

AN ABSTRACT OF THE DISSERTATION OF

Faraz Niyaghi for the degree of Doctor of Philosophy in Statistics presented on February

7, 2019

Title: Localized Variable Selection with Random Forest

Abstract approved: _______________________ _________________________

 Sarah C. Emerson Sharmodeep Bhattacharyya

Due to recent advances in computer technology, the cost of collecting and storing data has

dropped drastically. This makes it feasible to collect large amounts of information for each

data point. This increasing trend in feature dimensionality justifies the need for research on

variable selection. Random forest (RF) has demonstrated the ability to select important

variables and model complex data. However, simulations confirm that it fails in detecting

less influential features in presence of variables with large impacts in some cases. In this

dissertation, we propose two algorithms for localized variable selection: clustering based

feature selection (CBFS) and locally adjusted feature importance (LAFI). Both methods

aim to find regions where the effects of weaker features can be isolated and measured.

CBFS combines RF variable selection with a two-stage clustering method to detect

variables where their effect can be detected only in certain regions. LAFI, on the other

hand, uses a binary tree approach to split data into bins based on response variable rankings,

and implements RF to find important variables in each bin. Larger LAFI is assigned to

variables that get selected in more bins. Simulations and real datasets are used to evaluate

these variable selection methods. Finally, we also propose an extension to CBFS for

localized prediction.

©Copyright by Faraz Niyaghi

February 7, 2019

All Rights Reserved

Localized Variable Selection with Random Forest

by

Faraz Niyaghi

A DISSERTATION

submitted to

Oregon State University

 in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented February 7, 2019

Commencement June 2019

Doctor of Philosophy dissertation of Faraz Niyaghi presented on February 7, 2019.

APPROVED:

__

Co-Major Professor, representing Statistics

__

Co-Major Professor, representing Statistics

__

Chair of the Department of Statistics

__

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my dissertation to

any reader upon request.

__

Faraz Niyaghi, Author

ACKNOWLEDGEMENTS

Without any hesitations, my biggest appreciation goes my parents, Ali Niyaghi and

Manijeh Asadiniyazi. I wouldn’t be where I am today if it wasn’t for their unconditional

support. They were the ones who motivated me to start my graduate studies in the first

place.

My sincere gratitude goes to Dr. Sarah C. Emerson who is more than an advisor to me. I

would like to think of her as my role model in life. I would also sincerely thank Dr.

Sharmodeep Bhattacharyya who granted me the opportunity to work with him as my co-

advisor. This research wouldn’t be possible without all the support from my advisors.

I would like to thank my committee members, Dr. Charlotte Wickham, Dr. Katherine

Mclaughlin, and Dr. Bogdan Strimbu. My special acknowledgment goes to Dr. Charlotte

Wickham who assisted me as my co-advisor at the beginning of this Journey. I am eternally

thankful that I had the honor to meet and work with Charlotte.

Finally, I would like to cordially thank my lovely partner, Sogol Sadat Haddadi. I have no

idea how she managed to bear with me during this challenging journey. I can’t thank her

enough for her support and care.

TABLE OF CONTENTS

 Page

Chapter 1: Introduction and Background ...1

1.1 Introduction ..1

1.2 Background on Variable Selection Methods ...3

1.2.1 Supervised Variable Selection ..3

1.2.1.1 Random Forest ...3

1.2.1.2 Sequential Variable Selection ..5

1.2.1.3 Linear Discriminant Analysis ..6

1.2.1.4 Regularized Regression ...7

1.2.2 Unsupervised Variable Selection ..7

1.2.2.1 Principal Component Analysis (PCA) ...8

1.2.2.2 Autoencoders (AE) ..8

1.3 A Closer Look at Random Forests ...9

1.4 Motivational Example ..10

1.5 Local Variable Selection ..14

Chapter 2: Clustering-Based Feature Selection ...16

2.1 CBFS Algorithm ..16

2.2 Results ..20

2.2.1 Simulations ...22

2.2.1.1 Simulation 1 ...22

2.2.1.2 Simulation 2 ...23

2.2.1.3 Simulation 3 ...25

2.2.2 Wine Quality Data ..27

TABLE OF CONTENTS (Continued)

 Page

2.2.3 Bike Sharing Data ...29

2.2.3.1 Registered Bikers Group ..30

2.2.3.2 Casual Bikers Groups ..32

2.3 Summary ..33

Chapter 3: Local Prediction – An Extension to CBFS ..36

3.1 Introduction ..36

3.2 Results ..37

3.2.1 Simulations ...39

3.2.1.1 Simulation 1 ...39

3.2.1.2 Simulation 2 ...41

3.2.1.3 Simulation 3 ...44

3.2.2 Wine Quality Data ..46

3.2.3 Bike Sharing Data ...48

3.2.3.1 Registered Bikers Group ..48

3.2.3.2 Casual Bikers Group ..51

3.3 Discussions ..53

Chapter 4: Locally Adjusted Feature Importance ..55

4.1 LAFI Algorithm ...55

4.1.1 Variable Selection with Random Forest ...56

4.1.2 Binning and Aggregating ..59

4.2 Results ..62

4.2.1 Simulations ...63

TABLE OF CONTENTS (Continued)

