

𝐼0 + 𝐼90
𝐼0 − 𝐼90

𝐼45 − 𝐼135
1 − (𝑆12 + 𝑆22)

]   (1) 

where Ẽx and Ẽy are components of the electrical field vector along x, y in the selected 

coordinate system, δ is the phase differences between two vibration components, and ⟨⟩ denotes 

time-averaging. 

The individual components of the Stokes vector are computed as shown in Eq. 2-6. First, 

intensity of non-polarized light, alternately denoted S0 or I, is given by Eq. 2 and has a pixel 

value range of 0 ≤ S0 ≤ 512. 

𝑆0 = 𝐼0 + 𝐼90      (2) 

The difference between horizontal and vertical polarized pixels is represented as S1 (Eq. 3). 

Positive values are horizontally linearly polarized and negative values are vertically linearly 

polarized. The pixel value range associated is -255 ≤ S1 ≤ 255. 

𝑆1 = 𝐼0 − 𝐼90      (3) 

The 45-degree component is represented by S2 (Eq 4) where positive values are 45o linearly 

polarized and negative ones are 135o linearly polarized. The pixel value range is similarly -255 ≤ 

S2 ≤ 255. 
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𝑆2 = 𝐼45 − 𝐼135      (4) 

The final parameter, S3, is the circular polarization component and is not measured by the 

IMX250MZR used in this study. S3 is assumed to be zero because sunlight is unpolarized and its 

reflection only imparts linear polarization. However, in environments with controlled 

illumination it is possible to eliminate unpolarized light and characterize the circular component 

using Eq 5 (FLIR, 2021). 

𝑆3
2 = 1 − (𝑆1

2 + 𝑆2
2)     (5) 

After computing the Stokes parameters, the next step is to compute the degree of linear 

polarization (DoLP) and angle of linear polarization (AoLP). DoLP is the primary means of 

interpreting polarization state and is represented by the proportion of light that is polarized at a 

given pixel. A completely unpolarized light source will have a DoLP of 0% while a perfectly 

polarized source would be 100%. This measure of intensity is represented by saturation level on 

a scale of zero to one, from white to black. DoLP is computed via Eq. 6 (Conte et al., 2021).  

𝐷𝑜𝐿𝑃 = 𝑃 =
√𝑆1

2+𝑆2
2

𝑆0
     (6) 

The second component that describes the polarization status of light is the orientation or the 

angle of linear polarization (AoLP). In the AoLP calculation, Eq. 7, Ѱ represents the azimuth 

angle of an eclipse based on the Stokes vector. The angle of polarization is often represented 

using a color wheel to denote specific orientation within a scene. 

𝐴𝑜𝐿𝑃 = ѱ =
1

2
 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑆1

𝑆2
)    (7) 

Bivariate color maps can often display the association between two variables more effectively 

than a side-by-side comparison of the two individually (Trumbo, 1981). For visualization 

purposes, DoLP and AoLP are combined into a bivariate image which describes the polarization 

state in terms of hue and saturation, as shown in Fig. 4. Greater saturation (x-axis) corresponds to 

increasing degree of linear polarization while hue (y-axis) represents the angle of polarization at 

any given pixel.  
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Figure 4. Illustration of bivariate image created from DoLP and AoLP. On the left is a bivariate 

DoLP/AoLP image of a pole in a walkway blocking vehicle traffic generated from imagery 

acquired with the camera used in this study. The plots on the right show how intensity, hue, and 

saturation are used to visually depict the degree and angle of linear polarization within the 

bivariate DoLP/AoLP image. 

 

After computing the Stokes vector components and DoLP and AoLP, the next step was to 

bandstack the imagery to create multi-band images that included this additional PI-derived 

information as image bands. It should be noted here that there is no theoretical basis for treating 

S0, S1, S2, and S3 or DoLP and AoLP as “spectral” bands, and, in fact, they do not provide 

spectral information. However, treating the PI-derived information as additional bands enabled 

us to employ readily-available image analysis and classification routines and, thereby, to easily 

assess the potential improvement in marine debris detection and classification afforded by 

polarimetric information. The multi-band generation was performed in ArcGIS Pro v2.8.3 (Esri, 

Inc.). The analyses and classifications performed in this study utilized the polarimetric bands, S0, 

S1, S2, DoLP and AoLP, as additional spectral bands combined with standard RGB. This 

resulted in 8-band (R/G/B/S0/S1/S2/DoLP/AoLP) composite images for assessment purposes as 

portrayed in Fig. 5. There will naturally be some correlation between these bands, since, for 

example, DoLP and AoLP are computed from S0, S1, and S2. Hence, assessing band 

correlations and separability were part of the analysis. 
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Figure 5. Visualization of the 8-band composite image generation in ArcGIS Pro, comprised of 

the R/G/B/S0/S1/S2/DoLP/AoLP layers. 

Transformed Divergence (TD) is a prominent separability index in classification routines, 

representing the statistical difference between two multivariate, Gaussian distributed signatures 

(Chauhan, 2016). Idol et al. (2008), found that texture features extracted from polarization data 

greatly improved separability between land cover classes and overall classification accuracy. The 

Divergence (D) between two classes is shown in Eq. 9 and is used to compute the Transformed 

Divergence. TD has a value range of 0 to 2000, with 2000 being maximum spectral separability 

between classes, and is calculated as shown in Eq. 10. Mausel et al. (1990) concluded that TD is 

an excellent separability measurement for multi-band image classification and determining the 

best channel combinations.  

𝐷𝑖𝑗 =
1

2
𝑡𝑟[(𝐶𝑖 − 𝐶𝑗)(𝐶𝑗

−1 − 𝐶𝑗
−1) +

1

2
𝑡𝑟[(𝐶𝑖

−1 + 𝐶𝑗
−1)(𝑀𝑖 − 𝑀𝑗)(𝑀𝑖 − 𝑀𝑗)

𝑇
] (9) 

where C is the class covariance matrix, M is the mean vector, and T is the transpose of the 

matrices. 
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𝑇𝐷𝑖𝑗 = 2000 [1 − exp (−
𝐷𝑖𝑗

8
)]    (10)  

Band Correlation Matrices were also generated using ArcGIS Pro and used to assess the 

correlation between different image bands. 

