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As one of the most popular data types, the point cloud is widely used in various appli-

cations, including computer vision, computer graphics and robotics. The capability to

directly measure 3D point clouds is invaluable in those applications as depth information

could remove a lot of the segmentation ambiguities in 2D images. Unlike images which

are represented in regular dense grids, 3D point clouds are irregular and unordered, hence

applying convolution on them can be difficult. To address this problem, we extend the

dynamic filter to a new convolution operation, named PointConv. PointConv can be

applied on point clouds to build deep convolutional networks. We treat convolution ker-

nels as nonlinear functions of the local coordinates of 3D points comprised of weight and

density functions. With respect to a given point, the weight functions are learned with

multi-layer perceptron networks, and density functions through kernel density estima-

tion. The most important contribution of this work is a novel reformulation proposed

for efficiently computing the weight functions, which allowed us to dramatically scale up

the network and significantly improve its performance. The learned convolution kernel

can be used to compute translation-invariant and permutation-invariant convolution on

any point set in the 3D space.

The proposed PointConv have opened doors to new 3D-centric approaches to scene

understanding. We show how we can adapt and apply PointConv to an important

perception problem in robotics: 3D scene flow estimation. We propose a novel end-to-

end deep scene flow model, called PointPWC-Net, that directly processes 3D point cloud



scenes with large motions in a coarse-to-fine fashion. Flow computed at the coarse level is

upsampled and warped to a finer level, enabling the algorithm to accommodate for large

motion without a prohibitive search space. We introduce novel cost volume, upsampling,

and warping layers to efficiently handle 3D point cloud data. Unlike traditional cost

volumes that require exhaustively computing all the cost values on a high-dimensional

grid, our point-based formulation discretizes the cost volume onto input 3D points, and

a PointConv operation efficiently computes convolutions on the cost volume.

Finally, inspired by the recent development of Transformer, We introduce PointCon-

vFormer, a novel building block for point cloud based deep neural network architectures.

PointConvFormer combines ideas from point convolution, where filter weights are only

based on relative position, and Transformers where the attention computation takes

the features into account. In our proposed new operation, feature difference between

points in the neighborhood serves as an indicator to re-weight the convolutional weights.

Hence, we preserved some of the translation-invariance of the convolution operation

whereas taken attention into account to choose the relevant points for convolution. We

also explore multi-head mechanisms as well. To validate the effectiveness of PointCon-

vFormer, we experiment on both semantic segmentation and scene flow estimation tasks

on point clouds with multiple datasets including ScanNet, SemanticKitti, FlyingTh-

ings3D and KITTI. Our results show that PointConvFormer substantially outperforms

classic convolutions, regular transformers, and voxelized sparse convolution approaches

with smaller, more computationally efficient networks.
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Chapter 1: Introduction

1.1 Motivation

In recent robotics, autonomous driving and virtual/augmented reality applications, sen-

sors that can directly obtain 3D data are increasingly ubiquitous. This includes indoor

sensors such as laser scanners, time-of-flight sensors such as the Kinect, RealSense or

Google Tango, structural light sensors such as those on the iPhoneX, as well as outdoor

sensors such as LIDAR and MEMS sensors. The capability to directly measure 3D data

is invaluable in those applications as depth information could remove a lot of the seg-

mentation ambiguities from 2D imagery, and surface normals provide important cues of

the scene geometry.

In 2D images, convolutional neural networks (CNNs) have fundamentally changed the

landscape of computer vision by greatly improving results on almost every vision task.

CNNs succeed by utilizing translation invariance, so that the same set of convolutional

filters can be applied on all the locations in an image, reducing the number of parameters

and improving generalization. We would hope such successes to be transferred to the

analysis of 3D data. However, 3D data often come in the form of point clouds, which is

a set of unordered 3D points, with or without additional features (e.g. RGB) on each

point. Point clouds are unordered and do not conform to the regular lattice grids as in

2D images. It is difficult to apply conventional CNNs on such unordered input.

There are some work converting 3D point clouds into certain structured data format

for the ease of processing. [124, 107] propose to project 3D point clouds or shapes into

several 2D images, and then apply 2D convolutional networks for classification. Due

to projection, certain important 3D information is lost and it is not always obvious

which viewpoint to select for better performance. [160, 89, 107] represent another type

of approach that voxelizes point clouds into volumetric grids by quantization and then

apply 3D convolution networks. However, those methods suffers greatly from the memory

consumption and computation efficiency. Most of the proposed methods just work on a
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very coarse volume, such as 30 by 30 by 30 in resolution [107], which in turn cause large

quantization errors and information loss.

Hence, we aim to seek operations that work as basic operations for 3D point clouds as

the 2D convolution for images. This operation should be able to directly take 3D point

clouds as input without information loss, and be able to stack multiple layers to build

deep neural network for high representation capabilities. This fundamental operation

works just like bricks to a building. With that, we are able to open a new world to the

3D deep learning. The first attempt of this work is PointConv, which is a Monte Carlo

approximation of the continuous convolution on 3D point clouds. This operation is a

convolution that can be directly applied on 3D point cloud input, which leads to similar

representation capabilities as 2D convolution. To reduce the memory consumption of the

operation and build deep neural network at scale, we further propose a memory efficient

version of PointConv, which could be used to build super deep neural networks. As we

know, deep neural networks, such as ResNet [44], are backbones for almost all the tasks

in computer vision. With the efficient PointConv, we are able to build PointConv version

of ResNet [44] and use it as basic network backbones to address different tasks in 3D

computer vision.

As mentioned above, with the help of efficient PointConv, it is possible to explore more

complicated problems in the 3D Computer Vision field. Estimating scene flow directly

from 3D point clouds is an interesting and challenging task. As a fundamental low-

level understanding of the world, scene flow can be used in various applications, such

as motion segmentation, visual odometry, action recognition, and autonomous driving,

etc. Traditionally, most scene flow estimation algorithms take 2D images as input. They

first estimate the depth map and the optical flow from the input image pairs. Then,

the scene flow is reconstructed from the depth map and the optical flow. The methods

usually require multiple deep neural networks, multi-task training, and complicate post-

processing, etc. Due to the ambiguous nature of 2D images, the methods usually require

strong assumptions for better estimation results, such as piece-wise rigid, etc.

With the development of deep learning in 3D point clouds, it is possible to estimate

scene flow directly from 3D point clouds in an end-to-end trainable fashion [78, 42].

Fundamentally, scene flow estimation from 3D point clouds is a dense matching problem
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with inputs being time sequence point cloud frames. Most of the matching problems in

computer vision require computing the cost volume [128, 134]. In images, the pixels are

always aligned in grid shapes, which is regular and straightforward to process. The cost

volume is computed simply by aggregating the correlation in patches [162]. On the other

hand, 3D point clouds are more flexible and irregular [106]. It is unclear how to aggregate

the correlation to construct a cost volume. To address this problem, we are the first to

propose a novel cost volume layer that can directly be discretized onto the irregular 3D

point clouds with the help of PointConv. The new cost volume takes the neighbourhood

from both point clouds into account and utilizes the efficient PointConv to aggregate the

cost values. As a result, the novel cost volume contains important matching information

and is very efficient to compute. With the design of the novel cost volume, we unlock the

probabilities of adopting many different network structures, such as PWC-Net [128], into

the scene flow estimation from 3D point clouds. Furthermore, any matching problems,

such as geometry matching and instance matching [138], that require computing the cost

volume could potentially utilize our novel cost volume to further boost the performance.

Besides the cost volume layer, we also propose methods to build robust feature pyramids

on 3D point clouds, introduce the warping operation to reduce the searching area, and

a simple but effective method to upsample the scene flow from a coarse level to a finer

one. With all the previously mentioned layers, we introduce the point cloud version of

PWC-Net [128], which we named it PointPWC-Net [159].

One of the key components when conducting convolution on 3D point clouds is the con-

struction of the local neighbourhood with high correlation points. Due to the irregular

structure of point clouds, people heavily rely on the K-nearest neighbour(KNN) algo-

rithm to compute the neighbourhood around a convolutional center. However, the shape

of the neighbourhood varies in different parts of the point cloud. The neighbourhood

point nearby does not necessarily have high relevance to the neighbourhood center in

feature space, especially in object boundaries, where the feature could be very different.

With less-relevant points in the convolutional neighbourhood, the output feature could

be “blurred” or “corrupted”, which leads to fewer representation capabilities or strong

ambiguity. To address this issue, we introduce feature-based weights to PointConv, which

serves as a re-weighted filter to filter out the less-relevant features in the neighbourhood.

With that in mind, we find that the re-weighted filter shares some similarities with the
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recent popular vision transformer [29], whose aggregation weights are also computed

from feature space. As a result, our proposed PointConvFormer combines the properties

of PointConv, whose weights are computed from low dimensional spatial space, and the

properties of transformers, whose weights are computed from high dimensional feature

space. The PointConvFormer addresses the puzzle of how to define a “good” neighbour-

hood in point cloud processing for better representation and generalization.

1.2 Overview

In our work PointConv(Chapter 2), we propose a novel convolution operation which

directly works on point cloud data. PointConv takes the point cloud along with its fea-

tures as input and output encoded features for deeper layers. Different from previous

methods, we take point clouds as a specific sampling or discretization from continuous

surfaces with respect to different sensors. Hence, we can adopt the continuous convolu-

tion onto point clouds by discretize the continuous convolutional weights. In PointConv,

the convolutional weights are represented as continuous functions. Because point cloud

is a flexible data format, the local neighbourhood in the point cloud varies in different

positions. For each local neighbourhood of the point cloud, the continuous convolutional

weights is discretized with respect to the local neighbourhood. With the weights and the

input features, we can conduct the convolution on the point cloud. To further improve

the efficiency of PointConv, we propose a novel reformulation to implement PointConv

by reducing the original PointConv formulation to two standard operations–matrix mul-

tiplication and 2D convolution. This new computation trick greatly reduces the memory

consumption and is fully equivalent to the original PointConv. With the efficient Point-

Conv, we are able to build deep convolutional neural networks for various computer

vision tasks, such as classification, semantic segmentation, etc. Besides working on 3D

point clouds, our PointConv can also be applied on 2D images by treating pixels of

images as 2D points of point clouds. We conduct experiments on the popular Cifar10

dataset [64] and achieve on par results comparing with standard 2D convolution using

similar network structures.

To further evaluate the performance of PointConv and study its properties, we apply

PointConv to the problem of scene flow estimation from 3D point clouds. Scene flow is
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the 3D displacement vector field between two input point clouds [165], which represents

the motion between two 3D scenes. Scene flow is a low-level computer vision task, which

could be used to further improve the performance of high-level vision task, such as object

detection, action recognition and tracking, etc. Previously, most methods estimate scene

flow from RGB or RGBD data. With the recent improvement of the 3D sensors, directly

estimating scene flow from 3D point clouds has drawn more and more attention.

However, due to different data structures between 2D images and 3D point clouds, the

method to estimate scene flow directly from 3D point clouds is still a open problem. In

our work PointPWC-Net(Chapter 3), we explore the coarse-to-fine framework [8, 12, 125,

127] for 3D point clouds. The coarse-to-fine framework in deep neural network is first

introduced in PWC-Net [128], which computes the coarse estimation first and gradually

refines the results to finer level. As a result, the coarse-to-fine framework allows us to

accommodate large motion to a coarse level without a prohibitive search space, which

is both memory and computation efficient. To take advantages of the efficiency of the

coarse-to-fine framework, we propose PointPWC-Net in Chapter 3.

One of the key components in scene flow estimation is the cost volume computation.

The cost volume contains the matching information between neighbouring pixel pairs

from consecutive frames. Unlike cost volumes from image pairs, the cost volumes from

3D point cloud pairs are still under explored due to the flexibility of the point cloud data

format. In Chapter 3, we propose a novel cost volume for 3D point clouds along with

a learnable cost representation between two neighbouring points from consecutive point

cloud frames. The new cost volume is computed with two PointConv operations, which is

both memory and time efficient for flow estimation. In order to build the PointPWC-Net,

we further introduce the upsampling layers, warping layers to interpolate and warp the

flow within pyramid levels. With all the novel layers, we are able to build a PointPWC-

Net for accurate estimation of scene flow directly from 3D point clouds.

As in optical flow, it is difficult to obtain accurate flow ground truth labels for point

cloud data. To train the PointPWC-Net, we propose a novel self-supervised loss to train

the model without any ground truth flow. The new self-supervised loss contains the

Chamfer distance, Smoothness constraint, and Laplacian regularization. With the loss

terms, we are able to train the model to achieve state-of-the-art performance without
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any supervision.

Recently, researchers have introduced visual transformers to 3D point clouds process-

ing, inspired by the success in NLP and image analysis [177, 102]. The self-attention

mechanism has also been adapted for point clouds processing [177]. However, so far,

transformers have not shown to significantly outperform convolutional approaches on

point clouds. Both convolution and attention aim to conduct feature aggregation in

neighborhoods with high feature correlations. The advantage of convolution is that

its translation-invariance usually offers good generalization power. However, attention

weights can help locate points that are more correlated with each other.

In Capter 4, we propose PointConvFormer, an operation that uses attention weights to

modulate a convolution operation, essentially selecting relevant points to perform con-

volution, with the hope to get the best of both worlds. We also experiment with the

multi-head mechanism commonly used in transformers. To demenstrate the effective-

ness of the PointConvFormer, we evaluate PointConvFormer on two point cloud tasks,

semantic segmentation and scene flow estimation. For semantic segmentation, experi-

ment results on the indoor ScanNet [23] and the outdoor SemanticKitti [7] demonstrate

superior performances over classic convolution and transformers with a more compact

network. We also apply PointConvFormer as the backbone of PointPWC-Net [159] for

scene flow estimation, and observe significant improvements on FlyingThings3D [90] and

KITTI scene flow 2015 [96] datasets.

1.3 Contributions and Thesis Outline

Figure 1.1 illustrates the contributions of the thesis. We summary the key contributions

as follows:

• We propose a novel convolutional operation for point clouds processing–PointConv.

PointConv is memory efficient and can be used to further build deep neural network for

various computer vision tasks. Extensive experiments are conducted to demonstrate the

effective of the novel PointConv.

• We extend the coarse-to-fine framework to the scene flow estimation directly from 3D

point clouds, called PointPWC-Net. PointPWC-Net consists feature pyramid, learnable
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PointConv

Classification, Segmentation

PointPWC-Net: Scene Flow Estimation

Self-Supervised Training 

PointConvFormer

Semantic Segmentation

Scene Flow Estimation

Chapter 2

Chapter 3

Chapter 4

Figure 1.1: Thesis contributions. The main contributions of the thesis include the con-
volutional operation–PointConv, the scene flow estimation network–PointPWC-Net, and
the improved convolutional operation–PointConvFormer.

cost volume layers, upsampling layers, warping layers, and scene flow predictors. Besides,

to train PointPWC-Net without any ground truth annotations, we propose a new self-

supervised loss. Experiments show that our novel network is able to outperforms the

state-of-the-art methods with a large margin.

• To further improve the performance of dense prediction models, we propose an im-

proved convolution–PointConvFormer, whose weights take the relative positions and the

correlation of the guidance features into consideration. The PointConvFormer is applied

to 3D semantic segmentation and scene flow estimation from 3D point clouds.

The outline of the thesis are organized as follows:

Chapter 2 introduces a novel convolutional operation that can directly processes 3D

point clouds. The convolutional operation is named PointConv. Besides, we also extend

the PointConv to PointDeConv, which is used for feature propagation. To improve the

efficiency of PointConv, we introduce the PointConv to an efficient version, which can

be used to build deep network at scale. The content of this chapter is primarily based

on [158].

Chapter 3 applies the PointConv into a 3D computer vision task, Scene flow estimation

from 3D point clouds. A novel network structure, called PointPWC-Net, is introduced
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for efficient scene flow estimation. PointPWC-Net is able to outperform the state-of-

the-art methods by a large margin with the multi-scale supervised loss. However, due

to the fact that the dense annotation of scene flow for 3D point clouds is hard, we

further propose a novel self-supervised loss to train the network without any human

annotation. Experiments on FlyingThings3D [90] and KITTI scene flow [95] demonstrate

the effectiveness and generalization ability of the novel network.

Chapter 4 proposes a new convolutional operation, PointConvFormer. Unlike standard

convolution, whose weights are functions of the relative positions of a local neighbour-

hood, the weights of PointConvFormer are represented as functions of the relative posi-

tions and the guidance features, which combines the properties of traditional convolution

and the popular transformer. We conduct experiments on the 3D semantic segmentation

tasks using PointConvFormer. Besides, we adapt PointConvFormer to the PointPWC-

Net in Chapter 3 as GPointPWC-Net and achieve better performance on scene flow

estimation.

Finally, we summarize the thesis and provide insights for possible future research direc-

tions and applications in Chapter 5.



9

Chapter 2: Deep Convolutional Networks on 3D Point Clouds

2.1 Introduction

In this chapter, we introduce a new approach to conduct convolution on 3D point clouds

with non-uniform sampling. We note that the convolution operation can be viewed as

a discrete approximation of a continuous convolution operator. In 3D space, we can

treat the weights of this convolution operator to be a (Lipschitz) continuous function

of the local 3D point coordinates with respect to a reference 3D point. The continuous

function can be approximated by a multi-layer perceptron(MLP), as done in [118] and

[59]. But these algorithms did not take non-uniform sampling into account. We propose

to use an inverse density scale to re-weight the continuous function learned by MLP,

which corresponds to the Monte Carlo approximation of the continuous convolution. We

call such an operation PointConv. PointConv involves taking the positions of point

clouds as input and learning an MLP to approximate a weight function, as well as

applying a inverse density scale on the learned weights to compensate the non-uniform

sampling.

The naive implementation of PointConv is memory inefficient when the channel size of the

output features is very large and hence hard to train and scale up to large networks. In

order to reduce the memory consumption of PointConv, we introduce an approach which

is able to greatly increase the memory efficiency using a reformulation that changes the

summation order. The new structure is capable of building multi-layer deep convolutional

networks on 3D point clouds that have similar capabilities as 2D CNN on raster images.

We can achieve the same translation-invariance as in 2D convolutional networks, and the

invariance to permutations on the ordering of points in a point cloud.

In segmentation tasks, the ability to transfer information gradually from coarse layers to

finer layer is important. Hence, a deconvolution operation [101] that can fully leverage

the feature from a coarse layer to a finer layer is vital for the performance. Most state-

of-the-art algorithms [106, 108] are unable to perform deconvolution, which restricts
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their performance on segmentation tasks. Since our PointConv is a full approximation

of convolution, it is natural to extend PointConv to a PointDeconv, which can fully

untilize the information in coarse layers and propagate to finer layers. By using Point-

Conv and PointDeconv, we can achieve improved performance on semantic segmentation

tasks.

The contributions of our work are:

• We propose PointConv, a density re-weighted convolution, which is able to fully ap-

proximate the 3D continuous convolution on any set of 3D points.

• We design a memory efficient approach to implement PointConv using a change of

summation order technique, most importantly, allowing it to scale up to modern CNN

levels.

• We extend our PointConv to a deconvolution version(PointDeconv) to achieve better

segmentation results.

Experiments show that our deep network built on PointConv is highly competitive

against other point cloud deep networks and achieve state-of-the-art results in part seg-

mentation [14] and indoor semantic segmentation benchmarks [23]. In order to demon-

strate that our PointConv is indeed a true convolution operation, we also evaluate Point-

Conv on CIFAR-10 by converting all pixels in a 2D image into a point cloud with 2D

coordinates along with RGB features on each point. Experiments on CIFAR-10 show

that the classification accuracy of our PointConv is comparable with a image CNN of a

similar structure, far outperforming previous best results achieved by point cloud net-

works. As a basic approach to CNN on 3D data, we believe there could be many potential

applications of PointConv.

2.2 Related Work

Most work on 3D CNN networks convert 3D point clouds to 2D images or 3D volumetric

grids. [124, 107] proposed to project 3D point clouds or shapes into several 2D images,

and then apply 2D convolutional networks for classification. Although these approaches

have achieved dominating performances on shape classification and retrieval tasks, it is
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nontrivial to extend them to high-resolution scene segmentation tasks [23]. [160, 89, 107]

represent another type of approach that voxelizes point clouds into volumetric grids by

quantization and then apply 3D convolution networks. This type of approach is con-

strained by its 3D volumetric resolution and the computational cost of 3D convolutions.

