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Chapter 1: Introduction

For new organizations, the era of self-hosting is over. Cloud providers offer their

tenants unprecedented levels of infrastructure scalability and flexibility, often

accompanied by a reduction in management complexity. Unfortunately, several

privacy sensitive entities cannot experience these benefits, because they cannot give

up visibility into their operations and data o the infrastructure provider. Health

care providers, journalists, and intelligence agencies all have motivation to avoid

risking the use cloud services.

The Trusted Execution Environment (TEE) aims to solve this problem. A TEE

is a hardware environment with greater security guarantees than those provided

to general purpose programs. TEEs like Intel Software Guard eXtensions (SGX)

provide excellent guarantees for memory confidentiality and program integrity,

but choose not to protect against access pattern leakage. This has unfortunate

consequences: in the right context, access pattern leakage can actually nullify the

memory confidentiality guarantees [22].

The theoretical approach for defeating access pattern attacks is to leverage

Oblivious Random Access Memory (ORAM). An Oblivious RAM scheme defines

memory which forces access patterns to be probabilistically indistinguishable from

random accesses, i.e. a witness with a transcript of all memory requests addresses

cannot infer what data are being retrieved. Oblivious RAM schemes can be used for
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private access of cloud data, but they incur a heavy bandwidth overhead [29, 34, 28].

In the first ORAM proposal by Ostrovsky and Goldreich [11], ORAM is described

as a theoretical approach to digital rights management. In their proposed system,

an attacker with full memory access cannot determine the properties of programs,

and thus would be unable to pirate it. The system model is a secure processor doing

operations on an encrypted memory space: this is a remarkably familiar models for

those familiar with contemporary TEEs. Their model predates the modern concept

of trusted execution environments: it was invented to serve their analysis.

With time, this secure processor model was discarded in favor of a two-party

model, in which a trusted client obliviously retrieves stored blocks from an un-

trusted server. This new model was developed alongside the proliferation of cloud

computation; Researchers have turned to ORAM for additional privacy guarantees

in outsourced storage.

Given the recent advent and popularity of Trusted Execution Environments,

some ORAM designs are incorporating a system model very similar to that of the

seminal ORAM paper. These investigations leverage modern two-party tree ORAM

schemes, in which the trusted party will reside in in a TEE. By leveraging the

security guarantees of TEEs, the ORAM bandwidth overhead can be incurred on

a memory bus rather than a network, resulting in a relatively high performance

ORAM. However, due to the bootstrapping problem of oblivious memory access in

Intel SGX, e.g., doubly-oblivious construction, existing TEE+ORAM designs do

not gain much performance over remote client constructions [26, 2, 13, 18].

To this end, this thesis shows that existing TEE+ORAM implementation are
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from optimal [26, 2, 13, 18]. Then, by constructing an implementation enhanced

with several optimizations, we will demonstrate that the new ORAM can outperform

existing ORAM constructions, and can support over 500 Mbps data transfer rate,

which is 10x≈40x faster than existing solutions.

1.1 Contributions

Researchers have already the combination of ORAM and TEE to be symbiotic:

Oblivious RAM defends any access pattern attack launched against a TEE, and

TEEs provide the perfect high-performance environment to implement an ORAM.

Typically, TEE+ORAM investigations evaluate the combination of Intel SGX and

Path ORAM for a given use-case [29, 26, 2, 18] Their investigations are intended to

demonstrate the practicality of ORAM when the bandwidth blowup is contained

in the wide low-latency channel of the memory bus. We identify key performance

issues in the state of the art publications, and make three contributions:

1. We provide an analysis for the best methods for selecting a theoretical ORAM

for use in a TEE, regarding both the system level restrictions on enclaves and

algorithmic complexity of ORAM protocol.

2. We devise and apply several optimizations to our SGX+ORAM implementa-

tion.

3. We evaluate our SGX+ORAM implementation with micro/macro-benchmark

as well as application use case scenarios such as Google Key Transparency.
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1.1.1 TEE+ORAM Performance Analysis

There is no defined methodology for selecting an ORAM scheme for use in a Trusted

Execution Environment

In the case of ORAM in SGX, the factors that will impact request latency and

throughput are not the same as those in the traditional two-party Tree ORAM

setting. The ORAM components in SGX communicate via the memory bus, a

high-speed high-throughput channel. This differs from the typical tree ORAM

setting in which the ORAM client and server are networked components.

Path ORAM, the typical selection for TEE+ORAM implementations, was

designed to minimize bandwidth overhead. This is not the best performance factor

to optimize for when on a very high-bandwidth channel. In a trusted execution

environment without fully trusted memory, ORAM clients must not perform any

data-dependent branches, and they must access any client data obliviously. When

there is a branch in a TEE+ORAM implementation, all execution paths must be

taken so that the system can make no inference about the operations in the TEE.

When there is client data access in an TEE+ORAM scheme, it must be replaced

with an expensive oblivious access. Rather than optimizing for bandwidth in the

TEE, an ORAM with minimal client storage and branching operations should be

selected.

In Chapter 3, we provide the analysis that motivates the selection of Circuit

ORAM [34] as the ORAM for implementations in SGX, and provide the tools for

similar reasoning with arbitrary TEEs.
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1.1.2 Optimization

We implement the Performant Recursive ORAM (PRORAM), to empirically verify

our performance analysis. PRORAM improves the throughput and latency of SGX

memory controllers by orders of magnitude for all reasonable use cases, and delivers

blocks at the microsecond latency.

There are several challenges associated with creating a performant SGX+ORAM.

Even in SGX’s trusted memory, the enclave page cache, memory access patterns

must be protected to fit the threat model of a malicious cloud provider. Protecting

these access patterns performantly is a significant engineering effort.

Chapter 4 will summarize a critical subset of the optimizations, and chapter 5

will enumerate the PRORAM evaluations.
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Chapter 2: Background

This section will introduce the concepts required for understanding ORAM, SGX,

and their combination. Each important concept will receive some explanation,

followed by a literature review of key publications.

2.1 Oblivious Random Access Memory (ORAM)

Encryption is not a holistic solution for maintaining privacy guarantees on collections

of ciphertexts, as access patterns on encrypted data can leak valuable information

about the respective plaintexts. In computer security, protected access patterns

are called oblivious. We can trivially achieve obliviousness leakage by retrieving

the complete set of ciphertexts for each access, but this linear technique becomes

infeasible as the set of ciphertexts grows.