 Page

4.2.1.1 Simulation 1 ...63

4.2.1.2 Simulation 2 ...65

4.2.1.3 Simulation 3 ...67

4.2.2 Ozone Data ..70

4.3 Summary ..72

Chapter 5: Conclusions and Future Research Directions ..75

5.1 Localized Variable Selection with CBFS ..76

5.2 Local Prediction Methods ..78

5.3 Localized Variable Selection with LAFI ...80

Bibliography ..82

Appendix: Out of Bag (OOB) Score Calculation ..87

LIST OF FIGURES

Figure Page

1.1. Effect of main features on response surface ...11

1.2. Feature importance comparison in 50 random forests fitted to a simulated sample ...12

1.3. Feature importance comparison in 50 simulated samples ..13

2.1. Heat map of the toy example response surface ...16

2.2. Dividing data in low (left plot) and high (right plot) response value groups17

2.3. Feature-based clusters of data for the toy example ...18

3.1. Prediction performance comparison between local methods and regular RF in

Simulation 1 with 10 noise variables ...39

3.2. Paired comparison of test set MSE for LPSC and regular RF in Simulation 1 with 10

noise variables ..40

3.3. Prediction performance comparison between local methods and regular RF in

Simulation 1 with 50 noise variables ...41

3.4. Paired comparison of test set MSE for LPSC and regular RF in Simulation 1 with 50

noise variables ..41

3.5. Prediction performance comparison between local methods and regular RF in

Simulation 2 ...42

3.6. Prediction performance comparison between local methods and regular RF in

Simulation 2 on a log scale ..43

3.7. Prediction performance comparison between local methods and regular RF in

Simulation 3 ...44

3.8. Prediction performance comparison between local methods and regular RF in

Simulation 3 with updated settings ..45

3.9. Paired comparison of test set MSE for LPSC and regular RF in Simulation 3 with

updated settings ..46

3.10. Prediction performance comparison between local methods and regular RF when

applied to the wine quality data ...47

LIST OF FIGURES (Continued)

Figure Page

3.11. Prediction performance comparison between local methods and regular RF when

applied to the wine quality data with updated experiment settings48

3.12. Prediction performance comparison between local methods and regular RF for

registered bikers ...49

3.13. Paired comparison of test set MSE values between LPSC and regular RF for

registered bikers ...49

3.14. Prediction performance comparison between local methods and regular RF for

registered bikers group with updated experiment settings ...50

3.15. Paired comparison of test set MSE values between LPSC and regular RF for

registered bikers with updated experiment settings ...51

3.16. Prediction performance comparison between local methods and regular RF for casual

bikers ..51

3.17. Prediction performance comparison between local methods and regular RF for casual

bikers group with updated experiment settings ...52

3.18. Paired comparison of test set MSE values between LPSC and regular RF for casual

bikers with updated experiment settings ..52

4.1. FI scores for features in simulated data (left) and fitted CART to standard deviations

of these FI scores (right) ..57

4.2. FIs obtained from 50 RFs and dashed line indicating variable elimination threshold58

4.3. Refined variable selection selects 𝑥1 with mean OOB score larger than dashed line

threshold ...59

4.4. Localized variable selection in level 2 bins ..61

4.5. Variables 𝑥1 and 𝑥2 are picked based on LAFI using a threshold of T = 0.2. The

reduced model with just these selected variables results in improved MSE62

4.6. Boxplots of LAFI scores across 50 simulations: sorted features based on mean LAFI

score (left). Prediction accuracies of full and reduced models (right) in Simulation 164

4.7. Top 20 variables based on mean feature importance obtained from Regular random

forest in 50 replications of Simulation 1 ..65

 LIST OF FIGURES (Continued)

Figure Page

4.8. Boxplots of LAFI scores across 50 simulations: sorted features based on mean LAFI

score (left). Prediction accuracies of full and reduced models (right) in Simulation 266

