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indigeneous peoples culture. In this chapter, we explore how we can use mathematical modeling

to design strategies to influence legislation that supports the protection of CKS.



©Copyright by Sebastián Naranjo Álvarez
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VIRTUAL ELEMENT METHODS FOR MAGNETO-HYDRODYNAMICS ON

GENERAL POLYGONAL AND POLYHEDRAL MESHES

1. INTRODUCTION

The number of applications involving plasmas has skyrocketed in the modern age with

applications ranging from fusion-based nuclear power to low power thrusters for contemporary

spacecraft. Great efforts have been devoted to the development of predictive models. One such

approach that has withstood the test of time is Magneto-hydrodynamics (MHD) [51]. The theory

of MHD considers plasmas as magnetized fluids. Thus, models in MHD come about from a

coupling between fluid flow and electromagnetics.

The evolution of the electric and magnetic fields are described by Maxwell’s system plus

a set of assumptions about the material properties of the fluid. Faraday’s law reveals that the

evolution in time of the flux of the magnetic field across an open surface results from a non-zero

circulation of the electric field along the boundary of the surface. Ampére’s law indicates that the

electric current that passes through an open surface depends on the circulation of the magnetic field

along this surface. Electric currents will generate electric fields. The relationship between these

two quantities is described by Ohm’s law and is entirely dependent upon the medium. In summary,

electric fields generate magnetic fields which, at the same time, generate electric currents and

fields. The final set of equations are Gauss’s law which states that the divergence of the magnetic

field is necessarily zero implying the non-existence of magnetic monopoles (magnets with only

one magnetic pole). The electric and magnetic fields generate a force named the Lorentz force.

This force acts upon each charged particle in the fluid and generates momentum. The velocity and

pressure of the flow can be described in terms of a statement of conservation of momentum over



2

each fluid parcel ( arbitrarily small or large volumes of fluid). Thus, the coupling between the

electromagnetic and mechanical models can be summarized as follows: magnetized fluids in the

presence of magnetic fields experience the Lorentz force which influences the momentum of the

fluid and alters its velocity. Likewise, charged particles in motion generate electric and magnetic

fields which generate the Lorentz force.

The final equation that we consider in order to attain our differential equation model re-

quires a statement of the conservation of mass of every fluid parcel. Some models further assume

that the fluid is incompressible meaning that fluid parcels are disallowed from gaining or losing

its volume. This implies that the mass density remains constant and the statement of conservation

of mass implies that the velocity field must be divergence-free. The models we present are of

incompressible fluids. Details about the derivation of the model are separated into two sections,

the first is Section 3.2 and involves the electromagnetics and the second is Section 5.2 in which

derive the mechanical model. The details of the MHD model, its derivation and properties are

nowadays well-understood and explained in many textbooks and review papers, e.g., [51, 73].

The development of numerical methods capable of capturing important features of MHD

is an active area of research. For example, in [58, 59], two finite element methods are developed

and analyzed. In [87], the convergence of finite volume methods for MHD is studied and in

[38, 78] the classic upwind and Godunov methods are adapted to ideal MHD. In [37], the author

presents a variant of the finite difference method named the summation by parts and simultaneous

approximation terms (SBP/SAT) method. Finally, in [67], the authors develop a maker and cell

(MAC) scheme for the fluid flow sub-system of the incompressible MHD equations, coupling it

to the Yee-scheme, introduced in [93], for the electromagnetic sub-system.

The main goal of this dissertation is to extend the framework of the virtual element method

(VEM) to models in MHD. The VEM was born as a re-framing of the older Mimetic Finite Differ-

ence (MFD) method, see [43]. In the MFD method, the modeling spaces contain arrays of degrees

of freedom, whereas in the VEM each of these arrays is associated with a shape function yielding
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a theory that closely resembles the finite element method (FEM), see [14]. Thus, many authors

consider the VEM to be a generalization of the FEM. However, there are significant differences.

The first is that the VEM is specifically designed to be implemented on meshes with a very gen-

eral definition for its polygonal or polyhedral cells. Another difference lies in the definition of

the space of shape functions. The FEM is based on polynomials approximations. This means that

each of the shape functions is known pointwise to any precision of accuracy. In the VEM the shape

functions can be proven to exist but no explicit formula is attained for their evaluations. This cre-

ates a large number of complications that do not appear in the FEM. Perhaps, the most prominent

regards integration. The shape functions form an inner-product space, and this inner product is

usually given in the form of an integral. Hence, if the functions are not known pointwise then the

integrals required in the inner products become very difficult to estimate efficiently. The solution

is that the approximations to these integrals can be computed to the degree of accuracy required

using only the degrees of freedom of the shape function. This philosophy was inherited from the

MFD method. We discuss this technique for the approximation of inner-products in Section 2.3.

The VEM was originally proposed for solving diffusion problems in [14] as a conforming

FEM, and later extended to the nonconforming formulation in [7] and the mixed Brezzi Douglas

Marini (BDM)-like and Raviart Thomas (RT)-like formulations in [28] and [17], respectively.

Generalizations to convection-reaction-diffusion problems with variable coefficients can be found

in [2, 19, 30, 47]. In a series of papers [16, 40–42], H(div)- and H(curl)-conforming virtual

element spaces on general polygonal and polyhedral elements have been proposed to general-

ize the well known RT and Nédélec finite elements to unstructured meshes, see [72, 76]. These

methods, combined with the Serendipity strategy, that reduces the total number of degrees of free-

dom, see [11, 12], have successfully been applied to the numerical resolution of the magnetostatic

Kikuchi’s model, see [62]. In these papers, exact virtual De-Rham sequences (explored in Sec-

tions 3.7 and 4.4) with commuting-diagram interpolation operators are built which guarantees that

the discrete magnetic flux field remains solenoidal. Finally, VEMs have also been designed for
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hyperbolic problems, see [1, 89].

The VEM provides several advantages over more classical methods. The first is that it

can be implemented on a very general class of meshes. This makes the method exceptionally

versatile and capable of handling complex problems like those involving material interfaces or

free boundaries. For example, many practical applications of MHD involve the fluid passing

several media. When extracted, for commercial purposes, metals are often dissolved and pumped

through different layers of sand and rock. When modeling this situation it would be ideal if the

mesh were to be fitted to the material layers in such a way that the boundaries of these layers fall

along the edges of the cells. The result, in real-life scenarios, is often times a highly unstructured

mesh, making VEM-based modeling software particularly well-suited for this application. In

some other applications the computational domain is deformed. This is the case in fusion-based

nuclear power generators. In this application, a gas is heated to the point of fusion, at temperatures

that any container built to hold the gas would melt. Thus, modern techniques that are explored

involve suspending the gas using external magnetic fields bypassing the need for a container at

all. This method is called magnetic confinement. By using computational models we can predict

the motion of the fluid and immediately apply an appropriate magnetic field to guarantee that the

gas remains suspended. Since the boundaries of the gas are not fixed by a physical container they

are free to deform into odd shapes, which need to be captured by the mesh. This implies that the

mesh has to constantly be updated for real time simulation. Thus, high order VEM technology

can provide an efficient solution.

A second major advantage of VEM is related to accurately capturing the divergence of the

magnetic field. According to electromagnetic theory the magnetic field should remain solenoidal,

i.e, its divergence should remain zero (Gauss’s Law). This is not an additional equation, rather it

is a consequence of Faraday’s law and the fact that the divergence of any curl is zero as we will

note in Section 3.2. Often times discretization methods will fail to capture this property yielding

a remainder that compounds in time. The result is that, at the discrete level, the magnetic field
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may not be divergence free. The consequences are well-documented, see [21, 22]. Simulations

that do not conserve this property present significant errors, see [21, 22, 48, 88]. The conclusion

in [48] is that these simulations experience fictitious forces that render the simulation unfaithful

to the physics involved. A great deal of research has gone into the development of “divergence

cleaning” techniques; we mention three approaches. In [52], they add ∇ · B = 0 as an addi-

tional equation and add a Lagrange multiplier to the set of unknowns to enforce this constraint. A

different approach involves the development of specialized flux limiters, see [64]. Finally, least

squares finite element methods involve solving differential equations by minimizing energy func-

tionals one of which can involve the condition on the divergence of the magnetic field, see [60].

However, in the VEM that we develop divergence cleaning is unnecessary. As we will prove,

our VEM discretization will yield divergence-free approximations to the magnetic field provided

that the initial conditions satisfy this condition. The main result required for this property to hold

is the commutativity of a De-Rham complex introduced in 2D and 3D in Sections 3.7 and 4.4

respectively. However, there is a conflict that needs to be resolved regarding one of the spaces

involved since an important L2−orthogonal projector used to build the inner-product is not com-

putable. The literature resolves this by enhancing the space and redefining it in such a way that

this projector is computable, see [3, 15]. However, this implies that the De-Rham complex may

no longer hold. In order to find a solution to this complication we construct an oblique projector

to build the inner product in this space. Not every oblique projector will suffice, thus we present

criteria that can be used to discern which projectors are useful and which are not. This approach

is unique to this work and one of our major contributions to the theory of the VEM.

Funding for the research we present in this dissertation came partly from the Oregon State

University, National Research Traineeship (NRT) in Risk and Uncertainty Quantification in Ma-

rine Science funded by the NSF. As part of the requirements of the NRT, the last chapter of this

dissertation presents an application of mathematical modeling to the social sciences involving

cultural keystone species (CKS). The CKS are species that are central to a people’s culture. In
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this dissertation, we will explore how mathematical modeling can provide strategies to influence

legislators to approve policy aimed at protecting CKS. Votes on these types of policies come af-

ter deliberation between these legislators. Thus, our main contribution will be in developing and

studying two models for these debates, one in which we consider the influence of the electorate

and one in which we do not. These models will be based on a system of ordinary differential equa-

tions. We will use Runge-Kutta methods to approximate the solutions and study these models and

conduct a simulation based analysis of the models.

This dissertation is structured as follows: Chapter 2., will be dedicated to the preliminary

results required to understand the subsequent chapters. In Chapter 3., we consider a prescribed

flow and develop a VEM capable of predicting the electric and magnetic fields as described by

Maxwell’s equations, this is done in two spatial dimensions. Chapter 4., is dedicated to extend-

ing the VEM introduced in Chapter 3. to three dimensions. Then, in Chapter 5., we omit the

assumption that the flow is prescribed and develop a VEM for the full MHD system. In Chap-

ter 6., the reader will find a series of numerical experiments. The code developed is hosted at

https://github.com/sebnaran. Chapter 7., is dedicated to discussing two mathematical models and

their simulations to address the conservation of CKS. We finish with Chapter 8., where we present

some concluding remarks and open questions.
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2. MATHEMATICAL PRELIMINARIES

2.1 Notation and Definitions

In this section we will formally define the concepts and notation that we will be referring

to throughout this dissertation.

Firstly, we will use bold letter to denote vector-valued functions. The dimension of the co-

domain of these functions will be either 2 or 3, this detail will be clear from context. For a pair of

sufficiently regular real-valued functions f, g : U → R or vector valued-functions f , g : U → R

we define (
f, g
)

=

∫
U
fgdx,

(
f , g

)
=

∫
U
f · gdx. (2.1)

Here we are assuming that U ⊂ RN is measurable. Moreover, we will denote the L2−norm by

∀f ∈ L2(U) : ‖f‖0,U =

(∫
U
|f |2dx

)1/2

, ‖f‖1,U =
(
‖f‖20,U + ‖∇f‖20,U

)1/2
, (2.2a)

∀f ∈ [L2(U)]N : ‖f‖0,U =

(∫
U
|f |2dx

)1/2

, ‖f‖1,U =
(
‖f‖20,U + ‖∇f‖20,U

)1/2
. (2.2b)

In the case that f : U → R and g,f : U → R2 we will, abusing the notation, use the symbol for

cross product to denote:

f × g = f

−By
Bx

 , f × g = fxgy − fygx. (2.3)

2.2 Results from Functional Analysis

The analysis of the VEM that we will develop will rely on results from functional analysis.

The first result is the generalized form of the Brezzi-Babuska-Lax Milgram Theorem:
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Theorem 2.20.1 Let U and V be Hilbert spaces and a : U×V → R be a bilinear form satisfying

∃M > 0∀(u, v) ∈ U × V : a(u, v) ≤M‖u‖U‖v‖V , (2.4a)

∀v ∈ V \ {0} : sup
u∈U

a(u, v) > 0, (2.4b)

inf
v∈V

sup
u∈U

a(u, v)

‖u‖U‖v‖V
> 0. (2.4c)

Then, for any ` ∈ V ′ there exists a unique u ∈ V such that

∀v ∈ V : a(u, v) = `(v). (2.5)

Moreover,

∃C > 0 : ‖u‖U ≤ C‖`‖v′ . (2.6)

A proof of this Theorem can be found in [5].

The second result that we will need is one of the main conclusions of the Ladyzhenskaya-

Babuska-Brezzi Theory.

Theorem 2.20.2 Let U and P be Hilbert spaces and a : U×U → R, b : U×P → R be bounded

bilinear forms satisfying:

inf
u∈U0

sup
v∈U0

a(u, v)

‖u‖‖v‖
> 0, inf

p∈V
sup
u∈U

b(u, p)

‖u‖‖p‖
> 0. (2.7)

Where

U0 = {u ∈ U : ∀v ∈ V b(u, v) = 0} . (2.8)

The for every pair of bounded linear functionals f ∈ U ′ and g ∈ V ′ there exists unique u ∈ U
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and v ∈ V such that for any v ∈ U and q ∈ V it is the case that

a(u, v)−b(v, p) = f(v), (2.9a)

b(u, q) = g(q). (2.9b)

More over there exists a constant C > 0 independent of f and g such that

‖u‖+ ‖p‖ ≤ C (‖f‖+ ‖g‖) . (2.10)

Here we consider

‖f‖ = sup
u∈U\{0}

|f(u)|
‖u‖

, ‖g‖ = sup
p∈P\{0}

|g(p)|
‖p‖

. (2.11)

A proof of this Theorem can be found in [20, 27].

2.3 Approximating Bilinear Forms in the VEM framework

In this section we will describe how inner product matrices are constructed in the framework

of the VEM. The procedure is relatively standard. Consider a symmetric and positive definite

bilinear form a : U(P) × U(P) → R where P is a cell in a mesh Ωh and U(P) a Hilbert space

defined over the cell P. We approximate U(P) using a finite dimensional space of shape functions

that we denote as Xh(P). Our goal is to define ah : Xh(P) × Xh(P) → R to estimate a. We

require that ah satisfies two important properties. The first regards its accuracy, it should be the

case that

∀p, q ∈ [Pk(P)]N ah(p, q) = a(p, q). (2.12)

Here, k is the degree of the largest polynomial space that is contained in Xh(P) and N = 1 if

functions in Xh(P) are scalar valued or N = 2, 3 in the case that that they are vector valued. We
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also require that ah satisfy the stability property, meaning that

∃c∗, c∗ > 0, ∀xh ∈ Xh(P) : c∗a(xh, xh) ≤ ah(xh, xh) ≤ c∗a(xh, xh). (2.13)

The procedure we present is partially laid out in [15]. For now we will assume that we have a

means, using only the degrees of freedom in the spaceXh(P) to compute a projector Π : Xh(P)→

[Pk(P)]N . Generally this is done by selecting a basis for [Pk(P)]N say {p1, . . . , pn} and another

basis for Xh(P), consistent with the degrees of freedom. We denote this basis as {x1
h, . . . , x

m
h }.

Then, for any xh ∈ Xh(P) we expand

Πxh = Π

(
N∑
i=1

dix
i
h

)
=

n∑
i=1

cipi. (2.14)

Where di is the i−th degree of freedom of xh in some enumeration. The coefficients of in the

expansion are found by solving a linear system of the form

G~c = B~d. (2.15)

It is often the case that the projector Π is defined through the bilinear form a. This projector

Πa : Xh(P)→ [Pk(P)]N when applied to a function xh ∈ Xh(P) is given as the solution to

∀q ∈ [Pk(P)]N : a(Πaxh − xh, q) = 0. (2.16)

In this case we would use

G =



P0(p1) P0(p2) P0(p3) . . . P0(pn)

a(p1, p1) a(p1, p2) a(p1, p3) . . . a(p1, pn)

...
...

. . .
...

a(pn, p1) a(pn, p2) a(pn, p3) . . . a(pn, pn)


, Bi,j = a(xih, pj). (2.17)
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The function P0 is used to fix the kernel of a. In the case that Ker(a) 6= {0} some of the rows

of G, as defined in (2.17) will be entirely populated by zeroes, in this case we omit them and

replace them with those involving P0 to guarantee that G is square and invertible. In the case

that Ker(a) = {0} the use of P0 can be omitted. Computing each of the components of B

must be explained in a case by case basis. Computing a(pi, pj) usually boils down to computing

integrals of polynomials over the polygon/polyhedron P. Due to the generality of the geometry

of P it is not practical to develop quadrature rules. There are specialized techniques aimed at

solving these sorts of problems. The first involves using Green’s Theorem recursively to write

volume/area integrals as line integrals across the edges of the cells where quadrature rules are

available, see [33] for the original idea, and for applications of this method [4, 74]. Another

technique is presented in [82, 83] and involves reducing volume/area integrals to one dimensional

by introducing special lines supported by Gauss’s integration points. In [84] the same authors

use a compression technique to reduce the number of quadrature points necessary. This method

is very general and allows for computations over cells with curved edges or faces, see [46] for

an application in the VEM. The technique used in the implementations of this manuscript is the

following: decompose P into a number of triangles/tetrahedrons. Then, using quadrature rules for

these shapes, add the contributions of each of the pieces.

In any case, when we apply the matrix ΠM
∗ := G−1B to a vector of degrees of freedom, the

output will be the array of coefficients in the expansion (2.14) as evidenced by (2.15). In practice

we are much more interested in the vector of degrees of freedom of the projection rather than in

the coefficients in the polynomial expansion. Hence, we define the matrix ΠM = DΠM
∗ where

Di,j = dofi(pj). (2.18)

Thus, multiplying the array of degrees of freedom of xh by ΠM will yield the array of degrees of

freedom of Πxh.
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Finally, we can define the matrix

A = ΠM,T
∗ HΠM,T

∗ + |P |(I −ΠM )(I −ΠM ). (2.19)

where |P| is the volume/area of P and the entries of H are given by

Hi,j = a(pi, pj). (2.20)

The definition of ah is given by

∀xh, yh ∈ Xh(P) : ah(xh, yh) = xThAyh. (2.21)

2.4 Mesh Assumptions

In this section we present the assumptions that we will make on the mesh. The main prop-

erty that we want to preserve is regularity, we require that there exists ρ ≥ 0 independent of the

mesh size h > 0 such that

(M1) (star-shapedness): every polygonal cell P of every mesh Ωh is star-shaped with respect to

every point of a disk of radius ρhP;

(M2) (uniform scaling): every edge e ∈ ∂P of cell P ∈ Ωh satisfies he ≥ ρhP.

In 3D we add the following assumption:

(M3) (uniform scaling) Every face f and every edge e of f satisfies he ≥ ρhf .

The regularity assumptions (M1)-(M2) in 2D or (M1) − (M3) in 3D allow us to use meshes

with cells having quite general geometric shapes. For example, non-convex cells or cells with

hanging nodes on their edges are admissible. Nonetheless, these assumptions have some important

implications such as: (i) every polygonal element is simply connected; (ii) the number of edges
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of each polygonal cell in the mesh family {Ωh}h is uniformly bounded; (iii) a polygonal element

cannot have arbitrarily small edges with respect to its diameter hP ≤ h for h→ 0 and inequality

h2
P ≤ C(ρ)|P|h2

P holds, with the obvious dependence of constant C(ρ) on the mesh regularity

factor ρ. It is worth mentioning that virtual element methods on polygonal or polyhedral meshes

possibly containing “small edges” in 2D or “small faces” in 3D have been considered in [25] for

the numerical approximation of the Poisson problem. The work in [25] extends the results in [13]

for the original two-dimensional virtual element method to the version of the virtual element

method in [2] that can also be applied to problems in three dimensions. Finally, we note that

assumptions (M1)-(M2) above also imply that the classical polynomial approximation theory in

Sobolev spaces holds [24].
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3. KINEMATICS

3.1 Introduction

When studying the kinematics of MHD we assume that the flow is controlled by some

external source. Then, we proceed to predict the behavior of the electric and magnetic fields. Thus,

we will consider that u, the velocity of the flow is known exactly. The main topic we tackle in this

chapter regards the construction of a VEM for a model in kinematics. In Section 3.2 we derive the

model from physical principles. Then, in Section 3.3 we present a VEM for the derived model.

In presenting this discretization we will introduce two virtual element spaces, their definition is

a topic for Sections 3.4,3.5. In Section 3.6 we define a third space that, although it does not

appear in the virtual element formulation, it is important for the purposes of analysis. We note

that these spaces were initially conceived in the mimetic finite difference (MFD) framework and

taken from [43]. The re-framing into VEM was done using the results found in [16]. These three

sections are structured in a similar manner we will pick one of the cells in the mesh, denoted as

P. Over this cell we will define the local spaces shape functions, their properties and geometries.

The definitions of the individual spaces only say half of the story, the other half is told by their

relationship. In Section 3.7 we show that these three spaces form a commuting De-Rham complex

that guarantees a close mimicry of the continuum. Then, in Section 3.8 we will briefly mention

how to extend this VEM to high orders in space. Next, in Section 3.9 we present some stability

estimates in the L2 norm that are satisfied by the continuous problem and their discrete mimicry.

In Section 2.3 we presented a method for computing inner products in virtual element space.

This method relies on first computing a series of projectors. To compute the inner product in

the space presented in 3.4 we do not introduce a particular projector rather we describe criteria

to construct one. Thus, we will finish this chapter with Section 3.11 where we present three

examples of projectors satisfying these criteria as well as how they can be implemented. Finally,
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in Section 3.12 we present the conclusions of this chapter.

3.2 The Electromagnetic Model

The contents of this section come from very well-known results in electromagnetics. Any

book centered on the physics will contain the material here. We recommend the exposition in

[51, 73].

There are two main quantities that drive the evolution of an electromagnetic system. They

are the electric and magnetic field, in this manuscript we denote them as E and B respectively.

Any charged particle that enters a region permeated by these fields will experience a force, the

Lorentz force. We can quantify this value by using the expression

f = qE + qu×B. (3.1)

Here q represents the charge of the particle, f is the force experienced and u is the velocity

with respect to the frame of reference that the viewer is taking. In the section about fluid flow

the discussion will center around two types of frames of reference. If a particle is moving in a

laboratory then the scientist will view from the Eulerian frame of reference. If, by some trick, we

could mount the particle and ride along then we would be viewing Lagrangian frame of reference.

The main difference in the two perspectives is the velocity of the particle. In the Eulerian frame

of reference the velocity of the particle will be given as uE . Whereas, in the Lagrangian point

of view the velocity is exactly zero. This implies that, apparently, the particle experiences two

different forces, they are

fE = qEE + quE ×BE , and fL = qEL. (3.2)

Here, the subscripts indicate which frame of reference is taken, ”E” for Eulerian and ”L” for
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Lagrangian These two forces not independent, their relationship is given by a different set of rules

depending on the size of the velocity uE . Very large velocities are ruled by Einstein’s Theory of

Relativity. These models are outside the scope of this manuscript. We will consider slower speeds

for which Galilean relativity applies. This theory dictates that the force experienced should be the

same independent of the frame of reference we take. Hence, fL = fE or equivalently

EL = EE + uE ×BE . (3.3)

The expression for the Lorentz force that we have been discussing is true for a single particle. In

MHD, we are interested in a charged fluid made of an infinite number of particles. In this case,

the net force is not very informative about the behavior of the system. Instead we consider a force

density or force per unit volume. The expression is in the Eulerian coordinates is

F = ρEE + ρEu×B = ρEE + J ×B. (3.4)

The variable ρE is the charge density and J = ρEuE is the electric current density. The Lorentz

force is useful when we are studying the behavior of a charged particle in the presence of electric

and magnetic fields. However, it does not say much about how electric and magnetic fields behave.

Hence, the next item of business is to study the Electric and magnetic fields, their relationship and

what we can do to predict them. These are described in partly by Maxwell’s system. The full

system is

Ampere-Maxwell’s law: µ

[
ε
∂

∂t
E + J

]
= ∇×B, (3.5a)

Faraday’s law:
∂

∂t
B = −∇×E, (3.5b)

Gauss’s laws: ∇ ·E = ρE/ε, ∇ ·B = 0. (3.5c)

The variable ρE refers to the electric charge density, J is the electric current density and ε, µ are
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the permittivity and permeability of the medium. A more intuitive interpretation of this system

will come from its integral form. Consider sample volume V , arbitrarily, and take the integral

over this volume on both sides of Gauss’s Laws. An application of the Divergence Theorem will

reveal that ∫
∂V
B · ndS = 0 and

∫
∂V
E · ndS =

1

ε

∫
V
ρEdV. (3.6)

Gauss’s Law for the magnetic field implies that the flux across a closed surface must necessarily be

null. This means that every magnetic field line that enters a surface must also leave at some other

point along said surface. Turning to Gauss’s law for the electric field, note that the volumetric

integral of the charge density is the net charge in the volume. Hence, the flux of the electric

field is directly proportional to the charge encapsulated within said volume. The constant of

proportionality is related to the material properties of the medium.

Ampere-Maxwell and Faraday’s laws also convey an interesting story. Consider a sam-

ple surface, S, compute the flux of the right and left hand sides of both Faraday’s and Ampere-

Maxwell’s Law and apply Stoke’s Theorem. The result is

Ampere-Maxwell’s Law: µε
∂

∂t

∫
S
E · ndS + µ

∫
S
J · ndS =

∫
∂S
B · td`, (3.7a)

Faraday’s Law:
∂

∂t

∫
S
B · ndS = −

∫
∂S
E · td`. (3.7b)

Thus, in this form Faraday’s Law reveals the source of changes in the flux of the magnetic field

across a surface, it is a circulation of the electric field along the path that the boundary of the sur-

face defines. Likewise Ampere-Maxwell’s Law reveals that a circulation of the magnetic field can

generate a flux in two quantities, the electric current density and the electric field. Together they

convey that changing electric fields or motion of charges will generate magnetic fields. In turn,

changing magnetic fields will generate electric fields. Thus, the pattern continues and the cycle

repeats. If we consider the cases when there are no charged particles in a region then we obtain

waves, electromagnetic waves or light. This is not the case in MHD, rather we are considering a
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fluid that is charged in itself. What is interesting to note is that in this situation the contribution

of the time derivative of the electric field in Ampere-Maxwell in negligible. To see this, we must

introduce another principle, the law of conservation of charge which states that charge cannot be

created nor destroyed. Thus, if we consider a sample volume V then the rate of change of charge

contained within that volume should correspond to the outward flux in electric current across the

boundary of V . This is to say that

∂

∂t

∫
V
ρEdV = −

∫
∂V
J · ndS. (3.8)

An application of the Divergence Theorem will reveal the differential form of this law, it is

− ∂

∂t
ρE = ∇ · J . (3.9)

In in the static case, charged particles will quickly gather around the surface of the conducting

solid they are in. This implies that the density of the charge is nearly zero. In MHD, since the

fluid is itself in motion some charge is allowed to remain in the interior of the fluid. However,

experiments show that the amount is minimal, so much so that the contribution of ρEE to the

Lorentz force (3.4) is negligible. Thus, models in MHD generally use the expression

F = J ×B. (3.10)

Moreover, experiments also show that charges in the interior position themselves in the volume in

very short time scales of the order of 10−18s. Generally, in MHD we are interested in timescales

much larger than that, hence we may take the time derivative of the charge density to be minimal.

From the statement of conservation of charge (3.9) this implies that

∇ · J = 0. (3.11)
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Hence, the current density should be nearly divergence free. Consider taking the divergence on

both sides of Ampere-Maxwell’s law (3.5a). If we note that the divergence of the curl of any

quantity is always zero then we arrive at

−∇ · J = ε
∂

∂t
E. (3.12)

Hence, the time derivative of the electric field is, as a consequence of (3.11), negligible. Hence,

in MHD we use

µJ = ∇×B. (3.13)

This identity is called Ampere’s law. Finally, to finish describing the kinematics of MHD we

must also consider the behavior of the material itself. Experiments show that charged particles in

conductors move in the direction of the force that is applied to them. Recalling the expression of

the Lorentz force in equation (3.2), we find that the direction, in the Eulerian coordinate system,

is the same as the direction of the vector E + u×B. Thus, this principle is posed as

J = σ(E + u×B), (3.14)

The constant of proportionality, σ is called the conductivity and depends on the medium itself.

This expression goes by the name of Ohm’s law. When combining the expressions of Ampere’s

law and Ohm’s law into a single identity that we call Ampere-Ohm’s law,

η−1E + η−1u×B −∇×B = 0, η =
1

µσ
, (3.15)

where η is called the magnetic diffusivity.

Now we have all the tools we require to come up with a model for the kinematics of MHD.

Consider a bounded, polygonal domain Ω that contains a magnetized fluid. Further consider that

the fluid flow is prescribed by some external agent that provides us with the exact velocity field



20

u. In this case, the electric and magnetic fields are completely described by Faraday and Ampere-

Ohm’s law, (3.5b) and (3.15). We are interested in the dimensionless form of these equations. To

arrive at this form we make the substitutions

∂

∂t′
= T

∂

∂t
, ∇′ = L∇ , u′ =

u

U
, B′ =

B

B
, E′ =

E

E
, (3.16)

whereU,B andE are characteristic values of the velocity, magnetic and electric fields respectively

and L is a characteristic length of the domain, while T = L/U a the characteristic time scale. The

resulting model is given by

∂

∂t′
B′ +∇′ ×E′ = 0, (3.17a)

E′ + u′ ×B′ −R−1
m ∇′ ×B′ = 0, (3.17b)

where Rm = UL/η is the magnetic Reynold’s number. We will henceforth refer only to the

dimensionless quantities and operators we introduced. In order to avoid cluttering the notation we

will drop the prime.

Note that by taking the divergence of both sides in Ampere-Ohm’s law (3.17b) and applying

Ohm’s law we retrieve the statement that the current density must be null, implying the law of

conservation of charge. Moreover, we should see Gauss’s law (3.5c) as constraints rather than as

a part of the model. For the electric field, this law will predict the charge density distribution.

Whereas, Gauss’s law for the magnetic field is a consequence of Faraday’s law (3.17a). To see

this, we take divergence on both sides of this law, then

∂

∂t
[∇ ·B] = ∇ ·

[
∂

∂t
B

]
= −∇ · ∇ ×E = 0. (3.18)

This implies that the divergence of the magnetic field will not change in time. In other words, if

the initial conditions are divergence free then this property will be preserved for all time. Thus,
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we will pick initial conditions B0 that come from a realistic magnetic field, hence B0 will be

solenoidal.

B(0) = B0 with ∇ ·B0 = 0. (3.19)

To close the system we also consider that the electric field in known along the boundary ∂Ω,

E = Eb along ∂Ω. (3.20)

3.3 The Continuous and Discrete Variational Formulations

The virtual element method we will be developing will include a key simplification in our

MHD model. We will consider that the first two components of the electric field are zero, likewise

we will assume that the last component of the magnetic field is zero. This, in effect, will reduce

the dimensionality of the problem from a 3D problem to a 2D problem. Abusing the notation we

will denote the two dimensional magnetic field as B, the one dimensional electric field as E and

the two dimensional computational domain as Ω. Following this trend we define the rotational

and divergence operators

rotE =

 ∂
∂yE

− ∂
∂xE

 , rotB =
∂

∂x
By −

∂

∂y
Bx, (3.21)

divB =
∂

∂x
Bx +

∂

∂y
By. (3.22)
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With this notation we introduce the reduced model as findingB and E such that

∂

∂t
B + rotE = 0 in Ω, (3.23a)

E + u×B −R−1
m rotB = 0 in Ω, (3.23b)

B(0) = B0 in Ω (3.23c)

E ≡ Eb along ∂Ω. (3.23d)

The initial and boundary conditions, as well as the velocity field u, are assumed to be known.

The differential form presented in (3.23) is not very useful for a virtual element discretization.

Instead we must pose the problem of finding E and B as a variational statement in a func-

tional space. Thus, as is the case in most problems in electromagnetics we will assume some

regularity on the solutions, specifically we will assume that at E ∈ C ([0, T ], H(rot; Ω)) and

B ∈ C1 ([0, T ], H(div; Ω)) for

H(rot; Ω) :=
{
D ∈ L2(Ω) : rotD ∈

[
L2(Ω)

]2}
, (3.24a)

H(div; Ω) :=
{
C ∈

[
L2(Ω)

]2
: divC ∈ L2(Ω)

}
, (3.24b)

C ([0, T ], H(rot; Ω)) := {E : [0, T ]→ H(rot; Ω) : E is continuous} , (3.24c)

C1 ([0, T ], H(div; Ω)) =

{
B : [0, T ]→ H(div; Ω) : B,

∂

∂t
B are continuous

}
. (3.24d)

The spaces where we look for solutions is called the trial spaces. There is a second set of spaces

that concerns any variational formulation and they are the test spaces. These, in our case, will be

H(div; Ω) and H0(rot; Ω) for

H0(rot; Ω) = {D ∈ H(rot; Ω) : D ≡ 0 along ∂Ω} . (3.25)
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If we pick, arbitrarily, a function C ∈ H(div; Ω) and multiply it on both sides of (3.23a) and

integrate, we obtain ( ∂
∂t
B,C

)
+
(
rotE,C

)
= 0. (3.26)

Likewise we pick D ∈ H0(rot; Ω) and multiply it on both sides of equation (3.17b). Then, we

apply the integration by parts formula

(
rotB, D

)
=
(
B, rotD

)
. (3.27)

We obtain the expression

(
E,D

)
+
(
u×B, D

)
−
(
B, rotD

)
= 0. (3.28)

Hence, putting equations (3.26) and (3.28) together we can pose the variational form of system

(3.23). Thus, we want to find (B, E) ∈ C1 ([0, T ], H(div; Ω))×C ([0, T ], H(rot; Ω)), such that:

( ∂
∂t
B,C

)
+
(
rotE,C

)
= 0 ∀C ∈ H(div; Ω), (3.29a)

Rm

(
E,D

)
+Rm

(
u×B, D

)
−
(
B, rotD

)
= 0 ∀v ∈ H0(rot; Ω), (3.29b)

B(0) = B0 with divB0 = 0. (3.29c)

Implicit in the above formulation is that E = Eb along the boundary of Ω. In order to come up

with a discrete formulation of (3.29) we must introduce a mesh Ωh with mesh size h > 0. We can

use this mesh to define subspaces ofH(div; Ω), H(rot; Ω) andH0(rot; Ω) which we will denote as

Eh,Vh and Vh,0. As the mesh size shrinks to zero, the dimension of Vh and Eh skyrocket to infinity

and their approximation power grows. The precise definition of these spaces is very technical and

will be left for Sections 3.4 and 3.5. We can also define mappings IVh : H(rot; Ω) → Vh and
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IEh : H(div; Ω) → Eh to interpolate every function in the continuous modeling spaces. Finally,

in these spaces there is an inner product that gives a notion of geometry, and we denote by

∀E,D ∈ H(rot; Ω) :
(
IVh(E), IVh(D)

)
Vh
≈
(
E,D

)
, (3.30a)

∀B,C ∈ H(div; Ω) :
(
IEh(B), IEh(C)

)
Eh
≈
(
B,C

)
. (3.30b)

Thus, the virtual element formulation of system (3.29) is: find
{
Bn
h

}N
n=0
⊂ Eh and

{
En+θ
h

}N−1

n=0
⊂

Vh such that for all (Ch, Dh) ∈ Eh × Vh,0 it holds that:

(Bn+1
h −Bn

h

∆t
,Ch

)
Eh

+
(
rotEn+θ

h ,Ch

)
Eh

= 0 (3.31a)

Rm
(
En+θ
h , Dh

)
Vh

+Rm
(
IVh

(
u×ΠRTBn+θ

h

)
, Dh

)
Vh
−
(
Bn+θ
h , rotDh

)
Eh

= 0 (3.31b)

Bn+θ
h = θBn+1

h + (1− θ)Bn
h , (3.31c)

Bh(·, 0) = IEh
(
B0
)

with divB0 = 0. (3.31d)

As before, in the above it is implicit that Eh ≡ IVh(Eb) along the boundary of the computational

domain. This formulation uses a leap-frog time scheme in which we use θ ∈ [0, 1].

