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Soil nitrogen exists largely as organic matter, including plant liter, dead animal 

matter, and microbial necromass. About 90% of soil organic nitrogen is proteinaceous 

material that is too large for plants and microorganisms to assimilate directly. Protein 

depolymerization therefore plays a critical role in mobilizing this organic source of 

nitrogen, producing lower molecular weight molecules that are bioavailable for both 

microorganisms and plants. The decomposition of proteins in soils serves as the rate-

limiting step of the nitrogen cycle. The ability of microorganisms to access and break 

down proteinaceous material depends largely on their production of extracellular 

peptidases, but it involves a trade-off with the energetic cost of producing and secreting 

these enzymes into the environment, including the risk that other microorganisms can 

compete with the peptidase-producing organisms for the products released through 

depolymerization. Consequently, in order to optimize this energy investment, there 



 

might be a tight connection between soil environmental conditions and microbial 

proteolytic activity. Despite its ecological importance, there is a lack of understanding 

about the diversity of these extracellular peptidases and their activity as an important 

factor influencing the protein degradability in soils.  

In this dissertation, I first assessed the genetic potential for microorganisms to 

produce extracellular enzymes, and second, I developed and applied a novel approach 

to measure the activities of different classes of peptidases in soil. In my first two 

chapters, I evaluated the abundance and diversity of microbial extracellular peptidases, 

their evolutionary conservation, and distribution as a function of environmental habitat 

and lifestyle. Chapter 2 focuses on the secreted peptidases of prokaryotes (Archaea, 

Bacteria); chapter 3 focuses on Fungi, the dominant soil eukaryote. In both chapters, I 

analyzed secreted peptidases across microbial lineages using their genomic information 

and corresponding annotated protein sequences assembled from several databases, 

including MEROPS, Silva, JGI Genome Portal, and MycoCosm. Peptidase gene 

sequences of 147 archaeal, 2,191 bacterial and 612 fungal genomes were screened for 

secretion signals, resulting in 55,072 prokaryotic and 31,668 eukaryotic genes coding 

for secreted peptidases. I found that Archaea, Bacteria, and Fungi possess unique 

complements of secreted peptidases and there are differences in the number of secreted 

peptidases per genome, indicating potential differential abilities for organic nitrogen 

acquisition. The majority of secreted peptidase families not only follow the 

phylogenetic evolutionary distribution, but also segregate based on the microbial 

lifestyles and microbial habitats. This suggests that microorganisms optimize their 

secreted peptidases to match their surrounding environments.  



 

In Chapter 4, I incorporated the use of selective inhibitors to block the activity 

of different classes of peptidases. I designed a protocol with these peptidase inhibitors 

to use directly in natural soils. I validated and optimized this protocol with pure 

enzymes and peptidase-supplemented soils. This research revealed that the profile of 

extracellular peptidase activities belonging to different catalytic types varies among 

soils and correlates with both soil chemical and microbial properties. This is in line 

with our assumption that soil microorganisms respond to their environmental 

conditions by investing in peptidases that can optimize their activity. 

Collectively, this work provides a comprehensive and foundational 

understanding about the contribution of different catalytic types of microbial 

extracellular peptidases to organic nitrogen turnover in soils.   
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1.1. Protein turnover as the rate-limiting step of the terrestrial nitrogen cycle 

Soil is a complex and interconnected terrestrial system comprised of organic matter, 

minerals, liquid, and gases. Soil provides habitat for many living organisms, from archaea, 

bacteria, fungi to plants, and animals. Organic matter decomposition, acting on plant litter, animal 

dead matter, microbial necromass, is one of the most dynamic and critical biogeochemical 

processes that happens in soils, whereby carbon, nitrogen, and other nutrients are recycled to enrich 

the soil biodiversity.  

In natural terrestrial systems, nitrogen is usually limited due to the high biological demands 

and losses (Galloway et al., 2004) and this implies the constant biological need for organic nitrogen 

decomposition in the soil environments. Soil nitrogen is largely in the organic matter form and 

about 90% of the organic nitrogen is proteinaceous material  (Kögel-Knabner, 2006; Nannipieri 

and Paul, 2009). Only a minor fraction of soil organic nitrogen is small enough to be available for 

plant and microbial nitrogen uptake (Nannipieri and Paul, 2009); as a result, this nitrogen pool is 

not adequate to satisfy the biological demands for soil organisms. Protein depolymerization 

therefore plays a critical role in mobilizing this organic source of nitrogen and turning it into lower 

molecular weight molecules that are bioavailable for uptake and assimilation by both plants and 

microorganisms. The decomposition of proteins in soils serves as the bottleneck and rate-limiting 

step of the nitrogen cycle (Jan et al., 2009; Schimel and Bennett, 2004). Following protein 

depolymerization, nitrogen is either competitively taken up as low molecular weight monomers 

(oligomeric peptides, amino acids) by plants and microorganisms, or mineralized into bioavailable 

ammonium or nitrate, which can be assimilated for cell growth, and/or eventually lost from the 

system as different aqueous or gaseous forms (Schimel and Bennett, 2004). Microorganisms with 

their diverse enzymatic potential  play an important role in this process. 
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1.2. Diversity of microbial extracellular peptidases as the influencing factor for protein 

turnover  

The ability of microorganisms to access and break down nitrogen from organic matter 

depends largely on their production of extracellular enzymes, which for nitrogen is primarily 

through the activity of peptidases. Peptidases are the catalytic enzymes that cleave the peptide 

bonds in protein molecules. Producing these peptidases and secreting them to the environment, 

though, is an energy-expensive investment, which must be weighed against the risks that other 

microorganisms may take advantage of the activity of the peptidases once they are released into 

the environment (Allison, 2005). To be conservative with this investment, each microbe has likely 

optimized its peptidases to function well in the environment it inhabits. For example, selection 

might favor peptidases with a broad substrate specificity or that target the common substrates 

found in a given environment; or in some other cases, selection might favor the enzymes that 

optimally function under specific soil conditions (pH, temperature, etc.). Despite the ecological 

importance, there is a lack of understanding about the diversity of these extracellular enzymes as 

an important factor influencing the protein degradability in soils.  

Peptidases are produced by all forms of life and associate with diverse biochemical 

functions both inside and outside the cells (Page and Cera, 2008; Rao et al., 1998). Peptidases are 

considered to have emerged early during biological evolution in order to catalyze the cleavage of 

the peptide bonds between amino acid residues of proteins (Rao et al., 1998). Some extracellular 

peptidases are produced for pathogenic functions, such as damaging the host tissues or deactivating 

host defenses (Semenova et al., 2017). Most extracellular peptidases, however, are produced for 

the purpose of nutrient acquisition, and in some cases, to benefit the mutualistic relationships. For 

example, ectomycorrhizal fungi, in the symbiotic relationship with plants, are very active in 
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mobilizing soil organic nitrogen and converting it to bioavailable nitrogen so that fungi can 

exchange with plants for photosynthate carbon. The ability of microorganisms to utilize soil 

organic nitrogen by producing extracellular enzymes is expected to depend on the microbial 

lifestyles and microhabitats. For instance, some free-living saprotrophic bacteria might have higher 

demand to utilize organic nitrogen from the soils as the main source of nitrogen, compared to the 

bacteria that can fix nitrogen and turn it into bioavailable nutrients for cell development. As a 

result, free-living saprotrophic bacteria might possess a more enriched secreted peptidase 

capability and higher proteolytic performance.  

Peptidases are generally classified into 7 main super-families (classes) based on their 

catalytic mechanisms: aspartic, asparagine, cysteine, glutamic, metallo-, serine, and threonine 

peptidases (Rawlings et al., 2018). These classes are further categorized into 255 peptidase 

families based on the similarity in their amino acid sequences. According to Page and Cera (2008), 

archaea, bacteria, and fungi can be distinguished from each other by specific peptidase families 

that are shared within each taxonomic group (including intracellular and extracellular peptidases). 

This differentiation between microbial proteolytic potential is driven by the number of peptidase 

coding genes in the genomes as well as their peptidase composition. This suggests that there may 

be functional specialization and optimization of microbial species depending on the peptidases 

encoded by each taxon. Because soil microbial community structure varies among soil 

environments, there are likely differences in relative peptidase activity and diversity, which might 

cause an impact on organic nitrogen cycling.  

The first two research chapters offer a comprehensive study of the extracellular peptidase 

diversity across different microbial kingdoms (archaea, bacteria, and fungi). These chapters 

address the question of whether the proteolytic function outside the cells differs among microbial 
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taxa and if there is a connection between the microhabitats and microbial lifestyles and the 

distinguishable set of secreted peptidases across the three microbial kingdoms. My approach is to 

extensively analyze the diversity of secreted peptidases and their distributions across Archaea, 

Bacteria, and Fungi by using their genomic information and annotated protein sequences 

assembled in several databases, including MEROPS, JGI Genome Portal, MycoCosm, and Silva 

(Grigoriev et al., 2014, 2011; Quast et al., 2013; Rawlings et al., 2018). I expected to see a 

widespread distribution of secreted peptidase coding genes across the prokaryotic and fungal tree 

of life. I also analyzed if each peptidase family is evolutionarily conserved among 

phylogenetically-related taxa, to determine whether more closely related microbial species tend to 

share the same specific type of secreted peptidases. The catalytic efficacy of secreted peptidases 

from different classes are known to be influenced by environmental conditions, such as pH and 

temperature, therefore, I hypothesized that the distribution of peptidases also varies as a function 

of the ecological microhabitats occupied by different microbial taxa. These findings provide 

essential insights into the complement of secreted peptidases in microorganisms within different 

environments, which could be further validated using assays of peptidase gene expression and 

proteolytic activity. More broadly, knowledge about the diversity of secreted peptidases can 

enhance our understanding about the connection between microbial community composition and 

their biogeochemical functions in terms of organic nitrogen cycling. 

1.3. The activity of catalytic types of peptidases as a factor of soil properties 

Due to the energetic cost of extracellular enzyme production, the enzyme activity would 

be expected to be optimized to soil conditions, and it should reflect the adaptation of the living soil 

microbes to maximize the organic nitrogen acquisition in the soils. Subsequently, there might be 

an inherent correlation between soil properties on one hand and the microbial proteolytic activity 
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on the other hand. Little is known, however, about the relative contributions of different microbial 

catalytic classes of peptidases to soil proteolytic activity under native soil conditions and whether 

or not these contributions are influenced by the soil properties.  

Protease functional types can be classified by using inhibitors specific to their active sites 

(Rawlings et al., 2018). Some studies have used inhibitors to distinguish among secreted 

peptidases, but none reflect the proteolytic activity under native soil conditions. Soil peptidases 

were either extracted (Hayano, 1993; Kamimura and Hayano, 2000; Watanabe and Hayano, 1995) 

or produced from isolated microorganisms (Rineau et al., 2016; Shah et al., 2013). By contrast, 

only a few studies have directly used peptidase inhibitors in soil or aquatic samples (Kumar et al., 

2004; Renella et al., 2002). 

In the third research chapter, I developed a protocol to optimize the use of peptidase 

inhibitors at the native soil pH and room temperature in order to characterize the activities of 

different classes of extracellular peptidases in soils. I focused on using the inhibitors that 

selectively inhibit the four dominant classes of proteolytic enzymes (aspartic, cysteine, metallo-, 

and serine peptidases). The specificity and effective concentrations of inhibitors were tested with 

pure enzymes and peptidase-supplemented soils to confirm the inhibitory efficacy before being 

applied to soils. After developing the method, I measured the activities of different classes of 

extracellular peptidases from four soils in Oregon, which represent a gradient of biochemical 

properties, and evaluated the correlations between these enzymatic activities and different soil 

properties.  

Collectively, this work provides a comprehensive and foundational understanding about 

the contribution of different catalytic types of microbial extracellular peptidases to organic 

nitrogen turnover in soils, and broadly to the overall productivity via N recycling rates.   
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2.1. Abstract 

 
Proteinaceous compounds are abundant forms of organic nitrogen in soil and aquatic 

ecosystems, and the rate of protein depolymerization, which is accomplished by a diverse range of 

microbial secreted peptidases, often limits nitrogen turnover in the environment. To determine if 

the distribution of secreted peptidases reflects the ecological and evolutionary histories of different 

taxa, we analyzed their distribution across prokaryotic lineages. Peptidase gene sequences of 147 

archaeal and 2 191 bacterial genomes from the MEROPS database were screened for secretion 

signals, resulting in 55 072 secreted peptidases belonging to 148 peptidase families. These data, 

along with their corresponding 16S rRNA sequences, were used in our analysis. Overall, Bacteria 

had a much wider collection of secreted peptidases, higher average numbers of secreted peptidases 

per genome, and more unique peptidase families than Archaea. We found that the distribution of 

secreted peptidases corresponded to phylogenetic relationships among Bacteria and Archaea and 

often segregated according to microbial lifestyles, suggesting that the secreted peptidase 

complements of microbial taxa are optimized for the environmental microhabitats they occupy. 

Our analyses provide the groundwork for examining the specific functional role of families of 

secreted peptidases in relationship to the organisms and the corresponding environments in which 

they function. 
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2.2. Introduction 

 

Peptidases catalyze the cleavage of the peptide bonds between amino acid residues of 

proteins and are produced by all forms of life (Rao et al., 1998). These proteolytic enzymes are 

highly diverse in structure, perform multiple biological functions, and can be found in the 

cytoplasm within cells, tethered to the cell surface, or secreted into the environment. Secretion of 

extracellular peptidases represents a significant investment of metabolic energy, carbon, and 

nitrogen by microbial cells, enabling the acquisition of carbon or nitrogen from the environment  

(Allison et al., 2010; Chróst, 1991; Geisseler and Horwath, 2008; Kumar and Takagi, 1999; Landi 

et al., 2011). 

Proteinaceous material is the most abundant form of soil organic nitrogen. Protein 

degradation into oligopeptides and amino acids, which can be directly and rapidly metabolized by 

microorganisms for nutrients and energy, is a critical strategy used by microorganisms to gain 

bioavailable nitrogen under nitrogen-limited conditions, especially in boreal and temperate forest 

soils (Geisseler et al., 2010; Schimel and Bennett, 2004). Some peptidases are secreted 

constitutively into the environment at low concentrations by microorganisms to initiate the 

degradation of proteins, although microorganisms can also regulate peptidase production and 

secretion based on their demands for carbon and nitrogen (Geisseler and Horwath, 2008). 

In aquatic ecosystems, proteins and peptides contribute significantly to dissolved organic 

matter, accounting for 5-20% of dissolved organic nitrogen and 3-4% of dissolved organic carbon 

(Nagata et al., 1998; Pantoja and Lee, 1999). As in terrestrial ecosystems, microbial utilization of 

organic nitrogen in aquatic systems is regulated by the hydrolysis of these protein polymers 

(Chróst, 1991). Due to the more dilute nature of aquatic environments, peptidases bound to 
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microbial cells and sequestered in microbial biofilms are thought to be primarily responsible for 

the degradation of proteins, and allow microbes to readily take up the decomposition products for 

further metabolism (Chróst, 1991; Hoppe, 1991; Nagata et al., 1998; Nunn et al., 2003); however, 

free proteolytic enzymes also contribute to the available nitrogen pool (Chróst, 1991; Obayashi 

and Suzuki, 2008). 

In animal-associated environments protein degradation can be associated with 

pathogenicity and host disease (Gibson and Macfarlane, 1988a; Richardson et al., 2013), in 

addition to having a role in direct nutrient acquisition. In some gut environments, microbial 

peptidases have been found to be constitutively produced and partially bound to the cell surface 

(Gibson and Macfarlane, 1988a, 1988b; Macfarlane et al., 1986). The regulated secretion of some 

extracellular peptidases is proposed to help pathogenic microorganisms competitively colonize 

and invade host cells and tissues by degrading host proteins, such as mucins, collagens, and other 

extracellular-matrix components (Duarte et al., 2016; Gibson and Macfarlane, 1988a; Loesche, 

1988; Nakjang et al., 2012). 

Peptidases are universal across all organisms and are considered to have developed early 

during biological evolution (Rao et al., 1998). Subsequent diversification has led to the 

development of several peptidase super-families (asparagine, aspartic, cysteine, glutamic, metallo-

, serine, and threonine peptidases) that are grouped based on their mechanism of catalysis (Hartley, 

1960; Häse and Finkelstein, 1993; Mooshammer et al., 2014; Rao et al., 1998; Rawlings, 2016; 

Rawlings et al., 2018; Rawlings and Barrett, 1993). Different classes of peptidases are associated 

with specific biological pathways, substrates, and catalytic reactions (Page and Cera, 2008; Rao et 

al., 1998; Rawlings and Barrett, 1993). Peptidase families have been shown to be distributed 

unevenly among microbial groups (Page and Cera, 2008), leading to broad generalizations about 
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associations of peptidases—both intracellular and extracellular—with different microbial groups. 

Aspartic peptidases are mostly encoded by Fungi, metallopeptidases are common in Bacteria, and 

cysteine and serine peptidases appear to be universal across microorganisms (Caldwell, 2005). 

Bacteria have consistently been found to be the dominant contributor to protease activity in soils 

and seawater based on studies using protease activity assays, pure culture protease expression, and 

approaches targeting peptidase genes (Katsuji et al., 1994; Nagata et al., 1998; Obayashi and 

Suzuki, 2008; Sakurai et al., 2007; Watanabe et al., 2003; Watanabe and Hayano, 1993, 1994, 

1996). However, it is unclear how varying peptidase complements across genomes may impact 

variations in overall activity when considered at a community level or inferred by metagenomics 

studies. By developing a better understanding of factors influencing the abundance, diversity, and 

distribution of extracellular peptidase genes across all curated prokaryotic taxa (Arnosti, 2015; 

Burns et al., 2013), insights into the relationship between microbial community composition and 

protein degradation capabilities across environments can be gained. 

Our goal was to analyze the diversity of secreted peptidases and their distributions across 

prokaryotic microorganisms by using annotated peptidase sequences collated in the MEROPS 

database (Rawlings, 2016; Rawlings et al., 2018). We expected to find secreted peptidases from 

different proteolytic super-families distributed widely across the prokaryotic tree of life. From this 

peptidase distribution pattern, we also sought to find evidence of whether each peptidase family is 

evolutionarily conserved among phylogenetically-related taxa. Because the catalytic efficiencies 

of secreted peptidases from different super-families are known to be affected by environmental 

conditions, we expected the distribution of peptidases to also vary as a function of the ecological 

microhabitats occupied by different microbial taxa. More broadly, the findings from these analyses 

might provide fundamental insights into the complement of secreted peptidases in microorganisms 
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within different environments, which could be further validated using assays of peptidase gene 

expression and proteolytic activity.  

 

2.3. Materials and Methods 

 

2.3.1. Collection of secreted archaeal and bacterial peptidases and signal sequence 
identification 

Annotated peptidase sequences of 147 archaeal and 2 191 bacterial species were extracted 

from the MEROPS MySQL database release 11.0 (http://merops.sanger.ac.uk; (Rawlings, 2016)). 

Only completely annotated genomes with available 16S rRNA information existing in SILVA 

database release 128 were considered. Firstly, data pertaining to the organism name, taxonomy, 

and genome completeness was extracted from the “organism” and “classification” tables of the 

MySQL database (i.e., merops_taxonomy_id, taxonomy_id, and complete_genome values). The 

taxonomy_id values were used to query for matching 16S rRNA sequences from the SILVA 

database. Unique taxonomic IDs present in both databases for species that encode at least one 

secreted peptidase were used as the primary genomes of interest for this study.  

The MEROPS database classifies peptidases into seven super-families based on the 

catalytic residue serving at the active site of the enzyme (Hartley, 1960; Rawlings and Barrett, 

1993), and further divides these super-families into 255 proteolytic families based on similarities 

in amino acid sequences (Rawlings, 2016). The merops_taxonomy_id was used as a search query 

against the “features” and “sequence” tables of the MEROPS MySQL database to obtain all 

information pertaining to annotated peptidase sequences encoded within each genome of interest. 
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Exported information included the peptidase DNA sequence, the sequence_id, and the peptidase 

super-family and family classification. 

All downloaded peptidase sequences were analyzed with SignalP 4.1 to identify genes 

encoding putative signal sequence motifs as defined for Gram-positive and Gram-negative bacteria 

(Mori and Ito, 2001; Petersen et al., 2011), yielding 55 072 secreted peptidases classified to 148 

families. To validate the signal peptide prediction using SignalP, we analyzed these 55 072 

sequences with Phobius, a combined transmembrane topology and signal peptide predictor, which 

has a reported higher sensitivity in discriminating between transmembrane domains and signal 

peptides (Käll et al., 2004, 2007). More than 98% of the sequences identified by SignalP were also 

identified as having signal petides by Phobius, 0.6% were identified as not having either signal 

peptides or transmembrane domains, and 1.3% were identified as transmembrane proteins without 

any signal peptides. Taking into account the imperfection that exists in all signal prediction 

models, we concluded that using SignalP was a valid method to identify prokaryotic secreted 

peptidases in our study. Peptidase sequences of Firmicutes, Actinobacteria, Deinococcus-

Thermus, and Archaea were screened using a Gram-positive model; the remaining bacterial 

peptidase sequences were screened using a Gram-negative model. The Welch two-sample t-test, 

or unequal variances t-test, was used to evaluate significant difference between the means of the 

total secreted peptidases encoded within archaeal and bacterial genomes. One-way analysis of 

variance with the Tukey’s HSD multiple-range test was used to determine the statistical differences 

between counts of total secreted peptidases among microbial phyla. Statistical analyses were 

performed in the ‘R’ programming environment (R. Core Team, 2016). 
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2.3.2. Comparison of genomic complements of secreted peptidases 

The secreted peptidase complements of all taxa were summarized in a matrices containing 

the gene copy number counts of secreted peptidases assigned to either family or superfamily 

classifications (rows) across all analyzed genomes (columns). Bray-Curtis dissimilarity indices 

between the secreted peptidase complements of genomes were calculated from these matrices and 

used to generate a secreted peptidase distance matrix, or functional distance matrix, using the 

‘Vegan’ package in ‘R’ (Oksanen et al., 2018). Principal coordinate analyses (PCoA) was used to 

explore the data and Permutational Multivariate Analyses of Variance (PERMANOVA) was used 

to determine the statistical differences of the peptidase complements of archaeal and bacterial 

genomes at different taxonomic levels. A bipartite association network of shared and unique 

peptidase families was generated using Cytoscape release 3.4.0 (http://www.cytoscape.org/) 

(Shannon et al., 2003).  

 

2.3.3. Phylogenetic analysis 

The 16S rRNA sequences of the selected archaeal and bacterial genomes were extracted 

from the SILVA database release 128 (http://www.arb-silva.de/) (Quast et al., 2013) and aligned 

using the NAST aligner (DeSantis et al., 2006). A 16S rRNA neighbor-joining phylogenetic tree 

was built from alignments using PHYLIP (Felsenstein, 1989). A phylogenetic distance matrix was 

also constructed using the F84 model of DNADIST (DeSantis et al., 2006). The phylogenetic tree 

and distributions of secreted peptidase families across the tree were visualized using iTOL (Letunic 

and Bork, 2016).  
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2.3.4. Distance matrices comparisons 

Correlations between the phylogenetic distance matrix and the secreted peptidases distance 

matrix, or functional distance matrix, were evaluated using the Mantel test of ‘APE’ (Analysis of 

Phylogenetics and Evolution package) in ‘R’ (Paradis et al., 2004) based on Pearson’s product-

moment correlation. Mantel correlograms that report the correlation between phylogenetic and 

functional distances at defined phylogenetic distance classes for Archaea and Bacteria were 

calculated using the ‘Vegan’ package in ‘R’.  