4.9. Regular random forest feature importance for 50 replications of Simulation 267

4.10. Sorted features based on mean LAFI score (left) and prediction accuracies of full and

reduced models (right) in Simulation 3 ...68

4.11. Regular random forest feature importance for 50 replications of Simulation 368

4.12. Sorted features based on mean LAFI score (left) and prediction accuracies of full and

reduced models (right) in Simulation 3 with improved signal-to-noise ratio69

4.13. Regular random forest feature importance for 50 replications of Simulation 3 with

improved signal-to-noise ratio ...70

4.14. Sorted features based on mean LAFI score (left) and prediction accuracies of full and

reduced models (right) in Ozone data ..71

4.15. Regular random forest feature importance for Ozone data72

 LIST OF TABLES

Table Page

2.1. Feature importance scores for toy example ..19

2.2. Ranking of variables in the toy example...20

2.3. Frequency of selecting 𝑥1and 𝑥2 among top N = two variables in 50 replication of

simulation 1 with 10 noise variables ..22

2.4. Frequency of selecting 𝑥1and 𝑥2 among top N = two variables in 50 replication of

simulation 1 with 50 noise variables ..23

2.5. Frequency of selecting main features among top N = five variables in 50 replication of

Simulation 2 ...24

2.6. Frequency of selecting main features among top N = seven variables in 50 replication

of Simulation 2 ...25

2.7. Frequency of selecting main features among top N = five variables in 50 replication of

Simulation 3 ...26

2.8. Frequency of selecting main features among top N = five variables in 50 replication of

Simulation 3 with improved signal-to-noise ratio ...26

2.9. Frequency of selecting main features among top N = 11 variables in 50 replications

for wine quality data ..28

2.10. Frequency of selecting main features among top N = 11 variables in 50 replications

for wine quality data with updated experiment settings ..29

2.11. Frequency of selecting main features among top N = 12 variables in 50 replications

for registered bikers ...30

2.12. Frequency of selecting main features among top N = 12 variables in 50 replications

for registered bikers with updated experiment settings ...31

2.13. Frequency of selecting main features among top N = 12 variables in 50 replications

for casual bikers ...32

2.14. Frequency of selecting main features among top N = 12 variables in 50 replications

for casual bikers with updated experiment settings ...33

3.1. Numerical summary of MSE results in Simulation 2 ...43

4.1. Selection frequency of variables at each level ..61

 LIST OF TABLES (Continued)

Table Page

4.2. MSE comparison between full and reduced models in Simulation 266

 LIST OF ALGORITHMS

Algorithm Page

2.1. Average Method..18

2.2. Intersection Method ..19

3.1. Local Prediction with Supervised Clustering (LPSC) ..36

3.2. Local Prediction with Unsupervised Clustering (LPUC) ...37

4.1. Crude Variable Selection ..56

4.2. Refined Variable Selection ...59

4.3. Binning and Aggregating ..60

DEDICATION

This thesis is dedicated to my parents, Ali Niyaghi and Manijeh Asadiniyazi, who never

hesitated to sacrifice anything for my success.

1

CHAPTER 1: INTRODUCTION AND BACKGROUND

1.1 Introduction

Variable selection is a statistical procedure with applications in many problems, and its

importance has grown in tandem with the increasing size of datasets. It can be loosely

characterized as any method for identifying a good subset of original input variables. These

methods could be aiming for different things: low prediction error, parsimonious feature

space, and so on. Not all variable selection procedures aim to achieve the same goal.

Mitchell and Beauchamp provided four main reasons for variables selection: 1) simplifying

the relationship between response and explanatory variables; 2) identifying the influential

and negligible set of variables; 3) reducing computation cost for predictions; and 4)

improving the accuracy of predictions and estimations [1]. One application of variable

selection is in genomics where the number of features (genes expressions) are much larger

than the number of under study patients. Research by Guyon et al. on identifying key genes

in cancer diagnosis is an example of such studies [2].

Variable selection approaches heavily depend on the associated statistical problem. So,

procedures of variable selection in presence of response, that is supervised learning, can be

quite different from procedures of variable selection in datasets without a response

variable, that is unsupervised learning. For example, principal component analysis (PCA)

is a variable selection technique primarily for unsupervised cases since PCA does not use

the response variable information in any way for variable selection [3]. Partial least squares

2

(PLS), on the other hand, is a variable selection method which uses the information of

response variables and is suitable for variable selection in regression-based problems only

[4], [5]. There are certain variable or model selection techniques which are generalizable

to both supervised and unsupervised problems, such as Akaike information criterion (AIC),

Bayesian information criterion (BIC), minimum description length (MDL) and so on [6]–

[8]. These procedures depend on the information associated with the data and which model

best uses that information. Thus, these procedures can be used in both supervised and

unsupervised problems.

There are several techniques for variable selection including Least Absolute Shrinkage and

Selection Operator (LASSO), PCA, and Random Forest (RF) [9], [10]. This chapter

provides an overview of common variable selection methods with emphasis on RF, which

is extensively used in this research. Most variable selection methods, like the ones

considered in this chapter, focus on finding important features on a global level. This can

result in ignoring locally important features. This is illustrated as a motivational example

in the last section of this chapter.

In this dissertation, we propose two algorithms for localized variable selection: clustering-

based feature selection (CBFS) and locally adjusted feature importance (LAFI). CBFS,

which is introduced in chapter 2, combines RF variable selection with a two-stage

clustering method to detect variables whose effect can be isolated only in certain regions.

Chapter 3 discusses the challenges of using this algorithm for local prediction purposes.

Chapter 4 presents LAFI, which uses a binary tree approach to split data into bins based on

response variable rankings. Next, it implements RF to find important variables in each bin.

3

Larger LAFI scores are assigned to variables that get selected in more bins. This

dissertation concludes with a summary of our findings and suggestions for future research

directions.

1.2 Background on Variable Selection Methods

Variable selection methods can be broadly classified into supervised and unsupervised

categories. This section serves as a literature review for widely used variable selection

methods in these categories.