3.4 The Nodal Space

The formal definition of the local nodal space is

Vh(P ) :=
{
Dh ∈ H(rot; P) : rot rotDh = 0, Dh ∈C (∂P),

∀e ∈ ∂P Dh ∈ P1(e)
}
. (3.32)

For any Dh ∈ Vh(P) we assign the degrees of freedom
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V The evaluation Dh(v) for every node v of the cell P.

As in the classic finite element method a space of shape functions endowed with a set of degrees

of freedom is not very useful unless it is unisolvent. This is to say that for every function in Vh(P)

there is one and only one set of degrees of freedom. And conversely, for every set of degrees of

freedom there is one and only one function in Vh(P) that has that set assigned. Thus, the next

result we present addresses this property in the particular case of Vh(P). We note that a proof in

full generality can be found in [16]. In order to prove this result we will introduce the ·I notation.

If Dh ∈ Vh(P) then DI
h is the array of degrees of freedom of Dh, meaning

DI
h =

(
Dh(v1), . . . , Dh(vN )

)T
. (3.33)

Thus, unisolvency refers to the bijectivity of the map ·I .

Theorem 3.40.1 The finite element composed by the domain P, the spaces vh(P ) and the degrees

of freedom V is unisolvent.

Proof. Let {vi : 1 ≤ i ≤ N} be the set of vertices of P. Consider the set of functions B = {Di
h :

1 ≤ i ≤ Nv} each defined as the solution to

−4Di
h = rot rotDi

h = 0 in P, (3.34)

Di
h(vj) = δij , ∀e ∈ ∂P Di

h ∈ P1(e),

where δij represents the Kronecker delta meaning that

δij =


1 if i = j,

0 otherwise.
(3.35)

It is well-known that the problem presented in (3.34) is well-posed, see [26, 56, 81]. This result

guarantees the existence of the functions in B. It is also immediate to check that B ⊂ Vh(P)
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is a basis for Vh(P). Therefore, the dimension of Vh(P) is exactly the number of vertices in P

implying that the domain and range of ·I have the same dimension. To finish the proof we will

show that ·I is injective. Consider Dh ∈ Vh(P) such that DI
h = 0. Then, by definition Dh must

solve

−4Dh = rot rotDh = 0 in P, (3.36)

Dh = 0 along ∂P.

A problem for which the only solution is Dh = 0.

The result of Theorem 3.40.1 allows us to identify each function in Vh(P) with its degrees

of freedom and allows us to formally define the mapping IVhP : H(rot; P)→ Vh(P) by requiring

that IVhP D have the same set of degrees of freedom as those of D.

The next step is building a sense of geometry in Vh(P). We do this by defining an inner

product. Generally, in the literature on the VEM, inner products are defined through a projector the

L2−orthogonal projection Π0 : Vh(P)→ P1(P). Unfortunately, this projector is not computable

from the degrees of freedom in Vh(P) alone. The solution typically provided involves enhancing

the space Vh(P) into another where such a projector is computable, see [3, 15, 16]. We will take a

different approach. Instead we will construct an oblique projector Π : Vh(P)→ P1(P) satisfying:

P1 The projection ΠDh is computable from the degrees of freedom of Dh.

P2 If Dh ∈ P1(P) then ΠDh = Dh.

P3 There exists a constant C > 0 independent of mesh-size and time-step such that

‖ΠDh‖0,P ≤ C‖Dh‖0,P. (3.37)

The reason we do this will be clear in Section 3.7. We have three examples of these types of

projectors which can be found in Section 3.11. For now assume that such Π is given to us. Then,
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following the construction in Section 2.3 we define

(
Eh, Dh

)
Vh(P)

=
(
ΠEh,ΠDh

)
+ Sv((1−Π)Eh, (1−Π)Dh). (3.38)

The bilinear form Sv is picked such that

∃s∗, s∗ > 0 ∀Dh ∈ ker Π ∩ Vh(P) : s∗‖Dh‖20,P ≤ S
v(Dh, Dh) ≤ s∗‖Dh‖0,P. (3.39)

The value of the constants s∗ and s∗ should not depend on the characteristics of the mesh. We pick

a canonical choice in Section 2.3. However, readers are referred to [49, 71] for more examples.

This inner product defines a norm in Vh(P) by |||Dh|||Vh(P)
=
(
Dh, Dh

)1/2
Vh(P)

. It turns out that

when Π satisfies properties P1-P3 the inner product in equation (3.38) will obtain two properties.

These are summarized in the next theorem.

Theorem 3.40.2 The inner product defined in equation (3.38) has first order polynomial accu-

racy. This is to say that

∀p, q ∈ P1(P) ⊂ Vh(P) :
(
p, q
)
Vh(P)

=
(
p, q
)
. (3.40)

Moreover, this inner product also satisfies the following stability property. There exists constants

C∗, C
∗ > 0 independent of the mesh-size and time-step such that

∀Dh ∈ Vh(P)2 : α∗‖Dh‖20,P ≤ |||Dh|||2Vh(P)
≤ α∗‖Dh‖20,P (3.41)

Proof. To check the property in (3.40) pick p, q ∈ P1(P) then by property P2 we have that

Πp = p and Πq = q. (3.42)

This implies that the right hand side of (3.38) is simply
(
p, q
)
. The proof of (3.41) is a bit more
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involved. First, we note that

‖Dh‖20,P =
(
‖ΠDh‖0,P + ‖1−ΠDh‖0,P

)2 ≤
2
(
‖Πvh‖20,P + ‖1−ΠDh‖20,P

)
≤ (α∗)

−1|||Dh|||Vh(P )
, (3.43)

where α∗ = (max{s∗, 2})−1. To attain the upper bound of (3.41) we use

|||Dh|||Vh(P)
≤ ‖ΠDh‖20,P + s∗‖(1−Π)Dh‖20,P (3.44)

≤ ‖Π‖2‖Dh‖20,P + s∗‖1−Π‖2‖Dh‖20,P (3.45)

≤ α∗‖Dh‖20,P, (3.46)

where α∗ = max{‖Π‖2, s∗‖I − Π‖2}. We note property P3 gives a bound for ‖Π‖ that is

independent from the mesh-size and time-step.

Having defined the nodal space locally and endowed it with an inner product we proceed to

do the same at the global scale. Consider a mesh Ωh made of polygons satisfying the assumptions

in Section 2.4. Over this space we define the global nodal space as the set of all functions then

when restricted to each cell will belong to the local nodal space. Formally this is to say that

Vh =
{
Dh ∈ H(rot; Ω) : ∀P ∈ Ωh Dh|P ∈ Vh(P)

}
. (3.47)

Likewise, we define the global inner product as the sum of the local contributions, i.e.

∀Eh, Dh ∈ Vh :
(
Eh, Dh

)
Vh

=
∑

P∈Ωh

(
Eh|P, Dh|P

)
Vh(P)

. (3.48)

The global norm is then defined as

∀Dh ∈ Vh : ‖Dh‖Vh =
(
Dh, Dh

)1/2
. (3.49)
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Due to the fact that each of the local contributions satisfies an accuracy and stability property as

evidenced in Theorem 3.40.2, the global inner product will also inherit these properties. For future

reference we summarize them in the following Theorem.

Corollary 3.40.1 The inner product defined in (3.48) satisfies the accuracy property for piecewise-

linear polynomials. If for every P ∈ Ωh it is the case that p|P, q|P ∈ P1(P) then

(
p, q
)
Vh

=
(
p, q
)
. (3.50)

The following stability condition is also satisfied

∃β∗, β∗ > 0 ∀Dh ∈ Vh : β∗‖Dh‖20,Ω ≤ |||Dh|||2Vh ≤ β
∗‖Dh‖20,Ω. (3.51)

The constants β∗ and β∗ are independent of the mesh-size and time-step.

Proof. The result in (3.50) follows immediately from (3.40). By adding the local contributions in

(3.41) we obtain (3.51). The value of the constants is

β∗ = min{α∗} and β∗ = max{α∗}. (3.52)

The extrema above are taken over the elements. According to Theorem 3.40.2 each element

defines a pair α∗ and α∗.

The final definition we need involves the Fortin operator IVh : H(rot; Ω)→ Vh. We define

it as the pasting together of the local IVhP previously defined. Thus

∀Dh ∈ Vh ∀P ∈ Ωh : IVh(Dh)|P = IVhP (Dh|P). (3.53)
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3.5 The Edge Space

The next space we tackle will, in some sense, be the discretization of the larger space

H(div; Ω). Like before, we begin by defining a local space over a cell P. The formal definition is

Eh(P) :=
{
Ch ∈ H(div; P) ∩H(rot; P) :divCh ∈ P0(P), rotCh = 0,

∀e ∈ ∂P Ch|e · n ∈ P0(e)
}
. (3.54)

For a function Ch ∈ Eh(P) we will associate the degrees of freedom

E Fluxes across each edge, meaning the quantities

∀e ∈ ∂P :
1

|e|

∫
e
Ch · nd`. (3.55)

Next we will discuss the unisolvency of Eh(P) with the degrees of freedom E. Like before, we

need to introduce the notation

∀Ch ∈ Eh(P) : CI
h =

(
1

|e1|

∫
e1

Ch · nd`, . . . ,
1

|eN |

∫
eN

Ch · nd`
)T

. (3.56)

Unisolvency is settled in the following theorem.

Theorem 3.50.1 The finite element defined by the domain P, the space of shape functions Eh(P)

and the degrees of freedom E is unisolvent.

Proof. This proof is very similar to that of Theorem 3.40.1. First we construct a basis for Eh(P) as

a vector space. We enumerate the edges {ei : 1 ≤ i ≤ N} and define the set B := {C1
h, . . . ,C

N
h }
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each function defined as the solution to the problems

divCi
h =
|ei|
|P|

, rotCi
h = 0 in P, (3.57)

Ci
h · nej = δi,j .

Again, δi,j is the Kronecker delta, defined as

δi,j =


1 i = j

0 otherwise
. (3.58)

The well-posedness of div-curl systems is guaranteed by the discussion in [6], which means

that the functions in B in fact exist. Like before, the set B is in fact a basis for Eh(P). This implies

that the dimension of Eh(P) is the number of edges along ∂P. In order to finish the proof we only

require a proof that ·I is injective. Pick Ch such that CI
h = 0. In this case Ch must be a solution

to the system

divCh = 0, rotCh = 0 in P, (3.59)

Ch · n = 0 along ∂P.

Since the solution to this system must be unique and Ch = 0 is a solution then this must be the

only solution.

With a result stating the unisolvency of Eh(P) we can define the Fortin projector IEhP :

H(div; P) → Eh(P) by enforcing that for any Ch ∈ H(div; P) the image IEhP (Ch) and the

primitive Ch share the same value for their degrees of freedom E. Next, we define a pair of

important projectors in the space Eh(P). They are the following L2−orthogonal projections Π0 :

Eh(P) → P0(P), ΠRT
P : Eh(P) → RT0(P) whose images are defined as the solution to the
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variational problems

∀Ch ∈ Eh(P) ∀q ∈ [P0(P)]2 :
(
Ch −Π0Ch, q

)
= 0, (3.60)

∀q ∈ RT0(P) :
(
Ch −ΠRT

P Ch, q
)

= 0 (3.61)

where the space RT0(P) is defined as

RT0(P) =

a
1

0

+ b

0

1

+ c

x
y

 : a, b, c ∈ R

 . (3.62)

We note that these projectors are computable using the degrees of freedom E. Pick q ∈ [RT0(P)]2

and find p ∈ P1(P) such that∇p = q. Then, applying the Green’s Theorem we find that

∀Ch ∈ Eh(P) :

∫
P
Ch · qdA =

∫
∂P
pCh · nd`−

∫
P
(divCh)pdA. (3.63)

Note that since divCh ∈ P0(P) then it can be reconstructed from the Divergence Theorem

divCh =
1

|P|

∫
∂e
Ch · nd` =

1

|P|
∑

e∈∂P

∫
∂e
Ch · nd`. (3.64)

Thus the area integral in the right hand side of (3.63) can be computed using only the degrees of

freedom E. This is also the case for the line integral in the same expression (3.63) since

∫
∂P
Ch · npd` =

∑
e∈∂P

Ch · n
∫

e
pd`. (3.65)

Hence, the information necessary about the functions in the space Eh(P) can be read off the

degrees of freedom. Note that in the case that we are constructing Π0 and q ∈ P0(P) ⊂ RT0(P)

the we can pick p such that
∫

P pdA = 0. Using this trick we can make the area integral vanish
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since

∀Ch ∈ Eh(P) :

∫
P
(divCh)pdA = (divCh)

∫
P
pdA = 0. (3.66)

In the above we used that, by definition, divCh ∈ P0(P). Either projector can be used to define

an inner product. In this manuscript we will choose to use Π0 to define the inner product and

ΠRT to approximate the term “u×B” as can be evidenced in the discrete variational formulation

(3.31). The main conflict with the aforementioned term is that, for the magnetic field, we only

have access to its fluxes across the edges while the inner product in the variational formulation

requires nodal evaluations. We amend this inconsistency by projecting the magnetic field onto a

polynomial space and extract the necessary evaluations from this projection. Thus, any of the two

projectors can fulfill this job. However, more complex MHD models have terms of the form

(
(rotB)×B, D

)
. (3.67)

Such a quantity cannot be estimated using Π0 since the codomain of this projector is the space of

constants and their curl is always zero. In this case using the projector ΠRT is ideal for low order

approximations.

Having defined the necessary projectors in this space we introduce the following inner

product

∀Bh,Ch ∈ Eh(P) :
(
Bh,Ch

)
Eh(P)

=
(
Π0Bh,Π

0Ch
)

+ Se((I −Π0)Bh, (I −Π0)Ch).

(3.68)

As before we require that Se be a continuous bilinear form satisfying

∃s∗, s∗ > 0 ∀Ch ∈ ker Π0 ∩ Eh(P) : s∗‖Ch‖20,P ≤ S
e(Ch,Ch) ≤ s∗‖Ch‖20,P. (3.69)

We remind the reader that the canonical choice is described in Section 2.3. Check [49, 71] for

more examples. The value of the constants s∗, s∗ need not be the same as those in equation (3.39),
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they are generic constants. Like before, this inner product defines a norm

∀Ch ∈ Eh(P) : |||Ch|||Eh(P)
=
(
Ch,Ch

)1/2
Eh(P)

. (3.70)

This norm satisfies a set of properties regarding its accuracy and stability. They are summarized

in the Theorem below

Theorem 3.50.2 The inner product defined in (3.68) satisfies the accuracy property over the

space of constants. Rigorously, what we mean is that if p, q ∈ [P0(P)]2 then

(
p, q

)
Eh(P)

=
(
p, q

)
. (3.71)

Moreover, the norm this inner product defines is stable with respect to the norm in L2(P). Thus,

∃γ∗, γ∗ > 0 : ∀Ch ∈ Eh(P) : γ∗‖Ch‖20,P ≤ |||Ch|||
2
Eh(P)

≤ γ∗‖Ch‖20,P. (3.72)

The constants γ∗, γ∗ are independent of mesh-size and time-step.

Proof. We omit most of the steps in the proof of this Theorem since it is essentially the same as

the one presented for Theorem 3.40.2. However, we will show that Π0 satisfies properties P1-P3

in Section 3.4. Pick Ch ∈ Eh(P) arbitrarily and consider a basis for [P0(P)]2 with elements b1

and b2. Then, we know that

Π0Ch = ab1 + bb2. (3.73)

We can find the identity of the constants a and b as the solution to the system

‖b1‖20,P
(
b1, b2

)
(
b2, b1

)
‖b2‖20,P


a
b

 =

(Π0Ch, b1

)
(
Π0Ch, b2

)
 . (3.74)

The necessary information to ensemble this system can be obtained from the definition of Π0 in

(3.60) and the formula in (3.63) thus Π0 is computable and satisfies P1.



35

Any projector, by definition, satisfies P2 in particular Π0 satisfies it as well. Finally, since

Π0Ch and (I −Π0)Ch are orthogonal then

‖Ch‖0,P = ‖Π0Ch‖0,P + ‖(I −Π0)Ch‖0,P. (3.75)

This implies that

‖Π0Ch‖0,P ≤ ‖Ch‖0,P. (3.76)

Thus, Π0 satisfies P3.

With Theorem 3.50.2 we conclude the construction of the notion of geometry in the space

Eh(P). We proceed to present the global space Eh. Consider a mesh Ωh. Over each of the cells we

can define a local space Eh(P). The global space is a ”pasting together” of the functions in each

of these global spaces. Formally,

Eh =
{
Ch ∈ H(div; Ω) : ∀P ∈ Ωh Ch|P ∈ Eh(P)

}
. (3.77)

In this space we can define the inner product

(
Bh,Ch

)
Eh

=
∑

P∈Ωh

(
Bh|P,Ch|P

)
Eh(P)

. (3.78)

And, the associated norm is

∀Ch ∈ Eh : |||Ch|||Eh =
(
Ch,Ch

)1/2
Eh

(3.79)

The inner product and norms defined also satisfy important properties that we list in the following

corollary.

Corollary 3.50.1 The inner product defined in (3.78) is exact for piecewise constant functions.This
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is to say that if p, q are such that for any cell P in the mesh Ωh they satisfy p|P, q|P ∈ [P0(P)]2

then (
p, q

)
Eh

=
(
p, q

)
. (3.80)

Moreover, the norm in (3.68) is equivalent to the norm in the space L2(Ω). This is to say that

there exists constants δ∗, δ∗ > 0, independent of the mesh-size and time-step such that

∀Ch ∈ Eh : δ∗‖Ch‖20,Ω ≤ |||Ch|||2Eh ≤ δ
∗‖Ch‖20,Ω. (3.81)

We omit the proof of corollary since it is immediate from Theorem 3.50.2. The commentary

in the proof of Corollary 3.40.1 applies here with the difference replacing the constants α∗, α∗

being replaced by γ∗, γ∗ and β∗, β∗ replaced by δ∗, δ∗ respectively.

We finish this section by extending the definition of the Fortin projector IEhP and the or-

thogonal projector ΠRT
P which are defined for individual cells to the entire mesh. This is done by

requiring that the restriction of the global operator agrees with the local operator. This is to say

that for any Ch ∈ Eh it is the case that

∀P ∈ Ωh : IEh(Ch)|P = IEhP (Ch|P) and (ΠRTCh)|P = ΠRT
P (Ch|P). (3.82)

3.6 The Cell Space

The final, and simplest, space that we need to define is the Cell space. It is the space of

piecewise constants. Consider a mesh Ωh then

Ph =
{
qh ∈ L2(Ω) : ∀P ∈ Ωh qh|P ∈ P0(P)

}
. (3.83)

To every function q ∈ Ph we associate the degrees of freedom:
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D Averages over the cells. Meaning the quantities

∀P ∈ Ωh :
1

|P |

∫
P
qhdA. (3.84)

This space is trivially unisolvent since the constant value that comes as the restriction of a function

to a cell is precisely the degree of freedom associated with said cell. We can define the Fortin

projector as the operator IPh : L2(Ω)→ Ph such that

∀q ∈ L2(Ω) ∀P ∈ Ωh : (IPhq)|P =
1

|P|

∫
P
qhdA. (3.85)

We will endow this space with the following inner product

∀ph, qh ∈ Ph :
(
ph, qh

)
Ph

=
∑
|P|

ph|P|P|qh|P. (3.86)

A quick computation will show that this inner product is the exact L2(Ω) inner product when

restricted to Ph. Indeed,

∀ph, qh ∈ Ph :
(
ph, qh

)
Ph

=
(
ph, qh

)
. (3.87)

Therefore, the associated norm, given by

∀qh ∈ Ph : |||qh|||Ph =
(
qh, qh

)1/2
Ph
, (3.88)

is in fact exactly the norm in the space L2(Ω) when restricted to Ph. Thus,

∀qh ∈ Ph : |||qh|||Ph = ‖qh‖0,Ω. (3.89)
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3.7 The De-Rham Complex and the Condition on the Divergence ofBh

In previous sections we defined and studied each of the spaces Vh, Eh and Ph. Here we ex-

plore the relationships between these spaces. It is well-known that the spacesH(rot; Ω), H(div; Ω)

and L2(Ω) form a chain of the form

H(rot; Ω)
rot−−−−→ H(div; Ω)

div−−−−→ L2(Ω). (3.90)

Moreover, in the case that Ωh is simply connected, the chain above is exact. This is to say that

rotH(rot; Ω) = {C ∈ H(div; Ω) : divC = 0} . (3.91)

A formal proof of this fact can be found in [75]. In the spirit of constructing a discrete version of

the continuous problem, the spaces Vh, Eh and Ph also form a similar exact chain

Vh
rot−−−−→ Eh

div−−−−→ Ph. (3.92)

Proving this result takes tools that we do not have currently. For now we prove that the chain

above is well-defined.

Lemma 3.70.1 The following statements hold

rotVh ⊂ Eh and div Eh ⊂ Ph. (3.93)

Therefore, the chain in (3.92) is well defined.

Proof. Let P be a cell in the mesh Ωh and Dh ∈ Ωh then by definition we have

rot rotDh|P = 0. (3.94)
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Moreover,

div rotDh|P = 0 ∈ P0(P). (3.95)

Pick an edge of P, say e then since Dh ∈ P1(e) it must also be the case that

rotDh · n = ∇Dh · t ∈ P0(e). (3.96)

In the above t and n are a vector tangent and a vector normal to the edge e. The identity in (3.96)

is true since if n = (n1, n2) is normal to e then t = (−n2, n1) is tangent to e, hence

rotDh · n =

 ∂
∂yDh

− ∂
∂xDh

 ·
n1

n2

 =
∂

∂x
Dh(−n2) +

∂

∂y
Dh(n1) =

=

 ∂
∂xDh

∂
∂yDh

 ·
−n2

n1

 = ∇Dh · t. (3.97)

Equations (3.94),(3.95) and (3.96) imply that rotDh|P ∈ Eh(P) thus rotDh ∈ Eh proving the

first containment in (3.93). To verify the second containment it suffices to note that, by definition,

of the space Eh we have that any Ch ∈ Eh verifies

∀P ∈ Ωh : divCh|P ∈ P0(P), (3.98)

immediately implying that Ch ∈ Ph and concluding the proof of (3.93).

Thus, by Lemma 3.70.1 we know that if Dh ∈ Vh then rotDh ∈ Eh. Thus, we can

completely identify rotDh if we find its degrees of freedom in Eh. It turns out that they are

computable from the degrees of freedom of Dh ∈ Vh. Consider an edge e in one of the cells in

the mesh Ωh. Then, by the fundamental Theorem of line integrals we can compute

1

|e|

∫
e
rotDh · nd` =

1

|e|

∫
e
∇Dh · td` =

Dh(v2)−Dh(v1)

|e|
. (3.99)
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The points v2 and v1 are the endpoints of e, hence they are nodes of a cell. The identity used was

proven in (3.97). Thus, from the degrees of freedom in Vh we can read the necessary information

to completely identify the image of the rotational as a function in Eh. The same is true about the

divergence of a function in Eh. Let Ch ∈ Eh and pick a cell P in the mesh Ωh. Then, by the

Divergence Theorem we have that

1

|P|

∫
P

divChdA =
1

|P|

∫
∂P

divChdA =
1

|P|
∑

e∈∂P

∫
e
Ch · ndA. (3.100)

Hence, we can identify the divergence of a function in Ch based only on the degrees of freedom

in Eh.

The results summarized by equations (3.99) and (3.100) are essential in order to further

study the spaces Vh, Eh and Ph and their relationship with the larger spaces H(rot; Ω), H(div; Ω)

and L2(Ω). These spaces form a diagram of the form

H(rot; Ω)
rot−−−−→ H(div; Ω)

div−−−−→ L2(Ω)yIVh yIEh yIPh
Vh

rot−−−−→ Eh
div−−−−→ Ph.

(3.101)

This diagram is commutative as we show in the following lemma.

Lemma 3.70.2 The following identities hold

∀D ∈ H(rot; Ω) : IEh ◦ rot (D) = rot ◦ IVh(D), (3.102a)

∀C ∈ H(div; Ω) : IPh ◦ div (C) = div ◦ IEh(C). (3.102b)

Proof. Let D ∈ H(rot; Ω) we know that the functions lie in Eh, hence in order to show that they

are the same function we will show that they share the same value for their degrees of freedom.

Let e be an edge in the mesh Ωh with endpoints v1 and v2. Then, by definition the degree of
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freedom associated with the function IEh ◦ rot (D) is identical to that of rotD, hence it is

1

|e|

∫
e
rotDd` =

D(v2)−D(v1)

|e|
. (3.103)

Above we use the Fundamental Theorem of Line Integrals. On the other hand the degree of

freedom associated with rot ◦ IVh(D) is

1

|e|

∫
e
rot ◦ IVh(D)d` =

IVhD(v2)− IVhD(v1)

|e|
. (3.104)

Again, the above follows from the Fundamental Theorem of Line Integrals. By definition of the

operator IVh we have that

IVhD(v1) = D(v1) and IVhDh(v2) = D(v2). (3.105)

Thus, by equations (3.103) and (3.104) the two functions in question share degrees of freedom

hence we verify (3.102a). Similarly, we will check that the functions on the right and left hand

sides of (3.102b) share the same degrees of freedom in Ph. Let P be a cell of the mesh Ωh and

C ∈ H(div; Ω). Then, the degree of freedom associated with IPh ◦ div (C) is

1

|P|

∫
P

divCdA =
1

|P|
∑

e∈∂P

∫
e
C · nd`. (3.106)

The above expression follows from the Divergence Theorem. The degree of freedom associated

with div ◦ IEh(C) is

1

|P|

∫
P

div IEh(C)dA =
1

|P|
∑

e∈∂P

∫
e
IVh(C) · nd`. (3.107)
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By definition of the operator IEh we have that

∀e ∈ ∂P :

∫
e
IEhC · nd` =

∫
e
C · nd`. (3.108)

Thus, equations (3.106) and (3.107) verify that both sides of (3.102b) share the same value for

their degrees of freedom.

We summarize our findings in the following theorem

Theorem 3.70.1 The chain in (3.92) is well-defined and is exact. Moreover, the diagram in

(3.101) is commutative.

Proof. The well-definednes of (3.92) is proven in Lemma 3.70.1. The commutativity of the

diagram in (3.101) was proven in Lemma 3.70.2. The only fact left to be proven is to show that

(3.92) is exact. This is to say that

rotVh = ker div = {Ch ∈ Eh : divCh = 0} . (3.109)

Let Dh ∈ Vh and then by Lemma 3.70.1 it is the case that rotDh ∈ Eh. Moreover, we also have

that

div rotDh = 0. (3.110)

Therefore, rotDh ∈ ker div as defined in (3.109). Next consider Ch ∈ Eh with divCh = 0,

since Ch ∈ H(div; Ω) and the chain (3.90) is exact there must exist D ∈ H(rot;) such that

rotD = Ch. Thus, IVhD is a function, by definition, in Vh that verifies

rot ◦ IVhD = IEh ◦ rotD = IEhCh = Ch, (3.111)

completing the proof.

The chain presented in Theorem 3.70.1 was first introduced in [47]. However, it was ex-
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plored in much more detail and generality in [16].

Now that we have concluded our study of the space of shape functions that make up the

variational formulation (3.31) we are ready to prove one of the most important properties of this

numerical scheme: The continuous system naturally enforces Gauss’s law for the magnetic field.

This is a consequence of Faraday’s law and was discussed in Section 3.2. Note that from (3.23a)

it holds that
∂

∂t
divB = div

∂

∂t
B = −div rotEh = 0. (3.112)

Thus, since the initial conditions satisfy that

divB0 = 0, (3.113)

then, this property is preserved throughout the evolution of this system. Discretizations will often

fail to capture this property. The usual reason is that the discrete versions of the divergence

and rotational operators do not annihilate each other completely leaving a remainder that gets

compounded over time. The consequence of violating Gauss’s law has been well-documented,

see [21, 22]. Simulations that do not conserve this property will find significant errors, see [48, 88].

The conclusion in [48] is that these simulations experience fictitious forces.

It is of utmost importance for numerical methods to satisfy this property. Efforts have

been devoted to “divergence cleaning” techniques; we mention three approaches. In [52] they

add ∇ ·B = 0 as an additional equation and add a Lagrange multiplier to the set of unknowns.

A different approach involves the development of specialized flux limiters, see [64]. Finally,

least squares finite element methods involve solving differential equations by minimizing energy

functionals, one of which can involve the condition on the divergence of the magnetic field, see

[60].

The VEM being developed in this manuscript preserves this property automatically, and

with Theorem 3.70.1 we have the tools to prove it.
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Theorem 3.70.2 The solution to the variational formulation (3.31) satisfies

∀n ∈ N : divBn
h = divB0

h. (3.114)

Proof. Pick n ∈ N, then at the n+ 1-th time step we find that the discrete magnetic field satisfies

∀Ch ∈ Eh :
(Bn+1

h −Bn
h

∆t
− rotEh,Ch

)
Eh

= 0. (3.115)

The above equation is the discrete version of Faraday’s law. Since B
n+1
h −Bn

h
∆t − rotEh ∈ Eh then

equation (3.115) implies that
Bn+1
h −Bn

h

∆t
− rotEh = 0. (3.116)

Taking divergence on both sides of (3.116) yields that

divBn+1
h = divBn

h . (3.117)

An inductive argument will show that

divBn+1
h = divB0

h. (3.118)

Theorem 3.70.2 guarantees that the scheme (3.31) will preserve the divergence of the ini-

tial conditions. However, it does not make a claim as to if the continuous initial conditions are

divergence free then the discretization will be as well. This is settled in the following corollary.

Corollary 3.70.1 The solution to the variational formulation (3.31) will satisfy

∀n ∈ N : divBn
h = 0. (3.119)

Proof. Taking the divergence of the discrete initial conditions and using (3.102b) from Lemma 3.70.2
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we find that

divB0
h = div ◦ IEhB0 = IPh ◦ divB0 = 0. (3.120)

The above is true since divB0 = 0 by hypothesis. This result combined with Theorem 3.70.2 will

yield the result.

From the proof of Corollary 3.70.1 it is clear that the reason discretization (3.31) will sat-

isfy Gauss’s law is the commuting property described in Theorem 3.70.1. With this fact in mind

we can discuss the reason we build an oblique projector to compute the inner product in Vh.

When the L2(Ω)−orthogonal projection onto a space of polynomials is not computable using on

the degrees of freedom, the literature suggests to use an enhanced space where it is computable,

see [3, 15, 16]. However, at the moment of the development of this method there was no guarantee

that this enhanced space will satisfy a commuting diagram of the sort presented in Theorem 3.70.1.

Therefore, in the case of MHD we would have no guarantee that our scheme preserves the diver-

gence of the magnetic field. The solution we came up with was to use an oblique projector that

satisfies properties P1-P3 from Section 3.4. Recent discoveries in the theory of VEM have un-

covered enhancements that do satisfy the desired commuting property, see [42]. This happened

around the same time we came up we came up with the alternative of using oblique projectors. In

principle using these elements should yield similar numerical results.

3.8 Extensions to Higher Order

In this section we will briefly mention upon the virtual elements that would be required for

higher order discretizations, these are taken from [16] where are studied studied in greater detail.

Let k > 1 and P is a cell in a mesh Ωh, then the nodal space is given by

Vkh(P) :=
{
Dh ∈

[
H1(P)

]2
: ∀e ∈ ∂P Dh|e ∈ [Pk(e)]2 ,4Dh ∈ Pk−2(P)

}
. (3.121)
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The set of degrees of freedom that we associate with each function Dh ∈ Vkh are

(D1) The evaluations at each node of P.

(D2) A set of k − 1 evaluations, equally spaced, along each edge of P.

(D3) The moments
∫
P vhq for q ∈ Pk−2(P)

Ekh(P) :=
{
Ch ∈ H(div; P) ∩H(rot; P) : ∀e ∈ ∂P Ch · ne ∈ Pk(e),

∇divCh ∈ G2
k−2(P), and rotw ∈ Pk−1(P)

}
. (3.122)

In this definition we use:

∀k ∈ N : Gk(P) = ∇Pk+1(P),

G⊥k (P) =

{
q ∈ [Pk(P)]2 : ∀p ∈ Gk(P)

∫
P
q · p dV = 0

}
. (3.123)

For a function Ch ∈ Ekh(P) the set of degrees of freedom are

(E1) For every edge
∫

eCh · n q dS, where q ∈ Pk(e).

(E2) The moments
∫

PCh · qh dV for qh ∈ Gk−2(P).

(E3) The moments
∫

PCh · qh dV for qh ∈ G⊥k (P).

Finally, the cell space Pkh(P) is given as the space of polynomials Pk(P). The set of degrees of

freedom for ph ∈ Pkh(P) is given by

(P1) The moments
∫

P phqh dV for qh ∈ Pk(P).

Remark 1 All of these spaces can be proven to be unisolvent with respect to the degrees of free-

dom presented. They also satisfy a commuting De-Rham complex of the type presented in Theo-

rem 3.70.1. In [16] the authors also study the construction of the inner product in these spaces. In
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the case of Vkh(P) the strategy involves an enhancement process that may invalidate the De-Rham

complex and affect the divergence of the magnetic field. Instead we would generalize the oblique

projectors presented in Section 3.11.

