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ABSTRACT 

Remote sensing techniques have been applied extensively in geospatial investigations, 

but their use in measuring soil physical attributes has been far less explored.  Soil particle size 

distributions (PSD) are indispensable in modeling pedological and hydrological processes as 

well as biodiversity. However, estimation of PSD via gravimetric measurement methods, the 

standard currently in use, is relatively laborious and time-consuming.  This research is a 

pioneering attempt to estimate soil PSD from computerized tomographic (CT) scans.  CT 

scanners non-invasively penetrate three-dimensional (3D) objects to produce a series of two-

dimensional (2D) gray images, where grayscale values express density of internal matter in 

Hounsfield Units (HU).  In this study, a model is developed that associates particle size with HU-

derived pixels by first classifying the image with an unsupervised technique and then by 

hierarchically clustering the classes according to soil horizons. The soil PSD is computed as the 

relative class frequency of classified pixels. For the type of soil used in this study, Weibull 

distribution was found to fit all layers at a fine 10 mm scale, but a broader horizon-level analysis 

found lognormal distribution to perform best (in the absence of Weibull). The PSD estimated 

from CT scans was insignificantly different from the sieve-analysis measured PSD in each 

horizon. This novel approach to soil diagnostics could transform future soil particle analyses.  
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1 Introduction 

While the chemical composition of soil plays a fundamental role in plants nutrition, the 

physicals properties are primarily responsible for availability of those nutrients. The main 

numerical measurement describing physical properties of a soil is distribution of particles across 

horizons, as soils rarely consist of particles of a single size range (Gee and Or, 2002).  In 

essence, particle size distribution (PSD) is a list of ordered values that describes the relative 

amount (expressed by mass or volume) of granular material present in soil (Gee and Or, 2002; 

Jillavenkatesa et al., 2001; Ujam and Enebe, 2013). PSD is therefore considered an indication of 

overall soil texture, as it reveals the composition of particle mass fractions (e.g., clay, silt, sand, 

gravel) (Bayat et al., 2015; Botula et al., 2013; Gee and Or, 2002; Meskini-Vishkaee and 

Davatgar, 2018).  Soil particles are, in general, convex, irregularly shaped, randomly oriented 

inorganic matter (Tollner et al., 1998).  The arrangement of individual or aggregated particles is 

often used to predict performance of soil properties, such as the water retention, water capacity, 

thermal conductivity, even chemical reactivity, as well as land use indications, such as soil 

degradation, desertification, erosion, and productivity (Arya and Paris, 1981; Bayat et al., 2015; 

Botula et al., 2013; Fredlund et al., 2002; Gee and Or, 2002; Haverkamp and Parlange, 1986; 

Hwang and Powers, 2003; Su et al., 2004; Wang et al., 2008).  Employing traditional 

granulometric methods to measure PSDs are laborious and time-consuming (Jillavenkatesa et al., 

2001; Nielsen, 2004; Tollner et al., 1998); the commonly used sieve-analysis method is a 

destructive process that consists of shaking oven-dried soil through a stack of sequentially 

smaller sieves, then weighing the particles that end up in each size bin (Nielsen, 2004; Tollner et 

al., 1998; Ujam and Enebe, 2013). 

To standardize soil particle size data for consistency across soil types, estimate soil-water 

characteristic curves, and provide a continuous function over gaps between measured data points, 

models are often fitted to soil PSDs (Bayat et al., 2015; Botula et al., 2013; Buchan et al., 1993; 

Esmaeelnejad et al., 2016; Fredlund et al., 2000; Haverkamp and Parlange, 1986; Hwang, 2004; 

Hwang and Powers, 2003; Zhao et al., 2011).  Botula et al. (2013) and Esmaeelnejad et al. (2016) 

compared various models in capturing PSDs across a regionally diverse collection of soil types, 

and found that the Weibull model is the most accurate (often "outstanding") fit for soils overall 

(Bayat et al., 2015; Botula et al., 2013), while additional models (not dismissing Weibull) may 
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also perform well at fitting particular soil textures types. For example, the lognormal model has 

been proven to fit coarse-textured soils, such as sandy soils (Botula et al., 2013; Hwang, 2004; 

Hwang and Powers, 2003; Shirazi and Boersma, 1984), as well as soils with symmetric PSDs 

(Fredlund et al., 2000, 2002) and with fine-scale grades (Meskini-Vishkaee and Davatgar, 2018).  

While Esmaeelnejad et al. (2016) argued that models with a higher number of parameters can 

potentially support better fitting ability, Botula et al. (2013) repeatedly discovered that models 

with more than three parameters do not necessarily adjust better to the empirical PSD. 

Nevertheless, models with too many parameters face over-complications, and, therefore, should 

be avoided due to impracticability (Esmaeelnejad et al., 2016).  A multitude of studies focused on 

modeling PSD suggested that fitting ultimately dependents on the grain-size and textural 

characteristics of the soil.  Representing soil PSD as a model aids in the identification and 

association with other similar soils (Fredlund et al., 2000); this concept of matching models will 

be applied in this study, by comparing models of a soil's PSD to models of class-frequency 

statistics derived from remotely sensed imagery. 

Remote sensing techniques have been applied extensively to geospatial land cover 

applications, but their use on underground objects, such as cored soils, has been relatively 

underexplored.  X-ray computed-tomographic (CT) scanners enable remote sensing 

investigations of solid entities because of the high energy associated with the 0.01 to 10 

nanometers wavelength. CT scans non-invasively penetrate a medium from different angles and 

measure the linear attenuation, which is recorded as a 2D image. The object is subsequently 

reconstructed by concatenating the image. The final result is a grayscale image, each pixel 

storing the medium density expressed in Hounsfield Units (HU) (Naveed et al., 2012; Phillips 

and Lannutti, 1997; Tollner et al., 1998).  By convention, darker pixels represent less-dense 

material (i.e., lower HU), whereas lighter pixels indicate denser material (i.e., higher HU) 

(Nielsen, 2004). 