 

2.3.5. Phylogenetic conservation and clustering 

Phylogenetic signal strengths (D) contributing to the observed distribution patterns for each 

peptidase super-family and family were calculated from their binary presence/absence in genomes 

of all considered taxa (Fritz and Purvis, 2010) using the ‘CAPER’ package (Comparative Analyses 

of Phylogenetics and Evolution) in ‘R’ (Orme et al., 2018). Secreted peptidases are considered 

phylogenetically conserved when they are shared among the majority of members of branched 

clades, conforming to a Brownian motion evolutionary model (D ~ 0), with a relatively constant 

gain/retention of traits across taxonomic levels. A strongly clumped distribution (D < 0) suggests 

recent innovation or potential gain via horizontal gene transfer within a clade or subset therein. 

Peptidases are considered randomly distributed (D $ 1) when their presence/absence is not driven 

by shared traits (e.g., physiology) of closely related species (Berlemont and Martiny, 2013; 

Martiny et al., 2013; Zimmerman et al., 2013).  

To understand the association between the distribution of secreted peptidases and 

ecological microhabitats, we examined taxonomic subsets of microorganisms, including genomes 

of 147 Archaea, 275 Actinobacteria, and 182 Bacteroidetes species. Habitat preferences for 
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archaeal phyla and proposed optimal growth conditions (e.g., pH, temperature, and salt 

concentration ranges) and for bacteria were downloaded from the JGI GOLD database (Mukherjee 

et al., 2017). Habitat preferences were visualized on phylogenetic trees together with secreted 

peptidase count data using iTOL. For Actinobacteria and Bacteroidetes datasets, the Welch two-

sample t-test was used to determine statistical differences between the mean gene copy number of 

each secreted peptidase super-family between microbial groups originating from different 

ecological habitats (e.g., soil and aquatic habitat vs. animal-associated habitat). PCoA was used to 

visualize the data in multidimensional space and PERMANOVA was used to determine the 

statistical differences of the peptidase complements of microbial groups originating from different 

ecological habitats. Vectors for peptidase families capturing a significant amount of variation in 

the total dataset were derived from Pearson correlations with the first two PCoA axes. 

 

2.4. Results 

 

2.4.1. Distribution of secreted peptidases across prokaryotic kingdoms 

          When normalized to genome size, Bacteria had significantly more secreted peptidase coding 

genes per Mb than Archaea (5.84 vs. 1.71, p < 0.001) (Fig. S2.1). In both kingdoms, serine, 

metallo-, and cysteine super-families contributed more than 80% of the secreted peptidase genes 

(Fig. 2.1). The numbers of peptidase genes per genome belonging to these abundant super-families 

were also significantly lower in archaeal than in bacterial phyla, agreeing with the general trends 

of kingdom-level peptidase super-family repertoires (Fig. 2.2). Conversely, significant biases were 

observed in some of the less common peptidase super-families: aspartic peptidases were more 

common in Archaea than Bacteria (9.4% vs. 0.6%), whereas threonine peptidases were more 
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commonly found in Bacteria than Archaea (2.3% vs. 0.6%) (Figs. 2.1 and S2.2). Asparagine, 

glutamic, mixed, and unknown peptidase super-families were rare (Fig. 2.1).  

         Observing the distribution of peptidase families, as opposed to super-families, offered finer-

scale insights into the differential sets of secreted peptidases encoded by Archaea and Bacteria. 

Most of peptidase families encoded by Archaea were also common to Bacteria: 47 peptidase 

families of the serine, metallo-, cysteine, threonine, and glutamic super-families were shared 

between the two kingdoms, and contributed to more than one-third of the total peptidase families 

present in the dataset (Fig. 2.3). Only six peptidase families were unique to Archaea, four 

belonging to the aspartic super-family, whereas 95 peptidase families were unique to members of 

the bacterial kingdom (Fig. 2.3).  

          Principal coordinate analysis clustered phylogenetically distinct sets of microorganisms 

separate from each other based on the secreted peptidase families they encode (Fig. 2.4). Although 

each PCoA axis explained a low level of data variance, PERMANOVA tests indicated significant 

differences between different sets of microorganisms. For example, a strong and significant 

difference of the secreted peptidase profiles was observed between Archaea and Bacteria (p < 

0.001) and between bacterial phyla (p < 0.001).  

        Distributions of peptidase families and corresponding super-families across microbial taxa 

were compared to the phylogenetic relationships among analyzed genomes using presence/absence 

profiles of peptidases in comparison to a 16S rRNA phylogenetic tree. The distributions of secreted 

peptidases were found to be significantly correlated with the 16S rRNA phylogeny within each 

kingdom (Archaea rMantel = 0.303, p < 0.001, Bacteria rMantel = 0.334, p < 0.001), indicating an 

evolutionary relationship in which subsets of phylogenetically related organisms in each 
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prokaryotic kingdom shared similar types of secreted peptidases. Mantel correlograms showed that 

conservation was strongest and most significant between more closely related taxa for both 

Archaea and Bacteria (Fig. S2.3). Archaea demonstrated a weakly significant relationship at all 

taxonomic levels examined, whereas relationships within Bacteria were weakly significant only 

between taxa that share ≥ 90% 16S rRNA gene sequence identity, beyond which pairs of taxa share 

little to no functional similarity in the secreted peptidases they encode (Fig. S2.3).  

       Distributions of individual secreted peptidase families were also evaluated for their 

phylogenetic dispersion (D). Most of peptidase families (71%) encoded in bacterial genomes 

showed evidence of non-random phylogenetic clustering (Fig. S2.4 and Table S2.2). Peptidase 

families with negative values (D < 0) represented those with the strongest clustering patterns across 

the phylogenetic tree. For example, M73 and M84 are endopeptidases that are predominantly 

restricted to Bacillus sp. and M07 is an endopeptidase found mainly in Actinobacteria species (Fig. 

S2.5). Conversely, 77% of peptidase families found within archaeal genomes exhibited random 

distribution patterns, devoid of phylogenetic signals (Fig. S2.4 and Table S2.3).  

 

2.4.2. Distribution of secreted peptidases within prokaryotic kingdoms 

         There was no significant difference between the total number of secreted peptidase genes 

encoded in known Crenarchaeal and Euryarchaeota genomes (p = 0.089); however, the overall 

composition did vary significantly between these phyla. For example, the overabundance of 

aspartic peptidases observed at the kingdom-level could be primarily attributed to taxa belonging 

to Crenarchaeaota, as only 15 of 105 of Euryarchaeota genomes encoded these genes (Figs. 2.5 

and S2.2). Intriguingly, 40% of the Euryarchaeota genomes encoding aspartic peptidases were 

classified as acidophiles, whereas only 8% of the entire Euryarchaeota dataset fell into this 
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environmental classification. Thus, a distinct enrichment was observed for the presence of aspartic 

peptidases in acidophilic Euryarchaeota genomes.  

         This link between environment and peptidase content of archaeal genomes was further 

explored with PCoA of peptidase profile data. The composition of secreted peptidase genes of 

Archaea varied significantly based on optimal growth conditions (pH, temperature, and salinity) 

(p < 0.001). Halophilic and haloalkilophilic archaeal clusters were most strongly correlated with 

the distribution of the serine S01, S08, S12, aspartic A22, and metallo M79 peptidase families 

(Fig. 2. 6). Thermophilic and thermophilic/acidophilic archaea also separated from each other and 

from the rest of archaea (Fig. 2.6). Serine S16 peptidase family was associated with the 

thermophilic archaea. Following the general trend proposed above, aspartic A05 and A37 families 

were associated with acidophilic archaea (Fig. 2.6). In addition, the presence of serine S53 family 

peptidases was strongly correlated with an acidophilic lifestyle.  

         Secreted peptidase profiles of bacterial genomes varied substantially across taxa (Fig. 2.7), 

with significant differences between phyla in total peptidase counts (Table S2.1) and in 

composition (Fig. 2.4). Significant differences were observed between Gram-positive and Gram-

negative bacteria based on the relative abundance of their secreted peptidase families (p < 0.001) 

(Fig. S2.6). At the phylum level, Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, 

and Proteobacteria were enriched with secreted peptidases, whereas the deep-branching Aquificae 

and Thermotogae taxa encoded fewer secreted peptidases (Fig. 2.2 and Table S2.1). Acidobacteria 

encoded the highest mean number of secreted peptidases per genome, with a large relative increase 

in the number of secreted metallopeptidases and a concomitant decrease in the number of cysteine 

peptidases compared to other bacterial phyla (Fig. 2.2).  
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         Genomes of the Bacteroidetes and Actinobacteria phyla encoded high numbers of secreted 

peptidases and exhibited strong within-phylum distribution patterns related to finer-scale 

relationships (Fig. 2.7). For the Bacteroidetes, serine and metallopeptidases were dominant and 

well-conserved in presence and copy number across all species (Fig. 2.8A). By contrast, cysteine 

peptidases were more abundant (i.e., higher copy number per genome) in more recently evolved 

families of Bacteroidetes, such as Porphyromonadaceae, Bacteroidaceae, and Prevotellaceae, and 

threonine peptidases were more commonly found in deeper-branching lineages of Bacteroidetes, 

including Cytophagaceae, Sphingobacteriaceae, and Flavobacteriaceae (Fig. 2.8A). The latter 

group of Bacteroidetes also had a significantly higher numbers of secreted peptidases compared 

to the more recently evolved group (p < 0.001). Principal coordinate analysis of Bacteroidetes 

showed a significant separation among Bacteroidetes families based on the relative abundances of 

secreted peptidases (p < 0.001), which was strongly correlated with the environment associated 

with each species (p < 0.001) (Fig. S2.7). All species of Porphyromonadaceae, Bacteroidaceae, 

and Prevotellaceae, which encoded fewer secreted peptidases overall but a higher proportion of 

cysteine peptidases, were associated with an animal environment, whereas 74% of the 

Cytophagaceae, Sphingobacteriaceae, and Flavobacteriaceae species, which encode more 

peptidases overall and more threonine peptidases, were predominantly linked to aquatic or soil 

environments (Figs. 2.8A and S2.7, Table S2.4). 

         In the Actinobacteria, differences among clades were more strongly related to the numbers 

of peptidase genes than to the types of secreted peptidases (Fig. 2.8B) but were still highly 

correlated with the environmental microhabitat in which a taxon was found. For example, 

Actinobacteria families associated with animals, such as Propionibacteriaceae, 

Coriobacteriaceae, Bifidobacteriaceae, and Corynebacteriaceae, possessed a lower overall 
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abundance of secreted peptidases, predominantly of the serine, metallo-, and cysteine super-

families, compared to aquatic or soil Actinobacteria, such as Streptomycetaceae, 

Pseudonocardiaceae, Nocardiaceae, Micromonosporaceae, and Actinoplanaceae (Fig. 2.8B and 

Table S2.5) (p < 0.001). Notable exceptions were host-associated Mycobacteriaceae genomes that 

encode significantly more secreted peptidases than other Actinobacteria associated with animal 

environments (Fig. 2.8B and Table S2.5) (p < 0.001). By contrast, Frankiaceae, which form 

nitrogen-fixing root nodules in several families of plants, possessed a low abundance of secreted 

peptidases compared to other aquatic or soil Actinobacteria (p < 0.001). Principal coordinate 

analysis of Actinobacteria peptidases showed a significant separation among taxonomic families 

in the relative abundance of secreted peptidases (p < 0.001) and their environment (p < 0.001) 

(Fig. S2.8).  

 

2.5. Discussion 

 

         Serine, metallo-, and cysteine peptidases are the dominant (~90%) intracellular and 

extracellular proteolytic enzymes of Archaea and Bacteria, whereas aspartic and threonine 

peptidases contribute <10% to the total (Page and Cera, 2008). Intracellular peptidases are often 

involved with protein turnover and regulatory functions, whereas extracellular or secreted 

peptidases are typically viewed as an energetic investment of the organisms that is returned via the 

acquisition of carbon and nitrogen through enzymatic degradation of proteinaceous material in the 

environment (Chróst, 1991; Geisseler and Horwath, 2008).  

         Secreted peptidase diversity varied between Archaea and Bacteria, suggesting the potential 

for specialized peptidase functions and optimization among taxa. This variation may be related to 
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differences in the catalytic residues of the active site; these biochemical differences may provide 

specific adaptive advantages to different taxa under varying environmental conditions. As a 

general hydrolytic mechanism, a nucleophilic amino acid residue or water molecule is activated to 

attack a peptide carbonyl group, cleaving a peptide bond. In the case of serine, cysteine, and 

threonine peptidases, the histidine residue of a catalytic triad activates the serine, cysteine, or 

threonine residue, which then serves as the nucleophile that splits the peptide bond (Rao et al., 

1998; Theron and Divol, 2014). Alternatively, for aspartic and metallopeptidases the aspartic acid 

residue or an enzyme-bound metal cofactor activates a water molecule to act as the nucleophile 

for the hydrolysis (Theron and Divol, 2014; Wu and Chen, 2011). 

         Bacterial species generally possess more secreted peptidases per genome and have a more 

diverse repertoire of secreted peptidase families compared to archaeal species (Figs. 2.2 and 2.3). 

This may confer greater flexibility on Bacteria to generate different types of extracellular 

proteolytic enzymes in response to specific environmental conditions depending on their demand 

for carbon and nitrogen, resulting in consistently high levels of overall peptidase activity in situ. 

This also suggests that Bacteria could be more competitive in obtaining organic nitrogen from the 

environment compared to Archaea. Empirical studies have implicated Bacteria to be the dominant 

contributor to proteolytic activity in soils (Katsuji et al., 1994; Sakurai et al., 2007; Watanabe et 

al., 2003; Watanabe and Hayano, 1996, 1993), and bacterial isolates from Bacillus, Pseudomonas, 

and Flavobacterium-Cytophaga have been shown to be important agents of proteolysis, acting as 

the main sources of soil peptidase activity (Bach and Munch, 2000; Vranova et al., 2013). Our 

analysis shows that these genera also have a high richness and abundance of secreted peptidases, 

consistent with their high soil peptidase activities. 
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         At the super-family level, much of the variability in peptidase profiles between genomes of 

prokaryotic taxa was linked to differences in counts of less common peptidases, namely aspartic 

peptidases in Archaea and threonine peptidases in Bacteria (Figs. 2.1 and 2.3). Differences in the 

complement of secreted peptidases may reflect their adaptation to environmental conditions, such 

as temperature or pH. Serine, cysteine, and metallo- peptidases are generally optimized and active 

at neutral to alkaline pH (Rao et al., 1998; Rawlings, 2016), whereas aspartic peptidases generally 

exhibit high proteolytic activity in acidic conditions (Rao et al., 1998). Our analyses indicate that 

these enzymatic pH optima reflect the environments in which they are found. For example, three 

peptidase families – A05, A37, and S53 – were enriched in archaeal acidophile genomes (Fig. 2.6). 

All three of these peptidase families have been shown to have optimal endopeptidase activities at 

low pH (Rawlings et al., 2018). Additionally, peptidases of the S53 family appear to be novel 

endopeptidases within the serine peptidase super-family. These enzymes encode a catalytic triad 

consisting of Glu, Asp, and Ser residues, as well as an additional Asp residue in the oxyanion hole 

of the active site (Wlodawer et al., 2003). This active site arrangement stands in contrast to the 

traditional Asp, His, Ser triad observed in the more common serine S08 peptidases, and effectively 

relies on two additional acidic residues for activity. These active site arrangements likely relate to 

the activities of S08 and S53 peptidases in different pH environments, and may account for the 

observed strong negative correlation of the presence of S08 peptidases within acidophilic genomes. 

Therefore, the variation in the diversity of peptidase super-families encoded by microbes appears 

to be at least partially influenced by optimization of catalytic site to specific environmental 

conditions. 

         In Bacteria, there is a significant difference between the secreted peptidase composition of 

Gram-positive and Gram-negative bacteria. These two groups of Bacteria differ in cell wall 
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structure (Brown et al., 2015; Vollmer et al., 2008), which may influence their environmental 

distributions. In Gram-positive bacteria, extracellular enzymes could either be restricted to the cell 

wall and/or eventually diffuse into the environment (Chróst, 1991). In Gram-negative bacteria, 

digestive enzymes need to be secreted beyond the outer membrane in order to stimulate the 

degradation of polymers (Chróst, 1991). The distinction between these enzyme secretion strategies 

may influence the types of extracellular proteolytic enzymes encoded by these two groups of 

Bacteria. Practically, Gram-positive bacteria may secrete more free extracellular enzymes to the 

environment in comparison to Gram-negative bacteria with more membrane-bound secreted 

enzymes (Brown et al., 2015; Chróst, 1991; Vollmer et al., 2008); however, we did not observe a 

significant difference in the average number of secreted peptidases encoded in the genomes of taxa 

from these two bacterial groups (p = 0.056).  

         The conservation of secreted peptidase repertoires between pairs of archaeal and bacterial 

taxa was found to have a moderate positive correlation with phylogenetic relatedness across the 

prokaryotic tree of life. For both Archaea and Bacteria this relationship weakens rapidly as 

phylogenetic distance increases and, for bacterial taxa at least, the relationship is only significant 

up to approximately the family-level taxonomic equivalent of phylogenetic similarity. These 

patterns may be due in some part to horizontal gene transfer of peptidases, which may act to 

conserve features between more closely related taxa that more commonly exchange genes via this 

mechanism (Choi and Kim, 2007; Lawrence and Hendrickson, 2003). As discussed below, this 

conservation may also be partially attributed to a confounding correlation between phylogeny and 

environmental microhabitat of the taxa considered, given that phylogenetically-related taxa often 

inhabit grossly similar environments. Thus, our analyses are necessarily limited by the definition 

of microhabitat used here, which may insufficiently define the true microhabitats of each taxon 
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and the corresponding relationship to functional specialization of peptidase families within those 

habitats. Despite this potential limitation, these results stand in contrast to the insignificant 

relationship observed for glycoside hydrolase (GH) profiles and phylogenies of prokaryotes that 

was defined using a similar approach (Berlemont and Martiny, 2013). Various technical and 

analytical reasons could account for this discrepancy (e.g., differences in databases, classification 

schemes, and methodological details). However, stronger conservation of peptidase vs. GH content 

in genomes could also indicate biologically-driven differences in selective pressures on the 

different enzymatic types, despite their similar general functional roles in modifying cellular 

components and obtaining resources via secreted degradative enzymes. Further work will be 

needed to better define the roles of these important enzymes in speciation and competition in the 

environment. 

         Most secreted peptidase families encoded in bacterial genomes were determined to have 

significant phylogenetic signals in their distribution patterns across taxa. These findings agree with 

previous studies that found conservation of prokaryotic traits that are governed by multiple genes 

or metabolic pathways (e.g., spore formation, oxygenic photosynthesis; (Barberán et al., 2017; 

Goberna and Verdú, 2016)), suggesting that trait conservation and phylogenetic signal strength is 

not exclusively linked to increased trait complexity. Peptidase families of archaeal genomes did 

not show the same level of conservation as in Bacteria, a result that is likely due to the scant 

representation of peptidases from individual families in the available archaeal genome dataset, 

which is a known limitation of this phylogeny-based trait prediction method (Goberna and Verdú, 

2016). Non-random distributions were also observed for most super-families when compared to 

both archaeal and bacterial phylogenies (Tables S2.4 and S2.5). Here, more negative D-values, 

which are indicative of extreme phylogenetic clustering, were typically observed for less common 
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peptidases (e.g., threonine peptidases of Bacteria and aspartic acid peptidases of Archaea), 

suggesting specialized adaptive roles for these enzymes based on their distinct catalytic 

mechanisms. 

         When the conservation and variation of genome-encoded secreted peptidases was examined 

within more specific bacterial clades (e.g., Bacteroidetes and Actinobacteria phyla), it was 

observed that environmental habitat and microbial lifestyle (i.e., “free-living” vs. “animal-

associated”) was an important determinant of peptidase content in genomes (Fig. 2.8). Generally 

speaking, Bacteroidetes taxa commonly associated with aquatic or soil environments, such as 

Cytophagaceae, Sphinobacteriaceae, and Flavobacteriaceae, encoded more total peptidases 

compared to animal-associated Bacteroidetes, such as Bacteroides and Prevotella. Additionally, 

although serine and metallo- peptidases were common to all Bacteroidetes, threonine peptidases 

were present almost exclusively in aquatic/soil-derived Bacteroidetes taxa, whereas cysteine 

peptidases were significantly enriched in animal-associated Bacteroidetes taxa. Given the nature 

of nitrogen limitation in most soil and aquatic environments, the ability to readily break down high 

molecular weight proteinaceous material into amino acid precursors for cell growth or energy 

generation would be highly favorable (Chróst, 1991; Geisseler and Horwath, 2008; Kolton et al., 

2013). The Flavobacteriaceae include taxa with different lifestyles and genome sizes, and which 

are common inhabitants of terrestrial and marine ecosystems. Their ability to successfully compete 

in such oligotrophic environments may be dependent on their capacity to quickly degrade 

proteinaceous material to obtain nitrogen as a supplement to their well-established specialization 

of using carbohydrates for energy and as a carbon source (Bryson et al., 2017). This may account 

for the enriched proteolytic enzyme repertoire observed for these taxa, which is comprised of many 

outer membrane-associated and extracellular peptidases (Kolton et al., 2013; Tully et al., 2014). 
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By contrast, host-associated Prevotella species present inside the rumen (Griswold et al., 1999; 

Wallace et al., 1997) or as periodontal pathogens of humans (Gazi et al., 1997; Mallorquí-

Fernández et al., 2008) have fewer secreted peptidases compared to soil/aquatic species in the 

Bacteroidetes phylum.  

         Similar to these trends, Actinobacterial families common to soil and aquatic environments 

(Streptomycetaceae, Pseudonocardiaceae, Nocardiaceae, Micromonosporaceae, and 

Actinoplanaceae) were also found to have a greater diversity and abundance of peptidases encoded 

in their genomes compared to animal-associated taxa. This observation agrees well with our 

current understanding of the ecology of Actinomycetes and their prodigious role as organic matter 

decomposers in nutrient-limited environments such as soils and freshwaters (Wink et al., 2017). 

Streptomyces species are abundant in terrestrial ecosystems and are well-known for their ability to 

use a wide variety of insoluble environmental substrates such as animal, plant, fungal, and 

microbial biomass by diverse extracellular enzymes, including peptidases (Chater et al., 2010). 

Interestingly, some secreted peptidases from Streptomyces, which are strictly regulated by their 

own inhibitors, are to cannibalize their own mycelial biomass in order to support aerial growth and 

sporulation when needed (Chater et al., 2010). With a rich repertoire of keratinases (mostly serine 

and metallo- peptidases), some Streptomyces can degrade keratin, an insoluble structural and 

highly polymerized protein that is commonly found in the outer covering of many animals (Chater 

et al., 2010; Gupta and Ramnani, 2006; Lange et al., 2016). In other cases, extracellular peptidases 

from Streptomyces may also play a role as an activating mechanism for other secreted proenzymes, 

such as nucleases, cellulases, and xylanases (Chater et al., 2010). 