This problem has motivated the development of Oblivious Random Access

Memory, a memory model that makes access patterns indistinguishable from random

to any observer. A typical two-party ORAM scheme describes data structures and

algorithms used by a trusted client to access encrypted storage on an untrusted

server.

In their seminal paper on the subject [11], Goldreich and Ostrovsky showed

that given an arbitrary database of N documents, accessing a single document
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obliviously would require O(logN) total accesses. Oblivious access schemes have

applications in cloud privacy [29], secure multi-party-computation [34], and program

obfuscation [1].

2.1.1 Literature Review

In this section, five theoretical Tree ORAM papers will be summarized in chrono-

logical order of their publication. With the exception of the original ORAM, we

choose to summarize exclusively Tree ORAM implementations. Hierarchical and

partition-based ORAM schemes have high worst-case latency, and our high per-

formance ORAM is meant to be employed as a reliable block server. This is not

a holistic review of ORAM, but provides the fundamental knowledge of the field

that is required to understand the contributions of this thesis. The ORAM papers

build on each other conceptually and historically, and each brings insights that

were critical in the development of our systems ORAM solution.

First, Software Protection and Simulation on Oblivious RAMs [11], introduces

the concept of oblivious random access memory. The first ORAMs were revolu-

tionary, but had an issue with worst-case cost. On occasion, the ORAM blocks

would need to be fully shuffled to maintain obliviousness. This made request times

inconsistent: when a reshuffle is required, retrieving a single block is significantly

more costly in time.

Recently, oblivious RAM with O((logN)3) Worst-Case Cost [28] addresses this

issue. The paper proposes the idea of organizing ORAM into a tree of blocks, and
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reshuffling a subset of the tree on each access. Path ORAM [29] soon followed, an

ORAM derivative of Tree ORAM with better bandwidth bounds. Ring ORAM then

optimized even further by reducing a constant time factor from Path ORAM [25].

Finally, we summarize Circuit ORAM [34]. In chapter 3 we contend that Circuit

ORAM is the best selection for Intel SGX, but it was developed to have a minimal

circuit size, for use in secure multi-party computation.

2.1.1.1 Software Protection and Simulation on Oblivious RAMs [11]

In an oblivious Turing machine, the tape’s movements are agnostic to the input

contents, but not the length. This means that two inputs of the same length always

run for the same amount of time, and exhibit the movement behavior. Pippenger

and Fischer showed that a two-tape oblivious Turing Machine can simiulate a

one-tape Turing Machine with a logarithmic slowdown in time.

Oded Goldreich introduced the concept of Oblivious RAM in 1987, then for-

malized and published analysis alongside Rafail Ostrovsky in 1993. In their work,

Goldreich and Ovstrovsky extend the concept of oblivious computation from Turing

machines to the random access memory model. They propose the first ORAM

scheme which can convert an arbitrary RAM program to an probabilistically obliv-

ious RAM program, meaning an memory access pattern observer can make no

inference about the data and execution state of a program.

Their first ORAM scheme has a relatively significant polylogarithmic complexity

blowup in dummy accesses per real block access, but it serves as a foundation for
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Figure 2.1: This figure from ”Oblivious RAM with O((logN)3) Worst-Case Cost” [28]
shows the binary tree structure her novel Tree ORAM paradigm

ORAM systems. The original ORAM scheme relied on occasional full reshuffles, in

which all blocks in the ORAM would need to be moved into a new random location.

The seminal paper proved that there is a theoretical logarithmic lower bound

for ORAM access overhead, a bound that has been reinforced in recent study.

2.1.1.2 Oblivious RAM with O((logN)3) Worst-Case Cost [28]

The first Tree ORAM paper ushered in a new age of ORAM. Shi et al. abandon the

hierarchical ORAM paradigm proposed by Goldreich and Ovstrovsky, and propose

a new organization for blocks of ORAM storage, now commonly referred to as

Tree ORAM. Unlike the original ORAM, this scheme separates ORAM into two

parties, a trusted client and an untrusted server. This paradigm is more suited to

applications in trusted outsourced storage. Critically, Tree ORAM allows for sub-

linear worst-case cost, whereas previous ORAM schemes employed an occasional

full reshuffle on a request.
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The scheme, visualized in Figure 2.1, works simply. New blocks that enter the

ORAM do so at the root of the tree, then obliviously percolate their way towards

the leaves via an ”eviction” algorithm. The key idea is to amortize the reshuffle

operation by performing partial reshuffles (eviction) after every new read or write

operation to the ORAM, rather than an occasional full reshuffle of the ORAM.

2.1.1.3 Path ORAM: An Extremely Simple Oblivious RAM Proto-

col [29]

Path ORAM is likely the most popular modern ORAM scheme, due to its simplicity

and efficiency. Path ORAM has asymptotically better bandwidth cost than any

previous ORAM with small client storage. The scheme stores all blocks in buckets

in a binary tree, where a bucket is simply a collection of a constant number of

blocks. Block positions in the tree are denoted by their path, and depth in the tree.

A path begins at the root of the tree, and reaches one of the leaves. The easiest

method of labeling a path is to simply denote the leaf that is on the path, as there

can only be one unique path per leaf.

In Path ORAM, the client maintains two data structures, the stash and the

position map. The position map contains the location of each block within the

outsourced binary tree, and the stash contains a local cache of blocks.

The client algorithm does the following on any block access

1. Retrieve the current location of the requested block from the position map.
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2. Randomly remap the location of the requested block in the position map.

3. Read the entire original path of the requested block, into the stash.

4. From leaf to root, evict every block from the stash that can return to the

original path of the requested block.

The last step in the algorithm in the greedy eviction step. In deeper buckets on

the tree, there are relatively fewer blocks that are eligible to be stored. Intuitively,

since the root of the tree is on every path, any block can be stored in the root bucket.

By choosing to write each block at its deepest possible location, the algorithm

ensures that all blocks that can be evicted from the stash are placed on the server.

2.1.1.4 Constants Count: Practical Improvements to Oblivious

RAM [25]

The Ring ORAM scheme aims to reduce the bandwidth requirements of Path

ORAM by a constant factor. Ring ORAM makes the bandwidth independent of

the bucket size: whereas Path ORAM will send an entire path of buckets on a

request, Ring ORAM selects a single block from each bucket for access.