[114] improves the resolution significantly by using a set of unbalanced octrees where

each leaf node stores a pooled feature representation. Kd-networks[62] computes the

representations in a feed-forward bottom-up fashion on a Kd-tree with certain size. In a

Kd-network, the input number of points in the point cloud needs to be the same during

training and testing, which does not hold for many tasks. SSCN [40] utilizes the convolu-

tion based on a volumetric grid with novel speed/memory improvements by considering

CNN outputs only on input points. However, if the point cloud is sampled sparsely,

especially when the sampling rate is uneven, for the sparsely sampled regions on may

not be able to find any neighbor within the volumetric convolutional filter, which could

cause significant issues.

Some latest work [112, 106, 108, 123, 133, 52, 41, 144] directly take raw point clouds as

input without converting them to other formats. [106, 112] proposed to use shared multi-

layer perceptrons and max pooling layers to obtain features of point clouds. Because the

max pooling layers are applied across all the points in point cloud, it is difficult to capture

local features. PointNet++ [108] improved the network in PointNet [106] by adding a

hierarchical structure. The hierarchical structure is similar to the one used in image

CNNs, which extracts features starting from small local regions and gradually extending

to larger regions. The key structure used in both PointNet [106] and PointNet++ [108]

to aggregate features from different points is max-pooling. However, max-pooling layers

keep only the strongest activation on features across a local or global region, which may

lose some useful detailed information for segmentation tasks. [123] presents a method

that projects the input features of the point clouds onto a high-dimensional lattice, and

then apply bilateral convolution on the high-dimensional lattice to aggregate features,

which called “SPLATNet”. The SPLATNet [123] is able to give comparable results as

PointNet++ [108]. The tangent convolution [133] projects local surface geometry on a

tangent plane around every point, which gives a set of planar-convolutionable tangent

images. The pointwise convolution [52] queries nearest neighbors on the fly and bins

the points into kernel cells, then applies kernel weights on the binned cells to convolve
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on point clouds. Flex-convolution [41] introduced a generalization of the conventional

convolution layer along with an efficient GPU implementation, which can applied to

point clouds with millions of points. FeaStNet [144] proposes to generalize conventional

convolution layer to 3D point clouds by adding a soft-assignment matrix. PointCNN [76]

is to learn a χ−transformation from the input points and then use it to simultaneously

weight and permute the input features associated with the points. Comparing to our

approach, PointCNN is unable to achieve permutation-invariance, which is desired for

point clouds.

The work [118, 59, 154, 45, 151] and [163] propose to learn continuous filters to perform

convolution. [59] proposed that the weight filter in 2d convolution can be treated as

a continuous function, which can be approximated by MLPs. [118] firstly introduced

the idea into 3d graph structure. [151] extended the method in [118] to segmentation

tasks and proposed an efficient version, but their efficient version can only approximate

depth-wise convolution instead of real convolution. Dynamic graph CNN [154] proposed

a method that can dynamically updating the graph. [163] presents a special family

of filters to approximate the weight function instead of using MLPs. [45] proposed a

Monta Carlo approximation of 3D convolution by taking density into account. Our

work differ from those in 3 aspects. Most importantly, our efficient version of a real

convolution was never proposed in prior work. Also, we utilize density differently than

[45], and we propose a deconvolution operator based on PointConv to perform semantic

segmentation.

2.3 PointConv

We propose a convolution operation which extends traditional image convolution into

the point cloud called PointConv. PointConv is an extension to the Monte Carlo

approximation of the 3D continuous convolution operator. For each convolutional filter,

it uses MLP to approximate a weight function, then applies a density scale to re-weight

the learned weight functions. Sec. 2.3.1 introduces the structure of the PointConv layer.

Sec. 2.3.3 introduces PointDeconv, using PointConv layers to deconvolve features.
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2.3.1 Convolution on 3D Point Clouds

Formally, convolution is defined as in Eq.(2.1) for functions f(x) and g(x) of a d-

dimensional vector x.

(f ∗ g)(x) =

∫∫
τ∈Rd

f(τ )g(x + τ )dτ (2.1)

Images can be interpreted as 2D discrete functions, which are usually represented as

grid-shaped matrices. In CNN, each filter is restricted to a small local region, such as

3× 3, 5× 5, etc. Within each local region, the relative positions between different pixels

are always fixed, as shown in Figure 2.1(a). And the filter can be easily discretized to a

summation with a real-valued weight for each location within the local region.

A point cloud is represented as a set of 3D points {pi|i = 1, ..., n}, where each point

contains a position vector (x, y, z) and its features such as color, surface normal, etc.

Different from images, point clouds have more flexible shapes. The coordinates p =

(x, y, z) ∈ R3 of a point in a point cloud are not located on a fixed grid but can take an

arbitrary continuous value. Thus, the relative positions of different points are diverse in

each local region. Conventional discretized convolution filters on raster images cannot

be applied directly on the point cloud. Fig. 2.1 shows the difference between a local

region in a image and a point cloud.

To make convolution compatible with point sets, we propose a permutation-invariant

convolution operation, called PointConv. Our idea is to first go back to the continuous

version of 3D convolution as:

Conv(W,F )xyz =∫∫∫
(δx,δy,δz)∈G

W (δx, δy, δz)F (x+ δx, y + δy, z + δz)dδxδyδz (2.2)

where F (x + δx, y + δy, z + δz) is the feature of a point in the local region G centered

around point p = (x, y, z). A point cloud can be viewed as a non-uniform sample from

the continuous R3 space. In each local region, (δx, δy, δz) could be any possible position
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(a)
(c)

(b)

Figure 2.1: Image grid vs. point cloud. (a) shows a 5× 5 local region in a image, where
the distance between points can only attain very few discrete values; (b) and (c) show
that in different local regions within a point cloud, the order and the relative positions
can be very different.

Figure 2.2: 2D weight function for PointConv. (a) is a learned continuous weight func-
tion; (b) and (c) are different local regions in a 2d point cloud. Given 2d points, we can
obtain the weights at particular locations. The same applies to 3D points. The regular
discrete 2D convolution can be viewed as a discretization of the continuous convolution
weight function, as in (d).

in the local region. We define PointConv as the following:

PointConv(S,W,F )xyz =∑
(δx,δy,δz)∈G

S(δx, δy, δz)W (δx, δy, δz)F (x+ δx, y + δy, z + δz) (2.3)

where S(δx, δy, δz) is the inverse density at point (δx, δy, δz). S(δx, δy, δz) is required

because the point cloud can be sampled very non-uniformly1. Intuitively, the number

1To see this, note the Monte Carlo estimate with a biased sample:
∫
f(x)dx =

∫ f(x)
p(x)

p(x)dx ≈∑
i
f(xi)
p(xi)

, for xi ∼ p(x). Point clouds are often biased samples because many sensors have difficulties
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Figure 2.3: The structure of PointConv. (a) shows a local region with the coordinates
of points transformed from global into local coordinates, p is the coordinates of points,
and f is the corresponding feature; (b) shows the process of conducting PointConv on
one local region centered around one point (p0, f0). The input features come form the K
nearest neighbors centered at (p0, f0), and the output feature is Fout at p0.

of points in the local region varies across the whole point cloud, as in Figure 2.2 (b)

and (c). Besides, in Figure 2.2 (c), points p3, p5, p6, p7, p8, p9, p10 are very close to one

another, hence the contribution of each should be smaller.

Our main idea is to approximate the weight function W (δx, δy, δz) by multi-layer per-

ceptrons from the 3D coordinates (δx, δy, δz) and and the inverse density S(δx, δy, δz)

by a kernelized density estimation [139] followed by a nonlinear transform implemented

with MLP. Because the weight function highly depends on the distribution of input

point cloud, we call the entire convolution operation PointConv. [59, 118] considered

the approximation of the weight function but did not consider the approximation of the

density scale, hence is not a full approximation of the continuous convolution operator.

Our nonlinear transform on the density is also different from [45].

The weights of the MLP in PointConv are shared across all the points in order to maintain

the permutation invariance. To compute the inverse density scale S(δx, δy, δz), we first

estimate the density of each point in a point cloud offline using kernel density estimation

(KDE), then feed the density into a MLP for a 1D nonlinear transform. The reason

to use a nonlinear transform is for the network to decide adaptively whether to use the

density estimates.

measuring points near plane boundaries, hence needing this reweighting
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Figure 2.3 shows the PointConv operation on a K-point local region. Let Cin, Cout

be the number of channels for the input feature and output feature, k, cin, cout are the

indices for k-th neighbor, cin-th channel for input feature and cout-th channel for output

feature. The inputs are the 3D local positions of the points Plocal ∈ RK×3, which can

be computed by subtracting the coordinate of the centroid of the local region and the

feature Fin ∈ RK×Cin of the local region. We use 1 × 1 convolution to implement the

MLP. The output of the weight function is W ∈ RK×(Cin×Cout). So, W(k, cin) ∈ RCout

is a vector. The density scale is S ∈ RK . After convolution, the feature Fin from a local

region with K neighbour points are encoded into the output feature Fout ∈ RCout , as

shown in Eq.(2.4).

Fout =
K∑
k=1

Cin∑
cin=1

S(k)W(k, cin)Fin(k, cin) (2.4)

PointConv learns a network to approximate the continuous weights for convolution. For

each input point, we can compute the weights from the MLPs using its relative coordi-

nates. Figure 2.2(a) shows an example continuous weight function for convolution. With

a point cloud input as a discretization of the continuous input, a discrete convolution

can be computed by Fig. 2.2(b) to extract the local features, which would work (with

potentially different approximation accuracy) for different point cloud samples (Figure

2.2(b-d)), including a regular grid (Figure 2.2(d)). Note that in a raster image, the rela-

tive positions in local region are fixed. Then PointConv (which takes only relative posi-

tions as input for the weight functions) would output the same weight and density across

the whole image, where it reduces to the conventional discretized convolution.

In order to aggregate the features in the entire point set, we use a hierarchical structure

that is able to combine detailed small region features into abstract features that cover a

larger spatial extent. The hierarchical structure we use is composed by several feature

encoding modules, which is similar to the one used in PointNet++ [108]. Each module

is roughly equivalent to one layer in a convolutional CNN. The key layers in each feature

encoding module are the sampling layer, the grouping layer and the PointConv. More

details can be found in the supplementary material.

The drawback of this approach is that each filter needs to be approximated by a network,

hence is very inefficient. In Sec.2.4, we propose an efficient approach to implement
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PointConv.

2.3.2 Hierarchical Structure

In order to aggregate the features in the entire point set, we use a hierarchical structure

that is able to combine detailed small region features into abstract features that cover a

larger spatial extent.

The hierarchical structure we use is composed by several feature encoding modules, which

is similar to the one used in PointNet++ [108]. Each module is roughly equivalent to one

layer in a convolutional CNN. We depict one feature encoding module in Alg.1.

Algorithm 1 Feature Encoding Module

Input : (P, Fin, N
′,K) : Fin is the features of the input point cloud P ; N ′ is the number

of points to keep after subsampling; K is the number of points in each local
region.

Output: (Pcentroid, Fout) : Pcentroid is a subsample of the input point cloud P , which can
be used as the input point clouds for next module; Fout is the corresponding
feature.

1 Compute density at each point using KDE with respect to each point;
2 Feed density into DensityNet to get inverse density scale S;
3 Sample N ′ points out of input P , the N ′ points are the centriod points Pcentroid for each

local region;
4 Find K nearest neighbor points PKnn around each centroid point Pcentroid. We denote

the feature on the K nearest neighbors as FKnn and the inverse density scale as SKnn;
5 Transform the global coordinates into local coordinates by subtracting each point with

centroid point: Plocalized = PKnn − Pcentroid;
6 Apply PointConv : Fout ← PointConv(Plocalized, FKnn, SKnn)

For simplicity, we consider the input point cloud with N points in the 3D space with

Euclidean coordinates. The first step is to compute density of each input point using

KDE. Then the density is fed into a MLP to get the inverse density scale S. The

input point cloud is subsampled to get a point cloud with N ′ points. The subsampling

method can be farthest point sampling [108], or inverse density sampling [41]. When

N ′ = N , the output point cloud has the same size with the input point cloud, which

means the module is a convolution with stride size = 1; when N ′ < N , the number

of points in the output point cloud is smaller than the input point cloud, which means
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Feature decode/PointDeconv Interpolation PointConv Skip links

Figure 2.4: Feature encoding and propagation. This figure shows how the features are
encoded and propagated in the network for a m classes segmentation task. n is the
number of points in each layer, c is the channel size for the features. Best viewed in
color.

the feature encoding module approximates a convolution with stride size > 1. The N ′

points serve as the centroid Pcentroid of each local region and are used to find their K

nearest neighbor points PKnn. The input features with shape N × Cin and the inverse

density scale with shape N × 1 are then grouped into local features FKnn with shape

N ′×K×Cin and inverse density scale SKnn with shape N ′×K×1 according to their K

nearest neighbor points. In order to apply the local weight function in PointConv layer,

we convert the global coordinates into local coordinates by subtracting the centroid,

Plocalized = PKnn − Pcentroid. Then, the localized grouped points Plocalized are fed into a

PointConv layer. After PointConv, the new feature Fout with shape N ′ × Cout together

with the N ′ point cloud can be fed into the next feature encoding module.

2.3.3 Feature Propagation Using Deconvolution

For the segmentation task, we need point-wise prediction. In order to obtain features for

all the input points, an approach to propagate features from a subsampled point cloud to

a denser one is needed. PointNet++ [108] proposes to use distance-based interpolation

to propagate features, which is reasonable due to local correlations inside a local region.

However, this does not take full advantage of the deconvolution operation that captures

local correlations of propagated information from the coarse level. We propose to add a

PointDeconv layer based on the PointConv, as a deconvolution operation to address this

issue.
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As shown in Fig. 2.4, PointDeconv is composed of two parts: interpolation and Point-

Conv. Firstly, we employ an interpolation to propagate coarse features from previous

layer. Following [108], the interpolation is conducted by linearly interpolating features

from the 3 nearest points. Then, the interpolated features are concatenated with fea-

tures from the convolutional layers with the same resolution using skip links. After

concatenation, we apply PointConv on the concatenated features to obtain the final

deconvolution output, similar to the image deconvolution layer [101]. We apply this pro-

cess until the features of all the input points have been propagated back to the original

resolution.

2.4 Efficient PointConv

The naive implementation of the PointConv is memory consuming and inefficient. Dif-

ferent from [118], we propose a novel reformulation to implement PointConv by reducing

it to two standard operations: matrix multiplication and 2d convolution. This novel

trick not only takes advantage of the parallel computing of GPU, but also can be easily

implemented using main-stream deep learning frameworks. Because the inverse density

scale does not have such memory issues, the following discussion mainly focuses on the

weight function.

Specifically, let B be the mini-batch size in the training stage, N be the number of points

in a point cloud, K be the number of points in each local region, Cin be the number

of input channels, and Cout be the number of output channels. For a point cloud, each

local region shares the same weight functions which can be learned using MLP. However,

weights computed from the weight functions at different points are different. The size

of the weights filters generated by the MLP is B × N × K × (Cin × Cout). Suppose

B = 32, N = 512, K = 32, Cin = 64, Cout = 64, and the filters are stored with single

point precision. Then, the memory size for the filters is 8GB for only one layer. The

network would be hard to train with such high memory consumption. [118] used very

small network with few filters which significantly degraded its performance. To resolve

this problem, we propose a memory efficient version of PointConv based on the following

lemma:

Lemma 1. The PointConv is equivalent to the following formula: Fout = Conv1×1(H, (S·
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Fin)T ⊗M) where M ∈ RK×Cmid is the input to the last layer in the MLP for computing

the weight function, and H ∈ RCmid×(Cin×Cout) is the weights of the last layer in the

same MLP, Conv1×1 is 1× 1 convolution.

Proof: Generally, the last layer of the MLP is a linear layer. In one local region, let

F̃in = S · Fin ∈ RK×Cin and rewrite the MLP as a 1× 1 convolution so that the output

of the weight function is W = Conv1×1(H,M) ∈ RK×(Cin×Cout). Let k is the index of

the points in a local region, and cin, cmid, cout are the indices of the input, middle layer

and the filter output, respectively. Then W(k, cin) ∈ RCout is a vector from W. And

the H(cmid, cin) ∈ RCout is a vector from H. According to Eq.(2.4), the PointConv can

be expressed in Eq.(2.5).

Fout =

K−1∑
k=0

Cin−1∑
cin=0

(W(k, cin)F̃in(k, cin)) (2.5)

Let’s explore Eq.(2.5) in a more detailed manner. The output of the weight function can

be expressed as:

W(k, cin) =

Cmid−1∑
cmid=0

(M(k, cmid)H(cmid, cin)) (2.6)

Substituting Eq.(2.6) into Eq.(2.5).

Fout =

K−1∑
k=0

Cin−1∑
cin=0

(F̃in(k, cin)

Cmid−1∑
cmid=0

(M(k, cmid)H(cmid, cin)))

=

Cin−1∑
cin=0

Cmid−1∑
cmid=0

(H(cmid, cin)

K−1∑
k=0

(F̃in(k, cin)M(k, cmid)))

= Conv1×1(H, F̃T
inM) (2.7)

Thus, the original PointConv can be equivalently reduced to a matrix multiplication and
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Figure 2.5: Efficient PointConv. The memory efficient version of PointConv on one local
region with K points.

a 1× 1 convolution. Figure 2.5 shows the efficient version of PointConv.

In this method, instead of storing the generated filters in memory, we divide the weights

filters into two parts: the intermediate result M and the convolution kernel H. As we can

see, the memory consumption reduces to Cmid
K×Cout

of the original version. With the same

input setup as the Figure 2.3 and let Cmid = 32, the memory consumption is 0.1255GB,

which is about 1/64 of the original PointConv.

2.5 Experiments

In order to evaluate our new PointConv network, we conduct experiments on several

widely used datasets, ModelNet40 [160], ShapeNet [14] and ScanNet [23]. In order to

demonstrate that our PointConv is able to fully approximate conventional convolution,

we also report results on the CIFAR-10 dataset [64]. In all experiments, we implement

the models with Tensorflow on a GTX 1080Ti GPU using the Adam optimizer. ReLU

and batch normalization are applied after each layer except the last fully connected

layer.
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PointConv:32,192-128

PointConv:48,384-128

PointConv

Figure 2.6: The network structures for ModelNet40 classification task. In the figure,
PointConv : 8, 48− 1024 is a PointConv layer with neighborhood size K = 8, Cout = 48
output channels, and N ′ = 1024 centroids.

2.5.1 Classification on ModelNet40

ModelNet40 contains 12,311 CAD models from 40 man-made object categories. We

use the official split with 9,843 shapes for training and 2,468 for testing. Following the

configuration in [106], we use the source code for PointNet [106] to sample 1,024 points

uniformly and compute the normal vectors from the mesh models. For fair comparison,

we employ the same data augmentation strategy as [106] by randomly rotating the point

cloud along the z-axis and jittering each point by a Gaussian noise with zero mean and

0.02 standard deviation. The network structures we used in our experiment is shown

in Figure 2.6. In Table 2.1, PointConv achieved state-of-the-art performance among

methods based on 3D input. ECC[118] which is similar to our approach, cannot scale to

a large network, which limited their performance.

2.5.2 ShapeNet Part Segmentation

Part segmentation is a challenging fine-grained 3D recognition task. The ShapeNet

dataset contains 16,881 shapes from 16 classes and 50 parts in total. The input of the
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Table 2.1: ModelNet40 Classification Accuracy.

Method Input Accuracy(%)

Subvolume [107] voxels 89.2
ECC [118] graphs 87.4

Kd-Network [62] 1024 points 91.8
PointNet [106] 1024 points 89.2

PointNet++ [108] 1024 points 90.2
PointNet++ [108] 5000 points+normal 91.9
SpiderCNN [163] 1024 points+normal 92.4

PointConv 1024 points+normal 92.5

Figure 2.7: Part segmentation results. For each pair of objects, the left one is the ground
truth, the right one is predicted by PointConv. Best viewed in color.
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Figure 2.8: The network structure for ShapeNet part segmentation. PointConv :
64, 128 − 512 is a PointConv layer with neighborhood size K = 64, Cout = 128 output
channels, and N = 512 centroids. Each rectangle represents a convolution/deconvolution
layer. Each ellipse represents the data dimensionality at the particular stage. 512× 128
means the point cloud has 512 points with 128-dimensional features.