         An exception within the soil-associated Actinobacteria with regard to secreted peptidase 

content are taxa within the Frankiaceae family, which are diazotrophic and can be endosymbionts 
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of actinorhizal plants. Mastronunzio et al., 2009 also noted the lower number of secreted 

hydrolases, including peptidases, associated with Frankia strains compared to soil Actinobacteria, 

and speculated that this may make them less harmful to their plant hosts, thereby facilitating 

nodulation.  

         This pattern does not hold for rhizobia, however, which is a group of diazotrophic 

Alphaproteobacteria that form root nodules in legumes and that encode a much richer collection 

of secreted peptidases compared to Frankiaceae or other non-N2-fixing Alphaproteobacteria. 

Interestingly, rhizobia are known to fix nitrogen only when in a symbiosis with plants because 

rhizobia lack an endogenous oxygen protection mechanism for the nitrogenase enzyme that 

catalyzes the nitrogen fixation (Pawlowski and Bisseling, 1996). Thus, possessing an abundant 

collection of extracellular peptidases might be a strategy for free-living rhizobia to scavenge 

organic nitrogen and carbon from proteins. In contrast, Frankia species maintain their ability to 

fix atmospheric nitrogen to meet their nitrogen demand when free-living, potentially obviating 

their need to secrete peptidases to scavenge organic nitrogen from the environment (Norman and 

Friesen, 2017; Pawlowski and Bisseling, 1996). 

         Most animal-associated Actinobacteria were found to have a lower abundance of secreted 

peptidases in comparison with those taxa associated with aquatic or soil environments. Examples 

of the former are taxa from the Bifidobacteriaceae, which are often found as members of the 

human intestinal microbiota, especially in unweaned infant guts (Lee and O’Sullivan, 2010). In 

this environment, proteolytic activity predominantly arises from peptidases in human breast milk 

(e.g., anionic trypsin, anionic elastase, and plasmin) and from the gastric proteases (e.g., pepsin) 

(Dallas et al., 2012; Heyndrickx, 1963). Our analysis (Fig. 2.8) showed that Bifidobacteriaceae 

taxa have a limited potential to break down proteins, which might reflect the high abundance of 
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host-derived peptidases that generate bioavailable nitrogen within the gut. Conversely, another 

group of animal-associated Actinobacteria, the Mycobacteriaceae, possess large numbers of 

secreted peptidase genes in their genomes. Most Mycobacterium species are pathogenic (e.g., M. 

tuberculosis, M. leprae) (Gagneux, 2018) and their secreted peptidases appear to function in roles 

other than nutrient acquisition. For example, S01 peptidases, such as MarP or Rv3671c, protect 

Mycobacterium species from high acidic and oxidative conditions inside the host, especially when 

in a dormant state (Biswas et al., 2010; Botella et al., 2017; Kugadas et al., 2016; Ribeiro-

Guimarães and Pessolani, 2007). Other peptidases in Mycobacteria, such as MycP1 of the S08 

family, cleave proteins of the virulent secretion system as part of the infection process (Abdallah 

et al., 2007; Ohol et al., 2010; Ribeiro-Guimarães and Pessolani, 2007).  

         Collectively, these examples support the potential role of environmental microhabitat in 

selecting for peptidase functions, with the general theme that host-associated bacteria tend to 

encode fewer secreted peptidases than those taxa that are free-living. There are exceptions to this 

pattern, however, which appear to be linked to specialized traits of the microbes (e.g., 

pathogenicity, nitrogen fixation).  

         Our analysis of peptidase diversity has practical implications for microbial ecology studies 

of protein degradation. First, our analysis of the microbial potential for secreted peptidase 

production is a foundation for subsequent research applying transcriptomic or proteomic 

approaches to determine how this potential is realized by the secretion of peptidases under specific 

environmental conditions. Second, the current oligonucleotide primers designed to amplify 

peptidases from environmental DNA using PCR focus on specific peptidase families that are 

encoded by limited microbial taxa. For example, the npr primers are able to detect neutral 

metallopeptidases of the M04 family primarily associated with Bacillus species (23rd most 
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abundant peptidase family in  Bacteria and Archaea), primers for sub detect the subtilisin-like S08 

peptidase family associated with Bacillus species (9th in abundance), and apr primers can identify 

only alkaline metallopeptidases of the M10 family from Pseudomonas fluorescens (57th in 

abundance) (Bach and Munch, 2000; Tsuboi et al., 2014). Therefore, there is a need to design 

primer sets that are more universal or target a larger diversity of microbial secreted peptidases and 

that focus on the more abundant families of secreted peptidases (e.g., S11, C40, M23) in order to 

better capture the protein depolymerization process in environmental samples. 
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Figure 2.1. Relative abundance of secreted peptidase super-families in 147 archaeal and 2,191 

bacterial genomes (asparagine, aspartic, cysteine, glutamic, metallo-, mixed, serine, threonine, and 

unknown peptidase super-families). Different colors represent different peptidase super-families. 
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Figure 2.2. Secreted peptidase gene content (per genome) of archaeal and bacterial phyla. Secreted 

peptidases grouped into super-families: Total secreted peptidases (including genes from all 

peptidase super-families); serine, metallo-, cysteine peptidases. The number of analyzed genomes 

from each prokaryotic phylum is presented next to the phylum names. 
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Figure 2.3. Bipartite association network of shared peptidase families between Archaea and 

Bacteria. Node sizes indicate the relative abundance of the secreted peptidases. Node shapes 

represent different peptidase families: triangle = aspartic; octagon = cysteine; diamond = glutamic; 

rectangle = metallo-; pentagon = serine; parallelogram = threonine; hexagon = asparagine, mixed, 

and unknown. Node colors are coded by unique or shared peptidase families between microbial 

kingdoms (blue = Bacteria, red = Archaea, gray = shared between Bacteria and Archaea). Edges 

denote associations between microbial kingdoms and peptidase families. Edge colors are coded by 

microbial kingdoms. 



 

 

37 

 

 

Figure 2.4. Principal coordinate analysis of secreted peptidase families based on Bray-Curtis 

dissimilarity of proportions of secreted peptidase families encoded in each genome. The number 

of analyzed genomes from each prokaryotic phylum is presented next to the phylum names. 

 Symbol shapes are coded by microbial kingdoms; symbol colors represent some abundant 

bacterial and archaeal phyla. Significant differences of the secreted peptidase profiles observed 

between archaeal and bacterial species (p-value < 0.001, F-statistic = 92.9, PERMANOVA) and 

among different bacterial phyla (p-value < 0.001, F-statistic = 19.0, PERMANOVA). 
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Figure 2.5. Distribution of secreted peptidase super-families across the archaeal 16S rRNA phylogenetic tree. Outer tracks show the 

copy number of genes from each secreted peptidase super-family in each genome. Inner track color corresponds to the phylum-level 

classification of each taxon considered.
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Figure 2.6. Principal coordinate analysis of prokaryotic genomes based on Bray-Curtis 

dissimilarities of proportions of secreted peptidase families encoded in archaeal genomes.  Symbol 

shapes and colors are coded by reported optimal growth conditions (pH, temperature, and salt 

concentration). Vectors lengths are scaled relative to the correlation of individual peptidase 

families with the two axes shown (Pearson’s correlation). The composition of secreted 

peptidasegenes of Archaea varied significantly based on their optimal growth conditions (p-value 

< 0.001, F-statistic = 6.11, PERMANOVA).  
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Figure 2.7. Distribution of secreted peptidases super-families across the bacterial phylogenetic 

tree. Outer tracks show the copy numbers of genes from each secreted peptidase super-family in 

each genome. Inner track color corresponds to the phylum-level classification of each taxon 

considered. 
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Figure 2.8. Distribution of strain-specific secreted peptidases across (A) Bacteroidetes and (B) Actinobacteria taxa. The outer two tracks 

represent the habitat each taxon is associated with (orange for aquatic/soil environment, purple for animal environment). The middle 

tracks show the copy number of genes from each secreted peptidase super-family in each genome. The figure on the top left corner 

represent the average numbers of each peptidase super-family (S for serine, M for metallo-, C for cysteine, T for threonine, A for aspartic, 

N for asparagine, U for unknown, P for mixed and G for glutamic) per genome; purple box plots report mean and standard deviation of 
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the peptidase content of genomes that are commonly found in animal-associated environments, and orange box plots report mean and 

standard deviation of the peptidase content of genomes from soil/aquatic environments, with p-values of: *** = 0-0.001, ** = 0.001-

0.01, and * = 0.01-0.05.  
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2.6. Appendix for Chapter 2 

 

Figure S2.1. Secreted peptidase gene content of 147 archaeal and 2,191 bacterial genomes 

(genes/mega base pairs (Mb), natural log transformation). Archaea in red and Bacteria in blue 

(Welch two-sample t-test, t=-24.0, p-value < 0.001) 
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Figure S2.2. Secreted peptidase gene content (genes/genome) of threonine and aspartic peptidases 

in prokaryotic phyla. The number of analyzed genomes from each prokaryotic phylum is presented 

next to the phylum names. 
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Figure S2.3. Mantel correlogram between phylogenetic distance and secreted protease profile 

dissimilarities for archaeal and bacterial taxa based on Pearson’s product-moment correlations (p-

value < 0.05, filled symbols; not significant, open symbols). 
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Figure S2.4. Phylogenetic distributions of secreted peptidase families across archaeal and bacterial 

taxa. 
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Figure S2.5. Secreted peptidase families showing clumped distributions within bacterial genomes. 

Outer tracks show the presence/absence of genes from each secreted peptidase family in each 

genome (white=absence, red=presence). Inner ring colors represent the phylum-level classification 

of microbial genomes. 
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Figure S2.6. Principal coordinate analysis of prokaryotic genomes based on Bray-Curtis 

dissimilarities of proportions of secreted peptidase families encoded in each genome. Symbol 

shapes are coded by either Gram-negative and Gram-positive cell wall classification. Significant 

differences were observed between Gram-positive and Gram-negative bacteria based on the 

relative abundance of their secreted peptidase families (p-value < 0.001, F-statistic = 193.3, 

PERMANOVA). 
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Figure S2.7. Principal coordinate analysis of prokaryotic genomes based on Bray-Curtis 

dissimilarities of proportions of secreted peptidase families encoded in Bacteroidetes genomes. 

Symbol shapes are coded by the environment where the microorganisms are commonly found 

(triangle for animal microbiota and circle for aquatic/soil environment); symbol colors represent 

different taxonomic families. Vector lengths are scaled relative to the correlation of individual 

peptidase families with the two axes shown (Pearson’s correlation). Secreted peptidase profiles 

were strongly correlated with the environment in which each species was associated with (p-value 

< 0.001, F-statistic = 34.5, PERMANOVA).  
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Figure S2.8. Principal coordinate analysis of prokaryotic genomes based on Bray-Curtis 

dissimilarities of proportions of secreted peptidase families encoded in Actinobacteria genomes. 

Symbol shapes are coded by the environment where the microorganisms are commonly found 

(triangle for animal microbiota and circle for aquatic/soil environment); symbol colors represent 

different taxonomic families. Vectors lengths are scaled relative to the correlation of individual 

peptidase families with the two axes shown (Pearson’s correlation). Ecological niches, on the other 

hand, also played a strong role in differentiating this function among Actinobacteria (p-value < 

0.001, F-statistic = 26.4, PERMANOVA). 
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Table S2.1. Differences of secreted peptidases among bacterial phyla using Tukey’s HSD analysis. 
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Mean number of 
secreted 

peptidases 
55.3 31.7 3.4 36.3 8.4 7.1 10.4 7.9 17.9 5.7 29.5 28.4 7.4 2.7 20.7 17.1 

Acidobacteria   ***  * * * ***  ***   *** ***   

Actinobacteria   *** ** * ** ** *** *** ***   *** ***   

Aquificae *** ***  ***     ***  *** ***   ** ** 
Bacteroidetes  ** ***  *** *** *** *** *** ***  *** *** ***   

Chlamydiae * *  ***             

Chlorobi * **  ***        *     

Chloroflexi * **  ***        *     

Cyanobacteria *** ***  ***     ***  ** ***  *   

Firmicutes  *** *** ***    ***  ***  *** *** ***   

Fusobacteria *** ***  ***     ***  *** ***   * ** 
Planctomycetes   ***     **  ***   *** ***   

Proteobacteria   *** ***  * * *** *** ***   *** ***   

Spirochaetes *** ***  ***     ***  *** ***     

Thermotogae *** ***  ***    * ***  *** ***   *** *** 
Verrucomicrobia   **       *    ***   

Xenobacteria   **       **    ***   

p-value: (***) 0-0.001, (**) 0.001-0.01, (*) 0.01-0.05, () > 0.05 
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Table S2.2. Phylogenetic signal strength of secreted peptidase families across 2,191 bacterial 

genomes. Significance of clustering is based on the Fritz and Purvis index (D) of each peptidase 

family trait (presence or absence of genes). Estimated D value defined whether the secreted 

peptidase distribution would follow “strongly clumped” (D≤0), or “Brownian-like evolutionary” 

(0<D<1) or “Random” distribution (D≥1). 

Peptidase 
Family  Estimated D  

Probability of E(D) resulting 
from no (random) 
phylogenetic structure  

Probability of E(D) resulting 
from Brownian phylogenetic 
structure     Genomes 

M07 -0.2259344 0 0.883 47 
M73 -0.1694997 0 0.783 32 
M84 -0.2318844 0 0.732 10 
C113 -0.0912123 0 0.61 11 
S24 -0.0186868 0 0.551 9 
C10 -0.00685428 0 0.517 59 
S46 0.03560422 0 0.401 203 
C44 0.1183377 0 0.401 8 
M93 0.06470617 0 0.371 51 
S28 0.08069442 0 0.316 62 
M17 0.09688335 0 0.308 47 
M34 0.1920949 0 0.271 16 
C15 0.2146679 0 0.262 13 
M74 0.08196468 0 0.249 215 
C66 0.2367091 0 0.244 12 
C02 0.2966722 0 0.244 9 
M02 0.108701 0 0.219 86 
C25 0.1154511 0 0.213 84 
G01 0.3256029 0 0.193 10 
U62 0.2398793 0 0.167 26 
M88 0.3500109 0 0.161 12 
S54 0.3590698 0 0.125 15 
M11 0.325439 0 0.115 20 
M01 0.09388175 0 0.112 414 
S55 0.1978025 0 0.103 59 
M19 0.1688879 0 0.078 143 
C69 0.1606719 0 0.05 203 
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M13 0.150051 0 0.048 288 
S16 0.2327544 0 0.034 116 
N04 0.3161909 0 0.025 55 
M86 0.542897 0 0.018 18 
S37 0.4474473 0 0.016 24 
M28 0.1511733 0 0.015 582 
C01 0.1945182 0 0.014 235 
A32 0.2915281 0 0.014 85 
M35 0.5759979 0 0.014 17 
M72 0.4053593 0 0.011 49 
M16 0.144704 0 0.009 925 
M06 0.2247751 0 0.008 229 
M75 0.2263001 0 0.008 210 
M66 0.4520076 0 0.008 31 
M04 0.2083994 0 0.007 256 
S10 0.2441075 0 0.007 180 
T02 0.2538085 0 0.007 113 
C40 0.1503968 0 0.005 1166 
A26 0.3843456 0 0.005 57 
S14 0.5553352 0 0.005 23 
S06 0.5906663 0 0.004 19 
C26 0.6459709 0 0.004 18 
M20 0.2435776 0 0.002 277 
M49 0.5847863 0 0.002 25 
S11 0.2053199 0 0.001 1465 
S53 0.3432167 0 0.001 102 
M09 0.3744992 0 0.001 88 
M64 0.4271057 0 0.001 68 
M30 0.4936028 0 0.001 35 
A24 0.6858283 0 0.001 24 
T03 0.2781851 0 0 772 
C82 0.2804334 0 0 910 
S13 0.2856551 0 0 649 
M03 0.290369 0 0 252 
S41 0.3053146 0 0 1163 
M14 0.3139296 0 0 335 
M38 0.3327629 0 0 304 
M96 0.3777077 0 0 192 
S12 0.4021022 0 0 1002 
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S01 0.4097399 0 0 1422 
S15 0.4116812 0 0 366 
S08 0.4174785 0 0 991 
M43 0.4176288 0 0 101 
S45 0.4242641 0 0 222 
C60 0.4392742 0 0 146 
C39 0.4397784 0 0 99 
M48 0.4500771 0 0 703 
M97 0.4681868 0 0 52 
M41 0.4705892 0 0 100 
S09 0.4849367 0 0 894 
M61 0.493181 0 0 396 
C110 0.4960267 0 0 83 
M10 0.5026735 0 0 100 
C59 0.5149821 0 0 200 
S66 0.538241 0 0 84 
M15 0.5439112 0 0 543 
S49 0.5541239 0 0 269 
C14 0.5754452 0 0 110 
M26 0.5765666 0 0 41 
C93 0.5819775 0 0 73 
M24 0.5975717 0 0 74 
M36 0.5997786 0 0 64 
C13 0.6169344 0 0 29 
S33 0.6301359 0 0 426 
M23 0.6359832 0 0 1360 
M50 0.6435465 0 0 36 
S51 0.6527886 0 0 63 
C56 0.6592502 0 0 107 
A08 0.6680078 0 0 63 
C11 0.6738293 0 0 73 
C83 0.6841772 0 0 31 
M12 0.6982088 0 0 58 
U69 0.7769681 0 0 79 
S26 0.7917711 0 0 108 
M79 0.729761 0.001 0 32 
P01 0.7922505 0.003 0 33 
C51 0.5217914 0.005 0.05 10 
M05 -0.2278856 0.009 0.651 3 
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T05 0.3934865 0.009 0.216 6 
A28 0.7261397 0.009 0 20 
M57 0.6577306 0.021 0.015 11 
A01 -0.339028 0.029 0.689 2 
C47 0.6565088 0.034 0.028 10 
M81 0.6174429 0.035 0.065 8 
U72 -1.742503 0.052 0.848 1 
M60 0.7914669 0.066 0.001 14 
U73 0.4583012 0.069 0.233 4 
M08 0.7195649 0.116 0.029 7 
M18 0.133928 0.128 0.476 2 
S73 0.1524141 0.142 0.462 2 
M98 0.8741101 0.192 0 13 
S59 -0.8006927 0.193 0.672 1 
M54 0.7690595 0.243 0.051 5 
C19 0.6379069 0.262 0.163 3 
U32 -0.04075472 0.316 0.51 1 
T07 0.6669495 0.356 0.236 2 
N11 0.1935319 0.36 0.428 1 
A02 0.1646482 0.371 0.44 1 
U74 0.8831385 0.388 0.03 5 
M76 0.4561855 0.416 0.392 1 
C46 0.7938488 0.47 0.301 1 
M56 1.001749 0.511 0 12 
N10 1.007016 0.534 0.067 3 
M55 1.10351 0.553 0.245 1 
S50 1.221841 0.585 0.198 1 
M82 1.068431 0.606 0.006 5 
M32 1.675042 0.682 0.143 1 
M42 1.127865 0.754 0 11 
C89 1.484572 0.756 0.028 2 
C45 1.096967 0.756 0 15 
M44 2.734743 0.819 0.077 1 
A11 3.046838 0.874 0.018 1 
M78 3.816493 0.915 0.027 1 
T01 6.425802 0.982 0 1 
M85 3.134598 0.994 0 2 
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Table S2.3. Phylogenetic signal strength of secreted peptidase families across 147 archaeal 

genomes.  Significance of clustering is based on the Fritz and Purvis index (D) of each peptidase 

family trait (presence or absence of genes). Estimated D value defined whether the secreted 

peptidase distribution would follow “strongly clumped” (D≤0), or “Brownian-like evolutionary” 

(0<D<1) or “random” distribution (D≥1). 

Peptidase 
Family Estimated D 

Probability of E(D) resulting 
from no (random) phylogenetic 
structure  

Probability of E(D) resulting 
from Brownian phylogenetic 
structure     Genomes 

C56 -0.8365722 0 0.915 4 
A05 -0.3056731 0 0.871 16 
S53 -0.293705 0 0.862 18 
S16 -0.1277893 0 0.751 44 
S12 0.02741457 0 0.447 16 
M10 0.04843905 0 0.432 16 
M01 0.1706628 0 0.336 8 
M79 0.2243264 0 0.179 20 
C01 0.3023148 0 0.086 26 
S01 0.3590775 0 0.069 20 
S49 0.4882171 0 0.004 48 
S08 0.4885586 0 0.002 70 
M28 0.06883237 0.002 0.478 5 
S09 0.545091 0.002 0.012 20 
M67 -1.42327 0.004 0.867 2 
A37 0.245117 0.005 0.29 6 
M48 0.5998375 0.026 0.031 10 
C39 0.3796129 0.028 0.241 5 
S33 0.4785832 0.028 0.131 7 
A22 0.6635692 0.044 0.014 11 
A31 -1.788827 0.054 0.911 1 
M84 -0.00896638 0.09 0.566 2 
M13 0.4058199 0.115 0.317 3 
M82 -0.02828574 0.125 0.554 2 
C69 0.5660381 0.125 0.185 4 
S26 0.7652234 0.125 0.006 11 
C110 0.2406773 0.177 0.416 2 
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T03 0.6611962 0.18 0.145 4 
M03 0.3919442 0.244 0.373 2 
C19 -0.5283647 0.296 0.558 1 
C51 -0.6074144 0.302 0.559 1 
S60 -0.4075937 0.321 0.527 1 
M43 0.1791917 0.386 0.42 1 
S41 0.2983447 0.39 0.381 1 
S54 0.7255929 0.406 0.237 2 
M30 0.8668889 0.421 0.092 3 
M14 0.9940787 0.482 0.002 7 
M38 0.6596704 0.496 0.309 1 
M09 0.8770507 0.498 0.278 1 
S45 1.033513 0.557 0.015 5 
S24 1.318157 0.569 0.23 1 
M26 1.081546 0.597 0.008 5 
S13 1.134787 0.602 0.043 3 
C26 1.127768 0.618 0.029 3 
M61 1.651654 0.638 0.17 1 
C11 1.22681 0.642 0.067 2 
M54 1.262134 0.659 0.048 2 
G01 2.230843 0.71 0.106 1 
C25 2.719368 0.784 0.063 1 
C14 1.495708 0.839 0.003 3 
C40 3.340966 0.864 0.041 1 
S15 1.629052 0.877 0.004 3 
S59 3.831459 0.913 0.007 1 
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Table S2.4. Statistical differences of secreted peptidases between Bacteroidetes families using Tukey’s HSD analysis. 