Remark 2 We note that if we use the formulation in (3.31) we would achieve arbitrarily high

speeds of convergence in space. However, in space the rate will be quadratic for θ = 1/2 and

linear for any other value of θ.

Remark 3 We note that the analysis done in Sections 5.5 and 3.10 will hold if we use the spaces

defined in this section.

3.9 Energy Stability Analysis

The continuous system (3.23) satisfies an important estimate in the L2−norm. In this sec-

tion we want to show that our discrete estimates (3.31) satisfy a similar estimate. First, note that,

since the boundary conditions are given, the only unknowns to be solved for are the interior values

of the electric field Eh. Thus, we decompose

Eh = Ê + Eb, (3.124)

where Ê ∈ H0(rot; Ω).

Theorem 3.90.1 LetB and Ê solve (3.31) then

d

dt
‖B‖20,Ω +

Rm
2
‖Ê‖20,Ω ≤ ‖Eb‖2HRm

(rot ;Ω) +
(
2R2

m‖u‖2∞ + 1
)
‖B‖20,Ω, (3.125)

where ‖E‖2HRm
(rot ;Ω) = Rm‖E‖20,Ω + ‖rotE‖20,Ω. As a consequence there exists a bounded
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function β : [0, T ]→ R+ such that

β(t)‖B(·, t)‖20,Ω +
1

2

∫ t

0
β(τ)Rm‖Ê(·, τ)‖20,Ω dτ ≤

≤
∫ t

0
β(τ)‖Eb(·, τ)‖2HRm

(rot ;Ω) dτ + ‖B0(·, t)‖20,Ω. (3.126)

Proof. Testing equation (3.29a) against C = B, equation (3.31b) against D = Ê(·, t) and

adding the resulting expressions we find that

1

2
‖B‖20,Ω + ‖σ1/2Ê‖20,Ω ≤ −Rm(u×B, Ê)−Rm(Eb, Ê)− (rotEb,B). (3.127)

We proceed to bound the right-hand side of (3.127) as follows

−Rm(Ê, E0) ≤ Rm‖Ê‖0,Ω‖σ1/2E0‖0,Ω ≤
Rm
2
‖Ê‖20,Ω +

Rm
2
‖E0‖20,Ω, (3.128)

−(rotEb,B) ≤ ‖rotEb‖0,Ω‖B‖0,Ω ≤
1

2
‖rotEb‖20,Ω +

1

2
‖B‖20,Ω, (3.129)

−Rm(u×B, Ê) ≤ Rm‖u×B‖0,Ω‖Ê‖0,Ω ≤ Rm‖u‖2∞‖B‖20,Ω +
Rm
4
‖Ê‖20,Ω. (3.130)

Estimate (3.125) follows from (3.127), (3.128), (3.129) and (3.130). To prove (3.126) we define

β(t) = exp

(
−
∫ t

0

(
2R2

m‖u‖2∞ + 1
)
dτ

)
. (3.131)

Multiplication by β in (3.125) yields

d

dt

(
β‖B‖20,Ω

)
+
Rmβ

2
‖Ê‖20,Ω ≤ β‖Eb‖HRm

(rot ;Ω). (3.132)

Integration in time gives (3.126).

Consider the mapping L that provided the initial and boundary conditions (B0, Eb) given
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as an output of the solution to the variational problem (3.29):

L(B0, Eb) = (B, Ê). (3.133)

We note that since the variational problem (3.29) is linear then the function L will likewise be

linear. Moreover, we could define a norm on the domain of L as the right hand side of (3.126),

and, a norm on the codomain of L as the left hand side of (3.126). In this case, the statement

of (3.126) can be interpreted as proof of the continuity of L. This gives some insight into the

required regularity of solutions to problem (3.29). In the discrete realm, a result of this sort is a

proof of stability. Before we proceed to show a discrete mimicry of Theorem 3.90.1 we require

the following lemma.

Lemma 3.90.1 There exists a real positive constant C̃ independent of h (and ∆t) that may depend

on the continuity constants of IVh and ΠRT , such that

∀Ch ∈ Eh, Dh ∈ Vh :
(
IVh

(
u×ΠRTCh

)
, Dh

)
Vh
≤ C̃‖u‖∞‖Ch‖0,Ω ‖Dh‖0,Ω, (3.134)

assuming that u ∈ L∞(Ω).

Proof.

(
IVh

(
u×ΠRTCh

)
, Dh

)
Vh
≤ |||IVh

(
u×ΠRTCh

)
|||Vh |||Dh|||Vh [Cauchy-Swartz Ineq.]

≤ (β∗)
1
2 ‖IVh

(
u×ΠRTCh

)
‖0,Ω ‖Dh‖0,Ω [use (3.51)]

≤ (β∗)
1
2 ‖IVh‖‖u×ΠRTCh‖0,Ω ‖Dh‖0,Ω [note that ‖u‖∞ <∞]

≤ (β∗)
1
2 ‖IVh‖‖u‖∞‖ΠRTCh‖0,Ω ‖Dh‖0,Ω [note that ‖ΠRT ‖ ≤ 1]

≤ (β∗)
1
2 ‖IVh‖‖u‖∞‖Ch‖0,Ω ‖Dh‖0,Ω,

which is the assertion of the lemma after setting C̃ = (β∗)
1
2 ‖IVh‖.
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In order to present the discrete form of Theorem 3.90.1 we introduce the notation

Eh = Êh + IVh(Eb), (3.135)

where Êh ∈ Vh,0. We note that the proof of this theorem is essentially an application of the

discrete form of Gronwall’s Lemma. The techniques used are partially laid out in [55].

Theorem 3.90.2

(i) Let θ ∈ [0, 1]. The solution of Scheme (3.31) satisfies

(
θ − 1

2

) |||Bn+1
h −Bn

h |||2Eh
∆t

+
|||Bn+1

h |||2Eh − |||B
n
h |||2Eh

∆t
+

1

2
|||Ên+θ

h |||2Vh (3.136)

≤ |||IVhEn+θ
b |||2

H(rot;Ω)
+

1

2

(
1 + 4C̃‖u‖2∞

) (
θ|||Bn+1

h |||2Eh + (1− θ)|||Bn
h |||2Eh

)
,

where |||IVhEn+θ
b |||2

H(rot;Ω)
= Rm|||IVhEn+θ

b |||2Vh + |||rot IVhEn+θ
b |||2Eh , and we recall that

C̃ is the constant introduced in Lemma 3.90.1.

(ii) If θ ∈
[

1
2 , 1
]
, then we can conclude that

(β)n+1|||Bn+1
h |||2Eh+

Rmγ∆t

2

n∑
`=0

βn+1−`|||Ên−`+θh |||2Vh ≤

|||B0
h|||2Eh +γ∆t

n∑
`=0

βn+1−`|||IVhEn−`+θb |||2
H(rot;Ω)

, (3.137)

where

β =

(
1−Qθ

)(
1 +Q(1− θ)

) , γ =
1(

1−Qθ
) and Q = ∆t

(
1 + 4C̃‖u‖2∞

)
. (3.138)
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The coefficients in (3.137) are guaranteed to be positive when

∆t <
1

θ
(
1 + 4C̃‖u‖2∞

) . (3.139)

Proof. (i). Testing equation (3.31a) against Ch = Bn+θ
h = θBn+1

h + (1 − θ)Bn
h and

equation (3.31b) against Dh = Ên+θ
h and adding them together we arrive at

(
Bn+1
h −Bn

h

∆t
,Bn+θ

h

)
Eh

+Rm|||Ên+θ
h |||2Vh

= −
(
rot IVhEn+θ

b ,Bn+θ
h

)
Eh
−Rm

(
IVhEn+θ

b , Ên+θ
h

)
Vh
−Rm

(
IVh

(
u×ΠRTBn+θ

h

)
, Ên+θ

h

)
Vh

= (T1) + (T2) + (T3). (3.140)

We transform the first term of the left-hand side of (3.140) using the identity

Bn+θ
h = ∆t

(
θ − 1

2

)
Bn+1
h −Bn

h

∆t
+
Bn+1
h +Bn

h

2
. (3.141)

We obtain:

(
Bn+1
h −Bn

h

∆t
,Bn+θ

h

)
Eh

= ∆t

(
θ − 1

2

)(
Bn+1
h −Bn

h

∆t
,
Bn+1
h −Bn

h

∆t

)
Eh

+

(
Bn+1
h −Bn

h

∆t
,
Bn+1
h +Bn

h

2

)
Eh

= ∆t

(
θ − 1

2

) |||Bn+1
h −Bn

h |||2Eh
∆t2

+
|||Bn+1

h |||2Eh − |||B
n
h |||2Eh

2∆t
.

(3.142)

Next, we bound the three terms in the right-hand side of (3.140) by using the Young inequality
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with parameters ε1, ε2, and ε1. For the first two terms we obtain the estimates:

(T1) ≤ ε1
2
|||rot IVhEn+θ

0 |||2Eh +
1

2ε1
|||Bn+θ

h |||2Eh

≤ ε1
2
|||rot IVhEn+θ

0 |||2Eh +
1

2ε1

(
θ2|||Bn+1

h |||2Eh + (1− θ)2|||Bn
h |||2Eh

)
,

≤ ε1
2
|||rot IVhEn+θ

0 |||2Eh +
1

ε1

(
θ|||Bn+1

h |||2Eh + (1− θ)|||Bn
h |||2Eh

)
, (3.143)

(T2) ≤ ε2
2
|||IVhEn+θ

0 |||2Vh +
1

2ε2
|||Ên+θ

h |||2Vh . (3.144)

The bound for the third term requires a bit more work. Since θ ∈ [0, 1], we note that θ2 ≤ θ

and (1− θ)2 ≤ 1− θ. Therefore we have an estimate

|||IVh(u×ΠRTBn+θ
h )|||2Vh ≤ C‖u‖

2
∞|||θBn+1

h + (1− θ)Bn
h |||2Eh

≤ 2C‖u‖2∞
(
θ2|||Bn+1

h |||2Eh + (1− θ)2|||Bn
h |||2Eh

)
≤ 2C‖u‖2∞

(
θ|||Bn+1

h |||2Eh + (1− θ)|||Bn
h |||2Eh

)
. (3.145)

Next we again use the Young’s inequality

(T3) ≤ ε3
2
|||IVh(u× θBn+θ

h )|||2Vh +
1

2ε3
|||Ên+θ

h |||2Vh+

≤ Cε3‖u‖2∞
(
θ|||Bn+1

h |||2Eh + (1− θ)|||Bn
h |||2Eh

)
+

1

2ε3
|||Ên+θ

h |||2Vh . (3.146)

Setting ε1 = ε2 = ε3 = 2, combining (3.140) with the estimates of (T1), (T2), and (T3), and

finally noting that |||IVhEn+θ
b |||2

H(rot;Ω)
= |||IVhEn+θ

0 |||2Vh + |||rot IVhEn+θ
0 |||2Eh yields (3.136),

which is the first assertion of the theorem.

(ii). If θ ∈ [1/2, 1], the coefficient in the first term on the left hand side of (3.136) is positive and
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we can write

|||Bn+1
h |||2Eh − |||B

n
h |||2Eh ≤ ∆t

(
−Rm

2
|||Ên+θ

h |||2Vh + |||IVhEn+θ
b |||2

H(rot;Ω)

)
+ ∆t

(
1 + 4C̃‖u‖2∞

) (
θ|||Bn+1

h |||2Eh + (1− θ)|||Bn
h |||2Eh

)
.

(3.147)

To simplify the notation, let Q = ∆t
(
1 + 4C̃‖u‖2∞

)
and

Fn+θ(Êh, Eb) = ∆t

(
−Rm

2
|||Ên+θ

h |||2Vh + |||IVhEn+θ
b |||2

H(rot;Ω)

)
. (3.148)

Rearranging the terms and dividing by
(
1−Qθ

)
we find:

|||Bn+1
h |||2Eh −

(
1 +Q(1− θ)

)(
1−Qθ

) |||Bn
h |||2Eh ≤

1(
1−Qθ

)F(Êh, Eb)
n+θ. (3.149)

Now, we introduce the quantities

α =

(
1 +Q(1− θ)

)(
1−Qθ

) , γ =
1(

1−Qθ
) , (3.150)

and note that quantity α is well-defined and strictly positive since Assumption (3.139) guarantees

that 1−Qθ > 0, and Q > 0 implies
(
1 + Q(1− (1− θ)

)
≤ 1 for θ ∈ [0, 1], so that α > 0. We

rewrite (3.149) as

|||Bn+1
h |||2Eh − α|||B

n
h |||2Eh ≤ γF

n+θ(Êh, Eb). (3.151)

Such an inequality must be true for any index n ≥ 0. We express this fact by keeping n fixed and

introducing the index ` = 0, . . . , n such that

|||Bn+1−`
h |||2Eh − α|||B

n−`
h |||2Eh ≤ γF

n−`+θ(Êh, Eb). (3.152)
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Then, we multiply by α` and adding all the resulting inequalities we find a telescopic sum where

all intermediate terms likeBn−`
h cancel. We illustrate this fact by writing the first four inequalities

for ` = 0, . . . , 3:

for ` = 0: |||Bn+1
h |||2Eh −α|||Bn

h |||2Eh ≤ γFn+θ(Êh, Eb)
[
multiply by 1

]
,

for ` = 1: |||Bn
h |||2Eh −α|||Bn−1

h |||2Eh ≤ γFn−1+θ(Êh, Eb)
[
multiply by α

]
,

for ` = 2: |||Bn−1
h |||2Eh −α|||Bn−2

h |||2Eh ≤ γFn−2+θ(Êh, Eb)
[
multiply by α2

]
,

for ` = 3: |||Bn−2
h |||2Eh −α|||Bn−3

h |||2Eh ≤ γFn−3+θ(Êh, Eb)
[
multiply by α3

]
,

. . . . . .

(3.153)

The sum of these expressions (with coefficients indicated on the right) gives:

|||Bn+1
h |||2Eh − α

4|||Bn−3
h |||2Eh ≤ γ

3∑
`=0

α`Fn−`+θ(Êh, Eb). (3.154)

Adding all inequalities for ` = 0, . . . , n yields

|||Bn+1
h |||2Eh − α

n+1|||B0
h|||2Eh ≤ γ

n∑
`=0

α`Fn−`+θ(Êh, Eb). (3.155)

Finally, we substitute back the expression for F and γ, multiply both sides by βn+1 = α−(n+1),

rearrange the terms and obtain the second assertion of the theorem.

As we did in the continuous case, we can interpret the statement of (3.137) as the continuity

of the mapping that takes initial and boundary data and outputs the discrete solution to (3.31).

Thus, our proof provides evidence of conditional stability. However, numerical experiments show

that for θ ∈ [1/2, 1] stability is unconditional.

Remark 4 Analysis of the case when θ ∈ [0, 1/2) requires the use of an inverse inequality of the
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sort

∃C > 0 ∀Eh ∈ Vh : |||rotEh|||Eh ≤
C

h
|||Eh|||Vh . (3.156)

This inequality is classic in the finite element method, see for example [20, 32], but its extension

to the VEM is highly non-trivial. In [23] the authors present a possible extension, however it is

not clear how it can be used in the proof above.

3.10 Well-Posedness and Stability of the Linear Solve

In order to solve (3.31) we must, at each time step, solve following linear problem: Find

(Bn+1
h , Ên+θ

h ) ∈ Eh × Vh,0 such that for all (Ch, Dh) ∈ Eh × Vh,0 it holds:

∆t−1
(
Bn+1
h ,Ch

)
Eh

+
(
rot Ên+θ

h ,Ch
)
Eh

=
(
F ,Ch

)
Eh
, (3.157a)

Rm
(
Ên+θ
h , Dh

)
Vh

+ θRm
(
IVh

(
u×ΠRTBn+1

h

)
, Dh

)
Vh
− θ
(
Bn+1
h , rotDh

)
Eh

=

=
〈
g,Dh

〉
, (3.157b)

where we define

F = ∆t−1Bn
h + rot

(
IVhEn+θ

b

)
, (3.158)〈

g,Dh

〉
= (1− θ)

((
Bn
h , rotDh

)
Eh
−Rm

(
IVh

(
u×ΠRTBn

h

)
, Dh

)
Vh

)
−

−Rm
(
IVhEn+θ

b , Dh

)
Vh
. (3.159)

This system is obtained when we put every known quantity on the right hand side and every

unknown quantity on the left hand side of (3.31). The main result will show that the solution to

problem (3.157) exists, it is unique and there is a continuous dependence and the mapping that

sends the right hand side to the solution of the system is continuous. The techniques we use are

inspired by those in [59].
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Let us begin by defining the space that will serve as setting for two variational problems.

We define

Xh := Eh × Vh,0. (3.160)

We equip Xh with the norm

|||ξ|||2Xh := |||Dh|||2∆t,rot
+ |||Ch|||2∆t,div

, (3.161)

where

|||Dh|||2∆t,rot
:= |||Dh|||2Vh + ∆t|||rotDh|||2Eh , (3.162)

|||Ch|||2∆t,div
:= ∆t−1|||Ch|||2Eh + |||divCh|||2Ph . (3.163)

In this space we define two bilinear forms ah, ah,0 : Xh×Xh → R. When we evaluate (B, Eh) =

ξ ∈ Xh and (Ch, Dh) = η ∈ Xh, we obtain

ah(ξ, η) =

=
(
∆t−1Bh + rotEh,Ch

)
Eh

+Rm
(
Eh + θIVh

(
u×ΠRTBh

)
, Dh

)
Vh
−

− θ
(
Bh, rotDh

)
Eh

(3.164)

and

ah,0(ξ, η) = ah(ξ, η) +
(
divBh, divCh

)
Ph
. (3.165)

The two variational problems are

Problem 3.100.1 Find (Bn+1
h , Ên+θ

h ) = ξ ∈ Xh such that for any (Ch, Dh) = η ∈ Xh it holds:

ah(ξ, η) =
(
F ,Ch

)
Eh

+
〈
g,Dh

〉
, (3.166)
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assuming thatBn
h (such that divBn

h = 0) is known

and

Problem 3.100.2 Find (Bn+1
h , Ên+θ

h ) = ξ ∈ Xh such that for any (Ch, Dh) = η ∈ Xh:

ah,0(ξ, η) =
(
F ,Ch

)
Eh

+
〈
g,Dh

〉
. (3.167)

assuming thatBn
h (such that divBn

h = 0) is known.

In Problems 3.100.1 and 3.100.2 we use F and
〈
g,Dh

〉
as given by (3.158) and (3.159).

It is immediate to check finding a solution to the linear system (3.157) is equivalent to solving

Problem 3.100.1. Later we will show that Problems 3.100.1 and 3.100.2 are equivalent. Then, we

will show that Problem 3.100.2 is well-posed. This will follow from Theorem 2.20.1. Thus, since

all three problems are equivalent, this well-posedness result will transfer over to Problem 3.100.1

yielding the result that we are looking for.

In order to establish the equivalency that we are looking for we present the following result.

Theorem 3.100.3 . If ξ = (Bn+1
h , Ên+θ

h ) solves Problem 3.100.2, then divBn+1
h = 0.

Proof. Test (3.167) against η = (Ch, Dh) with Dh = 0, while leaving Ch ∈ Eh undefined

for the moment. Using definitions (3.164), (3.165), (3.158), and (3.159), and rearranging the

terms, we obtain the identity:

(
F n −∆t−1Bn+1

h − rotEn+θ
h ,Ch

)
Eh

=
(
divBn+1

h , divCh
)
Ph
. (3.168)

Now, we set

Ch = F n −∆t−1Bn+1
h − rot En+θ

h . (3.169)
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Since divBn
h = 0 by hypothesis and div ◦ rot = 0 we find that

divF n = ∆t−1divBn
h + div

(
rot Ên−1+θ

h

)
= 0 and div

(
rotEn+θ

h

)
= 0, (3.170)

so that

divCh = div (F n −∆t−1Bn+1
h − rot Ên+θ

h ) = −∆t−1divBn+1
h . (3.171)

Substituting the expressions of w and divw in (3.168) yields

0 ≤ |||Ch|||2Eh = −∆t−1|||divBn+1
h |||2Ph , (3.172)

which implies that |||divBn+1
h |||Ph ≤ 0, and, thus, the proposition.

We are ready to show that the aforementioned problems are all equivalent.

Lemma 3.100.1 The linear system (3.157), Problem 3.100.1 and Problem 3.100.2 all have the

same solution.

Proof. As a consequence of Theorem 3.100.3 if (Bn+1
h , En+θ

h ) = ξ ∈ Xh solves Problem 3.100.2

then

∀η ∈ Xh : ah(ξ, η) = ah,0(ξ, η). (3.173)

This implies that the solution to Problem 3.100.1 and Problem 3.100.2 are one and the same.

Next we note that by adding both equations in the system (3.157) we obtain (3.166). Moreover,

if we test (3.166) against η = (Ch, 0) we obtain (3.157a). Likewise, testing this problem against

η = (0, Dh) will yield (3.157b).

The following lemmas will show that Problem 3.100.2 satisfies the hypothesis of Theo-

rem 2.20.1, we will conclude its well-posedness.
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Lemma 3.100.2 There exists a constant C > 0, independent of h and ∆t, such that

∀ξ, η ∈ Xh : ah,0(ξ, η) ≤ C|||ξ|||Xh |||η|||Xh . (3.174)

Proof. Let ξ = (Bh, Eh) and η = (Ch, Dh) be arbitrary elements in Xh. A systematic

application of the Cauchy Schwartz inequality yields that

∆t−1
(
Bh,Ch

)
Eh
≤ ∆t−

1
2 |||Bh|||Eh ∆t−

1
2 |||Ch|||Eh ≤ |||Bh|||∆t,div |||Ch|||∆t,div , (3.175)

(
rotEh,Ch

)
Eh
≤ ∆t

1
2 |||rotEh|||Eh ∆t−

1
2 |||Ch|||Eh ≤ |||Eh|||∆t,rot |||Ch|||∆t,div , (3.176)

(
Eh, Dh

)
Vh
≤ |||Eh|||Vh |||Dh|||Vh ≤ |||Eh|||∆t,rot |||Dh|||∆t,rot , (3.177)

(
divBh, divDh

)
Ph
≤ |||divBh|||Ph ‖divDh‖Ph

≤ |||Bh|||∆t,div |||Dh|||∆t,div . (3.178)

We recall that the Friedrichs-Poincaré inequality holds so that ‖Dh‖0,Ω ≤ C‖∇Dh‖0,Ω for every

Dh ∈ Vh,0 ⊂ H1
0 (Ω) and note that ‖∇Dh‖0,Ω = ‖rotDh‖0,Ω. In view of Lemma 3.90.1, we find

that

(
IVh

(
u×ΠRTBh

)
, Dh

)
Vh
≤ C̃‖u‖∞‖Bh‖0,Ω ‖Dh‖0,Ω [use Poincaré inequality]

≤ C̃‖u‖∞‖Bh‖0,Ω ‖rotDh‖0,Ω [use stability condition (3.81)]

≤ C̃‖u‖∞|||Bh|||Eh |||rotDh|||Eh [multiply and divide by ∆t
1
2 ]

≤ C̃‖u‖∞∆t−
1
2 |||Bh|||Eh ∆t

1
2 |||rotDh|||Eh [use definitions (3.162) and (3.163)]

≤ C̃‖u‖∞|||Bh|||∆t,div |||Dh|||∆t,rot [use definition (3.161) ]

≤ C̃‖u‖∞|||ξ|||Xh ‖η‖Xh
.

(3.179)

The assertion of the lemma follows from the definition of the norm in Xh and the above estimates.
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Lemma 3.100.3 Let θ > 0. Then, for a sufficiently small ∆t, there exists a real positive constant

Ĉ, independent of h and ∆t, such that:

inf
ξ∈Xh

sup
η∈Xh

ah,0(ξ, η)

|||ξ|||Xh |||η|||Xh
≥ Ĉ > 0. (3.180)

The constant Ĉ depends on parameter θ (and the mesh regularity parameter ρ).

Proof. The assertion of the lemma follows from proving that for every ξ = (Bh, Eh) ∈ Xh

there exists a ηξ ∈ Xh such that |||ηξ|||Xh ≤ C|||ξ|||Xh , and

ah,0(ξ, ηξ) ≥ Ĉ|||ξ|||Xh |||ηξ|||Xh , (3.181)

where both C and Ĉ are real positive constants independent of h and ∆t. To this end, we first split

the bilinear form in (3.165) as follows

ah,0(ξ, η) = (T1) + (T2), (3.182)

where

(T1) =
(
∆t−1Bh + rotEh,Ch

)
Eh

+
(
divBh, divCh

)
Ph
, (3.183)

(T2) = Rm
(
Eh + θIVh

(
u×ΠRTBh

)
, Dh

)
Vh
− θ
(
Bh, rotDh

)
Eh
. (3.184)

Then, for an arbitrary pair
(
Bh, Eh

)
= ξ ∈ Xh, we consider the pair

(
Ch, Dh

)
= ηξ ∈ Xh

with Ch = (θ/2)
(
Bh + ∆trotEh

)
and Dh = Eh. Note that divCh = (θ/2)divBh because
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div (rotEh) = 0. Substituting ξ and η we transform the first term in (3.182) as follows:

(T1) =
θ

2

((
∆t−1Bh + rotEh,Bh + ∆trotEh

)
Eh

+
(
divBh, divBh

))
(3.185)

=
θ

2

(
∆t−1|||Bh|||2Eh + ∆t|||rotEh|||2Eh + 2

(
Bh, rotEh

)
Eh

+ ‖divBh‖20,Ω
)

(3.186)

=
θ

2
|||Bh|||2∆t,div

+
θ

2
∆t|||rotEh|||2Eh + θ

(
Bh, rotEh

)
Eh
. (3.187)

Similarly, we transform the second term in (3.182) as follows:

(T2) = Rm
(
Eh, Eh

)
Vh

+Rmθ
(
IVh

(
u×ΠRTBh

)
, Eh

)
Vh
− θ
(
Bh, rotEh

)
Eh

(3.188)

= Rm|||Eh|||2Vh +Rmθ
(
IVh

(
u×ΠRTBh

)
, Eh

)
Vh
− θ
(
Bh, rotEh

)
Eh
. (3.189)

Adding (T1) and (T2) we find that

ah,0(ξ, η) =
θ

2
|||Bh|||2∆t,div

+
θ

2
∆t|||rotEh|||2Eh +Rm|||Eh|||2Vh +Rmθ

(
IVh

(
u×ΠRTBh

)
, Eh

)
Vh

≥ Kθ
(

1

2
|||Bh|||2∆t,div

+
1

2
|||Eh|||2∆t,rot

+
(
IVh

(
u×ΠRTBh

)
, Eh

)
Vh

)
, (3.190)

where K = min{1, Rm}. Now, we prove that the right hand side of (3.190) can be bounded from

below by |||ξ|||2Xh for a suitable choice of ∆t. Using the results of the Lemma 3.90.1 as an upper

bound estimate we have

(
IVh

(
u×ΠRTBh

)
, Eh

)
Vh
≥ −C̃‖u‖∞‖Bh‖0,Ω ‖Eh‖0,Ω [multiply and divide by ∆t

1
2 ]

≥ −C̃‖u‖∞∆t
1
2 ∆t−

1
2 ‖Bh‖0,Ω ‖Eh‖0,Ω [use Young’s inequality]

≥ −C̃‖u‖∞∆t
1
2

(
1
2∆t−1‖Bh‖2Eh + 1

2‖Eh‖
2
Vh

)
[use definitions (3.162) and (3.163)]

≥ −C̃‖u‖∞
(

1
2 |||Bh|||2∆t,div

+ 1
2 |||Eh|||

2
∆t,rot

)
,

(3.191)
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where we note that C̃ = (β∗)
1
2 ‖IVh‖ is the constant from Lemma 3.90.1. We choose ∆t suffi-

ciently small so that C = K(1− C̃‖u‖∞∆t
1
2 ) > 0 and we write

ah,0(ξ, η) ≥ Kθ

2

(
1− C̃‖u‖∞∆t

1
2

)(
|||Bh|||2∆t,div

+ |||Eh|||2∆t,rot

)
≥ C θ

2
|||ξ|||2Xh . (3.192)

Finally, we note that

|||ηξ|||2Xh = |||(θ/2)
(
Bh + ∆t rotEh

)
|||2

∆t,div
+ |||Eh|||2∆t,rot

=
θ2

4

(
∆t−1|||Bh + ∆trotEh|||2Eh + ‖divBh‖20,Ω

)
+ |||Eh|||2∆t,rot

=
θ2

4

(
∆t−1|||Bh|||2Eh + ∆t|||rotEh|||2Eh + 2

(
Bh, rotEh

)
Eh

+ ‖divBh‖20,Ω
)

+ |||Eh|||2∆t,rot

=
θ2

4

(
∆t−1|||Bh|||2Eh+‖divBh‖20,Ω+2

(
∆t−1/2Bh,∆t

1/2rotEh

)
Eh

+∆t|||rotEh|||2Eh

)
+ |||Eh|||2∆t,rot

≤ θ2

4

(
2∆t−1|||Bh|||2Eh + ‖divBh‖20,Ω + 2∆t|||rotEh|||2Eh

)
+ |||Eh|||2∆t,rot

≤ θ2

2
|||Bh|||2∆t,div

+

(
1 +

θ2

2

)
|||Eh|||2∆t,rot

≤
(

1 +
θ2

2

)
|||ξ|||2Xh .

The last inequality implies that

∀ξ ∈ Xh ∃η ∈ Xh : ah,0(ξ, η) ≥ KĈ|||ξ|||Xh |||η|||Xh , Ĉ = C
θ

2

(
1 +

θ2

2

)− 1
2

, (3.193)

from which the inf-sup condition stated in the lemma follows immediately. Note that for ∆t

sufficiently small, we have 0 < C < 1. Hence, we can just set C = 1.

Having collected the necessary results we present the main Theorem of this section.
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Theorem 3.100.4 The linear system described in (3.157) is well-posed.

Proof. Lemmas 3.100.3 and 3.100.2 show that problem 3.100.2 satisfies the hypothesis of Theo-

rem 2.20.1. Moreover, by Lemma 3.100.1 we know that system (3.157) and Problem 3.100.1 are

equivalent.

3.11 The Oblique Projectors in Vh(P)

In Section 3.4 we presented criteria for an admissible oblique projector. In this section we

present three different choices together with an explanation on how they can be computed.

3.111 The Elliptic Projector

The elliptic projector is denoted Π∇P . For Dh ∈ Vh(P) the elliptic projector is the solution

to the variational problem

∀q ∈ P1(P) :

∫
P
rot

(
Dh −Π∇PDh

)
· rot qdA = 0, (3.194a)

P0(Dh −Π∇PDh) = 0, (3.194b)

where,

P0(Dh) =
∑

v

Dh(v). (3.195)

Note that in the case that Dh is a constant, the variational definition in (3.194a) is simply the

statement that zero must equal zero which does not yield a means to define Π∇P . We use P0

precisely to fix the value of constants.

Following the framework of Section 2.3 all that is required to compute the elliptic projector

is a means of attaining the quantities

∀q ∈ P1(P) :

∫
P
rotDh · rot qdA. (3.196)
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We will use Green’s Theorem:

∫
P
rotDh · rot qdA =

∫
P
Dhrot rot qdA−

∫
∂P

(Dh × rot q) · nd` (3.197)

From the definition of Vh(P) we know that rot rotDh = 0. Moreover, using the identity

Dh × rot q · n = Dhrot q × n = −Dhrot q · t, (3.198)

where, n = (n1, n2) and t = (−n2, n1). Thus, we arrive at the formula

∫
P
rotDh · rot qdA =

∑
e∈∂P

∫
e
Dhrot q · td`. (3.199)

Note, that by definition Dh ∈ P1(e) for every edge in P. Since we know two evaluations of Dh

then we can reconstruct the function and compute the right hand side of (3.199).

Consider the basis for P1(P) given by {m1,m2,m3} for

∀(x, y) ∈ P : m1(x, y) = 1, m2(x, y) = x− xP and m3(x, y) = y − yP. (3.200)

In the above (xP, yP) is the centroid of the cell P. In this case we can use the following formulas

to compute the matrices G and H in Section 2.3:

‖rotm2‖L2 = ‖rotm3‖L2 = |P|,
(
m2,m3

)
= 0. (3.201)

Moreover, consider a basis consistent with the degrees of freedom for the space Vh(P), say {Di
h :

1 ≤ i ≤ N}. We can use (3.199) in order to prove the identities

P0D
i
h =

1

N
,
(
rotm2, rotD

i
h

)
=

1

2
(|ek|tk,y + |ej |tj,y) ,(
rotm3, rotD

i
h

)
= −1

2
(|ek|tk,x + |ej |tj,x) . (3.202)
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Here ek and ej are edges that have that have the i−th node as an endpoint. Vectors tangent to each

of these edges are (tk,x, tk,y) and (tj,x, tj,y) respectively. We can use these formulas to compute

the matrix B in Section 2.3.

3.112 The Least Squares Projector

The second projector we consider is ΠLS
P . For a function Dh ∈ Vh(P) we define ΠLS

P Dh

as the first degree polynomial whose evaluations at the nodes of P are the closest, in Euclidean

norm, to those of Dh. Let us consider the basis forP1(P) denoted by {m1,m2,m3} and given by

∀(x, y) ∈ P : m1(x, y) = 1, m2(x, y) = x− xP and m3(x, y) = y − yP. (3.203)

Let {vi : 1 ≤ i ≤ N} be the set of nodes of P. Then, we can write

∀(x, y) ∈ P : ΠLS
P Dh(x, y) = am1(x, y) + bm2(x, y) + cm3(x, y), (3.204)

where the coefficients a, b, c are given as the least squares solution to the system Ax = b, amd

where

A =



m1(v1) m2(v1) m3(v1)

m1(v2) m2(v2) m3(v2)

...
...

...

m1(vN ) m2(vN ) m3(vN )


, b =



Dh(v0)

Dh(v2)

...

Dh(vN )


. (3.205)

Thus, in the notation of Section 2.3 we can consider G = (ATA)−1AT .

3.113 The Galerkin Interpolator

The final projector that we present is denoted as Πpw
P . This projector is experimental in

the sense that its codomain is the space of piecewise polynomials. We consider a point v∗ in the

interior of the cell P. Consider that

v∗ =
∑

v

αvv. (3.206)
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For a function Dh ∈ Vh(P) we define

Πpw
P Dh(v∗) =

∑
v

αvDh(v), Πpw
P Dh(v) = Dh(v). (3.207)

We further require that P be star shaped with respect to to v∗. This assumption is laid out in

Section 2.4. Thus, we can connect v∗ with the vertices v to divide P into triangles, {Ti : 1 ≤

i ≤ N}. If v1, v2 and v∗ are the vertices of one of these triangles then we define the restriction of

Πpw
P Dh to this triangle as the first degree polynomial that agrees with the evaluations presented in

(3.207).