Table 2.2: Results on ShapeNet part dataset. Class avg. is the mean IoU averaged
across all object categories, and inctance avg. is the mean IoU across all objects.

airplane bag cap car chair earphone guitar knife lamp laptop motor mug pistol rocket skate board table class avg. instance avg.

SSCNN [169] 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1 82.0 84.7
Kd-net [62] 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3 77.4 82.3
PN [106] 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.3 93.0 81.2 57.9 72.8 80.6 80.4 83.7
PN++[108] 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6 81.9 85.1
SpiderCNN [163] 83.5 81.0 87.2 77.5 90.8 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8 82.4 85.3
SPLATNet3D [123] 81.9 83.9 88.6 79.5 90.1 73.5 91.3 84.7 84.5 96.3 69.7 95.0 81.7 59.2 70.4 81.3 82.0 84.6

PointConv 83.5 80.9 87.5 79.5 90.9 75.8 90.9 86.6 84.6 95.8 72.4 95.3 81.8 60.8 75.2 83.2 82.8 85.7

task is shapes represented by a point cloud, and the goal is to assign a part category

label to each point in the point cloud. The category label for each shape is given. We

follow the experiment setup in most related work [108, 123, 163, 62]. It is common to

narrow the possible part labels to the ones specific to the given object category by using

the known input 3D object category. And we also compute the normal direction on each

point as input features to better describe the underlying shape. Figure 2.7 visualizes

some sample results. The network structure is shown in Figure 2.8.

We use point intersection-over-union(IoU) to evaluate our PointConv network, same

as PointNet++ [108], SPLATNet [123] and some other part segmentation algorithms
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[169, 62, 163, 40]. The results are shown in Table 2.2. PointConv obtains a class average

mIoU of 82.8% and an instance average mIoU of 85.7%, which are on par with the

state-of-the-art algorithms which only take point clouds as input. According to [123],

the SPLATNet2D−3D also takes rendered 2D views as input. Since our PointConv only

takes 3D point clouds as input, for fair comparison, we only compare our result with the

SPLATNet3D in [123].

2.5.3 Semantic Scene Labeling

Datasets such as ModelNet40 [160] and ShapeNet [14] are man-made synthetic datasets.

As we can see in the previous section, most state-of-the-art algorithms are able to obtain

relatively good results on such datasets. To evaluate the capability of our approach in

processing realistic point clouds, which contains a lot of noisy data, we evaluate our

PointConv on semantic scene segmentation using the ScanNet dataset. The task is

to predict semantic object labels on each 3D point given indoor scenes represented by

point clouds. The newest version of ScanNet [23] includes updated annotations for all

1513 ScanNet scans and 100 new test scans with all semantic labels publicly unavailable

and we submitted our results to the official evaluation server to compare against other

approaches.

We compare our algorithm with Tangent Convolutions [133], SPLAT Net [123], Point-

Net++ [108] and ScanNet [23]. All the algorithm mentioned reported their results on

the new ScanNet dataset to the benchmark, and the inputs of the algorithms only uses

3D coordinates data plus RGB. In our experiments, we generate training samples by

randomly sample 3m× 1.5m× 1.5m cubes from the indoor rooms, and evaluate using a

sliding window over the entire scan. We report intersection over union (IoU) as our main

measures, which is the same as the benchmark. We visualize some example semantic

segmentation results in Figure 2.9. The mIoU is reported in Table 2.3. The mIoU is the

mean of IoU across all the categories. Our PointConv outperforms other algorithm by

a significant margin (Table 2.3). The total running time of PointConv for training one

epoch on ScanNet on one GTX1080Ti is around 170s, and the evaluation time with 8 ×
8192 points is around 0.5s.

In Table 2.4, we report the IoU of each category on the ScanNet dataset. In all, we can
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Input Scene Ground Truth PointConv

Figure 2.9: Examples of semantic scene labeling. The images from left to right are the
input scenes, the ground truth segmentation, and the prediction from PointConv. For
better visualization, the point clouds are converted into mesh format. Best viewed in
color.

Table 2.3: Semantic Scene Segmentation results on ScanNet.

Method mIoU(%)

ScanNet [23] 30.6
PointNet++ [108] 33.9
SPLAT Net [123] 39.3
Tangent Convolutions [133] 43.8

PointConv 55.6
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Table 2.4: Segmentation results on Each Category in IoU (%).

shape bathtub bed bookshelf cabinet chair counter curtain desk door floor

ScanNet [23] 20.3 36.6 50.1 31.1 52.4 21.1 0.2 34.2 18.9 78.6
PointNet++ [108] 58.4 47.8 45.8 25.6 36.0 25.0 24.7 27.8 26.1 67.7
SPLATNet [123] 47.2 51.1 60.6 31.1 65.6 24.5 40.5 32.8 19.7 92.7
Tangent Concolution [133] 43.7 64.6 47.4 36.9 64.5 35.3 25.8 28.2 27.9 91.8
PointCNN [76] 51.0 58.3 41.7 41.4 70.8 24.1 36.7 40.5 32.3 94.4
PointConv 63.6 64.0 57.4 47.2 73.9 43.0 43.3 41.8 44.5 94.4

shape otherfurniture picture refrigerator shower curtain sink sofa table toilet wall window

ScanNet [23] 14.5 10.2 24.5 15.2 31.8 34.8 30.0 46.0 43.7 18.2
PointNet++ [108] 18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2
SPLAT Net [123] 22.7 0 0.1 24.9 27.1 51.0 38.3 59.3 69.9 26.7
Tangent Concolution [133] 29.8 14.7 28.3 29.4 48.7 56.2 42.7 61.9 63.3 35.2
PointCNN [76] 30.0 13.2 22.6 41.7 53.4 52.5 51.1 80.6 74.3 47.9
PointConv 37.2 18.5 46.4 57.5 54.0 63.9 50.5 82.7 76.2 51.5

see that our approach outperforms other algorithms in almost all categories. One can see

that in some categories, PointConv significantly improves over others, such as counter

(35.3 % → 43.0 %), door (32.3 % → 44.5 %), refrigerator (28.3 % → 46.4 %), shower

curtain (41.7 % → 57.5 %), sofa (56.2 % → 63.9 %).

2.5.4 Classification on CIFAR-10

In Sec.2.3.1, we claimed that PointConv can be equivalent with 2D CNN. If this is true,

then the performance of a network based on PointConv should be equivalent to that of a

raster image CNN. In order to verify that, we use the CIFAR-10 dataset as a comparison

benchmark. We treat each pixel in CIFAR-10 as a 2D point with xy coordinates and RGB

features. The point clouds are scaled onto the unit ball before training and testing.

Experiments show that PointConv on CIFAR-10 indeed has the same learning capacities

as a 2D CNN. Table 2.5 shows the results of image convolution and PointConv. From

the table, we can see that the accuracy of PointCNN[76] on CIFAR-10 is only 80.22%,

which is much worse than image CNN. However, for 5-layer networks, the network using

PointConv is able to achieve 89.13%, which is similar to the network using image con-

volution. And, PointConv with VGG19 [119] structure can also achieve on par accuracy

comparing with VGG19.
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Table 2.5: CIFAR-10 Classification Accuracy.

Accuracy(%)

Image Convolution 88.52
AlexNet [65] 89.00
VGG19 [119] 93.60

PointCNN [76] 80.22
SpiderCNN [163] 77.97

PointConv(5-layer) 89.13
PointConv(VGG19) 93.19

2.6 Ablation Experiments and Visualizations

In this section, we conduct additional experiments to evaluate the effectiveness of each

aspect of PointConv. Besides the ablation study on the structure of the PointConv,

we also give an in-depth breakdown on the performance of PointConv on the ScanNet

dataset. Finally, we provide some learned filters for visualization.

2.6.1 The Structure of MLP

In this section, we design experiments to evaluate the choice of MLP parameters in

PointConv. For fast evaluation, we generate a subset from the ScanNet dataset as a

classification task. Each example in the subset is randomly sampled from the original

scene scans with 1,024 points. There are 20 different scene types for the ScanNet dataset.

The reason why we use a subset of ScanNet dataset is we want to avoid fitting the wrong

parameters on a dataset that is too simple such as ModelNet40. The selected dataset

is a realistic 3D point cloud with RGB information. Since the problem is complex

enough, we could imagine parameters that are good enough for other datasets with

similar complexity.

We empirically sweep over different choices of Cmid and different number of layers of the

MLP in PointConv. Each experiment was conducted for 3 random trials. The results

is shown in Figure 2.10. From the results, we find that larger Cmid does not necessarily

give better classification results. And the different number of layers in MLP does not

give much difference in classification results. Since Cmid is linearly correlated with the
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Figure 2.10: Classification accuracy of different choice of Cmid and layers number of
MLP.

memory consumption of each PointConv layer, this results shows that we can choose a

reasonably small Cmid for greater memory efficiency.

2.6.2 Inverse Density Scale

In this section, we study the effectiveness of the inverse density scale S. We choose

ScanNet as our evaluation task since the point clouds in ScanNet are generated from

real indoor scenes. We follow the standard training/validation split provided by the

authors. We train the network with and without the inverse density scale as described

in Sec. 2.3.1, respectively. Table 2.6 shows the results. As we can see, PointConv with

inverse density scale performs better than the one without by about 1%, which proves the

effectiveness of inverse density scale. In our experiments, we observe that inverse density

scale tend to be more effective in layers closer to the input. In deep layers, the MLP

tends to diminish the effect of the density scale. One possible reason is that with farthest

point sampling algorithm as our sub-sampling algorithm, the point cloud in deeper layer

tend to be more uniformly distributed. And as shown in Table 2.6, directly applying

density without using the nonlinear transformation gives worse result comparing with

the one without density on ScanNet dataset, which shows that the nonlinear transform

is able to learn the inverse density scale in the dataset.
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2.6.3 Ablation Studies on ScanNet

As one can see, our PointConv outperforms other approaches with a large margin. Since

we are only allowed to submit one final result of our algorithm to the benchmark server

of ScanNet, we perform more ablation studies for PointConv using the public validation

set provide by [23]. For the segmentation task, we train our PointConv with 8,192 points

randomly sampled from a 3m× 1.5m× 1.5m, and evaluate the model with exhaustively

choose all points in the 3m × 1.5m × 1.5m cube in a sliding window fashion through

the xy-plane with different stride sizes. For robustness, we use a majority vote from 5

windows in all of our experiments. From Table 2.6, we can see that smaller stride size is

able to improve the segmentation results, and the RGB information on ScanNet does not

seem to significantly improve the segmentation results. Even without these additional

improvements, PointConv still outperforms baselines by a large margin.

Table 2.6: Ablation study on ScanNet. With and without RGB information, inverse
density scale and using different stride size of sliding window.

Input Stride Size(m) mIoU mIoU/No Density mIoU/Density(no MLP)

xyz
0.5 61.0 60.3 60.1
1.0 59.0 58.2 57.7
1.5 58.2 56.9 57.3

xyz+RGB
0.5 60.8 58.9 -
1.0 58.6 56.7 -
1.5 57.5 56.1 -

2.6.4 Visualization

Continuous Filters. Figure 2.11 visualizes the learned filters from the MLPs in our

PointConv. In order to better visualize the filters, we sample the learned functions

through a plane z = 0. From the Figure 2.11, we can see some patterns in the learned

continuous filters.

ShapeNet Part Segmentation. We visualize more segmentation results for ShapeNet

part segmentation in Figure 2.12.

ScanNet Semantic Segmentation. We visualize more segmentation results for Scan-
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Figure 2.11: Learned Convolutional Filters. The convolution filters learned by the MLPs
on ShapeNet.For better visualization, we take all weights filters from z = 0 plane.

Figure 2.12: Part segmentation results. For each pair of objects, the left one is the
ground truth, the right one is predicted by PointConv. Best viewed in color.



32

Figure 2.13: Examples of semantic scene labeling. The images from left to right are the
input scenes, the ground truth segmentation, and the prediction from PointConv. For
better visualization, the point clouds are converted into mesh format. Best viewed in
color.

Net semantic segmentation in Figure 2.13, 2.14, and 2.15.

2.7 Conclusion

In this work, we proposed a novel approach to perform convolution operation on 3D

point clouds, called PointConv. PointConv trains multi-layer perceptrons on local point

coordinates to approximate continuous weight and density functions in convolutional

filters, which makes it naturally permutation-invariant and translation-invariant. This

allows deep convolutional networks to be built directly on 3D point clouds. We proposed

an efficient implementation of it which greatly improved its scalability. We demonstrated

its strong performance on multiple challenging benchmarks and capability of matching

the performance of a grid-based convolutional network in 2D images. In future work,

we would like to adopt more mainstream image convolution network architectures into

point cloud data using PointConv, such as ResNet and DenseNet. The code can be found

here: https://github.com/DylanWusee/pointconv.
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Figure 2.14: Examples of semantic scene labeling. The images from left to right are the
input scenes, the ground truth segmentation, and the prediction from PointConv. For
better visualization, the point clouds are converted into mesh format. Best viewed in
color.
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Figure 2.15: Examples of semantic scene labeling. The images from left to right are the
input scenes, the ground truth segmentation, and the prediction from PointConv. For
better visualization, the point clouds are converted into mesh format. Best viewed in
color.



35

Chapter 3: Cost Volume on Point Clouds for (Self-)Supervised

Scene Flow Estimation

3.1 Introduction

Scene flow is the 3D displacement vector between each surface point in two consecutive

frames. As a fundamental tool for low-level understanding of the world, scene flow

can be used in various applications, such as motion segmentation, action recognition,

autonomous driving, etc. Traditionally, scene flow was estimated directly from RGB

data [93, 91, 143, 145]. But recently, due to the increasing application of 3D sensors such

as LiDAR, there is interest on directly estimating scene flow from 3D point clouds.

Fueled by recent advances in 3D deep networks that learn effective feature represen-

tations directly from point cloud data, recent work adopt ideas from 2D deep optical

flow networks to 3D to estimate scene flow from point clouds. FlowNet3D [78] oper-

ates directly on points with PointNet++ [108], and proposes a flow embedding which is

computed in one layer to capture the correlation between two point clouds, and then

propagates it through finer layers to estimate the scene flow. HPLFlowNet [42] com-

putes the correlation jointly from multiple scales utilizing the upsampling operation in

bilateral convolutional layers.

An important piece in deep optical flow estimation networks is the cost volume [61, 162,

127], a 3D tensor that contains matching information between neighboring pixel pairs

from consecutive frames. In this paper, we propose a novel learnable point-based cost

volume where we discretize the cost volume to input point pairs, avoiding the creation

of a dense 4D tensor if we naively extend from the image to point cloud. Then we

apply the efficient PointConv layer [158] on this irregularly discretized cost volume. We

experimentally show that it outperforms previous approaches for associating point cloud

correspondences, as well as the cost volume used in 2D optical flow. We also propose

efficient upsampling and warping layers to implement a coarse-to-fine flow estimation
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Cost Volume; Upsample;
Warping; Scene Flow Predictor.
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Warping; Scene Flow Predictor.

Cost Volume; Upsample;
Warping; Scene Flow Predictor.

(b)

P 𝑄𝑆𝐹

Novel Upsample Layer

Novel Warping Layer Novel Cost Volume Layer

(a)

Scene Flow Predictor

𝐹𝑖𝑛𝑒𝑟 𝐹𝑙𝑜𝑤

𝐶𝑜𝑎𝑟𝑠𝑒 𝐹𝑙𝑜𝑤

Figure 3.1: (a) illustrates how the pyramid features are used by the novel cost vol-
ume, warping, and upsample layers in one level. (b) shows the overview structure of
PointPWC-Net. At each level, PointPWC-Net first warps the features from the first
point cloud using the upsampled scene flow. Then, the cost volume is computed using
the feature from the warped first point cloud and the second point cloud. Finally, the
scene flow predictor predicts finer flow at the current level using features from the first
point cloud, the cost volume, and the upsampled flow. (Best viewed in color)

framework.

As in optical flow, it is difficult and expensive to acquire accurate scene flow labels

for point clouds. Hence, beyond supervised scene flow estimation, we also explore self-

supervised scene flow which does not require human annotations. To our knowledge, our

work is the first to explore deep self-supervised scene flow estimation from point cloud

data. We propose new self-supervised loss terms: Chamfer distance [32], smoothness

constraint and Laplacian regularization. These loss terms enable us to achieve state-of-

the-art performance without any supervision.

We conduct extensive experiments on FlyingThings3D [91] and KITTI Scene Flow

2015 [97, 95] datasets with both supervised loss and the proposed self-supervised losses.

Experiments show that the proposed PointPWC-Net outperforms all the previous meth-

ods with a large margin. The self-supervised version is comparable with some of the

previous supervised methods on FlyingThings3D, such as SPLATFlowNet [123]. On

KITTI where supervision is not available, our self-supervised version achieves better per-

formance than the supervised version trained on FlyingThings3D, far surpassing state-

of-the-art. We also ablate each critical component of PointPWC-Net to understand their

contributions.
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The key contributions of our work are:

• We propose a novel learnable cost volume layer that performs convolution on the cost

volume without creating a dense 4-dimensional tensor.

• We present a novel model, called PointPWC-Net, that estimates scene flow from two

consecutive point clouds in a coarse-to-fine fashion with the help of the novel learnable

cost volume layer.

• We introduce self-supervised losses that can train the PointPWC-Net without any

ground truth label. To our knowledge, we are the first to propose such idea in 3D point

cloud deep scene flow estimation.

• We achieve state-of-the-art performance on FlyingThing3D and KITTI Scene Flow

2015, far surpassing previous state-of-the-art.

3.2 Related Work

Deep Learning on Point Clouds. Deep learning methods on 3D point clouds have

gained more and more attention in the past several years. Some latest work [112, 106,

108, 123, 133, 52, 41, 144, 76] directly take raw point clouds as input. [112, 106, 108]

use a shared multi-layer perceptron (MLP) and max pooling layer to obtain features of

point clouds. SPLATNet [123] projects the input features of the point clouds onto a high-

dimensional lattice, and then apply bilateral convolution on the high-dimensional lattice

to aggregate features. Other work [118, 59, 155, 45, 151, 158] propose to learn continuous

convolutional filter weights as a nonlinear function from 3D point coordinates, approx-

imated with MLP. [45, 158] use a density estimation to compensate the non-uniform

sampling, and [158] significantly improves the memory efficiency by a change of sum-

mation trick, allowing these networks to scale up and achieving comparable capabilities

with 2D convolution.

Optical Flow Estimation. Optical flow estimation is a core computer vision problem

and has many applications. Traditionally, the top performing methods adopt the energy

minimization approach [47] and a coarse-to-fine, warping-based method [8, 12, 11].

Since FlowNet [30], there were many recent breakthroughs using a deep network to learn

optical flow. [56] stacks several FlowNet into a larger one. [111] develops a compact

spatial pyramid network. [127] integrates the widely used traditional pyramid, warping,
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and cost volume technique into CNNs for optical flow, and outperform all the previous

methods with high efficiency. We utilized a basic structure similar to theirs but proposed

novel cost volume, warping and upsample layers appropriate for point clouds.

Scene Flow Estimation. 3D scene flow is first introduced by [143]. Many works [53,

93, 146] estimate scene flow using RGB data. [53] introduces a variational method

to estimate scene flow from stereo sequences. [93] proposes an object-level scene flow

estimation approach and introduces a dataset for 3D scene flow. [146] presents a piecewise

rigid scene model for 3D scene flow estimation.

Recently, there are some works [28, 141, 140] that estimate scene flow directly from

point clouds using classical techniques. [28] introduces a method that formulates the

scene flow estimation problem as an energy minimization problem with assumptions on

local geometric constancy and regularization for motion smoothness. [141] proposes a

real-time four-steps method of constructing occupancy grids, filtering the background,

solving an energy minimization problem, and refining with a filtering framework. [140]

further improves the method in [141] by using an encoding network to learn features

from an occupancy grid.