 Bacteroidaceae Cytophagaceae Flavobacteriaceae Porphyromonadaceae Prevotellaceae Sphingobacteriaceae 
Mean. Secreted 
peptidases 36.91 54.86 33.67 34.94 29.42 54.73 
Bacteroidaceae       
Cytophagaceae   *  *  
Flavobacteriaceae  *    ** 
Porphyromonadaceae       
Prevotellaceae  *    ** 
Sphingobacteriaceae   **  **  

p-value: (***) 0-0.001, (**) 0.001-0.01, (*) 0.01-0.05, () > 0.05 
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Table S2.5. Statistical differences of secreted peptidases between Actinobacteria families using Tukey’s HSD analysis. 
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Mean. Secreted peptidases 9.42 7.25 7.22 6.67 17.50 17.20 64.70 34.69 43.30 12.13 50.13 72.38 
Actinomycetaceae       *** * **  *** *** 
Bifidobacteriaceae       *** *** ***  *** *** 
Coriobacteriaceae       *** *** ***  *** *** 
Frankiaceae       ***  *  *** *** 
Microbacteriaceae       ***    * *** 
Micrococcaceae       ***    *** *** 
Micromonosporaceae *** *** *** *** *** ***  **  ***   
Mycobacteriaceae * *** ***    **     *** 
Nocardiaceae ** *** *** *        ** 
Propionibacteriaceae       ***    ** *** 
Pseudonocardiaceae *** *** *** *** * ***    **  * 
Streptomycetaceae *** *** *** *** *** ***  *** ** *** *  

p-value: (***) 0-0.001, (**) 0.001-0.01, (*) 0.01-0.05, () > 0.05 
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3.1. Abstract 

 
Nitrogen is an important element that fungi always scavenge from the 

environment. In soils, most of the nitrogen is present as large polymerized nitrogen 

molecules, such as plant litter or microbial necromass. This study analyzed the diversity 

and distribution of extracellular peptidases across 612 fungal species as one of the most 

important enzymatic factors for fungal nitrogen acquisition. We extracted their 

genomic information and corresponding annotated protein sequences assembled from 

several databases, including MEROPS, JGI Genome Portal, and MycoCosm. We then 

evaluated the diversity and abundance of fungal extracellular peptidases, their 

evolutionary conservation, and distribution as a function of ecological lifestyle. 

Annotated peptidase gene sequences were screened for secretion signals, resulting in 

31,668 eukaryotic secreted peptidase coding genes belonging to 79 peptidase families. 

We found that Ascomycota, Basidiomycota, and Mucoromycotina phyla possess 

distinguishable sets of secreted peptidases, indicating differential abilities for protein 

degradation. There are differences in the total secreted peptidases per genome and 

peptidase complements between fungal ecological groups., For example, saprotrophic 

fungi have fewer secreted peptidases in their genomes compared to the symbiotic or 

pathogenic fungal species. Some peptidase families were widespread among the 

studied fungal taxa, whereas some were strictly clustered in certain lineages. Most of 

the secreted peptidase families in our study strongly followed the evolution of fungi, 

implying a genetic conservation of proteolytic functions among fungal species. Our 

study offers an extensive understanding about the diversity and distribution of the 

extracellular proteolytic enzymes across the fungal kingdom and provides a foundation 
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for future research applying transcriptomic and proteomic approaches to study fungal 

capability to degrade proteins.  

 

3.2. Introduction 

 
Fungi must scavenge nitrogen (N) from their environment. Their preferred N 

sources are ammonium and amino acids, such as glutamate and glutamine (Marzluf, 

1997), but these simple N compounds are often in short supply in most environments. 

In soils, most of the N is present in large biopolymers from remnants of dead plant or 

microbial biomass, usually in the form of proteins or microbial cell wall materials 

(Nannipieri and Paul, 2009). To access the N from these biopolymers, fungi rely on the 

secretion of extracellular enzymes, such as chitinases and peptidases. This analysis 

focuses on the peptidases secreted by fungi. 

Fungi can exist in diverse trophic modes, with different phenotypic traits, and 

ecological habitats, resulting in different nutrient acquisition strategies in order to 

overcome the costly energy tradeoffs of enzyme production. Some fungi rely solely on 

the dead organic material in the environment, some exchange nutrients with plants 

through symbiotic relationships, and some gain nutrients by colonizing and damaging 

their living animal or plant hosts. Many of the fungal traits involved in organic carbon 

acquisition from complex plant material with a diverse array of lignocellulolytic 

extracellular enzymes that have been shown to link tightly to the fungal evolutionary 

history (Nagy et al., 2017; Semenova et al., 2017; Talbot et al., 2013). Our objective is 

to determine if similar patterns exist between the distribution of extracellular peptidase 

coding genes in fungi and their ecology and taxonomy.  
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Fungal species are classically grouped into different ecological groups, or 

functional guilds. Each fungal guild is defined as a group of species that utilizes the 

same environmental resources in an analogous way whether or not they are 

phylogenetically related (Nguyen et al., 2016; Root, 1967). For the purpose of this 

study, we assigned fungal species into four main ecological groups: symbiotrophic 

fungi, saprotrophic fungi, symbiotrophic/saprotrophic fungi, and other fungi (mostly 

pathotrophs). Symbiotrophic fungi represent the fungal symbionts that usually 

associate with plant roots. Saprotrophic fungi represent the free-living fungal 

decomposers commonly found in terrestrial habitats. Pathotrophic fungi form an 

antagonistic relationship with their host, either plant or animal. We expected to see that 

fungi belonging to different ecological groups, possess unique extracellular peptidases, 

reflecting the fungal adaptation to distinctive environmental resources. 

Saprotrophic fungi account for about 90% of total heterotrophic respiration in 

forest ecosystems (Crowther et al., 2012) and belong to the Mucoromycotina, 

Basidiomycota, and Ascomycota. With a rich blend of plant-degrading enzymes 

(lignocellulolytic enzymes), saprotrophic fungi are a major driver of litter 

decomposition and regulator of soil carbon cycling (Crowther et al., 2012). 

Saprotrophic fungi colonize the litter horizons where there is more available organic 

carbohydrate material for carbon and energy (Talbot et al., 2013). Their hyphal network 

spreads along the soil-litter interface and creates channels to access the carbon sources 

and translocate nutrients in soils (Crowther et al., 2012). The litter horizon is also a sink 

of organic nitrogen, mostly from plant and animal debris. Curiously, however, a recent 

study of 17 fungal isolates found that saprotrophic fungi were generally associated with 
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low proteolytic activity (Semenova et al., 2017) and possessed fewer secreted peptidase 

coding genes compared to some pathogenic fungal species (Soanes et al., 2008). 

Semanova et al. (2017) found exopeptidases that cleave peptide bonds from the N-

terminal end were more dominant than endopeptidases, which were suggested be more 

beneficial for saprotrophic lifestyle in terms of how quickly the organic nitrogen can 

be broken down and consumed. 

Ectomycorrhizal fungi, a group of symbiotic fungal species, perform not only 

an important ecological role in relationship with plants (Tedersoo et al., 2009), but also 

a significant role in nutrient cycling. Ectomycorrhizal fungi form an intercellular 

interface with plant roots without penetrating plant cell walls and develop their 

extramatrical mycelia to explore nutrient sources (Agerer, 2001). The mutualistic 

relationship between fungi and plant roots exists as a balanced parasitism in natural 

conditions. Ectomycorrhizal fungi originally evolved in Basidiomycota through many 

evolutionary events from saprotrophic ancestors with some independently evolved in 

Ascomycota (Pellitier and Zak, 2018). As a result of evolutionary processes, 

ectomycorrhizal fungi have lost many genes with saprotrophic functions, such as some 

lignocellulolytic enzymes (Pellitier and Zak, 2018). It is still an open question whether 

or not ectomycorrhizal fungi may have retained some nitrogen-related enzyme coding 

genes in order to utilize nitrogen from soil organic matter. According to some studies, 

the host plants support symbiotic ectomycorrhizal fungi by providing up to 30% of 

their photosynthate carbon to exchange for about 70% of their nitrogen and phosphorus 

requirements (Gorka et al., 2019; Martin and Nehls, 2009; Nehls, 2008; Treseder and 

Lennon, 2015). In line with this, a recent study demonstrated that ectomycorrhizal fungi 
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have a significant role in breaking down the polyphenol-protein complexes in soils 

through the joint action of some proteolytic enzymes and by producing oxidative agents 

(e.g., radical OH groups) based on the Fenton reaction (Beeck et al., 2018). Some pure 

culture studies also suggest that ectomycorrhizal fungi have the ability to degrade 

proteins by producing a diverse mixture of extracellular peptidases, dominantly 

aspartic endopeptidases (Rineau et al., 2016; Shah et al., 2013). Additionally, the 

ectomycorrhizal fungal species present in older forests are shown to adapt to the most 

common N source and therefore have much greater protein degradation abilities 

(Rineau et al., 2016), suggesting a close correlation between their environment and 

their ability to scavenge for organic nitrogen.  

Pathotrophic fungi represent an ecological group that feeds on the living cells 

of their hosts (animal, plant, or fungi) for nutrients during at least part of their fungal 

life cycle. Most of the proteolytic enzymes encoded by these fungal pathogens are 

connected with pathogenesis-related functions, such as damaging host tissues or 

deactivating the host defense (Semenova et al., 2017). Trypsin-like serine 

endopeptidases are a unique marker for pathogenic fungi, which are lost in saprotrophs 

(Dunaevskii et al., 2006; Hu and Leger, 2004; Semenova et al., 2017). Extracellular 

peptidases that serve as virulence factors in pathogenic fungi include aspartic 

peptidases belonging to pepsin family (A1), serine peptidases in subtilisin family (S8), 

and metallopeptidases in M35 and M36 families (Monod et al., 2002).  

Our analysis expands upon prior studies of fungal peptidase production. For 

example, Semanova et al. (2017) empirically examined the secreted peptidases 

expressed by 17 species of Ascomycota and Basidiomycota representing saprotrophs 
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and pathogens. Ascomycota produce predominantly serine peptidases (mostly S08 

family, subtilisin) with alkaline pH optima, whereas Basidiomycota produce mostly 

metallopeptidases with more neutral pH optima. Muszewska et al. (2017) did an 

intensive analysis concentrated on serine peptidases, both intracellular and secreted. 

They analyzed 634 proteomes across the fungal evolutionary tree, finding that serine 

peptidase abundance scaled with genome size, with a tendency for greater peptidase 

richness in evolutionarily younger taxa. In addition, Muszewsak et al. (2017) reported 

relationships between fungal lifestyle and their repertoire of serine peptidases: plant 

symbionts having fewer, pathogens and saprotrophs having more. 

Regarding the diverse lifestyles, taxonomy, and complicated evolutionary 

history of fungi, we postulate that the distribution of extracellular peptidases will be 

influenced strongly and segregate between fungal lifestyles and taxonomic groups. To 

test this idea, we analyzed the diversity of secreted peptidases across a wide range of 

fungal species and determined the conservation of the proteolytic trait across an 

extensive list of well-studied fungal genomes. We obtained the fungal genomic 

information from JGI Genome Portal, MyCosm 1000 Fungal genome project and 

annotated their secreted peptidase family information using MEROPS Batch Blast 

(Grigoriev et al., 2014, 2011; Rawlings et al., 2018).  
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3.3. Materials and Methods 

 

3.3.1. Collection of fungal secreted peptidases 

We selected 612 fungal genomes of interest belonging to three fungal phyla 

(356 genomes from Ascomycota, 234 genomes from Basidiomycota, 22 genomes from 

Mucoromycotina) from MycoCosm, the DOE JGI’s web-based fungal genomics 

resource (https://genome.jgi.doe.gov/programs/fungi/index.jsf, data accessed March 

2017) (Grigoriev et al., 2014, 2011). Only completely annotated genomes existing in 

the database with available annotated protein information were considered.  

First, data pertaining to the organism names and genome completeness were 

extracted from JGI Genome Portal (Grigoriev et al., 2011) with unique JGI 

identification (JGI ID). This allowed us to narrow down the list of fungal genomes for 

our study to only completely sequenced species. Fungal taxonomic classification was 

queried from UNITE  (Nilsson et al., 2019). The taxonomy ID and taxonomy name 

were extracted from NCBI Taxonomy Browser on Taxonomy Name/ ID Status Report 

page (https://www.ncbi.nlm.nih.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi).  

Next, we extracted the information table of SigP (protein ID, protein names, 

protein sequences, sequence ID, signal peptide classification) and EC-KEGG (protein 

ID, enzyme nomenclature assignment) for each individual fungal species from the JGI 

Genome Portal (Grigoriev et al., 2011). From the SigP table, we obtained all the 

annotated protein sequences that were previously identified to be genes encoding 

putative signal sequence motifs as defined for eukaryotes based on SignalP (Mori and 

Ito, 2001; Petersen et al., 2011, Grigoriev et al 2014). From the EC-KEGG table, we 
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screened only the proteins that were classified as proteolytic enzyme (EC 3.4.). 

Combining these two outputs and using the matching protein ID information, we 

queried for the peptidase sequences that contained signal peptides in each single fungal 

genome. These secreted peptidase results for each fungal genomes were summarized 

into a fasta file that comprised their amino acid sequences with unique species JGI ID, 

species names, protein ID, sequence ID information. The fasta files for each species 

were then concatenated together into three fasta files for Ascomycota, Basidiomycota,  

and Mucormycotina.  

We obtained the peptidase family information for the peptidase sequences of 

interest by MEROPS Batch Blast release 11.0 (Rawlings et al., 2018). The MEROPS 

database classifies peptidases into seven super-families based on the catalytic residue 

serving at the active site of the enzyme (Hartley, 1960; Rawlings and Barrett, 1993), 

and further divides these super-families into 255 proteolytic families based on 

similarities in amino acid sequences (Rawlings et al., 2018). After the Batch Blast run 

for the dataset from each fungal phylum, all the peptidase sequences that were 

recognized as protein inhibitors were removed from the three fasta files. We then 

obtained the comprehensive list with all the important information about the sequences, 

including: JGI ID, protein ID, sequence ID, peptidase family classification, amino acid 

sequences. This data mining process yielded 17,500 peptidase sequences from 356 

Ascomycota primary genomes of interest, 13,415 peptidase sequences from 234 

Basidiomycota genomes, and 753 peptidase sequences from 22 Mucoromycotina 

genomes. 
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3.3.2. Fungal ecological guild annotation 

The ecological groups, or guilds, for our fungal species were annotated using 

FUNGuild, an open annotation tool for parsing fungal datasets (Nguyen et al., 2016) 

(https://github.com/UMNFuN/FUNGuild). We simplified the fungal guild information 

into four main ecological groups: Saprotroph (381 taxa), Symbiotroph (mostly 

Ectomycorrhizal Symbiotroph and Pathotroph-Symbiotroph; 86 taxa), Both 

(Symbiotroph-Saprotroph or Pathotroph-Symbiotroph-Saprotroph; 17 taxa), and 

Others (mostly Pathotrophs, with the rest being unclassified; 128 taxa).  

 

3.3.3. Comparison of genomic complements of secreted peptidases 

The secreted peptidase complements of all taxa were summarized in a matrix 

containing the gene copy number counts of secreted peptidases assigned to either 

family or superfamily classifications (rows) across all analyzed genomes (columns), as 

described in our previous study of prokaryotic secreted peptidases (Nguyen et al., 

2019). Bray-Curtis dissimilarity indices between the secreted peptidase complements 

of fungal genomes were calculated from these matrices and used to generate a secreted 

peptidase distance matrix, or functional distance matrix, using the ‘Vegan’ package in 

‘R’ (Oksanen et al., 2018). Principal coordinate analyses (PCoA) was used to explore 

the data and Permutational Multivariate Analyses of Variance (PERMANOVA) was 

used to determine the statistical differences of the peptidase complements of fungal 

genomes at different taxonomic levels and different fungal guild classification.  

The Welch two-sample t-test, or unequal variances t-test, was used to test for 

statistical differences between the means of the total secreted peptidases encoded 

within fungal genomes. One-way analysis of variance with the Tukey’s HSD multiple-
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range test was used to determine the statistical differences between counts of total 

secreted peptidases and secreted peptidases belonging to each peptidase super-family 

among fungal phyla and among fungal ecological guilds. Statistical analyses were 

performed in the ‘R’ programming environment (R. Core Team, 2016). 

 

3.3.4. Phylogenetic analysis 

A downloaded phylogenetic tree was constructed by the MycoCosm team based 

on available protein sequence alignments (Grigoriev et al., 2014). For our analysis, we 

pruned the tree so that it contained 612 primary fungal genomes of interest using ‘APE’ 

package (Analyses of Phylogenetics and Evolution) in R (Paradis and Schliep, 2019). 

The Newick tree for 612 fungal genomes is included in the Supplementary files. The 

phylogenetic distances were back calculated based on the phylogenetic tree and these 

distances were converted into a phylogenetic distance matrix. The phylogenetic tree 

and distributions of secreted peptidase families across the tree were visualized using 

iTOL (Letunic and Bork, 2016).  

 

3.3.5. Distance matrices comparisons 

Correlations between the phylogenetic distance matrix and the secreted peptidases 

distance matrix, or functional distance matrix, were evaluated using the Mantel test of 

‘APE’ (Analysis of Phylogenetics and Evolution package) in ‘R’ (Paradis and Schliep, 

2019) based on Pearson’s product-moment correlation. Mantel correlograms that report 

the correlation between phylogenetic and functional distances at defined phylogenetic 

distance classes for Fungi were calculated using the ‘Vegan’ package in ‘R’.  
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3.3.6. Phylogenetic conservation and clustering  

As described by Nguyen et al. (2019), phylogenetic signal strengths (D) 

contributing to the observed distribution patterns for each peptidase super-family and 

family were calculated from their binary presence/absence in genomes of all considered 

taxa (Fritz and Purvis, 2010) using the ‘CAPER’ package (Comparative Analyses of 

Phylogenetics and Evolution) in ‘R’ (Orme et al., 2018). Secreted peptidases are 

considered phylogenetically conserved when they are shared among the majority of 

members of deeply branched clades, conforming to a Brownian motion evolutionary 

model (D ~ 0), with a relatively constant gain/retention of traits across taxonomic 

levels. A strongly clumped distribution (D < 0) suggests recent innovation or potential 

gain via horizontal gene transfer within a clade or subset therein. Peptidases are 

considered randomly distributed (D ! 1) when their presence/absence is not driven by 

shared traits (e.g., microhabitat, physiology) of closely related species (Berlemont and 

Martiny, 2013; Martiny et al., 2013; Zimmerman et al., 2013).  

We used consenTRAIT, a consensus analysis of phylogenetic trait distribution 

(Martiny et al., 2013) to assess the phylogenetic distance at which a group of genes 

belonging to a given peptidase family cluster among fungal taxa. The phylogenetic 

distance between the fungal taxa that share the same traits, in this case, the same 

peptidase family is called "D. Any peptidase family that had only one sequence across 

all fungal taxa (singletons) was assumed to have equal likelihood of finding an adjacent 

organism with or without the trait and have "D equal to half of the distance to the closest 

node on the phylogenetic tree. This analysis was done in R using the script provided 
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by Martiny et al. (2012) and ‘APE’ and ‘adephylo’ packages (Jombart et al., 2010; 

Paradis and Schliep, 2019).  

 

3.3.7. Secreted peptidase distribution in association with fungal ecological 

functions. 

To understand the association between the distribution of secreted peptidases 

and ecological functions, we examined taxonomic subsets of microorganisms, 

including genomes of 86 fungal symbiotroph, 95 saprotroph, and 90 pathotroph 

species. Their trophic mode and guild information was annotated using FUNGuild and 

visualized on the phylogenetic trees together with secreted peptidase count data using 

iTOL. For the symbiotrophic dataset, we identified the species based on two ecological 

groups of ectomycorrhizal symbiotroph and pathotroph-symbiotroph (mostly 

endophyte-plant/animal pathogen). The saprotrophic subset of data consisted of brown-

rot and white-rot fungal genomes, which differ in their ability to degrade lignin, 

cellulose, and hemicellulose. Pathotrophic group was categorized into three groups 

based on their hosts: plant pathogen, animal pathogen, and fungal parasite. We used 

ANOVA analysis to determine the statistical differences between the mean gene copy 

number of each secreted peptidase super-family between fungal groups and represented 

these differences using boxplot.   
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3.4. Results 

3.4.1. Relative abundance of secreted peptidase super-families across fungal 
kingdom 

Across all 612 studied fungal genomes, serine peptidases contributed the 

majority of the extracellular peptidase repertoire (52%), followed by aspartic 

peptidases (29%), and metallopeptidases (17%) (Fig. 3.1). Cysteine peptidases were a 

small fraction of the genomic potential (1.3%) and the remaining 0.7% of fungal 

secreted peptidase genes belonged to glutamic, threonine, and unknown peptidases 

(Fig. 3.1).  

Serine peptidases were dominant in Ascomycota and Basidiomycota (50-55%), 

whereas aspartic peptidases made up 50% the secreted peptidase encoding genes in 

Mucoromycotina (Fig. 3.1). Metallopeptidases contributed the most to Ascomycota 

(21%) but represented only 10-11% of extracellular peptidase genes in the other two 

phyla (Fig. 3.1). Mucoromycotina also possessed more cysteine peptidases (4%) 

compared to Ascomycota and Basidiomycota (Fig. 3.1). By contrast, when we 

compared the relative abundance of secreted peptidase super-families between fungal 

ecological groups, the differences were not very noticeable, except that symbiotrophic 

fungi had marginally higher relative aspartic peptidases than other groups (Fig. S3.1). 

 

3.4.2. Distribution of secreted peptidases across fungal phylogeny 

We observed significant differences of extracellular peptidase super-family 

complements among the three fungal phyla (Fig. 3.2, p=0.001). Basidiomycota coded 

for more secreted peptidases per genome than Ascomycota and Mucoromycotina. 

Ascomycota and Basidiomycota possessed significantly more serine peptidases than 
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Mucoromycotina. Metallopeptidases and threonine peptidases were the most abundant 

in Ascomycota. Although only a small fraction of the secreted peptidase genetic 

potential in Fungi, cysteine peptidases were most prevalent in Mucoromycotina.  

            At the peptidase family level, 22 peptidase families belonging to aspartic, 

cysteine, metallo-, and serine peptidases were common among the three phyla and 

contributed to more than a quarter of the total peptidase families present in the dataset 

(Fig. 3.3). Ascomycota and Basidiomycota shared 31 peptidase families that belong to 

all peptidase catalytic types; Mucoromycotina shared only two peptidase families with 

each of the other two fungal phyla, besides the 22 families shared among all three phyla. 

Mucoromycotina possessed only one unique peptidase family (M79), whereas 

Ascomycota had 16 and Basidiomycota had five unique peptidase families.  

            Principal coordinate analysis grouped species from the three fungal phyla based 

on the relative abundance of secreted peptidase families they encode (Fig. 3.4). 

Although the first two PCoA axes explained only 10-16% of data variance, a strong 

and significant difference of the secreted peptidase profiles was observed between 

fungal phyla according to PERMANOVA (p = 0.001). The Mucoromycotina cluster 

was most correlated with the A01 (aspartic) and S08 (serine) peptidase families.  