CT scanners have been used to x-ray soils for at least two decades, but research has 

primarily focused on measuring soil physical structure, such as pore-space geometry, size, and 

permeability networks (Beraldo et al., 2014; Elliot et al., 2010; Luo et al., 2010; Mairhofer et al., 

2012; Mukunoki et al., 2016; Naveed, 2012; Perez et al., 1999; Peth et al., 2008).  Compared to 

traditional destructive techniques (e.g., sieve analysis), CT scanning offers advantages of time 
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savings and minimal sample disturbance (Tollner et al., 1998).  Despite a steadily growing 

implementation of CT technology in soil research, its use in predicting soil PSD has been less 

successful.  Tollner et al. (1998) and Nielsen (2004) were similarly motivated to derive PSD 

from high-quality CT scan images, but the approach of measuring individual grain-sizes in post-

filtered imagery was not viable for distinguishing oblique-shaped particles, nor those smaller 

than the pixel resolution that blend together and, therefore, allow only small samples of soil to be 

scanned. Moreover, soil CT scan cross-sections do not necessarily split particles at their widest 

diameters, resulting in measurement errors of individual grains. However, some studies 

supported the hypothesis that soil density can be used as a proxy to soil PSD. Therefore, the 

objective of the study is to develop a procedure of expressing accurately and precisely the soil 

PSD from the CT scans. 

 

2 Materials and Methods 

2.1 Materials 

A soil core was drilled and collected from beneath Beasley Lake, Sunflower County, 

Mississippi (33.3982, -90.6762) (Fig. 1).  The 25-ha oxbow lake lies in a heavily modified 850-

ha alluvial plain watershed in the lower Mississippi River Basin (also known as the Mississippi 

Delta) (Locke et al., 2005; Wren and Davidson, 2011).  Land-use in the region consists mostly of 

mixed row-crop agricultural (cotton, soybean, rice, as well as catfish), and due to its closed 

system, runoff into the lake has been the subject of many nutrient, pesticide, and sediment related 

studies (Cooper et al., 2003; Locke et al., 2005; Wren and Davidson, 2011).  The watershed is 

relatively flat, with maximum change in elevation from the watershed’s highest point to lake 

surface of 5.5 m (Locke et al., 2005); as such, the depth of Beasley Lake is shallow enough 

(roughly 10 feet or less) that water pressure at the lake bottom would not cause serious sediment 

compaction.  The lake's humid sub-tropic climate has an average annual temperature of 18ºC, 

and produces an annual rainfall of 131 cm (Locke et al., 2005).  Soil textures in the watershed 

vary from sandy loam to heavy clay, with Dundee, Forestdale, Dowling, and Alligator being the 

major soils represented (Cullum, 2010; Locke et al., 2005). 
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Figure 1. Beasley Lake, Mississippi, from which the soil core was extracted. 

The soil sample was cored with an aluminum irrigation pipe, using a vibracorer deployed 

from a boat, drilled into the bottom of Beasley Lake.  The collected vertical sample consisted of 

maximum internal dimensions measuring 840 mm long, 99.3 mm wide, for a total volume of 

approximately 6,505 cm3.  

2.2 Image Acquisition and Pre-Processing 

2.2.1 CT Scanning 

A medical-grade Toshiba Aquilion 64-slice Computed Tomography (CT) scanning unit at 

the Oregon State University College of Veterinary Medicine was utilized to scan the soil core, at 

a level of 120 kVp and 400 μA.  CT scanners evaluate and translate material density into HU 

with a linear range (or “window”) from -1000 HU (air) to about +4000 HU (heavy metals) (water 

being 0 HU) (McGonigal, n.d.).  The HU window of the saturated soil sample in this study was 

presumably 0 (water) to less than 1000 (solid rock, generally less dense than bone).  Displayed as 

a grayscale image on an 8-bit computer monitor, this wide HU window is compressed into 
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brightness values between 0 and 255 (black:0 to white:255).  However, most human eyes can 

only detect differences in grayscale of every 16 shades of gray (i.e., 6% change) (McGonigal, 

n.d.) and so a CT scan having a window of 1000 HU translated into 256 brightness values means 

differences in features might be noticeable at only 60+ HU.  In the medical world, changes exist 

below that threshold; for example, kidneys, pancreas, liver, and blood of humans all register 

within 25 HU of each other (Heymsfield et al., 2005). 

A set comprising 51 concatenated scans captured the vertical cross-sections; the 

consecutive images being spaced 2 mm apart.  The pixel of each image is 0.535898 mm (Figure 

2).  All images were cropped to 300 x 1624 px ([x, y]) to eliminate wide empty areas outside of 

the soil column while retaining full spectral detail. 

2.2.2 Image Pre-Processing 

The cylindrical shape of the core sample lead to narrow images for the first 17 and last 17 

scans were deemed unsuitable for ensuing spatial analyses; therefore, they were culled from the 

image series.  This was a matter of needing to overlay a fixed digital window to read all images 

of the collection, so it was decided that a wider window that captured the full spatial extent of 

fewer images would yield more accurate results than fitting a narrower window over more 

images. Considering that such a fixed window could only be as wide as the narrowest image, 

only the middle 17 images (Images 18-34, the widest 1/3 of the core) were chosen for image 

processing (Figure 3).  
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Figure 2. CT images of the soil core. Left: Original CT scan Images 1-50 (Image 0 not pictured), cropped to 300 x 1624 

px.  Soil column width tapers off at the beginning and end of the series, due to the cylindrical nature of the core.  Right: Original 

CT reconstruction measuring 840 mm in height and 99.3 mm in diameter. 
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Figure 3. Cropped original CT scan Images 18-34, concatenated to show progression of vertical cross section scans 

(spacing between images not to scale.) 
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2.2.3 Granulometry 

After being x-rayed, the soil column was manually sliced every 10 mm vertically, which 

physically divided the core into 84 cm cylinders with diameter 99.3 mm and height 10 mm. Each  

10 mm tall soil disks was oven-dried then sieve analyzed, to separate particles into up to 100 

normalized size bins ranging from 0.011482 μm - 10000 μm.  Some mistakes occurred during 

granulometric data extraction, which rendered PSD measurements of 24 of the 10 mm tall 

cylinders unsuitable for analysis.  The particles from each bin were weighed, and the recorded 

PSD measurements of the 60 cylinders (i.e., 600 mm depth) were summarized as histograms 

(Figure 5). 