As the final step in the analysis, a supervised image classification was performed in MultiSpec 

(Biehl, 2002), both with and without the PI-derived bands included.  
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3. Experiment 

3.1. Study Sites 

PI imagery was acquired at a total of four different field locations, including a simulated beach at 

the O.H. Hinsdale Wave Laboratory on the Oregon State University campus (Figure 3a), 

Neptune State Scenic Area on the Oregon coast (Figure 5), and two areas on the Texas coast: 

Padre Island and San José Island, Figure 6. These sites were selected to achieve sufficient 

variability in not only material type and size, but also substrate and object state. Light sand, dark 

rock, and coastal vegetation are the foundation upon which many objects are typically found. 

Debris was encountered buried in, lying on top, or nestled within the various substrate types.  

 

 

Figure 6. Neptune State Scenic Viewpoint AOI on the Oregon Coast. 
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Figure 7. Corpus Christi Texas field sites. 

The O.H. Hinsdale Wave Research Lab location contained sandy substrate (sourced from the 

Oregon coast) with direct sun exposure, making it a great scenario for initial camera testing and 

imagery acquisition. Debris utilized here consisted mostly of household debris objects, due to 

limited availability of actual shoreline debris. The round of testing conducted at this site served 

primarily as a proof of concept and provided a first look into polarimetric results. It was here that 

camera and software settings were tested and optimized, and above ground heights were 

explored. 

The Neptune State Scenic Viewpoint located in coastal Oregon provided the first shoreline 

scenario for polarimetric image acquisition. It was here that procedures developed at the wave 

lab were translated to an actual beach. Due to the pristine nature of Oregon coastlines, the only 

in-situ debris readily observed are minimal microplastic fragments. Apart from storm events and 

select hotspots, weathered marine debris was surprisingly difficult to source. Oregon Parks and 

Recreation Department (OPRD) assisted in the gathering of actual debris objects that had 
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accumulated over time. This debris was transported by the OSU research team and hand-seeded 

along Neptune beach to simulate a debris-dense shoreline for polarimetric image acquisition. 

The barrier islands east of Corpus Christi, located on the Texas Gulf Coast, featured a variety of 

in-situ macro debris objects, and included two sites well suited for validating the classification 

procedure. The beaches were flat, wide swaths of sand, about forty meters from the waterline to 

the backing dunes, with dense vegetation on the landward side. Site A, Padre Island, had debris 

focused along the seaward dune edge with debris objects partially buried in sand, due to the high 

wind conditions. Site B, San José Island, afforded substantial macro debris objects because of its 

remoteness and difficulty to clean. The debris here had a wider distribution along the beach 

width, ranging from the backside vegetation all the way to the waterline. Large storm events in 

previous years had washed ashore large objects such as vessels and metal mooring buoys. Most 

debris encountered between these two sites had been significantly weathered, making them 

excellent locations for evaluating operational capabilities under the challenging types of 

conditions encountered in marine debris surveys.  

This experiment also investigated the potential applications for polarimetric sensors integrated 

on UAS platforms for marine debris management. With assistance from the US Coast Guard, the 

research team was able to simulate UAS altitudes to evaluate the camera performance by way of 

helicopter. Two tracks were flown over both study sites near Corpus Christi, TX. The camera 

was secured to a 1-m pole and held by hand outside of the cabin door, positioned nadir over the 

shoreline debris as shown in Figure 7. The first flight acquired imagery at 45-m altitude while 

the second achieved a 90-m flying height. The MH-65 helicopter maintained a speed of roughly 

8 m/s and each flight strip produced 100 polarimetric images. The camera consistently captured 

quality imagery despite aircraft vibration and wind conditions. Objects on the ground exhibited 

valuable polarimetric returns from the elevations achieved, opening potential avenues for full 

UAS integration and debris management efforts.  

Table 1 outlines fieldwork and data collection dates along with the objectives associated with 

each.  
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Figure 8. Polarimetric camera acquiring aerial imagery of debris at UAS altitudes onboard 

USCG helicopter. 

3.2. Data Collection 

Table 1. Description of the data collected at each of the study sites. 

Date(s) Location Equipment Data collection objectives 

10/28/2020 O.H. 

Hinsdale 

Wave Lab 

Fixed PI setup 

(2.1m AGL) 

Obtain preliminary polarimetric results, test 

camera parameters 

12/2/2020 O.H. 

Hinsdale 

Wave Lab 

Fixed PI camera 

setup (3m AGL) 

Test different material types and new sensor 

height 

10/30-

10/31/2021 

O.H. 

Hinsdale 

Wave Lab 

Fixed PI camera 

setup (3.7m AGL) 

Test using actual marine debris sourced 

from Oregon coast at new sensor height, 

generate georeferenced orthomosaic 

5/4/2021 Neptune 

State Scenic 

Viewpoint 

Mobile PI setup 

(3m AGL) 

Acquire polarimetric imagery of marine 

debris seeded on sandy shoreline  

7/8/2021 Neptune 

State Scenic 

Viewpoint 

Mobile PI setup 

(3.7m AGL) 

Acquire polarimetric imagery of higher 

quality debris scene debris scene on mix of 

substrates (sand, cobble, rocky outcrop) 

12/10/2021 Padre Island, 

TX 

Mobile PI setup 

(4.4m AGL) w/ 

belt mount 

Acquire polarimetric imagery of in-situ 

debris objects between 3 sections of 

shoreline 
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12/12/2021 San José 

Island, TX 

Mobile PI setup 

(4.4m AGL) w/ 

belt mount 

Setup robust debris field using debris 

sourced from 1km2 area to create large 

orthomosaic analysis 

12/14/2021 San José 

Island, TX 

Mobile PI setup 

(5m AGL) w/ belt 

mount 

Setup another debris field featuring different 

types of local debris objects for orthomosaic 

analysis 

12/15/2021 Padre Island 

& San José 

Island, TX 

FLIR attached to 

1m pole, held out 

of cabin door  

Fly over both Texas field sites with USCG 

support to test camera capabilities at UAS 

altitudes (45-90m AGL) 

 

Of the data collection activities listed above, the data in the debris fields on San José Island, 

Texas, served as the primary data set for this research.  