            Distributions of peptidase families and corresponding super-families across 

fungal taxa were compared to the phylogenetic relationships among analyzed genomes 

using relative abundance profiles of peptidases in comparison to the fungal 

phylogenetic tree that was constructed by aligning protein sequences (Grigoriev et al., 

2014). The distributions of secreted peptidases were significantly correlated with 

fungal phylogeny (rMantel = 0.210, p = 0.01), indicating an evolutionary relationship in 
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which subsets of phylogenetically related organisms shared similar types of secreted 

peptidases. Some of these evolutionary patterns of the peptidase distribution can be 

observed when secreted peptidase gene abundance is viewed on the fungal 

phylogenetic tree (Fig. 3.5). For example, the earlier evolved group of Basidiomycota 

generally had fewer secreted peptidases compared to the later evolved species in the 

same phyla. This trend was also true for Ascomycota. Some Ascomycota groups were 

richer in aspartic and metallopeptidases than other groups, shown with darker outer 

tracks in Fig. 3.5. Mantel correlograms showed that phylogenetic conservation of 

secreted peptidases was significant between closely related fungal taxa (Fig. 3.6). The 

more distant the pairs of taxa were from each other, the higher chance that this 

correlation would be insignificant, meaning these species might share little functional 

similarity in their secreted peptidase complements. 

            Distributions of individual secreted peptidase families were also evaluated for 

their phylogenetic dispersion (D). Most of peptidase families (84%) encoded in fungal 

genomes showed evidence of non-random phylogenetic clustering (Fig. 3.7 and Table 

S3.1). The remaining secreted peptidase families were randomly distributed, 

potentially initiated by gene loss or gene transfer. Peptidase families with negative 

values (D < 0) represented those with the strongest clustering patterns across the 

phylogenetic tree. For example, M79, an endopeptidase belonging to metallopeptidase 

class, is unique to some Mucoromycotina species, S24, an endo-serine peptidase is 

found mainly within Basidiomycota, and S51, an exo-serine peptidase, is present in 

only Ascomycota (Tab. S3.1).  
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            Given that the majority of the secreted peptidase were non-randomly 

phylogenetic clustered, we used  consenTRAIT  to determine if the "D, the clade  depth 

in fungal phylogenetic distance at which a cluster of genes from different taxa occurred, 

varied among all the peptidase families. Of the 79 peptidase family traits that we 

analyzed, A01, M14, M28, S08, S09, S10, S28, and S53 were the most abundant 

peptidase families and their "D also yielded the highest values of 1.58 in fungal 

phylogenetic distances. The rest of the peptidase families covered a wide range of "D 

values from 0.001 to 0.137, depending on their distribution pattern across the fungal 

taxa. For example: S15 serine peptidase family with "D=0.001 was found only in five 

Ascomycota and Basidiomycota taxa; M12 metallopeptidase family with "D=0.101 was 

common in 408 fungal taxa among all three phyla.  

 

3.4.3. Distribution of secreted peptidases across fungal ecological groups 

We observed significant differences in the extracellular peptidase complements 

among fungal ecological groups (PERMANOVA, p=0.001, Fig. S3.2). Symbiotrophic 

fungi possessed significantly more total secreted peptidases, especially aspartic and 

metallopeptidases, than saprotrophic fungi (Fig. 3.8). There was no difference between 

the “Saprotrophs” and “Others” groups (pathotrophic fungi), except for the slight 

variance in their threonine peptidase content. Significant differences were also 

observed between symbiotrophic and pathotrophic groups in terms of their total 

secreted peptidase, serine, and aspartic peptidase gene content (more peptidases were 

found in symbiotrophic species).   
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The symbiotrophic fungi that belong to Basidiomycota, mostly ectomycorrhizal 

fungi, tended to possess high content of serine and aspartic peptidases, but very low 

number of metallopeptidases (Fig. 3.9A, 3.9B). The earlier evolved group of 

symbiotrophic Ascomycota had relatively fewer peptidases compared to the latter 

evolved Ascomycota, which are pathotrophic/symbiotrophic fungi, the fungi that can 

function as a mutualist or antagonist depending on the situation. The group of 

pathotrophic/symbiotrophic fungi exhibited a significant higher content of 

metallopeptidases compared to the rest of the symbiotrophic fungi that we investigated 

(Fig. 3.9A, 3.9B). 

We selected a small subset of saprotrophic fungi within the Basidomycota to 

compare their secreted peptidase complements. This group was divided into known 

brown-rot and white-rot saprotrophic fungi. Brown-rot fungi decompose cellulosic 

plant material, whereas white-rot fungi are capable of degrading lignin. Interestingly, 

white-rot fungi had a significantly larger genetic potential to break down proteins 

compared to brown-rot fungi (Fig. 3.10A, 3.10B). Brown-rot fungi generally possessed 

lower serine and metallopeptidases compared to white-rot fungi, whereas, the aspartic, 

cysteine, threonine, and unknown peptidase gene numbers were similar between the 

two fungal groups (Fig. 3.10B).  

We examined the pathogenic fungi within “Other” category and divided them into 

three groups: plant pathogens, animal pathogens, and fungal parasites. Serine 

peptidases differed significantly among these three fungal pathogenic groups (Fig. 

3.11A). Animal pathogenic fungi were more likely to contain more secreted peptidases 

compared the other two groups (Fig. 3.11B). 
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3.5. Discussion 

 

3.5.1. Secreted peptidase distribution correlate with fungal taxonomy 

Fungi possess a different collection of extracellular peptidases compared to 

Archaea and Bacteria, which implies potentially differential ecological roles in organic 

nitrogen acquisition. Serine and metallopeptidases are among the most abundant 

secreted peptidase super-family in prokaryotic genomes (~75-80%) (Nguyen et al., 

2019), similarly to serine and metallopeptidase relative abundance in fungal genomes 

from this study. Aspartic peptidases contribute 30% to the fungal extracellular 

proteolytic enzymes. This finding is in line with several studies that found secreted 

aspartic peptidases contribute a high proportion of secreted peptidase coding genes in 

fungal genomes and their expressed extracellular peptidases (Caldwell, 2005; Rineau 

et al., 2016; Shah et al., 2013; Theron and Divol, 2014). These aspartic peptidases are 

usually optimized at acidic pH, compared to serine peptidases (alkaline pH) and 

metallopeptidases (neutral pH) (Rao et al., 1998; Theron and Divol, 2014; Wu and 

Chen, 2011). Cysteine peptidases are generally optimal in neutral pHs, but a few of 

them can function in very acidic environments (Rao et al., 1998). Although cysteine 

peptidases contributed to about 20% of secreted peptidase repertoires in prokaryotes, 

in fungal genomes they only contribute less than 2%. Consequently, the variation in 

fungal peptidase repertoires compared to the prokaryotic peptidases might indicate that 

Fungi can be flexibly active in proteolysis across a wide range of pH conditions, 

especially with superior adaptation to acidic environments. 
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The distribution of secreted peptidases across the three fungal phyla generally 

followed a pattern of phylogenetic conservation (rMantel = 0.21, p = 0.01, Fig. 3.6). 

Mucoromycotina represents an early evolved group of Fungi that lost flagellum and 

colonized terrestrial ecosystems, whereas the Ascomycota and Basidiomycota evolved 

more recently (Muszewska et al., 2017; Spatafora et al., 2016). Each of these phyla 

have a distinguishable set of secreted peptidase complements (Fig. 3.1 and Fig. 3.2). In 

our study, Basidiomycota possessed the highest number of secreted peptidase coding 

genes. Interestingly, the difference in the total number of secreted peptidase coding 

genes between Basidiomycota and two other fungal phyla seemed to be driven mainly 

by the aspartic peptidase content (belonging to the A01, A11, and A22 families) (Fig. 

3.2). The A01 family was found in 610 of the 612 studied fungal genomes and was 

shared among all three fungal phyla. The A22 family occurred in 66 genomes across 

all phyla, whereas the A11 family was present in just three fungal species from 

Basidiomycota and Ascomycota. These aspartic peptidases were well conserved with 

the fungal phylogeny (Fig. 3.3, Fig. 3.7 and Table S3.1). The ubiquity of A01 

peptidases and its strong connection to phylogeny could make it a useful target for 

developing primers that could be used to assess the genomic potential and diversity of 

aspartic peptidases in environmental studies.  

Although a study of 17 fungal isolates suggested that metallopeptidase 

expression might be more characteristic of Basidiomycota species and serine peptidases 

(especially S08 subtilisin) with Ascomycota species (Semenova et al., 2017), this was 

not supported by our study of a much wider range of fungi. Ascomycota have greater 

potential for producing secreted serine and metallopeptidases in comparison with 
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Basidiomycota and Mucoromycotina. This is consistent with the gain of peptidase-

coding genes as the fungal species evolved to adapt to different environmental 

conditions and types of substrates (Muszewska et al., 2017). Mucoromycetes, as the 

more ancient group of our studied fungi, had a relatively low content of extracellular 

serine and metallopeptidases (Figs. 3.2 and 3.5). Many of the more recently evolved 

Basidiomycetes lineages possessed a richer collection of serine and metallopeptidases 

compared to the earlier branches (Fig. 3.5). This trend generally held with Ascomycetes, 

except that the most recent Ascomycota clades had reduced number of metallopeptidase 

coding genes in their genomes. About a third of the serine and metallopeptidase 

families were shared among three fungal phyla and two-thirds were shared only 

between the two younger fungal phyla (Ascomycota and Basidiomycota) (Fig. 3.3). 

About 80-85% of the serine and metallopeptidase families followed the fungal 

evolution (Fig. 3.7, Table S3.1) and were correlated with the differences among fungal 

phyla (Fig. 3.4). Eight families (M18, M23, M50, M54, M77, S14, S41, S49) were 

present in only a few randomly distributed taxa across the phylogeny suggesting that 

the presence of these families could have been initiated by gene loss or gene transfer.  

Compared to the repertoires of secreted peptidases in prokaryotes, fungal 

genomes had a low contribution of extracellular cysteine peptidases (Fig. 3.1). This 

finding is in agreement with pure culture studies that found no significant contribution 

of extracellular cysteine peptidases to the fungal proteolytic activity (Rineau et al., 

2016; Shah et al., 2013; Silva et al., 2006). Only two of the cysteine peptidase families 

were shared between the three phyla, half were shared only between Ascomycota and 

Basidiomycota, and the rest were unique. Overall, 80% of the cysteine peptidase 
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families found in fungal genomes followed Brownian-evolutionary pattern, clustering 

at deep branches (Fig. 3.7 and Table S3.1). 

 

3.5.2. Secreted peptidase distribution correlate with fungal ecological functions 
and lifestyles 

 

Saprotrophic fungi are well-known for their capacity to break down complex 

plant materials thanks to their rich collection of lignocellulolytic enzymes. 

Interestingly, saprotrophic fungi did not possess a larger collection of proteolytic 

enzymes to break down organic nitrogen, compared to other ecological fungal groups 

(Fig. 3.8), supporting an earlier study that found low secreted peptidase activity in 

saprotrophic fungal isolates (Semenova et al., 2017). We further compared the 

proteolytic potential between brown-rot and white-rot saprotrophic fungi in 

Basidiomycota and found that white-rot fungi had a richer collection of all families of 

secreted peptidases compared to their brown-rot ancestors. White-rot fungi are 

associated with their ability to break down lignin in plant materials by producing 

enzymes that can oxidize these aromatic compounds (Semenova et al., 2017). In 

decaying litter and soil, proteins often exist in complexes with (poly)-phenolic 

compounds, which slows degradation (Adamczyk et al., 2008; Northup et al., 1995). 

The combination of the oxidative ability of white-rot fungi along with their proteolytic 

enzymes likely enables them to efficiently mine for carbon and nitrogen (Adamczyk et 

al., 2009).  

Most of the fungal symbiotrophs, especially ectomycorrhizal fungi, evolved 

from free-living fungal groups and were believed to have lost many saptrophic 
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functions involved in decay of plant materials (Beeck et al., 2018). Surprisingly, we 

found that these symbiotrophic fungi possessed an abundant collection of extracellular 

proteolytic enzymes that could help them scavenge nitrogen from the environment. 

This finding is in line with other research that characterized the proteolytic activity in 

ectomycorrhizal fungi (Rineau et al., 2016; Shah et al., 2013). Beeck et al. (2018) 

suggested that even though ectomycorrhizal fungi lacked lignocellulolytic enzymes, 

they could still oxidize some complex plant materials by using the chemical Fenton 

reaction that produces the OH radicals for oxidation. They found evidence that secreted 

peptidase production was delayed and followed the OH production, in order to 

efficiently break down soil (poly)-phenolic-complexed proteins (Beeck et al., 2018). 

They also implied this dual oxidative-proteolytic system was adapted from an ancestral 

brown-rot carbon acquisition strategy and served as a means for ectomycorrhizal fungi 

to obtain nitrogen in exchange for carbon from their plant host.  

Within the symbiotrophic fungi group, there are several fungi that are either 

pathotrophic and symbiotrophic, mostly Ascomycota species. Compared to 

ectomycorrhizal fungi from the same phylum, these pathotrophic-symbiotrophic fungal 

species possessed more secreted peptidases, especially serine, metallo-, and cysteine 

peptidases. This proteolytic enrichment might be linked to pathogenic functions, such 

as deactivating host defenses or degrading host cells (Monod et al., 2002; Semenova et 

al., 2017).  

The distribution of secreted peptidases in pathotrophic fungi was also unique. 

Similar to previous findings, we found serine peptidases to be the most dominant in 

pathotrophic fungi (Fig. S3.1) (Monod et al., 2002; Semenova et al., 2017). Differences 
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were also recognized between pathotrophic fungal groups based on their guilds: plant 

pathogen, animal pathogen, and fungal parasites.  Serine peptidases drove the main 

differences between the secreted peptidase repertoires among these fungal species (the 

most in animal pathogens, the least in fungal parasites), as found by others who 

identified subtilisin (S08) and trypsin (S01) peptidases as virulence factors involved in 

pathogenesis (Monod et al., 2002; Muszewska et al., 2017; Semenova et al., 2017). We 

also found that some more recently evolved Ascomycota plant pathogens had more rare 

secreted peptidases (cysteine, threonine, and unknown peptidases). This genetic gain 

might indicate gene transfer or convergent evolution.  

Based on our observations, we suggest that fungal lifestyles and evolutionary 

history play significant roles in shaping their proteolytic functions. Fungi are one of the 

most prevalent eukaryotic groups in terrestrial ecosystems and play a critical role in 

recycling carbon and nitrogen. This study offered an extensive understanding about the 

diversity and distribution of the extracellular proteolytic enzymes across fungal 

kingdom and provided a foundation for future research applying transcriptomic and 

proteomic approaches to study the fungal ability to break down proteins and 

consequently enhance our understanding of fungal N cycling in terrestrial ecosystems.   
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Figure 3.1. Relative abundance of secreted peptidase super-families in 612 fungal 

genomes (aspartic, cysteine, glutamic, metallo-, serine, threonine, and unknown 

peptidase super-families) and in different fungal phyla. Different colors represent 

different peptidase super-families. 
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Figure 3.2. Secreted peptidase gene content (per genome) of fungal phyla. Secreted 

peptidases were grouped into super-families: Total secreted peptidases (including 

genes from all peptidase super-families); serine, aspartic, metallo- peptidases as more 

abundant families; cysteine, glutamic, threonine, unknown peptidases as less abundant 

families. The number of analyzed genomes from each fungal phylum is presented next 

to the phylum names. Letters on top of each box represent statistical differences of 

secreted peptidases between three fungal phyla using Tukey’s HSD analysis (p#0.05). 
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Figure 3.3. Bipartite association network of shared peptidase families between 

Ascomycota, Basidiomycota and Mucoromycota fungal phylum. Node sizes indicate 

the relative abundance of the secreted peptidases. Node shapes represent different 

peptidase families: octagon = aspartic; hexagon = cysteine; diamond = glutamic; circle 

= metallo-; square = serine; triangle = threonine and unknown. Node colors are coded 

by unique or shared peptidase families between microbial kingdoms (green = 

Ascomycota, yellow = Basidiomycota, pink = Mucoromycota,  gray = shared between 

phyla). Edges denote associations between fungal phyla and peptidase families. Edge 

colors are coded by fungal phyla. 
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Figure 3.4. Principal coordinate analysis of fungal genomes based on Bray-Curtis 

dissimilarities of proportions of secreted peptidase families encoded in fungal 

genomes. Symbol shapes and colors are coded by fungal phyla. Vectors lengths are 

scaled relative to the correlation of individual peptidase families with the two axes 

shown (Pearson’s correlation). The composition of secreted peptidase genes of Fungi 

varied significantly based on their phyla (p = 0.001, F-statistic =61.044)  
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Figure 3.5. Distribution of secreted peptidase super-families across the fungal 

phylogenetic tree (pruned from Mycocosm fungal tree). The most outer tracks show 

functional guilds that each fungal genome is generally assumed (solid circle means the 

genome belongs to the certain guild, the open circle means the genome does not belong 

to the certain guild). The second outer tracks show the copy number of genes from each 

secreted peptidase super-family in each genome. Inner track color corresponds to the 

phylum-level classification of each taxon considered.  
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Figure 3.6. Mantel correlogram between phylogenetic distance and secreted protease 

profile dissimilarities for fungal taxa based on Pearson’s product-moment correlations 

(p-value < 0.05, filled squares; not significant, open squares). 
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Figure 3.7. Phylogenetic distributions of secreted peptidase families across fungal 

taxa. 
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Figure 3.8. Secreted peptidase gene content (per genome) of fungal guilds. Secreted 

peptidases were grouped into super-families: Total secreted peptidases (including 

genes from all peptidase super-families); serine, aspartic, metallo- peptidases as more 

abundant families; cysteine, glutamic, threonine, unknown peptidases as less abundant 

families. The number of analyzed genomes from each fungal phylum is presented next 

to the phylum names. Letters on top of each box represent statistical differences of 

secreted peptidases between fungal functional guilds using Tukey’s HSD analysis 

(p#0.05). 
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(A) 

 

(B)

 

Figure 3.9. (A) Distribution of secreted peptidase super-families across the 

phylogenetic tree of 86 symbiotrophic fungi (pruned from Mycocosm fungal tree). The 

most outer tracks represent the trophic mode of these fungi (pathotrophic-

symbiotrophic in dark green circles and symbiotroph, mostly representing 

ectomycorrhizal fungi, in yellow circles). The second outer tracks show the copy 

number of genes from each secreted peptidase super-family in each genome. Inner track 
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color corresponds to the phylum-level classification of each taxon considered. (B) 

Secreted peptidase gene content (per genome) of 86 symbiotrophic fungal groups. 

Secreted peptidases were grouped into super-families. The number of analyzed 

genomes from each fungal group is presented next to the fungal guild classification. 

The green box plots report mean and standard deviation of the peptidase content of 

genomes that can be either pathotrophic or symbiotrophic, and the orange box plots 

report mean and standard deviation of the peptidase content of symbiotrophic genome 

with p-values. 

  



 

 

 

107 

(A) 

 

(B) 

 

Figure 3.10. (A) Distribution of secreted peptidase super-families across the 

phylogenetic tree of 95 saprotrophic fungi (pruned from Mycocosm fungal tree). The 

95 saprotrophic fungi in this paper were simply classified into the “Saprotrophic” group 

of fungal guild. The outer most set of tracks represents the main classification of these 

saprotrophs (white-rot vs. brown-rot fungal species). The second set of outer tracks 
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shows the copy number of genes from each secreted peptidase super-family in each 

genome. Inner track colors correspond to the phylum-level classification of each taxon 

considered. (B) Secreted peptidase gene content (per genome) of brown-rot and white-

rot saprotrophic fungal groups. Secreted peptidases were grouped into super-families. 

The number of analyzed genomes from each fungal group is presented next to the 

fungal trait classification. The brown box plots report mean and standard deviation of 

the peptidase content of genomes that belonging to brown-rot fungi, and the white box 

plots report mean and standard deviation of the peptidase content of white-rot fungi 

genomes, with p-values.  
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(A) 

 

(B) 

 

Figure 3.11. (A) Distribution of secreted peptidase super-families across the 

phylogenetic tree of 90 pathotrophic fungi (pruned from Mycocosm fungal tree). The 

90 pathographic fungi in this paper was simply classified into the “Others” group of 

fungal guild. The outer most set of tracks represents the main classification of these 

pathogens (plant, animal and parasite fungal species). The second set of outer tracks 
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shows the copy number of genes from each secreted peptidase super-family in each 

genome. Inner track color corresponds to the phylum-level classification of each taxon 

considered. (B) Secreted peptidase gene content (per genome) of pathotrophic fungal 

groups. Secreted peptidases were grouped into super-families. The number of analyzed 

genomes from each fungal group is presented next to the fungal guild classification. 