In some most recent work [151, 78, 42], researchers try to estimate scene flow from point

clouds using deep learning in a end-to-end fashion. [151] uses PCNN to operate on LiDAR

data to estimate LiDAR motion. [78] introduces FlowNet3D based on PointNet++ [108].

FlowNet3D uses a flow embedding layer to encode the motion of point clouds. However, it

requires encoding a large neighborhood in order to capture large motions. [42] presents

HPLFlowNet to estimate the scene flow using Bilateral Convolutional Layers(BCL),

which projects the point cloud onto a permutohedral lattice. [5] estimates scene flow by

using a network that jointly predicts 3D bounding boxes and rigid motions of objects

or background in the scene. Different from [5], we do not require the rigid motion

assumption and segmentation level supervision to estimate scene flow.

Self-supervised Scene Flow. There are several recent works [77, 170, 183, 69] which

jointly estimate multiple tasks, i.e. depth, optical flow, ego-motion and camera pose

without supervision. They take 2D images as input, which have ambiguity when used in

scene flow estimation. In this paper, we investigate self-supervised learning of scene flow

from 3D point clouds with our PointPWC-Net. To the best of our knowledge, we are
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the first to study self-supervised deep learning of scene flow from 3D point clouds.

Traditional Point Cloud Registration. Point cloud registration has been extensively

studied well before deep learning [43, 130]. Most of the work [19, 37, 46, 87, 98, 117, 135]

consist two stages: global alignment followed by local refinement. This only works when

most of the motion in the scene is globally rigid. Many methods are based on the itera-

tive closest point(ICP) [9] and its variants [104]. [180] introduces fast global registration

(FGR) that significantly improves the efficiency of the registration process. However,

real-world point clouds are usually deform in a non-rigid way, which are much more dif-

ficult for registration [130]. Several works [1, 99, 57, 10] deal with non-rigid point cloud

registration. [99] introduces a probabilistic method, called Coherent Point Drift(CPD),

for both rigid and non-rigid point set registration. However, the computation overhead

makes it hard to apply on real world data in real-time. Many algorithms are proposed

to extend the CPD method [84, 100, 81, 181, 35, 85, 33, 2, 34, 83, 82, 70, 132, 115,

25, 80, 174, 148, 171, 109]. In [100], the algorithm uses multiple kernel functions for

motion estimation. [181] replaces Gaussian distribution with the Student′s-t distribu-

tion.In [84], some local structure descriptors[35, 85] are proposed to preserve the local

structure of point sets in registration. Some algorithms require additional information

for point set registration. The work [115, 25] takes the color information along with the

spatial location into account. [1] requires meshes for non-rigid registration. In [109],

the regression and clustering for point set registration in a Bayesian framework are pre-

sented. All the aforementioned work require optimization at inference time, which has

significantly higher computation cost than our method which run in a fraction of a second

for inference.

3.3 PointPWC-Net

To compute optical flow with high accuracy, one of the most important components is

the cost volume. In 2D images, the cost volume can be computed by aggregating the

cost in a square neighborhood on a grid. However, computing cost volume across two

point clouds is difficult since 3D point clouds are unordered with a nonuniform sampling

density. In this section, we introduce a novel learnable cost volume layer, and use it

to construct a deep network with the help of other auxiliary layers that outputs high
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quality scene flow.

3.3.1 The Cost Volume Layer

As one of the key components of optical flow estimation, most state-of-the-art algorithms,

both traditional [126, 113] and modern deep learning based ones [127, 162, 13], use

the cost volume to estimate optical flow. However, computing cost volumes on point

clouds is still an open-problem. There are several works that compute some kind of flow

embedding or correlation between point clouds. It is still hard to construct a real cost

volume in point clouds. One of the most straightforward way of computing cost volume

is computing the feature correlation followed by several CNN layers, as in [127]. This

method is problematic due to the permutation invariance of point clouds. [78] proposes a

flow embedding layer to aggregate feature similarities and spatial relationships to encode

point motions. However, the motion information between points can be lost due to the

max pooling operation in the flow embedding layering. [42] introduces a CorrBCL layer

to compute the correlation between two point clouds, which requires to transfer two

point clouds onto the same permutohedral lattice.

To address these issues, we present a novel learnable cost volume layer that directly

applies onto the features of two point clouds. Suppose fi ∈ Rc is the feature for point

pi ∈ P and gj ∈ Rc the feature for point qj ∈ Q, the matching cost between pi and qj

can be defined as:

Cost(pi, qj) = h(fi, gj , qj , pi) (3.1)

= MLP (concat(fi, gj , qj − pi)) (3.2)

In our network, the feature fi and gj are either the raw coordinates of the point clouds,

or the convolution output from previous layers. The intuition is that, as a universal ap-

proximator, MLP should be able to learn the potentially nonlinear relationship between

the two points. Due to the flexibility of the point cloud, we also add a direction vector

(qj − pi) to the computation besides the point features fi and gj .

Once we have the matching costs, they can be aggregated as a cost volume for predicting
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the movement between two point clouds. In 2D images, aggregating the cost is simply

by applying some convolutional layers as in PWC-Net [127]. However, the traditional

convolutional layers can not be applied directly on point clouds due to the unorderness.

Besides, [78] uses max-pooing to aggregate features in the second point cloud. [42] uses

CorrBCL to aggregate features on a permutohedral lattice. However, their methods

only aggregate costs in a point-to-point manner, which is sensitive to outliers. To obtain

robust and stable cost volumes, in this work, we propose to aggregate costs in a patch-

to-patch manner similar to the cost volumes on 2D images [61, 127].

For a point pc in P , we first find a neighborhood NP (pc) around pc in P . For each point

pi ∈ NP (pc), we find a neighborhood NQ(pi) around pi in Q. The cost volume for pc is

defined as:

CV (pc) =
∑

pi∈NP (pc)

WP (pi, pc)
∑

qj∈NQ(pi)

WQ(qj , pi) h(fi, gj , qj , pi) (3.3)

h(fi, gj , qj , pi) = MLP (concat(fi, gj , qj − pi)) (3.4)

WP (pi, pc) = MLP (pi − pc) (3.5)

WQ(qj , pi) = MLP (qj − pi) (3.6)

Where WP (pi, pc) and WQ(qj , pi) are the convolutional weights w.r.t the direction vectors

that are used to aggregate the costs from the patches in P and Q. It is learned as

a continuous function of the directional vectors (qi − pc) ∈ R3 and (qj − pi) ∈ R3,

respectively with an MLP, similar to PointConv [158] and PCNN [151]. The output

of the cost volume layer is a tensor with shape (n1, D), where n1 is the number of

points in P , and D is the dimension of the cost volume, which encodes all the motion

information for each point. The patch-to-patch idea used in the cost volume is illustrated

in Fig. 3.2.

There are two major differences between this cost volume for scene flow of 3D point

clouds and conventional 2D cost volumes for stereo and optical flow. The first one is

that we introduce a learnable function h(·) = MLP (concat(·)) that can dynamically

learn the cost or correlation within the point cloud structures. Ablation studies in

Sec.3.5.3 show that this novel learnable design achieve better results than traditional

cost volume [127] in scene flow estimation. The second one is that this cost volume is



42

𝑝

𝑁 (𝑝 )
𝑁 (𝑝 )

𝑃𝑜𝑖𝑛𝑡 𝐶𝑙𝑜𝑢𝑑 𝑃

𝑃𝑜𝑖𝑛𝑡 𝐶𝑙𝑜𝑢𝑑 𝑄𝑞 − 𝑝

𝑝 − 𝑝

: 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 − 𝑤𝑖𝑠𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝐹 : 𝑁 × 𝐶

𝐹 : 𝑁 × 𝐶

𝑃: 𝑁 × 3

𝑄: 𝑁 × 3

𝑁
(𝑝

)

𝑐𝑜𝑛𝑐𝑎𝑡 𝑓 , 𝑔 , 𝑞 − 𝑝 :

𝑁 × 𝐾 × (2𝐶 + 3)

𝑞 − 𝑝 :

𝑁 × 𝐾 × 3 𝑀
𝐿

𝑃

𝑀
𝐿

𝑃 ℎ 𝑓 , 𝑔 , 𝑞 , 𝑝 :

𝑁 × 𝐾 × 𝐷

𝑊 𝑞 , 𝑝 :

𝑁 × 𝐾 × 𝐷

𝑃𝑜𝑖𝑛𝑡-𝑡𝑜-𝑃𝑎𝑡𝑐ℎ
𝐶𝑜𝑠𝑡:
𝑁 × 𝐷

𝑠𝑢𝑚

𝑁
(𝑝

)

𝑀
𝐿

𝑃 𝑊 𝑝 , 𝑝 :
𝑁 × 𝐾 × 𝐷

𝑃𝑎𝑡𝑐ℎ-𝑡𝑜-𝑃𝑎𝑡𝑐ℎ
𝐶𝑜𝑠𝑡 𝑉𝑜𝑙𝑢𝑚𝑒:

𝑁 × 𝐷

𝑠𝑢𝑚

𝑝 − 𝑝 :
𝑁 × 𝐾 × 3

𝑁 × 𝐾 × 𝐷

a  Grouping 𝑏  Cost Volume Layer

Figure 3.2: (a) Grouping. For a point pc, we form its K-NN neighborhoods in each
point cloud as NP (pc) and NQ(pc) for cost volume aggregation. We first aggregate the
cost from the patch NQ(pc) in point cloud Q. Then, we aggregate the cost from patch
NP (pc) in the point cloud P . (b) Cost Volume Layer. The features of neighboring points
in NQ(pc) are concatenated with the direction vector (qi − pc) to learn a point-to-patch
cost between pc and Q with PointConv. Then the point-to-patch costs in NP (pc) are
further aggregated with PointConv to construct a patch-to-patch Cost Volume

discretized irregularly on the two input point clouds and their costs are aggregated with

point-based convolution. Previously, in order to compute the cost volume for optical

flow in a d× d area on a W ×H 2D image, all the values in a d2 ×W ×H tensor needs

to be populated, which is already slow to compute in 2D, but would be prohibitively

costly in the 3D space. With (volumetric) 3D convolution, one needs to search a d3

area to get a cost volume in 3D space. Our cost volume discretizes on input points and

avoids this costly operation, while essentially creating the same capabilities to perform

convolutions on the cost volume. With the proposed cost volume layer, we only need

to find two neighborhoods NP (pc) and NQ(pi) of size K, which is much cheaper and

does not depend on the number of points in a point cloud. In our experiments, we fix

|NP (pc)| = |NQ(pi)| = 16. If a larger neighborhood is needed, we could subsample the

neighborhood which would bring it back to the same speed. This subsampling operation

is only applicable to the sparse point cloud convolution and not possible for conventional

volumetric convolutions. We anticipate this novel cost volume layer to be widely useful

beyond scene flow estimation. Table 3.2 shows that it is better than [78]’s MLP+Maxpool

strategy.
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3.3.2 Building Blocks of PointPWC-Net

Given the proposed learnable cost volume layer, it would be interesting to construct a

deep network for scene flow estimation. As demonstrated in 2D optical flow estimation,

one of the most effective methods for dense estimation is the coarse-to-fine structure. In

this section, we introduce some novel auxiliary layers for point clouds that construct a

coarse-to-fine network for scene flow estimation along with the proposed learnable cost

volume layer. The network is called “PointPWC-Net” following [127].

As shown in Fig.3.1, PointPWC-Net predicts dense scene flow in a coarse-to-fine fashion.

The input to PointPWC-Net is two consecutive point clouds, P = {pi ∈ R3}n1
i=1 with

n1 points, and Q = {qj ∈ R3}n2
j=1 with n2 points. We first construct a feature pyramid

for each point cloud. Afterwards, we build a cost volume using features from both

point clouds at each layer. Then, we use the feature from P , the cost volume, and the

upsampled flow to estimate the finer scene flow. We take the predicted scene flow as the

coarse flow, upsample it to a finer flow, and warp points from P onto Q. Note that both

the upsampling and the warping layers are efficient with no learnable parameters.

Feature Pyramid from Point Cloud. To estimate scene flow with high accuracy,

we need to extract strong features from the input point clouds. We generate a L-level

pyramid of feature representations, with the top level being the input point clouds, i.e.,

l0 = P/Q. For each level l, we use furthest point sampling [108] to downsample the points

by factor of 4 from previous level l− 1, and use PointConv [158] to perform convolution

on the features from level l − 1. As a result, we can generate a feature pyramid with L

levels for each input point cloud. After this, we enlarge the receptive field at level l of

the pyramid by upsampling the feature in level l + 1 and concatenate it to the feature

at level l. Fig.3.3 shows the architecture for feature pyramid network.

Upsampling Layer. The upsampling layer can propagate the scene flow estimated

from a coarse layer to a finer layer. We use a distance based interpolation to upsample

the coarse flow. Let P l be the point cloud at level l, SF l be the estimated scene flow at

level l, and pl−1 be the point cloud at level l − 1. For each point pl−1
i in the finer level

point cloud P l−1, we can find its K nearest neighbors N(pl−1
i ) in its coarser level point

cloud P l. The interpolated scene flow of finer level SF l−1 is computed using inverse

distance weighted interpolation:
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𝑃: 8192 × 3

1 × 1 𝐶𝑜𝑛𝑣, 32

1 × 1 𝐶𝑜𝑛𝑣, 32

1 × 1 𝐶𝑜𝑛𝑣, 128
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𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒

1 × 1 𝐶𝑜𝑛𝑣, 256
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𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣, 256

𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣, 128

1 × 1𝐶𝑜𝑛𝑣, 64

𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣, 256

1 × 1 𝐶𝑜𝑛𝑣, 64
𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒

1 × 1𝐶𝑜𝑛𝑣, 32

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒

1 × 1𝐶𝑜𝑛𝑣, 32

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒

1 × 1𝐶𝑜𝑛𝑣, 64

𝑐𝑎𝑡

𝑐𝑎𝑡

𝑐𝑎𝑡

𝑐𝑎𝑡

𝐿𝑒𝑣𝑒𝑙 0,
𝑁 = 8192

𝐿𝑒𝑣𝑒𝑙 1,
𝑁 = 2048

𝐿𝑒𝑣𝑒𝑙 2,
𝑁 = 512

𝐿𝑒𝑣𝑒𝑙 3,
𝑁 = 128

𝐹𝑒𝑎𝑡 : 8192 × 64

𝐹𝑒𝑎𝑡 : 2048 × 96

𝐹𝑒𝑎𝑡 : 512 × 192

𝐹𝑒𝑎𝑡 : 128 × 320

𝑐𝑎𝑡 : 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒

Figure 3.3: Feature Pyramid Network. The first point cloud and the second point cloud
are encoded using the same network with shared weights. For each point cloud, we
use PointConv [158] to convolve and downsample by factor of 4. The 1 × 1Convs are
used to increase the representation power and efficiency. The final feature of level l is
concatenated with the upsampled feature from level l+ 1, which contains feature with a
larger receptive field.
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SF l−1(pi) =

∑k
j=1w(pl−1

i , plj)SF
l(plj)∑k

j=1w(pl−1
i , plj)

(3.7)

where w(pl−1
i , plj) = 1/d(pl−1

i , plj), p
l−1
i ∈ P l−1, and plj ∈ N(pl−1

i ). d(pl−1
i , plj) is a distance

metric. We use Euclidean distance in this work.

Warping Layer. Warping would “apply” the computed flow so that only the residual

flow needs to be estimated afterwards, hence the search radius can be smaller when

constructing the cost volume. In our network, we first up-sample the scene flow from

the previous coarser level and then warp it before computing the cost volume. Denote

the upsampled scene flow as SF = {sfi ∈ R3}n1
i=1, and the warped point cloud as

Pw = {pw,i ∈ R3}n1
i=1. The warping layer is simply an element-wise addition between

the upsampled and computed scene flow Pw = {pw,i = pi + sfi|pi ∈ P, sfi ∈ SF}n1
i=1. A

similar warping operation is used for visualization to compare the estimated flow with

the ground truth in [78, 42], but not used in coarse-to-fine estimation. [42] uses an offset

strategy to reduce search radius which is specific to the permutohedral lattice.

Scene Flow Predictor. In order to obtain a flow estimate at each level, a convolutional

scene flow predictor is built as multiple layers of PointConv and MLP. The inputs of the

flow predictor are the cost volume, the feature of the first point cloud, the up-sampled

flow from previous layer and the up-sampled feature of the second last layer from previous

level’s scene flow predictor, which we call the predictor feature. The intuition of adding

predictor feature from coarse level is that predictor feature encodes all the information

needed to predict scene flow at coarse level. By adding that, we might be able to correct

a prediction with large error and improve robustness. The output is the scene flow

SF = {sfi ∈ R3}n1
i=1 of the first point cloud P . The first several PointConv layers are

used to merge the feature locally, and the following MLP is used to estimate the scene

flow on each point. We keep the flow predictor structure at different levels the same, but

the parameters are not shared. Fig.3.4 shows the scene flow predictor network.
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𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣, 128

1 × 1 𝐶𝑜𝑛𝑣, 128

1 × 1 𝐶𝑜𝑛𝑣, 64

1 × 1 𝐶𝑜𝑛𝑣, 3

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 : 𝑁 × 𝐶 𝐶𝑜𝑠𝑡 𝑉𝑜𝑙𝑢𝑚𝑒: 𝑁 × 𝐷

𝑁 × 3 𝑁 × 64

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 : 𝑁 × 64

𝑆𝑐𝑒𝑛𝑒 𝐹𝑙𝑜𝑤 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 
𝑎𝑡 𝐿𝑒𝑣𝑒𝑙 𝑙 + 1

𝐹𝑙𝑜𝑤 : 𝑁/4 × 3 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 : 𝑁/4 × 64

𝐹𝑙𝑜𝑤 : 𝑁 × 3

𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒

𝑆𝑐𝑒𝑛𝑒 𝐹𝑙𝑜𝑤 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 
𝑎𝑡 𝐿𝑒𝑣𝑒𝑙 𝑙

Figure 3.4: Scene Flow Predictor. The scene flow predictor takes the feature from the
first point cloud, the cost volume, the upsampled flow from previous layer, and the
upsampled feature of the second last layer from previous level’s scene flow predictor as
input. The output is the estimated flow in current level and the feature in the second
last layer.
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3.4 Training Loss Functions

In this section, we introduce two loss functions to train PointPWC-Net for scene flow

estimation. One is the standard multi-scale supervised training loss, which has been

explored in deep optical flow estimation [127] in 2D images. We use this supervised

loss to train the model for fair comparison with previous scene flow estimation works,

including FlowNet3D [78] and HPLFlowNet [42]. Due to that acquiring dense labeled

3D scene flow dataset is extremely hard, we also propose a novel self-supervised loss to

train our PointPWC-Net without any supervision.

3.4.1 Supervised Loss

We adopt the multi-scale loss function in FlowNet [30] and PWC-Net [127] as a super-

vised learning loss to demonstrate the effectiveness of the network structure and the

design choice. Let SF l
GT be the ground truth flow at the l-th level. The multi-scale

training loss ℓ(Θ) =
∑L

l=l0
αl

∑
p∈P

∥∥SF l
Θ(p)− SF l

GT (p)
∥∥
2

is used where ∥·∥2 computes

the L2-norm, αl is the weight for each pyramid level l, and Θ is the set of all the learnable

parameters in our PointPWC-Net, including the feature extractor, cost volume layer and

scene flow predictor at different pyramid levels. Note that the flow loss is not squared

as in [127] for robustness.

3.4.2 Self-supervised Loss

Obtaining the ground truth scene flow for 3D point clouds is difficult and there are not

many publicly available datasets for scene flow learning from point clouds. Hence it would

be interesting to investigate a self-supervised deep learning approach for scene flow from

3D point clouds. In this section, we propose a self-supervised learning objective function

to learn the scene flow in 3D point clouds without supervision. Our loss function contains

three parts: Chamfer distance, Smoothness constraint, and Laplacian regularization [150,

121]. To the best of our knowledge, we are the first to study self-supervised deep learning

of scene flow estimation from 3D point clouds.