Now we turn our attention to the details that are involved in the implementation of this

projector. In this manuscript we will consider implementations only in convex cells. In this case

we can use

v∗ =
∑

v

1

N
v. (3.208)

Recall that convex cells are, by definition, star-shaped with respect to every point in its interior.

Next, let us consider

V = {φv : v is node of P} ∪ {φv∗} (3.209)

as a basis for the codomain of Πpw
P . The function Φv evaluates to 1 over the node v and zero over

every other node including. The projector can be computed as

Πpw
P Dh =

∑
v∈∂P Dh(v)

N
φv∗ +

∑
v

Dh(v)φv. (3.210)
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Therefore, in the notation of Section 2.3 we can use

ΠM
∗ =



1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

1
N

1
N . . . 1

N


. (3.211)

The matrix H requires a different definition. We use

H =


(
φv1 , φv1

) (
φv1 , φv2

)
. . .

(
φv1 , φv∗

)
...

...
. . .

...(
φv∗, φv1

) (
φv∗, φv2

)
. . .

(
φv∗, φv∗

)
.

 (3.212)

To compute these integrals we use the reference element method. All of our computations will

be done over the triangle T0 with vertices at (1, 0), (0, 0), (0, 1). We define a series of affine

transformations to translate computations over T0 to those over some other triangle T . If the

triangle T has vertices v = (vx, vy), w = (wx, wy), z = (zx, zy) then the affine transformation

that sends T0 to T is given by

L(x, y) =

wx − vx zx − vx

wy − vy zy − vy


x
y

+

vx
vy

 . (3.213)

This transformation satisfies

L(0, 0) = v, L(1, 0) = w and L(0, 1) = z. (3.214)

Thus, an affine transformation that sends T to T0 is given by K = L−1. An affine transformation



68

that sends the triangle T to the standard triangle T0 is given by L−1 = K which is

K(x, y) =

zy − vy vx − zx

vy − wy wx − vx


x− vx
y − vy


(wx − vx)(zy − vy)− (wy − vy)(zx − vx)

. (3.215)

Further, over the triangle T0 we can define the basis {ψ1, ψ2, ψ3} as

ψ1(x, y) = 1− x− y, ψ2(x, y) = y and ψ3(x, y) = x. (3.216)

Thus, computations follow from the Change of Variables Theorem:

∫
T
φiφj =

∫
T
ψm ◦Kψn ◦K =

= [(wx − vx)(zy − vy)− (wy − vy)(zx − vx)]

∫
T0

ψmψn. (3.217)

3.12 Conclusions

In this chapter, in Section 3.2 we came up with a model for the evolution of the electric

and magnetic fields generated by a magnetized fluid. We assumed that the velocity of the flow

was prescribed and known. Then, in Section 3.3 we presented a variational formulation of the

aforementioned model and a VEM for the model. Sections 3.4, 3.5 and 3.6 present the spaces

that appear in the variational formulation as well as the operators that act on functions from these

spaces. In these sections the spaces are studied on an individual basis whereas in Section 3.7 we

show that they form a commuting De-Rham complex. It is this De-Rham complex that guaran-

tees that the magnetic field is divergence free. This condition is the statement of Gauss’s Law

presented in Section 3.2. Its violation will yield simulations that experience fictitious forces that

will render them unfaithful to real MHD phenomena. A more complete discussion is presented
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at the concluding remarks of Section 3.7. We also showed that the linear VEM developed satis-

fies a series of energy inequalities that show this method is stable, which was the main result of

Section 3.9. Then, in Section 3.8 we extended the virtual elements introduced to arbitrary order.

Implementations of this method will have to solve a linear system at each time step. We show that

this system is well-posed in Section 3.10. We finish with Section 3.11 with a discussion about the

construction of an important projectors in the nodal space presented in Section 3.4.
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4. KINEMATICS IN 3D

4.1 Introduction

This chapter is dedicated to extending the VEM developed in chapter 3. to three dimensions.

The main difference is lies in the virtual elements that are used. The derivation of the model

and its mathematical formulation are essentially the same. Hence, readers interested in some

discussion about the physical principles are referred to 3.2. In Section 4.2 we will briefly recall the

mathematical formulation. Then, in Section 4.3 we present the three dimensional virtual elements.

First is the analog to the nodal space in Section 3.4; this space is denoted Vh. Similar to the

situation in two dimensions the orthogonal projection in this space is not computable. Thus, in

this section we will also propose an oblique projector. The second space is the analog of the edge

space of Section 3.5 denoted Eh. The computation of the orthogonal projection in this space is

possible; we will present a procedure to do so. In the study of each of these we must introduce

some important polynomial spaces. We also include bases for each of these spaces which will be

important when computing the degrees of freedom of a function. These spaces form a De-Rham

complex which can be used to prove that the scheme will respect the divergence of the magnetic

field at the discrete level. These results are presented in Section 4.4. Using this complex we can

show that the magnetic field at the discrete level will be solenoidal, a result that we present in the

same section. The final result of Section 4.4 regards the curl of a function in the space Vh. We

can show that if Dh ∈ Vh then ∇ × Dh ∈ Eh. Hence, in order to identify ∇ × Dh we will

present a method to compute its degrees of freedom. Then, in Section 4.5 we will briefly discuss

some extensions to higher orders. Finally, in Section 4.6 we will present some concluding remarks

about this chapter.
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4.2 Mathematical Formulation

The mathematical formulation is no different than the one presented in Section 3.3. For the

sake of completeness we will briefly go over it.

Consider a polyhedral domain Ω ⊂ R3. The strong form of the system we are interested in

is:

∂

∂t
B +∇×E = 0 in Ω, (4.1a)

E + u×B −R−1
m ∇×B = 0 in Ω, (4.1b)

B(0) = B0 in Ω (4.1c)

E ≡ Eb along ∂Ω. (4.1d)

Like before we will assume that

∇ ·B0 = 0. (4.2)

We can prove that the solution to (4.1) is the same as the solution to the following variational

formulation: find (B,E) ∈ C1 ([0, T ], H(∇·; Ω))× C ([0, T ], H(∇×; Ω)), such that:

( ∂
∂t
B,C

)
+
(
∇×E,C

)
= 0 ∀C ∈ H(∇·; Ω), (4.3a)

Rm

(
E,D

)
+Rm

(
u×B,D

)
−
(
B,∇×D

)
= 0 ∀v ∈ H0(∇×; Ω), (4.3b)

B(0) = B0 with divB0 = 0. (4.3c)

We introduce two spaces of shape functions Vh and Eh. These spaces are finite dimensional

and approximate H(∇×; Ω) and H(∇·; Ω) respectively. We will formally define these spaces in

Section 4.3. The discrete variational formulation of system (4.3) is given by find
{
Bn
h

}N
n=0
⊂ Eh

and
{
En+θ
h

}N−1

n=0
⊂ Vh such that for all (Ch, Dh) ∈ Eh × Vh,0 it holds that:



72(Bn+1
h −Bn

h

∆t
,Ch

)
Eh

+
(
∇×En+θ

h ,Ch

)
Eh

= 0 (4.4a)

Rm
(
En+θ
h ,Dh

)
Vh

+Rm
(
IVh

(
u×ΠRTBn+θ

h

)
,Dh

)
Vh
−
(
Bn+θ
h , rotDh

)
Eh

= 0 (4.4b)

Bn+θ
h = θBn+1

h + (1− θ)Bn
h , (4.4c)

Bh(·, 0) = IEh
(
B0
)

with divB0 = 0. (4.4d)

4.3 The Virtual Elements

These finite elements are presented in [16]. For the space Vh we will use k = 2, whereas

for Eh element we will use k = 1.

4.31 The Space Vh

Consider a cell P in the mesh Ωh. Let us introduce the following polynomial spaces

Rk(P) = ∇× [Pk+1(P)]3, Rk(f) = rotPk+1(f). (4.5)

We consider f to be a face of the cell P. We also define the orthogonal complements of these

spaces as

Rk(P)⊥ =
{
r⊥ ∈ Pk(P) : ∀r ∈ Rk(P)

(
r⊥, r

)
= 0
}
, (4.6)

Rk(f)⊥ =
{
r⊥ ∈ Pk(f) : ∀r ∈ Rk(f)

(
r⊥, r

)
= 0
}
. (4.7)

Moreover, we denote the projection onto a face f as

Df
h = Dh − (Dh · nf)nf. (4.8)

A functionDh belongs to the local space Vh(P) if and only if it satisfies
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• Dh ∈ H(∇·; P) ∩H(∇×; P).

• For every face f: Df
h ∈ H(div; f) ∩H(rot; f).

• For every face f: rot rotDf
h ∈ R0(f).

• For every face f: divDf
h ∈ P1(f).

• For every edge e: Dh · t ∈ P2(e).

• For every edge e: Dh · tf1 = Dh · tf2 whenever e is a common edge of f1 and f2.

• divDh ∈ P1(P).

• ∇ ×∇×Dh ∈ R0(P).

To a functionDh ∈ Vh(P) we associate the following set of degrees of freedom:

• For every edge e:
∫

eDh · trd`, r ∈ P2(e).

• For every face f:
∫

fDh · r⊥dS, r⊥ ∈ R2(f)⊥.

• For every face f:
∫

fDh · r⊥dS, r⊥ ∈ R0(f)⊥.

•
∫

PDh · r⊥dV, r⊥ ∈ R2(P)⊥.

•
∫

PDh · r⊥dV, r⊥ ∈ R0(P)⊥.

It can be shown that the space Vh(P) is unisolvent when equipped with this set of degrees of

freedom.

Theorem 4.31.1 The finite element defined by the domain P, the space of shape functions Vh(P)

and the degrees of freedom presented is unisolvent.

Proof of the previous theorem is presented in [16]. We can use this result to define the interpolant

IVhP : H(∇×; P)→ Vh(P) such that IVhP D andD share the same degrees of freedom.
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Next we will consider the inner product. Like before we do this through a projector, ideally

the orthogonal projector. However, this projector is not computable. So we will use an oblique

projector Π : Vh(P)→ [P2(P)]3 satisfying:

P1 The projection ΠDh is computable from the degrees of freedom ofDh.

P2 IfDh ∈ [P2(P)]3 then ΠDh = Dh.

P3 There exists a constant C > 0 independent of mesh size and time step such that

‖ΠDh‖0,P ≤ C‖Dh‖0,P. (4.9)

These are the same criteria that we presented in Section 3.4. We will present an example of one

of these projectors later in this section. The inner product is defined as

∀Eh,Dh ∈ Vh(P) :
(
Eh,Dh

)
Vh(P)

=
(
ΠEh,ΠDh

)
+Sv((1−Π)Eh, (1−Π)Dh). (4.10)

The bilinear form Sv is picked such that

∃s∗, s∗ > 0 ∀Dh ∈ ker Π ∩ Vh(P) : s∗‖Dh‖20,P ≤ S
v(Dh,Dh) ≤ s∗‖Dh‖20,P. (4.11)

We can define the norm in Vh(P) as

∀Dh ∈ Vh(P) : |||Dh|||Vh(P)
=
(
Dh,Dh

)1/2
Vh(P)

. (4.12)

This definition of an inner product satisfies the same consistency and stability conditions presented

in Theorem 4.31.2. We present this result for the sake of completeness. The proof is essentially

the same.

Theorem 4.31.2 The inner product defined in equation (3.38) has first order polynomial accu-
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racy. This is to say that

∀p, q ∈ P1(P) ⊂ Vh(P) :
(
p, q
)
Vh(P)

=
(
p, q
)
. (4.13)

Moreover, this inner product also satisfies the following stability property. There exists constants

C∗, C
∗ > 0 independent of the mesh-size and time-step such that

∀Dh ∈ Vh(P)2 : α∗‖Dh‖20,P ≤ |||Dh|||2Vh(P)
≤ α∗‖Dh‖20,P. (4.14)

The global space is defined as

Vh =
{
Dh ∈ H(∇×; Ω) : ∀P ∈ Ωh Dh|P ∈ Vh(P)

}
. (4.15)

We equip this space with the inner product:

∀Eh,Dh ∈ Vh :
(
Eh,Dh

)
Vh

=
∑

P∈Ωh

(
Eh|P,Dh|P

)
Vh(P)

. (4.16)

As a consequence of Theorem 4.31.2 the global inner product also satisfies some desirable prop-

erties. We present them in the following corollary:

Corollary 4.31.1 The inner product defined in (4.16) satisfies the accuracy property for piecewise-

linear polynomials. If for every P ∈ Ωh it is the case that p|P, q|P ∈ P1(P) then

(
p, q
)
Vh

=
(
p, q
)
. (4.17)

The following stability condition is also satisfied

∃β∗, β∗ > 0 ∀Dh ∈ Vh : β∗‖Dh‖20,Ω ≤ |||Dh|||2Vh ≤ β
∗‖Dh‖20,Ω, (4.18)
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where the constants β∗ and β∗ are independent of the mesh-size and time-step.

Finally, we define the global interpolant IVh : H(∇×; Ω)→ Vh such that when evaluated at Dh

it satisfies:

∀D ∈ H(∇×; Ω) : (IVhD)|P = IVhP (D|P). (4.19)

The Oblique Projector: In principle we could generalize the projectors we presented in

Section 3.11. However, here we will only present the least squares projector ΠLS
P . For a cell

P ∈ Ωh and a function Dh ∈ Vh(P) we define ΠLS
P Dh ∈ [P2(P)]3 as the polynomial whose

degrees of freedom is the closest to Dh. If we consider a basis for [P2(P)]3, say {q1, . . . , qN},

then

ΠLS
P Dh =

N∑
i=1

aiqi. (4.20)

The coefficients {ai}Ni=1 are given as the least square solution to the system A~x = ~b where

A =



DOF1(q1) DOF1(q2) . . . DOF1(qN )

DOF2(q1) DOF2(q2) . . . DOF2(qN )

...
...

. . .
...

DOFM (q1) DOFM (q2) . . . DOFM (qN )


~b =



DOF1(Dh)

DOF2(Dh)

...

DOFM (Dh)


. (4.21)

In the notation of Section 2.3 we can use G = (ATA)−1AT .

Some Important Basis

In order to implement this method we will need a particular set of bases. Firstly note that

R0(P) = R3, thus we can take as basis:


1

0

0

 = ∇×


0

0

y

 ,


0

1

0

 = ∇×


z

0

0

 ,


0

0

1

 = ∇×


0

x

0

 . (4.22)

Computing a basis forR2(P ) andR2(P )⊥ is a bit more tricky. Firstly, note thatR2(P ) = Ker∇·
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when ∇· is restricted to P2(P ), this is due to the fact that

∀r ∈ [P2(P)]3 :
[
∃r′ ∈ [P3(P)]3 r = ∇× r′

]
⇐⇒ ∇ · r = 0. (4.23)

From here we can conclude that∇ ·R2(P )⊥ = ran

nabla· and R2(P ) ∩ ker∇· = {0}. This yields a means for a attaining a basis that is natural to

the required spaces, let us pick an arbitrary r ∈ [P2(P)]3 say

r =


axx+ bxx

2 + cxxy + dxxz + qx(y, z)

ayy + byy
2 + cyxy + dyyz + qy(x, z)

azz + bzz
2 + czxz + dzyz + qz(x, y).

 (4.24)

Then since

∇ · r = (ax + ay + az) + (2bx + cy + cz)x+ (cx + 2by + dz)y + (dx + dy + 2bz)z (4.25)

we can conclude that the range is four dimensional. As a consequence, we find that a basis for

R2(P )⊥ is given by {r⊥0 , r⊥1 , r⊥2 , r ⊥3} for

r⊥0 =


x

0

0

 , r⊥1 =


x2

0

0

 , r⊥2 =


0

y2

0

 , r⊥3 =


0

0

z2

 . (4.26)
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Moreover, a basis forR2(P ) = Ker∇· is given by BR := {ri : 0 ≤ i ≤ 25} for

r0 =


1

0

0

 = ∇×


0

0

y

 , r1 =


y

0

0

 = ∇×


0

0

y2/2

 , r2 =


z

0

0

 = ∇×


0

−z2/2

0

 ,

r3 =


0

1

0

 = ∇×


z

0

0

 , r4 =


0

z

0

 = ∇×


z2/2

0

0

 , r5 =


0

x

0

 = ∇×


0

0

−x2/2

 ,

r6 =


0

0

1

 = ∇×


0

x

0

 , r7 =


0

0

x

 = ∇×


0

x2/2

0

 , r8 =


0

0

y

 = ∇×


−y2/2

0

0

 ,

r9 =


yz

0

0

 = ∇×


0

0

y2z/2

 , r10 =


0

xz

0

 = ∇×


xz2/2

0

0

 ,

r11 =


0

0

xy

 = ∇×


0

x2y/2

0

 , r12 =


y2

0

0

 = ∇×


0

0

y3/3

 ,

r13 =


z3

0

0

 = ∇×


0

−z3/3

0

 , r14 =


0

x2

0

 = ∇×


0

0

−x3/3

 ,

r15 =


0

z2

0

 = ∇×


z3/3

0

0

 , r16 =


0

0

x2

 = ∇×


0

x3/3

0

 ,

r17 =


0

0

y2

 = ∇×


−y3/3

0

0

 , r18 =


−x

y

0

 = ∇×


0

0

−xy

 ,
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r19 =


−x

0

z

 = ∇×


0

xz

0

 , r20 =


−x2

2xy

0

 = ∇×


0

0

−x2y

 ,

r21 =


−x2

0

2xz

 = ∇×


0

x2z

0

 , r22 =


2xy

−y2

0

 , ∇×


0

0

y2x

 ,

r23 =


0

−y2

2yz

 = ∇×


−y2z

0

0

 , r24 =


2xz

0

−z2

 = ∇×


0

−xz2

0

 ,

r25 =


0

2yz

−z2

 = ∇×


yz2

0

0

 .

4.32 The Space Eh

Next we present the space Eh. Let us consider a cell P ∈ Ωh, over this cell we can define

the spaces:

Gk(P) = ∇Pk+1(P), Gk(P)⊥ = {g⊥ ∈ [Pk(P)]3 : ∀g ∈ Gk(P)
(
g⊥, g

)
= 0}. (4.27)

A function Ch belongs to the local virtual element space Eh(P) if and only if it satisfies the

following criteria

• Ch ∈ H(∇·; P) ∩H(∇×; P).

• For every face f: Ch · nf ∈ P1(f).

• ∇ [divCh] = 0.
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• ∇ ×Ch ∈ G0(P).

To a function Ch ∈ Eh(P) we associate the following degrees of freedom:

• For every face f:
∫

fCh · nqdS, q ∈ P1(f).

•
∫

PCh · g
⊥dV, g⊥ ∈ G1(P)⊥.

The space Eh(P) is unisolvent when endowed with this set of degrees of freedom. This allows us

to define the interpolant IEhP : H(∇·; P)→ Eh(P). The evaluation of C ∈ H(∇·; ()P) is defined

such that IEhP C and C share the same degrees of freedom.

In the space Eh(P) we can define orthogonal projection Π0 : Eh(P) → [P1(P)]3 as the

solution to the variational problem

∀q ∈ [P1(P)]3 :
(
Ch −Π0Ch, q

)
= 0. (4.28)

This projector is computable; we will show how later in this section. We can define the inner

product in Eh(P) as

∀Bh,Ch ∈ Eh(P) :
(
Bh,Ch

)
Eh(P)

=
(
Π0Bh,Π

0Ch
)

+ Se((I −Π0)Bh, (I −Π0)Ch).

(4.29)

As before we require that Se be a continuous bilinear form satisfying

∃s∗, s∗ > 0 ∀Ch ∈ ker Π0 ∩ Eh(P) : s∗‖Ch‖20,P ≤ S
e(Ch,Ch) ≤ s∗‖Ch‖20,P. (4.30)

The norm in this space is given by

∀Ch ∈ Eh(P) : |||Ch|||Eh(P)
=
(
Ch,Ch

)1/2
Eh(P)

. (4.31)

This inner product satisfies the properties presented in the following theorem.
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Theorem 4.32.1 The inner product defined in (3.68) satisfies the accuracy property over the

space of constants. Rigorously, what we mean is that if p, q ∈ [P0(P)]2 then

(
p, q

)
Eh(P)

=
(
p, q

)
. (4.32)

Moreover, the norm this inner product defines is stable with respect to the norm in L2(P). Thus,

∃γ∗, γ∗ > 0 : ∀Ch ∈ Eh(P) : γ∗‖Ch‖20,P ≤ |||Ch|||Eh(P)
≤ γ∗‖Ch‖20,P, (4.33)

where the constants γ∗, γ∗ are independent of the mesh-size and time-step.

The proof of the above theorem is the same as the one presented for Theorem 3.50.2. Next

we will define the global approximation space as

Eh =
{
Ch ∈ H(∇·; Ω) : ∀P ∈ Ωh Ch|P ∈ Eh(P)

}
. (4.34)

This space is equipped with the following inner product:

(
Bh,Ch

)
Eh

=
∑

P∈Ωh

(
Bh|P,Ch|P

)
Eh(P)

. (4.35)

The associated norm is

∀Ch ∈ Eh : |||Ch|||Eh =
(
Ch,Ch

)1/2
Eh
. (4.36)

This norm inherits some accuracy and stability properties as a consequence of Theorem 4.32.1.

These are laid out in the following corollary:

Corollary 4.32.1 The inner product defined in (4.35) is exact for piecewise constant functions.This

is to say that if p, q are such that for any cell P in the mesh Ωh they satisfy p|P, q|P ∈ [P0(P)]2

then (
p, q

)
Eh

=
(
p, q

)
. (4.37)
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Moreover, the norm in (4.29) is equivalent to the norm in the space L2(Ω). This is to say that

there exists constants δ∗, δ∗ > 0, independent of the mesh-size and time-step such that

∀Ch ∈ Eh : δ∗‖Ch‖20,Ω ≤ |||Ch|||2Eh ≤ δ
∗‖Ch‖20,Ω. (4.38)

Finally, we define the global interpolant IEh : H(∇·; Ω)→ Eh by

∀C ∈ H(∇·; Ω) : (IEhC)|P = IEhP (C|P). (4.39)

The Orthogonal Projection Following the framework laid out in Section 2.3 in order to compute

the inner product we need only come up with a means of attaining the following quantities:

∫
P
Ch · qdV, q ∈ P1(P). (4.40)

To do this first we decompose q = ∇q + g⊥ for q ∈ P2(P) and g⊥ ∈ G1(P )⊥ yielding:

∫
P
Ch · qdV =

∫
P
Ch · ∇qdV +

∫
P
Ch · g⊥dV. (4.41)

Note that
∫

PCh · g
⊥dV can be read directly from the degrees of freedom. To compute the first

integral, we integrate by parts

∫
P
Ch · ∇qdV =

∫
P
∇ ·ChqdS −

∑
f∈∂P

∫
f
Ch · nqdS. (4.42)

Note that by definition∇ ·Ch ∈ R3. We can compute this quantity exactly using:

∇ ·Ch|P| =
∫

P
∇ ·ChdV =

∑
f∈∂P

∫
f
Ch · ndS. (4.43)

The degrees of freedom of Ch on the faces of P give enough information to compute moments
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against linear polynomials. However, q ∈ P2(f) meaning that these quantities are not available.

The solution is to realize that, since for every face f we have, by definition, that Ch · n ∈ P1(f)

then the degrees of freedom allows us to reconstruct Ch · n exactly.

Some Useful Bases: To compute a basis forG1(P) andG1(P)⊥, we use a similar argument

to the one used to compute those for R2(P) and R2(P)⊥. We can deduce that ∇ ×G1(P )⊥ =

ran∇× andG1(P)⊥ ∩ ker∇× is restricted to P3
1(P). Thus, if we write

g⊥ =


a0 + a1xP + a2yP + a3zP

b0 + b1xP + b2yP + b3zP

c0 + c1xP + c2yP + c3zP,

 (4.44)

where (xP, yP, zP) is the centroid of the cell P, then, from the fact that

∇× g⊥ =


c2 − b3

a3 − c1

b1 − a2

 (4.45)

we know thatG1(P )⊥ must be three dimensional. We can write a basis for it asB⊥G = {g⊥0 , g⊥1 , g⊥2 }

where

g⊥0 =


0

0

yP

 , g⊥1 =


zP

0

0

 , g⊥2 =


0

xP

0

 . (4.46)
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A basis forG1(P) is given by the following set of functions:

g0 =


1

0

0

 = ∇x, g1 =


x

0

0

 =
1

2
∇x2, g2 =


0

1

0

 = ∇y, g3 =


0

y

0

 =
1

2
∇y2,

g4 =


0

0

1

 = ∇z, g5 =


0

0

z

 =
1

2
∇z2, g6 =


0

z

y

 = ∇yz, g7 =


z

0

x

 = ∇xz,

g8 =


y

x

0

 = ∇xy.

4.4 The De-Rham Complex and the Condition on the Divergence ofBh

Similar to the case in two dimensions, the three dimensional spaces H(∇×; Ω), H(∇·; Ω)

and L2(Ω) form a De-Rham complex of the form

H(∇×; Ω)
∇×−−−−→ H(∇·; Ω)

∇·−−−−→ L2(Ω). (4.47)

The VEM we developed in this chapter will also form a similar chain. However, first we must

introduce a discrete version of the space L2(Ω) which we denote as Ph. Locally, over a cell

P ∈ Ωh the space is defined as Ph(P) = P0(P). While globally we can define

Ph =
{
qh ∈ L2(Ω) : ∀P ∈ Ωh qh|P ∈ Ph(P)

}
. (4.48)
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The set of degrees of freedom, the inner product and the interpolating operator in this space are

the same as those presented in Section 3.6. The discrete form of the chain in (4.47) is given by

Vh
∇×−−−−→ Eh

∇·−−−−→ Ph. (4.49)

We summarize the main results of regarding this chain the following theorem.

Theorem 4.40.1 The chain presented in (4.49) is exact. Moreover, the diagram

H(rot; Ω)
∇×−−−−→ H(div; Ω)

∇·−−−−→ L2(Ω)yIVh yIEh yIPh
Vh

∇×−−−−→ Eh
∇·−−−−→ Ph

(4.50)

is commutative.

The proof of the above theorem is similar to the one presented for Theorem 3.70.1. We will omit

this proof and refer interested readers to [16]. Using the result of Theorem 4.40.1 we can show

that, at the discrete level, the divergence of the magnetic field will be zero.

Corollary 4.40.1 The solution to the variational formulation (4.4) will satisfy

∀n ∈ N : divBn
h = 0. (4.51)

The proof of this corollary is identical to the one presented for Corollary 3.70.1.

4.41 Computing the Curl

In this section we will characterize, for each cell P in Ωh, the function ∇ ×Dh ∈ Eh(P)

with Dh ∈ Vh(P ). We can do this by computing its degrees of freedom. They are, in fact,

computable from the degrees of freedom in Vh(P ).

• Degrees of Freedom over Faces. Let f ∈ ∂P, q ∈ P1(f) and note that Stokes’s Theorem
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yields the following integration by parts formula:

∫
f
q∇×Dh · ndS =

∫
∂f
qDh · td`−

∫
f
∇q ×Dh · ndS. (4.52)

The line integrals can be read from the degrees of freedom ofDh. The identity

∫
f
∇r ×Dh · ndS =

∫
f
Dh · ∇r × ndS, (4.53)

reveals that, since ∇P2(f) ⊂ [P1(f)]2, the second face integral can also be read from the

degrees of freedom.

• Degrees of Freedom over Cells Let g⊥ ∈ G1(P )⊥ then from the following vector calculus

identity

∇ · (Dh × g⊥) = (∇Dh) · g⊥ −Dh · (∇× g⊥), (4.54)

we have that

∫
P
∇×Dh · g⊥ =

∫
P
Dh · ∇ × g⊥dV +

∑
f∈∂P

∫
f
Dh · g⊥ × ndS. (4.55)

Since ∇× : G1(P)⊥ → [P0(P)]3 is an isomorphism the volume integral in the right hand

side can be read from the degrees of freedom of Dh. To compute the surface integrals in

(4.55) note that, since g⊥ × n lies on the plane f, we can decompose

∫
f
Dh · g⊥ ×ndS =

∫
f
Dh · rot rdS +

∫
f
Dh · r⊥dS, r ∈ P3(f), r⊥ ∈ R2(f). (4.56)

The integral
∫

fDh · r⊥dS is part of the degrees of freedom. To compute the first integral

we need to reconstruct rotDf
h ∈ P1(P). The coefficients necessary can be found after

application of an integration by parts formula and the identity Dh · rot r = Df
h · rot r
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yielding

∀r ∈ P1(f) :

∫
f
rotDf

hrdS =

∫
f
Dh · rot rdS +

∑
e∈∂f

∫
e
Df
h · trd`. (4.57)

Then, we can use the same formula

∀r ∈ P3(f) :

∫
f
Dh · rot rdS =

∑
e∈∂f

∫
e
Df
h · trdS −

∫
f
rotDf

hrdS. (4.58)

where each quantity is now computable.

4.5 Extensions To Higher Order

In this section we will briefly introduce the generalization to arbitrary orders of the virtual

elements we presented in this section. In the above, and throughout this section f represents a face

of the polyhedron P. The general form of the space Vkh(P) is given by:

Vkh(P) =
{
Dh ∈ H(∇×; P) ∩H(∇·; P) : ∀ f ∈ ∂P Dh|f ∈ Bk(f)

∇ · vh ∈ Pk−1(P) and ∇×∇×Dh ∈ Rk−2(P)
}
, (4.59)

where the boundary space Bk(∂P) is given by

Bk(f) =
{
Dh ∈ H(div; f) ∩H(rot; f) : ∀Dh · t ∈ Pk(e),

divDh ∈ Pk−1(f) and rot rotDh ∈ Rk−2(f)
}
. (4.60)

For a functionDh ∈ Vkh(P) the set of degrees of freedom are:

• For every face f,
∫

fDh · r dS for r ∈ Rk(f)⊥.

• For every face f,
∫

fDh · r dS for r ∈ Rk−2(f).
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• The moments
∫

PDh · c dV for c ∈ Rk(P)⊥.

• The moments
∫

PDh · c dV for c ∈ Rk−2(P).

The second space in the chain, Ekh(P), which will be used to approximate the magnetic field, is

Ekh(P) =
{
Ch ∈ H(∇·; P) ∩H(∇×; P) : ∀f ∈ ∂P Ch · n ∈ Pk(f)

∇∇ ·wh ∈ Gk−2(P) and ∇×Dh ∈ Rk−1(P)
}
. (4.61)

For a function Ch ∈ Ekh(P) the degrees of its freedom are:

• For every face f,
∫

fCh · nq dS, q ∈ Pk(f).

• The moments
∫

PCh · q dV , q ∈ Gk−2(()P).

• The moments
∫

PCh · q dV , q ∈ Gk − 2(P)⊥.

The final space is Pkh(P) := Pk(P) along with the degrees of freedom given by the moments∫
P phq dV for ph ∈ Pkh(P) and q ∈ Pk(P).

Remark 5 We note that the schemes developed using the virtual elements of this section are of

k-th order for the electric field and k − 1-th order for the magnetic field in space. The temporal

convergence should be quadratic for θ = 1/2 and linear otherwise. We note that higher order

schemes in time can be achieved by using a Runge-Kutta method, for example. However, special

care needs to be taken in order to guarantee that the divergence of the magnetic field remains

within the machine epsilon. The precise conditions for high order schemes in time that also pre-

serve this condition on the magnetic field are a topic of future research.

4.6 Conclusions

In this chapter we developed a VEM for the three dimensional system modeling the kine-

matics of MHD. In Section 4.3 we presented each of the virtual element spaces that are necessary
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as well as methods for computing important projectors in each of these spaces. In the process of

defining each of these we introduced several polynomial spaces and their bases. These are impor-

tant when computing the set of degrees of freedom. Next, in Section 4.4 we showed that these

spaces form a commuting De-Rham complex. Using this result we were able to prove that our

scheme will, at the discrete level, provide us with solenoidal magnetic fields. Furthermore, this

diagram also allows us to come up with a means of characterizing the curl of a function in Vh.

We closed this chapter with Section 4.5, a brief discussion about the general form of these virtual

element spaces. These are useful for higher order methods.

In this chapter we did not present much analysis of the VEM. However, the energy and

well-posedness results of Sections 3.9 and 3.10 are valid for the elements we presented here as

well.
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5. COUPLING THE FLUID FLOW

5.1 Introduction

In Chapter 3., we considered a numerical discretization for the electromagnetic sub-model

of MHD. In this chapter we will couple the electromagentic sub-model with a model for the

fluid flow, and we will extend the numerical discretization from Chapter 3. to obtain a complete

simulation of MHD in two dimensions.

In Section 5.2 we derive from physical principles the set of equations that will describe

the mechanical behavior of a magnetized fluid. This section should be read in conjunction with

Section 3.2 where the electromagnetic model is presented. Having derived a model we proceed

in Section 5.3 to present the continuous and discrete variational formulations. The definition of

the spaces and operators in the discrete variational formulation are a topic for Section 5.4. Here

we will also describe how the inner product in these spaces is computed. Next, in Section 5.5

we show that the discrete system satisfies desirable energy estimates. This problem is non-linear

therefore we must come up with a linearization strategy to approximate the solution. This strategy

is presented in Section 5.6 where we also show that the linearization does not alter the divergence-

free nature of the magnetic field. This condition was first introduced in Gauss’s Law in Section 3.2.

Its importance is laid out in the concluding remarks of Section 3.7. The linearization will lead to

solving a series of linear systems at every time step. We will show that this linear problem is

well-posed in Section 5.7. We note that the contents of Section 5.5 and 5.7 are generalizations

of the results in Sections 3.9 and 3.10. We finish this chapter with Section 5.8, a summary of the

conclusions that we can draw from the results presented throughout this chapter.
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5.2 The Mechanical Model

In this section we derive a model that describes the mechanics of a magnetized fluid. This

derivation is very standard; interested readers are referred to [51, 73] for a wider discussion in

MHD. For a discussion on fluid mechanics in general see [8] for a beginner’s introduction, [65]

for a more advanced exposition. For mathematicians or those interested in the mathematics of

fluid mechanics, see [34].

Consider that a magnetized fluid is encapsulated by a domain Ωin three spatial dimensions.

Let V be an arbitrary open set contained in Ω. In physics, the set V is referred to as a fluid parcel.