The green box plots report mean and standard deviation of the peptidase content of 

genomes that belonging to plant pathogenic fungi, and the purple box plots report mean 

and standard deviation of the peptidase content of animal pathogenic fungi, and orange 

box plots for fungal parasite genomes, with p-values.  
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3.6. Appendix for Chapter 3 

 

 
Figure S3.1. Relative abundance of secreted peptidase super-families in 612 fungal 

genomes (aspartic, cysteine, glutamic, metallo-, serine, threonine, and unknown 

peptidase super-families) and in different fungal ecological guilds. Different colors 

represent different peptidase super-families.  
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Figure S3.2. Principal coordinate analysis of fungal genomes based on Bray-Curtis 

dissimilarities of proportions of secreted peptidase families encoded in fungal 

genomes. Symbol shapes and colors are coded by fungal guild. Vectors lengths are 

scaled relative to the correlation of individual peptidase families with the two axes 

shown (Pearson’s correlation). The composition of secreted peptidase genes of Fungi 

varied significantly based on their guild (p = 0.001, F-statistic =3.599)  
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Table S3.1. Phylogenetic signal strength of secreted peptidase families across 612 

fungal genomes. Significance of clustering is based on the Fritz and Purvis index (D) 

of each peptidase family trait (presence or absence of genes). Estimated D value defines 

whether the secreted peptidase distribution would follow “strongly clumped” (D≤0), or 

“Brownian-like evolutionary” (0<D<1) or “Random” distribution (D≥1). 

consenTRAIT ("D), a phylogenetic metric that evaluates the sequence similarity of 

clusters of sharing trait organisms. "D  for any singleton entry (trait that only presents 

in one genome) is scored by half the distance to the nearest node (assuming the 

likelihoods to find a neighbor organism with/without the trait are equal) 

Peptidase 
Family Estimated D "D 

Probability of E(D) 
resulting from no (random) 

phylogenetic structure 

Probability of E(D) 
resulting from Brownian 
phylogenetic structure 

Genomes 

A01 0.717 1.577 0.447 0.322 610 
A11 -0.389 0.057 0.050 0.657 3 
A22 0.372 0.104 0.000 0.018 66 
C01 0.747 0.052 0.165 0.039 9 
C02 0.964 0.053 0.486 0.039 6 
C12 0.797 0.020 0.198 0.021 10 
C13 0.676 0.069 0.000 0.000 237 
C14 0.660 0.055 0.222 0.163 5 
C15 0.355 0.101 0.242 0.396 3 
C19 0.828 0.065 0.035 0.000 36 
C26 1.297 0.027 0.810 0.001 7 
C40 -0.042 0.070 0.000 0.589 30 
C44 0.488 0.063 0.000 0.044 19 
C48 1.250 0.055 0.760 0.008 6 
C54 -0.421 0.046 0.181 0.597 2 
C56 0.911 0.040 0.274 0.000 19 
C57 3.419 0.012 0.644 0.306 1 
C59 0.567 0.037 0.336 0.329 3 
C65 -27.059 0.137 0.008 0.989 1 
C69 0.657 0.019 0.030 0.024 14 
C85 4.240 0.003 0.703 0.268 1 
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G01 0.510 0.048 0.000 0.000 74 
M01 0.452 0.071 0.000 0.053 23 
M03 0.758 0.066 0.008 0.000 35 
M04 0.368 0.080 0.000 0.120 20 
M06 0.764 0.036 0.155 0.026 11 
M10 0.586 0.051 0.000 0.021 20 
M12 0.330 0.101 0.000 0.003 408 
M13 0.693 0.072 0.003 0.001 26 
M14 0.296 1.577 0.000 0.015 384 
M15 3.660 0.057 0.609 0.346 1 
M16 0.923 0.077 0.231 0.000 36 
M17 0.023 0.088 0.000 0.497 7 
M18 1.530 0.078 0.968 0.001 8 
M19 0.411 0.080 0.000 0.008 72 
M20 0.438 0.082 0.000 0.000 266 
M22 0.822 0.049 0.110 0.001 20 
M23 1.026 0.030 0.576 0.000 17 
M24 0.727 0.044 0.000 0.000 65 
M28 0.586 1.577 0.000 0.003 582 
M35 0.588 0.085 0.000 0.000 116 
M36 0.768 0.066 0.000 0.000 155 
M38 0.656 0.031 0.015 0.014 18 
M41 0.493 0.063 0.000 0.005 53 
M43 0.648 0.069 0.000 0.000 61 
M48 0.711 0.070 0.250 0.117 6 
M49 0.433 0.065 0.040 0.216 7 
M50 1.643 0.074 0.916 0.006 5 
M54 1.414 0.010 0.635 0.213 2 
M67 0.685 0.101 0.085 0.046 10 
M76 -1.638 0.016 0.000 0.914 3 
M77 12.725 0.016 0.840 0.110 1 
M79 -0.216 0.086 0.002 0.637 5 
S01 0.006 0.108 0.000 0.488 120 
S03 -14.789 0.004 0.155 0.842 1 
S08 -0.426 1.577 0.029 0.682 609 
S09 0.640 1.577 0.000 0.000 450 
S10 0.861 1.577 0.485 0.277 610 
S12 0.644 0.058 0.000 0.000 127 
S14 1.196 0.071 0.742 0.005 8 
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S15 -0.290 0.001 0.000 0.673 5 
S16 0.504 0.054 0.000 0.005 45 
S24 -1.468 0.070 0.000 0.944 4 
S26 0.373 0.091 0.000 0.001 297 
S28 -0.063 1.577 0.000 0.652 519 
S33 0.669 0.082 0.000 0.000 155 
S37 -0.426 0.039 0.508 0.506 1 
S41 1.119 0.058 0.608 0.021 6 
S49 2.452 0.030 0.847 0.065 2 
S51 -0.160 0.043 0.001 0.626 6 
S53 -0.425 1.577 0.000 0.999 505 
S54 0.874 0.058 0.200 0.001 18 
S58 -6.075 0.020 0.376 0.606 1 
S59 0.325 0.082 0.206 0.389 3 
T01 0.894 0.059 0.275 0.002 14 
T02 0.555 0.017 0.009 0.061 13 
T03 0.616 0.050 0.000 0.000 67 
U48 0.661 0.086 0.000 0.000 77 
U69 -10.751 0.033 0.605 0.368 1 
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4.1. Abstract 

Soil organic nitrogen is largely composed of proteinaceous material, hence, the 

extracellular peptidases that are widely produced by microorganisms play a critical role 

in the recycling of soil organic nitrogen. But why do microbes produce such a variety 

of functionally different peptidases? In theory, this could be an adaptation to substrate 

heterogeneity, but it may also be an adaptation to specific soil conditions. Here we 

characterized the contribution of different catalytic types, or classes of peptidases, 

present in soil with the intent to determine if their relative contributions would vary as 

a function of soil properties. Potential peptidase inhibitors were screened and their 

concentrations were optimized to work effectively in soil. Total proteolytic activity was 

partitioned among several peptidase classes by adding class-specific inhibitors to the 

peptidase assay. Using Pepstatin A, EDTA, PMSF, and E64, we were able to 

discriminate between aspartic, metallo-, serine, and cysteine peptidases, respectively. 

We found that diverse peptidases were active and contributed to the proteolytic activity 

in soil. Extracellular peptidase profiles varied among different soils and were 

associated with soil chemical and microbial properties. Metallopeptidases contributed 

30-50% of the soil proteolytic activity in all soils. Higher relative contribution of 

metallopeptidase activity was found in soils with higher pHs, reflecting 

metallopeptidase neutral pH preference. Serine peptidases were only detected in 

Douglas-fir associated soils (10-20% of total proteolytic activity) but not red alder soils. 

Aspartic peptidase relative activity correlated with the fungal:bacterial ratios. Our 

results lend support to the view that microorganisms modify their activities to optimize 

resource utilization in response to soil and other environmental factors.   



 

 

 

125 

4.2. Introduction 

 

Proteinaceous material, including proteins, peptides, and amino acids, is the 

most abundant form of soil organic nitrogen (N) (Nannipieri and Paul, 2009; Schulten 

and Schnitzer, 1997). In order to obtain carbon (C) and N for cell growth, microbes 

produce different kinds of proteolytic enzymes to break down various proteinaceous 

compounds (Nguyen et al., 2019). Each microbe possesses a unique set of extracellular 

proteolytic enzymes to perform this function. How and when to produce these 

peptidases and release them to the environment depends not only on the nutrient 

demand for growth but also on the energy costs associated with peptidase synthesis and 

secretion, which must be weighed against the risk that other organisms may benefit 

from the activity of the peptidase once it is released into the environment (Allison, 

2005). To be economic with this energy investment, each microbe has evolved to 

produce the peptidases that can function well in the soil environments where the 

microbe lives (Nguyen et al., 2019). For example, selection may favor peptidases with 

broad protein substrate specificity, or that optimally function under given soil 

conditions (pH, temperature, etc.). The activity of these extracellular peptidases would 

be expected to peak at the corresponding native soil conditions, and this performance 

should reflect the adaptation of the microbes living in that soil. More broadly, such 

selectivity would allow the microorganisms optimize the cycling of organic N in soils. 

Consequently, there should be an inherent correlation between soil properties 

as the driving force on one hand and microbial proteolytic genetic potential on the other 

hand, but the existence of such a correlation has not yet been conclusively 
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demonstrated. For the purpose of this paper, we define microbial proteolytic potential 

as the cumulative activity from different classes of proteolytic enzymes present under 

the native soil environment. Here we hypothesize that environment shapes the 

microbial enzymatic potential and determines which enzymes are produced and most 

active under different circumstances.  

In order to test this supposition, measurements are needed to characterize the 

presence and activities of different classes of peptidases. Unfortunately, there are 

limitations to the methods that have been used to measure the microbial proteolytic 

potential of a soil under native environmental conditions. In the most common 

peptidase assay, the sample is incubated with protein substrate in pH 8.0 buffer at 50-

60oC for 1-2 h to measure the total potential proteolytic enzyme activity (Geisseler and 

Horwath, 2008; Ladd and Butler, 1972). At this temperature, we argue that some soil 

enzymes might be inactivated. Secondly, the traditional way to distinguish the four 

major peptidase classes in environmental samples was to extract proteolytic enzyme 

fractions and then use peptidase inhibitors that specifically deactivate each class 

(Hayano, 1993; Kamimura and Hayano, 2000; Watanabe and Hayano, 1995). Soil 

enzymes are generally extracted with neutral phosphate buffer, concentrated by salting 

out with ammonium sulfate, and inhibitors added to the enzyme extract to determine 

the types of peptidases present (Hayano, 1993; Kamimura and Hayano, 2000; 

Watanabe and Hayano, 1995). However, the efficiency of this enzyme extraction is not 

known. Another approach to study the potential microbial contribution to soil protein 

degradability was to isolate and culture specific groups of dominant soil bacteria and 

fungi (Bach and Munch, 2000; Rineau et al., 2016; Semenova et al., 2017; Shah et al., 
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2013), and then apply peptidase inhibitors to classify extracellular proteolytic enzymes 

produced by specific organisms (Morihara, 1974). By contrast, only a few attempts 

have been made to use peptidase inhibitors directly in the analysis of soils or aquatic 

samples: Hoppe et al. (1988) noted that individual inhibitors decreased L-

aminopeptidase activity in brackish water of the Baltic Sea from 10 to 68%. Renella et 

al. (2002) found that a cocktail of peptidase inhibitors decreased total peptidase activity 

in a calcareous soil by 50%, and an extended abstract by Kumar et al. (2004) reported 

that peptidase inhibitors added to soil could suppress N mineralization during 

incubations of soil in the laboratory. All these different approaches have merits and 

shortcomings as discussed above that have so far not been resolved. 

Because of these methodological limitations, we developed an optimized 

methodological approach to characterize the activities of different classes of 

extracellular peptidases in soils. Our strategy was to use several classes of peptidase 

inhibitors to determine the proportion if total activity of different catalytic classes of 

peptidases in soils, while incubating soils near their normal pH and temperature. 

Peptidases are classified by their catalytic mechanisms into seven main classes: 

asparagine, aspartic, cysteine, glutamic, metallo-, serine, and threonine peptidases 

(Rawlings et al., 2018). We recently demonstrated that aspartic, cysteine, metallo-, and 

serine peptidases, comprise >75% of all extracellular peptidases encoded in archaea, 

bacteria and fungi (Nguyen et al., 2019, Chapter 3). Therefore, we focused on using 

inhibitors that specifically inhibited these four dominant classes of proteolytic 

enzymes. This method was modified and improved from previous peptidase inhibitor 

studies in order to be applied directly to soils under ambient conditions (longer 
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incubation period of 24-48 hours at 20oC). The specificity and effective concentrations 

of inhibitors were tested with pure peptidases and peptidase-supplemented soils to 

confirm the inhibitory efficiency before being applied to soils alone.  

After developing the method, we addressed our original research question by 

measuring activities of the different classes the proteolytic enzymes from four soils in 

Oregon representing a gradient of biochemical properties and evaluating correlations 

between these enzymatic potentials and different soil properties. The underlying 

reasoning is as follow: If there is a predictable change in the activity of a proteolytic 

enzyme in response to the gradient of a certain soil property, we conclude that the 

activity of the enzyme is a function of the soil property. If the activity of a proteolytic 

enzyme does not correlate with any soil property, or the combination of soil properties, 

we conclude that the enzyme activity is independent from the soil characteristics. In 

other words, the enzyme might be produced constitutively regardless of the soil 

conditions as an energy opportunity cost to obtain C and N. 

 

4.3. Materials and Methods 

 

4.3.1. Site characteristics and soil sampling 

Soil was collected from four forests in Oregon: Cascade Head, H.J. Andrews, 

McDonald-Dunn, and Black Butte (Table 4.1). Most of the method development used 

the soils from Cascade Head and H.J. Andrews. Cascade Head Experimental Forest is 

located 1.6 km from the Pacific Ocean in the Oregon Coast Range at 300 m elevation. 

It is a highly productive site that receives about 2450 mm annual precipitation. The 
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silty clay loam soil is an isomesic Typic Fulvudand, high in N content with a low pH 

(Table 1). H.J. Andrews Experiment Forest is located on the western slopes of the 

Cascade Mountains at 700 m elevation. It is lower in productivity than Cascade Head 

and receives about 2290 mm annual precipitation, with some snow in the winter. The 

loam soil is a mesic Andic Humudept with much lower C and N content but higher pH 

than Cascade Head soils (Table 4.1). At each study location, plots of Douglas-fir 

(Pseudotsuga menziesii) and red alder (Alnus rubra) were established about 30 years 

ago (Radosevich et al., 2006). Soils under these trees differ in their bacterial and fungal 

communities, N cycling characteristics, and soil properties (Table 4.1; Boyle et al., 

2008; Lu et al., 2015; Yarwood et al., 2010). The McDonald-Dunn forest is located on 

the eastern foothills of the Oregon Coast Range at 380 m elevation and receives 1080 

mm of rainfall annually. The silty clay loam soil is a mesic Humic Haploxerept. Soils 

were collected under 35-year-old Douglas-fir. Black Butte is an ancient cinder cone 

located on the east side of the Cascade Mountains and receives 400 mm annual 

precipitation, mostly as snow. The loamy sand soil is a frigid Humic Vitrixerand and 

was collected at 1240 m elevation under Douglas-fir.  

After removing the organic layer, the top 15 cm of mineral soil was collected. 

Five to eight samples were taken from each plot, composited into a single sample, 

sieved at 4 mm to remove rock fragments and plant debris, and stored at 4oC until used.  

 

4.3.2. Peptidase assays 

The total, potential proteolytic activity of the soils was measured using the assay 

developed by (Ladd and Butler, 1972) with some modifications. In the original 
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protocol, the assay was done at 50oC for 30 to 60 min; however, we were interested in 

measuring proteolytic activity at temperatures closer to those found in the field. We did 

the assays at room temperature (~20oC) and extended the incubation to 24 or 48 h. 

Conventionally, the enzyme activity is calculated based on the difference in tyrosine 

accumulation between samples with and without sodium caseinate at the end of the 

incubation period. As noted in the original protocol, sometimes negative values of 

enzyme activity are calculated because of high phenolic background or other unknown 

factors from the soil matrix (Ladd and Butler, 1972). To overcome this potential 

problem when using multiple soils that varied greatly in their properties, we calculated 

proteolytic activity as the difference in the absorbance of 700 nm at the end (i.e., 24 or 

48 h) and immediately after sodium caseinate was added (0 h). As in the original 

protocol, proteolytic activity was measured using the Folin-Ciocalteau reagent, which 

reacts with aromatic moieties (e.g., tyrosine, tryptophan, and phenylalanine). 

Proteolytic activity was expressed as µmol tyrosine produced per g of dry soil per day. 

Details of our protocol can be found in the Appendix 4.6.1.  

 

4.3.3. Effectiveness of peptidase inhibitors and inhibitor concentrations using 
pure peptidases 

We used pure proteolytic enzymes to determine the specificity and effective 

concentrations of each inhibitor. Pure proteolytic enzymes were chosen from the four 

most abundant peptidase super-families based on the extracellular peptidase-coding 

genes of archaeal, bacterial, and fungal genomes: aspartic, cysteine, metallo-, and 

serine peptidases (Nguyen et al., 2019, Chapter 3). Three of these four pure peptidases 

were derived from microorganisms commonly found in soils: aspergillopepsin I 
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aspartic peptidase from Aspergillus saitoi, thermolysin metallopeptidase from 

Geobacillus stearothermophilus, and subtilisin A serine peptidase from Bacillus 

licheniformis (Table S4.1). Papain, extracted from Carica papaya, was used as the 

model cysteine peptidase. These enzymes were prepared as concentrated stock 

solutions using water and stored at -20oC until used. The working solution of each 

enzyme was diluted from the stock solution using sodium acetate buffer (0.1 M, pH 5) 

to best resemble the pH range of our soils (3.6-5.1). The concentration for the working 

solution of each enzyme was determined so that their proteolytic activity in vitro was 

within the range of the proteolytic activity found in our soils (30-100 µmol tyrosine g-

1 dry soil d-1). Detailed information about these commercial products and their working 

concentrations is included in Table S4.1.  

Based on product information (Sigma-Aldrich, St. Louis, MO), we chose 

epoxysuccinyl-L-leucylamido (4-guanidino) butane (E64), α-toluenesulfonyl fluoride 

(PMSF), Pepstatin A, and ethylenediaminetetraacetic acid (EDTA) to inhibit cysteine, 

serine, aspartic, and metallopeptidases, respectively. Inhibition of serine peptidases by 

PMSF and cysteine peptidases by E64 is accomplished by the irreversible, covalent 

binding of the inhibitor to the nucleophilic active site of a peptidase (Hoppe et al., 1988; 

Rineau et al., 2016; Shah et al., 2013). Metallopeptidases are inhibited with EDTA, 

which chelates the metal bound in the peptidase’s active site (Bach and Munch, 2000; 

Wu and Chen, 2011). Aspartic peptidase can be inhibited by pepstatin A, which has a 

statin group that binds to the two aspartyl residues of the active site with very high 

affinity (Hoppe et al., 1988; Marciniszyn et al., 1976; Rich et al., 1985; Theron and 
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Divol, 2014). We found some discrepancies in the expected behavior and efficacy of 

these inhibitors, however.  

First, EDTA unexpectedly stimulated cysteine peptidase activity (data not 

shown). This meant that if EDTA was added to inhibit metallopeptidase activity, the 

net change would reflect both inhibited metallopeptidase activity and some unknown 

induced cysteine peptidase activity. Because E64, the cysteine peptidase inhibitor, had 

no effect on metallopeptidase activity, we used EDTA and E64 together to effectively 

inhibit both cysteine and metallopeptidases, and E64 to inhibit only cysteine peptidases. 

The effective final concentrations were 1.82 µM for E64 and 0.45 mM for EDTA 

(Table S4.2).  

Second, PMSF and Pepstatin A were originally prepared in isopropanol and 

ethanol as suggested by the supplier (Sigma-Aldrich, St. Louis, MO); however, we 

found that these alcohols unexpectedly interfered by partially inhibiting the activity of 

some pure enzymes, especially cysteine peptidase (data not shown). Dimethyl 

sulfoxide (DMSO) was chosen as an alternative carrier for PMSF and Pepstatin A 

because it did not affect the proteolytic activity of the pure enzymes. Highly 

concentrated stock solutions for these two inhibitors were prepared in isopropanol due 

to solubility constraints, but working solutions were prepared using DMSO to minimize 

interference from the small amount of remaining alcohols. The final concentrations that 

were shown to be effective were 0.09 mM for PMSF and 0.91 µM for Pepstatin A 

(Table S4.2). Details about the effective peptidase inhibitor concentrations are provided 

in Table S4.2.  
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To test the effectiveness and specificity of each peptidase inhibitor on the model 

peptidases, we designed an experiment to cover all possible combinations of four 

peptidases (aspartic, cysteine, metallo-, and serine peptidase) and six peptidase 

inhibitors (control, E64, E64+EDTA, Pepstatin A, PMSF, and an inhibitor cocktail). 

The inhibitor cocktail was the combination of all four peptidase inhibitors at the same 

final concentration, as with the single inhibitor treatment (Table S4.2). We added 25 

µL of the model peptidases at their specific working concentrations (Table S4.1) to 500 

µL of sodium acetate 0.5M buffer solution at pH 5 in a 2-mL Eppendorf tube. Peptidase 

inhibitors (25 µL) at their specific working concentrations were added to the same tube 

to meet their equivalent final concentration (Table S4.2). After addition of inhibitors, 

the tubes were shaken for 1 h at room temperature (20oC) to allow the inhibitors to 

interact with the peptidases before adding sodium caseinate and initiating the assay 

(Appendix 4.6.1). The proteolytic activity was measured after 24 h of incubation at 

room temperature.  

 

4.3.4. Confirmation of the effectiveness and duration of inhibition in peptidase-
supplemented soils  

To validate the efficacy of the inhibitors in soils, exogenous enzymes were 

added, hypothetically to double the soil proteolytic activity. If a specific inhibitor 

blocked this augmented activity in the presence of soil, we considered that the inhibitor 

would be effective in soil alone.  

We used soil from the Douglas-fir treatment at the H.J. Andrews as our tested 

soil. There were six peptidase treatments (soil control without added peptidase, soil + 

aspartic peptidase, soil + cysteine peptidase, soil + metallopeptidase, soil + serine 
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peptidase, and soil + four-peptidase mixture) and seven peptidase inhibitor treatments 

(water control, DMSO control, Pepstatin A, E64, E64+EDTA, PMSF, and an inhibitor 

cocktail of all four inhibitors). The peptidase inhibitor controls (water and DMSO) 

provided a measure of uninhibited proteolytic activity. The DMSO control accounted 

for DMSO as a carrier for the Pepstatin A, PMSF, and the inhibitor cocktail treatments. 

Tested combinations are listed in Table 2. There were three independent replicates of 

each combination of enzyme and inhibitor for each sampling time.  

We added moist soil (10 g of dry weight equivalent) to 100 mL deionized water 

in a glass bowl, stirred for 20 min to prepare the homogenized soil slurry, and added 

500 µL of the soil slurry to a 2-mL Eppendorf tube. Eppendorf tubes were weighed 

before and after the soil slurry was added to precisely calculate the amount of soil in 

each tube. Water or peptidase solutions (25 µL at working concentration, Table S4.1) 

were added to the Eppendorf tube. Tubes were shaken for 1 h to allow the added 

enzymes to mix well and interact with the soil in the slurry. Next, 25 µL of specific 

inhibitors at working concentration (Table S4.2) were added and tubes were shaken for 

1 h to allow the inhibitors to react before sodium caseinate was added. We measured 

the samples at 0, 24, and 48 h after the sodium caseinate addition following the 

modified proteolytic assay protocol in the Appendix 4.6.2.  

Because each enzyme treatment was independent, we only compared the data 

within the same enzyme treatment, not across enzyme treatments. For instance, in the 

experiments with soil + metallopeptidase, we compared the proteolytic activity 

between the soil + metallopeptidase control activity with the soil + metallopeptidase 

activity under different the peptidase inhibitor treatments to determine whether a single 
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inhibitor was effective against a specific group of peptidases. This experiment allowed 

us to answer several questions: Was there a difference in proteolytic activity between 

the water and DMSO controls? Was proteolytic activity linear throughout the 48-h 

incubation, and did the proteolytic activity differ in the presences of peptidase 

inhibitors? Were inhibitors both specific and effective when used in soil?  

 

4.3.5. Potential interference of other organic compounds or abiotic cleavage on 
soil proteolysis 

When adding the inhibitor cocktail to the soils, we observed some residual 

proteolytic activity. This activity could be from: (1) peptidase super-families with 

different catalytic residues from those of the four-major peptidase super-families (e.g., 

threonine, glutamic, or asparagine peptidases), (2) the production of other organic 

compounds that react with the Folin-Ciocalteau reagent, or (3) abiotic peptide cleavage 

by the soil mineral matrix. Due to the lack of competitive peptidase inhibitors for 

threonine, glutamic, and asparagine peptidases, the first hypothesis was not tested. We 

tested the potential interference from the latter two mechanisms.  

To determine whether organic compounds other than aromatic amino acids 

contributed to the measured activity in our peptidase assay, we used an alternative 

method with OPAME (o-phthaldialdehyde and β-mercaptoethanol) (Darrouzet-Nardi 

et al., 2013; Jones et al., 2002) to quantify total free amino acids (adapted protocol is 

described in the Appendix 4.6.2). We correlated the accumulation of total free amino 

acids (expressed as µmol leucine produced per g dry soil) with the increase in 

absorbance measured with the Folin-Ciocalteau assay (expressed as µmol tyrosine per 

g dry soil). We compared the OPAME and Folin-Ciocalteau assays using soils collected 
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under Douglas-fir from all four sites, which differed markedly in organic matter content 

(Table 1). Similar slopes for all four soils would indicate that aromatic organic 

compounds in soils did not interfere with our modified proteolytic activity assay. 

To evaluate the possible contribution of the abiotic proteolysis, we used the fine 

clay (<2 µm) fraction separated from the soils sampled under Douglas-fir and red alder 

at Cascade Head and H.J. Andrews. The <2 µm fraction was obtained after repeated 

sedimentation in Atterberg cylinders and treated with hydrogen peroxide to remove all 

oxidizable organic matter as well as any biotic activity (Moore and Reynolds, 1997). 

