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Chapter 1: Introduction

Recently, there has been a growing academic interest in embodied AI agents functioning

in simulated, photorealistic environments. These agents have been applied to tasks such

as navigating to point goals [1][2][5][9][13], following instructions [6][17] and answering

questions based on visual observations [26].

In this work, we focus our attention to the task of point-goal navigation as specified in

Savva et. al., [2]. In this task, an agent is spawned at a random location in an unseen

indoor environment and is expected to navigate to a goal location specified in relative

Euclidean coordinates. The agent cannot always travel in a straight line to the point-goal

as there might be walls and other obstacles such as tables, sofas etc. as in any indoor

setting. The agent has no access to a map of the environment but has GPS+Compass

that provides pose information at each time step. It must navigate to the point-goal

using visual observations and pose information alone.

At each training step, the agent receives a reward from the environment for the action

it takes for progressing towards goal. The agents trained in such a setting must learn a

policy to map visual observations to actions. This is most commonly framed as a large-

scale reinforcement learning problem that requires millions or even billions of experiential

steps. The agent is assessed by its ability to reach the point-goal using the most optimal

path. The state-of-the-art approach to point-goal navigation, DD-PPO [27], achieves

nearly perfect performance after 2.5 billion simulation steps (approximately 80 years of

real-world experience) using a neural architecture. It takes about 6 months to train such

an agent on one standard GPU.

We hypothesize that one reason for this slow learning can be attributed to learning

internal state representations solely from task rewards. There are two interdependent

problems involved while training a competent agent. The first being able to represent

observations in useful way and second being able to use this representation to make
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Figure 1.1: Learning to navigate from visual inputs is challenging. Agents must learn use-
ful visual representations from task-feedback alone. In this work, we introduce auxiliary
tasks that significantly improve the sample efficiency of training point-goal navigation
agents. In the validation performance plot above, our agents achieve an SPL of 0.68 in
17 million steps which takes DD-PPO almost 72 million – a ×4 improvement in sample
efficiency.

correct decisions. Without a strong task-relevant representation of observations, it is

difficult to take correct actions. Without positive reinforcement from the environment

for correct actions, it is difficult to learn a strong, task-relevant representation of obser-

vations. With just task rewards, it takes a substantial amount of experience to resolve

this dependency and learn a good agent. If we can accelerate the process of representa-

tion learning, we might be able to shortcut the dependency and train the agent in fewer

steps. In our work, we try to see if this can be made possible by training the agents

along with auxiliary supervision.

Simulated environments such as Habitat Savva et al. [21] are filled with task-related

signals that could be used for auxiliary supervision. In this work, we choose to use

following three auxiliary tasks :
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• Depth Prediction – predicting coarse estimates of pixelwise depth given the

visual observation. Depth is very useful for navigation as it helps determine free

space.

• Inverse Dynamics – predicting action between two consecutive steps. It is good

for an agent to know the consequence of its own action.

• Remaining Path Length Prediction - predicting the geodesic distance to goal

from current location. Having a sense of actual distance that needs to be traversed

to get to the goal is useful.

Each of these auxiliary tasks are implemented as small auxiliary networks. These net-

works transform some form of intermediate agent state representation to auxiliary task

predictions which are then used to compute the task loss using auxiliary signal from

environment.

In this work, we demonstrate that the addition of each of these auxiliary tasks enhances

the sample efficiency of point-goal training. We use agents from Savva et. al., [22] as

our baseline. We observe a ×5 improvement in sample efficiency – task-augmented

agents after 15 million experiential steps perform as well as or better than the baseline

agents trained for 75 million steps. We compare our task-augmented agents with the

state-of-the-art agents trained using DD-PPO [27] algorithm, which uses a more sophis-

ticated neural architecture and a decentralized distributed training regime. Our best

task-equipped agent is ×4 more sample efficient than the DD-PPO as shown in Fig. 1.1.
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Chapter 2: Related work

2.1 Auxiliary Tasks in Reinforcement Learning

Poor sample efficiency is a common problem for reinforcement learning – especially for

model-free agents like those commonly used for pixel-to-action tasks like point-goal nav-

igation. As such, prior work has explored applying auxiliary tasks to boost training

efficiency and improve performance. In [14], Jaderberg et al. introduced a suite of unsu-

pervised auxiliary tasks for an RL agent in Atari games and simple maze environments.

These unsupervised objectives do not leverage additional signals provided by the simula-

tor – in contrast, our auxiliary losses include predicting additional observation modalities

(RGB→Depth) and aspects of the task itself (remaining path length).

Recent work has also examined auxiliary tasks to promote ‘curiosity’, improving the

exploration abilities of agents. Pathak et al. [20] does this by providing intrinsic reward

to agents for taking actions which lead to predictable changes in the observation en-

coding. [20] learns to encode these observations via an inverse dynamics task like ours;

however, their inverse dynamics model is separate from the agent and is just used to

compute intrinsic ‘curiosity’ rewards. As such, they do not use this as an auxiliary loss

for the agent’s observation representation. There are also a number of works focusing on

forward-prediction as a means to learn representation encoders [12, 11, 19]. A common

challenge in these frameworks is how to determine the quality of future predictions, a

task made even more complex in the perceptually rich environments we consider here.

Most relevant to our auxiliary tasks is the work of Mirowski et al. [18] who studied two

auxiliary tasks for navigation in simple 3D maze environments – depth prediction and

loop closure detection. As we are not operating in maze-like environments, we do not

consider the loop closure tasks. We adapt [18]’s depth prediction task to our setting –

significantly altering the architecture to fit the needs of our more visually complex setting.