First we will consider the law of conservation of mass. This principle claims that mass cannot be

created nor destroyed. Thus, the mass of the fluid parcel V can only change if some of the fluid

either escapes or enters through the boundary of V . In mathematical terms this implies that the

rate of change of the mass in V is the flux of mass across the surface ∂V , or equivalently

∂

∂t

∫
V
ρdV = −

∫
∂V
ρu · ndS. (5.1)

Here ρ is the mass density, u is the velocity profile of the fluid and n is a normal vector that points

out of the parcel V . Passing the time derivative through the integral and applying the Divergence

Theorem we obtain that ∫
V

(
∂

∂t
ρ+∇ · (ρu)

)
dV = 0. (5.2)

Finally, since the above is true for every fluid parcel we can conclude that

∂

∂t
ρ+∇ · (ρu) = 0. (5.3)

Equation (5.3) is the first in our model. The second equation that we require in our model involves
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a balance of forces in the parcel. First we introduce the momentum in V , it is given by

m =

∫
V
ρudV. (5.4)

When we study the rate of change of M we must consider that there are two reasons why M

changes. The first is because the integrand ρu itself is changing. The second reason is because, as

momentum changes, the shape of V is deformed. Leibniz’s rule is designed to take both of these

causes into consideration, thus we use

∂

∂t
m =

∫
V

∂

∂t
ρudV +

∫
∂V
ρu(u · n)dS. (5.5)

Note that equation (5.5) is a vector identity. The i−th coordinate of the identity in (5.5) is given

by
∂

∂t
mi =

∫
V

∂

∂t
(ρui)dV +

∫
∂V
ρui(u · n)dS. (5.6)

Next, we apply the Divergence Theorem to find that

∂

∂t
mi =

∫
V

∂

∂t
(ρui) +∇ · (ρuiu)dV =

=

∫
V

[(
∂

∂t
ρ+∇ · (ρu)

)
ui + ρ

∂

∂t
ui + ρu · ∇ui

]
dV. (5.7)

If we recall the statement of the law of conservation of mass (5.3) we obtain, in vector form the

expression:
∂

∂t
m =

∫
V

(
ρ
∂

∂t
u+ ρ(u · ∇)u

)
dV. (5.8)

Equipped with a means of computing the time derivative of the momentum we now introduce

Newton’s Second Law which explains explains that momentum in a mechanical system changes

only if a force is applied and the rate of change is the sum of the forces. In the fluid parcel we

consider three forces. The first is the force that the electromagnetic field applies on V , this is given
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by the Lorentz force and given by the expression

F1 =

∫
V
J ×BdV. (5.9)

This force was discussed in detail in Section 3.2 thus we avoid the discussion here. The second

force we consider is that of an external agent. We will assume the force density f is known to us,

hence it is given by

F2 =

∫
V
fdV. (5.10)

The third force that we consider is the force that fluid parcels surrounding V exert on V . In

this manuscript we will consider fluids that are Newtonian and isotropic. For these fluids we can

consider that this force is given by

F3 =

∫
∂V

(µ∇u− pI)dS =

∫
V

(µ4u−∇p) dV. (5.11)

The constant µ is the viscosity of the fluid, p is the pressure applied to the fluid and I is the identity

matrix. Thus, Newton’s Second Law predicts that

∂

∂t
m = F1 + F2 + F3. (5.12)

Putting (5.8), (5.9), (5.10), (5.11) and (5.12) we arrive at

∫
V

(
ρ
∂

∂t
u+ ρ(u · ∇)u− µ4u− J ×B +∇p

)
dV =

∫
V
fdV. (5.13)

Since the parcel V was selected arbitrarily then the following identity must hold

ρ
∂

∂t
u+ ρ(u · ∇)u− µ4u− J ×B +∇p = f . (5.14)
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Formally the model is the system

ρ
∂

∂t
u+ ρ(u · ∇)u− µ4u− J ×B +∇p = f , (5.15a)

∂

∂t
ρ+∇ · (ρu) = 0. (5.15b)

We will make two final simplifications. The first is that we will consider that the mass den-

sity will remain constant implying that ∂
∂tρ = 0 yielding that the expression for conservation of

mass (5.15b) is simply

∇ · u = 0. (5.16)

The second is that we will only consider slow flows. In this case the only term that is quadratic in

the velocity, namely (u · ∇)u, is much smaller than the rest appearing in (5.15a). In this case we

can simplify the expression in (5.15a) to

ρ
∂

∂t
u− µ4u− J ×B +∇p = f . (5.17)

We are interested in the dimensionless version of this model. To arrive at such an equation

we make the substitutions

u′ =
u

U
, p′ =

p

ρU2
, f ′ = f

ρL

U2
, J ′ =

J

J
, B′ =

B

B
(5.18)

∂

∂t′
= T

∂

∂t
, ∇′ = L∇ , 4′ = L24 (5.19)

where U,B, J are the characteristic strengths of the velocity, magnetic field and current density

respectively, and T, L are characteristic time and length scales, respectively. The resulting expres-

sion is

∂

∂t′
u′ −R−1

e 4′u′ − SJ ′ ×B′ +∇′p′ = f ′, Re =
ρLU

µ
, S =

σBLJ

ρU2
. (5.20)
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The constant σ is the electric conductivity of the medium. This constant was introduced in Sec-

tion 3.2. The constantsRe and S are referred to as the viscous Reynold’s number and the coupling

number. We subsequently drop the prime notation.

5.3 The Continuous and Discrete Variational Formulations

Consider a bounded and open region of R2, denote this region by Ω. Further consider that

in Ω there is a magnetized fluid. We combine the electromagnetic model derived in Section 3.2

together with the mechanical model presented in Section 5.2 to come up with a description of the

flow of this fluid. The result is:

Conservation of Momentum :
∂

∂t
u−R−1

e 4u− J ×B +∇p = f in Ω, (5.21a)

Faraday’s Law :
∂

∂t
B + rotE = 0 in Ω, (5.21b)

Ohm’s Law : J = E + u×B in Ω, (5.21c)

Ampere’s Law : J −R−1
m rotB = 0 in Ω, (5.21d)

Conservation of Mass : divu = 0 in Ω. (5.21e)

We note that in this model we are taking the particular case where S = 1. We consider the

following initial conditions

u(0) = u0, and B(0) = B0 in Ω. (5.22)

As we discussed in Subsections 3.2 and 3.7 it is imperative that we satisfy Gauss’s law for the

magnetic field. According to Faraday’s law, see Section 3.2, to do this we need only include the

condition that

divB0 = 0. (5.23)
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We close the system by adding the boundary conditions

u = ub and E = Eb along ∂Ω. (5.24)

Note that, according to the divergence Theorem and the law of conservation of mass (5.21e) we

have that ∫
∂Ω
u · nd` =

∫
Ω

divudA = 0. (5.25)

So, in order to be consistent with this condition we will require that the boundary conditions on

the velocity field satisfy ∫
∂Ω
ub · nd` = 0. (5.26)

Here, like we did in chapter 3, we will consider a two dimensional model. The velocity field and

magnetic fields are two dimensional whereas the pressure, current density and electric fields are

one dimensional.

The general strategy of the VEM requires a variational formulation the problem 5.21. Con-

sider the spaces

H1(Ω) =
{
v ∈ L2(Ω) : ∇v ∈ [L2(Ω)]2

}
, (5.27)

H1
0 (Ω) =

{
v ∈ H1 : v|∂Ω = 0

}
, (5.28)

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
qdA = 0

}
, (5.29)

C1
(

[0, T ],
[
H1(Ω)

]2)
=

{
v : [0, T ]→

[
H1(Ω)

]2
: v and

∂

∂t
v are continuous

}
, (5.30)

C
(
[0, T ], L2

0(Ω)
)

=
{
q : [0, T ]→ L2

0(Ω) : q is continuous
}
. (5.31)

Then, the variational formulation of (5.21) is given by

Find (u,B, E, p) ∈ C1
(

[0, T ],
[
H1(Ω)

]2)×C1 ([0, T ], H(div; Ω))×C ([0, T ], H0(rot; Ω))×
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C
(
[0, T ], L2

0(Ω)
)

such that for any (v,C, D, q) ∈
[
H1

0 (Ω)
]2×H(div; Ω)×H0(rot; Ω)×L2

0(Ω)

it holds

( ∂
∂t
u,v

)
+R−1

e

(
∇u,∇v

)
−
(
J ×B,v

)
−
(
p, divv

)
=
(
f ,v

)
, (5.32a)

(
divu, q

)
= 0, (5.32b)( ∂

∂t
B,C

)
+
(
rotE,C

)
= 0, (5.32c)

(
J,D

)
−R−1

m

(
B, rotD

)
= 0, (5.32d)

J = E + u×B, u(·, 0) = u0, B(·, 0) = B0 with divB0 = 0. (5.32e)

Implicit above is the condition that the velocity and electric fields satisfy the boundary conditions

(5.24) and that the condition on the velocity field satisfies (5.25). We note that many of the spaces

in the formulation (5.32) spaces were introduced in Section 3.3.

The modeling spaces presented in the variational formulation (5.32) are infinite in dimen-

sion. This makes it impossible to compute the exact solution. Instead we introduce a mesh of

the domain Ω denoted by Ωh and with mesh size h > 0. On this mesh we can define the spaces

T Vh, T Vh,0, Eh,Vh,Vh,0,Ph and Ph,0. The spaces Eh,Vh,Vh,0,Ph were rigorously defined in

Sections 3.5, 3.4 and 3.6 respectively. They serve as discrete versions of H(div; Ω), H(rot; Ω),

H0(rot; Ω) and L2(Ω) respectively. The newly introduced spaces are T Vh, T Vh,0 andPh,0. Their

formal definition is the topic of Section 5.4. They are discrete versions of
[
H1(Ω)

]2
,
[
H1

0 (Ω)
]2

and L2
0(Ω) respectively. Like their continuous counterparts these spaces satisfy

T Vh,0 ⊂ T Vh, Vh,0 ⊂ Vh, Ph,0 ⊂ Ph. (5.33)

These spaces are finite dimensional. However, their dimension is fully dependent on the mesh

size, as h → 0 their dimension skyrockets to infinity and they approach spaces that are dense in
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their continuous counterparts.

There are mappings that embed the continuous spaces into their discrete versions, they are

denoted as IT Vh , IEh , IVh and IPh . The geometry in these spaces is defined by an inner product

that serves as an estimate to the L2(Ω) inner product. They are

(
uh,vh

)
T Vh
≈
(
uh,vh

)
,
[
uh,vh

]
T Vh

≈
(
∇uh,∇vh

)
, (5.34)(

Bh,Ch
)
Eh
≈
(
Bh,Ch

)
,
(
Eh, Dh

)
Vh
≈
(
Eh, Dh

)
,
(
ph, qh

)
Ph
≈
(
ph, qh

)
. (5.35)

Now we introduce the discrete variational formulation.

Find
{

(unh,B
n
h )
}N
n=0
⊂ T Vh × Eh and

{
(En+θ

h , pn+θ
h ))

}N−1

n=0
⊂ Vh × Ph,0 such that for all

(vh,Ch, Dh, qh) ∈ T Vh,0 × Eh × Vh,0 × Ph,0 it holds:

(un+1
h − unh

∆t
,vh

)
T Vh

+R−1
e

[
un+θ
h ,vh

]
T Vh

+
(
Jn+θ
h , IVh(vh ×ΠRTBn+θ

h )
)
Vh

(1)

−

−
(

divvh, pn+θ
h

)
Ph

=
(
fh,vh

)
T Vh

, (5.36a)(
divun+θ

h , qh

)
Ph

= 0, (5.36b)

(Bn+1
h −Bn

h

∆t
,Ch

)
Eh

+
(
rotEn+θ

h ,Ch

)
Eh

= 0, (5.36c)

(
Jn+θ
h , Dh

)
Vh
−R−1

m

(
Bn+θ
h , rotDh

)
Eh

= 0, (5.36d)

un+θ
h = (1− θ)unh + θun+1

h , Bn+θ
h = (1− θ)Bn

h + θBn+1
h , (5.36e)

Jn+θ
h = En+θ

h + IVh(un+θ
h ×ΠRTBn+θ

h ), (5.36f)

u0
h = IT Vh(u0), B0

h = IEh(B0) with divB0 = 0. (5.36g)

As was the case in the continuous variational formulation. Here, we leave implicit that

Eh = IVh(Eb) and uh = IT Vh(ub) along ∂Ω. (5.37)
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The term labeled (1) in (5.36a) comes about from the approximation:

−
(
J ×B,v

)
=
(
J,v ×B

)
≈
(
Jh, IVh(vh ×Bh)

)
Vh

(5.38)

The reason we go through this trouble will become clear in Section 5.5 when we come up with

stability estimates in the L2(Ω) norm.

5.4 The Virtual Elements

The conforming virtual element space used in the discretization of the fluid-flow equations

in (5.21) was originally proposed in [44, 45, 90], we note that there are VEMs for non-conforming

approximations, see [29]. Here, we consider the enhanced formulation introduced in [90]. This

formulation allows us to compute the L2−orthogonal projection onto the largest polynomial sub-

space contained in the space of shape functions. Such operator is used in the construction of the

approximate mass matrices.

The first, and simplest, space that we introduce is Ph,0. This space is defined as

Ph,0 =

{
qh ∈ Ph :

∫
Ω
qhdA = 0

}
. (5.39)

The construction ofPh is the topic of Section 3.6. To functions qh ∈ Ph,0 we associate the integral

over every cell as the set of degrees of freedom, formally we refer to the quantities:

∀P ∈ Ωh :

∫
P
qhdA. (5.40)

We note that they are equivalent to those in Ph, we remind the reader that these were

∀qh ∈ Ph ∀P ∈ Ωh :
1

|P|

∫
P
qhdA. (5.41)
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There is a simple correspondence between the two sets of degrees of freedom so that if one is

known the other one can be immediately attained. We do this simply because computing the

integral over Ph,0 of a function qh ∈ Ph,0 is simpler with this set of degrees of freedom, it is the

sum of them. This is to say that

∫
Ω
qhdA =

N∑
i=0

dofi(qh). (5.42)

Next we focus on the construction of the space we will use to approximate the velocity

field. Consider a cell P in the mesh Ωh. The construction of begins with the definition of the

following sets:

B (∂P) :=
{
v ∈ C0(∂P) : ∀e ∈ ∂P v|e ∈ P2(e)

}
, (5.43)

Vh(P) :=
{
vh ∈

[
H1(P)

]2
: vh|∂P ∈ (B (∂P))2 , divvh ∈ P0(P),

−4vh −∇s = 0 for some s ∈ L2
0(P)

}
. (5.44)

To a function vh ∈ Vh(P) we associate the following degrees of freedom

• (D1): pointwise evaluations of vh at the vertices of P;

• (D2): pointwise evaluations at vh at the midpoint of the edges of ∂P.

We note that Vh(P) is unisolvent with this set of degrees of freedom. This result is documented

in the following Theorem:

Theorem 5.40.1 Proof. The domain P, the space of shape functions Vh(P) and the degrees of

freedom (D1) and (D2) form a unisolvent finite element.

Let {vi : 1 ≤ i ≤ nv} and {v1/2
i : 1 ≤ i ≤ ne} represent the set of vertices and midpoint of

edges in P respectively. Consider U := {uih : 1 ≤ i ≤ 2nv} and V := {vih : 1 ≤ i ≤ 2ne} to be
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defined as the solution to

4uih +∇pi = 0 in P,

divuih =

∫
∂P
uihds in P,

uih(vj) =

δi,j
0

 , uih(v1/2
i ) =

0

0

 ,

∀e ∈ ∂P : uh|e ∈ P2(e),

4ui+nv
h +∇pi+nv = 0 in P,

divui+nv
h =

∫
∂P
ui+nv
h ds in P,

unv+i
h (vj) =

0

0

 , ui+nv
h (v1/2

i ) =

δi,j
0

 ,

∀e ∈ ∂P : uh|e ∈ P2(e),

4vih +∇qi = 0 in P,

divuih =

∫
∂P
uihds in P,

vih(vj) =

 0

δi,j

 , uih(v1/2
i ) =

0

0

 ,

∀e ∈ ∂P : vh|e ∈ P2(e),

4vi+nv
h +∇qi+nv = 0 in P,

divvi+nv
h =

∫
∂P
vi+nv
h ds in P,

vnv+i
h (vj) =

0

0

 , vi+nv
h (v1/2

i ) =

 0

δi,j

 ,

∀e ∈ ∂P : uh|e ∈ P2(e).

(5.45)
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Here the pi, qi ∈ L2
0(Ω) and

δi,j =


1 if i = j,

0 otherwise.
(5.46)

The existence and uniqueness of these functions follow from the well-posedness of the differential

equations presented, see [20]. The set U ∪ V makes a basis for Vh(P) proving that the dimension

of the space Vh(P) agrees with the number of degrees of freedom. To check unisolvency we need

only show that if the degrees of freedom of a function uh ∈ Vh(P) are all null then that function

must be identically zero. For such a function, by definition, there exists s ∈ L2
0(Ω) such that uh

and s satisfy

4uh +∇s = 0 in P, (5.47a)

divuh = 0 in P, (5.47b)

uh = 0 on ∂P. (5.47c)

which is a problem whose unique solution is uh ≡ 0. This implies that the map that sends

elements in T Vh(P) to its degrees of freedom has a trivial kernel, thus it is injective. And, any

injective linear map whose domain and range have the same dimension must be in fact a bijection.

In the space Vh(P) the stiffness matrix used to approximate the bilinear form

∀u,v ∈
[
H1(P)

]2
: a(u,v) =

∫
P
∇u · ∇vdA (5.48)

is computable. For us to show how this is done we begin by introducing the space of polynomials:

P(P) = {q ∈ P2(P) : div q ∈ P0(P)} . (5.49)

Note that [P (P)]2 is the largest polynomial space contained in Vh(P). Thus, following the
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methodology laid out in Section 2.3 we define the projector Π∇P : Vh(P)→ [P(P)]2 such that for

vh ∈ Vh(P) the polynomial Π∇P vh is the solution to the following variational problem

∀q ∈
[
P(P)

]2
:

∫
P
∇Π∇P vh · ∇qdA =

∫
P
∇vh · ∇qdA, (5.50a)

P0

(
Π∇P vh

)
= P0(vh). (5.50b)

Where P0 is given by

∀vh ∈ Vh : P0(vh) =
∑

v

vh(v). (5.51)

The sum above is taken over the nodes of P and the midpoint of every edge of ∂P. To make

computations using this projector a series of matrices need to be constructed, see Section 2.3.

Most of these are standard for any bilinear form. However, the entries of the matrix B, in the

notation of that chapter, requires that we compute the following quantities

∀vh ∈ Vh∀q ∈ [P(P)]2 : a(uh, q) =

∫
Ω
∇vh · ∇qdA (5.52)

To do this note this we begin by applying Green’s Theorem. Note that if vh ∈ Vh(P) and q ∈

[P(P)]2 then ∫
P
∇vh · ∇qdA =

∫
∂P
vh∇qnd`−

∫
P
vh · 4qdA (5.53)

Moreover, since 4q ∈ [P0(P)]2 then there exists g ∈ P1(P) such that 4q = ∇g. We can

substitute this identity back into equation (5.53) and apply Green’s Theorem again to obtain

∫
P
∇vh · ∇qdA =

∫
∂P
vh · ∇qnd`−

∫
P
vh · 4qdA =

=

∫
∂P
vh · ∇qnd`+

∫
P
(divvh)gdA−

∫
∂P
gvh · nd` =

= (T1) + (T2)− (T3). (5.54)
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Note that along the each edge e ∈ ∂P the function vh must be a quadratic polynomial by defi-

nition. Hence the boundary integrals in terms (T1) and (T3) in equation (5.54) are integrals of

polynomials. In this case we can find quadrature rules to compute them exactly using the eval-

uations found in the degrees of freedom (D1) and (D2). Regarding term (T2) we will show

that divvh ∈ P0(P) is computable using only the information obtained in the set of degrees of

freedom. Note that in one hand ∫
P

divvh = divvh|P|. (5.55)

And, in the other hand ∫
P

divvh =

∫
∂P
vh · nd`. (5.56)

implying that

divuh =
1

|P|

∫
∂P
vh · nd`. (5.57)

We have arrived at a formula for computing the divergence of vh that only requires boundary

information. And, as we mentioned before, this information can be extracted from the degrees

of freedom (D1) and (D2). Following the steps laid out in Section 2.3 we can construct an

approximation to the bilinear from in (5.48). Since the bilinear form (5.54) can be approximated

in Vh(P) then the space Vh(P) can be used to come up with approximations to the stationary

Stokes equations:

−4u−∇p = f in Ω. (5.58a)

divu = 0. (5.58b)

For which the variational formulation is: find (u, p) ∈ C1
(

[0, T ],
[
H1(Ω)

]2)×C ([0, T ], L2
0(Ω)

)
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such that

∀v ∈
[
H1(Ω)

]2
:
(
∇u,∇v

)
+
(
divv, p

)
= 0, (5.59a)

∀q ∈ L2
0(Ω) :

(
divu, q

)
= 0. (5.59b)

For further detail on how this is done we refer the reader to [44]. However, in the space Vh(P) it

is not possible to compute the mass matrix used to compute the bilinear form

∀u,v ∈
[
H1(Ω)

]2
: a(u,v) =

(
u,v

)
. (5.60)

Hence approximating the terms involving the time derivative of the velocity field in the variational

formulation (5.32a) will require further treatment. We will apply the enhancement strategy in

[90]. First, we introduce the spaces:

G2 (P) := ∇P3(P), G⊥2 (P) := {g⊥ ∈ [P2(P)]2 : ∀g ∈ G2 (P)
(
g⊥, g

)
= 0}, (5.61)

Uh(P) :=

{
vh ∈

[
H1(P)

]2
: vh|∂P ∈ [B (∂P)]2 ,
∃s ∈ L2

0(P),∃g⊥ ∈ G⊥2 (P) : −4vh −∇s = g⊥,

divvh ∈ P0(P)

}
. (5.62)

We note that the projector Π∇P defined in (5.50) can be extended to Uh(P). And, it is computable

using only the information in the degrees of freedom (D1) and (D2). In fact the same construction

presented in the case of Vh(P) applies for Uh(P). However, the space Uh(P) is not unisolvent

when equipped with these degrees of freedom. Thus, we consider a subspace of Uh(P), denoted

T Vh(P), that is unisolvent. Formally T Vh(P) is defined as

T Vh(P) :=
{
vh ∈ Uh(P) : ∀g⊥ ∈ G⊥2 (P) /R2

(
vh −Π∇P vh, g

⊥
)

= 0
}
. (5.63)
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This space is unisolvent if we equip it with the degrees of freedom (D1) and (D2). Hence we can

define IT Vh : C∞(Ω) → T Vh such that the degrees of freedom of u ∈ C∞(Ω) and IT Vh

P (u)

agree. This map can be extended continuously to IT Vh

P :
[
H1(Ω)

]2 → T Vh.

In the space T Vh(P) we define the projector Π0
P : T Vh(P)→ P(P). When Π0 is evaluated

at a function vh ∈ T Vh(P) the resulting polynomial comes about as the solution to the variational

problem

∀q ∈ P(P) :
(
Π0

Pvh − vh, q
)

= 0. (5.64)

We can show that Π0
P is computable using only (D1) and (D2). Let vh ∈ T Vh(P) and q ∈ P(P).

We can write

q = ∇g + g⊥ (5.65)

Where g ∈ P3(P). Thus, we have that

∫
P
vh · qdA =

∫
P
vh · ∇gdA+

∫
P
vh · g⊥dA. (5.66)

We can use Green’s Theorem to compute

∫
P
vh · ∇gdA =

∫
∂P
vh · ngd`−

∫
P

divvhgdA. (5.67)

Since vh is a polynomial when restricted to each edge then the boundary integral above is com-

putable. Moreover, we can use (5.57) to compute the divergence of vh and thus the area integral

is also computable. We can also compute the second integral in (5.66) but first we write

g⊥ = c+ (g⊥ − c), c =
1

|P|

∫
P
g⊥dA. (5.68)

Since c ∈ P0(P) then we can find q ∈ P1(P) such that

∇q = c. (5.69)
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So we can use the following formula.

∫
P
vh · cdA =

∫
∂P
qvh · nd`−

∫
P

divvhqdA. (5.70)

Finally, we note that g⊥ − c ∈ G⊥2 (P) /R2 so by definition of the space T Vh(P) we can use

∫
P
vh · (g⊥ − c)dA =

∫
P

Π∇P vh · (g
⊥ − c)dA. (5.71)

We note that in order to compute the necessary integrals necessary we can divide P into a series

of triangles {Ti}. Over each of these triangles we require a fourth order quadrature in order to

compute the integrals above. We use the quadrature presented in [86].

Having defined and computed the projectors Π0
P and Π∇P in the space T Vh(P). We are

ready to define the inner product and semi-inner product in T Vh(P) they are

∀uh,vh ∈ T Vh(P) :(
uh,vh

)
T Vh(P)

=
(
Π0

Puh,Π
0
Pvh

)
+ ST Vh

P

(
(I −Π0

P)uh, (I −Π0
P)vh

)
, (5.72)

[
uh,vh

]
T Vh(P)

=
(
∇Π∇P uh,∇Π∇P vh

)
+ T T Vh

P

(
∇(I −Π∇P )uh,∇(I −Π∇P )vh

)
. (5.73)

The function I is the identity mapping. As was the case in the definition of the inner product in

Vh(P) and Eh(P) we require that ST Vh

P and T T Vh

P be a continuous bilinear forms satisfying

∃ s∗, s∗ > 0 ∀vh ∈ T Vh(P) ∩ kerΠ0 : s∗‖vh‖20,Ω ≤ S
T Vh
P (vh,vh) ≤ s∗‖vh‖20,Ω,

∃ t∗, t∗ > 0 ∀vh ∈ T Vh(P) ∩ kerΠ∇P : t∗‖∇vh‖20,Ω ≤ T
T Vh
P (∇vh,∇vh) ≤ t∗‖∇vh‖20,Ω.

(5.74)

Like before we refer the reader to [49, 71] for more examples of such bilinear forms. The inner

and semi-inner products defined in (5.72) satisfy two fundamental properties: consistency and

stability. These are presented in the following theorem:
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Theorem 5.40.2 Let
(
·, ·
)
T Vh(P)

and
[
·, ·
]
T Vh(P)

be the two inner and semi-inner products de-

fined in (5.72). The following two properties hold:

• polynomial consistency: for every vh ∈ T Vh(P) and vector polynomial q ∈ [P2(P)]2 it

holds that:

(
vh, q

)
T Vh(P)

=
(
vh, q

)
,
[
vh, q

]
T Vh(P)

=
(
∇vh,∇q

)
. (5.75)

• stability: there exists two pairs of positive real constants (δ∗, δ
∗) and (ε∗, ε

∗), which are

independent of mesh-size and time-step, such that for any vh ∈ T Vh(P) it holds that:

δ∗‖vh‖20,P ≤
(
vh,vh

)
T Vh(P)

≤ δ∗‖vh‖20,P, (5.76)

and

ε∗‖∇vh‖20,P ≤
[
vh,vh

]
T Vh(P)

≤ ε∗‖γvh‖20,P. (5.77)

Proof. The proof of the the above theorem is the same as the proof of Theorem 3.40.2. We

note that we have already shown that the projectors Π∇P and Π0
P satisfy properties P1 and P2 in

Section 3.4. We can use the same arguments as we did in the proof of Theorem 3.50.2 to show

that both projectors satisfy property P3 as well.

The global space T Vh is given by

T Vh =
{
vh ∈

[
H1(Ω)

]2
: ∀P ∈ Ωh vh|P ∈ T Vh(P)

}
. (5.78)
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In this space we define the the inner product and semi-inner product.

∀uh,vh ∈ T Vh :(
uh,vh

)
T Vh

=
∑

P∈Ωh

(
uh|P,vh|P

)
T Vh(P)

,
[
uh,vh

]
T Vh

=
∑
P∈Ω

[
uh|P,vh|P

]
T Vh(P)

. (5.79)

We define the norms and semi-norm in the space T Vh as

|||vh|||T Vh =
(
vh,vh

)1/2
T Vh

,
∣∣vh∣∣T Vh

=
[
vh,vh

]1/2
T Vh

, (5.80a)

|||vh|||1,T Vh =
(
|||vh|||2T Vh +

∣∣vh∣∣2T Vh

)1/2
. (5.80b)

The norm in the topological dual space of T Vh,0 denoted by T V ′h,0 is:

|||fh|||−1,T Vh
= sup
vh∈T Vh,0

(
fh,vh

)
T Vh∣∣vh∣∣T Vh

∀fh ∈ T V ′h,0. (5.81)

The global inner product, semi-inner product and the norms and semi-norm they define also satisfy

the consistency and stability properties.

Corollary 5.40.1 The norms and semi-norm in (5.80) are equivalent to the [L2(Ω)]2 and
[
H1(Ω)

]2
inner products and semi-inner product respectively. In other words, there exists η∗, η∗ > 0 inde-

pendent of mesh-size and time-step such that for any vh ∈ T Vh it holds

η∗‖vh‖20,Ω ≤ |||vh|||2T Vh ≤ η
∗‖vh‖20,Ω, (5.82a)

η∗‖∇vh‖20,Ω ≤ |||vh|||2,∇T Vh ≤ η
∗‖∇vh‖20,Ω, (5.82b)

η∗‖vh‖21,Ω ≤ |||vh|||21,T Vh ≤ η
∗‖vh‖21,Ω. (5.82c)

Proof. This result follows from Theorem 5.40.2. The techniques used are the same as those in the

proof of Corollary 3.40.1.
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Finally, we can define the global Fortin projector IT Vh to satisfy

∀P ∈ Ωh∀vh ∈ T Vh : IT Vh(vh)|P = IT Vh

P

(
vh|P

)
. (5.83)

Moreover, the space T Vh,0 is set of functions in T Vh that, where restricted to the boundary, are

null. This is to say that

T Vh,0 =
{
vh ∈ T Vh : vh|∂Ω ≡ 0

}
. (5.84)

Finally, the last result we present in this section regards the stability of approximations to problems

in fluid flow of the spaces T Vh and Ph,0. They are selected specifically to satisfy the following

inf-sup condition. This is proven in proposition 4.3 of [44].

Theorem 5.40.3 There exists a projector Πh :
[
H1

0 (Ω)
]2 → T Vh,0 that satisfies

∀qh ∈ Ph,0 :
(
div Πhv, qh

)
Ph

=
(
divv, qh

)
Ph

and |||Πhv|||1,T Vh ≤ Cπ‖v‖1,Ω, (5.85)

for every vector-valued field v ∈
[
H1

0 (Ω)
]2 and a real constant Cπ > 0 that is independent of the

mesh characteristics. Therefore, the spaces T Vh and Ph,0 are a stable inf-sup pair and satisfy the

relation:

inf
qh∈Ph,0

sup
vh∈T Vh,0

(
divvh, qh

)
Ph

|||vh|||1,T Vh |||qh|||Ph
> 0. (5.86)

We finish this section by noting that pairs of finite elements that fail to satisfy the inf-sup

condition presented in Theorem 5.40.3 will yield unstable simulations of fluid flow phenomena.

5.5 Energy Stability Estimates

The conforming nature of VEM allows us to mimic many properties that are present in

the continuous scenario. One of the more important is preserving certain types of estimates in the
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L2(Ω)−norm. These usually come about after testing the variational formulation against the exact

solution and an application of Gronwall’s Lemma. In this section, much like in Section 3.9, we

present an estimate of this type true for the continuous system (5.21) and its discrete counterpart

(6.3). We begin by presenting the decomposition

u = û+ ub, E = Ê + Eb, (5.87)

where û ∈
[
H1

0 (Ω)
]2 and Ê ∈ H0(rot; Ω). The extension to the boundary condition on the

velocity field is selected to satisfy

divub ≡ 0 in Ω, ub(x) = 0 if d(x, ∂Ω) ≥ ε. (5.88)

For h > ε > 0. We can do this by defining the domain Ωε = {x ∈ Ω : d(x, ∂Ω) < ε} and picking

such an extension as the solution to

−4ûb +∇s = 0 in Ωε, (5.89a)

div ûb = 0 in Ωε, (5.89b)

ûb = ub on ∂Ω, (5.89c)

ûb = 0 on ∂(Ω \ Ωε). (5.89d)

which is well-posed by the discussion in [20]. Finally we define

Ĵ = Ê + û×B, Jb = Eb + ub ×B. (5.90)

We do this in order to reveal the boundary information. The following theorem gives the continu-

ous energy estimate. Similar estimates are reported in [59, 67, 68].

Theorem 5.50.1 Let (u,B, E, p) solve the variational formulation (5.32) in the time interval
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[0, T ] then

1

2

d

dt

∥∥û∥∥2

0,Ω
+

1

2Rm

d

dt

∥∥B∥∥2

0,Ω
+R−1

e

∥∥∇û∥∥2

0,Ω
+
∥∥Ĵ∥∥2

0,Ω
=

=
(
f , û

)
−
( ∂
∂t
ub, û

)
−R−1

e

(
∇ub,∇û

)
−R−1

m

(
rotEb,B

)
−
(
Jb, Ĵ

)
. (5.91)

And, as a consequence it must be true that

e−T

2

∥∥û(T )
∥∥2

0,Ω
+
e−T

2Rm

∥∥B(T )
∥∥2

0,Ω
+

∫ T

0

(
e−t

2Re

∥∥∇û∥∥2

0,Ω
+
e−t

2

∥∥Ĵ∥∥2

0,Ω

)
dt ≤

≤ e−T

2

∥∥û(0)
∥∥2

0,Ω
+
e−T

2Rm

∥∥B(0)
∥∥2

0,Ω
+

+

∫ T

0

(
e−tRe‖f‖2−1,Ω +

e−t

2

d

dt

∥∥ub∥∥2

0,Ω
+R−1

e e−t
∥∥∇ub∥∥2

0,Ω
+

+
e−t

2Rm

∥∥rotEb∥∥2

0,Ω
+
e−t

2

∥∥Jb∥∥2

0,Ω

)
dt, (5.92)

Proof. Taking the test function (v,C, D, q) = (û,B, Ê, p) in the variational formulation

(5.32) yields

1

2

d

dt

∥∥û∥∥2

0,Ω
+R−1

e

∥∥∇û∥∥2

0,Ω
+
(
Ĵ , û×B

)
−
(

div û, p
)

=

=
(
f , û

)
−
( ∂
∂t
ub, û

)
−R−1

e

(
∇ub,∇û

)
−
(
Jb, û×B

)
, (5.93a)

(
div û, p

)
= 0, (5.93b)

1

2Rm

d

dt

∥∥B∥∥2

0,Ω
+R−1

m

(
rot Ê,B

)
= −R−1

m

(
rotEb,B

)
, (5.93c)

(
Ĵ , Ê

)
−R−1

m

(
B, rot Ê

)
= −

(
Jb, Ê

)
. (5.93d)
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In the above we used the identities

(
J ×B, û

)
= −

(
J, û×B

)
, divub ≡ 0. (5.94)

Adding the equations in (5.93) we arrive at (5.91). To obtain (5.92) we use

∣∣∣∣( ∂∂tub, û)
∣∣∣∣ ≤ d

dt

1

2

∥∥ub∥∥2

0,Ω
+

1

2

∥∥û∥∥2

0,Ω
, (5.95a)

∣∣∣(∇ub,∇û)∣∣∣ ≤ ∥∥∇ub∥∥2

0,Ω
+

1

4

∥∥∇û∥∥2

0,Ω
, (5.95b)∣∣∣(f , û)∣∣∣ ≤ ‖f‖−1,Ω‖∇ûh‖0,Ω ≤ Re‖f‖2−1,Ω +

1

4Re
‖∇ûh‖20,Ω (5.95c)

∣∣∣(rotEb,B)∣∣∣ ≤ 1

2

∥∥rotEb∥∥2

0,Ω
+

1

2

∥∥B∥∥2

0,Ω
, (5.95d)∣∣∣(Jb, Ĵ)∣∣∣ ≤ 1

2

∥∥Jb∥∥2

0,Ω
+

1

2

∥∥Ĵ∥∥2

0,Ω
, (5.95e)

which combined with (5.91) yields

d

dt

(
1

2

∥∥û∥∥2

0,Ω
+

1

2Rm

∥∥B∥∥2

0,Ω

)
−
(

1

2

∥∥û∥∥2

0,Ω
+

1

2Rm

∥∥B∥∥2

0,Ω

)
+

1

2Re

∥∥∇û∥∥2

0,Ω
+

1

2

∥∥Ĵ∥∥2

0,Ω
≤

≤ Re‖f‖2−1,Ω +
1

2

d

dt

∥∥ub∥∥2

0,Ω
+R−1

e

∥∥∇ub∥∥2

0,Ω
+

1

2Rm

∥∥rotEb∥∥2

0,Ω
+

1

2

∥∥Jb∥∥2

0,Ω
, (5.96)

Multiply by e−t to get

d

dt
(e−t)

(
1

2

∥∥û∥∥2

0,Ω
+

1

2Rm

∥∥B∥∥2

0,Ω

)
+
e−t

2Re

∥∥∇û∥∥2

0,Ω
+
e−t

2

∥∥Ĵ∥∥2

0,Ω
≤

≤ e−tRe‖f‖2−1,Ω +
e−t

2

d

dt

∥∥ub∥∥2

0,Ω
+ e−tR−1

e

∥∥∇ub∥∥2

0,Ω
+

e−t

2Rm

∥∥rotEb∥∥2

0,Ω
+
e−t

2

∥∥Jb∥∥2

0,Ω
,

(5.97)

integration over the time domain [0, T ] will yield estimate (5.92).