We focused on the fine clay fraction because clay minerals can potentially fragment 

proteins (Reardon et al., 2018). A slurry was made with 0.5 g of the isolated clay 

fraction from each soil in 20 mL deionized water and otherwise followed by our 

modified peptidase assay. Abiotic proteolytic activity was monitored for 48 h and 

converted to the equivalent activity unit (µmol tyrosine per gram of dry soil per day) 

for comparison with whole soil assays.  

 

4.3.6. Determination the relative pools of proteolytic enzymes in soils 

The contribution of different classes of extracellular peptidase enzymes to soil 

proteolytic activity was measured for the soils collected under Douglas-fir and red alder 

at Cascade Head and H.J. Andrews. Red alder soils usually have higher nitrogen 

content than the Douglas-fir soils, which might result in differences in their proteolytic 

activity (Table 4.1). We used the modified proteolytic activity protocol with the suite 

of peptidase inhibitors at effective concentrations (Table S4.2). Soil slurries (10 g dry 

weight equivalent in 100 mL deionized water) were transferred to Eppendorf tubes, 50 
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µL of peptidase inhibitors were added to 500 µL of soil slurry, shaken for 1 h before 

sodium caseinate addition, and incubated at room temperature, with samples taken at 

0, 24, and 48 h. To calculate the contribution of each peptidase class, we used the 

subsets of all the enzymes inhibited by each inhibitor, formulated a specific matrix 

based on the relationships between the enzymes and the inhibitors (Table 4.3), and 

estimated the contribution of each enzyme pool using least-squares regression.  

 

4.3.7. Statistical analyses 

In general, analysis of variance (ANOVA) was used to determine statistical 

differences among treatments. Proteolytic activity of the water and DMSO control 

treatments of the same soil-enzyme treatment were evaluated by ANOVA to determine 

whether the presence of DMSO in soils had any effect on proteolytic activity. To 

evaluate the changes of soil proteolytic activity between 0-24 h and 24-48 h, we 

calculated the activity for each time period and used Student's t-test with Hommel’s 

adjustment for multiple comparisons between treatments (Hommel, 1988). We used 

ANOVA to assess whether each peptidase inhibitor efficiently inhibits their target 

enzyme(s) in soil. To compare all inhibitors to a single control (water or DMSO), we 

did multiple testing using Dunnett’s test. We used Pearson correlation to explore 

relationships between soil properties and peptidase activities. All of statistical analyses 

and calculations were written and implemented in R Studio (R. Core Team, 2016).  
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4.4. Results 

4.4.1. Effective peptidase inhibitor concentrations 

To determine the efficacy of the peptidase inhibitors on pure enzymes, we 

compared the difference in proteolytic activity of peptidase solutions with and without 

inhibitors after 24 h. Pepstatin A selectively suppressed aspartic peptidase by about 

85% (p < 0.001, Table 4.4) and did not interfere with the activity of other non-aspartic 

peptidases (p-values > 0.01, Table S4.3). Activity of the pure cysteine peptidase was 

inhibited >95% by E64 (p < 0.001, Table 4.4) without affecting the other three enzyme 

classes (p-values > 0.01, Table S4.3). The combination of E64 and EDTA inhibited 

both cysteine peptidase (>95%) and metallopeptidase (>90%) activity (p-values < 

0.001, Table 4.4) and did not interfere with the aspartic and serine peptidase activities 

(p-values > 0.01, Table S4.3). Activity of the model serine peptidase was inhibited 85% 

by PMSF (p < 0.001, Table 4.4), whereas PMSF did not interfere with the activity of 

aspartic, cysteine, and metallopeptidases (p-values > 0.01, Table S4.3). Lastly, the 

inhibitor cocktail—the combination of the four peptidase inhibitors—successfully 

stopped 80-96% the proteolytic activity of the four model peptidases (p < 0.0001, 

Tables 4.4 and S4.3). In summary, each of the peptidase inhibitors when used at their 

proposed final concentration had the desired specific inhibitory effect and could 

therefore be further evaluated for use in soils to separate the proteolytic activity from 

different classes of peptidases.  

 

4.4.2. Inhibition confirmed in peptidase-supplemented soils 

Pure peptidases were added to soils in quantities to at least double the soil 

proteolytic activity. We evaluated if the rate of proteolysis of each individual treatment 
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differed between the first (0-24 h) and second day (24-48 h) of the incubation (Fig. 

4.1). With only one exception (PMSF in the cysteine peptidase amended soil), there 

was no evidence that the rate of proteolysis changed through time (Table 4.5; Hommel 

adjusted p-values > 0.01). Linearity through 48 h increases the sensitivity of the assay 

enabling it to be used in soils with low proteolytic activity.  

To evaluate the effectiveness of peptidase inhibitors on proteolytic activity, we 

compared the differences between each inhibitor treatment and their peptidase-

supplemented control using Dunnett’s test. Across all the enzyme-supplemented 

treatments, there was no evidence that DMSO caused any difference in the soil 

proteolytic activity in comparison to the water controls (p-values > 0.01, Fig. 4.1 and 

Table S4.4). Thus, either DMSO (used to prepare Pepstatin A and PMSF solutions) or 

water can serve as the control for the peptidase inhibitor treatments. Both E64 and E64 

+ EDTA deactivated >90% of the added-cysteine activity, reducing it nearly to the soil-

alone level (p < 0.001, Fig. 4.1 and Table S4.4). There were no non-target effects of 

E64 on proteolytic activity of soils supplemented with serine or metallopeptidases (p-

values > 0.01, Fig. 4.1 and Table S4.4). The combination of E64 and EDTA suppressed 

the metallopeptidase and cysteine peptidase supplemented treatment by >85% (p-

values < 0.001, Fig. 4.1 and Table S4.4). The activity of serine peptidases was inhibited 

75% by PMSF (p < 0.001, Fig. 4.1 and Table S4.4), and PMSF had no non-target effects 

on soil supplemented with cysteine peptidase (p > 0.01, Fig. 4.1 and Table S4.4). 

Pepstatin A displayed statistically significant inhibition, but was less effective that the 

other peptidase inhibitors, inhibiting just 35% of the activity in soils with aspartate 

peptidase added (p = 0.006, Fig. 4.1 and Table S4.4).  
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As expected, the inhibitor cocktail was equally, or slightly more effective, than 

each specific inhibitor alone for all enzyme-added treatments (p-values < 0.001, Fig. 

4.1 and Table S4.4). In soil supplemented with all four peptidases, we observed that 

about 25% of the total soil proteolytic activity remained after adding the inhibitor 

cocktail (Fig. 4.1). This residual activity that could not be inhibited by any of the four 

peptidase inhibitors could derive from other peptidases that were not deactivated by the 

inhibitors used, abiotic proteolysis, or the production of other compounds that react in 

the Folin-Ciocalteau assay (e.g., phenols).  

 

4.4.3. Specificity of Folin-Ciocalteau assay confirmed for proteolytic activity 

To evaluate the hypothesis that the Folin-Ciocalteau assay may measure 

compounds other than aromatic amino acids, we used an alternate approach to quantify 

soil proteolytic activity, the OPAME assay, which measures total free amino acids. The 

proteolytic activity of four soils was measured at 0, 24, and 48 h after sodium caseinate 

addition using both methods. For each soil, the increase during the 48-h incubation of 

fluorescence measured using the OPAME reagent was linearly related to the 

absorbance measured using the Folin-Ciocalteau reagent (Fig. 4.2). The slopes of the 

relationship for the four soils did not differ significantly (p > 0.05, Table S4.5), but the 

y-intercepts did (p < 0.05, Table S4.5). Positive y-intercepts indicate that the Folin-

Ciocalteau reagent does react with some aromatics that are not amino acids, and this 

background is higher at Cascade Head and H.J. Andrews. Despite this difference in the 

background, the similar slopes of all four soils suggest that the increased absorbance 
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measured by the Folin-Ciocalteau assay reflects only amino acids produced by 

proteolytic activity and not the production of other aromatic compounds.  

 

4.4.4. Abiotic proteolysis is negligible 

We found little evidence for abiotic proteolysis in the fine clay fractions of the 

two soils we tested (Fig. 4.3). The rates of proteolysis calculated by the rate of tyrosine 

accumulated between 0 and 48 hour were not significantly different from zero (Fig. 

4.4).  

 

4.4.5. Extracellular peptidase profiles are related to soil properties 

Peptidase inhibitors were applied to the soils in order to characterize their 

extracellular peptidase profiles. There was a higher background for Cascade Head than 

H.J. Andrews soils at the initial measurement, particularly for the soil from red alder 

site at Cascade Head (Fig. 4.3). Proteolytic activity increased linearly through time in 

all treatments (Fig. 4.3, Table S4.6). The H.J. Andrews red alder had the highest total 

peptidase activity (12.8±0.3 µmol tyrosine g-1 dry soil d-1), followed by Cascade Head 

Douglas-fir (7.8±0.4 µmol tyrosine g-1 dry soil d-1), Cascade Head red alder (6.3±0.5 

µmol tyrosine g-1 dry soil d-1), and H.J. Andrews Douglas-fir (5.6±0.3 µmol tyrosine g-

1 dry soil d-1).  

The proteolytic activity of the control, inhibitor treatments, and abiotic 

proteolysis were analyzed with a least squares regression model to calculate the 

activities of different peptidases in soils. The relative contribution of each peptidase 

class varied among soils, often with a large fraction being uncharacterized (Fig. 4.4). 

Because we determined that accumulation of non-amino acid aromatics did not occur 
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(Fig. 4.2) and that abiotic proteolysis was negligible (Fig. 4.3), we assume that the 

uncharacterized activity is from peptidases that were not affected by the inhibitors we 

used. Metallopeptidases were the major contributors to proteolytic activity in all soils 

(Fig. 4.4). In all soils, the activity of cysteine peptidases was not significantly different 

from zero. Interestingly, the contribution of serine peptidases varied by tree type: serine 

peptidase activity was not significantly different from zero in red alder soils but 

contributed to 7-14% activity in the Douglas-fir soils (Fig. 4.4). A high proportion of 

proteolytic activity remained uncharacterized among all soils but was much higher in 

soils from Cascade Head (61-66% compared to 20-31%) (Fig. 4.4).  

 

4.5. Discussion 

4.5.1. Substrate-induced proteolytic assay: initial control, length of incubation, 
and linearity 

In this study, we evaluated modifications to the classic enzyme assay that is 

commonly used to measure proteolytic activity in soils. According to Ladd and Butler 

(1972), the potential proteolytic activity of a soil was defined by the difference in 

tyrosine concentrations of a soil slurry incubated with and without sodium caseinate at 

pH 8 for 1 h at 50oC. Tyrosine concentrations were quantified with the Folin-Ciocalteau 

reagent. To better reflect native soil conditions, we modified the potential proteolytic 

assay by using water rather than a buffer to keep the pH close to that of the soil and 

incubated at a temperature closer to that of the environment, as others have done 

(Reiskind et al., 2011).  

 Ladd and Butler (1972) noted that soil organic matter sometimes interfered with 

the Folin-Ciocalteau reagent resulting in negative activities, presumably because the 
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added caseinate complexed some of the interfering organic compounds. To avoid such 

supposedly negative activities, we calculated proteolytic activity as the tyrosine 

accumulation between the time when substrate was added and the end of the assay. We 

further explored the non-specificity of the Folin-Ciocalteau assay, which interacts not 

only with aromatic amino acids, such as the tyrosine used as the standard, but also with 

other organic aromatic compounds. Although the Folin-Ciocalteau reagent did react 

with other compounds in most of the soils we tested (positive y-intercept, Fig. 4.2, 

Table S4.5), the similar slopes obtained when comparing the Folin-Ciocalteau and 

OPAME assays (Fig. 4.2, Table S4.5) suggested little production of interfering 

compounds during the incubation. This finding indicates that the modified Folin-

Ciocalteau assay works well to quantify substrate-induced proteolytic activity in soils.  

Non-linearity has sometimes been encountered in soils assayed with the 

caseinate-supplemented measure of potential proteolytic activity (Ladd and Butler, 

1972; Reiskind et al., 2011; Vranova et al., 2013). We sometimes observed a lag in 

activity during the first 4-10 h with the H.J. Andrews Douglas-fir soil (data not shown), 

potentially due to the complexity of sodium caseinate as a large protein composed of 

many amino acid units and the lower temperature we used. Increasing the incubation 

time to 48 h usually resulted in linear accumulation of products, using either the Folin-

Ciocalteau or OPAME assays (Fig. 4.2). The longer incubation also increased the 

sensitivity of the assay.  
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4.5.2. Modifications to measure activities of different peptidase classes 

The interference of alcohols to some peptidase activities (data not shown) led 

us to the use of DMSO as a substitute carrier solution for dissolving PMSF and 

Pepstatin A because it is a good solvent for both polar and nonpolar compounds. We 

found that soils amended with DMSO at the concentration that we used (4.7%) had the 

same proteolytic activity as those amended with water (Fig. 4.1, Table S4.4). This 

agrees with Obayashi et al. (2017), who suggested that DMSO at final concentration of 

< 5% would not cause a significant influence on proteolytic enzyme activity in 

seawater.  

Because the degree of peptidase inhibition is dependent on the inhibitor 

concentration, incubation time, temperature, and pH (Bach and Munch, 2000; Pérez-

Lloréns et al., 2003), we tested the effect of peptidase inhibitors on solutions of pure 

peptidases under the pH and temperature conditions relevant to the soils we used and 

in peptidase-supplemented soils. To our knowledge, these validating tests have not 

been done in prior studies that have used peptidase inhibitors (Hayano, 1993; Hoppe et 

al., 1988; Kamimura and Hayano, 2000; Kumar et al., 2004; Renella et al., 2002; 

Rineau et al., 2016; Shah et al., 2013; Watanabe and Hayano, 1995). The linearity of 

the remaining activity in peptidase-supplemented soils during the course of incubation 

suggested that inhibition was effective and constant during the 48-h incubation (Fig. 

4.1, Table 4.5 and S4.4). This indicated that the inhibitors worked well and 

continuously deactivated the specific enzymes in the soils.  

We noted that the Pepstatin A did not seem to perform very well at the 

concentration that was used to suppress the supplemented aspartic peptidase activity. 
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It is possible that Pepstatin A interacted more strongly with the soil matrix than did the 

other inhibitors, decreasing its effective concentration, which might be overcome by 

using Pepstatin A at higher concentrations. It should be noted, however, that the 

absolute inhibition by Peptstatin A of about 4 µmol tyrosine g-1 dry soil d-1 in soil 

amended with aspartate peptidase exceeded the 1.5 µmol tyrosine g-1 dry soil d-1 

attributable to the aspartate peptidases in the non-amended soil. Thus, the Pepstatin A 

concentrations we used may have been sufficient for use in non-amended soils. 

Interestingly, in pure aspartic peptidase experiment, the inhibition efficacy of Pepstatin 

A was about 80-86% of the aspartic peptidase activity. However, with the presence of 

soils, this inhibition efficacy was only 60-65%. This observation was more likely due 

to the interaction between the soil matrix (especially phenolic groups) and the Pepstatin 

A protein molecules, which potentially deactivated part of the activity of Pepstatin A. 

We suggested future studies to implement this reaction at higher Pepstatin A 

concentrations to overcome this complex interaction. 

We also observed some remaining activity in the presence of the inhibitor 

cocktail (Figs. 4.1 and 4.2), as did Renella et al. (2002). This residual activity might 

arise at least partially from abiotic proteolysis by soil minerals (Reardon et al., 2018), 

but we did not measure any proteolytic activity associated with the minerals in the 

purified fine clay fractions isolated from our soils (Figs. 4.2 and 4.4). The 

uncharacterized activity might be mainly associated with biotic proteolysis, either from 

the underperformance of Pepstatin A as aspartic inhibitor, or from the inhibitor-

inaccessible enzymes bound to clays or organic matter in soils (Renella et al., 2002) 
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and/or less-dominant extracellular peptidase groups (such as threonine, glutamic, 

asparagine) that we did not characterize.  

 

4.5.3. Biotic proteolysis: Correlation with soil biochemical properties 

First, we found a strong positive correlation (r=0.983) between the total 

peptidase activities and the gross ammonification rates measured by Yarwood et al. 

(2010) for these same four soils (Fig. 4.5A). Proteinaceous compounds are broken 

down into oligomeric peptides, which are then taken up by plants or microorganisms, 

or further mineralized into ammonium and nitrate. The rate of protein decomposition 

therefore is considered to be the rate-limiting step of nitrogen cycling in terrestrial 

ecosystems (Schimel and Bennett, 2004). The positive correlation between proteolytic 

activity and gross ammonification rate confirms that biotic proteolysis is the bottleneck 

that regulates the N cycling in soils.  

The peptidase inhibitor method we developed provides a way to identify and 

quantify the contribution of four different peptidase classes to a soil’s potential 

proteolytic activity. This method allowed us to discover several distribution patterns of 

different catalytic groups of peptidases across our four soils that have a range of soil 

biochemical properties (Fig. 4.4). 

 

4.5.4. Metallopeptidase activity dominant and reflective of soil pH 

Metallopeptidases were the most active class of identified peptidases in each of 

our soils, and their activity correlated with gross ammonification (r=0.834); activities 

of the other classes of peptidases were not correlated. The relative contribution of 

metallopeptidases was strongly correlated with organic C content (r=-0.962), clay 
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content (r=-0.958), and pH (Fig. 4.5B, r=0.937), all of which were highly correlated 

(r>0.997) with each other. Interactions with clay minerals or organic matter may 

inactivate metallopeptidase activity, accounting for the negative correlation, but it is 

more likely that the positive correlation between relative metallopeptidase activity and 

pH reflects the neutral pH optimum associated with this class of peptidases (Wu and 

Chen, 2011). Prior studies of peptidases extracted from soil or produced by bacterial 

isolates have also found metallopeptidases abundant (Bach and Munch, 2000; Hayano, 

1993; Kamimura and Hayano, 2000; Watanabe and Hayano, 1995). The majority of 

extracellular metallopeptidases are endopeptidases, which cleave the internal peptide 

linkages of proteins (Wu and Chen, 2011). Therefore, metallopeptidases likely interact 

with other classes of extracellular peptidases to fully degrade proteins in soil. 

 

4.5.5. Extracellular aspartic peptidase activity correlates to fungal:bacteria ratio 

Aspartic peptidases contributed the second highest activity across our four soils 

(Fig. 4.4). Their relative contribution to total peptidase activity was correlated most 

highly (Fig 4.5C, r=0.834) with the ratio of fungal to bacterial marker phospholipid 

fatty acids measured by (Boyle et al., 2008). Aspartic peptidases were consistently 

found to be the prevalent peptidases in the extracellular peptidase repertoires of most 

fungal species according to several fungal pure culture and genomic studies (Caldwell, 

2005; Rao et al., 1998; Rineau et al., 2016; Shah et al., 2013; Theron and Divol, 2014; 

Vranova et al., 2013, Chapter 3). Aspartic peptidase activity typically peaks between 

pH 3-5 (Theron and Divol, 2014), which spans the pH range of our soils.  
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4.5.6. Serine peptidases associated with soils under different tree species 

We did not detect a significant contribution of serine peptidases to the biotic 

proteolytic activity in red alder soils, but they were active in Douglas-fir soils (Fig. 

4.4). Serine peptidases usually display neutral and alkaline pH optima (Rao et al., 

1998), but their activity was not correlated to pH (or other soil physical and chemical 

properties) of our soils (r<0.4). We found a weak correlation (r=0.734) between the 

serine peptidase activity and the fungal:bacterial ratios in these soils (Boyle et al., 

2008), but at the kingdom level serine peptidases are highly abundant in archaea, 

bacteria, and fungi (Nguyen et al., 2019, Chapter 3). Thus, we hypothesize the 

distinction in serine peptidase activity between soils under the two tree species may 

arise from the composition of their microbial communities, most likely the fungal 

communities because it is well known that Douglas-fir and red alder establish different 

ectomycorrhizal symbioses (Horton et al., 2005; Kennedy et al., 2014).  

4.5.7. Uncharacterized proteolytic activity 

Cysteine peptidase activity was below the detection limit in all of our soils, 

whereas the biotic activity from uncharacterized peptidases contributed a large 

proportion to the soil proteolytic activity (Fig. 4.4). More than 50% of the coastal soil 

peptidase activity was uncharacterized. This bias between the coastal soils and H.J. 

Andrews soils might be partly from the fact that some inhibitors did not perform as 

well in coastal soils compared to our H.J. Andrews soils, which were used as the model 

soils in our study to validate the inhibitor protocol. Thus, it may be necessary to 

determine the effective inhibitor concentrations for a given soil. 

This uncharacterized activity correlated positively with clay content (r=0.913) 

and archaeal abundance (r=0.985). We found no abiotic proteolytic activity associated 
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with the isolated clay fraction; however, Renella et al. (2002) suggested that 

uncharacterized peptidase activity might come from peptidases trapped on the mineral 

surfaces and inaccessible to inhibitors. It is difficult to imagine that the relatively small 

peptidase inhibitors (MW from 174 to 686) would be excluded when the added protein 

substrate (sodium caseinate, MW>10,000) is not. The possible connection between the 

uncharacterized biotic peptidase activity and archaeal population is intriguing. Archaea 

in marine sediments have been shown to encode extracellular cysteine, serine, and 

metallopeptidases, where they are thought to play a major role in protein turnover 

(Lloyd et al., 2013). These peptidase classes should have been inhibited, although 

extracellular glutamic and threonine peptidase-coding genes have been found in a small 

number of complete archaeal genomes in Nguyen et al. (2019).  

First, this research confirmed the importance of microbial peptidases in 

regulating N mineralization. Second, we showed that the absolute and relative 

contributions the peptidases with four different catalytic mechanisms vary among soils 

of different physical, chemical, and microbial characteristics. This observation raises 

the hypothesis that soil microorganisms, individually or collectively, respond to their 

surrounding environments by investing in the peptidases that optimize their activity. 

Third, we have developed a functional protocol for the use of specific peptidase 

inhibitors in the investigation of protease activities in soil that can be used to further 

evaluate this hypothesis. Measuring peptidase activity profiles would complement 

research that uses genomic, transcriptomic, and proteomic approaches to study the 

regulation of peptidases in the environment.  
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Table 4.1. Soil chemical properties (Boyle et al., 2008; Lu et al., 2015) and soil texture determined by hydrometer method. Data are mean 

± standard error (n=3).  

Site Tree species Total C (mg/g) Total N (mg/g) C:N pH Clay (%) Silt (%) Sand (%) 

Black Butte Douglas-fir 16±2.5 0.8±0.0 20.7±3.9 7.0 3.8±1.2 16.6±3.1 79.6±1.9 

Cascade Head Red alder 144±10.4 9.2±0.9 15.7±0.5 3.6 31.1±3.7 45.3±5.0 23.6±7.7 

Douglas-fir 128±2.3 6.7±0.1 19.1±0.0 4.1 27.5±3.6 50.8±0.4 21.7±3.9 

H.J. Andrews Red alder 82±12.1 3.4±0.2 23.8±2.4 5.1 17.3±6.4 40.4±2.2 42.3±6.0 

Douglas-fir 90±7.5 2.7±0.1 33.2±2.1 5.0 18.8±2.6 40.5±4.8 40.7±6.7 

McDonald-Dunn Douglas-fir 54±0.8 3.7±0.0 14.6±0.0 6.0 40.0±4.9 42.8±2.9 17.3±3.0 
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Table 4.2. Peptidases and peptidase inhibitors used in peptidase-supplemented soil 

experiments. Tested combinations have “x”. Generally, inhibitors were used against only 

their target peptidase unless non-target interactions had been observed in pure enzyme 

studies. 