This study site was located within first couple kilometers north of the north Port Aransas jetty. 

The site contained a range of debris extending from water line up to the dune. The composition 

was mostly plastics, especially near the water, with some larger objects sprinkled up towards the 

dune line. The polarimetric imagery acquired in the site included a mix of singular frames with 

interesting/multiple objects as well as a constructed conglomerate scene using a substantial 

number of objects from several different classes. 

The project team aggregated debris from a 1km2 area to form two different debris fields, each 

containing different material types and distributions. The larger field was organized into a 38×8 

m scene to achieve high quality polarimetric data of the native debris items (Fig. 8). The scene 

included mostly plastic objects ranging from water bottle size up to some larger gas jugs/barrel 

fragments. The next most populated classes in the scene were ropes (~12) and wood (~12). The 

ropes varied in length, diameter, and color, as did the wood samples. The smaller debris field 

accounted for alternate debris classes and allowed for rigorous analysis of rubber (tire 

fragments/flip flops), glass, wood, buoys/foam, and aluminum. This scene was more compact 

with an area of 6×2.5 m and is shown in Figure 10. These seven classes (plastic, rope/line/net, 

wood, rubber, glass, buoys/foam, and aluminum) had substantial sample size for robust testing to 

determine whether inclusion of polarimetric bands improved detection/classification of these 

types. 
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Figure 9. Debris Field 2 on San José Island. 

 

Figure 10. Polarimetric imagery acquisition at San José debris field 2 on 12/12/2021. 
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After the bandstacking operation performed in ArcGIS to generate 8-band individual frame 

images, these images were then processed in Agisoft Metashape to generate georeferenced 

orthomosaics. The debris field orthomosaics served as input to the k-nearest neighbors (KNN) 

algorithm for supervised classification in MultiSpec. KNN was selected as the classification 

routine due to the simple yet effective employment in discriminant analysis (Silverman and 

Jones, 1989). To enable the comparison between the imagery with and without the PI-derived 

information included, the original three-band (RGB) images were also processed in Metashape to 

generate a separate set of orthomosaics. Objects within each scene were split into training and 

test fields, and each class contained 12-30 fields for evaluation.  Objects were selected, based on 

the goals of having roughly equal numbers of each type and condition (weathered/new, 

partial/whole, color, size) of object in the training and test data sets. The model tested on the 

same samples it used for training, making the training accuracy improvement also noteworthy. 

The nearest K Neighbor value was set to 5 and the total run time was about 150 hours for the 

three scenes. Training and test accuracies as well as kappa statistics improved with inclusion of 

the polarimetric data stacked as additional spectral bands.  

 

 

Figure 11. Object class sample fields selected in MultiSpec for supervised classification of San 

José orthomosaic 1. 
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4. Results 

4.1. Visual Assessment 

The first part of the analysis was to visually assess the PI camera outputs to see if they improved 

visual detection and recognition of debris over what is achievable with RGB imagery only. This 

visual representation was achieved using the bivariate display consisting of DoLP and AoLP 

measurements. It was found that PI is visually rich in the instance of like-color substrate and 

objects, dark scenes, structural perception, and material type distinction. Dark objects with 

distinct angular features are better perceived in the polarimetric display. Similarly, dark scenes 

where the object surfaces visually blend into the substrate are more easily distinguished in the 

polarimetric imagery. In instances of homogenous backgrounds such as fine sand, PI helps to 

highlight the shape of objects and allow for easier visual inference (natural vs man-made). As the 

substrate becomes more complex, including items such as shells, rocks, and vegetation, the 

visual quality of polarimetric imagery is diminished. At high elevations, man-made objects are 

still easily discernible in the polarimetric imagery when surrounded by sand or minimal 

vegetation. These observations are all represented in Figures 11-15 as well as Appendix A.  

Material type and surface textures can be observed in Figure 11 with smooth, reflective objects 

(i.e., undamaged plastics and coated metal bars) showing the strongest polarimetric returns. 

Objects with granular surface textures, such as the bike tire, exhibited less specular reflectance 

(indicated by a “shiny” appearance in the RGB imagery) and had a lower degree of polarization. 

Against the dark rock backdrop, however, the circular tire shape is still visually discernable. 

Figure 12 displays in-situ examples of weathered and partially buried debris objects encountered 

at San José Island TX. Defining object characteristics, such as shape or texture, are readily 

observed in the bivariate display for the bucket, tire fragment, and rope despite the natural 

deformation to object state. The influence from complex substrate type can be seen in Figs 11-14 

where rocks, shells, wood, and vegetation draw significant visual attention. Smooth sand has a 

uniform, dull appearance in the bivariate polarimetric imagery, allowing debris objects to readily 

stand out against a sand background. For example, in Fig. 13, man-made objects are readily 

discernable from natural sand in the imagery acquired over San José debris field 2 from 45-m 

altitude in the USCG helicopter. 
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Figure 12. Various debris types over Oregon substrate. RGB image (left) vs Bivariate image 

(right). 
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Figure 13. Partially buried debris objects at San José Island, TX. 
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Figure 14. Metal mooring buoy @ 45m altitude, San José TX. 

 

Figure 15. Partially buried fences @ 90m altitude, San José TX. 