We compare against the original structure as a baseline and significantly outperform it.
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2.2 Point-Goal Navigation

The point-goal navigation task is a fundamental embodied AI problem on which other

complex tasks can be built. As such, it has received significant attention as interest

in embodied tasks has grown [21, 23, 8, 27, 2, 1]. A variety of approaches have been

proposed including those with strong inductive biases from simultaneous-localization-

and-mapping research [8] to methods that draw purely from deep reinforcement learning

[21, 27]. [27] demonstrates near-perfect performance on this task by training a neural

architecture for over 2.5 billion steps of experience – amounting to over 80 years of

continuously exploring simulated environments. We focus instead on improving sample

efficiency for these agents. Similar in goal, [23] studies the use of pretrained mid-level

representations as input signals for point-goal navigators – demonstrating improvements

in sample efficiency. In contrast, we do not assume access to relevant pretrained encoders

and instead seek to train a model from scratch efficiently.
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Chapter 3: Point Goal Navigation

In this chapter, we will first review the preliminaries of point-goal navigation. Our

work follows the definition of point-goal navigation from Savva et. al., [22]. Point-goal

navigation is a task where an agent is spawned at a random location in an unseen

photorealistic environment and is expected to navigate to a point-goal. The point-goal is

specified in Euclidean coordinates with respect to the agent’ starting position. We assume

that the agent gets its pose information at each time step (i.e. it has GPS+Compass)

and hence can determine the relative goal coordinates at each position. Also, the agent

do not have a map of the environment. The agent has visual sensors (i.e. RGB or Depth

camera) to observe its surroundings. Thus, the input to the agent at each time step t is

visual observation It and goal coordinates gt. The agent can turn or move forward. The

agent can also call stop to end the episode. Concretely, the actions that can be taken

are - {left 15◦, right 15◦, forward 0.25m, stop}. The objective of this task is to learn the

best policy π which can map the observed input to a distribution over actions at so that

the agent reaches the goal position efficiently. In our case, we use neural architecture to

learn this policy using PPO algorithm [25]. PPO is a popular policy gradient approach to

solving reinforcement learning problem. We also use Generalized Advantage Estimation,

Schulman et al. [24], with PPO.

3.1 Visual observation

The agents have a color vision sensor located at a height of 1.5m from the center of

the agent’s base and oriented to face ‘forward’. This sensor provides RGB frames at a

resolution of 2562 pixels and with a field of view of 90 degrees. In addition, an idealized

depth sensor is available, in the same position and orientation as the color vision sensor.

The depth sensor gives the pixel-wise distance of the objects in front of the agent. The

field of view and resolution of the depth sensor match those of the color vision sensor.

We designate agents that make use of the color sensor by RGB, agents that make use of

the depth sensor by Depth, and agents that make use of both by RGBD. Agents that
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Figure 3.1: Our agent architecture (left) includes a simple convolutional observation
encoder and a GRU-based recurrent policy. We consider three auxiliary tasks (right)
– depth prediction, inverse dynamics, and remaining path length prediction – based on
representations from the policy. Gradients for auxiliary task losses are propagated to
corresponding agent modules, providing additional supervision to learned representation.

use neither sensor are denoted as Blind. The performance of baseline agents for different

input modalities are shown in Fig. 3.2. The metric SPL (discussed later in Sec. 2.3.4)

is a standard metric that measures the ability of an agent to reach the point-goal using

the most optimal path. The depth input seems to be the clear winner over the RGB

agent. Surprisingly, the RGB agent only narrowly outperforms the blind agents. This

suggests that the RGB information may not be adequately utilized and there might be

some scope of improvement for RGB agents.

3.2 Point-Goal Agent architecture

We use the neural agent architecture from Savva et. al., [22] for our baseline policy. The

model consists of a visual encoder followed by a recurrent state encoder. The visual

encoder φ(·) is a simple CNN which consumes the visual observation It and produces an

embedding φ(It). Further, this embedding is concatenated with relative goal coordinates

gt and passed to the recurrent state encoder f(·) (implemented as a Gated Recurrent

Unit (GRU) [10]) to produce an encoded state representation ht. This representation is
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Figure 3.2: RGB agents perform significantly worse than their depth-equipped coun-
terparts; performing similarly to blind agents. This plot is reproduced from Savva
et. al., [21] for convenient reference.

used to derive policy distribution at over actions as well as a value estimate vt.

ht = f(φ(It), gt, ht−1) (3.1)

at ∼ π(ht) = Categorical(Waht) (3.2)

vt = Wvht (3.3)

Here gt is calculated using the current position Pt and original Euclidean goal coordinates.

In compact layer notation, the SimpleCNN network architecture is {Conv 8×8, ReLU,

Conv 4×4, ReLU, Conv 3×3, ReLU, Linear, ReLU}. Agents are trained using PPO [25]

algorithm with Generalized Advantage Estimation (GAE) [24].
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Chapter 4: Auxiliary Tasks for Point Goal Navigation

In this chapter, we discuss our auxiliary tasks for point-goal navigation. As discussed

previously, one of the reasons behind slow paced learning of embodied-AI agents might

be the fact that we are trying to solve a ‘chicken-and-egg’ problem. We want good,

task-relevant representation of sensory inputs to frame a competent policy and we want

positive reinforcement from environment to build a good representation. If we could just

alleviate one of these problems, we could easily accelerate the learning. Here is where

we think auxiliary tasks could be of use. We try to design auxiliary tasks to embed ad-

ditional useful information into the representation. Concretely, we use supervision from

signals available in the simulation environment to shape representation. This is possible

because simulated environments are filled with plethora of signals such as geodesic path

to the goal, semantic scene segmentation, etc. We will understand each auxiliary task in

detail - their motivation and implementation. Refer Fig. 3.1 for a detailed schematic of

agent and auxiliary task architectures.