Chamfer Distance. The goal of using Chamfer loss is to estimate a scene flow by

moving the first point cloud as close as the second one. Let SF l
Θ be the scene flow
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predicted at level l. Let P l
w be the point cloud warped from the first point cloud P l

according to SF l
Θ in level l, Ql be the second point cloud at level l. Let plw and ql be

points in P l
w and Ql. The Chamfer loss ℓlC can be written as:

P l
w = P l + SF l

Θ (3.8)

ℓlC(P l
w, Q

l) =
∑

plw∈P l
w

min
ql∈Ql

∥∥∥plw − ql∥∥∥2
2

+
∑
ql∈Ql

min
plw∈P l

w

∥∥∥plw − ql∥∥∥2
2

Smoothness Constraint. In order to enforce local spatial smoothness, we add a

smoothness constraint ℓlS , which assumes that the predicted scene flow SF l
Θ(plj) in a

local region N(pli) of pli should be similar to the scene flow at pli:

ℓlS(SF l) =
∑
pli∈P l

1

|N(pli)|
∑

plj∈N(pli)

∥∥∥SF l(plj)− SF l(pli)
∥∥∥2
2

(3.9)

where |N(pli)| is the number of points in the local region N(pli).

Laplacian Regularization. Because the points in a point cloud are only on the surface

of a object, their Laplacian coordinate vector approximates the local shape character-

istics of the surface, including the normal direction and the mean curvature [121]. The

Laplacian coordinate vector δl(pli) can be computed as:

δl(pli) =
1

|N(pli)|
∑

plj∈N(pli)

(plj − pli) (3.10)

For scene flow, the warped point cloud P l
w should have the same Laplacian coordinate

vector with the second point cloud Ql at the same position. Since there is no correspon-

dences between the points in P l
w and Ql, we firstly compute the Laplacian coordinates

δl(pli) for each point in second point cloud Ql. Then, we interpolate the Laplacian co-

ordinate of Ql to obtain the Laplacian coordinate on each point plw. We use an inverse

distance-based interpolation method similar to Eq.(3.7) to interpolate the Laplacian co-

ordinate δl. Let δl(plw) be the Laplacian coordinate of point plw at level l, δl(qlinter) be

the interpolated Laplacian coordinate from Ql at the same position as plw.
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The Laplacian regularization ℓlL is defined as:

ℓlL(δl(plw), δl(qlinter)) =
∑

plw∈P l
w

∥∥∥δl(plw)− δl(qlinter)
∥∥∥2
2

(3.11)

The overall loss is a weighted sum of all losses across all pyramid levels as:

ℓ(Θ) =
L∑

l=l0

αl(β1ℓ
l
C + β2ℓ

l
S + β3ℓ

l
L) (3.12)

Where αl is the factor for pyramid level l, β1, β2, β3 are the scale factors for each loss

respectively. With the self-supervised loss, our model is able to learn the scene flow from

3D point cloud pairs without any ground truth supervision.

3.5 Experiments

In this section, we train and evaluate our PointPWC-Net on the FlyingThings3D dataset [91]

with the supervised loss and the self-supervised loss, respectively. Then, we evaluate the

generalization ability of our model by first applying the model on the real-world KITTI

Scene Flow dataset [97, 95] without any fine-tuning. Then, with the proposed self-

supervised losses, we further fine-tune our pre-trained model on KITTI dataset to study

the best performance we could obtain without supervision. Besides, we also compare

the runtime of our model with previous work. Finally, we conduct ablation studies to

analyze the contribution of each part of the model and the loss function.

Implementation Details. We build a 4-level feature pyramid from the input point

cloud. The weights α are set to be α0 = 0.02, α1 = 0.04, α2 = 0.08, and α3 = 0.16, with

weight decay 0.0001.The scale factor β in self-supervised learning are set to be β1 = 1.0,

β2 = 1.0, and β3 = 0.3. We train our model starting from a learning rate of 0.001 and

reducing by half every 80 epochs. All the hyperparameters are set using the validation

set of FlyingThings3D with 8,192 points in each input point cloud.

Evaluation Metrics. For fair comparison, we adopt the evaluation metrics that are

used in [42]. Let SFΘ denote the predicted scene flow, and SFGT be the ground truth

scene flow. The evaluate metrics are computed as follows:
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Table 3.1: Evaluation results on FlyingThings3D and KITTI dataset. Self means self-
supervised, Full means fully-supervised. All approaches are (at least) trained on Fly-
ingThings3D. On KITTI, Self and Full refer to the respective models trained on Fly-
ingThings3D that is directly evaluated on KITTI, while Self+Self means the model is
firstly trained on FlyingThings3D with self-supervision, then fine-tuned on KITTI with
self-supervision as well. Full+Self means the model is trained with full supervision on
FlyingThings3D, then fine-tuned on KITTI with self-supervision. ICP [9], FGR [180],
and CPD [99] are traditional method that does not require training. Our model outper-
forms all baselines by a large margin on all metrics

Dataset Method Sup. EPE3D(m)↓ Acc3DS↑ Acc3DR↑ Outliers3D↓ EPE2D(px )↓ Acc2D↑

Flyingthings3D

ICP(rigid) [9] Self 0.4062 0.1614 0.3038 0.8796 23.2280 0.2913
FGR(rigid) [180] Self 0.4016 0.1291 0.3461 0.8755 28.5165 0.3037
CPD(non-rigid) [99] Self 0.4887 0.0538 0.1694 0.9063 26.2015 0.0966
PointPWC-Net Self 0.1213 0.3239 0.6742 0.6878 6.5493 0.4756

FlowNet3D [78] Full 0.1136 0.4125 0.7706 0.6016 5.9740 0.5692
SPLATFlowNet [123] Full 0.1205 0.4197 0.7180 0.6187 6.9759 0.5512
original BCL [42] Full 0.1111 0.4279 0.7551 0.6054 6.3027 0.5669
HPLFlowNet [42] Full 0.0804 0.6144 0.8555 0.4287 4.6723 0.6764
PointPWC-Net Full 0.0588 0.7379 0.9276 0.3424 3.2390 0.7994

KITTI

ICP(rigid) [9] Self 0.5181 0.0669 0.1667 0.8712 27.6752 0.1056
FGR(rigid) [180] Self 0.4835 0.1331 0.2851 0.7761 18.7464 0.2876
CPD(non-rigid) [99] Self 0.4144 0.2058 0.4001 0.7146 27.0583 0.1980
PointPWC-Net(w/o ft) Self 0.2549 0.2379 0.4957 0.6863 8.9439 0.3299
PointPWC-Net(w/ ft) Self + Self 0.0461 0.7951 0.9538 0.2275 2.0417 0.8645

FlowNet3D [78] Full 0.1767 0.3738 0.6677 0.5271 7.2141 0.5093
SPLATFlowNet [123] Full 0.1988 0.2174 0.5391 0.6575 8.2306 0.4189
original BCL [42] Full 0.1729 0.2516 0.6011 0.6215 7.3476 0.4411
HPLFlowNet [42] Full 0.1169 0.4783 0.7776 0.4103 4.8055 0.5938
PointPWC-Net(w/o ft) Full 0.0694 0.7281 0.8884 0.2648 3.0062 0.7673
PointPWC-Net(w/ ft) Full + Self 0.0430 0.8175 0.9680 0.2072 1.9022 0.8669

• EPE3D(m): ∥SFΘ − SFGT ∥2 averaged over each point in meters.

• Acc3DS : the percentage of points with EPE3D < 0.05m or relative error < 5%.

• Acc3DR: the percentage of points with EPE3D < 0.1m or relative error < 10%.

•Outliers3D : the percentage of points with EPE3D> 0.3m or relative error> 10%.

• EPE2D(px): 2D end point error obtained by projecting point clouds back to the image

plane.

• Acc2D : the percentage of points whose EPE2D < 3px or relative error < 5%.
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(a) PC1 and PC2 (b) GT

(d) CPD(non-rigid)

(c) FGR(rigid)

(e) PointPWC-Net(𝐹𝑢𝑙𝑙) (f) PointPWC-Net(𝑆𝑒𝑙𝑓)

Figure 3.5: Results on FlyingThings3D dataset. In (a), 2 point clouds PC1 and PC2
are presented in Magenta and Green, respectively. In (b-f), PC1 is warped to PC2
based on the (computed) scene flow. (b) shows the ground truth; (c) Results from
FGR(rigid) [180]; (d) Results from CPD(non-rigid) [99]; (e) Results from PointPWC-
Net(Full); (f) Results from PointPWC-Net(Self ). Red ellipses indicate locations with
significant non-rigid motion. Enlarge images for better view. (Best viewed in color)

3.5.1 Supervised Learning

First we conduct experiments with supervised loss. To our knowledge, there is no publicly

available large-scale real-world dataset that has scene flow ground truth from point clouds

(The input to the KITTI scene flow benchmark is 2D), thus we train our PointPWC-Net

on the synthetic Flyingthings3D dataset, following [42]. Then, the pre-trained model is

directly evaluated on KITTI Scene Flow 2015 dataset without any fine-tuning.

Train and Evaluate on FlyingThings3D. The FlyingThings3D training dataset in-

cludes 19,640 pairs of point clouds, and the evaluation dataset includes 3,824 pairs of

point clouds. Our model takes n = 8, 192 points in each point cloud. We first train the

model with 1
4 of the training set(4,910 pairs), and then fine-tune it on the whole training

set, to speed up training.
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Table 3.1 shows the quantitative evaluation results on the Flyingthings3D dataset. Our

method outperforms all the methods on all metrics by a large margin. Compared to

FlowNet3D, our cost volume layer is able to capture the motion information better.

Comparing to SPLATFlowNet, original BCL, and HPLFlowNet, our method avoids the

preprocessing step of building a permutohedral lattice from the input. Besides, our

method outperforms HPLFlowNet on EPE3D by 26 .9%. And, we are the only method

with EPE2D under 4px, which improves over HPLFlowNet by 30 .7%. See Fig.3.5(e)

for example results.

Evaluate on KITTI w/o Fine-tune. To study the generalization ability of our

PointPWC-Net, we directly take the model trained using FlyingThings3D and evaluate

it on KITTI Scene Flow 2015 [95, 97] without any fine-tuning. KITTI Scene Flow 2015

consists of 200 training scenes and 200 test scenes. To evaluate our PointPWC-Net, we

use ground truth labels and trace raw point clouds associated with the frames, following

[78, 42]. Since no point clouds and ground truth are provided on test set, we evaluate on

all 142 scenes in the training set with available point clouds. We remove ground points

with height < 0.3m following [42] for fair comparison with previous methods.

From Table 3.1, our PointPWC-Net outperforms all the state-of-the-art methods, which

demonstrates the generalization ability of our model. For EPE3D, our model is the only

one below 10cm, which improves over HPLFlowNet by 40 .6%. For Acc3DS, our method

outperforms both FlowNet3D and HPLFlowNet by 35 .4% and 25 .0% respectively. See

Fig.3.6(e) for example results.

3.5.2 Self-supervised Learning

Acquiring or annotating dense scene flow from real-world 3D point clouds is very ex-

pensive, so it would be interesting to evaluate the performance of our self-supervised

approach. We train our model using the same procedure as in supervised learning, i.e.

first train the model with one quarter of the training dataset, then fine-tune with the

whole training set. Table 3.1 gives the quantitative results on PointPWC-Net with self-

supervised learning. We compare our method with ICP(rigid) [9], FGR(rigid) [180] and

CPD(non-rigid) [99]. Because traditional point registration methods are not trained with

ground truth, we can view them as self/un-supervised methods.
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(a) PC1 and PC2 (b) GT

(d) CPD(non-rigid)

(c) FGR(rigid)

(e) PointPWC-Net(𝑤/𝑜 𝑓𝑡+ 𝐹𝑢𝑙𝑙) (f) PointPWC-Net(𝑤/ 𝑓𝑡+ 𝑆𝑒𝑙𝑓 + 𝑆𝑒𝑙𝑓)

Figure 3.6: Results on KITTI Scene Flow 2015 dataset. In (a), 2 point clouds PC1
and PC2 are presented in Magenta and Green, respectively. In (b-f), PC1 is warped to
PC2 based on the (computed) scene flow. (b) shows the ground truth; (c) Results from
FGR(rigid) [180]; (d) Results from CPD(non-rigid) [99]; (e) Results from PointPWC-
Net(w/o ft+Full) that is trained with supervision on FlyingThings3D, and directly eval-
uate on KITTI without any fine-tune; (f) Results from PointPWC-Net(w/ ft + Self +
Self ) which is trained on FlyingThings3D and fine-tuned on KITTI using the proposed
self-supervised loss. Red ellipses indicate locations with significant non-rigid motion.
Enlarge images for better view. (Best viewed in color)

Train and Evaluate on FlyingThings3D. We can see that our PointPWC-Net out-

performs the traditional methods on all the metrics with a large margin. See Fig.3.5(f)

for example results.

Evaluate on KITTI w/o Fine-tuning. Even only trained on FlyingThings3D with-

out ground truth labels, our method can obtain 0 .2549m on EPE3D on KITTI, which

improves over CPD(non-rigid) by 38 .5%, FGR(rigid) by 47 .3%, and ICP(rigid) by

50 .8%.

Fine-tune on KITTI. With proposed self-supervised loss, we are able to fine-tune the

FlyingThings3D trained models on KITTI without using any ground truth. In Table 3.1,

the row PointPWC-Net(w/ ft) Full+Self and PointPWC-Net(w/ ft) Self+Self show the

results. Full+Self means the model is trained with supervision on FlyingThings3D, then
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Table 3.2: Model design. A learnable cost volume preforms much better than traditional
cost volume used in PWC-Net [127]. Using our cost volume instead of the MLP+Maxpool
used in FlowNet3D’s flow embedding layer improves performance by 20.6%. Compared
to no warping, the warping layer improves the performance by 40.2%

Component Status EPE3D(m)↓

Cost Volume
PWC-Net [127] 0.0821

MLP+Maxpool(learnable) [78] 0.0741
Ours(learnable) 0.0588

Warping Layer
w/o 0.0984
w 0.0588

fine-tuned on KITTI without supervision. Self+Self means the model is firstly trained

on FlyingThings3D, then fine-tuned on KITTI both using self-supervised loss. With

KITTI fine-tuning, our PointPWC-Net can achieve EPE3D < 5cm. Especially, our

PointPWC-Net(w/ ft) Self+Self, which is fully trained without any ground truth infor-

mation, achieves similar performance on KITTI as the one that utilized FlyingThings3D

ground truth. See Fig.3.6(f) for example results.

3.5.3 Ablation Study and Visualization

Ablation Study. We further conduct ablation studies on model design choices and

the self-supervised loss function. On model design, we evaluate the different choices of

cost volume layer and removing the warping layer. On the loss function, we investigate

removing the smoothness constraint and Laplacian regularization in the self-supervised

learning loss. All models in the ablation studies are trained using FlyingThings3D, and

tested on the FlyingThings3D evaluation dataset.

Tables 3.2, 3.3 show the results of the ablation studies. In Table 3.2 we can see that

our design of the cost volume obtains significantly better results than the cost volume in

PWC-Net [127] and FlowNet3D [78], and the warping layer is crucial for performance.

In Table 3.3, we see that both the smoothness constraint and Laplacian regularization

improve the performance in self-supervised learning. In Table 3.4, we report the runtime

of our PointPWC-Net, which is comparable with other deep learning based methods and
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Table 3.3: Loss functions. The Cham-
fer loss is not enough to estimate a good
scene flow. With the smoothness con-
straint, the scene flow result improves by
38.2%. Laplacian regularization also im-
proves slightly

Chamfer Smoothness Laplacian EPE3D(m)↓

✓ - - 0.2112
✓ ✓ - 0.1304
✓ ✓ ✓ 0.1213

Table 3.4: Runtime. Average run-
time(ms) on Flyingthings3D. The runtime
for FlowNet3D and HPLFlowNet is re-
ported from [42] on a single Titan V.
The runtime for our PointPWC-Net is re-
ported on a single 1080Ti

Method Runtime(ms)↓

FlowNet3D [78] 130.8
HPLFlowNet [42] 98.4
PointPWC-Net 117.4

much faster than traditional ones.

Visualization. Fig.3.7 provide more visualization on KITTI dataset of scene flow re-

sults by PointPWC-Net. In Fig.3.7, the model is trained with self-supervised loss on

FlyingThings3D [91], and directly tested on KITTI Scene Flow 2015 [97, 95] without

any finetune. From Fig.3.7, we can see that our model can recover scene flow not only

for the rigid objects, such as cars, but also for the non-rigid objects, such as bushes,

trees, etc.

Typical Error Types. We summaries three typical error types of our PointPWC-Net

for KITTI dataset. To visualize errors, we use blue, green and red to represent the first

point cloud, the warped points which are correctly predicted, and the wrongly predicted

points, respectively, as shown in Fig. 3.8. The first error type is when the object is a

straight line or a plane. In this case, it is hard for the network to construct a cost volume

with strong discernment, as shown in Fig.3.8 A and C. The second one is that it is hard

to find good correspondences between consecutive frames due to the strong deformation

of local shapes, as shown in Fig.3.8 B. The third case is that the ground points are not

removed properly, as shown in Fig.3.8 D. By using a better ground removal strategy,

we can further improve our results.
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PC1 and PC2 GT PointPWC-Net

Figure 3.7: Scene Flow Results on KITTI Scene Flow 2015. In (a), 2 point clouds PC1
and PC2 are presented in Magenta and Green, respectively. In (b) and (c), PC1 is
warped to PC2 based on the (computed) scene flow. (b) shows the ground truth; (c)
Results from PointPWC-Net that is trained with supervision on FlyingThings3D, and
directly evaluate on KITTI without any fine-tune. Enlarge images for better view. (Best
viewed in color)
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A B

C

D

Figure 3.8: Typical error types for KITTI. The blue points are from the first point cloud
P . The green points are the warped points Pw = P + SF according to the correctly
predicted flow. The “correctness” is measured by Acc3DR. The red points are wrongly
predicted. A and C are the ambiguity in 3D point clouds, which are straight lines or
plane walls. B is the messy bushes, whose features do not have strong correspondences.
D is the case when the ground points are not removed cleanly.
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3.6 Conclusion

To better estimate scene flow directly from 3D point clouds, we proposed a novel learnable

cost volume layer along with some auxiliary layers to build a coarse-to-fine deep network,

called PointPWC-Net. Because of the fact that real-world ground truth scene flow is

hard to acquire, we introduce a loss function that train the PointPWC-Net without

supervision. Experiments on the FlyingThings3D and KITTI datasets demonstrates

the effectiveness of our PointPWC-Net and the self-supervised loss function, obtaining

state-of-the-art results that outperform prior work by a large margin.
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Chapter 4: PointConvFormer

4.1 Introduction

Sensors for indoor and outdoor 3D scanning have significantly improved in the last

decade, in terms of both performance and affordability. Hence, their common output

data format, 3D point clouds, has drawn significant attention from academia and in-

dustry in recent years. Understanding the 3D real world from 3D point clouds can be

applied to many application domains, such as robotics, autonomous driving, CAD, and

AR/VR. However, unlike image pixels arranged in regular grids, 3D points are unstruc-

tured which makes applying classic grid based Convolutional Neural Networks (CNNs)

very difficult.

Various approaches have been proposed in response to this challenge. [124, 71, 15, 60, 67]

introduce interesting ways to project a 3D point cloud back to 2D image space to ap-

ply 2D convolution. These approaches relies heavily on the choice of projection planes,

and have challenges to handle occlusions in the 3D space [177]. Another line of re-

search directly voxelizes 3D space and apply 3D discrete convolution. These methods

induce massive computation and memory overhead [89, 120]. Sparse convolution opera-

tions [39, 20] partially relieve the limitations, however, doesn’t adapt well to the sampling

density of the point cloud, reducing their efficiency. Some approaches directly operate on

point clouds without discretizing into grids [106, 108, 123, 136, 158, 75]. [106, 108] are

pioneers which aggregate information on point clouds using max-pooling layers. Others

proposed reordering the input points with a learned transformation [76], a flexible point

kernel [136], and a convolutional operation that directly work on point clouds [151, 158]

by utilizing a multi-layer perceptron (MLP) to learn the convolution weights implicitly

as a nonlinear transformation from the relative positions of the local neighbourhood. De-

spite these efforts, state-of-the-art often employs a fusion between voxel and point-based

methods, complicating the model and reducing efficiency.