1.2.1 Supervised Variable Selection

Supervised variable selection problems start with considering a set of n data points 𝑆 =

{(𝑋1, 𝑌1), (𝑋2, 𝑌2), … , (𝑋𝑛, 𝑌𝑛)} where each 𝑋𝑖 is a p-dimensional feature vector and 𝑌𝑖 is

the response variable which is either categorical or numerical. These methods aim to find

a subset of features or some combinations of features to either explain the variability in the

response variable (inferential purposes) or to make better predictions for unseen data.

Sequential variable selection techniques, Linear Discriminant Analysis (LDA), and

regularized regression methods are introduced in this section.

1.2.1.1 Random Forest

RF is a nonparametric method which is described in section 1.3. It is a great candidate for

variable selection in presence of linear and nonlinear patterns in response surfaces because

4

it is not constrained by a linear framework. In addition, it can be used in both classification

and regression problems. This section briefly mentions some of the previous studies on

variable selection with RF.

Hapfelmeier and Ulm divide RF variable selection methods into two major classes:

performance-based and test-based approaches [11]. Performance-based methods fit several

RF models with different input feature sets to find the best model in terms of prediction

accuracy. The features included in the best performing model are the selected features.

Test-based methods, on the other hand, use hypothesis testing to evaluate the significance

of feature importance (FI) for variables.

Algorithms presented by Svetnik et al., Jiang et al., Díaz-Uriarte and Alvarez de Andrés,

and Genuer et al. are examples of performance-based methods [10], [12]–[14]. The

algorithm proposed by Genuer et al. is used in chapter 4 of this dissertation. First, this

algorithm sorts features based on their mean FI obtained from fitting multiple RFs. Next,

it fits nested models starting with the model including only the most important variable,

and iteratively adds the next most important variables to the input feature space. In general,

features in the model with the highest prediction performance are selected. Further details

on this algorithm are provided in the following chapters.

The main idea of test-based methods is to permute feature values to obtain an empirical

distribution of FIs, and use that distribution to calculate the corresponding p-value.

Features with p-values smaller than a threshold, usually 0.05, are selected. Altmann et al.,

Rodenburg et al., Wang et al., and Tang et al. present similar algorithms in their articles

5

[15]–[18]. For an extensive literature review of RF variable selection methods see A new

variable selection approach using Random Forests by Hapfelmeier and Ulm [11].

1.2.1.2 Sequential Variable Selection

Sequential variable selection was introduced in the regression setting by Efroymson in

1966 [19]. Backward, forward, and bidirectional selections are examples of this method.

Backward selection starts with a saturated model including all features. At each step, it

drops a variable according to some criteria such as AIC, BIC, or p-value, e.g. it might drop

the variable with the largest p-value. The selection process stops when all variables

remaining in the model have p-values smaller than a user-defined threshold, which is also

known as significance level or type 1 error level. Forward selection does this process in

reverse order. It starts with the model including only an intercept. Then, iteratively, the

algorithm adds variables with the smallest p-values until no remaining candidate variable

results in a p-value smaller than the predefined threshold. Bidirectional selection

algorithms consider both adding and dropping of variables at each step.

Sequential variable selection methods have been used in a variety of fields ranging from

genomics to chemistry [20], [21]. They are a simple, computationally efficient, and

intuitive collection of algorithms. However, they are also greedy and can result in a local

optimal set of features because they do not consider all possible combinations of features.

6

1.2.1.3 Linear Discriminant Analysis

One of the earliest applications of LDA comes from Fisher’s paper on classification of Iris

versicolor and Iris setosa species [22]. LDA is a classifier which can be also used as a

dimension reduction technique. A typical application of LDA is in speech recognition

tasks, where the number of features are much larger than the number of classes [23]–[25].

LDA aims to find linear combinations of features which result in the best separation of

classes. Intuitively, separation increases as the distance between center points of classes

gets larger and within class variations get smaller. Let us define 𝑊𝑖 = ∑ 𝛼𝑝𝑥𝑖𝑝𝑃 as a linear

combination of features. Subsequently, �̅�𝑐 is the center of the 𝑐𝑡ℎ class. Then, in a two

class problem, the separation is defined as following [26]:

 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 =
|�̅�1 − �̅�2|

𝑆𝑊

 (1)

Where 𝑆𝑊 is the pooled standard deviation:

 𝑆𝑊 =
∑ (𝑊1𝑖 − �̅�1)

𝑛1
𝑖=1 + ∑ (𝑊2𝑖 − �̅�2)

𝑛2
𝑖=1

𝑛1 + 𝑛2 − 2
 (2)

Note that the separation varies with different weights of features, i.e. the 𝛼𝑝. LDA finds

the best set of weights that maximizes this separation. This optimal combination can be

thought of as a dimensionally reduced presentation of feature space from p to 1. Rao

introduced an extension of LDA for more than two classes [27]. Refer to Johnson and

Wichern’s Multivariate Analysis for more details on LDA and its extensions [26].

7

1.2.1.4 Regularized Regression

Regularized regression models such as LASSO, elastic net, and variants (e.g. group

LASSO and fused LASSO), smoothly clipped absolute deviation (SCAD), minimax

concave penalty (MCP) are considered modern variable selection methods [28]–[32].