We would like our agents to have a very good understanding of the local scene geometry

to avoid obstacles and navigate through free space. We would also want our agent to

understand how the actions taken affect its position with respect to the goal. At each

time step, the agent should be able to predict how far the goal might be. We design our

auxiliary tasks around inducing this information in the representation.

4.1 Quantized Depth Prediction

From Fig. 3.2, it is clear that depth is more useful as an input modality for point-goal

navigation than RGB. In fact, the depth agents achieve nearly twice the performance

of the RGB agents. This seems a bit extreme if seen from the point of view of human

perception. Human beings rely on binocular (from both eyes) cues and monocular (from

a single eye) cues for depth perception. Monocular cues include motion parallax, change

in relative size of objects, etc. You and I could shut one of our eye and still walk around
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without bumping into objects around us. This means human beings are able to estimate

depth from a monocular sensory input but our point-goal agents are unable to do so.

In order to resolve this, we develop a quantized depth prediction task similar to one in

Mirowski et. al., [18]. We predict a low-resolution representation of current depth image

using the intermediate visual encoding and navigation history. So for RGB agents, this

boils down to monocular depth estimation problem. We also try this auxiliary task on

depth agents and report results.

4.1.1 Depth Quantization

The original depth map has dimensions 256×256 with depth being a floating point value

in range 0 and 1 i.e ∈ (0, 1)256×256. We quantize each of these depth values into 8 bins

(classes) - {0, 0.05, 0.175, 0.3, 0.425, 0.55, 0.675, 0.8, 1} where 0−0.05 is class 0, 0.05-0.175

is class 1 and so on. The smaller depths are emphasized to better differentiate between

close-by and nearly-colliding objects. In order to obtain central field of view of agents, we

center-crop depth map to 128× 128. Earlier, we had experimented with full sized depth

map and did not find any significant drop in agent performance on account of cropping.

This makes sense intuitively as predicting the depth of floor and ceiling might not be very

useful from navigation perspective. We need to only care about the general structure

of scene geometry in order to avoid obstacles and detect free space and hence, we avoid

pixelwise predictions. Rather, we aggregate non-overlapping, neighbouring patches of

pixels to obtain a depth target map. This low resolution, quantized representation

captures the general structure and is easier to learn while still providing significant

benefit. We carry out an average pooling with kernel size 32 of the cropped map followed

by quantization to produce the output target map Dt ∈ [0, . . . , 7]4×4. With this, we turn

our auxiliary depth prediction into a 8-way classification problem for each of 4× 4 spatial

locations. As depth agents receive depth map as input, this auxiliary task takes form of

a down-sampled autoencoding problem.

4.1.2 Depth Auxiliary Network

Since we desire our agent to infer the depth using monocular cues such as motion, we

would want agent’s current visual observation and memory state to encode local scene
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geometry. Let Ot ∈ R32×28×28 be the final spatial feature representation of φ(It). Given

Ot and the hidden state ht ∈ R512, we add an auxiliary depth prediction network fd such

that:

D̂t = fd([Ot ++ ht]) (4.1)

where ++ denotes a spatially-tiled concatenation along the channel dimension – i.e. [Ot++

ht] ∈ R544×28×28. fd is a series of convolutional layers followed by a fully-connected layer

to predict depth-class distributions for each spatial cell as shown in Fig. 4.1. Here CONV

block represents series of operations - {Conv2d 3× 3, GroupNorm, ReLU} in order. We

have used GroupNorm consistently with group size of 32 following Wu et. al., [28] in

order to exploit the correlation among layer channels. GAP is global average pooling

layer. The layer FC is a fully connected layer which maps vector of size 1024 to that

of size 128. This is reshaped to 8 × 16 to match ground-truth label encoding. We ex-

perimented with the setting where we avoid use of fully connected layer to retain the

spatial information and our auxiliary network produces a matrix D̂t ∈ R8×4×4. But this

surprisingly produced poor results compared to the architecture described above. The

final auxiliary loss LD is

LD = − 1

16×N

N∑
i=1

16∑
k=1

8∑
j=1

I(j == yik)log(pijk) (4.2)

where N is the batch size, I is indicator function which is 1 for ground truth class

yik for i th batch and k th spatial cell and 0 otherwise. pijk is softmax probability.

4.2 Inverse Dynamics

The previous auxiliary task was designed to embed depth perception in agent represen-

tation. We would also like to induce an understanding of how an agent’ actions affect

its state with respect to the environment. This understanding will help the agent with

short-term navigation decisions such as the agent will know that if it moves forward

towards an obstacle, it will not make a progress towards its goal. Following prior work

on self-supervised representation learning from video [3, 15], this knowledge can be in-

duced using an inverse dynamics formulation – predicting the action responsible for an

observed state change in the environment.
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Figure 4.1: A schematic of auxiliary depth prediction network. It consumes tiled block
(Ot ++ ht) to predict distribution over pixel classes.

4.2.1 Inverse Dynamics Auxiliary Network

In inverse dynamics task, we train a neural network to predict action responsible for

change in agent’ state. This state change can be represented by the consecutive goal

locations i.e. gt and gt+1. Concretely, the auxiliary network predicts the action at using

the visual encoding φ(It) concatenated with the goal coordinates gt and gt+1. Note that

here we deliberately avoid using the memory state ht as consecutive state sequences are

highly correlated. In fact, the action at is decoded from memory state ht. This would

make our auxiliary task a rather trivial one, undermining the need to learn a better

visual encoding. The auxiliary network fInv acts as follows :

ât = fInv(φ(It), gt, gt+1) (4.3)

We implement fInv as a simple feed-forward network that predicts a distribution over the

actions taken given the concatenation of the inputs. For training, we take (at, It, gt, gt+1)

tuples directly from agent policy rollouts. The auxiliary loss LInv is just the cross-
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entropy loss of the predicted and actual actions as follows :

LInv = − 1

N

N∑
i=1

4∑
j=1

I(j == yi)log(pij) (4.4)

where N is the batch size, I is indicator function which is 1 for ground truth class yi

and 0 otherwise. pij is softmax probability.