114

To present the discrete version of the estimates presented in Theorem 5.50.1 we must de-

compose

∀0 ≤ n ≤ N − 1 : En+θ
h = Ên+θ

h + IVh(En+θ
b ), un+1

h = ûn+1
h + IT Vh(un+1

b ). (5.98)

where (Ên+θ
h , ûn+θ

h ) ∈ Vh,0×T Vh,0 and Eb,ub are picked such that its evaluations in Ω \Ωε are

identically zero. The condition on the boundary data is required to guarantee that the their degrees

of freedom all lie along the boundary. Next, we define

∀1 ≤ n ≤ N : Ĵn+θ
h = Ên+θ

h + IVh(ûn+θ
h ×ΠRTBn+θ

h ),

Jn+θ
h,b = IVh(En+θ

b ) + IVh(un+θ
b ×ΠRTBn+θ

h ). (5.99)

The next result is a discrete mimicry of Theorem 5.50.1.

Theorem 5.50.2 Let
{

(unh,B
n
h )
}N
n=0
⊂ T Vh×Eh and

{
(En+θ

h , pn+θ
h ))

}N−1

n=0
⊂ Vh×Ph,0 solve

the formulation (6.3). Then, it holds that

(L1) + (L2) = (R), (5.100)

where

(L1) = ∆t
(
θ − 1/2

)( |||ûn+1
h − ûnh|||2T Vh

∆t2
+
|||Bn+1

h −Bn
h |||2Eh

∆t2Rm

)
+

+

(
|||ûn+1

h |||2T Vh − |||û
n
h|||2T Vh

2∆t
+
|||Bn+1

h |||2Eh − |||B
n
h |||2Eh

2∆tRm

)
, (5.101)

(L2) = R−1
e

∣∣ûn+θ
h

∣∣2
T Vh

+ |||Ĵn+θ
h |||2Vh +

(
div IT Vhun+θ

b , pn+θ
h

)
Ph

, (5.102)
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(R) =
(
fh, û

n+θ
h

)
T Vh

−
(IT Vhun+1

b − IT Vhunb
∆t

, ûn+θ
h

)
T Vh

−R−1
e

[
IT Vhun+θ

b , ûn+θ
h

]
T Vh

−

−
(
Jn+θ
h,b , Ĵ

n+θ
h

)
Vh
−R−1

m

(
rot IVhEn+θ

b ,Bn+θ
h

)
Eh
. (5.103)

In the case that θ ∈ [1/2, 1] then we can conclude that for any ε > 0 we have

αN
(
|||ûNh |||2T Vh +R−1

m |||BN
h |||2Eh

)
+

+
N∑
n=0

γαn
(
R−1
e

∣∣ûn+θ
h

∣∣2
T Vh

+ |||Ĵn+θ
h |||2Vh − 2ε|||pn+θ

h |||2Ph
)

∆t ≤

≤
(
|||IT Vh(u0)|||2T Vh +R−1

m |||IEh(B0)|||2Eh
)

+

+

N∑
n=0

γαn
(
Re|||fh|||2−1,T Vh

+ ∆t−1|||IT Vh(un+1
b − unb )|||2T Vh +R−1

e

∣∣IVhun+θ
b

∣∣2
T Vh

+

+
η∗

2ε

(∫
∂Ω

∣∣∣IT Vhun+θ
b · n

∣∣∣ ds)2

+R−1
m |||rot IVhEn+θ

b |||2Eh + |||Jn+θ
h,b |||

2
Vh

)
∆t, (5.104)

where η∗ > 0 is given in Theorem 5.40.1 and

α =
θ

1 + θ
, γ =

1

1 + θ
. (5.105)

In the case that walls of the domain are non-penetrating, meaning ub · n ≡ 0 along ∂Ω, then we

obtain our final energy stability estimate

αN
(
|||ûNh |||2T Vh +R−1

m |||BN
h |||2Eh

)
+

N∑
n=0

γαn
(
R−1
e

∣∣ûn+θ
h

∣∣2
T Vh

+ |||Ĵn+θ
h |||2Vh

)
≤

≤
(
|||IT Vh(u0)|||2T Vh +R−1

m |||IEh(B0)|||2Eh
)

+

+
N∑
n=0

γαn
(
Re|||fh|||2−1,T Vh

+ ∆t−1|||IT Vh(un+1
b − unb )|||2T Vh +R−1

e

∣∣IVhun+θ
b

∣∣2
T Vh

+

+R−1
m |||rot IVhEn+θ

b |||2Eh + |||Jn+θ
h,b |||

2
Vh

)
∆t. (5.106)
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Proof. Testing the formulation (6.3) against (vh,Ch, Dh, qh) = (ûn+θ
h ,Bn+θ

h , Ên+θ
h , pn+θ

h )

we obtain

( ûn+1
h − ûnh

∆t
, ûn+θ

h

)
T Vh

+R−1
e

∣∣ûn+θ
h

∣∣2
T Vh

+
(
Ĵn+θ
h , IVh(ûn+θ

h ×Bn+θ
h )

)
Vh
−

−
(

div ûn+θ
h , pn+θ

h

)
Ph

=
(
fh, û

n+θ
h

)
T Vh

−
(IT Vhun+1

b − IT Vhunb
∆t

, ûn+θ
h

)
Vh
−

−R−1
e

[
IT Vhun+θ

b , ûn+θ
h

]
T Vh

−
(
Jn+θ
h,b , I

Vh(ûn+θ
h ×ΠRTBn+θ

h )
)
T Vh

, (5.107a)

(
div ûn+θ

h , qh

)
Ph

= −
(

div IT Vhun+θ
b , qh

)
Ph

, (5.107b)

R−1
m

(Bn+1
h −Bn

h

∆t
,Bn+θ

h

)
Eh

+R−1
m

(
rot Ên+θ

h ,Bn+θ
h

)
Eh

=

−R−1
m

(
rot IVhEn+θ

b ,Bn+θ
h

)
Eh
, (5.107c)

(
Ĵn+θ
h , Ên+θ

h

)
Vh
−R−1

m

(
Bn+θ
h , rot Ên+θ

h

)
Eh

= −
(
Jh,b, Ê

n+θ
h

)
Vh
. (5.107d)

Next, note that

Bn+θ
h = ∆t

(
θ − 1/2

)Bn+1
h −Bn

h

∆t
+
Bn+1
h +Bn

h

2
, (5.108)

immediately gives that

(Bn+1
h −Bh

∆t
,Bn+θ

h

)
Eh

=

= ∆t
(
θ − 1/2

) |||Bn+1
h −Bn

h |||2Eh
∆t2

+
|||Bn+1

h |||2Eh − |||B
n
h |||2Eh

2∆t
. (5.109)

An analogous argument will yield

( ûn+1
h −Bh

∆t
, ûn+θ

h

)
T Vh

=

= ∆t
(
θ − 1/2

) |||ûn+1
h − ûnh|||2T Vh

∆t2
+
|||ûn+1

h |||2T Vh − |||û
n
h|||2T Vh

2∆t
. (5.110)
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We can use the identities (5.109) and (5.110) to transform the left hand side of (5.107a) and

(5.107c) then adding the resulting equations with (5.107b) and (5.107d) will yield (5.100). To

verify the estimate in (5.104) note that θ ∈ [1/2, 1] guarantees

(L1) ≥
|||ûn+1

h |||2T Vh − |||û
n
h|||2T Vh

2∆t
+
|||Bn+1

h |||2Eh − |||B
n
h |||2Eh

2∆t
. (5.111)

Next we apply the following estimates to the terms in (R),

−
(IT Vhun+1

b − IT Vhunb
∆t

, ûn+θ
h

)
T Vh

≤ (5.112a)

≤ 1

2∆t
|||IT Vh(un+1

b − unb )|||2T Vh +
1

2
|||ûn+θ

h |||2T Vh , (5.112b)

−
[
IT Vhun+θ

b , ûn+θ
h

]
T Vh

≤
∣∣IVhun+θ

b

∣∣2
T Vh

+
1

4

∣∣ûn+θ
h

∣∣2
T Vh

, (5.112c)

(
fh, ûh

)
T Vh

≤ Re|||fh|||2−1,T Vh
+

1

4Re

∣∣ûh∣∣2T Vh
, (5.112d)

−
(

div IT Vhun+θ
b , pn+θ

)
Ph

≤ 1

4ε
|||div IT Vhun+θ

b |||2Ph + ε|||pn+θ|||2Ph , (5.112e)

−
(
rot IVhEn+θ

b ,Bn+θ
h

)
Eh
≤ 1

2
|||rot IVhEn+θ

b |||2Eh +
1

2
|||Bn+θ

h |||2Eh , (5.112f)

−
(
Jn+θ
h,b , Ĵ

n+θ
h

)
Vh
≤ 1

2
|||Jn+θ

h,b |||
2
Vh

+
1

2
|||Ĵn+θ

h |||2Vh , (5.112g)

|||Bn+θ
h |||2Eh ≤ θ|||B

n
h |||2Eh + (1− θ)|||Bn+1

h |||2Eh , (5.112h)

|||ûn+θ
h |||2T Vh ≤ θ|||û

n
h|||2T Vh + (1− θ)|||ûn+1

h |||2T Vh . (5.112i)

To estimate (L2) use

−
(

divun+θ
b , pn+θ

h

)
Ph

≤ 1

4ε
|||div IT Vhun+θ

b |||2Ph + ε|||pn+θ
h |||2Ph . (5.113)
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And, finally

∣∣∣∣∣∣∣∣∣div IT Vhun+θ
b

∣∣∣∣∣∣∣∣∣
Ph

=
∑

P∈∂Ωh

|||div IT Vhun+θ
b |||T Vh(P)

≤
√
η∗

∑
P∈∂Ωh

∣∣∣div IT Vhun+θ
b

∣∣∣ |P|
≤
√
η∗

∑
P∈∂Ωh

∣∣∣∣∫
P∩∂Ω

IT Vhun+θ
b · nds

∣∣∣∣
≤
√
η∗

∑
P∈∂Ωh

∫
P∩∂Ω

∣∣∣IT Vhun+θ
b · n

∣∣∣ ds
≤
√
η∗
∫
∂Ω

∣∣∣IT Vhun+θ
b · n

∣∣∣ ds

(5.114)

Where ∂Ωh is defined as the set of elements that have an edge intersecting ∂Ω and the constant η∗

is given by Theorem 5.40.1.

The result of applying estimates (5.111)-(5.114) is

αAn+1(ûh,Bh)−An(ûh,Bh) = γFn+θ(ûh, Ĵh, ph,ub, Jh,b)∆t, (5.115)

where

α =
θ

1 + θ
, γ =

1

1 + θ
, An(ûh,Bh) = |||ûnh|||2T Vh +R−1

m |||Bn
h |||2Eh (5.116)

and

Fn+θ(ûh, Ĵh, ph,ub, Jh,b) = (5.117)

= Re|||fh|||2−1,T Vh
+

1

∆t
|||IT Vh(un+1

b − unb )|||2T Vh +
1

Re

∣∣IVhun+θ
b

∣∣2
T Vh

+

η∗

2ε

(∫
∂Ω

∣∣∣IT Vhun+θ
b · n

∣∣∣ ds)2

+
1

Rm
|||rot IVhEn+θ

b |||2Eh + |||Jn+θ
h,b |||

2
Vh
−

− 1

2Re

∣∣ûn+θ
h

∣∣2
T Vh
− |||Ĵn+θ

h |||2Vh + 2ε|||pn+θ
h |||2Ph .
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When multiplying the inequalities (5.115) for 0 ≤ n ≤ N by an appropriate power of αand adding

them together yields a telescoping sum, we illustrate this by writing the first 4 terms:

for n = 0: αA1(ûh,Bh) −A0(ûh,Bh) ≤ γFθ(ûh, Ĵh, ph,ub, Jh,b)∆t,

for n = 1: α2A2(ûh,Bh) −αA1(ûh,Bh) ≤ γαF1+θ(ûh, Ĵh, ph,ub, Jh,b)∆t,

for n = 2: α3A3(ûh,Bh) −α2A2(ûh,Bh) ≤ γα2F2+θ(ûh, Ĵh, ph,ub, Jh,b)∆t,

for n = 3: α4A4(ûh,Bh) −α3A3(ûh,Bh) ≤ γα3F3+θ(ûh, Ĵh, ph,ub, Jh,b)∆t,

. . . . . .

The result of this sum is (5.104). Finally, if we assume that ub · n = 0 along ∂Ωh then since the

quadrature is exact for constants

∫
∂Ω
|IVhun+θ

b · n|ds =

∫
∂Ω
|un+θ
b · n|ds = 0, (5.118)

This allows us to take ε→ 0 in (5.104) to attain the final stability estimate (5.106).

5.6 Linearization and the Condition on the Divergence ofBh

This section takes inspiration from [31]. In this section we will mainly be concerned with

the development of a solver for (6.3) at a single point in time. For this reason the values of θ > 0

and n will remain fixed and thus we will omit them from the notation that we will introduce.

In practice, we will find arrays of degrees of freedom, to express this we will add a su-

perscript I . This to say that, for example, uIh will refer to the array of degrees of freedom of

uh.

To begin let us introduce the space

Xh,0 =
{

(vIh,C
I
h, D

I
h, q

I
h) : (vh,Ch, Dh, qh) ∈ T Vh,0 × Eh × Vh,0 × Ph,0

}
. (5.119)
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We will equip this space with the `2 inner product. We do this mainly to conform to much of the

literature on linear and nonlinear methods. We seek to pose the formulation (6.3) in the space Xh.

First we substitute (5.36c) with the equivalent expression

θR−1
m

(Bh −Bn
h

∆t
,Ch

)
Eh

+ θR−1
m

(
rotEh,Ch

)
Eh

= 0 (5.120)

and add it to (5.36a), (5.36b) and (5.36d). We define G in such a way that G(xh) · yh as the left

hand side of the resulting expression. In doing this we are implying that xh,yh ∈ Xh,0 with

xh = (ûn+1,I
h ,Bn+1,I

h , Ên+θ,I
h , pn+θ,I

h ), yh = (vIh,C
I
h, D

I
h, q

I
h). (5.121)

Thus, solving the variational formulation (6.3) is equivalent to solving

Find xh ∈ Xh such that

G(xh) = 0. (5.122)

Indeed, testing (5.122) against yh = (vh,0, 0, 0) we retrieve (5.36a), the three remaining equa-

tions can be attained similarly. This is the set up to apply a Jacobian-free Newton–Krylov method.

This method is highly parallelizable and has optimal speed of convergence.

The Newton method will have us, at every iteration, update the estimate for the zeroes of G

in accordance to

x0
h = (ûn,Ih ,Bn,I

h , Ên−1+θ,I
h , pn−1+θ,I

h ), xm+1
h = xmh + δxmh , ∂G(xmh )δxmh = −G(xmh ),

(5.123)

where ∂G : Xh,0 → L(Xh,0) is the Jacobian of G, the space L(Xh,0) is the collection of linear

operators from Xh,0 to X ′h,0. The reason we had to substitute (5.36c) with (5.120) is to attain

some symmetry in the Jacobian matrix, this will be clear from the well-posedness analysis. This

method, as described, will require that we compute and store the Jacobian matrix. This takes a

good deal of memory and computational power. Instead, we will approximate the action of the



121

Jacobian matrix onto vectors using the finite difference approximation

DG(xh)δxh =
G(xh + εδxh)−G(xh)

ε
, ε = 10−7. (5.124)

The value of ε is selected as a ”sweet-spot” value for epsilon that makes for stable float point

arithmetic and approximation accuracy. suggested in page 80 of [61]. The algorithm we propose

by provides updates in accordance to

∀0 ≤ m ≤M − 1 : xm+1
h = xmh + δxmh , DG(xmh )δxm = −G(xmh ), (5.125a)

x0
h =


(
ûn,Ih ,Bn,I

h , Ên−1+θ,I
h , pn−1+θ,I

h

)
, n > 0,(

û0,I
h ,B0,I

h , 0, 0
)
, n = 0.

(5.125b)

We define (ûn+1
h ,Bn+1

h , Ên+θ
h , pn+θ

h ) such that its array degrees of freedom is xMh whereas inter-

mediate steps will be denoted as

xkh =
(
ûn+1,k,I
h ,Bn+1,k,I

h , Ên+θ,k,I
h , pn+θ,k,I

h

)
. (5.126)

The routine we use to solve the linear system in (5.125) is the GMRES algorithm. This Krylov

method will require a tolerance input which will be fixed to satisfy

‖DG(xmh )δxm +G(xmh )‖2 ≤ ηm‖G(xmh )‖2, (5.127a)

ηm = min

{
ηmax,max

(
ηBm, γ

εt
‖G(xmh )‖2

)}
, (5.127b)

ηBm = min
{
ηmax,max

(
ηAm, γη

α
m−1

)}
, ηAm = γ

(
‖G(xmh )‖2
‖G(xm−1

h )‖2

)α
. (5.127c)

with α = 1.5, γ = 0.9, ηmax = 0.8. The value of εt is fixed to guarantee non-linear convergence
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has been achieved.

‖G(xmh )‖2 < εa + εr‖G(x0
h)‖2 = εt, εa =

√
#dof × 10−15,, εr = 10−4. (5.128)

The particular choices for the constants are the same as in [31]. However, this strategy is much

more general [54]. The guiding philosophy being a desire to guarantee super-linear convergence

while simultaneously not over-solving with unnecessary GMRES iterations.

The non-linear nature of the inexact Newton steps may shed doubt as to whether or not this

solver preserves the divergence free nature of the magnetic field. The following result arises from

an understanding of how Faraday’s Law is used to predict the magnetic field. The reality is that

since this Law is linear then our finite difference approximation to its Jacobian will, in fact, be

exact.

Theorem 5.60.1 Suppose that δxh solves

DG(xh)δxh = −G(xh), (5.129)

then

div δBh = div (Bn
h −Bh). (5.130)

Proof. Testing (5.129) against yh = (0,CI
h, 0, 0) yields

∆t−1
(
δBh,Ch

)
Eh

+
(
rot δÊh,Ch

)
Eh

= −
(Bh −Bn

h

∆t
,Ch

)
Eh
−
(
rot Êh,Ch

)
Eh

(5.131)

since Ch can be selected arbitrarily the above is equivalent to

∆t−1 [δBh +Bh −Bn
h ] = −rot

(
δÊh + Êh

)
. (5.132)

Taking divergence on both sides yields (5.130).



123

Corollary 5.60.1 If the initial conditions on the magnetic field B0 satisfy that divB0 = 0 then

updates defined by (5.125) will satisfy that

∀0 ≤ n ≤ N, 0 ≤ m ≤M : div δBn,m
h = 0. (5.133)

Implying that

∀0 ≤ n ≤ N : divBn
h = 0. (5.134)

Proof. The divergence of the initial estimate can be computed using the commuting prop-

erty of the diagram in Theorem 3.70.1. Indeed:

divB0
h = div IEh(B0) = IPh(divB0) = 0 (5.135)

Next, suppose that div hBn
h = 0 then by definition divBn+1,0

h = 0. For the inductive step we can

further assume that divBn+1,m
h = 0 thus from Theorem 5.60.1 we have that

divBn+1,m+1
h = divBn+1,m

h + div δBn+1,m
h = div (2Bn+1,m

h −Bn
h ) = 0. (5.136)

5.61 The Jacobian Matrix

In this subsection we will compute the action of the Jacobian at the point xh on a vector

δxh. We are referring to the quantities

∂G(xh)δxh. (5.137)
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Then, we will use the expression attained to come up with a matrix representation for the Jacobian.

To do this, first we must select a direction yh ∈ Xh,0. Then by definition we have that

[∂G(xh)δxh] · yh = lim
ε→0

G(xh + εδxh) · yh −G(xh) · yh
ε

. (5.138)

The limit above yields

[∂G(xh)δxh] · yh = `1(yh) + `2(yh) + `3(yh) + `4(yh), (5.139a)

xh = (ûIh,B
I
h, Ê

I
h, p

I
h), δxh = (δûIh, δB

I
h, δÊ

I
h, δp

I
h), yh = (vIh,C

I
h, D

I
h, q

I
h), (5.139b)

`1(yh) = ∆t−1
(
δûh,vh

)
T Vh

+ θR−1
e

[
δûh,vh

]
T Vh

+

+ θ
(
Êh, IVh(vh ×ΠRT δBh)

)
Vh

+ θ
(
δÊh, IVh(vh ×ΠRTBh)

)
Vh
−

−
(

divvh, ph
)
Ph

, (5.139c)

`2(yh) = θ
(

div δûh, qh
)
Ph

, `3(yh) = ∆t−1
(
δBh,Ch

)
Eh

+
(
rot δEh,Ch

)
Eh
, (5.139d)

`4(yh) =
(
δÊh + θIVh(ûh ×ΠRT δBh + δûh ×ΠRTBh),Dh

)
Vh

+

+R−1
m θ
(
δBh, rot hDh

)
Eh
. (5.139e)

Therefore, the matrix representation of the Jacobian is given by

∂G(xh)δxh =





A 0 B C

0 D E 0

BT ET F 0

CT 0 0 0


+



0 G+ I 0 0

0 0 0 0

0 H 0 0

0 0 0 0







δûIh

δBI
h

δÊIh

δpIh


(5.140)
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The matrices above are given by

A = ∆t−1
MT Vh

+ θR−1
e ST Vh

+ θ3
M

T
BMVhMB, B = θMT

BMVh , (5.141a)

C = div ThMPh
,D = θR−1

m ∆t−1
MEh , E = θR−1

m MEhrot h, F = MVh , (5.141b)

H = θMVhMu, I = θ3
M

T
BMVhMu (5.141c)

where

vIh ·MT Vh
uIh =

(
uh,vh

)
T Vh

, vIh · ST Vh
uIh =

[
vh,uh

]
T Vh

, (5.142a)

qIh ·MPh
pIh =

(
qh, ph

)
Ph

, CI
h ·MEhB

I
h =

(
Ch,Bh

)
Eh
, (5.142b)

DI
h ·MVhE

I
h =

(
Dh, Eh

)
Vh
, rot hE

I
h = [rotEh]I , div huIh = [div huh]I , (5.142c)

MuB
I
h = [IT Vh(ûh ×ΠRTBh)]I ,MBu

I
h = [IT Vh(ûh ×ΠRTBh)]I . (5.142d)

The matrix G can be computed by selecting a basis consistent with the degrees of freedom for

T Vh,0 and another one for Eh, say {vjh} and {Ci
h} respectively then

Gi,j = θ
(
Êh, IVh(vih×ΠRTCj

h)
)
Vh

+θ3
(
IVh(ûh×ΠRTBh), IVh(vih×ΠRTCj

h)
)
Vh
. (5.143)

5.7 Well-posedness and Stability of the Linear Solve

The linearization strategy laid out in Section 5.6 can be summarized as follows. We are

given a set of initial conditions. Then, at each time step we perform a series of Newton Iterations.

Each of these consists of solving a linear system that looks like: Find δxh ∈ Xh,0 such that given

xh ∈ Xh,0 we have that

∂G(xh)δxh = −G(xh). (5.144)
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In this section we will study the well-posedness of each of these linear systems. We will show that

this linear problem is a saddle-point problem. Then, we will show that this problem satisfies the

hypothesis of Theorem 2.20.2.

Let us define the space:

Xh = T Vh,0 × Eh × Vh,0 (5.145)

And, ah : Xh × Xh → R whose evaluation at δξh = (δûh, δBh, δÊh), ηh = (vh,Ch, Dh) is

given by ah(δξh,ηh) = `1(vh)+`2(Ch)+`3(Dh) as they are defined in equations (5.139). Here,

and for the remainder of the section, we have fixed the value of xh = (ûh,Bh, Êh). We can

present problem (5.144) as:

Find (δξh, δph) ∈ Xh × Ph,0 such that for all (ηh, qh) ∈ Xh × Ph,0 it holds that

ah(δξh,ηh)−bh(vh, δph) = f(ηh), (5.146a)

bh(δûh, qh) = g(qh). (5.146b)

Where f ∈ X′h and g ∈ P ′h,0 are some appropriate bounded linear functionals and

bh(vh, qh) =
(

divvh, qh
)
Ph

(5.147)

We will follow a similar strategy to the one presented in Section 3.10. First, we introduce problem

an auxiliary problem. Then we will show that such a problem and (5.146) are equivalent. We

conclude our proof by showing that the auxiliary problem is well posed.

The auxiliary problem is given by

Find (δξh, δph) ∈ Xh × Ph,0 such that for all (ηh, qh) ∈ Xh × Ph,0 it holds that

ah,0(δξh,ηh)−bh(vh, δph) = fh(ηh), (5.148a)

bh(δûh, qh) = gh(qh). (5.148b)
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The difference lies in that

ah,0(δξh,ηh) = ah(δξh,ηh) + θR−1
m

(
div δBh, divCh

)
Ph

. (5.149)

To establish the equivalency between (5.146) and (5.148) first we must present the following

theorem:

Theorem 5.70.1 Let δξh = (δûh, δBh, δÊh) ∈ Xh and ph ∈ Ph,0 solve (5.148) should the initial

conditions on the magnetic field be divergence free then div δBh = 0.

Proof. Testing (5.148) against qh = 0, and η = (0,Ch, 0) yields

∆t−1
(
δBh + rot δEh,Ch

)
Eh

+
(

div δBh, divCh
)
Ph

= −
(Bh −Bn

h

∆t
+ rotEh,Ch

)
Eh

(5.150)

or equivalently

∆t−1
(
δBh + rot δEh +

Bn,m
h −Bn

h

∆t
+ rotEh,Ch

)
Eh

= −
(

div δBh, divCh
)
Eh
. (5.151)

Therefore, making

Ch = δBh + rot δEh +
Bn,m
h −Bn

h

∆t
+ rotEh. (5.152)

Note that if divBn
h = divBn,m

h = 0 then

∆t−1|||Ch|||2Eh = −|||div δBh|||2Ph (5.153)

As a consequence the only solution is that div δBh = 0.

The result of the above theorem can be leveraged to show that both problems (5.146) and

(5.148) are in fact equivalent. We present this result in the following lemma:

Lemma 5.70.1 The problems (5.146) and (5.148) are equivalent.
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Proof. If δξh = (uh,Bh, Êh) and δph ∈ Ph,0 solve the linear system (5.146). Then, by Corol-

lary 5.60.1 we know that div δBh = 0 and therefore

∀ηh ∈ Xh,0 : ah,0(δξh,ηh) = ah(δξh,ηh). (5.154)

Implying that δξh and δph solve (5.148).

Similarly, if δξh = (uh,Bh, Êh) and δph solve the linear system (5.148). Then, by Theo-

rem 5.70.1 we know that div δBh = 0 and equation (5.154) is satisfied. This implies that δxh and

δph solve (5.146).

Finally, we can present the well-posedness of (5.148). In the spirit of [59] we introduce the

following norm on ξh = (uh,Bh, Eh) ∈ Xh,0 as

|||ξh|||2Xh,0
:= |||vh|||2∆t,∇ + |||Eh|||2∆t,rot

+ |||Bh|||2∆t,div
, (5.155a)

|||uh|||2∆t,∇ := ∆t−1|||uh|||2T Vh +
∣∣uh∣∣2T Vh

+ ∆t−1|||divuh|||2Ph , (5.155b)

|||Bh|||2∆t,div
:= ∆t−1|||Bh|||2Eh + |||divBh|||2Ph , (5.155c)

|||Eh|||2∆t,rot
:= |||Eh|||2Vh + ∆t|||rotEh|||2Eh . (5.155d)

Well-posedness relies on Theorem 2.20.2. The following two lemmas prove that (5.148) satisfies

its hypothesis.

Lemma 5.70.2 Suppose that ∆t1/2ûh, ûh,Bh ∈ [L∞(Ω)]2 and Êh ∈ L∞(Ω) then bilinear form

ah,0 is continuous in the norms defined in (5.155a).

Proof. Let ξ = (uh,Bh, Eh) and η = (vh,Ch, Eh) be arbitrary elements in Xh. A series
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of applications of the Cauchy-Schwartz inequality yields that

∆t−1
(
δuh,vh

)
T Vh

≤ ∆t−1/2|||δuh|||T Vh∆t−1/2|||vh|||T Vh ≤ |||δuh|||∆t,∇ |||vh|||∆t,∇ , (5.156)

[
δuh,vh

]
T Vh

≤
∣∣δuh∣∣T Vh

∣∣vh∣∣T Vh
≤ |||δuh|||∆t,∇ |||vh|||∆t,∇ (5.157)

∆t−1
(
δBh,Ch

)
Eh
≤ ∆t−

1
2 |||δBh|||Eh ∆t−

1
2 |||Ch|||Eh ≤ |||δBh|||∆t,div |||Ch|||∆t,div , (5.158)

(
rot δEh,Ch

)
Eh
≤ ∆t

1
2 |||rot δEh|||Eh ∆t−

1
2 |||Ch|||Eh ≤ |||δEh|||∆t,rot |||Ch|||∆t,div , (5.159)

(
δEh, Dh

)
Vh
≤ |||δEh|||Vh |||Dh|||Vh ≤ |||δEh|||∆t,rot |||Dh|||∆t,rot , (5.160)

(
div δBh, divCh

)
Ph
≤ |||div δBh|||Ph |||divCh|||Ph ≤ |||δBh|||∆t,div |||Ch|||∆t,div . (5.161)

Continuity of the coupling terms comes about by similar arguments. Here, two representative

terms. They rely on the Friedrichs-Poincaré inequality, recall that ‖Eh‖0,Ω ≤ C‖∇Eh‖0,Ω =

‖rotEh‖0,Ω and ‖vh‖0,Ω ≤ C‖∇vh‖0,Ω holds for everyEh ∈ Vh,0 ⊂ H1
0 (Ω) and vh ∈ T Vh,0 ⊂

H1
0 respectively. Thus,

(
IVh

(
ûh ×ΠRT δBh

)
, Dh

)
Vh
≤ C‖IVh

(
ûh ×ΠRT δBh

)
‖0,Ω‖Dh‖0,Ω

≤ C‖ûh‖∞‖δBh‖0,Ω‖Dh‖0,Ω

≤ C‖ûh‖∞‖δBh‖0,Ω‖rotDh‖0,Ω

≤ C‖ûh‖∞∆t−1/2|||δBh|||Eh∆t1/2|||rotDh|||Eh

≤ C̃|||δBh|||∆t,div |||Dh|||∆t,rot . (5.162)
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Finally, continuity of the second coupling term follows by

(
IVh(ûh ×ΠRT δBh), IVh(vh ×ΠRTBh)

)
Vh
≤

≤ C‖IVh(ûh ×ΠRT δBh)‖0,Ω‖IVh(vh ×ΠRTBh)‖0,Ω

≤ C‖ûh‖∞‖ΠRTBh‖∞‖δBh‖0,Ω‖vh‖0,Ω

≤ C‖∆t1/2ûh‖∞‖ΠRTBh‖∞∆t−1/2‖δBh‖0,Ω‖∇vh‖0,Ω

≤ C̃‖∆t1/2ûh‖∞‖ΠRTBh‖∞∆t−1/2|||δBh|||Eh
∣∣vh∣∣T Vh

≤ C̃|||δBh|||∆t,div |||vh|||∆t,∇ . (5.163)

Next, we present a proof of the so-called inf-sup condition of the bilinear form ah,0.

Lemma 5.70.3 Let θ > 0, and ûh,Bh ∈ [L∞(Ω)]2 and Êh ∈ L∞(Ω) In this case, for ∆t is

small enough then

inf
δξh∈Xh,0

sup
ηh∈Xh,0

ah,0(δξh,ηh)

|||δξh|||Xh
|||ηh|||Xh

≥ C > 0, where Xh,0 = {(vh,Bh, Eh) : divvh = 0} .

(5.164)

Where C does not depend on h nor ∆t.