Recently, researchers have introduced visual transformers to 3D point clouds process-
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* 𝐶𝑜𝑛𝑣 𝑜𝑢𝑡

𝐶𝑜𝑛𝑣 𝑘𝑒𝑟𝑛𝑒𝑙

𝑅𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑐𝑜𝑟𝑒

Figure 4.1: PointConvFormer can be seen as a point convolution, but modulated by an
attention weight for each point in the neighborhood, computed from the differences of
current layer features between neighboring points

ing, inspired by the success in NLP and image analysis [177, 102]. The self-attention

mechanism has also been adapated for point clouds processing [177]. However, so far,

transformers have not shown to significantly outperform convolutional approaches on

point clouds. Both convolution and attention aim to conduct feature aggregation in

neighborhoods with high feature correlations. The advantage of convolution is that

its translation-invariance usually offers good generalization power. However, attention

weights can help locate points that are more correlated with each other.

In this work, we propose PointConvFormer, an operation that uses attention weights to

modulate a convolution operation, essentially selecting relevant points to perform con-

volution, with the hope to get the best of both worlds. We also experiment with the

multi-head mechanism commonly used in transformers.We evaluate PointConvFormer

on two point cloud tasks, semantic segmentation and scene flow estimation. For se-

mantic segmentation, experiment results on the indoor ScanNet [23] and the outdoor

SemanticKitti [7] demonstrate superior performances over classic convolution and trans-

formers with a more compact network. We also apply PointConvFormer as the backbone

of PointPWC-Net [159] for scene flow estimation, and observe significant improvements

on FlyingThings3D [90] and KITTI scene flow 2015 [96] datasets. We include ablation

studies which explores the design space of PointConvFormer.

To summarize the main contributions:

• We introduce PointConvFormer which modifies convolution by an attention weight

computed from the differences of local neighbourhood features. We further extend
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𝑎 𝐼𝑛𝑑𝑜𝑜𝑟 𝑆𝑐𝑒𝑛𝑒 𝑆𝑒𝑔𝑚𝑎𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑐 𝑆𝑐𝑒𝑛𝑒 𝐹𝑙𝑜𝑤 𝑓𝑟𝑜𝑚 𝑃𝑜𝑖𝑛𝑡 𝐶𝑙𝑜𝑢𝑑𝑠𝑏 𝑂𝑢𝑡𝑑𝑜𝑜𝑟 𝑆𝑐𝑒𝑛𝑒 𝑆𝑒𝑔𝑚𝑎𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Figure 4.2: Applications of PointConvFormer. PointConvFormer can serve as the back-
bone for various 3D scene understanding tasks, such as semantic segmentation for in-
door/outdoor scenes, and scene flow estimation from point clouds

the PointConvFormer with a multi-head mechanism.

• We conduct thorough experiments on semantic segmentation tasks for both indoor

and outdoor scenes, as well as scene flow estimation from 3D point clouds on

multiple datasets. Extensive ablation studies are conducted to study the properties

and design choice of PointConvFormer.

4.2 Related Work

We examine related work on voxel-based networks, point-based networks, and recent

point transformer work for 3D scene understanding. We also review dynamic filtering

for 2D images.

Voxel-based networks. Different from 2D images, 3D point clouds are unordered

and scattered in 3D space. One of the trending approaches to process 3D point clouds

is to voxelize the point clouds into regular 3D voxels. However, directly applying 3D

convolution [89, 120] onto the 3D voxels can incur massive computation and memory

overhead, which limits its applications to large-scale real world scenarios. [114] propose

to use unbalanced octrees with hierarchical partitions. The sparse convolution [39, 20]

reduces the convolutional overhead by only working on the non-empty voxels. However,

this kind of approaches may still suffer from losing geometric details due to quantization

on the voxel grid. The best performances are achieved with high quantization resolutions

(e.g. 2cm per voxel), which still have high memory consumption.
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Point-based networks. There are plenty of work [106, 108, 158, 75, 123, 152] focusing

on directly processing point clouds without re-projection or voxelization. [106, 108] pro-

pose to use MLPs followed by max-pooling layers to encode and aggregate point cloud

features. However, max-pooling could lose critical geometric information in the point

cloud. A number of work [92, 59, 91, 72, 38, 147] build a kNN graph from the point

cloud and conduct message passing using graph convolution. Later on, [151, 163, 136,

158, 88, 76, 31, 75] conduct continuous convolution on point clouds. [151] represents

the convolutional weights with MLPs. SpiderCNN [163] uses a family of polynomial

functions to approximate the convolution kernels. [123] projects the whole point cloud

into a high-dimensional grid for rasterized convolution. [158, 136] formulate the con-

volutional weights to be a function of relative position in a local neighbourhood, where

the weights can be constructed according to input point clouds. [75] improves over [158]

by introducing hand-crafted viewpoint-invariant coordinate transforms to increase the

robustness of the network.

Dynamic filters and Transformer. Recently, the design of dynamic convolutional

filters [166, 175, 16, 59, 149, 122, 172, 153, 137, 86, 58, 179] has drawn more attentions.

This line of work [86, 175, 16, 166] introduces different methods to predict convolutional

filters, which are shared across the whole input. [59, 172, 153, 137] propose to predict the

complete convolutional filters for each pixel. However, their applications are constrained

by their computational inefficiency and high memory usage. [179] introduces decoupled

dynamic filters with respect to the input features on 2D classification and upsampling

tasks. [122, 129] propose to re-weight 2D convolutional kernels with a fixed Gaussian or

Gaussian mixture model for pixel-adaptive convolution. Dynamic filtering share some

similarities with the popular transformers, whose weights are functions of feature cor-

relations. However, the dynamic filters are mainly designed for images instead of point

clouds.

With recent success in natural language processing [27, 24, 142, 157, 168] and 2D images

analysis [48, 29, 176, 110], transformers have drawn more attention in the field of 3D

scene understanding. Some work [68, 79, 167, 161] utilize global attention on the whole

point cloud. However, these approaches introduces heavy computation overhead and

are unable to extend to large scale real world scenes, which usually contain over 100k

points per point cloud scan. Recently, the work [177, 102] introduce point transformer
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with local attention to reduce the computation overhead, which could be applied to large

scenes. Compared to previous convolutional approaches, our PointConvFormer computes

the weights with both the relative position and the feature difference. Compared to

transformers, the attention of the PointConvFormer modulates convolution kernels and

use the sigmoid activation instead of softmax. Experiments showed that our design

significantly improves the performance of the networks.

4.3 PointConvFormer

4.3.1 Review of Point Convolutions and Transformers

Given an input continuous signal x(p) ∈ Rcin where p ∈ Rs with s being a small number

(usually 2 for 2D images or 3 for 3D point clouds, but could be any arbitrary low-

dimensional Euclidean space), x(·) can be sampled as a point cloud P = {p1, . . . , pn} with

the corresponding values xP = {x(p1), . . . , x(pn)}, where each pi ∈ Rs. The continuous

convolution at point p is formulated as:

Conv(w, x)p =

∫
∆p
⟨w(∆p), x(p+ ∆p)⟩d∆p (4.1)

where w(∆p) ∈ Rcin is the continuous convolution weight function. Inspired by the

continuous formulation of convolution, [158, 152] discretize the continuous convolution

on a neighbourhood of point p. Let Xpi ∈ Rcin be the input feature of pi the discretized

convolution on point clouds is written as:

X ′
p =

∑
pi∈N (p)

w(pi − p)⊤Xpi (4.2)

where N (p) is a neighborhood that is normally chosen as the k-nearest neighbor or ϵ-

ball neighborhood of the center point p. The function w(pi − p) : Rs 7→ Rcin can be

approximated as an MLP.

In PointConv [158], an efficient formulation was derived when w(pi − p) has a linear

final layer w(pi − p) = Wlh(pi − p), where h(pi − p) : R3 7→ Rcmid is the output of the

penultimate layer of the MLP and Wl ∈ Rcin×cmid is the learnable parameters in the



64

final linear layer. We can equivalently change Eq. (4.2) on the neighbourhood N (p)

into,

X ′
p =

〈
vec(Wl), vec

 ∑
pi∈N (p)

h(pi − p)X⊤
pi


〉
. (4.3)

where vec(·) turns the matrix into a vector. Note that Wl represents parameters of a

linear layer and hence independent of pi. Thus, when there are cout convolution kernels,

n training examples with a neighborhood size of k each, there is no longer a need to store

the original convolution weights w(pi − p) for each point in each neighborhood with a

dimensionality of cout × cin × k × n. Instead, the dimension of all the h(pi − p) vectors

in this case is only cmid× k×n, where cmid is significantly smaller(usually 8 or 16) than

cout× cin (could go higher than 102×102). This efficient PointConv enables applications

to large-scale networks on 3D point cloud processing.

Recently, transformer architectures are popular with 2D images. 3D point cloud-based

transformers have also been proposed (e.g. [177, 102]). Transformers compute an at-

tention model between points (or pixels) based on the features of both points and the

positional encoding of them. Relative positional encoding was the most popular which

encodes w(pi − p), similar to Eq. (4.2). It has been shown to outperform absolute posi-

tional encodings in many papers [116, 21, 177]. Adopting similar notations to Eq. (4.2),

we can express the softmax attention model used in transformers as:

Attention(p) =
∑

pi∈N (p)

softmax(q(Xpi)k(Xp) + w(pi − p)) · v(Xpi) (4.4)

where q(·),k(·),v(·) are transformation to the features to form the query, key and value

matrices respectively, usually implemented with MLPs. One can see that there are

similarities and differences between PointConv [158] and the attention model [142]. First,

both employ w(pi − p), but in PointConv that is the sole source of the convolutional

kernel which is translation-invariant. In attention models, the matching between the

query transform q(Xpi) and the key transform k(Xp) of the features are also considered,

which is no longer translation-invariant.

Another important difference to note is that in attention models the final attention value

is an output from the softmax function. Note that softmax output has a range of [0, 1]
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Figure 4.3: Details of the PointConvFormer Operation. h(pi − p) : R3 7→ Rk×cmid and
ψ(Xpi − Xp) : Rcin 7→R are functions of the relative position pi − p and functions of
differences of features. The weights of PointConvFormer combines the information from
feature differences Xpi −Xp and relative position pi − p.

which is limited to non-negative weights at each point, which means the output of eq.

(4.4) is a non-negative weighted average of the features of the input. To us, it is a bit

curious why this is the right idea, as we tend to believe each neighborhood point could

have positive and negative impacts to the features of the center point, and limiting it only

to non-negative could be a specific design choice that needs further investigation.

We want to note that the v(·) transform can be seen as a 1× 1 convolution on the input

features. It is common to insert 1 × 1 convolution layers between regular convolution

layers in deep architectures (e.g. ResNet[44]), hence we could view it as an additional

1 × 1 convolution layer before the attention layer, hence we can compare the attention

layer and PointConv without considering v(·).

4.3.2 PointConvFormer Layer

We are interested to adopt the strengths of attention-based models, while exploring the

design space where we still preserve some of the benefits of convolution and explore the

possibility of having negative weights. Inspired by the discussion above, We define a

convolution operation with its weights as functions of both the relative position pi − p
and the feature difference Xpi −Xp. Hence, PointConvFormer layer of a point p with its
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neighbourhood N (p) can be written as:

X ′
p =

∑
pi∈N (p)

w(pi − p)⊤ψ(Xpi −Xp)Xpi (4.5)

where the function w(pi−p) is the same as defined in Eq. (4.2), the function ψ(Xpi−Xp) :

Rcin 7→ R is the function of feature differences Xpi −Xp, which projects the differences

of features in a local neighbourhood to a re-weighted attention ΨXpi−Xp ∈ R, similar to

the attention scores in transformers [177].

If we fix the function ψ(Xpi − Xp) = 1, the PointConvFormer layer is equivalent to

Eq. (4.3), which reduces to traditional convolution. ψ(Xpi −Xp) is approximated with

another MLP followed by a regularization layer, such as softmax, sigmoid, or ReLU. We

explore the optimal choice of the MLP structure in ablation studies. As a result, the

function w(pi − p) learns the weights respect to the relative positions, and the function

ψ(Xpi − Xp) learns the differences between the features of point p and its neighbour-

hood, which works similarly to the attention in transformer. However, different from

the transformer whose non-negative weights are directly used as a weighted average on

the input, the output of ψ(Xpi −Xp) modifies the convolutional filter w(pi − p), which

allows each neighborhood point to have both positive and negative contributions.

Since ΨXpi−Xp is a re-weighted score that works on the input feature, we adopt the same

approach in PointConv [158] to create an efficient version of the PointConvFormer layer.

Following eq.(4.3), we have:

X ′
p = Wl

∑
pi∈N (p)

h(pi − p)ψ(Xpi −Xp)X
⊤
pi (4.6)

where Wl and h(·) are the same as in Eq. (4.3). The PointConvFormer structure is

illustrated in Fig. 4.3.

Some theoretical intuitions about why PointConvFormer may work can be drawn from

the Gaussian complexity theory of CNNs. We note the following bound proved in [74]:

ĜN (F ) ≤ C max
p′∈N (p)

√
EX,p[(Xp −Xp′)2] (4.7)
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where ĜN (F ) is the empirical Gaussian complexity on the function class F : a one-layer

CNN followed by a fully-connected layer, and C is a constant. A smaller Gaussian

complexity leads to better generalization [4]. To minimize Gaussian complexity, we

should select points that has high feature correlation to belong to the same neighborhood

of the network. Conventional CNNs achieve better generalization by choosing nearby

points (e.g. 3 × 3) as neighborhoods which are naturally more correlated than faraway

points [74]. In PointConvFormer, ψ(Xpi − Xp) especially with a sigmoid activation

function, allows the network to dynamically choose to activate or deactivate neighbor

point pi based on its feature difference with the center point p, which can in turn further

lower the Gaussian complexity of the trained network and improve its generalization

power.

4.3.3 Multi-Head Mechanism

As in Eq.(4.6), the weight function ψ(Xpi − Xp) : Rcin 7→ R learns the relationship

between the center point feature Xp ∈ Rcin and its neighbourhood features Xpi ∈ Rcin ,

where cin is the number of the input feature dimension. To increase the representation

power of the PointConvFormer, we attempt to use the multi-head mechanism to learn

different kind of relationships. As a result, the function ψ : Rcin 7→ R becomes a set of

functions ψi : Rcin 7→ R with the number of heads being h, and i ∈ {1, ..., h}. Different

heads in the multi-head mechanism will correspondence to different channels of the input

feature, as in [142]. Hence, the PointConvFormer with multi-head could encode multiple

relationships in the feature space, which improve the representation capabilities.

4.4 Semantic Segmentation

To demonstrate the effectiveness of the proposed PointConvFormer in real world point

clouds, we adopt the PointConvFormer to large-scale semantic segmentation tasks. In

this section, we introduce the network structure and the main network components used

for the segmentation.
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4.4.1 PointConvFormer Block

To build deep neural network for various computer vision tasks, we construct bottleneck

residual blocks with PointConvFormer layer as its main components. The detailed struc-

tures of the residual blocks are illustrated in Fig. 4.4. The input of the residual block

is the input point features X ∈ Rcin along with its coordinates p ∈ R3. The residual

block uses a bottleneck structure, which consists of two branches. The residual branch is

a linear layer followed by PointConvFormer layer followed by another linear layer. The

shortcut branch can be formulated in three different ways depending on the output fea-

ture size. If the output feature has the same cardinality and dimensionality, the shortcut

branch is just a identity mapping. If the output feature has the same cardinality but

with different dimensionality, the shortcut branch is a linear mapping. If the output

feature has different cardinality, e.g. when the point cloud is downsampled, the shortcut

branch can use max-pooling layers to aggregate features.

Linear

PointConvFormer

Linear

Input(𝑋 , 𝑝)

output (𝑋 , 𝑝)

Linear

PointConvFormer

Linear

Linear

output (𝑋 , 𝑝)

Input(𝑋 , 𝑝)

Linear

PointConvFormer

Linear

Pool

output (𝑋 , 𝑝)

Input(𝑋 , 𝑝)

(a) (b) (c)

Figure 4.4: The residual blocks of PointConvFormer. We use Linear layers and pooling
layers to change the dimensionality and cardinality of the shortcut to match the output
of the residual branch.

4.4.2 Backbone Structure

In this work, we adopted a general U-Net structure with residual blocks in the encoding

layers as our backbone model, where the point clouds are gradually downsampled to

coarse resolution, then gradually upsampled to its original resolution with the help of

finer level features. Please refer to the supplementary for detailed network structure.

We use the grid-subsampling method [136] to downsample the point clouds as in [136]

along with the PointConvFormer blocks to encode features. For upsampling layers,

we are unable to apply PointConvFormer because for points that do not exist in the
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𝑑𝑖𝑚 = 𝑁

FC layers 

𝑑𝑖𝑚 = 𝑛𝑢𝑚_𝑜𝑓_𝑐𝑙𝑎𝑠𝑠𝑒𝑠

Figure 4.5: The network structure of semantic segmentation. We use a U-Net structure
for semantic segmentation tasks. The U-Net contains 5 resolution levels. For each
resolution level, we use grid subsampling to downsample the input point clouds, then
followed by several pointconvformer residual blocks. For deconvolution, we just use
PointConv as described in the main paper. We set N = 64 for ScanNet [23] Dataset and
N = 48 for SemanticKitti [6] Dataset. (Best viewed in color.)

downsampled cloud, their features are not present. To address this issue, we note that

in eq. (4.3) of PointConv, p itself does not have to belong to N (p), thus we can just

apply PointConv layers for deconvolution without features Xp as long as coordinates p

are known. As in Fig. 4.5, the U-Net we adopt contains 5 resolution levels. For each

resolution level, we use grid subsampling to downsample the input point clouds, then

followed by several pointconvformer residual blocks.

4.5 Scene Flow estimation from Point Clouds

In this section, we adopt our PointConvFormer to scene flow estimation from 3D point

clouds. Scene flow is the 3D displacement vector between each surface in two consec-

utive frames. As a fundamental tool for low-level understanding of the world, scene

flow can be used in many 3D applications, such as autonomous driving, virtual reality,

etc. Traditionally, scene flow was estimated directly from RGB/RGBD data [53, 93, 146].

However, with the recent development of 3D sensors such as LiDAR and 3D deep learning

techniques, there is increasing interest on directly estimating scene flow from 3D point

clouds [78, 42, 159, 105, 156]. In this work, we are interested in adopting the Point-

ConvFormer into the PointPWC-Net [159], which utilizes a coarse-to-fine framework for
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Figure 4.6: The network structure of PointPWC-Net with PointConvFormer. The fea-
ture pyramid is built with blocks of PointConvFormers. As a result, there are 4 resolution
levels in the PointPWC-Net. At each level, the features of the source point cloud are
warped according to the upsampled coarse flow. Then, the cost volume are computed
using the warped source features and target features. Finally, the scene flow predictor
predicts finer flow at the current level using a PointConv with features from the first
point cloud, the cost volume, and the upsampled flow. (Best viewed in color.)

scene flow estimation.

PointPWC-Net [159] is a coarse-to-fine network design, which aims to iteratively refine

the scene flow estimation. It mainly contains 5 modules, including the feature pyra-

mid network, cost volume layers, upsampling layers, warping layers, and the scene flow

predictors. The feature pyramid network is built with multiple PointConv [158] layers

to encode point features in different resolutions. The cost volume layers compute the

learned cost volume in the 3D space. The upsampling layers and warping layers interpo-

late the coarse scene flow to a finer level and warp the target point cloud, respectively.

Finally, the scene flow predictors estimate scene flow for each resolution. To adopt our

PointConvFormer to the PointPWC-Net, we replace the PointConv in the Feature pyra-

mid layers with the PointConvFormer and keep the rest of the structure the same as the

original version of PointPWC-Net for fair comparison. Fig. (4.6) illustrates the overview

of the PointPWC-Net with our PointConvFormer. Please note that for fair comparison,

we keep the input and output feature dimentionality exactly the same as the original
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PointPWC-Net.

4.6 Experiments

In this section, we conduct experiments in a number of domains and tasks to demonstrate

the effectiveness of the proposed PointConvFormer. For 3D semantic Segmentation, we

use the challenging ScanNet [23], which is a large-scale indoor scene dataset, and the

SemanticKitti dataset [7], which is a large-scale outdoor scene dataset. Besides, we con-

duct experiments on the scene flow estimation from 3D point clouds with the synthetic

FlyingThings3D dataset [90] for training and KITTI scene flow 2015 dataset [96] for

testing. We also conduct ablation studies to explore the properties of the PointCon-

vFormer.