 

Figure 16. San José debris field 2 @ 45m altitude. 
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4.2. Quantitative Analysis 

The classification results are expressed using training and test accuracies (per class), training and 

test accuracies (overall), as well as the kappa statistic. Overall accuracy is a popular 

classification measure that is calculated by dividing the total correct pixels (sum of the diagonal) 

by the total number in the error matrix. The individual class performance is measured using 

producer’s and user’s accuracies. Producer’s accuracy refers to the probability of a reference 

pixel being correctly classified while the user’s accuracy indicates the probability that a pixel on 

the image actually represents that class on the ground (Congalton, 1991). Kappa represents the 

proportion between actual agreement and the agreement expected by chance (Cohen, 1960).  

𝛫 =
(𝑝𝑜 − 𝑝𝑐)

(1 − 𝑝𝑐)
       (11) 

 where po is the proportion of units in which the model agreed, and pc is the proportion of units 

for which agreement is expected by chance. 

The results of the band correlation analysis are shown in Tables 2, 5, and 8 for the scenes shown 

in Figs. 16-18. The results of the KNN classification routines are shown in Tables 3, 4, 6, 7, 9, 

and 10.  
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4.2.1. San José Orthomosaic 1 

 

Figure 17. San José debris field 1, used for evaluating band correlations and debris 

classification. 5m AGL sensor height, 8 images total. 

Table 2. Covariance and correlation matrices for 8-band image orthomosaic 

(R/G/B/S0/S1/S2/DoLP/AoLP). 

 

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 2544 2450 2458 2563 2579 2562 2325 1023

Green 2450 2436 2432 2524 2407 2397 2159 952

Blue 2458 2432 2634 2580 2961 2957 2738 1157

S0 2563 2524 2580 2701 2689 2678 2427 1064

S1 2579 2407 2961 2689 4837 4810 4656 2052

S2 2562 2397 2957 2678 4810 4819 4651 2094

DOLP 2325 2159 2738 2427 4656 4651 4583 2033

AOLP 1023 952 1157 1064 2052 2094 2033 7827

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 1.000 0.984 0.950 0.978 0.735 0.732 0.681 0.229

Green 0.984 1.000 0.960 0.984 0.701 0.700 0.646 0.218

Blue 0.950 0.960 1.000 0.967 0.830 0.830 0.788 0.255

S0 0.978 0.984 0.967 1.000 0.744 0.742 0.690 0.231

S1 0.735 0.701 0.830 0.744 1.000 0.996 0.989 0.333

S2 0.732 0.700 0.830 0.742 0.996 1.000 0.990 0.341

DOLP 0.681 0.646 0.788 0.690 0.989 0.990 1.000 0.339

AOLP 0.229 0.218 0.255 0.231 0.333 0.341 0.339 1.000

SJ Ortho 1 Covariance Matrix 

SJ Ortho 1 Correlation Matrix 
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Table 3. Classification results from MultiSpec K-NN analysis for SJ orthomosaic 1. 

RGB (3-band) 
Material Type Training Accuracy 

(Prod, user) % 
Test Accuracy 

(Prod, user) % 
Overall/kappa 

train (%) 
Overall/kappa 

test (%) 
Mean 

TD 
Synthetic Rubber 91.2, 79 91.6, 71.3 83.3, 72.7 76.2, 59.1 1081 
Glass 38.5, 34.4 10.8, 11.5 
Wood 78, 64.7 25.6, 21.9 
Buoy/Foam 72.4, 80.8 56.6, 45.4 
Aluminum 32.1, 67.5 3.9, 9.2 
Substrate 88.6, 93.3 84.3, 94.6 

RGB + S0 + S1 + S2 + DOLP + AOLP (8-band) 
Material Type Training Accuracy 

(Prod, user) % 
Test Accuracy 

(Prod, user) % 
Overall/kappa 

train (%) 
Overall/kappa 

test (%) 
Mean 

TD 
Synthetic Rubber 89.6, 86.6 90.1, 74 89.9, 82.6 82.5, 67.4 1531 
Glass 30.6, 62.3 10.2, 24.4 
Wood 87.8, 87 20.7, 33.4 
Buoy/Foam 76.2, 85.2 57.9, 55.8 
Aluminum 47.2, 68.7 5.3, 8.3 
Substrate 97.2, 92.9 95.1, 93.5 

 

Table 4. Percentage point change of classification accuracy with the inclusion of PI-derived 

image bands for SJ orthomosaic 1. 

Class Percentage Point Change 

Producer’s Accuracy 

(Train, Test) 

Percentage Point Change 

User’s Accuracy 

(Train, Test) 

Synthetic Rubber -1.6, -1.5 +7.6, +2.7 

Glass -7.9, -0.6 +27.9, +12.9 

Wood +9.8, -4.9 +22.3, +11.5 

Buoy/foam +3.8, +1.3 +4.4, +10.4 

Aluminum +15.1, +1.4 +1.2, -0.9 

Substrate +8.6, +10.8 -0.4, -0.9 
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4.2.2. San José Orthomosaic 2 

 

Figure 18. San José debris field 2, used for evaluating band correlations and debris 

classification. 4.4m AGL sensor height, 72 images total. 

 

Table 5. Covariance and correlation matrices for 8-band image orthomosaic 

(R/G/B/S0/S1/S2/DoLP/AoLP). 

 

 

 

 

 

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 5590 5316 6235 5870 9173 9177 8870 4090

Green 5316 5076 5941 5596 8679 8684 8387 3871

Blue 6235 5941 7024 6573 10398 10407 10071 4621

S0 5870 5596 6573 6202 9662 9668 9342 4303

S1 9173 8679 10398 9662 15919 15929 15475 7073

S2 9177 8684 10407 9668 15929 15947 15489 7099

DOLP 8870 8387 10071 9342 15475 15489 15076 6893

AOLP 4090 3871 4621 4303 7073 7099 6893 7002

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 1.000 0.998 0.995 0.997 0.972 0.972 0.966 0.654

Green 0.998 1.000 0.995 0.997 0.965 0.965 0.959 0.649

Blue 0.995 0.995 1.000 0.996 0.983 0.983 0.979 0.659

S0 0.997 0.997 0.996 1.000 0.972 0.972 0.966 0.653

S1 0.972 0.965 0.983 0.972 1.000 1.000 0.999 0.670

S2 0.972 0.965 0.983 0.972 1.000 1.000 0.999 0.672

DOLP 0.966 0.959 0.979 0.966 0.999 0.999 1.000 0.671

AOLP 0.654 0.649 0.659 0.653 0.670 0.672 0.671 1.000

SJ Ortho 2 Covariance Matrix 

SJ Ortho 2 Correlation Matrix 
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Table 6. Classification results from MultiSpec K-NN analysis for SJ orthomosaic 2. 