4.3 Remaining Path Length Prediction

So far we have tried to encode an understanding of the immediate state of the envi-

ronment such as the local scene geometry and transition dynamics. But we need to

remember that an important aspect of point-goal navigation is to choose the most op-

timal (shortest) path to reach the point-goal. In order to encourage such behavior, we

already have a time penalty of -0.01 added to the reward received at each time step.

To augment this even further, we try to induce the longer range navigability into the

representation. For example, the agent must be able to avoid dead-ends in favor of

well-connected pathways (e.g. hallway) when the Euclidean distance to the goal is large

and vice-versa. To encode this in representation, we develop an auxiliary task to predict

the remaining geodesic distance to the end goal i.e. the distance an ideal agent would

traverse to reach the end goal.

4.3.1 Remaining Path Length Auxiliary Network

The auxiliary network is designed to compute an estimate of geodesic distance to point-

goal using the current visual observation It and goal coordinates gt at time t. Use of

agent’s historical state can encourage counting strategies whereby the agent might just

try to see how long it has been navigating rather than using sensory inputs to trivially

solve the prediction task. The auxiliary network fGeo works as following:

d̂geo = fGeo(φ(It), gt) (4.5)
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We implement fGeo as a simple feed-forward neural network and define the auxiliary

loss LGeo as an L2 regression loss on this geodesic distance prediction as follows :

LGeo =
1

N

N∑
i=1

(d̂igeo − digeo)2 (4.6)

where N is the batch size and d̂igeo is the predicted geodesic distance and the digeo

is the optimal ground truth distance.

In this chapter, we were able to understand the point-goal agent architecture as well as

the architecture of our three auxiliary tasks. These auxiliary networks use some interme-

diate representation from the original point-goal network and are trained in conjunction

with policy loss as :

LTotal = LPolicy + α× LAuxiliary (4.7)

where α is weightage for auxiliary loss. Further, we examine the experimental settings

used for training and evaluating these agents.
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Chapter 5: Experimental Setting

5.1 PointNav in Habitat

We use Habitat Simulator to carry out our experiments. The PointGoal navigation set-

ting is similar to Habitat challenge 2019 [22]. An agent starts at a random location in

an unseen environment and must navigate to the goal given in relative Euclidean coordi-

nates. Visual observation (RGB or Depth) and pose information from GPS+Compass are

the only two ways the agent can make sense of its surroundings. We follow the training

and validation splits on the Gibson dataset [29] in accordance with Savva et. al., [22].

5.2 Gibson dataset

We need to simulate realistic environments in order to train and evaluate the navigation

performance of embodied agents. Gibson dataset [29] consists of spaces of building floors

scanned using a 3D scanner. The entire dataset consists of 572 buildings composed of

1447 floors. We use the standard scenarios provided by Anderson et. al., [5] which are

a selective subsets of original Gibson space. A scenario consists of starting position of

agent and its goal location. It is ensured that the locations are physically reachable for

our agent i.e. we make sure that there is 1m of open space around the locations and

that they are not under of over other objects. The minimum distance between initial and

target locations is 1 m, and the maximum depends on the size and navigation complexity

of each space. The initial and target points are picked from the same floor to remove

the need to climb stairways as the feasibility/complexity of that becomes agent-specific.

We use 2× the agent’s body width i.e. 0.4m as the distance threshold τ for successful

navigation when action stop is called.

5.3 Training & Testing

An agent learning an optimal policy for point-goal navigation is treated as a model-free

reinforcement learning problem. The auxiliary networks are trained in a standard super-
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vised learning fashion in conjunction with this RL task. At each step, the environment

provides dense reward rt for an action based on the change in geodesic distance to goal

– i.e.

rt = D(Pt, g)−D(Pt+1, g)− λ (5.1)

Here λ is slack penalty which acts as cost for staying alive. This penalty encourages the

agent to traverse shorter paths and end episodes sooner. The episode will end when the

agent takes the action stop. Then if the agent ends up being within 0.2 meters radius of

the point-goal, the episode is considered to be successful and agent receives an additional

+10 reward. The agent is trained using Proximal Policy Optimization (PPO) algorithm

[25] with Generalized Advantage Estimation (GAE) [24].

During testing, we use standard validation split of Gibson dataset, consisting of indoor

environments not seen during training. We track the agent performance using the metrics

described below.

5.4 Metrics

We report standard metrics for point-goal navigation [4] –

– Success. Percentage of episodes in which the agent calls stop within 0.2 meters of

the goal location.

– Success weighted by inverse normalized Path Length (SPL). SPL considers

both success and path efficiency – weighting a binary success indicator by the nor-

malized ratio of the agent’s path length and the shortest path.

1

N

N∑
i=1

Si
li

max(pi, li)
(5.2)

where N is the total number of test episodes, li is the shortest path distance from the

agent’s starting position to the goal in episode i, pi is the length of the path actually

taken by the agent in this episode. Let Si be a binary indicator of success in episode i.

Both are reported as percentages. We report means and 95% confidence intervals over

multiple trials.
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5.5 Implementation details

The mini-batch size of observations used is 4 and the agent trains for 4 epochs on each

batch. The batch is generated using 8 rollout workers with rollout length of 128 steps.