These methods are essentially constrained optimization techniques: they find coefficient

estimates that minimize an objective function (typically either the negative log-likelihood

of the data given the parameters, error sums of squares, or a pseudo-likelihood) within a

subspace of the parameter space, where the subspace is defined by a bound on some penalty

function such as the L1 or L2 norm of the vector of parameter values.

LASSO is probably the most widely used regularized regression method. It has been used

in several fields of study including genetics and survival analysis [33], [34]. In a regression

setting, the LASSO estimator is calculated by:

 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽{(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆‖𝛽‖1} (3)

LASSO coefficients vary for different values of 𝜆. Larger values of 𝜆 result in smaller

coefficients and a sparser feature space. The value of 𝜆 is usually obtained through cross

validation.

1.2.2 Unsupervised Variable Selection

Unsupervised variable selection problems only consider features and do not have a labeled

response variable. The main objective here is to reduce feature dimension while

maintaining most of the information in the original features.

8

1.2.2.1 Principal Component Analysis (PCA)

PCA was originally introduced by Hotelling in 1933 [35]. The main idea is to find linear

combinations of features that account for most of the variability in the original data.

Principal components are eigenvectors of the covariance matrix of the features. These are

linear combinations of features that are uncorrelated and sorted in descending order based

on the amount of variability they explain, i.e., the first principle component has the highest

variability, the second principal component has the next highest variability, and so on. The

total number of principal components is the same as the number of original features. The

general practice is to pick top q principal components based on some strategy. One of the

simplest examples of such strategies is to set a threshold on the percentage of variability

explained by the principal components, and then to choose the smallest number of principal

components that account for that amount of variability. See Jolliffe’s Principle Component

Analysis book for a comprehensive literature review on PCA and how to decide the number

of principal components to keep [36].

1.2.2.2 Autoencoders (AE)

Baldi and Hornik introduced AE, which are a special case of neural networks (NN), in

1989 [37]. The simplest AE consist of an input layer, an output layer, and one hidden layer.

The idea is to first compress (encode) the original features to a smaller latent space, i.e.

from input layer to hidden layer, and then reconstruct (decode) the original feature using

latent space. In training, AE use the original p features as both input and output layers. The

values in the hidden layer are combinations of features. These combinations can be

9

considered as new features or compressed versions of the original features. The main

difference between AE and PCA is that AE can produce non-linear combinations of

features, depending on the activation function used in its structure. See Representation

Learning: A Review and New Perspectives by Bengio et al. for more details on AE [38].

1.3 A Closer Look at Random Forests

Random Forest (RF), which was introduced by Brieman [39], is a popular machine learning

method. It can be used for feature selection and prediction in both classification and

regression problems [11], [12], [40], [41]. To fully understand the underlying algorithm of

RF, we need to introduce classification and regression trees (CART), which was developed

in the late nineties [42]. CART models consist of nodes that recursively partition the feature

space such that observations with similar response variable values fall into the same

regions. CART models are simple estimators with low computation cost, but they usually

have a high variance. RF has the same bias as CART, but RF significantly reduces the

variance by fitting several trees and averaging their predicted values. In order to achieve a

small variance, RF generates uncorrelated trees in two steps: using a bootstrap sample from

the data for each tree, and considering only a random sample of features at each node of

the trees. The bootstrapping step leaves out some observations from the original sample in

the construction of each tree. These are called out of bag (OOB) cases and have a role in

FI calculation and test set error estimation.

10

FI is a RF attribute that is used for variable selection and ranking of variables. There are

several different methods for computing feature importance; two that we will focus on here

are a permutation method and a relative rank based method. Brieman proposed the

permutation-based feature importance measure that is implemented in randomForest

Package in R [39], [41]. It starts by calculating prediction accuracy (R2 in regression) of a

CART when fitted to its OOB observations. Next, it permutes the values of a feature in

OOB cases and fits the CART to them to recalculate prediction accuracy. Large differences

in prediction accuracy indicate higher importance for a feature. The relative rank

importance, on the other hand, is implemented in sklearn.ensemble module in Python [43].

The definition of the relative rank importance by authors of this module is provided here:

“The relative rank (i.e. depth) of a feature used as a decision node in a tree can be used to

assess the relative importance of that feature with respect to the predictability of the target

variable. Features used at the top of the tree contribute to the final prediction decision of a

larger fraction of the input samples. The expected fraction of the samples they contribute

to can thus be used as an estimate of the relative importance of the features” [44]. Both of

these methods are used to find salient features in our motivational example.

1.4 Motivational Example

As a motivational example, let us evaluate performances of the permutation and relative

rank based feature importance measures when applied to a data with unbalanced feature

effect magnitudes. Each RF used in this section consists of 100 trees, and one-third of

11

features are considered as candidates at each split. A sample of size 1000 is simulated using

this formula:

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑒|𝑥1| + 10 𝑠𝑖𝑛(𝑥2) + 𝜀 (4)

The main features, 𝑥1 and 𝑥2, are generated from a uniform(-5,5) distribution, and the error

term has standard normal distribution. Due to the presence of 𝑥1 in the exponential term,

the effect of 𝑥2 is masked in most of the response surface except the region where both

features are between zero and two. This is evident in Figure 1.1 which plots noise-free

signal as a function of the main features.