Implementation Details. We implement PointConvFormer in PyTorch [103]. We use

the Adam optimizer with (0.9, 0.999) betas and 0.0001 weight decay. For the ScanNet

dataset, we train the model with an initial learning rate 0.001 and dropped to 0.5x for

every 80 epochs for 400 epochs. For the SemanticKitti dataset, the model is trained

with an intial learning rate 0.001 and dropped to 0.5x for every 8 epochs for 40 epochs.

Both semantic segmentation tasks are trained with weighted cross entropy loss. For

the scene flow estimation, we follow the exact same training pipeline in [159] for fair

comparison.

4.6.1 Indoor Scene Semantic Segmentation

We conduct 3D semantic scene segmentation on the ScanNet [23] dataset. We use the

official split with 1, 201 scenes for training and 312 for validation. MinkowskiNet42 [20],

SparseConvNet [39] are compared as representative voxel-based methods. The Point-

Net [106], PointConv [158], VI-PointConv [75], PointASNL [164], and KPConv [136] are

chosen as representative point-based methods. Recently, there are work adopting trans-

former to point clouds. We chose the Point Transformer [177] and the fast point trans-

former [102] as representative transformer based methods. Since the Point Transformer

does not report their results on the ScanNet dataset, we adopt their point transformer

layer (a standard multi-head attention layer) with the same network structure as ours.

Hence, it serves as a direct comparison between PointConvFormer and multi-head at-
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tention. There exists some other approaches [18, 50, 51, 66] which use additional inputs,

such as 2D images, which benefit from ImageNet [26] pre-training that we do not use.

Hence, we excluded these methods from comparison, accordingly.

We evaluate the models on the ScanNet validation split. From the results shown in Ta-

ble 4.1, we can see that our proposed PointConvFormer achieves the best performance

among the point-based methods, outperforming the best convolution based method KP-

Conv [136] by 3.6% in mIoU. Besides, our PointConvFormer achieves slightly better

results than the voxel-based methods, including the MinkowskiNet42, with only 40%

of the number of learnable parameters of MinkowskiNet42. In the result visualizations

shown in Fig. 4.7, we observe that PointConvFormer is able to achieve better predictions

with fine details comparing with PointConv [158] and Point Transformer [177]. Interest-

ingly, it seems that PointConvFormer is usually able to find the better prediction out of

PointConv [158] and Point Transformer [177], showing that its novel design brings the

best out of both operations.

Following [102], we further conduct experiments on different input voxel sizes. Since

we use grid-subsampling [136] with different grid sizes to downsample the input point

cloud, voxel size is also a parameter in our network. Although, we still utilize kNN

neighborhoods which always have k neighbors whereas sparse convolution could have

far fewer points in their neighborhood, hencing needing more layers than us to get the

same receptive field. From the results reported in Table. 4.2, our PointConvFormer

outperforms MinkowskiNet42 [20] and Fast Point Transformer [102] on both 10cm and

5cm setups by a large margin.

4.6.2 Outdoor Scene Semantic Segmentation

The SemanticKitti [7, 36] dataset is a large-scale street view point clouds dataset built

upon the KITTI Vision Odometry Benchmark [36]. The dataset is collected in Germany

with Velodyne-HDLE64 LiDAR, and consists of 43, 552 point cloud scans sampled from

22 sequences in driving scenes. Each point cloud scan contains 10 − 13k points. We

follow the training and validation split in [7] and 19 classes are used for training and

evaluation. , and there are 4, 071 scans in sequence 08)for validation. For each 3D point,

only the (x, y, z) coordinates are given without any color information. It is a challenging
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Figure 4.7: ScanNet result visualization. We visualize the ScanNet prediction results
from our PointConvFormer, PointConv [158] and Point Transformer [177]. The red el-
lipses indicates the improvements of our PointConvFormer over other approaches. Points
with ignore labels are filtered for a better visualization. (Best viewed in color)

dataset because the scanning density is uneven as faraway points are sparser in LIDAR

scans.

Table 4.3 reports the results on the semanticKitti dataset. Because this work mainly

focus on the basic building block, PointConvFormer which is applicable to any kind of

3D point cloud data, of deep neural network, we do not compare with work [182, 17]

whose main novelties work mostly on LiDAR datasets. We use a simple U-Net structure

for semantic segmentation as described in Sec. 4.4.2 which has less parameters than most

other high-performing networks. From the table, one can see that our PointConvFormer

outperforms both point-based methods and point+voxel fusion methods. Especially, our

method obtains better results comparing with SPVNAS [131], which utilizes the network

architecture searching (NAS) techniques and fuses both point and voxel branches. We

did not utilize any NAS in our system which would only further improve our perfor-

mance.
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Table 4.1: Semantic segmentation results on ScanNet dataset. We use the ScanNet [23]
validation set. *For Point Transformer [177], we implemented it on the same network
structure as PointConvFormer, hence it also serves as an ablation comparing regular
self-attention layers with PointConvFormer layers

Methods # Params(M) Input mIoU(%)

PointNet [106] - Point 53.5
PointConv [158] - Point 61.7
KPConv deform [136] 14.9 Point 69.2
PointASNL [164] - Point 63.5
VI-PointConv [75] 15.5 Point 68.2
SparseConvNet [39] - Voxel 69.3
MinkowskiNet42 [20] 37.9 Voxel 72.2
Fast Point Transformer [102] 37.9 Voxel 72.0

Point Transformer* 10.7 Point 68.0

PointConvFormer(ours) 15.1 Point 72.8

4.6.3 Scene Flow Estimation from Point Clouds

Besides the semantic segmantion tasks, we also conduct experiments on scene flow esti-

mation directly from 3D point clouds using the PointPWC-Net with PointConvFormer,

as introduced in Sec. 4.5. For simplicity, we name the new network ‘PCFPWC-Net’

where PCF stands for PointConvFormer. To train the PCFPWC-Net, we use the multi-

scale supervised loss [159] and follow the training pipeline in [159]. For a fair comparison,

we use the same dataset configurations as in [159]. The model is firstly trained on Fly-

ingThings3D [91], which is a large synthetic image dataset for scene flow estimation.

The 3D point clouds are reconstructed from image pairs with the depth map provided

in the dataset following [42]. As a result, the training dataset contains 19,640 pairs of

point clouds, and the evaluation dataset contains 3,824 pairs of point clouds. We adopt

the same hyper-parameters used in [159]. There are 4 pyramid levels in PCFPWC-Net.

The model is trained with a starting learning rate of 0.001 and dropped by half every

80 epochs. After training on FlyingThings3D, we directly evaluate the trained model

on the real world KITTI Scene Flow dataset [94, 96] to test the generalization capabil-

ities of our model. We follow the same preprocessing step in [42] and obtain 142 valid

scenes for evaluation. For comparison, we use the same metrics as [159], which uses
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Table 4.2: Comparison with different input voxel size. We compare the results on the
ScanNet [23] validation set with different input voxel size. † means the results are re-
ported in [102]. We use grid subsampling [136] to downsample the input point clouds,
which is similar to voxelization. However, we still use kNN neighborhood after down-
sampling which is different from the voxel neighborhood used in other approaches.

Methods Voxel/grid size # Params(M) Input mIoU(%)

MinkowskiNet42† [20] 10cm 37.9 Voxel 60.4
Fast Point Transformer [102] 10cm 37.9 Voxel 65.3
PointConvFormer(ours) 10cm 15.1 Point 68.0

MinkowskiNet42† [20] 5cm 37.9 Voxel 66.6
Fast Point Transformer [102] 5cm 37.9 Voxel 70.1
Point Transformer* 5cm 10.7 Point 68.0
PointConvFormer(ours) 5cm 15.1 Point 72.8

Table 4.3: Semantic segmentation results on SemanticKitti validation set.

Method #MACs(G) # Param.(M) Input mIoU(%)

RandLA-Net [49] 66.5 1.2 Point 57.1
FusionNet [173] - - Point+Voxel 63.7
KPRNet [63] - - Point+Range 64.1
MinkowskiNet [20] 113.9 21.7 Voxel 61.1
SPVCNN [131] 118.6 21.8 Point+Voxel 63.8
SPVNAS [131] 64.5 10.8/12.5 Point+Voxel 64.7

PointConvFormer(ours) 91.1 8.1 Point 65.6

EPE3D(m) as the main metric, Acc3DS, Acc3DR, Outliers3D, EPE2D(px), Acc2D for

further comparison. The details are described below.

Evaluation Metrics. For comparison, we use the same metrics as [159]. Let SFΘ

denote the predicted scene flow, and SFGT be the ground truth scene flow. The evaluate

metrics are computed as follows:

• EPE3D(m): ∥SFΘ − SFGT ∥2 averaged over each point in meters.

• Acc3DS : the percentage of points with EPE3D < 0.05m or relative error < 5%.

• Acc3DR: the percentage of points with EPE3D < 0.1m or relative error < 10%.
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•Outliers3D : the percentage of points with EPE3D> 0.3m or relative error> 10%.

• EPE2D(px): 2D end point error obtained by projecting point clouds back to the image

plane.

• Acc2D : the percentage of points whose EPE2D < 3px or relative error < 5%.

Table 4.4: Evaluation results on FlyingThings3D and KITTI dataset. All approaches are
trained on FlyingThings3D with the supervised loss. On KITTI, the models are directly
evaluated on KITTI without any fine-tuning.

Dataset Method EPE3D(m)↓ Acc3DS↑ Acc3DR↑ Outliers3D↓ EPE2D(px )↓ Acc2D↑

Flyingthings3D

FlowNet3D [78] 0.1136 0.4125 0.7706 0.6016 5.9740 0.5692
SPLATFlowNet [123] 0.1205 0.4197 0.7180 0.6187 6.9759 0.5512
HPLFlowNet [42] 0.0804 0.6144 0.8555 0.4287 4.6723 0.6764
HCRF-Flow [73] 0.0488 0.8337 0.9507 0.2614 2.5652 0.8704
FLOT [105] 0.052 0.732 0.927 0.357 - -
PV-RAFT [156] 0.0461 0.8169 0.9574 0.2924 - -
PointPWC-Net [159] 0.0588 0.7379 0.9276 0.3424 3.2390 0.7994
PCFPWC-Net(ours) 0.0416 0.8645 0.9658 0.2263 2.2967 0.8871

KITTI

FlowNet3D [78] 0.1767 0.3738 0.6677 0.5271 7.2141 0.5093
SPLATFlowNet [123] 0.1988 0.2174 0.5391 0.6575 8.2306 0.4189
HPLFlowNet [42] 0.1169 0.4783 0.7776 0.4103 4.8055 0.5938
HCRF-Flow [73] 0.0531 0.8631 0.9444 0.1797 2.0700 0.8656
FLOT [105] 0.056 0.755 0.908 0.242 - -
PV-RAFT [156] 0.0560 0.8226 0.9372 0.2163 - -
PointPWC-Net [159] 0.0694 0.7281 0.8884 0.2648 3.0062 0.7673
PCFPWC-Net(ours) 0.0479 0.8659 0.9332 0.1731 1.7943 0.8924

From Table 4.4, we can see that our proposed PCFPWC-Net outperforms previous meth-

ods in almost all the evaluation metrics. Comparing with PointPWC-Net [159], our

PCFPWC-Net achieves around 10% improvement in EPE3D and EPE2D on the Fly-

ingThings3D, around 10% in Acc3DS and Acc2D. On the KITTI dataset, our PCFPWC-

Net also shows strong result for scene flow estimation by improving the EPE3D by more

than 30%(0.0694 7→ 0.0479) over PointPWC-Net [159]). Fig. 4.8 illustrates the qualita-

tive results of PCFPWC-Net for both FlyingThings3D and KITTI dataset.
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(𝑏) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)(𝑎) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)

Figure 4.8: Qualitative comparison between PointPWC-Net and PCFPWC-Net. (a) is
the visualization of the FlyingThings3D dataset. (b) is the visualization of the KITTI
dataset. Green points are the source point cloud. Blue points are the points warped
by the correctly predicted scene flow. The predicted scene flow belonging to Acc3DR is
regarded as a correct prediction. For the points with incorrect predictions, we use the
ground truth scene flow to warp them and the warped results are shown as red points.
(Best viewed in color.)

Table 4.5: Ablation Study. We disable each component of the PointConvFormer in turn.

Reweighted score Conv mIoU(%)

✓ 65.78
✓ 65.20

✓ ✓ 69.26

4.6.4 Ablation Studies

In this section, we perform thorough ablation experiments to investigate our proposed

PointConvFormer. The ablation studies are conducted on the ScanNet [23] dataset. For

efficiency, we downsample the input point clouds with a grid-subsampling method [136]

with a grid size of 10cm as in [102].

Effectiveness of different components. We conduct ablation studies by disabling

each component of the PointConvFormer in turn. Table. 4.5 reports the experiment

results. Without the convolution weights or the reweighted score, the performance drops

more than 2% comparing the full PointConvFormer, indicating the effectiveness of our

design.

Number of neighbours. We first conduct experiments on the neighbourhood size k
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in the PointConvFormer for feature aggregation. The results are reported in Table. 4.6.

The best result is achieved with a neighbourhood size of 16. A large neighbourhood size

of 32 also obtains comparable result. However, an even larger neighbourhood size of 64

gives worse result, which may cause by introducing excessive less relevant features in a

neighbourhood [177].

Table 4.6: Ablation Study. Number of neigh-
bours in each local neighbourhood.

Nieghbourhood Size 4 8 16 32 64

mIoU(%) 63.00 68.10 69.26 68.54 67.41

Table 4.7: Ablation Study. Number
of heads.
Number of Head 1 2 4 8 16

mIoU(%) 68.32 68.77 68.84 69.26 68.72

Number of heads in ψ. As described in Sec. 4.3.3, our PointConvFormer could em-

ploy the multi-head mechanism to further improve the representation capabilities of the

model. We conduct ablation experiments on the number of heads in the PointCon-

vFormer. The results are shown in Table. 4.7. From Table. 4.7, we find that PointCon-

vFormer already achieves good result with a single head. PointConvFormer with 2 heads

slightly improves the segmentation results. More heads in PointConvFormer harm the

results.

The structure of MLP in ψ. We conduct experiments to figure out the optimal

design of the MLP for the function ψ in the PointConvFormer. The ablations contain

two parts: the number of layers in MLP and the last regularization function of MLP.

Most of the attention based methods use softmax to normalize the attention score. In

this experiments, we also test sigmoid and ReLU. Table. 4.8 and Table. 4.9 report the

ablation results. From Table. 4.8, we find that our PointConvFormer achieves reasonable

results even with one hidden layer in the MLP of ψ, with the best results obtained with

two hidden layers in the MLP. In Table. 4.9, the sigmoid activation function obtains

the best performance. Interestingly, the performance becomes worse with softmax. This

might be because of the properties of the softmax function that its attention scores have

to be nonnegative and sum to 1, which usually results in only few non-zero outputs.
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Table 4.8: Ablation Study. Number of lay-
ers in MLP of ψ.

Number of layers 1 2 3 4

mIoU(%) 68.53 69.26 68.23 68.16

Table 4.9: Ablation Study. Regular-
ization function.

Regularization Softmax ReLU Sigmoid

mIoU(%) 68.57 68.48 69.96

4.7 Visualization

4.7.1 Visualization of Reweighted Scores

Since the reweighted score in PointConvFormer works in local neighbourhoods, it is hard

to plot a meaningful visualization of the local neighbourhood in a point cloud. In or-

der to actually see what the reweighted score learn from the dataset, we visualize the

difference of the learned reweighted score for some example scenes in the ScanNet [23]

dataset. The difference is computed by score max− score min, where score max is the

maximum reweighted score in the neighbourhood and score min is the minimum. A

larger difference indicates a strong reweighting in the neighourhood and the PointCon-

vFormer would be more similar to transformer. Otherwise, a smaller difference indicates

ψ = constant in the local neighbourhood. With constant or nearly constant reweighted

scores throughout the neighbourhood, the PointConvFormer would become a general

convolution. We visualize the difference in Fig. 4.9 and Fig. 4.10 with hot colormap.

From Fig. 4.9 and Fig. 4.10, we can see that higher differences happen mostly in ob-

ject boundaries. For smooth surfaces and points from the same class, the difference of

reweighted scores is low. This visualization further confirms that PointConvFormer is

able to utilize feature differences to conduct feature aggregation accordingly.

4.7.2 More Visualization

In this section, we report more visualization of the prediction of our PointConvFormer.

Fig. 4.11 is the visualization of the comparison between PointConv [158], Point Trans-

former [177] and PointConvFormer on the ScanNet dataset [23]. Fig. ?? illustrates the

prediction of PointConvFormer on the SemanticKitti dataset [6]. Fig. 4.13 and Fig. 4.14

are the comparison between the prediction of PointPWC [159] and PCFPWC-Net on

the FlyingThings3D [90] and the KITTI Scene Flow 2015 dataset [94]. Please also refer
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to the video for better visualization.

4.8 PointConvFormer Variant: GuidedConv

In this section, we propose a PointConvFormer variant to improve the performance of

predicting dense correspondences on 2D image pairs based on coarse-to-fine framework.

In the coarse-to-fine framework, the neighbourhood selection is important especially

when upsamples the coarse flow to a finer level. In a local neighbourhood with same

or similar flow directions, the flow of the center point of the point clouds could be

improved or corrected. A different motion in the neighbourhood could introduce noise

to the finer level flow. In the original formulation, the weights of PointConvFormer

contains two parts: the weights of the relative position, and the weights of the feature

differences. The weights of the feature differences works as a learned filter to reweight the

importance of the neighbourhood contribution in the convolution operation. The input

of the weights function is the input feature. However, in the coarse-to-fine framework

for the dense correspondences, the neighborhood can be defined by different motion

directions. The guidance weights learn the relationship of the flow estimation between

the neighbourhood points and the center point in local neighbourhoods of a point cloud.

With the guidance weights, the convolutions weights is re-weighted according to the

correlation of the similarity of the flow in a local region. As a result, the extended

PointConvFormer can be written as following:

X ′
p = Wl

∑
pi∈N (p)

h(pi − p)ψ(Gpi −Gp)X
⊤
pi (4.8)

where Wl and h(·) are the same as in Eq. (4.6). The G is the guidance feature. In original

PointConvFormer, G = X, which is the input feature. In the coarse-to-fine framework,

we could use the coarse prediction as G to guide the correspondence prediction.

The dense geometric correspondences task [138, 92] is a fundamental problem in com-

puter vision, which is finding pixel-to-pixel correspondences between images that consist

of different views of the same scene and include large geometric transformations [138],

such as significant scale changes, rotations and shearings, as in Fig. 4.15, which makes it



81

more difficult than the optical flow task which usually contains continuous motion. In this

work, we adopt the PointConvFormer variant to the coarse-to-fine framework [128, 138]

to demonstrate the effectiveness of the GuidedConv. We name the variant on 2D images

as GuidedConv. As discussed before, the coarse estimation could be used as guidance

features G to conduct GuidedConv in finer levels to achieve better refinement.

To demonstrate the effectiveness of GuidedConv, we choose GLU-Net [138] as our base-

line model for dense geometric correspondences. GLU-Net[138] is a network structure

that is designed to estimate a dense displacement field w ∈ RH×W×2 from a pair of

images Is ∈ RH×W×3 and It ∈ RH×W×3. H and W are the spatial size of the image

pair. The dense displacement field w should warp the source image Is to target image

It so that It(x) ≈ Is(x + w(x)). Similar to PWC-Net[128], GLU-Net[138] is designed

in a coarse-to-fine fashion. The displacement field in the most coarse level is estimated

first. Then, the coarse displacement field is gradually refined in a finer level. To capture

large-displacements, [138] introduces an adaptive resolution architecture consisting of

two subnetworks, which operates on two different image resolutions. The first network

L-Net downscales the input source and target images to a fixed resolution HL ×WL

and computes a global cost volume for coarse estimation. The second network H-Net

directly operates on the original image resolution H×W for the refinement of the coarse

estimation. Please refer to [138] for detailed information.