Adam optimizer with a learning rate of 2.5 × 10−4 is used. It takes approximately

21 hours for RGB agents and 15 hours for depth agents to train on two Tesla V100

GPUs for 25 million steps of experience. We have used the public repository from Savva

et. al., [22] and added our auxiliary tasks on top of the existing code. We set auxiliary-

task loss weights (α in Eq. 2.10) to 1.0, 0.2 and 1.0 for quantized depth prediction,

inverse dynamics and remaining path length prediction tasks respectively.
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Chapter 6: Results

We augment the baseline agents with our auxiliary tasks and train for three random

initializations to take into account any variations in performance over multiple runs. We

also combine these auxiliary tasks to see how well they work in presence of each other.

In all, we train a total of 30 agents (3×{RGB, Depth}×{Baseline, +DepthPred, +InvDyn,

+RemainPath, +All}) for 25 million experiential steps. The performance of the agents

on Gibson validation set is reported in Tab. 6.1 during the course of training at 5, 10,

15, 20 and 25 million steps. It is important to note that the auxiliary tasks are turned

off during validation and are only used for training. For simplicity, hereon we will use

the notation Metric@XXM which is short for the metric value after certain million time

steps of training e.g. SPL@20M for SPL at 20 million steps. We also show the entire

training curves in Fig. 6.2 and Fig. 6.1.

6.1 Auxiliary tasks improve sample efficiency

Our task-equipped agents, in general, seem to be more sample efficient than the baseline

agents from Savva et. al., [22]. This is more evident for RGB agents than for Depth

agents. After 5M steps, our RGB agents achieve ∼37 SPL on average which is more than

double of the baseline at 17.8 SPL (rows 2-4 vs 1 in Tab. 6.1). By 10 million steps,

these agents achieve SPL in range 47.6 - 55.4. Such high values are not reached by the

baseline agents even by the end of training i.e. 25 million steps in our experiments (row

1). By 15 million steps, our best RGB agent (row 2) achieves 63.8 SPL, outperforming

the ∼57 SPL at 75 million reported in Savva et. al., [22] for the baseline agent (see

Fig. 3.2). Similarly, our best depth agent achieves 77.2 SPL@15M (row 9) compared to

the ∼75.4 SPL@75M reported in Savva et. al., [21]. This represents a 5x (75M/15M)

improvement in sample efficiency over the baseline agents.
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SPL Percentage (↑) Success Percentage (↑)

Row @5M @10M @15M @20M @25M @5M @10M @15M @20M @25M

1 Baseline Agent 17.8 ±0.7 41.8 ±0.7 44.2 ±1.2 45.1 ±1.0 44.3 ±1.8 27.0 ±1.2 65.1 ±1.1 69.9 ±1.5 74.6 ±1.1 78.0 ±1.9

2 + Depth Pred. 35.6 ±0.6 55.4 ±0.0 63.8 ±1.0 70.6 ±0.7 74.7 ±1.7 56.5 ±1.5 74.8 ±0.3 81.3 ±0.5 84.6 ±0.7 86.8 ±1.6

3 + Inv. Dyn. 37.0 ±0.9 47.6 ±1.5 55.3 ±0.8 59.1 ±2.8 65.5 ±0.8 53.0 ±2.1 66.7 ±1.4 74.9 ±1.0 78.0 ±2.1 81.0 ±1.0

4 + Remain. Path. 38.5 ±2.1 53.2 ±2.3 52.7 ±1.4 59.7 ±1.0 66.9 ±0.6 55.5 ±2.4 76.4 ±2.3 78.9 ±2.3 83.9 ±0.8 85.6 ±1.3

R
G

B

5 + All 40.8 ±0.7 60.5 ±2.5 68.8 ±1.6 73.4 ±2.4 75.1 ±3.0 61.1 ±0.8 77.04 ±2.4 81.7 ±1.0 85.5 ±2.5 85.6 ±3.5

6 Baseline Agent 53.7 ±2.0 68.4 ±1.3 72.1 ±0.9 70.9 ±0.6 70.5 ±0.9 68.7 ±1.8 82.1 ±1.2 89.1 ±0.3 90.9 ±1.3 92.1 ±1.0

7 + Depth Pred. 54.6 ±1.7 63.6 ±1.6 72.8 ±0.4 78.6 ±0.8 78.8 ±1.0 71.6 ±1.4 80.7 ±1.7 87.0 ±0.7 91.0 ±0.3 90.4 ±0.7

8 + Inv. Dyn. 55.2 ±1.7 71.2 ±2.4 77.0 ±0.9 78.2 ±0.8 79.4 ±1.9 73.0 ±1.9 84.3 ±1.9 89.0 ±0.7 91.1 ±1.2 92.4 ±1.4

9 + Remain. Path. 60.0 ±1.1 72.0 ±0.6 77.2 ±1.2 80.8 ±1.1 83.0 ±2.2 75.0 ±1.7 86.9 ±1.1 91.0 ±0.2 92.2 ±1.5 92.6 ±1.0

D
ep

th

10 + All 58.37 ±1.4 71.46 ±0.7 75.65 ±1.6 80.48 ±1.9 81.9 ±1.0 71.54 ±1.4 85.05 ±1.3 88.08 ±1.6 91.23 ±2.1 91.54 ±1.1

Table 6.1: Navigation metrics (SPL and Success percentages) on Gibson validation set
as a function of training time (5, 10, 15, 20 and 25 million steps). We report means over
three runs and 95% confidence intervals. We find our auxiliary task-equipped agents
consistently outperform their corresponding baseline agents by a significant margin. Our
auxiliary tasks have a stronger effect on the RGB agents.