2.3 Image Processing 

A key step in image analysis involves allocation of image features into meaningful 

categories based on the shared inherent properties within in the image (Naveed, 2012).  Because 

the images display HU units for which no relevant prior information was available, I classified 

the 17 selected soil core images with the ISO Cluster Unsupervised algorithm, as implemented in 

ArcGIS 10.4 (Environmental Systems Research Institute, 2008). While several classification 

algorithms and schemes exist, I selected the ISO Cluster Unsupervised Classification as it is 

suited for quick and relatively accurate identification of classes within the image without prior 

training by the user.  Alternatively, Supervised Classification would be unsuitable for this 

application because it requires prior knowledge of image features – not available in this case – 

and the images contain substantial noise inherent to the creation of the HU that would encumber 

user-supervised training.  Another consideration for not engaging a Supervised Classification 

approach was due to the imperceptible differences in HUs to the human eye, which rendered 

identification of classes as biased by the operator.  Moreover, a successful performance of 

Unsupervised Classification in this study would lend more favorably to method repeatability for 

future soil diagnostics via CT scanning. 

The ArcGIS 10.4 implementation of the ISO-Cluster algorithm is an enhancement of the 

ISODATA algorithm that was developed by Ball and Hall (1965), as it combines the original 

ISODATA with Maximum Likelihood Classification  (Environmental Systems Research 

Institute, 2008).  The ArcGIS procedure initially runs the ISODATA (iterative self-organizing) 

algorithm (Ball and Hall, 1965), which iteratively samples pixel band values to minimize the 
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Euclidian distances from a user-specified number of class means (Environmental Systems 

Research Institute, 2008).  To avoid creation of computational artefact spectral classes containing 

only a few pixels, I decided that individual classes shall contain a minimum of 20 pixels (i.e., 

~5.7 mm2).  In the eventuality that not enough pixels were assigned to a class, the class would be 

eliminated and its pixels merged with an alternative class, thereby resulting in fewer classes than 

requested.  Therefore, a larger-than-expected number of classes should be initially chosen, to 

gauge the number of unique feature types likely present in the image (Environmental Systems 

Research Institute, 2008).  A trial-and-error process can be used to fine-tune the algorithm, such 

that the pre-set number of classes is obtained. Because soil particles are generally categorized 

into three sizes (clay, silt, and sand), I considered that at least two classes should be present in 

each size. However, the inhomogeneous nature of each soil suggests the possibility of an 

unbalanced distribution of classes among particle sizes, as well as other non-particle artifacts 

(e.g., air, larger rocks, roots); therefore, I decided to use at least seven classes, to ensure the range 

of each particle type (e.g., clay, silt, sand) could be captured by at least one class each. 

The ISODATA Unsupervised Classification is followed by a parametric Maximum 

Likelihood Classification, which assumes that cells are normally distributed around their means. 

The Maximum Likelihood algorithm uses the covariance of each class’s distribution to determine 

the probability of each pixel to belong to a class (Environmental Systems Research Institute, 

2008). Consequently, a pixel may lie closer to one ISO Cluster class mean in spectral space but 

ultimately is grouped into a different cluster of a more distant mean, due to a higher probability 

of belonging to a farther mean. 

The ISO Cluster Unsupervised Classification requires at least two bands (Environmental 

Systems Research Institute, 2008); however, CT scanners produce grayscale images of only one 

band. To accommodate the minimum number of bands requirement and to provide consistency 

with the vast majority of image classification studies, I created 3-band images that contained the 

original one-band image triplicated and overlain upon itself. Considering that all pixels will have 

the same value as a result, collinearity issues could arise that would impact the reliability of the 

computations. To avoid computational issues, I created two additional 3-band images for all 17 

images, which contained along with the original CT scan (band 1), two altered images (band 2 - 

3). The altered images were created by adding noise to each HU pixel. I assumed that the noise 
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should follow a normal distribution with mean 0, to mirror the majority of the procedures used 

for synthetic data generation. One set of the altered images had variance of noise +/- 1 and +/- 2, 

and a second set of images with the variance +/- 2 and +/- 4, which added a random variable with 

a normal distribution and variance σ2, N(0, σ2), to the HU at each pixel. The variance size is 

minute in comparison with the magnitude of the grayscale-value HUs (i.e., < 1%), thereby not 

significantly altering the information stored in the images. Therefore, for estimating the soil PSD 

using CT scans I used three sets of 3-band images: 1) a set with three identical bands (i.e., the 

original CT scans); 2) a set with one band as the original CT scan, a second band as the CT scan 

plus noise N(0, 1), and a third band as the CT scan plus noise N(0, 2); and 3) a set with one band 

as the CT scan, a second band as the CT scan plus noise N(0, 2), and a third band as the CT scan 

plus noise N(0, 4). Considering the particle sizes on which a soil PSD are commonly separated, I 

classified the images using eight classes, which ensures that at least two classes are present in 

each broad type of particle size: clay, silt, and sand. 