Proof. Select ξh = (δuh, δBh, δEh) ∈ Xh,0 arbitrarily, proof of (5.164) would follow if

we can show that there exists ηh ∈ Xh,0 satisfying

ah,0(δξh,ηh) ≥ C|||δξh|||Xh
|||ηh|||Xh

. (5.165)

We will do this by decomposing ah,0 into

ah,0(δξh,ηh) = `1(vh) + `∗2(Ch) + `3(Dh), (5.166)
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where `1 and `3 are defined in (5.139) and

`∗2(Ch) = `2(Ch) +
(

div δBh, divCh
)
. (5.167)

Let us pick η = (vh,Ch, Dh) for

vh = δûh, Ch =
1

2
(δBh + ∆trot δEh), Dh = δÊh. (5.168)

Then,

`1(vh) = ∆t−1|||δûh|||T Vh +R−1
e

∣∣δûh∣∣T Vh
+ θ
(
Êh, IVh(δûh ×ΠRT δBh)

)
Vh

+

+ θ3
(
δÊh, IVh(δûh ×ΠRTBh)

)
Vh

+ θ3
(
IVh(ûh ×ΠRTBh), IVh(δûh ×ΠRT δBh)

)
Vh

+

+ θ3
(
IVh(ûh ×ΠRT δBh), IVh(δuh ×ΠRTBh)

)
Vh

+

+ θ3
(
IVh(δûh ×ΠRTBh), IVh(δûh ×ΠRTBh)

)
Vh
, (5.169)

`∗2(Ch) = θR−1
m

∆t−1

2
|||δBh|||2Eh + θ

R−1
m

2
|||div δBh|||2Eh+

+ θ
R−1
m ∆t

2
|||rot δÊh|||2Eh + θR−1

m

(
δBh, rot δÊh

)
Eh
, (5.170)

`3(Dh) = |||δÊh|||2Vh + θ
(
IVh(ûh ×ΠRT δBh), δÊh

)
Vh

+

θ
(
IVh(δûh ×ΠRTBh), δÊh

)
Vh
− θR−1

m

(
δBh, rot hδÊh

)
Eh
. (5.171)
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Note that

θ
(
Êh, IVh(δûh ×ΠRT δBh)

)
Vh

+ θ3
(
IVh(ûh ×ΠRTBh), IVh(δûh ×ΠRT δBh)

)
Vh

+

θ3
(
IVh(ûh ×ΠRT δBh, IVh(δuh ×ΠRTBh)

)
Vh

+

+ θ3
(
IVh(δûh ×ΠRTBh), IVh(δûh ×ΠRTBh)

)
Vh
≥

≥ −C̃∆t
(

∆t−1|||δBh|||2Eh + ∆t−1|||δûh|||2T Vh
)
. (5.172)

Where C̃ > 0 depends on θ, ‖ûh‖∞, ‖Bh‖∞ and ‖Êh‖∞. We also note that

2θ
(
δÊh, IVh(δûh ×ΠRTBh)

)
Vh

+ θ
(
IVh(ûh ×ΠRT δBh), δÊh

)
Vh
≥

≥ −C1∆t(∆t−1|||δûh|||T Vh )− C2∆t(∆t−1|||δBh|||Eh )− 1

2
|||δÊh|||2Vh . (5.173)

Here C1 depends on ‖ΠRTBh‖∞ and C2 depends on ‖ûh‖∞. Putting these together we find that

ah,0(ξh,ηh) ≥ (1− C̃∆t− C1∆t)∆t−1|||δûh|||T Vh +R−1
e

∣∣δûh∣∣T Vh
+

+

(
R−1
m

2
− C̃∆t− C2∆t

)
∆t−1|||δBh|||2Eh + |||div δBh|||2Eh+

+
R−1
m ∆t

2
|||rot δÊh|||2Eh +

1

2
|||Êh|||2Vh . (5.174)

We pick ∆t in such a way that

1− C̃∆t− C1∆t ≥ 1

2
,

R−1
m

2
− C̃∆t− C2∆t ≥ R−1

m

4
. (5.175)
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This gives that

ah,0(ξh,ηh) ≥ min

{
1

2
, R−1

e

}
|||δûh|||2∆t,∇ + min

{
R−1
m

4
, 1

}
|||δBh|||2∆t,div

+

+ min

{
R−1
m

2
,
1

2

}
|||δÊh|||2∆t,rot

≥ min

{
1

2
, R−1

e ,
R−1
m

4

}
|||ξh|||2Xh

. (5.176)

To finish, note that

|||ηξ|||2Xh = |||(θ/2)
(
Bh + ∆t rotEh

)
|||2

∆t,div
+ |||Eh|||2∆t,rot

=
θ2

4

(
∆t−1|||Bh + ∆trotEh|||2Eh + ‖divBh‖20,Ω

)
+ |||Eh|||2∆t,rot

=
θ2

4

(
∆t−1|||Bh|||2Eh + ∆t|||rotEh|||2Eh + 2

(
Bh, rotEh

)
Eh

+ ‖divBh‖20,Ω
)

+ |||Eh|||2∆t,rot

=
θ2

4

(
∆t−1|||Bh|||2Eh+‖divBh‖20,Ω+2

(
∆t−1/2Bh,∆t

1/2rotEh

)
Eh

+∆t|||rotEh|||2Eh

)
+ |||Eh|||2∆t,rot

≤ θ2

4

(
2∆t−1|||Bh|||2Eh + ‖divBh‖20,Ω + 2∆t|||rotEh|||2Eh

)
+ |||Eh|||2∆t,rot

≤ θ2

2
|||Bh|||2∆t,div

+

(
1 +

θ2

2

)
|||Eh|||2∆t,rot

≤
(

1 +
θ2

2

)
|||ξ|||2Xh . (5.177)

Finally, we present the main result of this section.

Theorem 5.70.2 Both problems (5.146) and (5.148) are well-posed.

Proof. Lemmas 5.70.2,5.70.3, Theorem 5.40.3 prove that the hypothesis of Theorem 2.20.2

are satisfied yielding as a conclusion that (5.148) is well-posed. By Lemma 5.70.1 problems
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(5.146) and (5.148) are equivalent. The well-posedness of one will imply the well-posedness of

both.

We note that this well-posedness result exposes the saddle-point nature of the linear system.

This result can be leveraged to come up with efficient preconditioner following the framework laid

out in [69]. This was done for a similar MHD system in [70] using a Picard fixed point iteration

as the choice of linearization. Efficient implementation of this preconditioner will require a gen-

eralization of mass lumping. While it is unclear how this can be done in general, in [77] some

strategies are laid out in the context of elastodynamics. We also note that these type of precon-

ditioners have been used in 3D VEMs for problems in fluid flow as well as electromagnetics,

see [50]. Other physics-based preconditioners have been developed, see [31, 39].

5.8 Conclusions

In this chapter we returned to the discretization presented in chapter 3.. This chapter was

concerned with the development in 2D of a method for a model that predicts the evolution of the

electric and magnetic fields assuming that the velocity field is prescribed. The novelty is that now

we are including a model for the mechanics of a magnetized fluid. This model was derived in

Section 5.2. With this model we can product the evolution of the velocity field and the pressure.

Then, in Section 5.3 we came up with a variational formulation of the continuous system. In

the same section we proposed a VEM to approximate the solution to the variational formulation.

Some of the operators and spaces we used in presenting this variational formulation are defined

and studied in Sections 3.4, 3.5, 3.6 and 3.7 in Chapter 3.. These are the spaces and operators

that approximate the electromagnetics in the MHD model. Then, in Section 5.4 we introduced the

spaces and operators that pertain to the approximation of the mechanics of the MHD model. In this

section we showed that these spaces satisfy an important inf-sup condition that will guarantee that

approximations of the fluid flow equations will be stable with the use of the virtual elements. Then,
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in Section 5.5 we show a generalization of the energy estimates presented in 3.9. In this section we

present the continuous version of these estimates and a discrete mimicry that leads to their discrete

counterpart. The model that we presented in this chapter is non-linear. A linearization strategy

was developed in Section 5.6. We also show that this linearization will not alter the divergence of

the magnetic field. As we discussed in Section 3.2 this is required by Gauss’s law. At each time

step the linearization strategy will require the solution of a series of linear systems involving the

Jacobian. Finally, in Section 5.7 we show that these linear systems are well-posed. This is done

by writing these linear systems as saddle point problem. Then, we checked that the hypothesis of

Theorem 2.20.2 are satisfied.
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6. NUMERICAL EXPERIMENTS

6.1 Introduction

In this section we will summarize a series of numerical experiments. First we present

experiments showing that the truncation error of the discrete form of the full MHD system pre-

sented in Chapter 5. shrinks to zero as the mesh size decays. This is the topic of Section 6.2.

Then, we present a series of numerical experiments of the electromagnetic subsystem presented in

Chapter 3.. In Section 6.3 we will test the convergence of our method and we will check that the

divergence of the magnetic field will remain around machine epsilon. Then, in Section 6.4 we will

perform a numerical exploration of the energy estimates we presented in Theorem 3.90.2. Then,

in Section 6.5 we will test our VEM using a well-understood model, the model for Hartmann flow.

The last experiment that we will perform will be presented in Section 6.6. Here we will present

a model for a phenomenon characteristic to MHD, a model for magnetic reconnection. We finish

this chapter with some concluding remarks, there will be compiled in Section 6.7.

6.2 Truncation Error

In this section we explore the trunction error for all four equations in the full system pre-

sented Chapter 5.. Our tests will be performed over the computational domain [−1, 1]2. We

explore three different types of meshes, these are presented in Figure 6.1.
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FIGURE 6.1: Illustration of the meshes used for testing the rate of convergence: triangular mesh
(left panel), perturbed square mesh (central panel) and Voronoi tessellation (right panel).

To do this we introduce an exact solution to the continuous form of the equations as given

by

u(x, y, t) =

et cos y

0

 , B(x, y, t) =

 0

sin t cosx

 , E(x, y, t) = sinx, p(x, y, t) = −x cos y.

(6.1)

We select θ = 1/2 and the boundary conditions, initial conditions and source functions set in

accordance with this solution. Next we extract the degrees of freedom from each of the functions

in equation (6.1) and consider functions in the respective discrete spaces that share these degrees

of freedom. This test will consider only one time step which is selected to be of size ∆t = h2,

where h is the mesh size. Thus, we need only consider the following:

u1
h = IT Vh(u(∆t)), u0

h = T Vh(u(0)), B1
h = IEh(B(∆t)), B0

hIEh(B(0)),

Eθh = IVh(Eh(θ∆t)), pθh = IPh(ph(θ∆t)).

(6.2)

Then we plug these degrees of freedom into the discrete form of the equations. Since these func-

tions are not a solution to the discrete equations then we will note that four remainders appear, one



138

for each equation. We denote them as rMo, rMa, rF and rA and they satisfy:

∀vh ∈ T Vh,0 :
(u1

h − u0
h

∆t
,vh

)
T Vh

+R−1
e

[
uθh,vh

]
T Vh

+
(
Jθh, IVh(vh ×ΠRTBθ

h)
)
Vh
−

−
(

divvh, pθh
)
Ph

−
(
fh,vh

)
T Vh

=
(
rMo,vh

)
T Vh

, (6.3a)

∀qh ∈ Ph,0 :
(

divuθh, qh
)
Ph

=
(
rMa, qh

)
Ph

, (6.3b)

∀Ch ∈ Eh :
(B1

h −B0
h

∆t
,Ch

)
Eh

+
(
rotEθh,Ch

)
Eh

=
(
rF ,Ch

)
Eh
, (6.3c)

∀Dh ∈ Vh,0 :
(
Jθh, Dh

)
Vh
−R−1

m

(
Bθ
h, rotDh

)
Eh
−
(
h,Dh

)
Vh

=
(
rA, Dh

)
Vh
, (6.3d)

uθh = (1− θ)u0
h + θu1

h, Bθ
h = (1− θ)B0

h + θB1
h, (6.3e)

Jθh = Eθh + IVh(uθh ×ΠRTBθ
h), (6.3f)

We use the elliptic projector as defined in Section 3.11 to define the inner product in the space

Vh. We refer to equations (6.3a),(6.3b),(6.3c) and (6.3d) as cons. of momentum, cons. of mass,

Faraday’s law and Ampere-Ohm’s law respectively. We compute each of these remainders and

their respective norms. The results are summarized in Figure 6.2 where we evidence the norm of

each remainder decays to zero as the mesh size shrinks. It is important to note that when observing

the result for Faraday’s law that the size of the norm is close to machine precision thus, after a

certain mesh-size computations are not reliable yielding what would appear as ill- behavior. In the

plot of the truncation error in Ampere-Ohm’s law shows some irregularities when using Voronoi

Tesselations. The reason is an open question but a hypothesis that is likely true regards the length

of the edges of cells in Voronoi tesselations, if they are too short then it may cause undesired

behavior in VEMs.
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FIGURE 6.2: Plot of the truncation error of each of the equations in the full MHD system. Vor
refers to Voronoi tessellations, quad to perturbed quadrilateals and trig to triangles, they allude to
the type of mesh used.

6.3 Convergence Plots Of Kinematics

The first test that we perform regards the speed of convergence of the VEM. We consider

the computational domain Ω = [−1, 1]×[−1, 1]. We will consider three different types of meshes.

A sample of these meshes is presented in Figure 6.1. We use three types of meshes to check for

convergence. These meshes are presented in Figure 6.1. We will also use the following exact

solution to the kinematic system in Chapter 3.. We consider the velocity field u = (ux, uy)
T
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given by

ux(x, y) = −(x2 + y2 − 1)(sin(xy) + cos(xy))− 100ex + 100ey

2(50ex − y sin(xy) + y cos(xy))
, (6.4)

uy(x, y) =
(x2 + y2 − 1)(sin(xy) + cos(xy))− 100ex + 100ey

2(50ey + x sin(xy)− x cos(xy))
(6.5)

and the initial and the boundary conditions are set in accordance with the exact solution of the

electric and magnetic fields:

B(x, y, t) =

50ey + x sin(xy)− x cos(xy)

50ex − y sin(xy) + y cos(xy)

 e−t, (6.6)

E(x, y, t) = −
(
50(ex − ey) + cos(xy) + sin(xy)

)
e−t. (6.7)

The simulation uses the time discretization given by θ = 1/2. This is representative of

the errors given by other values of θ, the main difference lies in the stability of the method. The

final time is T = 0.25 and the time step is given by ∆t = 0.05h2. The errors we present are

relative L2 errors. They are the respective mesh dependent norms of the difference between the

exact and numerical solutions divided by the norm of the exact solution. The results are shown

in Figure 6.4. Each of these plots show three different convergence curves. These refer to the

three different possibilities that we presented in Section 3.11 for the construction of the inner

product in the space Vh. These plots provide evidence that the speed convergence of the electric

field is quadratic while the speed of convergence of the magnetic field is linear. We note that in

the case of Voronoi tessellations the convergence plots associated with the inner product defined

by the Galerkin interpolator (GI) show some irregular behavior. These types of meshes may

have arbitrarily small edges conflating with the criteria laid out in Section 2.4. Another possible

explanation may have to do with the G.I, note that this irregular behavior does not happen with

the other two sample inner products. Further experimentation is required to fully understand this
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behavior. An important feature of the VEM is that the divergence of the magnetic field should

remain zero throughout the simulation. In Figure 6.3 we show plots of the evolution of the L2-

norm of the divergence of the magnetic field. These show that this quantity remains very close, in

norm, to the machine epsilon.
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FIGURE 6.3: Plots of the time evolution of the square of the L2 norm of the divergence of the
numerical magnetic field. We present three different types of meshes, these are displayed in the
lower right hand corner of each plot.

Remark 6 The plots in Figure 6.3 show that the divergence of the magnetic field grows very

rapidly then levels off at a very small value. This behavior is not entirely well understood. One

hypothesis is that errors in the floating point arithmetic compound until they reach a threshold

then stabilize at machine precision.
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FIGURE 6.4: Convergence plots of the VEM developed in Chapter 3.. The type of mesh used in
the simulation is portrayed in the lower right corner of each plot. The three convergence curves
shown in each plot show the different performance between the three possibilities of the inner
product in the space Vh, see Section 3.11. Each of these inner products is associated with a
projector, they are the elliptic projector (E), the least squares projector (LS) and the Galerkin
interpolator (GI).
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6.4 Experimental Analysis of Energy Estimates

In this section we will study, experimentally, the energy estimate presented in Theorem 3.90.2.

Specifically we will look into inequality (3.137). We define the right and left hand sides of this

inequality as

ER(n) =
|||B0

h|||2Eh + γ∆t
∑n

`=0 β
n+1−`|||IVhEn−`+θ0 |||2

H(rot;Ω)

|||B0
h|||2Eh

, (6.8)

EL(n) =
(β)n+1|||Bn+1

h |||2Eh + γ∆t
2

∑n
`=0 β

n+1−`|||Ên−`+θh |||2Vh
|||B0

h|||2Eh
, (6.9)

E(n) = ER(n)− EL(n). (6.10)

Thus, inequality 3.137 is equivalent to

∀n ≥ 1 : E(n) ≥ 0. (6.11)

The value of β above is defined by the condition given in (3.139). This condition necessarily

implies that β ∈ (0, 1). Thus we can expect that E(n) → 1 as n → ∞ unless the electric and

magnetic fields grow fast enough to offset this decay. We introduce the parameter C ∈ R and the

set of solutions

BC(x, y, t) =

50ey − x sin(xy) + x cos(xy)

50ex + y sin(xy) + y cos(xy)

 eCt, (6.12)

EC(x, y, t) = C
(
50(ex − ey)− cos(xy)− sin(xy)

)
eCt (6.13)
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The associated velocity field is given by uC = (uCx , u
C
y )T with

uCx (x, y) = −C (−x2 − y2 − 1)(sin(xy) + cos(xy))

2(50ex + y sin(xy)− y cos(xy))
, (6.14)

uCy (x, y) = C
(−x2 − y2 − 1)(sin(xy) + cos(xy))

2(50ey − x sin(xy) + x cos(xy))
(6.15)

and define Rm = 1/C. Note that the Assumption (3.139) yields that 0 < Q < θ−1. In Figure 6.5

we plot E field against the value of Q at time T = 0.5. The type of mesh or the alternative on

the nodal mass matrix do not yield significant difference to the results in this figure. Thus, we

present the results on Voronoi tessellations of the elliptic projector as a representative with mesh

size h = 0.0678. The results of Figure 6.5 indicate that, in the case that the growth of the solution
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FIGURE 6.5: Plot of Q against the resulting energy inequality at T = 0.5. The initial and
boundary information for the left plot is associated with C = 0.1 and time step ∆t = 0.001. The
results of the plot to the right are those associated with C = 5 and ∆t = 0.21

is relatively small only the values of Q near zero yields β ≈ 1 and the coefficients in E will show

some exponential growth, if Q ≈ θ−1 then the value of γ blows up yielding that E will be large.

The rest of the values ofQwill show convergence towards the norm of the initial conditions on the

magnetic field. Since we normalized the error by this value we can expect a flat line of height one.

If, however, the solution grows faster than the decay brought about by the coefficients in E then we
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will see the energy blow up. Note that the growth in time, at least in our example, of E is mainly

ruled by terms that look like βneCn∆t were t = n∆t, hence a rule of thumb for checking whether

the energy will grow or flatten is to check if lnβ + C∆t is positive or negative respectively. This

is the reason we picked such a small value for ∆t in the right plot of Figure 6.5 since large values

of C can yield overflow errors. In Figure 6.6 we can clearly see the two different types of behavior

that the energy estimates present.
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FIGURE 6.6: Energy Plots against number of time steps. The initial and boundary information
used on the plots to the left are associated with C = 0.1 and time step ∆t = 0.001. In the case of
the plot to the right plot we use the information associated with C = 5 and ∆t = 0.21. In both
cases, h = 0.0678.

6.5 Hartmann Flow

In this section we consider a common problem in MHD used to assess numerical simula-

tions, the Hartmann Flow problem. The set up is the following: consider a square duct of infinite

length containing a conducting fluid. We subject this fluid to a magnetic field that runs along a di-

rection perpendicular to the duct. The response of the fluid will depend on the ratio of the Laplace

force and the viscous forces. This is a dimensionless quantity called the Hartmann number. There
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is a set of known formulas that describes the solution to this problem, a proof of which can be

found in [73]. This is one of the few problems in MHD where a formula for the exact solution can

be found. For this reason researchers use the Hartmann flow problem to test the performance of

their simulations, see [36, 59, 80].

In this section we consider a square computational domain [−1, 1]2 as cross section of the

duct and consider a fluid with Rm = 1. The magnetic field is applied in the direction of the

y−axis. Consider the case where the viscous forces and Laplace forces are of equal strength, so

that the Hartmann number is 1. Then, we can expect the fluid to behave in accordance to the

solutionB = (Bx, 1, 0), u = (ux, 0, 0) and E = (0, 0, Ez) with

ux(x, y) =
cosh 1/2− cosh y

2 sinh 1/2
,

Bx(x, y) =
sinh y − 2y sinh 1/2

2 sinh 1/2
,

Ez(x, y) =
2 sinh 1/2− cosh 1/2

2 sinh 1/2
≈ −0.0820.

(6.16)

Note that the y−component of the magnetic field is 1 by assumption. Therefore, we will check

if we can recover the x−component. We use the exact solution extract the necessary initial and

boundary conditions. Then, we evolve the system until T = 10 with step size ∆t = 0.005. The

result shown in Figure 6.7 provide evidence that the numerical and analytic solutions are close.

We conducted a convergence test that verifies that every alternative to the mass matrix yields a

close approximation and provides additional evidence that rate of convergence of the magnetic

field is linear, these results are in Figure 6.8.

6.6 Magnetic Reconnection

The next experiment we will perform involves a characteristic feature of resistive MHD, the

phenomenon of magnetic reconnection. At very large scales, usually in space physics, the behavior
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FIGURE 6.7: Pictures of the analytic and numerical solution for the x−component of the magnetic
field, computed in a Voronoi tessellation of mesh size h = 0.017 using the elliptic projector as
the alternative to the mass matrix. The plot on the left is of the numerical solution as viewed from
above, whereas the plot on the right shows the numerical solution in a rainbow color bar overlaid
with the exact solution in bold black, both are viewed from the side.
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FIGURE 6.8: Convergence plots for the approximation of the magnetic field on the three differ-
ent mesh families. As before, the symbols E,LS,GI refers to the three alternatives we have for
constructing the nodal mass matrix; the elliptic projector (E), least squares projector (LS) and the
Galerkin interpolator (GI) respectively. See section 3.11.

of plasmas can be well-approximated using ideal MHD. In this case, the magnetic field lines will

advect with the fluid. This is often referred to as the ”frozen-in” condition on the magnetic field

and it is the statement of Alfven’s Theorem. In certain regions of the earth’s magnetosphere,

namely the magneto pause and magneto tail, this process will lead to very thin current sheets that

separate regions across which the magnetic field changes substantially. In this test we consider

one Harris sheet constrained to the computational domain Ω = [−1, 1]2. The magnetic field in
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this domain is given by

B0(x, y) = (tanh y, 0). (6.17)

The above expression will be the initial conditions on the magnetic field. This profile for the

magnetic field was introduced in [57]. Its simplicity has made it a common choice in modeling

magnetic reconnection. We will further assume that the particles in this sheet are subjected by

some external agent to a flow described by

u(x, y, t) = (−x, y). (6.18)

This flow will force the magnetic field lines together at a single point making the current density

grow. A tearing instability is formed and magnetic reconnection happens as a response. This

process is described in detail in [63, 79]. We close this model by imposing the boundary conditions

∀t > 0 : Eb(t) ∈ P0(∂Ω), and
∫
∂Ω
Bb(t) · nd` = 0 (6.19)

The mesh we are using is refined near the center of the domain Ω. This guarantees higher res-

olution where the phenomenon of magnetic reconnection occurs. The downside is that a series

of hanging nodes are introduced. This is an example of a simulation where the versatility of the

VEM yields advantages over more classical methods like FEM or FDM. In Figure 6.9 the reader

will find a picture of the mesh used along with a summary of the numerical experiments.
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FIGURE 6.9: Frames displaying the evolution, in time, of the magnetic field. The phenomenon
of magnetic reconnection begins right away and by T= 0.450 a steady state is achieved.
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6.7 Conclusions

In Section 6.2 we noted that the truncation error of the discretization to the full MHD decays

to zero as the mesh size shrinks. Then, in Section 6.3 we performed a convergence test for the

kinematic subsystem describing the electromagnetics of MHD. This test revealed that the speed

of convergence of our method is quadratic for the electric field and linear for the magnetic field.

Moreover, we were also able to verify that the divergence of the discrete magnetic field is well

beneath machine epsilon. Then, in Section 6.4 we verified that the estimates of Theorem 3.90.2

hold. Moreover, we discovered that there are two types of behavior. Either the overall energy goes

to infinity or it decays to zero. In Section 6.5 we showed that our method can predict the evolution

of a Hartmann flow. And, we once again verified that the speed of convergence of the magnetic

field is quadratic. The last test that we perform was presented in Section 6.6. Here we proposed a

model for magnetic reconnection happening at the center of the square [−1, 1]×[−1, 1]. Hence, we

used a mesh refined to provide higher resolution in near the center. In this process we introduced

a series of hanging nodes. The results show that the VEM is capable of handling this type of

refinement and the phenomenon is clearly visible.
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7. MODELING OPINION DYNAMICS

7.1 Introduction

The development of the following chapter was supported by the Oregon State University

National Research Trainee-ship in Risk and Uncertainty Quantification in Marine Science (OSU

NRT). This is a program funded by the National Science Foundation (NSF). The aim is to foster the

training of trans-disciplinary professionals capable of ”identifying the response of marine systems

to climate change and human pressures and to identify policy solutions for such responses”. As

a requirement of the NRT program, students are placed into teams in which they would develop

a Trans-disciplinary (TD) report based on collaborative research performed by the group. Then,

each of the students will take part of the work done in this report and develop an interdisciplinary

(ID) chapter in their dissertation.

The trans-disciplinary report was done in collaboration with the doctoral students Patricia

Halleran from the OSU Department of Anthropology and Elena Tuttle from the OSU Department

of Environmental Science. Our team periodically met with by Drew Gerkey, Dennis Albert, and

Vrushali A. Bokil, who are the academic advisors of Patricia, Elena, and Sebastian, respectively,

as well as Lorenzo Ciannelli, the OSU NRT representative. Our group studied cultural keystone

species (CKS). These are species that are so important to a people’s culture that their extinction

would collapse the people’s way of living. In order to protect these species and the people’s

culture, we would list them as endangered. However, the criteria that are taken into account to

list a species as endangered do not include its cultural importance. In order to make this change,

we would require a vote from policy makers and have appropriate legislation passed. The aim

of this chapter is in the development and study of mathematical models of deliberations between

policy makers that incorporates mechanisms leading to a consensus in opinion or polarization. The

models will aid in understanding the processes leading to passing legislation that would protect a
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species based on their importance to a culture. Models in opinion dynamics will be the focal tool

to study these debates.

There are two categories of models in opinion dynamics, namely space dependent and

space independent models, see [10]. In spatial models the agents engaging in the debate are

more likely to be influenced by the agents that are in close proximity to them as they themselves

move within their community whereas in space independent models the position of the agents

has no influence on the evolution of their opinions. Spatial models are effective in describing the

opinion distribution in space of large communities since in this case individuals tend to update

their beliefs based on the beliefs of the people that are in close proximity. Examples of these

models are in [10, 35]. Many of these models, as in [35], are adapted from models of biological

systems. In space independent models, agents seek to update their opinion based on the influence

of another agent in a well-mixed setting meaning that they are willing to contact anyone regardless

of spatial proximity. Examples of these types of models are those found in [9, 53].

There are major differences in the opinion dynamics in space dependent versus space in-

dependent models. The results in [10] show that the most likely long term behavior of space

dependent models is that like-minded individuals will cluster and thus will only come in contact

with individuals that hold similar opinions, what the authors call an echo-chamber and it leads to

polarization. Whereas in [9], the authors show that if the agents are willing to update their status

based on a random selection that disregards spatial location then the distribution of opinions will

eventually arrive at a steady state, leading to a consensus.

In [9, 10] the authors begin by presenting a framework, or a theory, which can then be

applied to construct space dependent and independent models. In our particular application we

will assume that the policy decision makers, whose debate can lead to a possible policy change,

seek to update their opinion based on the arguments they are presented with, rather than by the

spatial location of those making the arguments and thus a space independent model suits our case

best, where space is interpreted appropriately.
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This chapter is organized as follows. We begin by exploring how the framework presented

in [9, 10] can be used in the case of a debate where no policy decision maker is influenced by

anyone other than decision makers within the debate. We make the appropriate definitions needed

to derive a model for the temporal evolution of their opinion in the particular case of CKS. Once

a model is derived we will study its dynamical behavior and then proceed to introduce an outside

influence, that of pressure from the electorate. Finally, we conclude by exploring the amount of

pressure that the communities need to exert in order for the debate to lead to policy change and

consideration of the cultural importance of CKS when assessing the level of endangerment of

these species.

In order to arrive at meaningful results, we will need to accept a series of assumptions aside

the one we have already stated, namely that spatial proximity does not have an impact in debates

among policy decision makers. We list these assumptions below:

(A1) There is equal probability of any individual being influenced by any other individual. This to

say that the policy decision makers act in a professional manner and thus will always update

their opinion based on the argument they are presented with rather than who presents the

argument.

(A2) Every policy decision maker will update their opinion at the same time.

(A3) There are no closed minded policy decision makers, thus they are open to listening to the

arguments of anyone else within the debate, or as the case may be, the electorate.

(A4) In [9] we are assured that the type of modeling, as mentioned before, will always lead to

a consensus in the debate. We assume that the debate will be allowed to continue until a

conclusion is reached.

The model that we present in this chapter is a system of ordinary differential equations.

These cannot be solved exactly. The numerical experiments we present use Runge-Kutta dis-

cretizations in time. We note that this discretization strategy just like the VEM elsewhere in this
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dissertation are constructed to enable discrete analogs of the continuous behavior In this sense,

throughout this dissertation the discretization strategies that we pursue are all mimetic. In real

world applications we are, usually, interested in the behavior of the exact solution. Having some

guarantees that our approximations will mimic important continuum properties gives us a high

degree of confidence when making decisions based on the discrete approximations.

7.2 Mathematical Background

In this chapter we will present some mathematical analysis of the existence and uniqueness

of solutions to the ODE models that we will develop. These results will come as a consequence

of the following Theorem, see [66, 85].

Theorem 7.20.1 Let D ⊂ RN be a compact domain and F : D × [0, T ] → RN be a Lipschitz

function. i.e,

∃L > 0 such that ∀t ∈ [0, t], ∀x,y ∈ D, ‖F (x, t)− F (y, t)‖ ≤ L‖x− y‖. (7.1)

Then, there exists a unique function y : [0, T ]→ D such that

d

dt
y(t) = F (y(t), t). (7.2)

From this theorem we can derive a corollary which will be key in studying the models that we will

introduce.

Corollary 7.20.1 LetD ⊂ RN be a compact domain and F : D× [0, T ]→ RN . Further assume

that

∀t ∈ [0, T ], ∀1 ≤ i ≤ N :
∂

∂xi
F exists and is continuous. (7.3)
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Then, there exists a unique function y : [0, T ]→ RN such that

d

dt
y(t) = F (y(t), t). (7.4)

Proof. Using the result in Theorem 7.20.1 we need only show that F is Lipschitz. Consider

∀1 ≤ i ≤ N : Li = max
x∈D,t∈[0,T ]

∂

∂xi
F (x, t). (7.5)

These constants exist, by the Extreme Value Theorem, since the domain is compact. Define

L = max{L1, . . . , LN}. (7.6)

Next, consider t ∈ [0, T ] and x,y ∈ D. Then, by the Mean Value Theorem there must exist

w ∈ {`x+ (1− `)y : 0 ≤ ` ≤ 1} such that

‖F (x, t)− F (y, t)‖ = ‖∂F (w, t)(x− y)‖, (7.7)

where ∂F (w, t) is the Jacobian matrix at the point (w, t). Finally note that

‖∂F (w, t)(x− y)‖ ≤ ‖F (w, t)‖‖x− y‖ ≤ NL‖x− y‖. (7.8)

7.3 The Framework of a Debate Without Outside Influence

We begin by presenting the attitude spectrum, which is defined as the set:

α = {±1,±2}. (7.9)
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Elements of of the attitude spectrum are called attitudes. In our framework, each policy decision

maker will be assigned an attitude. The sign of an attitude symbolizes their opinion towards policy

change, approving in case it is positive and disapproving in case it is negative. The absolute value

of the attitude reflects the strength of their conviction. The set {−2,−1} is called the left side of

the attitude spectrum, {−1,+1} is the center of the attitude spectrum, {+1,+2} is the right side

of the attitude spectrum, and {−2,+2} is the extremes of the attitude spectrum. For a member of

the debate, x, we denote byA(x) their attitude. We will say that agent x has strong left tendencies

or strongly opposes policy in the case thatA(x) = −2, slight 2 left tendency or slightly opposes

policy change if A(x) = −1. Analogously x slightly favours policy change or has slight right

tendency when A(x) = +1, and finally x has strong right tendency or strongly favours policy

change if A(x) = +2.

For t ≥ 0 denote byL2(t), L1(t), R1(t), andR2(t) the proportion of policy decision makers

who strongly oppose, slightly oppose, slightly favour and strongly favour policy change at time t

respectively, i.e

L2(t) =
`2(t)

N
, L1(t) =

`1(t)

N
, R1(t) =

r1(t)

N
, R2(t) =

r2(t)

N
(7.10)

The value ofN is the total number of legislators, whereas the values of `2(t), `1(t), r1(t) and r2(t)

are the number of legislators that strongly oppose, slightly oppose, slightly favour and strongly

favour policy change at time t. The quadruple [L2(t), L1(t), R1(t), R2(t)] is referred to as the

distribution of policy decision makers at time t. We may omit the dependence on time to ease

the notation. Finally, the distribution of policy decision makers at time t = 0 provide the initial

conditions.

We proceed to explain the mechanisms involved in opinion dynamics. At every time step

every policy decision maker i, will telephone, with equal probability, a random policy decision

maker, p. The attitude of i will be updated to reflect the influence of p as follows:

• If A(i) and A(p) have opposite signs then A(i) will move one step towards the opposite
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side of the attitude spectrum.

• If A(i) and A(p) have the same sign then there are three possible outcomes:

(M1) If p has a stronger conviction than i then A(i) will move one step towards A(p).

(M2) If the strength of the conviction of i and p agree, then with probability pa individual i

will amplify their attitude by moving one step towards more extreme conviction unless

A(i) = ±2 in which case their opinion will be retained. If this is the case, then we say

that i has amplified their attitude based on the opinion of p.

(M3) With probability 1 − pa individual i will not amplify their attitude moving one step

towards the attitude of p. If these two agents share their conviction then this effect is

nullified and i will retain their attitude.

This process takes place over a discrete length of time ∆t. The model that we present results when

we take the limit ∆t→ 0.

The value pa is the probability of attitude amplification. It is a measure of how trusting

policy decision makers are of one another and thus we will refer to it as the amplification param-

eter or degree of trust of the policy decision makers. If pa = 0, then we will say that the policy

decision makers are strongly distrusting of each other. Note that in this case they never amplify

their opinion based on that of others. Likewise, the case pa = 1 will be referred to by saying that

the policy decision makers are strongly trusting of each other, since this implies that the members

of the debate will be swayed to amplify their opinion at every chance. In case pa = 0.5, we say

that is that of policy decision makers are wary of each other.