Ring ORAM achieves its goal by storing metadata in each bucket about the

the ordering of the blocks. To perform an access operation, the client first reads

all of the metadata of a single path. For the bucket containing the target block,

the client will request the position in the metadata, and for all other buckets, a

random dummy block will be read.
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Ring ORAM borrows a trick from Burst ORAM [9] to reduce the bandwidth-per

access to O(1). The trick relies on the invariant that all blocks transmitted between

the untrusted server and trusted client are dummy blocks, with the exception of

the block of interest. Knowing this, the server can simply XOR all of the encrypted

blocks requested by the client, and send the result. With the metadata requested

in the first step, the client can then reconstruct the target block.

2.1.1.5 Circuit ORAM: On Tightness of the Goldreich-Ostrovsky

Lower Bound [34]

Xiao Wang et al. develop Circuit ORAM, an ORAM scheme designed to have a

minimal circuit size. The scheme is identical to the original Tree ORAM, with the

exception of a modified eviction strategy.

Circuit ORAM is generally less efficient than Path ORAM, but for reasons

that will be described in our design section, it is well suited for trusted execution

environments. Wang also modernizes the proof for the ORAM logarithmic lower

bound in his work.

2.2 Trusted Execution Environments (TEE)

In computer science theory, trusted outsourced computation typically relies on

homomorphic encryption schemes. Given that homomorphic encryption is too costly

for many applications, chipmakers have introduced Trusted Execution Environments
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(TEEs) as a practical middle ground. A TEE is a processor component that has

elevated guarantees of confidentiality and integrity. These guarantees typically

rely on a combination of attestation techniques and memory encryption engines.

Existing Trusted Execution Environments are vulnerable to different classes of side

channel, denial of service, and control flow hijacking attacks.

2.2.1 Intel SGX

Intel Software Guard Extensions (SGX) is a trusted execution environment centered

around trusted execution units called enclaves. The SGX threat model includes only

the CPU and Intel’s remote attestation mechanisms as the trusted entities. The

enclave does not trust the operating system, chipset, cloud provider, or memory [8].

In this investigation, we leverage four of the security guarantees that can be

provided by SGX enclaves. The security guarantees are listed below, and the

vulnerabilities that threaten them will be listed in the SGX Attack Survey [20], the

first paper in the SGX literature review.

1. Local Confidentiality: SGX provides local confidentiality with a propri-

etary Memory Encryption Engine (MEE), and an Enclave Page Cache (EPC).

The EPC is an area of trusted memory on DRAM, and the MEE ensures that

enclave memory never enters the EPC without first being encrypted.

2. Local Integrity: At any given time the EPC has verifiable integrity with

a Merkle Tree construction that always resides in the EPC. If the MME

discovers that the EPC and Merkle Tree mismatch, the CPU is halted.
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3. Remote Integrity: Enclave binaries can expose an interface for remote

attestation, allowing a third party to verify the trusted binary running on

the enclave.

4. Remote Confidentiality: After checking the integrity of the enclave re-

motely, a third party may perform a key exchange to establish an encrypted

channel with the enclave.

SGX can be applied in any scenario in which the above guarantees are beneficial,

such as federated learning [17], trusted cloud computation [30], and digital rights

management [3]. In the above list, the security property of obliviousness is noticeably

absent: by design, Intel SGX chooses not protect the access patterns of enclaves.

2.2.2 Literature Review

Oblivious RAM defends a large subset of attacks against Intel SGX. Any attack that

relies on access pattern inference can be defended with ORAM, and the majority

of SGX confidentiality leakage attacks are driven by access pattern analysis.

This review will cover four papers that provide the relevant background for Intel

vulnerabilities. The SGX Survey [20] summarizes the exploitable vulnerabilities

in SGX. We then provide an overview of Spectre [14] and SGX-Step [5]. Spectre

provides an example of secret leakage through analysis of data access patterns,

and SGX-Step is the example of secret leakage via analysis of code access patterns.

Together, these two papers motivate our threat model in Chapter 3. Finally, a

summary of Raccoon [24] provides insight into oblivious primitives on x86 systems.
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2.2.2.1 A Survey of Published Attacks on Intel SGX [20]

Figure 2.2, from the SGX Survey of attacks, lists 24 exploitable attacks against

Intel SGX. The vulnerabilities are separated into the following impact categories:

1. Page access pattern These are attacks which are capable of leaking page

access patterns to an attacker. Oblivious RAM has access patterns that are

indistinguishable from random to an attacker, so SGX+ORAM constructions

will not suffer any impact from these bugs.

2. Instruction trace Instruction trace bugs leak the execution patterns of enclave

programs. In chapter 3, we discuss how these attacks can be defended by

avoiding branching in the oblivious memory controller.

3. Memory access pattern Memory access pattern leakage is similar to page

access pattern leakage, but at a finer granularity. They are similarly have no

impact Oblivious RAM.

4. Memory Contents Attacks that leak memory contents are devastating to the

SGX landscape. Fortunately, most of these attacks rely on cache side channels,

which rely on access pattern leakage as a primitive. With the exception of

RIDL [31], CrossTalk [23], CacheOut [32], and ZombieLoad [27], all of these

bugs rely on either access pattern leakage or instruction pattern analysis,

both of which are defended by Oblivious RAM.

5. Fault Injection Only a single attack, PlunderVolt, is listed in the Fault

Injection category. The attack exploits the unpredictable behavior of Intel
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CPUs when they are undervolted. This form of hardware attack cannot be

defended by ORAM.

2.2.2.2 Spectre Attacks: Exploiting Speculative Execution [14]

Spectre is an attack paper that exploits CPUs that leverage speculative execution,

a population that represents billions of microprocessors. Speculative execution is a

processor optimization that mitigates the impact of waiting on memory requests.

As an example, imagine a branching condition that is contingent on boolean

in memory. The processor can idle as it waits for the memory to be delivered, or

it can cache it’s current state and guess the branch that will be executed. If the

guess is correct, the program will be in the correct state, and further ahead in

the execution than it would be if it had not executed speculatively. If the guess

is incorrect, the only performance consequence is that the processor must spend

extra time rolling back to it’s previous state.

Speculative and non-speculative execution share the cache, and the cache is

not flushed when the branch predictor fails: this is the key insight that drives a

spectre attack. This co-residency allows side-channel attacks to be launched to

leak speculative state. Leaking speculative state is consequential: as speculative

execution is not bound by memory protection mechanisms.