2.4 Fitting Procedure 

Identification of a distribution that fits the soil PSD focused on a significant amount of 

research (Botula et al., 2013; Esmaeelnejad et al., 2016). Several distributions were proven to fit 

most of the soil PST, chief among them being Weibull distribution (Esmaeelenjad). However, 

other distributions, such as Rossin Rammler, log-normal, or Gompertz, provide superior fit to 

some soil PSDs, sometimes undistinguishable from Weibull. To be able to estimate soil texture 

from images, a distribution suited to represent soil PSD must accurately fit different portions of 

the soils dominated by differing particle size majorities. Therefore, the same distribution should 

fit all 10 mm cylinders at each of the 84 depths.  To mirror the approach presented in many 

studies aimed at identification of soil PSD (Bayat et al., 2015; Esmaeelnejad et al., 2016), ten 

distributions were tested using the Shapiro-Wilk test: Rossin - Rammler, beta, gamma, Gumbel, 

lognormal, Pareto, power, Johnson Sb, Jonson Su, and the 3-parameter Weibull.  Model fitting 

was performed using SAS ver. 9.4 (SAS, n.d.). 
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Table 1. Distributions tested for fitting the soil PSD obtained by sieve analysis and from images. The α, β, γ are the 

parameters of the probability density functions, Γ is the gamma function. 

No. Distribution Probability density function 

1.  Rosin - Rammler 
𝑒−(

𝑑
𝑑
)𝑛

 

2.  Beta Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)
𝑥∝−1(1 − 𝑥)𝛽−1 

3.  Gamma 𝛽𝛼

Γ(𝛼)
𝑥∝−1𝑒𝛽𝑥 

4.  Gumbel 1

𝛽
𝑒−(𝑧+𝑒

−𝑧) 

5.  Lognormal 1

𝑥𝜎√2𝜋
𝑒
−
(ln𝑥−𝜇)
2𝜎2

2

 

6.  Pareto 𝛼𝑥

𝑥𝛼+1

𝛼
𝑚

 

7.  Power 𝑝𝜙(𝑥)(𝛷)(−𝑥))𝑝−1 

8.  Johnson Sb 𝛾 + 𝛿log(
𝑥 − 휀

휀 + 𝜆 − 𝑥
) 

9.  Johnson Su 𝛿

𝜆√2𝜋

1

√1 + (
𝑥 − 휀
𝜆

)2
𝑒−

1
2
(𝛾+𝛿𝑠𝑖𝑛ℎ−1(

𝑥−
𝜆

))2
 

10.  Weibull 𝛼𝛽−𝛼(𝑥 − 𝜃)𝛼−1𝑒−((𝑥−𝜃)/𝛽)
𝛼−1

 

 

The same ten models were recast over the aggregated class frequency distributions 

derived from the classified CT scans, fitting the distribution counts of pixels-per-class. Because 

the classification of the CT scans was performed for the entire core, whereas the sieve analysis 

was carried out for individual 10 mm tall cylinders, the same distribution must be present in all 

images. Otherwise, a mixture of distributions will be present, which would complicate the 

computations unnecessarily. Therefore, for the ten tested distributions, an additional requirement 

was imposed on top of the necessity for the model to fit the soil PSD or pixels-per-class data, 
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namely that the distribution must be the same one to work for all images and for all 10 mm soil 

disks. 

The classification performance of the 3-band images can vary from one CT scan to the 

next. To ensure that comparisons could be made to classes derived from different CT scanner 

images, each class must contain pixels with similar HUs; otherwise, particles with different 

densities will be grouped together, which will invalidate a subsequent separation in soil particle 

sizes. Considering that for each CT scan the classes will have different ranges of HUs, the 

constraints that similar HUs should be present in each class translates not to the values 

themselves but to their continuity. Therefore, each classified CT scan should contain pixels with 

consecutives HUs values, even if the range of values differs from image to image. 

The CT scans provide a description of the soil along the core vertically, whereas the sieve 

analysis depicts soil granulometry transversally, across the core from top to bottom. To 

accommodate the two different perspectives (i.e., along and across), the classified images were 

partitioned into 10 mm sections, similar to the 10 mm tall cylinders. To mirror the fact that the 

soil cylinder contains information at a particular depth, all the 10 mm sections from all images 

that were located at the same depth as in the cylinder were merged. For each 10 mm merging 

(i.e., a set of 17 rectangles), the percentage of each class in respect to all the classes was 

computed (Eq. 1). The percentage of pixels of a class corresponds to the percentage of a 

particular particle size, as I assumed that different particle sizes have different densities, 

therefore different HUs. 

𝑝𝑐𝑙𝑎𝑠𝑠𝑖 =
1

𝑛𝑖𝑚𝑎𝑔𝑒𝑠
∑

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑖𝑥𝑒𝑙𝑠𝑖𝑛𝑐𝑙𝑎𝑠𝑠𝑖

∑ 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑖𝑥𝑒𝑙𝑠𝑖𝑛𝑐𝑙𝑎𝑠𝑠𝑗
𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑗=1

𝑛𝑖𝑚𝑎𝑔𝑒𝑠

𝑖=1
     1 

The wealth of data present in this study, particularly having soil PSD at every 10 mm, is 

rarely available in real situations. More often, soil PSD is determined not for predefined 

incremental depths, such as 10 mm, but for entire horizons, such as Ap or Bt (Soil Survey Staff, 

1999). To mirror functional reality, the 10 mm tall disks were aggregated according to their PSDs 

obtained either from sieve analysis or after classification. To ensure realism of the aggregated 

results, another constraint was imposed that groups must be formed from successive disks, 

similar to horizons.  Because classified images could represent the same particle size with 

different HUs, predefined classification strategy is unsuitable. Therefore, 10 mm tall disks were 
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grouped with unsupervised hierarchical clustering, using the average linkage method (Sokal and 

Michener, 1958) that computes the distance between clusters as: 

𝐷𝐼𝐽 =
∑ ∑ ‖𝒙−𝒚‖2𝑗∈𝐽𝑖∈𝐼

𝑁𝐼𝑁𝐽
        2 

where DIJ is the distance between clusters I and J, 

NI and NJ are the number of values in cluster I and J, respectively, 

║x - y║2 is the Euclidean distance between cluster I and J. 