Peptidase Addition 
Peptidase Inhibitor Treatment 

Water DMSO Pepstatin A E64 E64+EDTA PMSF Inhibitor Cocktail 

None added x x x x x x x 

Aspartic x x x 
   

x 

Cysteine x x 
 

x x x x 

Metallo- x x 
 

x x 
 

x 

Serine x x 
 

x 
 

x x 

Enzyme mixture x 
     

x 
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Table 4.3. The matrix used for least squares regression to calculate for the relative activity of each peptidase group in soil, based on the 

relationships between the peptidases and the peptidase inhibitors. One indicates that proteolytic activity in not inhibited by the treatment; 

zero indicates the treatment completely inhibits proteolytic activity. 

Peptidase 

Peptidase Inhibitor Treatment 

No inhibitor Pepstatin A E64 E64+EDTA  PMSF 
Inhibitor 

Cocktail 

Clay fraction 

(<2 µm) 

Peptidase Super-family  

(Biotic proteolysis) 

Aspartic 1 0 1 1 1 0 0 

Cysteine 1 1 0 0 1 0 0 

Metallo- 1 1 1 0 1 0 0 

Serine 1 1 1 1 0 0 0 

Uncharacterized 1 1 1 1 1 1 0 

Abiotic proteolysis Abiotic activity 1 1 1 1 1 1 1 
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Table 4.4. The inhibitory efficiency of peptidase inhibitors on model peptidases. The 

numbers represent the percentage of remaining activity after the peptidase inhibitor 

additions. Bold represent significant inhibition (p!0.001; Supplemental Table S4.3). 

Model peptidase 
Peptidase Inhibitor Treatment 

Pepstatin A E64 E64+EDTA PMSF Inhibitor Cocktail 

Aspartic 16±3% 83±9% 103±5% 96±0% 20±5% 

Cysteine 95±5% 3±1% 4±2% 86±1% 4±1% 

Metallo- 77±16% 73±22% 9±3% 71±15% 16±2% 

Serine 96±4% 93±3% 102±12% 15±4% 16±4% 
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Table 4.5. Significance of proteolytic activity during the first and second 24-h periods of the incubation for each individual peptidase-

supplemented soil combination. The p-values for these multiple Welch’s two sample t-test analyses were adjusted using the Hommel 

procedure. Data are p-values for comparisons between the two time periods, with p-values of ! " 0.01 shown in bold. When the p-values 

are large (> 0.01), it indicates that proteolytic activity was constant during the entire 48-h incubation. 

Peptidase Addition 
Peptidase Inhibitor 

Control DMSO Pepstatin A E64 E64+EDTA PMSF Inhibitor Cocktail 

Aspartic peptidase 0.531 0.642 0.792 x x x 0.616 

Cysteine peptidase 0.792 0.313 x 0.776 0.776 0.009 0.090 

Metallopeptidase 0.792 0.792 x 0.792 0.792 x 0.792 

Serine peptidase 0.615 0.232 x 0.792 x 0.792 0.792 

Enzyme mixture 0.792 x x x x x 0.792 
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Figure 4.1. Proteolytic activities over 48 h in peptidase-supplemented soil in response 

to different peptidase inhibitor treatments (Table 2). Data points are means with 

standard error bars (n=3). Symbol shapes, colors, and line types represent different 

peptidase inhibitor treatments. Asterisks denote significant difference from control at 

48 h (*) for 0.001 < p < 0.01; (**) for p < 0.001).   
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Figure 4.2. Correlation between proteolytic activity measured by the OPAME assay 

(total free amino acids, leucine as standard) and by the Folin-Ciocalteau assay (using 

tyrosine as standard). Soil proteolytic activities from four different locations were 

monitored over 48 hours (n=3).  Slopes for individual sites were not statistically 

different (p!0.05).  
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Figure 4.3. Proteolytic activities over 48 h in soils from two different ecoregions 

(Cascade Head and H.J. Andrews Experimental Forests) and two tree species (Douglas-

fir and red alder). Data points are means with standard error bars (n=3). Symbol shapes, 

colors, and line types represent different peptidase inhibitor treatments. 
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 (A) 
 
(B) 

Proteolytic 
Activity 

HJDF HJRA CHDF CHRA 

Aspartic 1.03±0.25 1.38±0.49 0.37±0.26 0.70±0.33 
Cysteine 0.23±0.32 0.23±0.61 0.31±0.33 0.18±0.41 
Metallo- 2.12±0.37 7.15±0.72 1.23±0.39 0.71±0.48 
Serine 0.79±0.25 0.08±0.49 0.59±0.26 0.03±0.33 

Uncharacterized 1.13±0.37 4.13±0.72 5.30±0.39 3.55±0.48 
Abiotic 0.26±0.28 0.17±0.53 0.27±0.29 0.60±0.36 

 
Figure 4.4. Biotic and abiotic sources of proteolytic activity from four different soils 

were calculated using least square regression. The pie charts (A) represent the relative 

abundance of each peptidase family in each of the four soils, with the size of each chart 

proportional to the total proteolytic activity. The table (B) shows proteolytic activity 

(mean ± standard error, µmol tyrosine g-1 dry soil d-1) for different peptidase pools in 

each soil. The statistical significance of each pool size to zero (n=3) are shown in bold 

(p-values of " ! 0.05).   
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Figure 4.5. Correlation between some soil properties and different components of soil 

proteolytic activity of four different soils: (A) total soil peptidase activity (µmol 

tyrosine g-1 dry soil d-1) vs. gross ammonification (µg N g-1 dry soil d-1), (B) relative 

metallopeptidase activity vs. soil pH, and (C) relative aspartic peptidase activity vs. 

fungal:bacterial PLFA ratio. Different points represent the means of different soils 

(solid = Cascade Head soils, open = H.J. Andrews, Circle = red alder, Triangle = 

Douglas-fir) with standard error bars. 
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4.6. Appendix for Chapter 4 

 
4.6.1. Folin-Ciocalteau Total Proteolytic Activity Assay  

This assay is modified from Ladd and Butler (1972) 

Chemical preparation 

2% Casein Solution 

2 g Casein Na salt 

1 g Na azide 

100 ml DI water 

15% Tricholoracetic acid (TCA) 

7.5 g TCA 

50 ml DI Water  

3-Fold diluted Folin-Ciolcalteu’s 

Phenol Reagent 

8 ml Folin-Ciolcalteu’s Phenol Reagent 

16 ml DI water 

1.4 M Na2CO3 

37.1 g Na2CO3 

250 ml DI water 

2000 µM Tyrosine 

36.238 mg 

100 ml DI water 

 

Tube preparation 

Label two identical sets of Eppendorf tubes (2-mL) then weigh and record the weight 

of the tubes. The first set of tubes is for storing the sample during the incubation, the 

second set of tubes is for transferring the supernatant sample after the protein 

precipitation step using TCA. More details are below.  
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Soil slurry preparation 

1. Weigh 3 g soil (dry weight equivalent) into a glass bowl and add 30 mL water into 

the glass bowl with a stirring bar. Then stir the bowl on top of the stirring plate for 

about 15 minutes. 

2. Aliquot 500 µL soil slurry into Eppendorf tubes with three technical replicates at 

least per sample. Cut the tip of the pipet (1000 µL pipet, cut about a few millimeter). 

Use the same tip for each soil slurry. Use the permanent marker to mark how deep the 

pipet tip should go down in the slurry for consistency in drawing samples.  

3. Weigh the tubes after adding soil slurry then calculate the exact amount of soil for 

each assay using this equation: [(Tube+Slurry) – (Tube)]/11, assuming that the slurry 

is homogenous with the soil:water ratio is 3:30 

Add casein substrate and start the incubation 

Add substrate into each Eppendorf tube (500 µL casein 2%). Incubate all of the tubes 

at room temperature (20oC) in the dark room. Samples will be collected at 0, 24 and 48 

hours.  

Stop the proteolysis and extract the supernatant for tyrosine measurement 

Stop the enzyme activity 500 µL TCA 15% into each tube to stop the reaction. Shake 

the tubes for about 15 minutes to allow TCA precipitate all the leftover proteins in the 

solution. Centrifuge the tubes using a mini-centrifuge machine for 5 minutes at 13,200 

rpm. Transfer 500 µL of the supernatant in each tube into new set of Eppendorf tubes 

(same label). 
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Colorimetric assay to measure tyrosine concentration 

Standard solutions: Using 2000 µM Tyrosine stock solution then serially dilute two-

fold to low concentration (usually making standard curve from 1000 µM to ~7 µM 

Tyrosine and 0 µM—just water) 

Color reagent: Make fresh 3-fold Folin-Ciolcalteu’s Phenol Reagent (by diluting the 

original solution that came as in the bottle by three times with miliQ water). When 

ready, add 250 µL FC phenol solution into each tube. Continue adding 750 µL 1.4M 

Na2CO3 (sodium carbonate) into each tube to change the pH and start developing the 

color. Close the tube, Shake well, then incubate in dark for 20 minutes at room 

temperature (20oC) 

Colorimetric reading: Aliquot 200 µL sample from each tube to a 96-well microtiter 

plate (make sure that it follows the plate layout that you set up), including the standard 

solutions. Use the colorimetric reader at the wavelength of 700 nm. The enzyme 

activity is calculated as the rate of tyrosine accumulation between 0 and 24/48 hour 

incubation based on the estimated tyrosine concentration. 

Reference 

Ladd, J.N., Butler, J.H.A., 1972. Short-term assays of soil proteolytic enzyme activities 

using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem. 4, 

19–30. https://doi.org/10.1016/0038-0717(72)90038-7 

  



 

 

 

163 

4.6.2. OPAME Total Free Amino Acid Analysis 

This protocol is adapted to measure soil proteolytic activity 

Reagents 

0.02 M pH 9.5 Borate Buffer:  

Dissolve 3.81 g sodium tetraborate decahydrate (MW=381.37, B-3545, Sigma-

Aldrich) in 500 mL milliQ H2O; adjust to pH 9.5 with 10 M NaOH (40 g in 100 ml) or 

KOH (it will take ~ 2 mL). Stored at 4oC. 

OPAME Concentrate:  

- Dissolve 10 mg of o-phthaldialdehyde (OPA; P-0657, Sigma-Aldrich) in 1 ml HPLC-

grade methanol. Typically, the OPA dissolves in about a minute with moderate shaking.  

- Once the OPA is dissolved, add 20 µl of β-mercaptoethanol (ME; M6250, Sigma-

Aldrich) to the OPA-methanol in a fume hood and shake to mix. This reagent is light 

sensitive – store in an amber bottle. Long-term storage of the reagent is possible in the 

dark at 4oC with further addition of β-mercaptoethanol every 48-72 hours. 

Color Reagent: Add OPAME concentrate to 40 mL Borate buffer in an amber bottle. 

Let stand 2 hours to overnight to reduce background fluorescence (caused by 

intermediate species produced during reaction of OPA and ME) 

Soil sample preparation 

Preparation: Label all set of tubes and weigh tube before adding soil slurry. Record the 

numbers. 

1. Make soil slurry from 3 g soil (dry weight equivalent) and 30 mL milliQ water and 

stir for 15 minutes. 
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2. Draw 500 µL soil slurry into each Eppendorf tube (3 technical replicates for each 

treatment). Weigh each tube before and after adding soil slurry and record this 

number to estimate exactly the amount of soil that goes into each tube.   

5. Add 500 µL Casein into the tube and start the incubation at room temperature 

(20oC) in the dark room. Data will be collected for 0, 25 and 48 hour (separate set of 

tubes).  

6. Add TCA 15% to each of the tube to stop the proteolysis. Shake the tubes for 15 

minutes to allow the protein precipitation to happen.  

7. Centrifuge the tubes to separate the precipitated protein pellets and the supernatant 

(to be use as sample for the amino acid analysis).  

Sample Analysis 

Soil+OPAME: 20 µL of sample or standard (Leucine/NH4+, Glycine would also work) 

and 200 µL of Color reagent are combined in the wells of a 96-well plate and read after 

1 hour (Darrouzet-Nardi et al., 2013) on a fluorometric microplate reader with an 

excitation wavelength of 340 nm and an emission wavelength of 450 nm. 

Soil+Buffer: Blank readings can be made by adding 20 µL of sample to 200 µL of 

Borate buffer containing no OPAME reagent and measuring the fluorescence as 

described above. 

Standards: Standards of Leucine and NH4Cl (or NH4NO3) are recommended, with 

concentrations bracketing those in your samples – this will have to be determined with 

preliminary analyses of your samples and standards. The easiest way to do it is to begin 

with a wide range of standard concentrations. Suggested: Leucine 0-500 µM; NH4+ 0-

50 ppm 
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L-Leucine (L8000, MW=131.17, Sigma). Stock 2000 µM Leucine = 26.2 mg L-

Leucine in 100 mL milliQ water 

Equation: As the OPAME procedure also detects NH4+, this can be accounted for 

using the equation:  

Amino acids (µM) = (Oo – Bo - Ao) / (So / 10) 

Oo is the OPAME fluorescence reading of the sample = Soil + OPAME + Buffer (FU 

~ Fluorescence Unit) 

Bo is the blank fluorescence reading of the sample with no OPAME reagent present = 

Soil + Buffer (FU) 

So is the fluorescence reading of a 10 µM amino acid standard, or So/10 = Slope of 

Leucine curve (FU/uM) 

Ao accounts for the interference of NH4+ in the OPAME procedure. Unless the samples 

show a high degree of brown coloration Bo is close to zero and can largely be ignored. 

Ao is defined as Ao = (ACo / ASo) * ARo.  

ACo is the NH4+ concentration of the sample determined separately (usually by 

Ammonium colorimetric assay) 

ASo is the NH4+ standard concentration (µM) 

ARo is the fluorescence reading of the NH4+ standard using the OPAME procedure. 
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Reference 
 

Darrouzet-Nardi, Anthony, Mallory P. Ladd, and Michael N. Weintraub. 2013. 
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Table S4.1. Model peptidases used in this study. 

Peptidase 

Super-family 
Sigma-Aldrich product code Model peptidase Source 

Molecular 

Weight  

Working 

concentration 

Aspartic P2143 Aspergillopepsin I Aspergillus saitoi 41.3 1.0 mg/mL 

Cysteine 10108014001  Papain Carica papaya 23.0 0.28 mg/mL 

Metallo- T7902 Thermolysin Geobacillus 

stearothermophilus 

34.6 0.10 mg/mL 

Serine P4860 Subtilisin A Bacillus licheniformis 27.0 4.3 µg/mL 
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Table S4.2. Peptidase inhibitors and targeted peptidases.  

Inhibitors 
Sigma-Aldrich 

product code 
Targeted peptidase(s) Working concentration Equivalent final concentration 

Pepstatin A P5381 Aspartic 10 µM 0.91 µM 

E64 E3132 Cysteine 20 µM 1.82 µM 

E64+EDTA E3132 

CAS 6381-92-6 

Cysteine & Metallo- 40 µM E64 

10 mM EDTA 

1.82 µM E64 

0.45 mM EDTA 

PMSF P7626 Serine 1.0 mM 0.09 mM 

Inhibitor cocktail All the above Aspartic, Cysteine, 

Metallo-, Serine 

4.0 mM PMSF 

80 µM E64 

40 µM Pepstatin A 

20 mM EDTA 

0.09 mM PMSF 

1.82 µM E64 

0.91 µM Pepstatin A 

0.45 mM EDTA 



 

 

 

169 

Table S4.3. Dunnett’s p-values for comparisons of differences between the peptidase 

inhibitor treatments and the control for each individual model peptidase. Between-

treatment comparison p-values of ! " 0.01 in bold.  

Model peptidase 
Peptidase Inhibitor 

Pepstatin A E64 E64+EDTA PMSF Inhibitor Cocktail 

Aspartic < 0.001 0.675 1.000 0.731 < 0.001 

Cysteine 0.043 < 0.001 < 0.001 0.035 < 0.001 

Metallo- 0.070 0.906 < 0.001 0.017 < 0.001 

Serine 0.909 0.572 0.998 < 0.001 < 0.001 
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Table S4.4. Dunnett’s p-values for comparisons of differences between the peptidase inhibitor treatments and the control for each 

individual peptidase-supplemented soil combination. Between treatment comparison p-values of ! " 0.01 in bold.  

Peptidase Addition 
Peptidase Inhibitor 

DMSO Pepstatin A E64 E64+EDTA PMSF Inhibitor Cocktail 

Soil Control 0.950 0.465 0.963 0.012 0.072 < 0.001 

Soil + Aspartic peptidase 0.729 0.006 x x x < 0.001 

Soil  + Cysteine peptidase 0.015 x < 0.001 < 0.001 0.373 < 0.001 

Soil + Metallopeptidase 0.887 x 0.972 < 0.001 x < 0.001 

Soil + Serine peptidase 1.000 x 0.986 x < 0.001 < 0.001 

Soil + Enzyme mixture x x x x x < 0.001 
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Table S4.5. Summary for regression analyses for the correlation between proteolytic 

activity measured by the OPAME assay (total free amino acids, leucine as standard) 

and by the Folin-Ciocalteau assay (using tyrosine as standard). Soil proteolytic 

activities from four different locations were monitored over 48 hours (n=3).  

Soil 
Regression Slope Intercept 

Adjusted R2 F-value p Value SE p Value SE p 

Black Butte 0.955 171.148 < 0.001 6.473 0.495 < 0.001 2.084 0.266 < 0.001 

Cascade Head 0.990 774.242 < 0.001 6.051 0.217 < 0.001 4.642 0.620 < 0.001 

H.J. Andrews 0.995 1531.838 < 0.001 5.667 0.145 < 0.001 4.478 0.359 < 0.001 

McDonald Forest 0.983 454.525 < 0.001 6.066 0.285 < 0.001 0.779 0.858 0.394 
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Table S4.6. Comparison of rates of proteolytic activity (µmol tyrosine g-1 dry soil h-1) 

during the first and second 24-h periods of the incubation for each individual soil-

inhibitor combination. The p-values for these multiple Welch’s two sample t-test 

analyses were adjusted using the Hommel procedure. Data are p-values for t-test 

comparisons between the two time periods, with p-values of ! " 0.05 shown in bold. 

When the p-values are large (> 0.05), it indicates that proteolytic activity was constant 

during the entire 48-h incubation. 

Soil 
Peptidase Inhibitor 

Control DMSO Pepstatin A E64 E64EDTA PMSF Inhibitor Cocktail 

H.J. Douglas-fir 0.206 0.545 0.493 0.588 0.545 0.105 0.063 

H.J. Red alder 0.276 0.040 0.245 0.637 0.637 0.637 0.588 

CH Douglas-fir 0.560 0.637 0.491 0.552 0.637 0.572 0.637 

CH Red alder 0.637 0.637 0.637 0.637 0.545 0.553 0.637 
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This dissertation focused on determining the microbial contribution to organic 

nitrogen cycling in soils by characterizing the diversity and proteolytic activity of 

extracellular peptidases.  

 

The first research chapter recognized the wide spectrum of extracellular 

peptidases across Archaea and Bacteria that follow the phylogenetic relationships and 

environmental habitats. The two prokaryotic kingdoms differ not only in the total 

numbers of secreted peptidase coding genes but also in their enzymatic complements. 

Generally, bacteria have more secreted peptidases per genome and possess a more 

diverse set of secreted peptidases than archaea, suggesting that bacteria might be more 

competitive in organic nitrogen acquisition compared to archaea. Serine, metallo-, and 

cysteine peptidases contribute to 80-90% to the peptidase coding genes across these 

two kingdoms. Aspartic and threonine peptidases are more enriched in archaeal species. 

I found the evidence that archaeal and bacterial species from different microhabitats 

(pH and temperature) have unique sets of secreted peptidases, indicating that the 

distinction in secreted peptidase complements among microorganisms might be 

partially driven by the optimization of enzyme catalytic reaction to specific 

environmental conditions. Additionally, microbial lifestyles (such as free-living vs. 

host-associated) have influence on the variation of secreted peptidase coding genes. 

Free-living bacteria commonly possess more secreted peptidases in their genomes 

compared to host-associated species.  
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The second research chapter revealed the diversity and distribution of secreted 

peptidases in fungal species. Serine, metallo-, and aspartic peptidases are among the 

most abundant catalytic peptidases across fungal kingdom, whereas, cysteine 

peptidases, which is more common in prokaryotic taxa, contributes only 2% to the total 

eukaryotic secreted peptidases. The majority of the secreted peptidase families that we 

analyzed follow the evolutionary model, meaning that these functional genes are shared 

among closely related taxa. Consequently, fungal species from Ascomycota, 

Basidiomycota, and Mucoromycota had different complements of extracellular 

peptidase coding genes. Fungal species from different ecological groups also varied in 

their peptidase repertoires. Saprotrophic fungi, well-known for high lignocellulolytic 

ability, possessed surprisingly few secreted peptidases compared to symbiotrophic and 

pathotrophic fungi. Most symbiotrophs and pathotrophs have enriched numbers of 

secreted peptidases in their genomes, which mostly encode for the host-associated 

functions, either in a mutualistic or antagonistic way. Not only fungal lifestyles but also 

fungal evolutionary history plays a big role in shaping their extracellular proteolytic 

functions. In short, I used extensive data mining to analyze the phylogenetic 

conservation of secreted peptidases among soil dominant microbial groups and to 

discover the influence of microhabitats on this diversity. This provides foundational 

knowledge about the complements of secreted peptidases in microorganisms within 

different environments, which could be very informative to incorporate with other soil 

metagenomic and biochemical data to elucidate the microbial functions in organic 

nitrogen turnover.  
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In the third research chapter, I found that the profile of extracellular peptidase 

activities belonging to different catalytic types vary among soils and correlate with both 

soil chemical and microbial properties. I developed the protocol that uses peptidase 

inhibitors to classify different peptidase types and tested it against pure enzymes and 

peptidase-supplemented soils before applying to natural soils. I found some evidence 

that metallopeptidase activity correlates with soil pH, aspartic peptidase activity 

correlates with fungal: bacterial ratio, and total proteolytic activity correlates with gross 

ammonification rate. This is in line with our assumption that soil microorganisms 

respond to the environments by investing in peptidases that can optimize the energy 

cost of the extracellular enzyme secretion. The method successfully provided a profile 

of soil peptidase activity, but it may be necessary to optimize the concentrations of 

peptidase inhibitors before applying to soils with different characteristics.  

Overall, the research in this dissertation demonstrated the correlative 

relationship between the environmental conditions and proteolytic functions in soils. 

Each microbial species has a unique set of extracellular proteolytic enzymes and 

depending on the nature of the environments, different enzymes will be expressed in 

order to maximize the proteolytic reaction. In the context of soils, this will determine 

the rate of organic nitrogen cycling.  

 
 