To control the leak, an attacker can ”train” the speculative executor to take

a certain branch, then pass parameters to the branch that will read privileged

memory. The privileged memory will be loaded into the cache, and an attacker can
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Figure 2.2: This figure from the SGX attack survey [20] lists the current viable attacks
against Intel SGX.
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launch a cache side-channel attack to infer the contents.

Spectre breaks many privilege isolations, including that between an operating

system and SGX enclave.

2.2.2.3 SGX-Step: A Practical Attack Framework for Precise En-

clave Execution Control [5]

SGX-Step is a paper and framework describing methods of malicious control of

enclaves from user-space.

Of particular interest is the capability for a host system to instrument checkpoints

at every instruction in an enclave. This fine-grained control allows for inference

instruction counting side channels. The consequence is that an untrusted host

has the ability to infer which branches are being taken by an enclave program by

observing instruction counts and memory transactions.

2.2.2.4 Raccoon: Closing Digital Side-Channels through Obfuscated

Execution [24]

Raccoon is the first proposal of oblivious primitives as a defense against side channel

attacks. For this thesis, the relevant contributions of the raccoon can be distilled

into a code snippet, shown in Figure 2.3.

The code leverages the cmov instruction present on x86 architecture processors.

cmov, or conditional move, takes in a condition, a source location, and a destination
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location. If the condition is fulfilled, the source operand is written to the destination

operand. Regardless of whether the condition is fulfilled, the source operand is

read.

Since the memory source operand will always be read, conditional move is an

excellent primitive for oblivious loads and stores. The primitive can be applied to

”dummy” data or real data, with the condition determining whether or not the

read is real. In Raccoon, this primitive is leveraged in the execution of decoy paths:

code paths that are execute entirely useless code, and discard the result. Raccoon

combines this primitive with a system model that includes encrypted memory and

intermixed decoy/real execution paths. At the time of it’s publication, Raccoon

was the best systems approach to execution obfuscation.

1 cmov(uint8_t pred, uint32_t a, uint32_t b){
2 uint32_t result;
3 __asm__volatile(

4 "mov %2,%0;"

5 "test %1,%1;"

6 "cmovz %3,%0;"

7 "test %2,%2;"

8 : "=r"(result)

9 : "r"(pred), "r"(a), "r"(b)

10 : "cc"

11 );

12 return result;
13 }

Figure 2.3: This code snippet, first seen in Raccoon [24] represents the current state
of the art in oblivious memory moves. With no branching or data dependent memory
access, we can obliviously select a word based on our predicate.
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2.3 SGX + ORAM

Researchers have identified the combination of ORAM and TEE to be symbiotic,

often by evaluating the combination of Intel SGX and Path ORAM for a given use-

case [26, 2, 18]. These investigations are intended to demonstrate the practicality

of ORAM when the bandwidth blowup is contained in the wide low-latency channel

of the memory bus.

2.3.1 Literature Review

This review covers four SGX+ORAM papers. SGX is the most popular ORAM

for implementation in TEE, and this selection of papers covers the highlights of a

relatively novel field.

First, ZeroTrace [26], is the first known SGX+ORAM investigation, and the

PRORAM project attempts to push their state of the art implementation to new

limits. Second, Oblix [18], implements an alternative form of position map to

avoid the overhead of position map access in SGX+ORAM schemes. Although

Oblix is called a search index in its title, it does not support many-to-many

mappings between indicies and data objects, so it cannot function as a search index.

POSUP [13] fixes this issue by designing and implementing a searchable ORAM in

Intel SGX. Finally, MOSE [12] extends SGX+ORAM to be allow for multiple-users

with defined access control rules to connect to the same ORAM server.
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2.3.1.1 ZeroTrace: Oblivious Memory Primitives from Intel SGX [26]

ZeroTrace combines SGX and ORAM to create a secure oblivious memory con-

troller. Their investigation is the current state of the art in SGX oblivious memory

controllers.

ZeroTrace provides a baseline implementation to compare with our own. We

compare their results to ours in chapter 5. The ZeroTrace implementation includes

a comparison between Path and Circuit ORAM memory controllers, as well as a

benchmark for recursive ORAM in SGX. ZeroTrace contends a higher overhead

for Circuit ORAM when compared to Path ORAM, claiming that the overhead of

entering the enclave repeatedly outweighs benefits of Circuit ORAM. In chapter 5,

we demonstrate that this should not be the case with correct implementation.

2.3.1.2 Oblix: An Efficient Oblivious Search Index [18]

Oblix takes a different approach than ZeroTrace; because recursive ORAM is heavy

with Path-ORAM in doubly-oblivious setting, which Intel SGX enclave falls in,

the work discusses reducing the overhead of recursive ORAM. Recursive ORAM

is a technique for storing an ORAM position map on the untrusted server, in its

own ORAM. To access an block in the top-level ORAM (e.g. the one containing

non-metadata blocks), first the position ORAM will be queried to retrieve a position

map entry, then the entry is used to query the top-level ORAM This construction

can be nested at arbitrary depths, i.e. we can also have an ORAM describing the

position map for the position map ORAM.
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Oblix devises a method of retrieving positions alongside the data, rather than

before it. This scheme produced arguably more performant results than ZeroTrace,

but is built for different use cases. Each block identifier (key) is treated as a search

index, in a one-to-many relationship with several blocks: this is atypical, as most

ORAM implementations have unique mappings between ids and blocks. When

a query is made on a key, the top results for that key are returned. To prevent

leakage, a fixed number of ”top” blocks is always retrieved. The scheme can be less

efficient than ZeroTrace in the case that single blocks need to be accessed.

2.3.1.3 Hardware-Supported ORAM in Effect: Practical Oblivious

Search and Update on Very Large Dataset [13]

POSUP implements an oblivious system for many-to-many mappings between

search terms and data blocks. This enables performant searchable ORAM. The key

elements of this paper can be distilled into the architecture and oblivious search

algorithm.

POSUP contains two top-level ORAM trees, the index tree and data tree. In

the paper, they are referred to as the keyword hash table and database respectively.

The index tree is an inverted index: each block in the index tree maps a keyword to

several block IDs in the database. After getting the list of database entries mapped

to a keyword, all entries are retrieved and returned to the user. POSUP accepts a

set of keywords as an input, and returns a set of blocks that map to the keyword

on output. The number of blocks that map to individual keywords is not leaked,
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but the total number of blocks associated with the set of keywords is leaked.