Figure 1.1. Effect of main features on response surface

To be able to evaluate the variable selection performance of these methods, eight

independent noise variables (𝑁1, … , 𝑁8) with standard normal distribution are added to the

dataset. Ideally, 𝑥1 and 𝑥2 would have a distinguishable FI from the noise variables. Figure

1.2 shows boxplots of FI scores obtained from fitting 50 different RFs (by varying random

state argument) to one realization of formula in Equation 4. Note that dots represent outliers

12

in these boxplots. Features are sorted based on mean FI on x-axis. It is also notable that

results from both methods are scaled to sum up to one for the sake of fair comparison.

Figure 1.2. Feature importance comparison in 50 random forests fitted to a simulated

sample

In both cases, 𝑥2 is picked as the sixth important feature. In this example, RF fails in

detecting the effect of a small impact variable in presence of a dominant feature.

One might argue that the results from one realization of this simulation function are not

generalizable. To address this point, we generated 50 samples from the formula in Equation

4, and fitted a RF to each sample to calculate FIs. Figure 1.3 displays the results of this

simulation. Again, features are sorted based on mean FI on the x-axis.

13

Figure 1.3. Feature importance comparison in 50 simulated samples

This time 𝑥2 is selected as the second most important variable but its FI is indistinguishable

from the noise variables. This result is not surprising because these 50 samples provide

much larger information than one realization of the simulation function. Intuitively, RF

should be able to detect small effects if large enough data is provided.

In both scenarios, 𝑥2 does not stand out as a salient variable among the noise variables.

RF’s permutation-based and relative rank-based FIs fail in detecting the effect of 𝑥2 in

presence of the dominant feature1. Following chapters of this dissertation introduce two

algorithms to discover locally important features such as 𝑥2.

1 Due to convenient parallelization, we used the relative rank based importance

implemented in RandomForestRegressor from scikit-learn library in Python to perform our

calculations in this study.

14

1.5 Local Variable Selection

Despite the large body of research on global variable selection methods, limited attention

has been given to methods of finding locally important variables. Bai et al. propose an

approach to find salient features in the neighborhood of a point of interest [45]. Within this

neighborhood, variables with near zero partial derivatives are considered insignificant.

This same team of authors published another article to extend their original method by

relaxing some of its assumptions [46]. Winkel et al. introduce a Bayesian local variable

importance measure to find important features in the vicinity of the global optimizer [47].

They report that use of locally important variables results in better estimation of global

optima in a smaller number of steps in their simulations.

In this dissertation, we propose two algorithms for localized variable selection: CBFS and

LAFI. Both methods aim to find regions where the effects of weaker features can be

isolated and measured. CBFS combines RF variable selection with a two-stage clustering

method to detect variables that their effect can be detected only in certain regions. LAFI,

on the other hand, uses a binary tree approach to split data into bins based on response

variable rankings, and implements RF to find important variables in each bin. Larger LAFI

is assigned to variables that are selected in more bins. Simulations show great potential for

these variable selection methods.

To summarize, this research has three main contributions: 1) LAFI and CBFS look for local

important features across the whole response surface while previous studies pick salient

features in a particular region of response surface; 2) to the best of our knowledge, this is

15

the first use of RF for local variable selection; 3) the challenges of using locally fitted RFs

for prediction purposes are discussed.

16

CHAPTER 2: CLUSTERING-BASED FEATURE SELECTION

Random forest (RF) has demonstrated the ability to select globally important variables and

model complex data. However, as illustrated in section 1.4, it fails to detect locally salient

features in some cases. This chapter introduces clustering-based feature selection (CBFS)

which aims to address this issue. The general strategy of CBFS is to segment data into

clusters and use RF to select features within each cluster. We propose average and

intersection methods to aggregate the variable selection results from these clusters.

2.1 CBFS Algorithm

We use a toy example in this section to illustrate the steps of CBFS. Let us consider an

example with two input features, 𝑥1 and 𝑥2, and a non-linear response surface. Figure 2.1

presents the heat map of this response surface. The response variable has larger values in

red regions and smaller values in white and yellow regions.

Figure 2.1. Heat map of the toy example response surface

17

CBFS starts with splitting data into same-sized groups based on response value rankings.

This step aims to find important features in different regions of the response surface. The

number of groups is a user-defined parameter. Note that a very large number of groups

results in a small number of observations in each group. This can destabilize the variable

selection results in the next steps of CBFS. On the other hand, choosing a very small

number of groups drives CBFS towards global variable selection instead of local variable

selection. In our example, we decided to divide the data into two groups as shown in Figure

2.2.