 I selected the clusterization method using the average linkage, as it tends to create 

clusters with similar variances (Massart and Kaufman, 1983). Individual clusters with 

comparable variances not only represent soil horizons but also balance the groups created from 

the sieve analysis with the groups created from image classification. I identified significantly 

different clusters using the scree test (Cattell, 1966) and the procedure proposed by Mojena 

(1977).  I implemented the Mojena procedure, as improved by Milligan and Cooper (1985), 

which suggested that the number of clusters should be selected based on the change in the 

distance between two adjacent groups at which: 

𝛿𝑗 = 𝛿̅ + 1.25𝑠𝛿 j=1,2,..,n        3 

where δ1, δ2, …, δn are the distance values for stages, 

n, n -1, …, 1 are clusters, 

𝛿̅ and sδ are the mean and standard deviation of the distances between two adjacent 

groups, and 

k = 1.25 is the constant proposed by Milligan and Cooper (1985). 

Creation of horizons from images and disks allows development of PSD distributions for 

each horizon as identified from the sieve analysis and from the CT scans. Nevertheless, the 

parameters defining the PSD distributions differ according to the source of data (sieve analysis or 

CT scans). To predict the soil PSD from images, a possible approach is to develop relationships 

between the parameters defining the two distributions.  The PSD distribution of each horizon 

should be the same as the disks’ distribution, as summation of independent random variables 

with the same distribution is a variable with the same distribution. If the distribution of each 
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cluster is of the same type irrespective of the source (i.e., sieve analysis or CT scans), 

relationships between parameters estimated from the images and the parameters estimated from 

sieve analysis can be developed using seemingly unrelated regression (SUR) (Zellner, 1978): 

𝛼𝑠𝑖𝑒𝑣𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 = 𝑏𝑜
𝛼 + 𝑏1

𝛼𝛼𝑖𝑚𝑎𝑔𝑒 + 𝑏2
𝛼𝛽

𝑖𝑚𝑎𝑔𝑒
       4 

𝛽
𝑠𝑖𝑒𝑣𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

= 𝑏𝑜
𝛽 + 𝑏1

𝛽
𝛼𝑖𝑚𝑎𝑔𝑒 + 𝑏2

𝛽
𝛽
𝑖𝑚𝑎𝑔𝑒

        5 

According to Kruskal’s tree theorem (Kruskal, 1960) the formulation from Eq. 4 and 5 

supplies the same results as independent equations estimated with ordinary least squares (OLS). 

However, I expected that the parameters of the distribution selected for estimation of the soil 

PSD would not be modeled from the same set of regressors.  

The modeling process is summarized in Figure 4. 

 

Figure 4. Workflow for estimation of the soil PSD from CT scans and granulometry. 

 

Data collection: Sieve analysis and CT scan imaging

Unsupervised image classification on processed CT scans

Separate the classified images in 10 mm tall rectangles similar to sieve analysis

Merge all 10 mm rectangles located at the same depth and compute proportion of 
each class

Identify horizons using hierchical cluster analysis performed on both merged 
rectangles and soil cylinders

Fit PSD models to sieve analysis data and CT scans 

Select the same PSD that fits both soil disks and merged image rectangles

Develop relationships between the parameters of the PSDs of the horizons 
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3 Results  

3.1 Soil PSD from Sieve Analysis 

The histogram created from the sieve analysis for the 10 mm cylinder reveled a skewed 

bimodal distribution for almost all depths (Figure 5). However, the second mode occurs for 

particles larger than sand, which not only are of limited interest for plants but also can be 

estimated quickly and inexpensively. Therefore, for estimating distributions that fit the soil PSD, 

only the range of particles the size of sand or smaller was used.  

Among all ten distributions tested, only Weibull fit all of the 10 mm soil cylinders (p-

value>0.05), followed closely by the lognormal (i.e., almost 90% of the 10 mm cylinder PSDs). 

The rest of the distributions were either only appropriate for limited portions of the soil core, or 

faced computational issues.  Once the distribution was identified, the parameters were recovered 

using three procedures: maximum likelihood (ML), as implemented in SAS 9.4; the method of 

moments; and the percentiles method (Adeyemi, A.A. and Adesoye, P.O., 2016; Hudak and 

Tiryakioğlu, 2009). In the case of Weibull distribution, the percentiles were computed as  

𝑞(𝑝, 𝛼, 𝛽) = 𝛽(− ln(1 − 𝑝))1/𝛼        6 

and the un-centered moments as 

𝑚𝑛 = 𝛽𝑛Γ(1 +
𝑛

𝛼
)          7 

where q(p, α, β) is the quantile of the probability p and parameters α, 

α and β are the shape and scale parameters of the Weibull distribution 

mn is the un-centered moment of order n. 

Therefore, the shape and scale parameters could be estimated as: 

𝛼 = 2/𝑙𝑛(𝑞75/𝑞50)          

𝛽 =
𝑞25

(−𝑙𝑛0.75)
(𝑙𝑛2)−1ln(

𝑞75
𝑞50

)
         9 

However, several authors have pointed to the sensitivity of outliers when recovering 

parameters from moments or percentiles, and instead recommend the ML method as the 
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preferred procedure for parameter estimation. For the soil core data, it was found that the 

parameters recovered using the method of movements or the percentiles method could vary 

widely between proximate soil cylinders, suggesting that parameters estimated from ML should 

be used. 
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Figure 5a. Histograms of particle size distributions (PSD) for successfully sieved 10 mm deep cylinders, cm 1-48. 
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Figure 6b. Histograms of particle size distributions (PSD) for successfully sieved 10 mm deep cylinders, cm 49-84. 
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3.2 Image Classification 

Irrespective of the presence of added variance (noise) or not, all classifications were 

executed without any computational issues. All classifications started with nine classes and 

ended with seven, eight, or nine classes (Figure 6), depending on the image. The final number of 

classes supports the estimation of soil PSD from at least seven classes, which were identified 

from the images. The lack of computational issues suggested that the analysis should be carried 

out on the 3-band image with no noise (Figure 6). To allow easier visual distinction of classes 

both within and among images, all classified images were consistently false-colored (Figure 7). 

 

Figure 7. ISO Cluster Unsupervised Classification of the 3-band image obtained from the CT Scan #28. Depending on 

the parameters of the classification, the resulting images had 7, 8, and 9 classes. 