RGB (3-band) 
Material Type Training Accuracy 

(Prod, user) % 
Test Accuracy 

(Prod, user) % 
Overall/kappa 

train (%) 
Overall/kappa 

test (%) 
Mean 

TD 
Plastic 92.2, 71.4 50.5, 79.8 64.5, 50.4 50.1, 34.2 1213 
Wood 68.5, 25.7 53.2, 13.7 
Rope 72.5, 62.7 64.9, 25.7 
Substrate 55, 94.3 45.6, 89.8 

RGB + S0 + S1 + S2 + DOLP + AOLP (8-band) 
Material Type Training Accuracy 

(Prod, user) % 
Test Accuracy 

(Prod, user) % 
Overall/kappa 

train (%) 
Overall/kappa 

test (%) 
Mean 

TD 
Plastic 91.5, 89.7 57.8, 93.2 89.9, 83.1 75.8, 63.5 1748 
Wood 71.4, 81.1 53.4, 48.7 
Rope 81.4, 83.9 77, 39.1 
Substrate 95.9, 93.3 90.7, 90.4 

 

 

 

Table 7. Percentage point change of classification accuracy with the inclusion of PI-derived 

image bands for SJ orthomosaic 2. 

Class Percentage Point Change 

Producer’s Accuracy 

(Train, Test) 

Percentage Point Change 

User’s Accuracy 

(Train, Test) 

Plastic -0.7, +7.3 +18.3, +13.4 

Wood +2.9, +0.2 +55.4, +35 

Rope +8.9, +12.1 +31.2, +13.4 

Substrate +40.9, +45.1 -1, +0.6 
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4.2.3. Wavelab Orthomosaic 

 

Figure 19. Wavelab debris field, used for evaluating band correlations and debris classification. 

3.6m AGL sensor height, 34 images total. 

Table 8. Covariance and correlation matrices for 8-band image orthomosaic 

(R/G/B/S0/S1/S2/DoLP/AoLP). 

 

 

 

 

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 9345 9228 9451 8213 9821 9877 8295 5395

Green 9228 9239 9495 8216 9734 9806 8217 5399

Blue 9451 9495 9944 8233 10381 10483 8841 5721

S0 8213 8216 8233 7951 8012 8036 6591 4580

S1 9821 9734 10381 8012 11943 12043 10410 6529

S2 9877 9806 10483 8036 12043 12182 10507 6653

DOLP 8295 8217 8841 6591 10410 10507 9359 5833

AOLP 5395 5399 5721 4580 6529 6653 5833 9615

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 1.000 0.993 0.980 0.953 0.930 0.926 0.887 0.569

Green 0.993 1.000 0.991 0.959 0.927 0.924 0.884 0.573

Blue 0.980 0.991 1.000 0.926 0.953 0.952 0.916 0.585

S0 0.953 0.959 0.926 1.000 0.822 0.817 0.764 0.524

S1 0.930 0.927 0.953 0.822 1.000 0.998 0.985 0.609

S2 0.926 0.924 0.952 0.817 0.998 1.000 0.984 0.615

DOLP 0.887 0.884 0.916 0.764 0.985 0.984 1.000 0.615

AOLP 0.569 0.573 0.585 0.524 0.609 0.615 0.615 1.000

Wavelab Ortho Covariance Matrix 

Wavelab Ortho Correlation Matrix 
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Table 9. Classification results from MultiSpec K-NN analysis for wavelab orthomosaic. 

RGB (3-band) 
Material Type Training Accuracy 

(Prod, user) % 
Test Accuracy 

(Prod, user) % 
Overall/kappa 

train (%) 
Overall/kappa 

test (%) 
Mean 

TD 
Plastic 92.4, 50.3 55.9, 32.8 71.9, 60.5 51.8, 33.2 1219 
Glass 16.7, 28.8 3.4, 4.7 
Buoy/foam 87.1, 68.8 37.1, 38.4 
Other Debris 65.7, 79.1 49.3, 59.1 
Substrate 66.3, 91.6 57.6, 74.8 

RGB + S0 + S1 + S2 + DOLP + AOLP (8-band) 
Material Type Training Accuracy 

(Prod, user) % 
Test Accuracy 

(Prod, user) % 
Overall/kappa 

train (%) 
Overall/kappa 

test (%) 
Mean 

TD 
Plastic 86.7, 81.7 38.1, 49.5 86.9, 80.8 64.2, 48.2 1639 
Glass 19.9, 69.5 2.2, 6.5 
Buoy/foam 89.8, 92 40.1, 40.5 
Other Debris 88.6, 85.7 74.9, 65.2 
Substrate 86.6, 90.8 76.6, 76.7 

 

 

 

Table 10. Percentage point change of classification accuracy with the inclusion of PI-derived 

image bands for Wavelab orthomosaic. 

Class Percentage Point Change 

Producer’s Accuracy 

(Train, Test) 

Percentage Point Change 

User’s Accuracy 

(Train, Test) 

Plastic -5.7, -16 +31.4, +17.7 

Glass +3.2, -1.2 +40.7, +1.8 

Buoy/foam +2.7, +3 +23.2, +2.1 

Other Debris +22.9, +25.6 +6.6, +6.1 

Substrate +20.3, +19 -0.8, +1.9 
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Figure 20. (a-b) Wavelab ortho surface cluster mask results from KNN algorithm. (a) RGB (left); 

(b) 8-band (right). 