2.3.1.4 MOSE: Practical Multi-User Oblivious Storage via Secure

Enclaves [12]

Figure 2.4, from the MOSE paper, shows the high-level architecture of the scheme.

Each ORAM block has an associated block in an ORAM Tree of metadata

blocks. The metadata blocks are of fixed size, and define the users that have access

to a given block. Accessing a block in MOSE is a simple task: a user sends their

credentials, as well as the block they would like to retrieve. The credentials are

checked against the metadata tree, and if they are accepted, the block is retrieved

from the ORAM tree.

MOSE is implemented by the authors for empirical performance testing, and we

compare their results with ours in chapter 5. It is noteworthy that MOSE selects

Circuit ORAM as the scheme for its high-performance implementation. We agree

with the authors on this selection, and formalize their reasoning in our investigation.
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Figure 2.4: The MOSE architecture
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Chapter 3: Analysis

This chapter covers three areas of critical analysis. The first is a security analysis

and threat model, which imposes some performance limitations on the ORAM

implementation. The second is an analysis and description of the high level

components that are necessary and present in any TEE+ORAM implementation.

The final section describes the first contribution of the PRORAM project: an

analysis of the performance factors in a TEE ORAM, informed by our threat model

and architecture.

3.1 Threat Model

This threat model is specific to SGX, but several of the assertions are generalizable

to threat models in alternative TEEs. The trusted computing base includes the

CPU and the enclave binary. We assume that the ORAM controller is implemented

correctly, as bugs in enclave code can be exploited to gain arbitrary control of

SGX [16]. We can consider the chipset, hypervisor, memory, network, operating

system, and cloud provider untrusted, and show below what is required to thwart

attackers on these systems.

We consider two adversaries in our threat model. The first adversary witnesses

exchanges between the cloud storage user and the ORAM server. This adversary
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is trivially defeated by performing a key exchange with the enclave and using

randomized encryption to communicate with the server.

Another common adversary model in TEE ORAM considers a software-based

attacker. In the cloud setting, this attacker is commonly imagined to be a malicious

co-tenant on rented infrastructure, snooping on the neighbors execution. Alterna-

tively, the attacker is represented as malware with kernel privilege. This threat

model is does not demonstrate the full power of the ORAM TEE symbiosis: with

remote attestation guarantees, even the cloud provider can be considered malicious.

In our investigation, we consider our second attacker to be the cloud provider. As

long as the processor is in the TCB, we can thwart attackers anywhere on the

system, including the memory bus.

Thwarting the attacker on the cloud provider requires enforcing that the ORAM

controller never branches, as the attacker can leverage instruction-tracing attacks

to infer which branches are taken [20, 5]. Alternatively, an attacker on the memory

bus can track the access pattern across code pages. SGX ORAM controllers can

avoid branching by leveraging the oblivious primitives introduced in Raccoon [24],

which we improve upon in this project.

3.2 Architectural Components

Figure 3.1 shows the high level process of retrieving a block from a TEE ORAM.

A short description of the components will be provided here.

Client The simplest component in the PRORAM design, the client performs
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Figure 3.1: A high level overview of TEE ORAM Components. The two considered
adversaries denoted on the figure are those snooping on the network transactions, and
those with root access to the cloud host

remote attestation with the trusted environment, ensuring integrity of the

remote program. It then establishes an encrypted channel for communication

with the enclave. After these steps are completed, the client may simply treat

the enclave as an addressed block server.

Position Map The position map is an oblivious data structure which maps block

identifiers to locations. In the case of Tree ORAMs, the location is stored

in the form of a leaf node, where we maintain an invariant the the block

will remain in a bucket on the path from the root node to the specified leaf.

Since this client data must be accessed obliviously, we borrow the concept of

Recursive ORAM: the position map will either be a small map that can be

linearly scanned, or an ORAM tree of positions.
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Core ORAM The core ORAM must be built to a provably secure specification.

When implementing a classical two-party ORAM with a trusted client and

untrusted server, this core represents the client logic. To be resilient in our

threat model, the client must be modified to be oblivious: there must be no

data-dependent access-patterns or branching.

Encryption Pipeline Moving data in and out of the trusted memory requires

re-encryption. To maximize performance when possible, the encryption should

be hardware accelerated, and the encryption pipeline should be saturated.

Linear Scanner During recursive ORAM access, each position map block contains

an array of positions. For example, in a 256-byte block configuration, where

each position is represented as a 32-bit integer, a block of the position map

will contain 64 positions. This small array must be accessed obliviously, but

it would be inefficient to store each position in another layer of the ORAM:

When dealing with small constants, the polylogarthmic overhead of ORAM

overshadows the linear overhead of a full scan.

3.3 Performance Factors

In this section, we describe the strategy employed to select an ORAM for use

in a trusted execution environment. In the traditional Tree ORAM setting, the

controller has a remote client, and often the most significant cost in terms of time

is the bandwidth blowup between the client and server [29]. Figure 3.2 compares
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Scheme Bandwidth Cost (Blocks) Rounds
Circuit 4Z logN 3 logN
Path 2Z logN 2
Ring 3.5 logN 2 + 1

v

Figure 3.2: Listed bandwidth cost values ignore the cost of metadata transfer, which
is dominated by block transfer with sufficient block size. Ring ORAM employs a
parameterized eviction rate v.

the bandwidth costs of three of the theoretical ORAMs considered as candidates

for the PRORAM implementation.

It is critical to recognize that the factors that influence performance in theoretical

ORAM schemes can be overshadowed by requirements of the systems used in their

implementation. As our first contribution, we define and analyze the following

performance factors, which are the most critical in SGX+ORAM implementations.

We note that the computational overhead of non-homomorphic ORAM schemes

tends to be quite low [34, 29, 11, 28]. When in a very high-bandwidth environment,

the natural place to check for bottlenecks is in the copy and encryption operations

performed by the ORAM controller. The following list denotes the performance

factors of an ORAM scheme in an SGX+ORAM scheme:

Encryption Overhead The number of blocks that must be re-encrypted by the

ORAM protocol for the access of a single block.

When writing an ORAM for a TEE, this is the number of blocks that must

enter trusted execution environment during a request.

Even with hardware-accelerated instruction sets, encryption is computation-

ally intensive, so it is critical to select an ORAM that requires minimal
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transfer between the trusted client and untrusted server.

Access Overhead The number of block reads and writes that must be performed

by the protocol for the access of a single block.

Adapting ORAM clients to be oblivious often causes a blowup in this factor.