Despite the difference in number of classes among images, the assigned classes generally 

agreed to the same recognizable features spanning consecutive images.  This means that a 7-class 

image would not necessarily be scaled over classes 1 to 7, but would instead retain sensible 

consistencies from a different 8-class image; for example, a 7-class image might consist of 

classes 1 to 3 and 5 to 8, if the usual class 4 feature was too infrequent in the image (fewer than 
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20 pixels) to constitute its own class (and its pixels then merged into neighboring class 

identities).  I also noticed that some classes (such as classes 1 to 3, or 5 to 6) were sometimes 

interchangeable between successive images, likely being the same feature in reality, and could 

perhaps be merged into broader classes signifying definite features (e.g., water, rock, particle 

size). 
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Figure 8. Images 18 – 34, original grayscale images (left), and corresponding post-classification outputs (right):  7 

classes were detected for 9 images and 8 classes were identified for 8 images. 
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The classified images evaluated the identified features appropriately, as distinct 

observable attributes were present to the pre- and post-classified images (Figure 8).  Importantly, 

class numbers matched detectable grayscale changes apparent in original CT scans.  For instance, 

the algorithm assigned class 1 to the blackest pixels of the original grayscale image, which 

indicate the least-dense material (e.g., water) detected by the CT scan.  Ever-brighter pixels in 

the grayscale image – which represent increasing material density – aligned with ascending class 

numbers (up to 8). 

 

Figure 9. Visual assessment of Unsupervised Classification performance.  Distinct image features in the grayscale 

input are classified in the output image using spectral properties.  CT-derived images portray material density from least (black) 

to most (white). 

To compare the distributions of aggregated pixels-per-class from classified images to the 

distributions of the sieve analysis, each of the 17 classified images was partitioned into 84 equal 

stacks, representing 10-mm interval depths of the 840 mm soil core.  At each centimeter depth 

(1-84), pixels allocated to each class (1-7 or 1-8) were summed across all images (18-34) (Figure 

9).  To reflect the proportions of material density present across a graded range I developed 

histograms of pixels-per-class for each of the 84 depths (Figure 10). 

Similar to the sieve analysis, I fit ten distributions to the histograms developed from the 

classified images. Even though the magnitude of the variables was different (i.e., unitary rather 
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than sub-unitary), the same findings were achieved: Weibull was the only distribution that 

accommodated all the depths, followed by lognormal. However, the lognormal distribution did 

not fit the same depths, which suggested that Weibull distribution should be used to describe soil 

PSD and consequently to develop linear relationship between the sieve analysis values and the 

classes from the images. The parameters of the Weibull distribution were also estimated using 

three methods: ML, method of moments, and the percentiles method. Mirroring the results of 

sieve analysis, the parameters varied significantly for some nearby pairs of 10 mm depths when 

estimated with the method of moments and the percentiles method. Therefore, for consistency, I 

considered only Weibull distribution for modeling, whose parameters were recovered with the 

ML method. 
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Figure 10. Classified Images 18 - 34, concatenated, virtually demonstrating digital portioning of 84 cm depths 

vertically, as well as histograms for six selected depths displaying aggregated pixels-per-class from all images. 
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Figure 11. Histograms for all 840 mm depths.  (Only 60 of the 84 distributions were evaluated to compare with 

respective granulometric PSD distributions, due to errors that occurred during 24 PSD measurements of 10-mm tall disks). 

3.3 Model Fitting and Comparison 

The SUR formalized by Eq. 2 and 4 for the 10 mm tall objects (i.e., cylinders for soil core 

and set of rectangles for classified images) did not lead to significant relationships between the 



26 

 

 

parameters of the Weibull distributions estimated from classes and from sieve analysis, which is 

the objective of the study. The results indicated that the variability along the vertical soil profile 

is hard to be captured by merging across information. This realization bore the idea of grouping 

multiple 10 mm cylinders into collective soil horizons. A primary analysis of the effectiveness of 

this solution was executed by plotting all soil PSDs from sieve analysis (Figure 11), which 

suggested the presence of at least four unique layers.  Despite strong visual potential, execution 

of a formal analysis would be subsequently needed to verify the true number of layers and to 

allow for replicating the study. 

 

Figure 12. Soil particle size distribution of sieve analysis data.  Four distinct depth-dependent clusters are apparent. 

To estimate the exact number of soil layers, I executed a hierarchical cluster analysis on 

both raw data from sieve analysis and image classification (i.e., variables of either class or 

particle size weighted according to their mass) as well as on the coefficients of the Weibull 

distribution (i.e., variables alpha and beta). Hierarchical cluster analysis supports the existence of 

at least four horizons (Figure 12), represented by four clusters, irrespective of the source of data 

(i.e., sieve analysis or classified images) or level of data-processing (i.e., percentage from total or 

the Weibull parameters).  Almost identical average distances between clusters were obtained 

when the soil PSD is expressed as weight for each measured particle size, class, or Weibull 
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parameters. Cluster analysis also revealed that the clusters are formed from neighboring 10 mm 

cylinders across consecutive depths.  

 

Figure 13. Cluster analysis on soil PSD datasets expressed as percentages from total: a. sieve analysis b. classified 

images. 

The scree test and the procedure proposed by Mojena (1977) revealed that there only four 

clusters (Figure 13), ergo, four soil horizons. The results of the two procedures agreed with the 

R2 results, which also indicate that the soil core contained four horizons, with significantly 

different neighboring densities. The succession of the horizons, including the missing 10 mm 

cylinders, is: 1cm - 20 cm; 21cm - 51 cm; 52 cm – 69 cm; 70 cm – 84 cm. 
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Figure 14. Scree test (the root mean square deviation in red) and coefficient of determination, R2 (in black), for the 

clusters created using Weibull parameters from: a. sieve analysis weights, b. classified images. 