7.4 The Model for a Debate Without Outside Influence

The purpose of this section is to construct a dynamic mathematical model to describe

the evolution through time of the distribution of policy decision makers into the components
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L2, L1, R1, R2 previously described. We begin by exploring the evolution of the proportion of

the policy decision makers that strongly oppose policy change i.e, L2. In order to model the rate

of change of L2 we must study the interactions that generate loss and gain in attitudes.. If i is

an individual that interacts with p then Table 7.1 summarizes the different scenarios in which the

update of A(i) will cause a change in the proportion L2.

Interaction Type Attitude of i Attitude of p Rate of Interaction

Loss (L1) A(i) = −2 A(p) = −1, non-amplifying (1− pa)L2L1

Loss (L2) A(i) = −2 A(p) = +1 L2R1

Loss (L3) A(i) = −2 A(p) = +2 L2R2

Gain (G1) A(i) = −1 A(p) = −2 L2L1

Gain (G2) A(i) = −1 A(p) = −1, with amplification paL1L1

TABLE 7.1: Summary of the interactions between policy decision makers that will cause a change
in the percentage of them that strongly oppose policy change.

The rate of change of L2 is therefore,

dL2

dt
= (G1) + (G2)− ((L1) + (L2) + (L3)) . (7.11)

or equivalently
dL2

dt
= L1 [L2 + paL1]− L2 [(1− pa)L1 +R1 +R2] . (7.12)

Now we explore the temporal evolution of the percentage of policy decision makers with slight

left tendency. We employ the same technique: we pick a policy decision maker i and have them

interact with a random member of the debate p, Table 7.2 summarizes all the interactions that can

make a change in L1. The resulting non-linear differential equation is

dL1

dt
= L1 [1− L2 − paL1] +R1 [L1 + L2]− L1 [1− (1− pa)L1] . (7.13)

This, again, is but the statement that the rate of change of L1 is the sum of the rates of the gain
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Interaction Type Attitude of i Attitude of p Rate of Interaction

Loss A(i) = −1 A(p) = −2 L2L1

Loss A(i) = −1 A(p) = −1, with amplification paL1L1

Loss A(i) = −1 A(p) = +1 L1R1

Loss A(i) = −1 A(p) = +2 L1R2

Gain A(i) = −2 A(p) = −1, non-amplifying (1− pa)L2L1

Gain A(i) = +1 A(p) = −1 R1L1

Gain A(i) = +1 A(p) = −1 R1L2

Gain A(i) = −2 A(p) = +1 L2R1

Gain A(i) = −2 A(p) = +2 L2R2

TABLE 7.2: Summary of the interactions between policy decision makers that will cause a change
in the percentage of them that slightly oppose policy change.

minus the sum of the rates of loss.

We now turn our attention to the percentage of policy decision makers that have slight right

tendency. If the focal policy decision maker i interacts with another random agent labeled p then

the possible changes in R1 are summarized by Table 7.3 below A balance between rates of gain

and rates of loss leads to the following non-linear ODE:

dR1

dt
= R2 [1−R2 − paR1] + L1 [R1 +R2]−R1 [1−R2 − paR1] . (7.14)

And, finally when regarding how the interaction between the policy decision makers i and p affects

the value of the percentage of policy decision makers who strongly support policy change Table7.4

presents all the possibilities

Which leads to the following non-linear ODE:

dR2

dt
= R1 [R2 + paR1]−R2 [(1− pa)R1 + L1 + L2] . (7.15)

In summary, the evolution in the debate can be summarized bu the following non-linear ODE
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Interaction Type Attitude of i Attitude of p Rate of Interaction

Loss A(i) = +1 A(p) = +2 R2R1

Loss A(i) = +1 A(p) = +1, with amplification paR1R1

Loss A(i) = +1 A(p) = −2 R1L2

Loss A(i) = −1 A(p) = +2 L1R2

Gain A(i) = +2 A(p) = +1, non-amplifying (1− pa)R2R1

Gain A(i) = −1 A(p) = +1 L1R1

Gain A(i) = −1 A(p) = +2 L1R2

Gain A(i) = +2 A(p) = −1 R2L1

Gain A(i) = +2 A(p) = −2 R2L2

TABLE 7.3: Summary of the interactions between policy decision makers that will cause a change
in the percentage of them that slightly favor policy change.

Interaction Type Attitude of i Attitude of p Rate of Interaction

Loss A(i) = +2 A(p) = +1, non-amplifying (1− pa)R2R1

Loss A(i) = +2 A(p) = −1 R2L1

Loss A(i) = +2 A(p) = −2 R2L2

Gain A(i) = +1 A(p) = +2 R1R2

Gain A(i) = +1 A(p) = +1, with amplification paR1R1

TABLE 7.4: Summary of the interactions between policy decision makers that will cause a change
in the percentage of them that strongly favor policy change.

system:

L2

dt
= L1 [L2 + paL1]− L2 [(1− pa)L1 +R1 +R2] , (7.16a)

dL1

dt
= L1 [1− L2 − paL1] +R1 [L1 + L2]− L1 [1− (1− pa)L1] , (7.16b)

dR1

dt
= R2 [1−R2 − paR1] + L1 [R1 +R2]−R1 [1−R2 − paR1] , (7.16c)

dR2

dt
= R1 [R2 + paR1]−R2 [(1− pa)R1 + L1 + L2] . (7.16d)
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We note that the solution to this system exists and is unique. We present this result in the following

theorem:

Theorem 7.40.1 There exists a unique y : [0, T ]→ [0, 1]4 such that

∂

∂t
y(t) = F (y(t), t). (7.17)

Where

∀y = (R1, R2, L1, L2) ∈ [0, 1]4, ∀t ∈ [0, T ] :

F (y, t) =



L1 [L2 + paL1]− L2 [(1− pa)L1 +R1 +R2]

R2 [1−R2 − paR1] + L1 [R1 +R2]−R1 [1−R2 − paR1]

R2 [1−R2 − paR1] + L1 [R1 +R2]−R1

R1 [R2 + paR1]−R2 [(1− pa)R1 + L1 + L2]


(7.18)

Proof. Note that the components of F are polynomials which implies that they are infinitely

differentiable and all of their derivatives are continuous. This result follows from Corollary 7.20.1.

We will refer to this system as the model for a debate without outside influence or simply

as the model if it is clear from context. We say that the debate reaches a conclusion if there

exists a moment T > 0 for which the distribution of policy decision makers stays constant past

that moment. In other words a conclusion is a steady state or equilibrium of the dynamical system.

This is to say that for any t ≥ T the rates of change to the distribution of policy decision makers

is null, or
dL2

dt
=
dL1

dt
=
dR1

dt
=
dR2

dt
= 0. (7.19)

In this case, we will say that the conclusion of the debate is the constant distribution of the atti-

tudes of the policy decision makers, the time independent quadruple. Moreover, if the conclusion
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of a debate has more policy decision makers whose attitude lies in the left side of the spectrum we

will that the left won the debate. Similarly, if said distribution has more policy decision makers

in the right side of the spectrum we will say that the right won the debate. If there are the same

number of policy decision makers on the left and the right then we will say that no side won the

debate. If [0, 0, 0, 1] is the conclusion of the debate then the debate reached a positive consensus

and similarly if it is [1, 0, 0, 0] then the debate reached a negative consensus. In [9] the authors

provide numerical evidence to support the claim that open debates without outside influence reach

a conclusion regardless of the value of the amplification parameter nor the initial conditions. We

will focus on studying when the conclusion is a consensus.

7.5 Numerical Sensitivity Analysis of the Debate Without Outside Influence

In this section we are interested in exploring how the initial conditions and the amplification

parameter influence the eventual consensus. To do this we present a series of numerical experi-

ments. All computations were done using the ode45 function from the ODE suite of Matlab.

7.51 The Balanced Case

The first experiment that we will perform will explore what happens when the initial con-

ditions are balanced, meaning that the same number of policy decision makers hold a particular

attitude as those that hold the symmetric opposite attitude. Generally,

L2(0) + L1(0) = R1(0) +R2(0). (7.20)

We will use the initial conditions [0.25, 0.25, 0.25, 0.25]. We begin with exploring the case that

the policy decision makers are highly distrusting of one another.

As shown in Figure 7.1 the case where the amplification parameter pa is zero leads to an

endless debate where no consensus is reached, although the extremes of the attitude spectrum
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FIGURE 7.1: The evolution of the distribution of policy decision makers with balanced initial
conditions in the case that they are strongly distrusting of each other, the conclusion [0,0.5,0.5,0]
is reached, no side won the debate.

are not present, all the policy decision makers continue their debate from the center. Now let us

explore what happens if the policy decision makers are wary of each other. As is presented in

Figure 7.2, again, no consensus arises but although the center of the attitude spectrum lost some

policy decision makers, they now take part in the extreme. Finally we explore what happens when

the policy decision makers strongly trust each other. As Figure 7.3 shows, although each policy

decision maker will continue to update their opinion, the number of people holding each attitude

will remain the same. The conclusion is that the more trusting the agents are to one another, the

closer the debate will be to an equilibrium where one fourth of all policy decision makers will have

each of the four attitudes. Further numerical experimentation shows that if the initial conditions

are balanced then consensus does not arise.

7.52 The Slightly Unbalanced Case

In this section, we explore the consequences of a slight perturbation of the balanced case.

Note that if we permute the roles of L2 and R2 and also the roles of L1 and R1 then the model for

an open debate without outside influence remains unaltered. This implies that when permuting the

roles, the policy decision makers who strongly oppose and strongly favor and those who slightly
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FIGURE 7.2: The evolution of the distribution of policy decision makers with balanced initial
conditions in the case that they are wary of each other, the conclusion [1/6, 1/3, 1/3, 1/6] is
reached and no side won the debate.

oppose and slightly favor policy change makes no difference regarding the evolution in time of

the distribution of policy decision makers. A moment’s thought reveals that an imbalance to the

initial conditions towards one side or another of the attitude spectrum results in identical results.

The unbalanced case will have the initial conditions

[L2(0), L1(0), R1(0), R2(0)] = [0.26, 0.25, 0.25, 0.24]. (7.21)

We begin with exploring the results of the debate when the policy decision makers are highly

distrusting of each other. As Figure 7.4 shows, consensus is not reached but unlike the balanced

case one of the sides does win the debate, although not by a large margin. Now let us explore

what happens when the policy decision makers strongly trust each other. In this case we see,

in Figure 7.5, that the slight initial advantage tips the scale to the left and every policy decision

maker eventually agrees with the initial majority. Let us explore what the level of trust must be

in order for the policy decision makers to arrive at a consensus. To do this, we treat pa as a

bifurcation parameter and perform a numerical bifurcation analysis. We mesh this parameter and

plot it against the equilibrial or steady state values of L2, the proportion of policy decision makers



165

FIGURE 7.3: The evolution of the distribution of policy decision makers with balanced initial
conditions in the case that they strongly trust of each other, the conclusion [0.25, 0.25, 0.25, 0.25]
is reached, and no side won the debate .

that strongly oppose policy change. To do this we mesh the amplification parameter pa and plot it

against the value of the policy decision makers that are strongly opposed to policy change in the

conclusion of the debate. An interesting observation from Figure 7.6 is that it is only required for

less than 10% of the policy decision makers to amplify their views based on their level of trust in

their fellow policy decision makers to make the slight initial imbalance to tip the scale towards the

side that had the initial advantage. Further numerical experimentation reveals that this behavior is

the norm. Debates without outside influence generally conclude with a consensus that favors the

side with the initial advantage, as in the balanced case unless the policy decision makers strongly

distrust each other, even then the conclusion favors the side with the initial majority.

7.6 Framework for a Debate With Outside Influence

We now introduce an outside influence into the debate from the electorate and their sup-

porters who will be represented by I . We will be working in the same framework as before, our
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FIGURE 7.4: The evolution of the distribution of policy decision makers with unbalanced initial
conditions in the case that they strongly distrust each other. The conclusion [0, 0.53, 0.47, 0] is
reached and the left wins the debate.

attitude spectrum is

α = {±1,±2}. (7.22)

The proportion of policy decision makers with each of the four attitudes will, as before, be denoted

L2, L1, R1 andR2. However, the electorate I will be introduced withA(I) = +2. We will further

assume that I is firm in their belief and cannot be influenced by policy decision makers within the

debate. In a similar manner as before at every time step each policy decision maker, i, chooses an

agent, p, and updates their attitude based on the guidelines presented in Section 7.3. The difference

in this model from the previous one is that with probability pI the policy decision maker i will

interact with the electorate I . This implies that with probability 1− pI the policy decision maker

i will interact with another within the debate. The parameter pI will be referred to as the social

activism parameter, and it is a measure of the amount of pressure the policy decision makers in

the debate are subjected to by the electorate. The social activism parameter can also be interpreted

as the proportion of policy decision makers that, at every time step, will be influenced by the social

activists.

To explore the evolution in time of the distribution of policy decision makers we will use
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FIGURE 7.5: The evolution of the distribution of policy decision makers with unbalanced initial
conditions in the case that they strongly trust each other. A negative consensus is reached.

the same strategy as before, looking for the rates of gain and loss of the different attitudes within

the policy decision makers in the debate. Since this strategy was presented in Section 7.3 we will

present the four tables and quickly jump to the model for a debate with outside influence. In each

table the focal policy decision maker i seeks to update their opinion based on the agent p. A

Interaction Type attitude of i Attitude of p Rate of Interaction

Loss A(i) = −2 A(p) = −1, non-amplifying (1− pa)(1− pI)R2R1

Loss A(i) = −2 A(p) = +1 (1− pI)L2R1

Loss A(i) = −2 A(p) = +2 (1− pI)L2R2

Loss A(i) = −2 p = I pIL2

Gain A(i) = −1 A(p) = −2 (1− pI)L2L1

Gain A(i) = −1 A(p) = −1, with amplification (1− pI)paL1L1

TABLE 7.5: The interactions that, at each instant, affect the number of policy decision makers
with strong left tendency.

balance statement based on Table 7.5 will yield the following statement for the rate of change L2:

dL2

dt
= (1− pI)L1 [L2 + paL1]− (1− pI)L2 [(1− pa)L1 +R1 +R2]− pIL2. (7.23)
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FIGURE 7.6: The equilibrial proportion of policy decision makers that strongly oppose policy
change at the conclusion of a debate with unbalanced initial conditions plotted against the ampli-
fication parameter.

According to Table 7.6 the rate of change of L1 is given by the non-linear ODE:

dL1

dt
= pIL2 + (1− pI) [L2R2 + 2L2R1 +R1L1 + (1− pa)L2L1]−

− (1− pI)L1 [L2 + paL1 +R1 +R2]− pIL1. (7.24)

The analysis in Table 7.7 leads to following non-linear ODE for the rate of change of R1.

dR1

dt
= pIL1 + (1− pI) [R2L2 + 2R2L1 + L1R1 + (1− pa)L2L1]−

− (1− pI)R1 [R2 + paR1 + L1 + L2]− pIR1. (7.25)

By Table 7.8 the final non-linear ODE in our system is:

dR2

dt
= pIR1 + (1− pI)R1 [R2 + paR1]− (1− pI)R2 [(1− pa)R2 + L1 + L2] . (7.26)

In summary, the model for the debate with outside influence is the coupling of equations (7.23),
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Interaction Type Attitude of i Attitude of p Rate of Interaction

Loss A(i) = −1 A(p) = −2 (1− pI)L2L1

Loss A(i) = −1 A(p) = −1, with amplification pa(1− pI)L1L1

Loss A(i) = −1 A(p) = +1 (1− pI)L1R1

Loss A(i) = −1 A(p) = +2 (1− pI)L1R2

Loss A(i) = −1 p = I pIL1

Gain A(i) = −2 A(p) = −1, non-amplifying (1− pa)L2L1

Gain A(i) = +1 A(p) = −1 (1− pI)R1L1

Gain A(i) = +1 A(p) = −2 (1− pI)R1L2

Gain A(i) = −2 A(p) = +2 (1− pI)L2R2

Gain A(i) = −2 p = I pIL2

TABLE 7.6: The interactions that, at each instant, affect the number of policy decision makers
with slight left tendency.

(7.24), (7.25) and (7.26). It is important to note that in the case pI = 0, this model reduces to that

of a debate without outside influence, as expected. As before we can show that the solution to this

model exist and is unique. We present this result in the following theorem:

Theorem 7.60.1 There exists a unique y : [0, T ]→ [0, 1]4 such that

∂

∂t
y(t) = F (y(t), t), (7.27)

where each of the components of F are the right-hand side of equations (7.23),(7.24),(7.25) and

(7.26).

Proof. The components of F are polynomials. Therefore they satisfy the hypothesis of Corol-

lary 7.20.1.

An immediate conclusion about our new model is that [1, 0, 0, 0] is no longer a steady state
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Interaction Type Attitude of i Attitude of p Rate of Interaction

Loss A(i) = +1 A(p) = +2 (1− pI)R2R1

Loss A(i) = +1 A(p) = +1, with amplification pa(1− pI)R1R1

Loss A(i) = +1 A(p) = −1 (1− pI)R1L1

Loss A(i) = +1 A(p) = −2 (1− pI)R1L2

Loss A(i) = +1 p = I pIR1

Gain A(i) = +2 A(p) = +1, non-amplifying (1− pa)R2R1

Gain A(i) = −1 A(p) = +1 (1− pI)L1R1

Gain A(i) = −1 A(p) = +12 (1− pI)R2L1

Gain A(i) = +2 A(p) = −1 (1− pI)R2L1

Gain A(i) = +2 A(p) = −2 (1− pI)R2L2L1

Gain A(i) = −1 p = I pIL1

TABLE 7.7: The interactions that, at each instant, affect the number of policy decision makers
that slightly favor policy change.

of this dynamical system since in this case

dL2

dt
= −pI . (7.28)

This implies that the conclusion of the debate will never be a negative consensus. Should consen-

sus arise it shall be a positive one.

Remark 7 We note that more advanced models for the influence of the electorate over the point

of view of legislators can be studied more in depth using the the framework of optimal control

theory [18].
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Interaction Type Attitude of i Attitude of p Rate of Interaction

Loss A(i) = +2 A(p) = +1 non-amplifying (1− pa)(1− pI)R2R1

Loss A(i) = +2 A(p) = −1 (1− pI)R2L1

Loss A(i) = +2 A(p) = −2 (1− pI)R2L2

Gain A(i) = +1 p = I pIR1

Gain A(i) = +1 A(p) = +2 (1− pI)R1R2

Gain A(i) = +1 A(p) = +1 with amplification (1− pI)paR1R1

TABLE 7.8: The interactions that affect, at each time step, the number of policy decision makers
that strongly favor policy change.

7.7 Influence in the Worst Case Scenario

The purpose of this section is to numerically explore the proportion of policy decision

makers that need to be influenced by the indigenous communities in order for the debate to arrive

at a positive consensus. We will do this under worst case scenario conditions, this is to say that

throughout this section the initial conditions are [1, 0, 0, 0], meaning that all the policy decision

makers strongly oppose policy change initially. We proceed to perform a numerical two parameter

analysis with the parameters pa and pI . To do this we mesh the equilibrial amplification and the

social influence parameters and for each pair we find the proportion, at the conclusion of the

debate, of policy decision makers that have strong right tendency. We observe in Figure 7.7,

that there are two distinct regions one where positive consensus is reached and another where

the value of the proportion of policy decision makers with strong right tendency is essentially

zero. We proceed to explore how the degree of trust of the policy decision makers influences the

conclusion of the debate. To do this, we will vary the social influence parameter while keeping the

amplification parameter constant, i.e, we conduct a one parameter bifurcation analysis by fixing

the value of the other parameter. Looking at Figure 7.8, we can verify two important behaviors of

our model for debates with outside influence. One is that there is a well-defined bifurcation value

of pI that separates the region in which positive consensus arise and where it does not. The second
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FIGURE 7.7: A numerical bifurcation plot. The horizontal axis represents the social activism
parameter, the vertical axis the amplification parameter and the color represents the value, at the
conclusion of the debate, of the equilibrial proportion of policy decision makers that strongly favor
policy change.

FIGURE 7.8: Numerical bifurcation plot of the social influence parameter in the horizontal axis
and the equilibrial value of the proportion of policy decision makers with strong right tendency in
the vertical axis under worst case scenario conditions. The top graph represents the case in which
policy decision makers strongly distrust each other while the lower graph shows the case in which
they strongly trust each other.
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is that this value is dependent upon pa. In Figure 7.9, the bifurcation value of the social influence

FIGURE 7.9: Plot of the amplification parameter in the horizontal axis and the critical value of
the social activism parameter that separates the region where positive consensus is the conclusion
of the debate and the region where it is not under worst case scenario conditions. A best fit 7th
degree polynomial is also presented. This curve is a fit of the boundary between the two colored
regions in Figure 7.7

parameter that separates the two regions presented in Figure 7.9 is evidenced. An immediate

observation that we can draw is that the bifurcation value of the social influence parameter depends

monotonically on the degree of trust of the policy decision makers in the debate. This is to say

that when all of the policy decision makers initially oppose policy change then the more they trust

their fellow policy decision makers the stronger the pressure from the electorate needs to be in

order to sway their opinion.

Another conclusion we can draw from Figure 7.9, is that if pI = 0.1716 then regardless of

the degree of trust of the policy decision makers the debate will always end in a positive consensus.

7.8 Mathematical Modeling and Protecting CKS

In this section, we will present ideas about how we can use mathematical modeling to

create strategies and influence policies to protect CKS. The process of arriving at the mathematical
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model requires a collaboration between a team of diverse scientists including anthropologists,

ecological and environmental scientists, mathematical modelers and computational scientist. A

possible series of steps in arriving at a mathematical model to inform policy decision making for

CKS are as follows:

1. Identify CKS: Information about these species tends to be held by indigenous communi-

ties. Unfortunately, the history of the United States demonstrates a disregard for the cul-

tural values and traditions of the native tribes. These communities have been devastated by

famines, plagues, sickness and even genocide. As a response to these injustices indigenous

communities have become distrustful of the general population. Therefore, in identifying

CKS we would need the help of an anthropologist with specialty in communicating with the

American indigenous communities. The anthropologist will be crucial in generating trust

between our team and the communities that will be impacted by the extinction of a CKS.

2. Design strategies to protect the CKS: Once the CKS are identified then we need to study

the factors that are contributing to their extinction. The reasons may be convoluted. They

could be affected by pollution, deforestation, invasive species or their source of food may be

disappearing. Often times addressing these species are affected involves the consideration

of multiple factors. Here, the expertise of a team of environmental scientist is best fit to this

task.

3. Draft legislation: The best avenue to enforce the strategies designed by our team in step 2

are the governmental institutions. Thus, we need to draft legislation using legal language in

order to guarantee enforcement by system of courts. This can be done at the municipal, state

or federal level depending on the scope of our strategies and the availability of resources. We

also need to make sure that the indigenous communities agree to these laws. A collaboration

between a team of lawyers to draft the legal language, a team of environmental scientist to

convey the strategies and a team of anthropologists to communicate the legislation back to

the communities and get feedback.
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4. Design a simulation of debates between policy makers: A bill will only become law after

a vote from policy decision makers. However, their deliberation can, to a degree, be pre-

dicted using mathematical modeling First, we need to figure out the initial conditions. This

is to say that we need to know where each of the policy decision makers stand with respect

to policy change. There are political analysts that study the behavior of these politicians and

follow their decisions closely. Then, we need to know how strongly they are influenced by

other policy decision makers, an estimate for pI , to arrive at an estimate for pa. And, finally

we need to estimate how much influence to pass legislation will come from the electorate.

For this task we can refer back to our team of anthropologists or sociologists. With this

information we need to design a model for the debate between the policy decision makers.

Our models took the form of a system of non-linear ODEs. More complete models may use

a continuum to model the attitudes of the legislators and stochastic processes to account for

the uncertainty that may arise. Then, we need to come up with compatible discretizations of

the models. The design and discretization of the model will be the job for a team of math-

ematicians. Finally, the implementation of the discretization will likely need to be done in

a high performance cluster. Engineers and computer scientist may be the best fit to create a

robust parallel code.

5. Influence the electorate: In the case that our simulations show that legislation is unlikely

to pass, then we need to influence the electorate to pressure the legislators. We will need

a publicity plan that will convey to the public that we will all benefit from this legislation

in one way or another. This step is best suited by a team of publicists, artist and social

communicators.

6. Poll the electorate: After our publicity campaign we need to assess its effectiveness. This

is done to update the parameters of our models. We recommend a team of statisticians and

mathematicians for this task.
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7.9 Conclusions

In this chapter, we explored how we can use mathematical modeling to help protect CKS.

Change will only be enforced if legislation is passed. We can use mathematical modeling to

predict the outcomes of debates between policy decision makers. We have presented two models

one in which the electorate do not pressure the legislators and another in which they do. These

two models are called the models for debates without and with outside influence respectively.

From the analysis in [9] we are assured that debates without outside influence will always arrive

at a conclusion. Although we have no guarantee that the time to conclusion will be reasonable,

this question is left for future research. A reasonable starting point may lie in the following

references [91, 92]

From the analysis presented in Section 7.5, we find that the conclusion is strongly dependent

upon the initial conditions and the amplification parameter. If the initial conditions of the debate

are balanced, meaning that the same number of policy decision makers hold a particular attitude as

those that hold the symmetric opposite attitude, then although a conclusion to the debate will arise,

it will never be a consensus. Moreover, no side will win the debate. The outcome of debates with

balanced initial conditions will differ depending on the degree of trust among the policy decision

makers. If they are strongly distrusting of one another then, as shown in Figure 7.1, the conclusion

will favor the center of the attitude spectrum. This is due to the fact that policy decision makers

are not likely to amplify their views based on that of others within the debate. As the degree of

trust increases, however, there will be policy decision makers whose attitudes lie in the extreme

end of the spectrum, testament to which are the results presented in Figures 7.2,7.3.

If the initial conditions are unbalanced, meaning that there is an initial majority, however

slight, between the policy decision makers whose attitudes lie on the left side of the spectrum

and those on the right, then the conclusion tends to favor the initial majority. A major difference

between the balanced and unbalanced case is that the unbalanced case will, almost always, lead
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to the conclusion of the debate being a consensus. This depends on the degree of trust among the

policy decision makers. This was evidenced by the fact that in Figure 7.4, debates with unbalanced

initial conditions where the policy decision makers strongly distrust each other lead to a conclusion

that was not a consensus, whereas in Figure 7.5, when they are strongly trusting of each other the

debate terminated with a consensus. In each case the conclusion favored the initial majority.

Further exploration on the degree of trust that is necessary to arrive at consensus showed that if

the policy decision makers are willing to amplify their attitude based on that of others at least

0.1% of the time then consensus arises. This was the take away from Figure 7.6, and thus when

there is an initial majority very little trust is necessary to tip the scale in its favor.

Finally, when in the debate, we include the pressure from indigenous communities then the

first conclusion that we arrive at is that the debate will never end with a negative consensus. If

consensus arises then it will be a positive consensus. In order to find some estimates as to what

proportion of policy decision makers need to be influenced in order for positive consensus to be

the conclusion of the debate we need to consider the worst case scenario conditions, when initially

all of the policy decision makers strongly oppose policy change. Should positive consensus arise

under the worst case scenario conditions then we can be assured that the conclusion of the debate

will be the same under any initial conditions.

Under the worst case scenario conditions we find, in Figure 7.7, that there are two important

regions of the amplification and social activism parameters, one for which positive consensus will

arise and one where it will not. Moreover from Figure 7.8, we learn that the effect that these two

parameters have on the number of policy decision makers that strongly support policy change at

the conclusion of the debate is not gradual, rather, for every degree of trust there exists a critical

value of the social activism parameter with the property that any debate with a lower one will lead

to no consensus and any debate with a larger one will arrive at a positive consensus. In Figure 7.9,

we find that this dependence can be computed with an error of less than 0.001 by the seventh
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degree polynomial

pI = 2.7p7
a − 11p6

a − 15p4
a + 7.6p3

a − 2.4p2
a + 0.64pa + 0.0015. (7.29)

This polynomial is monotone and therefore the higher the degree of trust among the policy de-

cision makers the higher the proportion of them that need to be influenced by the indigenous

communities in order to lead to a positive consensus. Moreover, if the measure of the degree of

trust is not available then, as a rule of thumb, if the we can influence at least 17.16% of the policy

decision makers then the debate will end with a positive consensus in any circumstance.

Finally, in Section 7.8, we present a set of ideas regarding how we can use models like the

one developed in the chapter to drive policy change.
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8. CONCLUSIONS

In this thesis, we considered the numerical discretization of mathematical models in MHD.

As discussed in the introduction, this is an important area of research with applications that have

broad impacts to society. We also considered an application of mathematical modeling and simula-

tion to the social sciences, as part of a trans-disciplinary research project involving the intersection

of conservation ecology, public policy and the mathematical sciences.

In this chapter, we outline the major novel contributions presented in this dissertation. In

Chapters 3.,4. we prescribed the flow of a magnetized fluid (MHD kinematics) and derived a

model for the evolution of the electric and magnetic fields from Maxwell’s equations. This was

done in two and three dimensions respectively. A variational formulation of this model revealed

the chain of spaces.

H(rot; Ω)
rot−−−−→ H(div; Ω)

div−−−−→ L2(Ω). (8.1)

In developing a VEM we first defined a discrete version of these spaces. Their discrete versions

also form a chain:

Vh
rot−−−−→ Eh

div−−−−→ Ph. (8.2)

These spaces were introduced in [16]. We can define Fortin projectors making the following

diagram commute

H(rot; Ω)
rot−−−−→ H(div; Ω)

div−−−−→ L2(Ω)yIVh yIEh yIPh
Vh

rot−−−−→ Eh
div−−−−→ Ph

(8.3)

This commuting property is the central result needed to prove that the discrete approximations
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to the magnetic field are divergence free. In order to approximate the inner product terms in

the variational formulation we define inner products that are equivalent to those associated with

their continuous counterparts. Following the framework laid out in [16], we do this by defin-

ing L2−orthogonal projections onto polynomial spaces. Unfortunately this projector is not com-

putable in Vh. A novel aspect in the formulation presented is that this inner product is constructed

via an oblique projector.

In Chapter 5., we dropped the assumption that the flow was known to us and developed a

model that predicts the velocity field as well as the pressure of a magnetized fluid. This model

was coupled with our previous model for a complete simulation of a magnetized fluid that includes

both the electromagnetic and fluid mechanical phenomena. In developing a VEM we considered

the two dimensional case. The variational formulation of this coupled model reveals two chains of

spaces, the first is associated with the electromagnetics. This chain is (8.1) which we approximate

using the same spaces presented in (8.2). The second is the chain associated with the fluid flow

and is given by

[
H1(Ω)

]2 div−−−−→ L2(Ω). (8.4)

We use Ph to approximate L2(Ω) and introduce the space T Vh forming the chain.

T Vh
div−−−−→ Ph. (8.5)

These spaces are borrowed from [90]. Similar to the case presented in the spaces in (8.2), we

develop an inner product in T Vh that is equivalent to its continuous counterpart. These spaces

form a inf-sup stable stokes pair. The coupling in this system is non-linear. Thus, we develop a

linearization strategy. We can show that this strategy will provide approximations to the magnetic

field that remain divergence-free.

For all of the VEMs that we developed throughout this dissertation we were able to obtain
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important energy estimates that attest to their stability. Simulations based on these methods will,

at each time step, solve one or more linear systems. We were able to identify these as well-posed

saddle-point problems.

The series of simulations that we presented provide evidence about the rate of convergence

of the electric and magnetic fields, they are quadratic and linear respectively. We show that some

of the energy estimates do in fact hold. We also provide a model for magnetic reconnection.

The computational domain is the square [−1, 1] × [−1, 1]. The phenomenon happens near the

center of the domain. To show the versatility of the VEM we use an adaptively refined mesh to

provide higher resolution in this region. This mesh introduces a series of hanging nodes which

would make it difficult for other methods to provide formulations. However, this mesh agrees

with the assumptions we made on the mesh and the VEM provides approximations without any

complications.

This work presented is only meant to be a first step into research in this area and leaves a

series of open questions that we document in what follows.

(Q1) How to we develop and implement efficient preconditioners? As we mentioned before, at

each time step a linear system needs to be solved. This is a rather slow process without a

preconditioner to speed up an iterative solver like GMRES. This result can be leveraged to

come up with efficient preconditioner following the framework laid out in [69]. This was

done for a similar MHD system in [70] using a Picard fixed point iteration as the choice of

linearization. Efficient implementation of this preconditioner will require a generalization

of mass lumping. While it is unclear how this can be done in general, in [77] some strategies

are laid out in the context of elastodynamics. We also note that these type of preconditioners

have been used in 3D VEMs for problems in fluid flow as well as electromagnetics, see [50].

Other physics-based preconditioners have been developed, see [31, 39].

(Q2) How do we parallelize the VEMs developed? We have not addressed the implementation

aspects of the VEM. Although the similarities between FEM and VEM do imply that many
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of the techniques currently in use for FEMs can be imported over the extent to which this is

the case has yet to be studied.

(Q3) Why should the numerical approximations converge to the exact solutions as the mesh size

shrinks? Although we did provide evidence in the form of numerical experiments, see

Chapter 6., a formal proof of convergence is left for future work.

In Chapter 7., that comprises the OSU NRT interdisciplinary chapter, we introduced the

concept of CKS, species of utmost importance to a people’s culture, and an approach that utilizes

mathematical modeling of opinion dynamics to understand how opinions can be influenced to

develop policy that will protect CKS. This is presented in Section 7.8. Central to this idea is

the development of a model for debates between legislators. In this chapter, we developed a

mathematical model based on a non-linear system of ODEs.

The main conclusion that we can draw from the analysis in this chapter is that, if the elec-

torate influences at least 17.16% of the legislators then appropriate legislation is guaranteed to

pass. Thus, the modeling gives a quantitative estimate of the percentage of legislators that need

to vote in a certain way. If the assumptions are changed this quantitative estimate will change.

The main lesson that we can take away is that mathematical modeling can be successfully used in

collaborationn with environmental scientists, ecologists and public policy experts to model social

dynamics and inform public policy.
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(1974), pp. 1–26.



185

28. F. BREZZI, R. S. FALK, AND L. D. MARINI, Basic principles of mixed virtual element
methods, ESAIM. Mathematical Modelling and Numerical Analysis, 48 (2014), pp. 1227–
1240.

29. A. CANGIANI, V. GYRYA, AND G. MANZINI, The nonconforming virtual element method
for the stokes equations, SIAM Journal on Numerical Analysis, 54 (2016), pp. 3411–3435.

30. A. CANGIANI, G. MANZINI, AND O. SUTTON, Conforming and nonconforming virtual
element methods for elliptic problems, IMA Journal on Numerical Analysis, 37 (2017),
pp. 1317–1354. (online August 2016).
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