(b) (a) 
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5. Discussion  

Beyond the overall accuracy assessment results, the transformed divergence (TD) values were 

found to provide insight into the improvement attainable by adding the PI information. The TD 

values substantially increased, indicating that polarimetric inclusion benefits separability of 

marine debris classes. This is likely attributed to the added information about surface texture 

features such as roughness, shape, and shading. The TD results revealed that red-green-blue were 

not always the best 3-band combination for debris separability within these scenes. For the SJ 

ortho 1, the best 3-band combination was green-blue-S0 with an average TD value of 1175 

(versus 1081 RGB). For SJ ortho 2, the best combination was red-blue-S0 at 1366 (versus 1213 

for RGB). The wavelab ortho best 3-band combination was indeed red-green-blue with an 

average TD value of 1219. As a specific example, if we consider the SJ Ortho 2 and the 

separability of plastic vs. rope, the TD value when using only the RGB bands is 560, which is 

considered very poor (inseparable). However, by adding the PI-derived bands, the TD jumps to 

1546. Similarly, if we consider wood vs. rope for the same orthomosaic, the TD value for RGB 

only was 662, but increased to 1561 after adding the PI-derived bands. These results are 

particularly interesting for future studies in evaluating the ideal data combinations in debris 

classification procedures.  

On the USCG helicopter, the FLIR camera performed well at altitudes of up to 90 meters and 

speeds of 8 m/s once the exposure was adjusted accordingly. The quality of the aerial imagery 

obtained showed promise for implementing this type of technology in debris survey and response 

efforts. Future efforts could benefit from use of a Raspberry Pi onboard system to increase 

autonomous camera function and allow full UAS integration. Polarimetric sensor technology of 

this size has only been released to market within the last decade and is certain to be further 

developed as its field applications continue to grow.  

The investigations performed in this study identified practical challenges and technological 

limitations of the system employed. The lack of camera autonomy, primarily due to the new 

sensors, meant that the acquisition process was quite manual and tedious. The camera required 

consistent cable connection to a field laptop where images were individually captured, and 

parameters often adjusted. Exposure level and weather conditions were key for polarimetric 

imaging quality. Time of day/incidence angle substantially affected polarimetric state observed 
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on many objects tested where the same object resulted in different reflectance signatures between 

scenes. Atmospheric conditions also significantly affected the polarized light state observed. Yan 

et al. (2020) found that dense or even partial cloud cover induced a light scattering phenomenon 

which decreases quality of both DoLP and AoLP. Shoreline and substrate conditions also heavily 

influenced debris detection and classification. Objects nestled in dense vegetation or submerged 

in complex substrate (i.e. rocks/shells/sand) were not easily identifiable in the polarimetric 

imagery. Wet sand and compacted features, such as footprints and car tracks, also showed 

polarimetric returns and added noise to some scenes.  
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6. Conclusion 

This study provided strong indication that polarimetric imaging is a useful asset in detection and 

classification of marine debris objects across seven material classes. Overall, the polarimetric 

information displayed visually rich object characteristics and improved both the visual 

identification and automated classification of debris. In particular, polarimetric imaging 

enhanced information about surface textures, shape, shading, and roughness that spectral bands 

otherwise could not.  

A major logistical challenge was sourcing sufficient debris accumulations of various material 

types. Most scenes and debris encountered consisted of primarily plastic objects, followed by 

processed wood, buoys/foam, glass, rubber, ropes/nets, and aluminum cans. Due to the practical 

limitations of the field study (particularly, the number and types of debris items available and 

amount of area that could realistically be covered using the pole-mounted camera), the sampling 

strategy and numbers of items sampled within each class did not adhere to the stringent 

guidelines often employed in remote sensing for classification accuracy assessment (e.g., 

Congalton and Green, 2019). For this reason, the accuracy values in Tables 3, 6 and 9 may 

overestimate the accuracies that could be achieved in an operational marine debris mapping 

project. However, what is important in these tables is the improvement in accuracy, based on 

adding the PI-derived bands.  

Future endeavors can build on this work by experimenting with different material types and 

machine learning algorithms. One recommended extension is to investigate other machine 

learning algorithms, beyond KNN, for auto-classification of debris in the imagery. For example, 

convolutional neural networks could be investigated for classification of marine debris in 

polarimetric imagery, where much larger training data sets are available. It would also be 

advantageous to acquire imagery at variable incidence angles and sky conditions to investigate 

optimal acquisition conditions and parameters.  

Integration of polarimetric sensors on UAS platforms would greatly expand operational 

capabilities and could easily be employed for coastal response teams such as NOAA’s Marine 

Debris Program. Hence, future efforts should focus on integrating the PI camera onto a UAS, 

leveraging the work done in this study acquiring imagery from the helicopter. Lastly, it would be 

of interest to investigate additional methods of processing the PI data for both enhanced visual 
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analysis and use in the automated classification routines. Through this ongoing work, PI cameras 

are anticipated to become increasingly valuable for the application of marine debris detection 

and classification.   
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Appendix A: RGB vs Bivariate Image Examples 

 

Figure A.1. Pile of trash, San José TX. 

 

Figure A.2. Plastic crate and wood fragment partially buried, San José TX. 

 

Figure A.3.Tire fragment and plastic funnel on cobblestone, Neptune OR. 
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Figure A.4. San José debris field 1 @ 45m altitude. 

 

Figure A.5. San José debris field 1 @ 90m altitude. 

 

Figure A.6. Processed wood debris @ 45m altitude, San José TX. 
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Figure A.7. Scattered debris in dense vegetation @ 45m altitude, San José TX. 

 

Figure A.8. Scattered debris in dense vegetation @ 90m altitude, San José TX. 
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Appendix B: Transformed Divergence Results 
 

Table B.1. Transformed divergence results for San José Orthomosaic 1, sorted by best average value across all classes. 