6.2 Auxiliary tasks affect Depth and RGB agents differently

The efficacy of the auxiliary tasks changes with respect to the input type of the agent.

Depth prediction can be considered as the best auxiliary task for RGB agents. RGB

agents with depth prediction outperform other task-equipped RGB agents by a signif-

icant margin (∼9 SPL). This helps to corroborate our hypothesis that depth provides

important scene geometry information for navigation that vanilla RGB agents have trou-

ble extracting. For depth agents, we could say that inverse dynamics and remaining path

length prediction are equally effective, with remaining path length being only marginally

outperforming inverse dynamics task (row 7 and 8). As one would expect, depth pre-

diction is least useful of all auxiliary tasks for depth agents as depth is already provided

as input to the agent. Though, it is worth emphasizing that the depth agent does still

benefit from the depth prediction task (row 6), improving by 8 SPL@25M. The aug-

mented agents achieve similar success percentages as the baseline, with improvements

in navigation efficiency being a strong driver for improvements in the SPL metric. This

might also due to the fact that success scores for depth agents are already quite close to

perfect and thus, difficult to improve.



20

(a) Validation SPL over training for RGB agent (b) Validation SPL over training for Depth agent

Figure 6.1: SPL on Gibson validation set for RGB (left) and Depth (right) agents as
a function of number of training steps. We compare baseline agents with our auxiliary
task-equipped agents. For RGB input, our agents consistently outperform the baseline
from the start of training. Our depth agents have a slower start but outpace the baseline
model after 20 million steps.

6.3 RGB with depth prediction outperforms RGB-D

As seen previously, the RGB agent benefits tremendously from the use of auxiliary depth

prediction supervision. In fact, it benefits the RGB agents the most when compared to

the other two auxiliary tasks. An interesting alternative to this would be to just provide

depth as part of input along with the RGB. In our work, we do not explicitly experiment

with such a RGB-D agent, but we report results from Savva et. al., [22]. We compare the

performance of our RGB agent equipped with depth prediction task with the RGB-D

agent from Savva et. al., [22] (see Fig. 3.2). It should be noted that both these agents

are trained under similar training conditions and then evaluated for same Gibson split.

Suprisingly, we found our task-equipped agent is considerably more sample efficient than

the RGB-D agent, (74.6 SPL@25M vs. 70 SPL@75M ). This suggests that the role

of auxiliary tasks might not be to just insert new information but to actually shape

the representation learning during training. Also, it is worth noting that Depth agents

outperform RGB-D agents. This would mean that RGB is, in fact, harming the agent

performance. This seems unintuitive as the additional input information, even when
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(a) Validation Success over training for RGB agent (b) Validation Success over training for Depth
agent

Figure 6.2: Success on Gibson validation set for RGB (left) and Depth (right) agents as
a function of number of training steps. We compare baseline agents with our auxiliary
task-equipped agents. For RGB input, our agents consistently outperform the baseline
from the start of training but not necessarily with a very large margin. For depth input,
the success curves seem to eventually converge to same value for all the agents.

not very useful, should not hurt performance. We hypothesize that that agents find it

difficult to segregate and parse the depth channel information when concatenated with

RGB.

6.4 Combining multiple auxiliary tasks

Previously, while working with individual auxiliary tasks, we experimented with the

associated auxiliary loss weights and chose them carefully so that the auxiliary loss

does not dominate the policy loss. In this section, we simultaneously train multiple

auxiliary tasks in conjunction with policy. Hence, we need to recalibrate the auxiliary

loss weights in order to maintain balance between the sum of auxiliary losses and the

policy loss. We first observe the performance when we have all the three auxiliary tasks

active (refer rows 5 and 10 in Tab. 6.1). For RGB input, this combination works well

and the models outperform agents equipped with individual auxiliary tasks. Depth

agents do not show any remarkable improvements over our best agent i.e. one equipped
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SPL Percentage (↑) Success Percentage (↑)

Row Depth Pred. Inv. Dyn. Path Pred. @5M @10M @15M @20M @25M @5M @10M @15M @20M @25M

1 X X 42.9 53.3 58.4 62.7 63.6 63.0 76.5 80.6 84.3 80.3

2 X X 42.1 59.0 67.2 71.8 72.9 61.5 73.9 79.7 83.4 83.3

3 X X 37.0 51.0 58.4 64.4 68.9 55.6 69.7 74.9 80.8 81.5

4 X X X 40.8 60.5 68.8 73.4 75.1 61.1 77.04 81.7 85.5 85.6

Table 6.2: Navigation metrics (SPL and Success percentages) on Gibson validation set for
the RGB agent as a function of training time (5, 10, 15, 20 and 25 million). We present
all combinations of auxiliary tasks. Underlined entries denote results for combinations
that outperform the independent performance of each individual constituent loss. We
find the combination of task often lead to further improvements.

with remaining path length prediction. But the performance does not seem to degrade

either as the SPL and success scores are within variances of our best agents for depth

input. This is another instance where auxiliary tasks seem to have different effect for

RGB and depth agents. Further we would like to examine the relationship between

various auxiliary tasks. We present all possible combinations in Tab. 6.2 for the RGB

agent. We underline any result for a combination that outperforms each individual

constituent loss. We find that Inv. Dyn. + Path Pred. (row 1) and Depth Pred. +

Inv. Dyn. (row 2) contain complementary information to an extent. On the other hand,

Depth Pred. + Path Pred. (row 3) do not show any improvement over constituent losses.

This suggests depth prediction and remaining path prediction compete when acting on

common representation. Despite this, combining all three yields further gains across

most time points. Currently, the loss coefficients are kept static.