Then, within each response group, features are used to form clusters, and a RF is fitted to

each cluster. Note that we scale each feature to have zero mean and unit variance before

clustering. K-means clustering is used to make the clusters, and the Silhouette score is used

to determine the optimal number of clusters [48], [49]. Note that this can result in different

number of feature-based clusters in different response groups. We use only features in

making these clusters to be able to assign new observations to these clusters (based on

proximity of features or other techniques discussed later) and use the corresponding RF for

the assigned cluster to make local predictions. The results and challenges of local

Figure 2.1. Dividing data in low (left plot) and high (right plot) response value groups

18

prediction are discussed in the next chapter. This chapter focuses on the local variable

selection aspect of CBFS. Figure 2.3 shows the feature-based clusters in the toy example.

Finally, Feature Importance (FI) scores are obtained from the fitted RFs in each cluster.

We propose average and intersection methods to aggregate the variable selection results

from these clusters. The average method ranks variables based on their weighted mean FI,

where cluster sizes are used as weights, obtained from local RFs fitted in feature-based

clusters. This assigns larger weights to FI scores obtained from bigger clusters. The average

method steps are summarized in Algorithm 2.1.

Algorithm 2.1: Average Method

Input: Number of response bins M; Maximum number of feature-based clusters in

each response bin K; Number of features to output N.

Output: Top N important features.

1. Split data into M same-sized bins based on response value rankings.

2. Scale each feature to have zero mean and unit variance.

3. Within each response bin, use only scaled features to make clusters and find

optimal number of clusters in range 2 to K using Silhouette score. This may result

in different number of clusters in each response bin.

4. Fit separate local RFs to data points in clusters in step 3 and obtain FI from each

model.

5. Calculate weighted average FI for each feature. Use cluster sizes as weights.

6. Rank features based on their mean FI.

Figure 2.3. Feature-based clusters of data for the toy example

19

Table 2.1 contains the hypothetical FI scores obtained from the four RFs fitted to the

clusters in the toy example. We assume feature-based clusters are same-sized in this

example. The weighted average column in this table shows the weighted mean FI score for

each variable. The average method ranks variables based on this column.

Table 2.1. Feature importance scores for toy example

RF in

Cluster 1

RF in

Cluster 2

RF in

Cluster 3

RF in

Cluster 4

Weighted

Average

x1 0.50 0.30 0.70 0.30 0.4500

x2 0.30 0.40 0.10 0.50 0.3250

Noise 1 0.05 0.20 0.15 0.03 0.1075

Noise 2 0.15 0.10 0.05 0.17 0.1175

The intersection method uses ranking of variables based on their FI scores from the fitted

local RFs. It iteratively selects variables that are in common among top-ranked variables

of these models. The steps of this method are shown in Algorithm 2.2.

Algorithm 2.2: Intersection Method

Input: Number of response bins M; Maximum number of feature-based clusters in

each response bin K; Number of features to output N.

Output: Top N important features.

1. Split data into M same-sized bins based on response value rankings.

2. Scale each feature to have zero mean and unit variance.

3. Within each response bin, use only scaled features to make clusters and find

optimal number of clusters in range 2 to K using Silhouette score. This may result

in different number of clusters in each response bin.

4. Fit separate local RFs to data points in clusters in step 3 and obtain ranking of

features based on their relative FI for each model.

5. Iteratively, select variables that are in common among top ranked variables in step

4.

6. In case of a tie, use weighted mean FI to break the tie. Weights are cluster sizes.

20

Table 2.2 shows the ranking of variables in each of the four fitted RFs. Let us start with the

rank one variables, i.e. 𝑥1, 𝑥2, 𝑥1, and 𝑥2 in clusters one through four, respectively.

Obviously, the intersection of these features is an empty set. Next, we consider sets of top

two variables from each RF. Now, 𝑥1 is picked because it is either the first or the second-

ranked variable in all RFs. By looking at the top 3 ranked features in all clusters, we can

pick 𝑥2 as the next in common variable. Finally, Noise 1 and Noise 2 variables are selected

at the same time in the last round of iteration. We use the average FI score from Table 2.1

to break the tie between these two variables. In conclusion, the iteration method ranks the

toy example features in this order: 𝑥1, 𝑥2, Noise 2, and Noise 1.

Table 2.2. Ranking of variables in the toy example

Rank RF in Cluster 1 RF in Cluster 2 RF in Cluster 3 RF in Cluster 4

1 x1 x2 x1 x2

2 x2 x1 Noise 1 x1

3 Noise 2 Noise 1 x2 Noise 1

4 Noise 1 Noise 2 Noise 2 Noise 2

2.2 Results

This section presents real-world and generated datasets to compare the variable selection

performance of regular RF and CBFS. We use simulation functions from section 2.2 to

generate datasets. Regarding real-world datasets, we use wine quality and bike sharing

datasets from University of California Irvine machine learning repository [50]–[52].

21

In each dataset, CBFS splits data points into 5 same-sized bins based on response value

rankings. Top selected variables from CBFS are compared to those picked by a regular RF

fitted to the whole data. The KMeans and silhouette_score functions with their default

parameters from the scikit-learn library in Python are used to form feature-based clusters

and determine the optimal number of clusters, respectively [53], [54]. In each response bin,

we limit the maximum number of feature-based clusters considered by silhouette score to

eight to reduce computation time and avoid forming very small clusters. The

RandomForestRegressor function from the same Python library is used to fit RFs [55].