In order to compare with the traditional convolution, we use the same network structure

as in [138]. The main difference between GLU-Net and the network we use is that

we conduct 2DGuidedConv with coarse displacement fields as guidance features in the

finer level flow estimator, as the Guide SFP in Fig. 4.16. We name the network with

GuidedConv as GuidedGLU-Net. Fig. 4.16 illustrates the network structure of the

GuidedGLU-Net.

4.8.1 Experiment Results

For training, we adopt the multi-scale endpoint error(EPE) loss with respect to the

ground truth displacements [138]. For fair comparison, we use the same datasets as [138],

which is a combination of the DPED [55], CityScapes [22], and ADE-20K [178] datasets.

The total dataset contains 40,000 images with resolutions larger than 750 × 750. In
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training, the image pairs are cropped to 520× 520, and synthetic affine transformations

are applied to generate ground truth displacement fields [92].

For the task of geometric matching, the images consist of different views of the same

scene and include large geometric transformations. We evaluate our GuidedGLU-Net on

the HPatches dataset [3] as in [138]. We employ the 59 sequences of the HPatches dataset

labeled with v X. Each image sequence contains a source image and 5 target images

taken under increasingly larger viewpoints changes, with sizes ranging from 450 × 600

to 1613 × 1210. Similar to [138], we evaluate our GuidedGLU-Net on two different

resolutions, the original resolution (noted as HP) and the downscaled resolution 240×
240 (noted as HP-240). We employ the Average EndPoint Error(AEPE) and Percentage

of Correct Keypoints(PCK) as our main evaluation metrics. AEPE is the Euclidean

distance between estimated and ground truth displacement fields, averaged over all valid

pixels of the target image. PCK is the percentage of EPE smaller than a certain threshold

δ.

The experiment results on the HPatches dataset are shown in Table 4.10. We use the

decoupled dynamic convolution(DDF) [179] in the GLU-Net as the DDF [179]+GLU-Net

in Table 4.10. From the table, one can see that our GuidedGLU-Net achieves the best

results in all the metrics. Especially, our GuidedGLU-Net outperforms the GLU-Net on

PCK-1px of HP-240 by around 8%, and HP by around 3%. Both metrics indicate that

our GuidedConv can greatly improve the accuracy of the dense correspondences. We

also show the detailed AEPE results on different viewpoint changes in Table 4.11. There

are five different viewpoint changes in the HPatches dataset. The viewpoint changes

increases from VP I to VP V. VP I has the smallest viewpoint changes and VP V has

the largest viewpoint changes. Our GuidedGLU-Net improves the AEPE for all the

viewpoint changes in HP-240 comparing with GLU-Net. In HP, our GuidedGLU-

Net works much better than GLU-Net on large viewpoint changes(VP IV and VP V).

Fig. 4.18 illustrates the qualitative results of GuidedGLU-Net. Besides, we also visualize

some of the continuous guidance function ψ in Eq. (4.8) with respect to the difference of

displacement fields in Fig. 4.17, which shows that different W s clearly favor the selection

of some coarse displacement values over others.

Ablation studies on different guidance features. We further conduct experiments
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Table 4.10: Evaluation on the HPatches datasets. Our GuidedGLU-Net obtains the best
performance on all the metrics. Lower AEPE and higher PCK are better.

HP-240 HP
AEPE↓ PCK-1px↑ PCK-5px↑ AEPE↓ PCK-1px↑ PCK-5px↑

LiteFlow-Net [54] 19.41 28.36% 57.66% 118.85 13.91% 31.64%
PWC-Net [128] 21.68 20.99% 54.19% 96.14 13.14% 37.14%
DGC-Net [92] 9.07 50.01% 77.40% 33.26 12.00% 58.06%
GLU-Net [138] 7.40 59.92% 83.47% 25.05 39.55% 78.54%

DDF [179]+GLU-Net 7.07 64.40% 85.74% 24.91 39.88% 78.53%
GuidedGLU-Net 6.95 68.40% 87.33% 24.06 42.25% 80.41%

Table 4.11: AEPE results on the HPatches datasets with different viewpoints(VP). The
viewpoint changes increase from VP I to VP V, with VP I the smallest viewpoint change
and VP V the largest viewpoint change.

Method
HP-240(AEPE)↓

VP I VP II VP III VP IV VP V ALL

GLU-Net [138] 0.59 4.05 7.64 9.82 14.89 7.40
GuidedGLU-Net(Ours) 0.49 3.59 7.60 8.71 14.37 6.95

Method
HP(AEPE)↓

VP I VP II VP III VP IV VP V ALL

GLU-Net [138] 1.55 12.66 27.54 32.04 51.47 25.05
GuidedGLU-Net(Ours) 1.64 12.10 27.98 30.24 48.33 24.06

Table 4.12: Ablation studies on different guidance features. The coarse flow works best
as guidance features comparing with color information and pixel features. Lower AEPE
and higher PCK are better.

HP-240 HP
Guidance Features AEPE↓ PCK-1px↑ PCK-5px↑ AEPE↓ PCK-1px↑ PCK-5px↑

Color 7.35 69.62% 86.70% 26.38 41.92% 80.30%
Features 6.83 68.38% 87.16% 25.40 41.63% 80.28%

Coarse Flow 6.95 68.40% 87.33% 24.06 42.25% 80.41%
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Table 4.13: Comparison with the state-of-the-art dynamic filters. Our GuidedGLU-Net
obtains the best performance on all the metrics. Lower AEPE and higher PCK are
better.

HP-240 HP
AEPE↓ PCK-1px↑ PCK-5px↑ AEPE↓ PCK-1px↑ PCK-5px↑

GLU-Net [138] 7.40 59.92% 83.47% 25.05 39.55% 78.54%
PAC [122]+GLU-Net 7.58 66.39% 85.97% 26.37 38.43% 76.77%
DDF [179]+GLU-Net 7.07 64.40% 85.74% 24.91 39.88% 78.53%
GuidedGLU-Net 6.95 68.40% 87.33% 24.06 42.25% 80.41%

using different features as guidance features in GuidedConv to study the better choice

of guidance features. The experiment results are shown in Table. 4.12. The features we

experiment on are the color information from the source image, the features from the

source feature pyramid and the coarse flow that is used in our GuidedGLU-Net. From

Table. 4.12, although the color and features perform better on AEPE and PCK-1px of

HP-240, respectively, the coarse flow works better as guidance features in most of the

evaluation metrics.

Compare with state-of-the-art dynamic filters. In order to compare with state-of-

the-art dynamic filters [122, 138], we conduct experiments on the dense geometric corre-

spondences on 2D image pairs with different dynamic filters, including the pixel-adaptive

convolution(PAC) [122], and decoupled dynamic filter(DDF) [179]. The PAC [122]

proposes to re-weight 2D convolutional kernels with a fixed Gaussian kernel for pixel-

adaptive convolution. And, the DDF [179] improves the efficiency of dynamic filters by

decoupling to dynamic spatial filters and dynamic channel filters for classification and

upsampling tasks. Since both methods could be used as a replacement of the traditional

convolution, we replace the convolution operation in flow estimation network of GLU-

Net with the dynamic filters discussed above, as the GuidedGLU-Net in the main paper.

For fair comparison, we use the same training pipeline and hyper-parameter to train

the PAC+GLU-Net, DDF+GLU-Net, and GuidedGLU-Net. The results are shown in

Table 4.13. From Table 4.13, the GuidedGLU-Net achieves the best performance on all

the metrics.
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4.9 Conclusion

In this work, we propose a novel point cloud layer, PointConvFormer, which can be

widely used in various computer vision tasks. Unlike traditional convolution of which

convolutional kernels are functions of the relative position, the convolutional weights of

the PointConvFormer are functions of both the relative position and the difference of fea-

tures. By taking the feature differences into account, the PointConvFormer incorporates

benefits of attention models, which could help the network to focus on points with high

feature correlation during feature encoding. Thorough experiments on a number of point

clouds tasks showed that PointConvFormer significantly outperforms traditional point-

based operations and outperforms other voxel-based or point-voxel fusion approaches,

with significantly less trainable parameters than voxel-based or fusion approaches. Fur-

thermore, we extend the PointConvFormer to coarse-to-fine matching framework, named

GuidedConv. The GuidedConv utilizes coarse predictions as guidance features to filter

the convolutional neighbourhood for a better finer level prediction. Experiments on

dense geometric correspondences from 2D image pairs demonstrate the effectiveness of

the GuidedConv over traditional rasterized and continuous convolutions.
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1.0

0.0

Figure 4.9: Visualization of reweighted scores(part 1). We visualize the difference of
the learned reweighted scores in each neighbourhood. The difference is compute by
score max−score min, where score max is the maximum reweighted score in the neigh-
bourhood and score min is the minimum. The yellow(higher difference) indicates the
neighbourhood would contain points from different classes. The dark red(low difference)
indicates the neighbourhood would contain points from the same class. We visualize
point clouds with 10cm grid and hot colormap. (Best viewed in color.)
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Figure 4.10: Visualization of reweighted scores(part 2). We visualize the difference
of the learned reweighted scores in each neighbourhood. The difference is compute
by score max − score min, where score max is the maximum reweighted score in the
neighbourhood and score min is the minimum. The brighter color(higher difference)
indicates the neighbourhood would contain points from different classes. The darker
color(low difference) indicates the neighbourhood would contain points from the same
class. We visualize point clouds with 10cm grid and hot colormap. (Best viewed in
color.)
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𝑎  𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝑏  𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣 𝑐  𝑃𝑜𝑖𝑛𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟 𝑑  𝑃𝑜𝑖𝑛𝑡𝐶𝑜𝑛𝑣𝐹𝑜𝑟𝑚𝑒𝑟

Figure 4.11: ScanNet result visualization. We visualize the ScanNet prediction results
from our PointConvFormer, PointConv [158] and Point Transformer [177]. The red el-
lipses indicates the improvements of our PointConvFormer over other approaches. Points
with ignore labels are filtered for a better visualization. (Best viewed in color)
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GT GT

Ours Ours

Figure 4.12: SemanticKitti result visualization. We visualize the SemanticKitti pre-
diction results from our PointConvFormer. Each column is a scan from SemanticKitti
validation set. The first row is the input, the second row is the ground truth, the third
row is our prediction. (Best viewed in color.)
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(𝑑) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)

(𝑏) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)(𝑎) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)

(𝑐) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)

FlyingThings3D

Figure 4.13: Qualitative comparison between PointPWC-Net and PCFPWC-Net (Fly-
ingThings3D [91]). (a) is the visualization of the FlyingThings3D dataset. (b) is the
visualization of the KITTI dataset. Green points are the source point cloud. Blue points
are the points warped by the correctly predicted scene flow. The predicted scene flow
belonging to Acc3DR is regarded as a correct prediction. For the points with incorrect
predictions, we use the ground truth scene flow to warp them and the warped results are
shown as red points. (Best viewed in color.)
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(𝑑) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)

(𝑏) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)(𝑎) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)

(𝑐) 𝑃𝑜𝑖𝑛𝑡𝑃𝑊𝐶 𝑃𝐶𝐹𝑃𝑊𝐶(𝑜𝑢𝑟𝑠)

KITTI

Figure 4.14: Qualitative comparison between PointPWC-Net and PCFPWC-
Net (KITTI [94]). Green points are the source point cloud. Blue points are the points
warped by the correctly predicted scene flow. The predicted scene flow belonging to
Acc3DR is regarded as a correct prediction. For the points with incorrect predictions,
we use the ground truth scene flow to warp them and the warped results are shown as
red points. (d) is a failure case, where the points on the wall or ground/road are hard
to find accurate correspondences for both PointPWC and PCFPWC. (Best viewed in
color.)

𝑆𝑜𝑢𝑟𝑐𝑒 𝐼𝑚𝑎𝑔𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 𝐼𝑚𝑎𝑔𝑒𝑊𝑎𝑟𝑝𝑒𝑑 𝑆𝑜𝑢𝑟𝑐𝑒

GuideGLU-Net

Figure 4.15: Dense geometric correspondences on 2D image pairs. Given a source image
and a target image that has undergone significant affine transformations, the task is to
find the dense displacement field between the input images.
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𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑆𝑜𝑢𝑟𝑐𝑒 𝐼𝑚𝑎𝑔𝑒(𝐻 × 𝑊)

𝑡𝑎𝑟𝑔𝑒𝑡 𝐼𝑚𝑎𝑔𝑒(𝐻 × 𝑊)

256 × 256

256 × 256

𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛

𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛

𝑫𝒆𝒏𝒔𝒆 𝒅𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕 𝒇𝒊𝒆𝒍𝒅

𝐻/4 × 𝑊/4 𝐻/8 × 𝑊/8

𝐺𝑢𝑖𝑑𝑎𝑛𝑐𝑒𝐺𝑢𝑖𝑑𝑎𝑛𝑐𝑒𝐺𝑢𝑖𝑑𝑎𝑛𝑐𝑒

32 × 32
16 × 16

H-Net L-Net

Figure 4.16: The network structure of GuidedGLU-Net. GuidedGLU-Net contains two
sub-networks, H-Net and L-Net. L-Net processes fixed resolution(256× 256) images, H-
Net processes original resolution images. The main differences between GuidedGLU-Net
and GLU-Net is that we use the coarse estimation as guidance for finer level estimation.
(Best viewed in color)

Figure 4.17: Examples of trained Guidance filters W w.r.t the displacement. We plot
the pre-trained guidance filters ψ from the GuidedConv in Eq. (??). The ranges of the
difference of the displacement are chosen from -64 to 64. When the coarse flow difference
between center and its neighbor is indicated in dark blue (as opposed to bright yellow),
it has lower guidance weights, which means the corresponding convolution kernel weights
are made smaller. (Best viewed in color)
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𝑆𝑜𝑢𝑟𝑐𝑒 𝐼𝑚𝑎𝑔𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 𝐼𝑚𝑎𝑔𝑒 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝐺𝐿𝑈_𝑁𝑒𝑡 𝐺𝑢𝑖𝑑𝑒𝑑𝐺𝐿𝑈_𝑁𝑒𝑡(𝑜𝑢𝑟𝑠)

𝑆𝑜𝑢𝑟𝑐𝑒 𝐼𝑚𝑎𝑔𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 𝐼𝑚𝑎𝑔𝑒 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝐺𝐿𝑈_𝑁𝑒𝑡 𝐺𝑢𝑖𝑑𝑒𝑑𝐺𝐿𝑈_𝑁𝑒𝑡(𝑜𝑢𝑟𝑠)

Figure 4.18: Qualitative comparison between GLU-Net and GuidedGLU-Net. Our
GuidedGLU-Net is able to find correct correspondences between source and target images
with large view-point changes. Note the marked area where GuidedGLU-Net improves
the results significantly. (Best viewed in color.)



94

Chapter 5: Conclusion and Future Work

5.1 Conclusion

In this dissertation, we have studied the deep neural network on 3D point clouds for 3D

scene understanding.

First, we proposed a novel approach to perform convolution operation on 3D point

clouds, called PointConv. PointConv trains multi-layer perceptrons on local point coor-

dinates to approximate continuous weight and density functions in convolutional filters,

which makes it naturally permutation-invariant and translation-invariant. This allows

deep convolutional networks to be built directly on 3D point clouds. We proposed an

efficient implementation of it which greatly improved its scalability. We demonstrated

its strong performance on multiple challenging benchmarks and capability of matching

the performance of a grid-based convolutional network in 2D images. Second, to bet-

ter estimate scene flow directly from 3D point clouds, we proposed a novel learnable

cost volume layer along with some auxiliary layers to build a coarse-to-fine deep net-

work, called PointPWC-Net. Because of the fact that real-world ground truth scene flow

is hard to acquire, we introduce a loss function that trains the PointPWC-Net with-

out supervision. Experiments on the FlyingThings3D and KITTI datasets demonstrate

the effectiveness of our PointPWC-Net and the self-supervised loss function, obtaining

state-of-the-art results that outperform prior work by a large margin. As one of the

key components in flow estimation networks, the learnable cost volume could be used

in various new network designs for flow estimation. Third, we propose a novel point

cloud layer, PointConvFormer, which can be widely used in various computer vision

tasks. Unlike traditional convolution in which convolutional kernels are functions of

the relative position, the convolutional weights of the PointConvFormer are functions of

both the relative position and the difference of features. By taking the feature differ-

ences into account, the PointConvFormer incorporates the benefits of attention models,

which could help the network to focus on points with high feature correlation during
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feature encoding. Thorough experiments on a number of point clouds tasks showed

that PointConvFormer significantly outperforms traditional point-based operations and

outperforms other voxel-based or point-voxel fusion approaches, with significantly less

trainable parameters than voxel-based or fusion approaches. Furthermore, we extend the

PointConvFormer to the coarse-to-fine matching framework, named GuidedConv. The

GuidedConv utilizes coarse predictions as guidance features to filter the convolutional

neighborhood for a better finer level prediction. Experiments on dense geometric corre-

spondences from 2D image pairs demonstrate the effectiveness of the GuidedConv over

traditional rasterized and continuous convolutions.

5.2 Future Work

5.2.1 Algorithmic Perspective

As a vast research field in computer vision, the dissertation only explores a small frac-

tion of 3D scene understanding from 3D point clouds. In future, there are still plenty of

work that could potentially be useful. For PointConv, we proposed an efficient version

of pointconv, which largely reduce the memory consumption. However, comparing with

traditional convolution, which is highly optimized according the modern hardware, the

computation consumption and speed is still slow. There are several ways that might help

to improve the computation efficiency. The first one is instead of implement the Point-

Conv with the combination of matmul and 1x1 conv, the pointconv could be directly

be implemented in GPU level for better memory management and data transformation.

The second optimization could be a better neighbourhood indexing since one of the

computation bottleneck for point cloud processing is finding the correct neighbourhood.

For PointPWC-Net, the learnable cost volume for 3D point cloud pairs could be used

in many different network designs for further improvement. Since the cost volume in

PointPWC-Net computes the correlation between patches, the information is more ro-

bust and easy to train. It could be used as a novel version of cross-attention for different

matching tasks. Finally, the PointConvFormer contains the properties from both con-

volution and transformer, which unlocks vast potentials in future work. Although the

PointConvFormer is designed for 3D point clouds, it could actually be applied to the data

in different dimensions, as the PointConv. In future, one of the most important work is



96

to adopt the pointconvformer to 2D images tasks. To our best knowledge, there has been

a operation that combines the properties of convolution and transformer even in 2D deep

learning. Besides, the original pointconvformer is proposed on local neighbourhood, it

would be interesting to explore the possibilities to work on larger neighbourhoods or

even global neighbourhoods.

5.2.2 Application Perspective

One of the goals to study 3D deep learning is to solve real-world problems. With the

rapid development of 3D sensors, there are more and more real-world applications. One

of the popular applications is autonomous driving, which has drawn more attention these

years. Although our algorithms have been evaluated on standard benchmarks in research,

we haven’t got many chances to explore the application with real-world data. Especially

for the scene flow estimation from 3D point clouds, there is almost no real-world data

to evaluate on. The benchmark data used now are either from the synthetic 2D data

or from the well-calibrated camera systems. In real-world applications, the situation is

much more complicated. We would love to experiment with real-world data and further

improve our algorithms.

As we know, most deep learning-based methods require vast data to train the model

for better performance. However, no dataset in the 3D point cloud could be used as a

backbone model training for general purposes. In 2D images, there is ImageNet [26],

which contains millions of images for training. In 3D point clouds, there are many

datasets for different tasks. Unfortunately, non of the dataset could be served as the

ImageNet in 3D point clouds for better training of the 3D models. In future, other than

the algorithms on 3D point clouds, it would be useful to explore a large dataset that

could be used to train a backbone model for general purposes. As in 2D images, the

backbone model could be fine-tuned in different datasets for different computer vision

tasks, which could potentially further improve the generalization and robustness of the

model.

Lucky, there is an increasing trend in the industry on 3D point clouds processing. With

resources in the industry, it would be possible to access much more real-world data and

corner cases. It would be interesting to apply 3D algorithms to real data, which could
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benefit the whole of humankind. Besides, we believe this thesis is just a small fraction of

the exciting and fast-growing field of 3D scene understanding. We hope this thesis could

introduce more people to work on the 3D scene understanding topic and would expect

to see more future work built upon our work. It would be greatly appreciated to adopt

or improve our algorithm for your tasks.
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