6.5 Comparison to state of the art

So far we compared performance of task-equipped agents with the Habitat Savva et. al., [21]

agents that form our baseline architectures. However, state-of-the-art in point-goal nav-

igation Wijmans et. al., [27] achieves nearly perfect SPL (≥99) in Gibson validation

– significantly higher than our models and those of Savva et. al., [21]. It is however

important to consider how this impressive result is achieved. In Wijmans et. al., [27],

agents architectures have significantly greater complexity 1 and are trained on an ex-

1Using a SE-ResNeXt50 [30] network for encoding observations
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tended dataset (Gibson and Matterport3D [7]) for 2.5 billion steps of experience in a

distributed RL framework. This represents an increase in model capacity, training set

size, and a training time (100x). Our focus in this work is on training efficiency and our

results question whether these extreme training protocols are necessary. Taking the first

75 million steps of the DDPPO agent’s training regime, we find our RGB agents achieve

the same SPL in only 17 million steps (a >4x improvement) (see supplementary - Sec.

4). An interesting question is at what point our agents would reach optimal performance

compared to the 2.5 billion steps required in Wijmans et. al., [27]. Unfortunately, we

cannot scale to these extremes. Our existing experiments required 40 days of GPU time

– scaling by over 100× is simply infeasible given our infrastructure.

6.6 Comparison with prior auxiliary tasks

We examine how existing work on auxiliary tasks in visually-simple settings transfers

to photo-realistic environments. Specifically, we examine two auxiliary tasks from prior

work, depth prediction [18] and reward regression [14]. We limit our discussion to RGB

agents to be consistent with these works.

6.6.1 Depth prediction

We contrast the performance of the depth prediction architecture proposed in Mirowski

et. al., [18] with our own. Developed in simple game-like environments, this task requires

agents to predict dense pixel-wise depth from non-spatial features (i.e. φ(It)) – a difficult

task in complex, realistic environments. We find the architecture for depth prediction

employed in Mirowski et. al., [18] causes the learning to be delayed and achieves lower

performance when compared with our results (Tab. 6.3 row 2 vs. Tab. 6.1 row 2). By

5 million steps, agents augmented with Mirowski et. al., [18] achieve 1.5 SPL on average

- which is nearly 1/17 of the SPL achieved by the baseline agent (Tab. 6.3 row 1 vs row

2). Over the period of training, we see an improvement in performance of task-equipped

agents and it surpasses the baseline at 15 million steps. By 25 million steps, we see

their depth-augmented agents outperform the baseline but is still below our results by

∼10 SPL. Interestingly, this approach fails to improve the success metric significantly

whereas our approach results in an improvement of ∼8% success.
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SPL Percentage (↑) Success Percentage (↑)

Row @5M @10M @15M @20M @25M @5M @10M @15M @20M @25M

1 Baseline Agent 17.8 ±0.7 41.8 ±0.7 44.2 ±1.2 45.1 ±1.0 44.3 ±1.8 27.0 ±1.2 65.1 ±1.1 69.9 ±1.5 74.6 ±1.1 78.0 ±1.9

2 + Dense Depth Pred. [18] 1.5 ±0.4 13.7 ±1.0 51.3 ±0.8 61.0 ±3.7 64.8 ±2.8 2.14 ±0.5 17.8 ±1.4 68.6 ±0.2 77.4 ±3.6 79.4 ±2.3

3 + Reward Regression [14] 27.2 ±0.3 37.3 ±1.0 42.0 ±1.6 41.6 ±1.1 51.1 ±1.7 41.1 ±0.6 57.4 ±1.3 66.6 ±1.9 70.8 ±0.9 80.3 ±2.0

R
G

B

4 Ours (Best from Tab. 6.1) 35.6 ±0.6 55.4 ±0.0 63.8 ±1.0 70.6 ±0.7 74.7 ±1.7 56.5 ±1.5 74.8 ±0.3 81.3 ±0.5 84.6 ±0.7 86.8 ±1.6

Table 6.3: Navigation metrics (SPL and Success percentages) on Gibson validation set
as a function of training time (5, 10, 15, 20 and 25 million steps). We report means over
three runs and 95% confidence intervals. We compare the baseline agent with the agents
equipped with existing auxiliary tasks for navigation [18, 14]. Agents with [18] are slow
to learn whereas those with reward regression only reach 51.1 SPL@25M. One can note
that our best task-equipped RGB agent (row 4) outperforms all the agents.

6.6.2 Reward regression

We apply reward regression task proposed in Jaderberg et. al., [14] to our problem –

predicting the immediate reward using the encoded observation φ(It) and relative goal

vector gt. We find reward regression to be less effective than our approaches in improving

either SPL or success metric for the navigator. Initially by 5 million steps, the reward-

regression agents show some promise, leading over the baseline agents by ∼ 10 SPL

(compare Tab. 6.3 rows 1 and 3). But this lead does not extend further into training.

By 25 million steps, agents equipped with reward regression achieve 51.1 SPL which is

lower than that achieved by any of our individual auxiliary task-equipped agents (see

supplementary Sec. 5 for learning curves).
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Chapter 7: Analysis

7.1 Effect on Collision Rate

We try to see how auxiliary tasks help agents avoid collisions with objects in their sur-

roundings. In Tab. 7.1, we compare the average collisions per episode for various RGB

agent architectures across 250 test episodes. We note that task-equipped agents collide

less frequently than the baseline agents. The baseline agent, on account of its poor navi-

gation capability in initial stages of training, terminates episodes prematurely and result

in low collision count. This count rise significantly as the agent improves at reaching

its target goal. We hypothesize that the quantized depth prediction loss will act as a

proxy for free space - enabling the agent to have a strong sense of when a forward action

might result in a collision. We confirm this hypothesis in our experiments where the

depth prediction task result in lowest collisions. Even when comparing at similar success

rates (@25M for Baseline vs. @10M for Depth Pred.), the Depth Pred. augmented agent

reduces collisions by nearly half.