B, Bucket Size The number of blocks in a bucket, encryption and access usually

often scale with this term. In a Tree ORAM, copy and encryption transactions

are often in path granularity, and the size of a path scales with the bucket

size.

S, Stash Size The number of blocks in the client stash, access overhead often

scales with this term. Access overhead scales with this term because the

stash is a piece of client data that is intended to be implemented in trusted

memory. The enclave does not protect access patterns, so we must access the

stash obliviously, incurring a significant overhead.

Figure 3.3 describes our performance factors analysis for three candidate Tree

ORAMS. The access overhead is a sum of the dummy accesses that must be made

for the ORAM in the typical setting, and the number of dummy accesses that must

be added to avoid branching in the controller. The encryption overhead is simply

determined by counting the number of blocks that are passed between the client

and server in the networked ORAM setting, as these are the blocks that will be

re-encrypted in an ORAM access.

The reader may note that all candidate ORAM schemes below are Tree ORAMS:
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Scheme Encryption Memcpy Bucket
Size (Z)

Stash
Size (S)

Circuit 3Z logN S + Z logN 2-5 10-20
Path 2Z logN SZ logN 4-6 53-120

Ring logN + logN ·Z
A

SZ logN 4-6 32-595

Figure 3.3: When implementing ORAM in a Trusted Execution Environment, band-
width cost is only relevant if it will saturate the memory bus. The more relevant
performance factors are those that require the system to perform more encryption
operations and memory moves.

we do not analyze hierarchical ORAMs, as hierarchical ORAMs are only valuable

in use-cases where worst-case latency can be very large.

We contend that it is most critical to select an ORAM with minimal block

transfer between the server and client, and to limit transfer between trusted and

untrusted memory as much as possible. The most efficient ORAM for our use-case

is Circuit ORAM, this judgement will be detailed in the following optimization

chapter.
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Chapter 4: Optimizations

We developed an ORAM implementation, PRORAM, to verify our design strategy.

We select Intel SGX as our trusted execution environment, and circuit ORAM as

our oblivious memory protocol. This section will enumerate the implementation

decisions made to maximize oblivious memory controller performance.

It is critical to read the optimizations section with the context of the systemic

and algorithmic constraints of an SGX+ORAM implementation.

1. Intel SGX has no fully trusted storage.

2. Intel SGX’s semi-trusted storage, the EPC, only holds 128MBs. The EPC is

considered semi-trusted because its access patterns are leaked, but it otherwise

has functional guarantees for confidentiality and integrity.

3. The position map for ORAM is often larger than the EPC.

4. The ORAM implementation can perform no data-dependent branching.

5. Blocks that are moved from the EPC to memory must be encrypted. Encryp-

tion comes at significant computational cost.
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4.1 Circuit ORAM

While the encryption overhead of circuit ORAM is higher than the other candidates,

the Memcpy overhead is significantly lower.

The table in Figure 3.3 makes the choice simple. Consider that the access

overhead for a single block is roughly (3Z logN)E + (S + Z logN)M , where

E is the amortized time it takes to encrypt a block, and M is the amortized

time it takes to move a block. The corresponding overhead for Path ORAM is

(2Z logN)E + (SZ logN)M .

From these formulas, we would like to produce a single metric that roughly

compares the overhead of the two schemes. First we substitute typical configuration

parameters from the respective publications.1 Then fix M to be 1, and define E

to be the number of memory copies that can be performed in the time it takes

to encrypt a fixed number of bytes. For example, in our target system, copying a

block is roughly 2 times faster than encrypting a block, so we fix E to be 2. This

produces an output that can be defined in copy overhead, e.g. the output of the

formula is defined as the number of memory copies that could be performed in the

time of a single ORAM access.

Figure 4.1 shows the resulting overhead relationship: Path ORAM only exceeds

the performance of Circuit ORAM at unreasonably large capacities.

1For Path ORAM, S=80, Z=10. For Circuit ORAM, S=10, Z=2.
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Figure 4.1: On our target system, and for any reasonable number of blocks, Path
ORAM cannot compete with Circuit ORAM. Combined Access Overhead is a value
representing the combined overhead of encrypting and copying blocks during an ORAM
access.

4.2 Recursive Position Map

PRORAM implements a recursive position map (RPM) to avoid leaking access

patterns on the position map. A significant portion of the time spent accessing

an ORAM is spent accessing the rpm, so it is critical to optimize. We implement

three optimizations:

1. EPC Tree Caching

2. Simultaneous Access and Update

3. Empirical Recursive ORAM parameterization

Position map ORAMs are notably smaller than their parent ORAMs: where b

is the number of bytes required to represent a position, and B is the size of a block,
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each recursive ORAM will be smaller than their parent by a factor of b
B
. Given this

fact, many recursive ORAM trees are small enough to be cached entirely within

the EPC, eliminating the encryption overhead of the map. By caching the tree

in the EPC, we avoid the encryption overhead associated with moving the blocks

between the enclave and untrusted memory.

On each ORAM recursive access, it is critical to retrieve and update the

position simultaneously, otherwise position map accesses will scale exponentially

with recursive depth, rather than linearly. For n position maps, if the position maps

of the inner ORAMs are read and updated separately, the total time to access a

block will be
∑n

i=0 2
iti, where t0 is the time it takes to retrieve a single block from

the data ORAM, t1 is the time required to retrieve a block from the first position

map ORAM, etc. If we update the position as we access it the latency is simply∑n
i=0 ti.

It is not required for the RPM to share the same block size as the data ORAM.

For each configuration (block size, capacity) we test, we run the controller with

several different recursive ORAM block sizes, and select the best-performing.

4.3 Coalesced Blocks

It is often performant to configure an ORAM block to be larger than the intended

unit of storage, then combine multiple units into a block. As an example, when

storing 4KB images in oblivious cloud storage, it could be useful to configure the

ORAM to have 8KB blocks, and obliviously select the desired image linearly after
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block retrieval. We refer to this optimization as block coalescing.

4.4 AVX2 Primitives

Vector registers are ultra-wide processor registers used for processing large amounts

of data. In several cases, their proliferation has significantly improved the speed

of memory copy and set operations. We can similarly leverage vector registers,

such as AVX2 in the case of x86 microprocessors, to improve the speed of oblivious

memory sets and copies.

Figure 4.2 shows an example of an AVX2 memory primitive used in PRORAM.