  

 

 

 

 

 

 

class pairs >
Rubber vs

Glass

Rubber vs

Wood

Rubber vs

Foam

Rubber vs

Aluminum

Rubber vs

Substrate

Glass vs 

Wood

Glass vs 

Foam

Glass vs 

Aluminum

Glass vs 

Substrate

Wood vs 

Foam

Wood vs 

Aluminum

Wood vs 

Substrate

Foam vs 

Aluminum

Foam vs 

Substrate

Aluminum vs

Substrate

weighting factor > 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Rank Channels   Min. Average

1 2  3  4 200 1175 1070 1257 1823 1260 1959 200 889 461 1290 1054 459 1254 770 1995 1888

2 1  4  6 299 1131 985 1421 1777 1161 1860 497 845 299 1061 878 736 1487 338 1962 1666

3 2  4  6 247 1131 1026 1458 1811 1218 1914 492 835 247 1066 842 732 1505 257 1969 1591

4 2  3  6 443 1107 879 1292 1307 767 1828 443 637 499 1144 1088 842 1489 690 1941 1765

5 1  3  4 122 1104 908 1178 1784 1234 1931 122 881 384 1219 795 428 1158 713 1980 1836

6 1  2  3 398 1081 810 931 1366 778 1859 398 814 429 1152 1445 569 1002 899 1974 1786

7 3  4  6 268 1076 690 1330 1722 1135 1697 483 841 268 1016 901 786 1506 303 1960 1510

8 1  2  4 71 1060 956 1218 1799 1231 1939 71 880 263 1145 755 339 1026 571 1977 1730

9 1  3  6 399 1060 699 1234 1288 730 1763 399 732 406 1109 936 817 1481 716 1891 1690

10 1  4  7 256 1051 895 1217 1764 1191 1873 322 845 256 1021 686 460 1205 381 1967 1678

Rank Channels   Min. Average

1 2  3  4  6 543 1325 1191 1522 1837 1296 1964 629 954 543 1392 1226 935 1694 799 1995 1895

2 1  2  3  4 470 1276 1111 1340 1838 1293 1968 470 978 472 1402 1493 642 1296 925 1997 1908

3 1  3  4  6 466 1267 1041 1486 1801 1268 1937 554 947 466 1338 1018 898 1668 745 1982 1848

4 2  3  4  5 426 1260 1208 1308 1842 1300 1965 426 948 547 1434 1119 570 1508 822 1996 1903

5 2  3  4  7 461 1252 1122 1357 1831 1308 1967 461 962 492 1370 1090 623 1496 810 1996 1901

Rank Channels                 Min. Average

1 1 to 8 667 1531 1462 1790 1895 1458 1980 1136 1176 667 1609 1716 1259 1802 1081 1998 1934

Weighted Interclass Distance Measures

Weighted Interclass Distance Measures

SJ Ortho 1 Transformed Divergence Results - Best band combinations for interclass separability

Best 4-band Combinations

8-band Combination 

Best 3-band Combinations

Weighted Interclass Distance Measures
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Table B.2.  Transformed divergence results for San José Orthomosaic 2, sorted by best average value across all classes. 

  

 

 

class pairs > Plastic vs Wood Plastic vs Rope Plastic vs Substrate Wood vs Rope Wood vs Substrate Rope vs Substrate

weighting factor > 10 10 10 10 10 10

Rank Channels   Min. Average

1 1  3  4 697 1366 1947 697 1972 852 1280 1447

2 2  3  4 688 1321 1892 688 1970 706 1242 1429

3 1  4  7 768 1316 1805 960 1646 768 1240 1478

4 1  2  4 499 1312 1906 499 1869 913 1277 1407

5 2  4  7 763 1285 1795 939 1529 763 1212 1469

6 3  4  7 570 1264 1633 956 1719 570 1193 1514

7 1  4  6 689 1258 1786 689 1631 953 1188 1302

8 1  3  7 543 1248 1446 988 1932 543 1004 1573

9 2  3  7 480 1242 1386 1013 1940 480 1067 1563

10 1  4  5 582 1232 1804 582 1659 692 1275 1379

11 2  4  6 659 1224 1775 659 1504 962 1156 1290

12 1  2  3 560 1213 1519 560 1968 662 1097 1472

Rank Channels   Min. Average

1 1  3  4  7 991 1515 1955 1144 1974 991 1334 1694

2 1  3  4  6 933 1481 1949 933 1976 1141 1294 1594

3 2  3  4  7 871 1480 1906 1147 1972 871 1299 1682

4 1  2  4  7 1018 1477 1917 1018 1879 1046 1328 1670

5 1  2  3  4 771 1461 1955 771 1986 1059 1367 1627

Rank Channels                 Min. Average

1 1 to 8 1521 1748 1975 1546 1994 1561 1521 1894

Weighted Interclass Distance Measures

SJ Ortho 2 Transformed Divergence Results - Best band combinations for interclass separability

Best 3-band Combinations

Weighted Interclass Distance Measures

Best 4-band Combinations

Weighted Interclass Distance Measures

8-band Combination 
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Table B.3. Transformed divergence results for Wavelab Orthomosaic, sorted by best average value across all classes. 

 