We observe that collisions are not strictly bad for navigation. As shown in Kadian

et. al., [16], an agent can in fact use the wall to slide against to increase SPL. Augmented

agents achieve lower collision rates with more efficient paths by avoiding any inefficient

or unnecessary collisions.

7.2 Decoding Position from Agent Representation

A point-goal agent receives dynamically-changing relative goal coordinate as input at

each time step t. But they do not receive any information of their own position in the

environment. Here, we try to examine if agent representations encode this information

and use it to form policy. For this, we take agents trained for 25 million steps and

freeze their weights. For each observation, we get the hidden policy state ht. We use

this as input to learn a simple fully-connected neural network that predicts the agent’s
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Average collisions per episode (↓)

Row @5M @10M @15M @20M @25M

1 Baseline Agent 31.63 54.97 54.90 62.40 67.01

2 + Inv. Dyn. 37.03 39.66 42.69 49.45 49.54

3 + Depth Pred. 44.17 37.97 37.25 34.57 34.89

4 + Remain. Path. 46.75 44.45 56.19 42.58 43.93

Table 7.1: Average collisions per episode for RGB agents in 250 test episodes. We find
auxiliary-augmented agents collide significantly less, with the depth prediction auxiliary
task inducing the fewest.

position coordinates in three dimensions. We train this network on 10240 positions from

the training set and then measure the proportion of predictions which fall within 4m,

2m and 1m of true position for 2400 instances on validation set. The results are shown

in Tab. 7.2. We can observe that with remaining path prediction task we achieve the

best performance. These results suggest that the remaining path prediction task induces

significantly more information about agent position. We also observe that since the

baseline agent and inverse dynamics agent do not encode long range information they

perform poorly.

7.3 Remaining Path Length Identifies Openness

The task of remaining path length prediction predicts how far is the goal from the agent in

terms of geodesic distance using the current observation and goal in relative coordinates.

This distance can be as low as the Euclidean distance between current and goal positions

- in an open area, the agent has to just move in straight line to the goal. In case the goal

is quite far or visual observation is of a cluttered space or even a dead end in a room, this

same distance can be much greater than Euclidean distance. Imagine the goal being on

other side of the wall in front of you. Fig. 7.1 shows a pair of qualitative examples for the

remaining path length task. In both, the Euclidean distance to goal is around 6.5 meters.

However, the “dead end” example on left predicts a significantly higher remaining path



27

% of predictions within range (↑)

< 4m < 2m < 1m

Baseline agent 57.2 51.0 48.4

+ Depth Pred. 71.3 66.9 62.5

+ Inv. Dyn 59.1 52.3 50.6

+ Remain. Path. 80.1 76.6 74.5

Table 7.2: Percent of samples for which the decoder predictions fall within a radius of 4m,
2m and 1m. The decoder is most accurately able to extract the localization information
using the encoder trained with remaining path length prediction task.

length (10.2m) whereas the open area on the right keeps its estimate low (7.6m). We

found this trend to be consistent across several randomly picked qualitative examples.

7.4 Pre-training vs. Auxiliary Task Learning

Each auxiliary task induces certain sort of knowledge into the encoder of the agent. We

would like to investigate if we can induce it via pre-training and will that be sufficient

to achieve similar or even better performance. Specifically, we collect agent trajectories

from our best performing agent in the training environments to create a static dataset

of observations and auxiliary task targets. For depth prediction task, we additionally

record the hidden policy state. The models are trained until they reach similar loss

levels as those observed during auxiliary learning. Then these encoder weights are used

as warm-start for full RL training. From Tab. Tab. 7.3, we see that pretraining causes

mild improvements in most cases. But these improvements never come close to that

offered by auxiliary training paradigm. So we might hypothesize that it is not just the

information which is being fed but how this information is learnt that is of significance.
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Figure 7.1: Despite of both views in above example having similar Euclidean (L2) dis-
tance to the goal, they have different true geodesic distances(Geo). The prediction for
geodesic distance (Pred) differs based on the “opennness” of the current frame.
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SPL (↑)

@5M @10M @15M @20M @25M

Baseline 17.8 41.8 44.2 45.1 44.3

Depth Pred. (Pre.) 23.9 43.9 47.2 46.8 46.2

Depth Pred. (Aux.) 35.6 55.4 63.8 70.6 74.7

Inv. Dyn. (Pre.) 25.0 40.9 45.2 44.7 46.2

Inv. Dyn. (Aux.) 37.0 47.6 55.3 59.1 65.5

Remain. Path (Pre.) 27.9 36.3 44.6 48.6 47.1

Remain. Path (Aux.) 38.5 53.2 52.7 59.7 66.9

Table 7.3: We compare the agents equipped with auxiliary tasks (Aux.) (Tab. 6.1) with
the agents using a pretrained (Pre.) encoder trained independently for these tasks. The
task-equipped agents consistently outperform the agents with pretrained encoders.
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Chapter 8: Conclusion

In this work, we examined the effect of auxiliary task training towards improving the

sample efficiency of point-goal navigation. We observed significant reduction (5×) in

training times over baseline agents from prior work. Specifically, we introduced three

auxiliary tasks - Depth Prediction, Inverse Dynamics and Remaining Path Length Pre-

diction. We achieved varying degree of success with these tasks. Each task induced

distinct information which helped agent navigate.
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