The code will obliviously select 8 bytes from a memory region of 256 bytes.

The function takes in the memory region as input, as well as an index representing

the offset of the 8-byte aligned target. First, the input 256 bytes are read across

8 vector registers, ymm0 to ymm7. We then perform the following operations on

registers ymm1-ymm7

1. Check if the input index is references memory that is in the current current

register. If so, obliviously set the our predicate -1 with cmov primitives,

otherwise is obliviously set to 0. Since the predicate is an unsigned integer,

setting its value to -1 will populate 8-byte integer with a bitvector of all 1s.

2. Use the ”vpbroadcastq” instruction to broadcast our predicate into a scratch

register, ymm9. The scratch register now contains all 1s if the earlier in the

current register is the target, or all 0s if is not.
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3. Use the ”vpblendvps” to blend the current vector register with ymm0, using

the contents of the scratch register as a mask. If the scratch register contains

all 0s, then ymm0 will remain unchanged, otherwise it will be populated with

the contents of the current register.

After performing those operations on registers ymm1-ymm7, ymm0 will contain

our target bytes. However, since our target is 8 bytes, we now simply perform an

oblivious linear scan on the array to retrieve the target 8 bytes.

Several analagous primitives exist for setting memory regions, as well as general

purpose oblivious memcpy primitives. They will be published in the near future

with the open-sourcing of PRORAM.



38

1 uint64_t
2 get_8_bytes_from_256_bytes(void *src_256, uint64_t idx) {
3 uint64_t r_idx = idx / 4; // row index: ymm

4 uint64_t c_idx = idx % 4; // column index

5 asm volatile(""
6 "vmovups 0x0(%[mem]), %%ymm0\n\t"
7 "vmovups 0x20(%[mem]), %%ymm1\n\t"
8 "vmovups 0x40(%[mem]), %%ymm2\n\t"
9 "vmovups 0x60(%[mem]), %%ymm3\n\t"

10 "vmovups 0x80(%[mem]), %%ymm4\n\t"
11 "vmovups 0xa0(%[mem]), %%ymm5\n\t"
12 "vmovups 0xc0(%[mem]), %%ymm6\n\t"
13 "vmovups 0xe0(%[mem]), %%ymm7\n\t"
14 :

15 : [mem] "r" (src_256)

16 : "memory", "ymm0", "ymm1", "ymm2", "ymm3", "ymm4", "ymm5", "ymm6", "ymm7");

17

18

19 // select target row and store that to ymm8 (use vblendvps)

20 uint64_t row_pred;
21 row_pred = -check_equal(r_idx, 1);

22 asm volatile(""
23 "vpbroadcastq (%[pred]), %%ymm9\n\t"
24 "vblendvps %%ymm9, %%ymm1, %%ymm0, %%ymm0\n\t"
25 :

26 : [pred] "r" (&row_pred)

27 : "memory", "ymm9", "ymm1", "ymm0");

28

29 ...

30

31 // now ymm0 contains the target row

32 uint64_t values[4];
33

34 asm volatile(""
35 "vmovups %%ymm0, (%[mem])\n\t"
36 :

37 : [mem] "r" (values)

38 : "memory", "ymm0"

39 );

40

41 // select 1 data from ymm via blend

42 uint64_t preds[4];
43 for(int i = 0; i < 4; i++){
44 preds[i] = check_equal(c_idx, i);

45 uint64_t ret = -1;
46

47 for(int i = 0; i < 4; i++){
48 ret = select_value(preds[i], values[i], ret);

49 }

50

51 return ret;
52 }

Figure 4.2: This code shows how PRORAM leverages AVX2 instructions to vastly
speedup oblivious retrieval The ”...” represents a repetitious portion of code described in
§4.4: predicate-setting and inline asm are repeated for ymm2-ymm7
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Chapter 5: Evaluation

5.1 Experimental Setup

5.1.1 Hardware

Evaluation is done on a machine with a 10-core Intel i9-10900K processor, with the

CPU running on a fixed 4.7 Ghz frequency. The machine is equipped with 128GB

of RAM running at 3200 MT/s.

When comparing the evaluations in this dissertation, note that we evaluate on

state of the art hardware. For example, Zerotrace runs evaluations on a 4-core

Skylake with 64-GB of RAM. It is reasonable to assume that ZeroTrace would

run significantly faster on our experimental setup than their own, it is easy to

imagine a 3-fold improvement in their latency and throughput. However, it will be

shown that our implementation runs over an order of magnitude faster than any

SGX-ORAM controller, the significance of our improvements cannot be attributed

to the hardware.

5.1.2 Default Configuration

A general-purpose ORAM controller must be configurable to be valuable. This

presents a challenge for evaluation: each parameter option results in an exponential
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Option Default Description
RPM ENABLE Whether the controller should use an RPM
N 262144 The number of memory blocks stored in ORAM
B 8192 The size of an memory block, in bytes
Z 2 The number of blocks in a bucket
b 256 The size of a block in the recursive position map
z 2 The size of a bucket in the recursive ORAM
C 1 The coalesce factor, described in §4.3

THREADS 1 The number of AESNI threads

Figure 5.1: The default PRORAM evaluation configuration

blowup of configurations to be evaluated. The PRORAM evaluation strategy is to

define a default configuration, then isolate the parameter under test for changes.

For each evaluation, parameters are isolated for test from the configuration in

Figure 5.1. If the value of a parameter is not clearly defined in a below evaluation,

it has the default value.

5.2 Circuit vs Path ORAM

All memory copy operations are logged during an access in our implementation.

Figure 5.2 shows that the copy overhead of Circuit and Path ORAM align with the

analysis in Chapter 3.

Figure 5.3 demonstrates the effect of the reduced copy overhead on the latency

of a single block request: Circuit ORAM results in significant performance gains.
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Figure 5.2: The number of memory copies made in a single Path/Circuit ORAM access.
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Figure 5.3: A comparison of request latency between Path and Circuit ORAM.
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Figure 5.4: As expected from a Tree ORAM implementation PRORAM latency scales
logarithmically with the number of blocks, and lineraly with the size of a block.
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Block Size (bytes) 1 8 16 32 128 256 448
Bandwidth (MB/s) 2042 8542 8610 9160 10561 10486 10797
Memcpy Ratio 13.18 55.13 55.57 59.12 68.17 67.68 69.69

Figure 5.5: This table compares the bandwidth of traditional memory copies and our
oblivious memory copy implementation.