class pairs >
Plastic vs

Glass

Plastic vs

Foam

Plastic vs

Other

Plastic vs

Substrate

Glass vs

Foam

Glass vs 

Other

Glass vs 

substrate

Foam vs 

Other

Foam vs 

Substrate

Other vs 

substrate

weighting factor > 10 10 10 10 10 10 10 10 10 10

Rank Channels   Min. Average

1 1  2  3 371 1219 874 1996 692 957 1324 371 1068 1680 1995 1237

2 1  3  4 218 1206 710 1959 626 1184 1118 218 1342 1308 2000 1591

3 1  3  6 604 1169 1171 1902 616 958 1261 604 1068 890 1985 1235

4 1  3  7 560 1161 661 1942 724 878 1622 560 1021 977 1989 1241

5 1  2  4 218 1150 640 1993 705 757 1326 218 1100 1435 1998 1331

6 1  2  6 603 1146 1167 1990 687 641 1435 603 829 1171 1972 969

7 1  2  7 543 1119 655 1994 792 543 1714 553 744 1232 1980 982

8 1  3  5 337 1094 746 1918 601 882 1069 337 1128 1064 1991 1207

9 2  3  4 367 1091 691 1616 436 1186 897 367 1342 808 1999 1568

10 2  3  7 523 1073 583 1632 523 932 1503 604 1068 725 1968 1196

Rank Channels   Min. Average

1 1  2  3  4 522 1380 1010 1997 755 1241 1450 522 1432 1762 2000 1629

2 1  2  3  6 716 1361 1336 1996 716 1045 1541 820 1190 1689 1996 1280

3 1  3  4  6 651 1354 1241 1960 651 1248 1387 698 1429 1320 2000 1610

4 1  3  4  7 646 1343 770 1978 751 1197 1701 646 1392 1379 2000 1618

5 1  2  3  7 766 1340 925 1998 818 973 1775 766 1144 1712 1997 1291

Rank Channels                 Min. Average

1 1 to 8 990 1639 1590 1999 990 1393 1920 1332 1637 1846 2000 1688

Wavelab Ortho Transformed Divergence Results - Best band combinations for interclass separability

Weighted Interclass Distance Measures

Best 4-band Combinations

Weighted Interclass Distance Measures

8-band Combination 

Weighted Interclass Distance Measures

Best 3-band Combinations
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Appendix C: Single 8-band image band correlation examples (pre-mosaic) 

 

Figure C.1. Single 8-band image (5/8) from San José debris field 1. 

Table C.1. Covariance and correlation statistics for Fig C.1. 

 

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 1454 1435 1101 1389 26 13 -167 -16

Green 1435 1520 1189 1449 15 11 -179 -30

Blue 1101 1189 1030 1155 0 6 -136 -100

S0 1389 1449 1155 1637 16 9 -196 -61

S1 26 15 0 16 43 13 37 102

S2 13 11 6 9 13 52 44 193

DOLP -167 -179 -136 -196 37 44 179 169

AOLP -16 -30 -100 -61 102 193 169 16025

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 1.000 0.965 0.900 0.900 0.103 0.047 -0.328 -0.003

Green 0.965 1.000 0.950 0.918 0.057 0.038 -0.343 -0.006

Blue 0.900 0.950 1.000 0.890 0.000 0.027 -0.317 -0.025

S0 0.900 0.918 0.890 1.000 0.059 0.030 -0.363 -0.012

S1 0.103 0.057 0.000 0.059 1.000 0.263 0.421 0.122

S2 0.047 0.038 0.027 0.030 0.263 1.000 0.459 0.211

DOLP -0.328 -0.343 -0.317 -0.363 0.421 0.459 1.000 0.100

AOLP -0.003 -0.006 -0.025 -0.012 0.122 0.211 0.100 1.000

SJ Ortho 1 Single 8-band Covariance Matrix 

SJ Ortho 1 Single 8-band Correlation Matrix 
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Figure C.2. Single 8-band image (34/72) from San José debris field 2. 

Table C.2. Covariance and correlation statistics for Fig C.2. 

 

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 487 490 387 475 11 1 -60 122

Green 490 538 438 513 6 -2 -68 102

Blue 387 438 392 424 -1 -2 -54 53

S0 475 513 424 675 7 -3 -78 87

S1 11 6 -1 7 21 3 17 67

S2 1 -2 -2 -3 3 20 17 172

DOLP -60 -68 -54 -78 17 17 68 74

AOLP 122 102 53 87 67 172 74 16020

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 1.000 0.958 0.886 0.828 0.109 0.008 -0.327 0.044

Green 0.958 1.000 0.954 0.850 0.052 -0.016 -0.357 0.035

Blue 0.886 0.954 1.000 0.824 -0.006 -0.026 -0.333 0.021

S0 0.828 0.850 0.824 1.000 0.060 -0.027 -0.362 0.026

S1 0.109 0.052 -0.006 0.060 1.000 0.158 0.442 0.116

S2 0.008 -0.016 -0.026 -0.027 0.158 1.000 0.453 0.301

DOLP -0.327 -0.357 -0.333 -0.362 0.442 0.453 1.000 0.071

AOLP 0.044 0.035 0.021 0.026 0.116 0.301 0.071 1.000

SJ Ortho 2 Single 8-band Covariance Matrix 

SJ Ortho 2 Single 8-band Correlation Matrix 
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Figure C.3. Single 8-band image (18/34) from Wavelab debris field. 

Table C.3. Covariance and correlation statistics for Fig C.3. 

 

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 1978 1920 1470 2495 111 43 -295 269

Green 1920 2097 1692 2625 87 43 -330 307

Blue 1470 1692 1515 2039 35 28 -292 238

S0 2495 2625 2039 4180 175 83 -490 458

S1 111 87 35 175 86 14 95 40

S2 43 43 28 83 14 54 66 224

DOLP -295 -330 -292 -490 95 66 733 248

AOLP 269 307 238 458 40 224 248 16198

Layer Red Green Blue S0 S1 S2 DOLP AOLP

Red 1.000 0.943 0.849 0.868 0.268 0.133 -0.245 0.048

Green 0.943 1.000 0.949 0.887 0.204 0.128 -0.266 0.053

Blue 0.849 0.949 1.000 0.810 0.097 0.098 -0.277 0.048

S0 0.868 0.887 0.810 1.000 0.292 0.174 -0.280 0.056

S1 0.268 0.204 0.097 0.292 1.000 0.202 0.378 0.034

S2 0.133 0.128 0.098 0.174 0.202 1.000 0.329 0.239

DOLP -0.245 -0.266 -0.277 -0.280 0.378 0.329 1.000 0.072

AOLP 0.048 0.053 0.048 0.056 0.034 0.239 0.072 1.000

Wavelab Ortho Single 8-band Covariance Matrix 

Wavelab Ortho Single 8-band Correlation Matrix 