The horizons identified by cluster analysis served as the basis for estimating soil PSD 

from CT scans.  Since each individual 10 mm cylinder had a Weibull distribution, I decided to 

use Weibull to similarly describe each horizon.  Along with Weibull, I also considered the 

lognormal distribution, which had been the second most encountered distribution among the 10 

mm soil cylinder PSDs. Considering that the sum of independent random variables with different 

Weibull distributions does not have an analytical form (Nadarajah, 2008), the parameters of the 

fitted Weibull for the 10 mm cylinders cannot be used for identification of the horizon-level 

PSD.  Consequently, I fit the top two distributions identified for the 10 mm cylinders (i.e., 

Weibull and lognormal) to each horizon using the ML method. While the Kolmogorv-Smirnov 
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test indicated that both Weibull and lognormal distribution fit the PSD for both sieve analysis and 

image classification (p>0.03), the Anderson-Darling test supported only lognormal distribution 

as fitting all four horizons PSD (p≥0.10).  Therefore, for modeling the soil PSD by horizon I 

used the lognormal distribution, with parameters presented in Table 2. 

 

Table 2. Lognormal distribution parameters for the four horizons identified for the sieve analysis and classified images. 

Horizon Depth Scale Shape 

[cm] Sieve 

Analysis 

Image 

classification 

Sieve 

Analysis 

Image 

classification 

1 1 - 20 0.575 1.237 2.413 0.298 

2 21 - 51 0.783 1.073 2.293 0.316 

3 52  – 69  1.888 0.848 1.655 0.446 

4 70  – 84  1.681 0.898 1.774 0.471 

 

The SUR analysis executed on the values from Table 2 revealed that only scale is 

significant (p~0.03), the shape remaining almost constant regardless of horizon (p>0.4). 

Considering that the same regressors are used for prediction, the parameters of SUR are the same 

with OLS estimates.  

𝑠𝑐𝑎𝑙𝑒𝑠𝑖𝑒𝑣𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 = −1.5 + 6.118 × 𝑠ℎ𝑎𝑝𝑒𝑖𝑚𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛    10 

𝑠ℎ𝑎𝑝𝑒𝑠𝑖𝑒𝑣𝑒𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 = 3.6 − 4.11 × 𝑠ℎ𝑎𝑝𝑒𝑖𝑚𝑎𝑔𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛    11 

For the relationships predicting the parameters of the lognormal distribution of the sieve 

analysis from the parameters of the lognormal distribution of the classified images, the 

coefficient of determination R2 was 0.94. The reduced number of observations used for 

prediction renders most of the tests meaningless, which is the main reason that a p-value of 0.03 

was considered acceptable. However, the predicted horizon PSD from the classified images 

matches the PSD as measured with sieve analysis, with a high degree of confidence (p-

value>0.1) (Figure 14). 
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Figure 15. Distributions of measured particle size and the predicted distribution from classified images for the four 

identified horizons, overlaid on the histogram of the measurements supplied by sieve analysis. 

 

4 Discussion 

Results provide statistically significant support for the derivability of precise PSD data 

from density-imaging scanners, as compared with traditional, arduous, granulometric methods.  

The study analyzed soil core distributions extracted by hand (sieve analysis) and machine 

(density-deriving CT scanner).  I considered ten models  in fitting particle size distributions to 

determine whether material density can be used as a proxy for predicting PSD.  Weibull and 

lognormal models have previously achieved notoriety for modeling granulometric distributions 

(Botula et al., 2013; Esmaeelnejad et al., 2016), and these were also initially found to fit the 

granulometry and imagery datasets best out of the ten tested models: Weibull fit each respective 

dataset at the individual 10 mm layer level, and lognormal fit the four horizons identified through 
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clustering.  However, Weibull failed to compare ML parameters between both datasets, and 

ultimately only lognormal showed statistical similarity between them.  The successful matching 

of ML parameters from lognormal was attained more successfully at the broader horizon level 

rather than individual 10 mm level, which suggests that there is too much variability between 

individual 10 mm measurements.  Such fine-scale data extraction and analysis cannot capture 

reliable enough data for soil distribution modeling using this method. 

Model fitting of CT scan data could potentially be improved by including more of the 

original CT scan image collection, considering that the dataset in this study was reduced to 1/3 of 

the total CT scan collection (17 of 51 images).  Although the widest, most spatially-adequate 

subset of images were selected, additional information collected from narrower images might 

have generated more realistic distributions of image class frequencies, and possibly have 

increased the tightness of model fits. 

Along similar lines, a larger sample size of granulometric PSD measurements could 

improve comparability with the CT scan-derived dataset, since nearly 30% (24 of 84) of the 

centimeters in the granulometry dataset had to be forfeited from analysis due to human error.  

Repetitively measuring soil granulometry from every centimeter depth is tiresome, and time 

requires constant precision.  With many 10 mm soil samples rendered unusable, it is moreover 

possible that considerable errors persist in the data of the remaining 60 analyzed 10 mm soil 

disks.  The brute dissection of a decimeter-thick soil core dozens of times may have incurred 

procedural deviations (one considers what happens if a large rock equally bisects a boundary of 

two depth measurements).  Additionally, sieve analysis methods subject soil particles to 

undesirable disintegration forces (Tollner et al., 1998).  Gee and Or (2002) further address the 

limitations of sieve analysis, specifically that particle size, shape, load, shaking time and motion, 

and sieve surface geometry all affect the probability of a given particle passing through an 

opening; therefore reproducibility may only be achieved through careful method standardization.  

By comparison, digital deconstruction of CT scan imagery is fast, automatable, repeatable 

without data loss from physical blunders, and likely costs less than other common measurement 

methods (Tollner et al., 1998).  From an efficiency standpoint of time and effort, CT scanning, 

image cropping, image classification, image statistical computations, and model fitting could all 

be completed in a single workday.  CT scanners can also x-ray wet or waterlogged soil taken 
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freshly from the ground.  In contrast, granulometry requires an extended period of oven-drying 

(sometimes weeks) to remove all moisture, even before commencing the lengthy process of 

sieving and weighing. 