5.3 Key-Value Storage

Figure 5.4 shows the scaling of our ORAMs block request latency against the

capacity of the ORAM.

Note that in it’s best configuration, with 100 1KB blocks, ZeroTrace achieves

latency of 1ms. Figure 5.4 shows that with the same blocksize, and 10000 times

the number of blocks, we still achieve a 20x increase in speed and throughput.

5.4 AVX2

Figure 5.5 shows a direct comparison between the speed of a regular memory copy,

and our AVX oblivious memory copy.

Figure 5.6 shows the effect of AVX optimizations on our ORAM implementation.

At small blocksizes, there is no reason to use vector registers, as a 64-bit general

purpose register can transfer a significant portion of the block. As the block size

grows, we see a consistent and significant improvement in throughput.
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Figure 5.6: The above graph shows PRORAM running with CMOV and AVX2 primi-
tives. As expected, vector registers allow for a significant increase in throughput.
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Figure 5.7: PRORAM achieves anonymous key transparency at practical rates.
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5.5 Key Transparency

Google Key Transparency is a lookup service that is commonly used for distributing

public keys. The service maintains a Merkle prefix tree of all user keys, and

distributes the root hash amongst all of the users. When a key is requested, the

service returns a proof of integrity for the key, containing the siblings of all of

the nodes in the path of the public key. Key transparency is not anonymous: the

central server knows which keys are being requested at any given time.

In Oblix[18], the authors show that they are able to anonymize Key Transparency

by storing the Merkle prefix tree in an ORAM, but their results are still impractical,

with lookup times in the order of seconds. In Figure 5.7, we show that PRORAM

can achieve very practical speeds for anonymous key transparency.
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Chapter 6: Discussions

6.1 Intel CPU Bugs

The majority of confidentiality bugs in Intel SGX involve cache side channel

attacks [20, 14, 33, 7, 35] Cache side channels rely on the ability to make inference

from access patterns. Since ORAM obfuscates access patterns, it resolves these

bugs.

However, ORAM is not a complete solution to SGX security bugs. Cache side

channel attacks are not the only issues facing SGX. PlunderVolt [19], a recent attack

which undervolts the CPU to cause unintended behavior, can leak SGX secrets

without relying on access patterns. Other examples include microarchitectural data

sampling attacks [31, 6], attacks which leak secrets by sampling microarchitectural

buffers that are intended to be invisible to users.

6.2 Long Term Storage

6.2.1 Snapshotting

For reliability and usability, it should be possible to snapshot and recover the

ORAM state. Zerotrace defines a methodology for doing so [26]. First, keep a

recording of the initial state of the ORAM. Log each transaction as it occurs (e.g.
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each requested block ID), and dump it to the disk in an encrypted form. Recovering

a snapshot is as simple as restoring the initial state, and replaying transactions to

reach the desired state.

For this scheme to be secure, it is critical that the rng used for remapping block

positions is deterministic. Otherwise, the snapshotting will be susceptible to mix

and match reply attacks, in which an attacker recovers several permutations of the

snapshot and records the access patterns of the position map and stash.

6.2.2 Hard Disk Storage

The practical speeds achieved in our ORAM implementation are only possible when

all blocks can be stored in memory: this is feasible in the case of some web servers.

In the case where the cost of memory outweighs the benefit of high-performance, it

can be valuable to implement an ORAM on disk.

The transference of data from memory to disk should follow the same principles

as the transference from the enclave to the untrusted memory. This means that

access patterns from memory to disk should be static: this can be achieved by

caching entire layers of the tree on disk, or caching the entirety of some trees on

disk. If the patterns are not static, then there will be timing leakage.
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Figure 6.1: This figure from Trustore [21] shows how SGX can be combined with special
purpose hardware to create performant ORAM

6.3 Future Work

6.3.1 Hardware Implementations

Figure 6.1 shows the architecture of Trustore [21]. Trustore shows a promising

approach towards hardware accelerated-ORAM. The performance benefit largely

hinges on having a fully secure co-processor that can operate alongside ORAM+SGX.

The challenges listed in the the optimization chapter of this thesis are repeated

below:

1. Intel SGX has no fully trusted storage.

2. Intel SGX’s semi-trusted storage, the EPC, only holds 128MBs. The EPC is

considered semi-trusted because its access patterns are leaked, but it otherwise

has functional guarantees for confidentiality and integrity.
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3. The position map for ORAM is often larger than the EPC.

4. The ORAM implementation can perform no data-dependent branching.

5. Blocks that are moved from the EPC to memory must be encrypted. Encryp-

tion comes at significant computational cost.

Intuitively, having a trusted secure co-processor that does not leak access

patterns eliminates four out of the five listed performance challenges. However,

removing SGX entirely and having a fully trusted secure co-processor removes all

such limitations, and ORAM implementations such as Tiny ORAM [10] do just

that.

All such implementations still require delegation from a trusted CPU if they

are to be used on commodity off-the-shelf equipment. To solve this problem, future

investigations could be performed on modifying Keystone [15], the RISC-V TEE

with an oblivious memory controller.

6.3.2 ORAM Redesign

Rather than selecting a good ORAM scheme to implement in Intel SGX, a talented

ORAM theorist could design an ORAM specifically for Intel SGX. Such an ORAM

could reflect the system-level constraints of SGX. To the best of our review, there

has never been an ORAM that is specifically optimized for minimal data-dependent

branches and minimal trusted storage.
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Chapter 7: Conclusion

Trusted Execution Environments have a promising future, but in recent years

implementations of TEEs have been shown to be insecure [4, 20, 7, 31, 27, 6, 32, 23].

ORAM has been a growing interest alongside the growth of cloud computation,

but it suffers heavy bandwidth overhead. The combination of TEEs and ORAM is

symbiotic: ORAM patches the holes in TEEs, and TEEs are the perfect systems

for running high-performance ORAM.

This thesis has been a summary of the key concepts and methods of my

PRORAM project with the System’s Security and Hacking Lab at Oregon State

University. PRORAM represents a marked improvement in cloud privacy guarantees

for users that require high assurances, and it effectively mitigates many of the

bugs in Intel SGX. PRORAM also exhibits the performance necessary for practical

private outsourced storage.

This investigation carries two key contributions to the scientific community:

1. We develop the state of the art practice for selecting a theoretical ORAM for

use in a TEE.

2. We evaluate our analysis empirically with an optimized SGX+ORAM imple-

mentation.
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