With a broad-scale (e.g., horizons) fitting method achieving assuring results, the impacts 

of this method have the potential to be far-reaching.  Considering the opportunity for sweeping 

advancements in PSD diagnostics, promising results from this study should encourage repeated 

investigation of the methodology onto other soil types.  This study explored the viability of using 

remote sensing methods to analyze just one soil sample of lake-bottom sediment by processing 

its CT scanned imagery using Iso Cluster Unsupervised Classification.  This classification 

technique, as well as other image segmentation schemes, can partition features captured in any 

image using the heterogeneity of its spatial and/or spectral thumbprint.  Presumably, then, a soil 

core of any variety or type could be segmented using the same classification and modeling 

processes trialed in this study.  This pioneering study having demonstrated success at larger 

scales validates the method’s ability to estimate soil PSD from CT scanning, and even to 

potentially predict soil type, since some model distributions have amassed known fitting 

relationships with particular soils (Esmaeelnejad et al., 2016). 

Because the soil sample in this study was cored from the bottom of a lake, heterogenous 

soil horizons were not initially apparent (from preliminary grayscale scans), which obligated the 

study design to pursue a fine scope of granulometry.  However, the hierarchical cluster detection 

of four horizons, each comprised of 10 mm contiguous cylinders, is backed up through visual 

investigation of the 17 false-colored classified images that expose consistent divergence of color 

majorities over four or more layers (Figure 7).  This suggests that the CT scanner was not only 

able to pick up minute detail at nearly particle-level resolution but was also able to detect overall 

sediment layers, through the changes in density that represent particle size.  The four identified 

horizons could then be modeled more easily than the 60 individual 10 mm layers.  This broad 

horizon-level analysis presumably aligns better with practical applications that are more likely to 

seek comprehensive PSD of entire horizons or soil types.  For example, if one were to study 

long-term thaw rates of permafrost by scanning soil periodically cored from Tundra to measure 

receding ice horizon heights and then attempting to correlate between soil type and climate 

change impact.  For such research directed at determining PSD of general horizons, some 
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granulometric measurements would still be necessary to determine appropriate model parameters 

and as a check on the CT scan derived PSD model fit, but presumably only one granulometric 

measurement would be needed for each horizon for which the parameters for that distribution 

could be used on the distribution of the image data. 

Having established a process to estimate soil PSD with significant precision to 

granulometry, future steps may include experimenting with alternative techniques that aid in 

classifying soil images with even better precision and more appropriate parameters.  CT scanning 

technology offers many advantages for soil research, but variability in scanning and processing 

methods nevertheless remains high.  Aside from adjustments of CT scanners that can influence 

remote sensing and image reconstruction (e.g., x-ray attenuation level), several alternative and 

justifiable image classification schemes exist.  For example, the ISO Cluster Unsupervised 

Classification algorithm was programmed to capture at least 7 classes, and always found either 7 

or 8 classes as the optimal amount of distinguishable features per image.  In reality, inspection of 

consecutive classified CT scans suggests that the number of features with like properties might 

be fewer than the algorithm found (i.e., class numbers 1-3 and 5-6 share the same respective 

material characterization, which could appropriately be combined into single classes, 

respectively).  This might lead future research involved in advancing our PSD estimation method 

to experiment with fewer classes and/or meaningful defined categories (i.e., one class each for 

suspected soil fractions, air, water, and biological).  Still, overshooting the number of classes 

allows for retention of data, better model fitting on more detailed distribution spreads, and better 

analyst-interpretability of posterior class merging.  After all, it is ultimately the role of the user to 

examine classification results and determine output precision. 

In this study, the original grayscale image (band 1) was triplicated into band 2 and band 

3, so that the ISO Cluster Unsupervised Classification tool would run.  While the outputs of the 

classification scheme appeared adequate and representative of observable contrast in input 

grayscale images, adding variance (random noise) to band 2 and/or band 3 might have produced 

different results and even aided the classification algorithm’s ability to tease apart spectral 

variability inherent within the soil and avoid collinearity issues from a pixel having the same 

value across all bands.  This was not pursued, because there were no computational issues when 

classifying the no-variance-added 3-band image set. 
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Alternative software programs that specialize in remote sensing (i.e., ENVI (Harris 

Geospatial Solutions, 2016)) could also be of use in exploring soil core imagery, their having 

more extensive spectral classification toolsets and customizable spectral libraries than does 

ArcGIS currently (i.e., ver. 10.4.1).  Finally, CT scanning could become the first step in 

predicting soil water retention curves (WRC) and soil-water characteristic curves without 

invasive granulometry, as the methods for determining these heavily-sought metrics currently 

rely on first obtaining PSD (Arya and Paris, 1981; Fredlund et al., 2002; Haverkamp and 

Parlange, 1986; Hwang and Powers, 2003).  Regardless of the PSD application CT scanning is 

utilized for, this study outlines the modeling processes that can be used to acquire precise data, 

remotely. 

 

5 Conclusion 

CT scans of soils have previously been subject to similar image segmentation 

approaches, but were only classified into bimodal images to separate pore space from solid 

material (Naveed, 2012; Peth et al., 2008).  The image classification schemes applied in this 

study were able to use deconstructed imagery of a soil core to categorize its many physical 

components into several discrete classes, which could then be connected to meaningful particle 

sizes by fitting and comparing distribution models against corresponding granulometric PSD. 

The use of non-invasive digital technology such as CT scanners holds great potential for 

advancing real world environmental research and revolutionizing soil diagnostic practices.  In 

this study, the process of predicting physical soil composition was trialed using remote sensing 

techniques and spatial and statistical analyses.  Tested methods delivered results that could 

successfully diagnose a soil’s particle size distribution (PSD) with high precision and efficiency, 

which could promise to save soil scientists (and others interested in their soils) incredible time 

and effort in the future.  Previous related methods fell short of detecting PSD by relying on 

scanner image resolution to detect individual particle sizes, but findings from this study 

demonstrate the ability to confidently, quickly, and non-invasively predict soil PSD through 

remote sensing of density-derived spectral signatures.   
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