Each RF in CBFS considers one-third of the features at each node, and uses 100 trees with

maximum depth of ten. The rest of the RF parameters are set to RandomForestRegressor’s

default values. Finally, for the sake of fairness in comparing CBFS and regular RF, the

number of trees in regular RF is set to the same total number of trees as is used by CBFS.

For example, if four RFs with 100 trees each are used in CBFS, then a regular RF with 400

trees is used for comparison. All the other parameters of the regular RF and the RFs in

CBFS are identical.

We use the above-mentioned setting as our default for all experiments in this chapter.

However, depending on experiment outcomes, we may repeat some experiments with

another set of parameters in some cases. The results for default and updated settings are

presented in such cases.

22

2.2.1 Simulations

2.2.1.1 Simulation 1

We start with the motivational example introduced in section 1.4. Here is the simulation

function:

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑒|𝑥1| + 10 𝑠𝑖𝑛(𝑥2) + 𝜀 (4)

10000 data points are generated with 𝑥1 and 𝑥2 independently following a uniform(-5,5)

distribution, and the error term having a standard normal distribution. Ten independent

noise variables, each with a standard normal distribution, are added to the data set. Ideally,

𝑥1 and 𝑥2 would be picked over the noise variables.

Table 2.3 compares the variable selection performance of CBFS and regular RF in 50

replication of this simulation. It is notable that each replicate of this experiment takes less

than a minute to run on 20 CPUs with 2.1 GHz processing speed. All RF and clustering

functions are run in parallel using these CPUs.

Table 2.3. Frequency of selecting 𝑥1and 𝑥2 among top N = two variables in 50 replication

of simulation 1 with 10 noise variables

CBFS

(Average Method)

CBFS

(Intersection Method)
Regular RF

𝑥1 50 50 50

𝑥2 50 25 4

23

CBFS outperforms regular RF in this example. This is hypothesized to be due to the

masking effect of 𝑥1 in the exponential term as described in section 1.4. In addition, the

results indicate the superiority of average method over intersection method in this example.

As an extension, we repeat this simulation with 50 noise variables instead of ten. Table 2.4

presents the results of this simulation. As expected, adding more noise variables makes it

harder to detect the true signal variables. However, CBFS with the average method still

correctly selects 𝑥1 and 𝑥2 as the top features in every replicate. The addition of noise

variables has negatively impacted the performance of regular RF and CBFS with

intersection method.

Table 2.4. Frequency of selecting 𝑥1and 𝑥2 among top N = two variables in 50 replication

of simulation 1 with 50 noise variables

CBFS

(Average Method)

CBFS

(Intersection Method)
Regular RF

𝑥1 50 50 50

𝑥2 50 13 1

2.2.1.2 Simulation 2

A highly nonlinear response surface with interaction terms is simulated in this section to

compare CBFS and regular RF. A sample of 10000 data points is generated using the

formula in the equation below:

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑥 + 𝑦 + 𝑧2 + 𝑤 + 𝑞 + 𝑠𝑖𝑛(𝑥𝑦2) + 𝑒𝑧𝑤𝑞2
+ 𝜀 (5)

24

The features and error term each independently follow the standard normal distribution. In

addition to 𝑥, 𝑦, 𝑧, 𝑤, and 𝑞, 50 independent noise variables with the standard normal

distribution are added to the data set. Table 2.5 shows the variable selection results from

50 replications of this simulation.

Table 2.5. Frequency of selecting main features among top N = five variables in 50

replication of Simulation 2

CBFS

(Average Method)

CBFS

(Intersection Method)
Regular RF

x 50 36 0

y 50 21 1

w 50 36 37

z 10 20 40

q 50 38 50

Regular RF fails to detect 𝑥 and 𝑦 in presence of the features in the exponential term.

However, CBFS does not miss these less influential variables in most replicates. Note that

while 𝑥, 𝑦, 𝑤, and 𝑞 are selected among top five features in every iteration of CBFS with

average method, z is only selected in ten iterations. To investigate the reason for this result,

we present the frequency of selecting main features among top seven variables in Table

2.6. This table shows that feature z is selected in 29 of iterations. In overall, CBFS with

average method seems to be the best variable selection method in this simulation.

25

Table 2.6. Frequency of selecting main features among top N = seven variables in 50

replication of Simulation 2

CBFS

(Average Method)

CBFS

(Intersection Method)
Regular RF

x 50 34 2

y 50 22 4

w 50 38 43

z 29 27 44

q 50 40 50

2.2.1.3 Simulation 3

The simulation function in Equation 6 presents a low signal-to-noise ratio response surface

with underlying interaction terms. Note that presence of 10ε in this formula makes this

response surface very noisy. 10000 data points are generated using this equation.

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑥𝑦 + wzq + 10𝜀 (6)

The main features and error term all independently follow the standard normal distribution.

50 independent noise variables with standard normal distribution are added to the data set.

Table 2.7 shows that regular RF does a better job than CBFS with average method in

selecting 𝑥 and 𝑦 but CBFS detects 𝑧 and 𝑤 more often. These methods show almost

similar performances for q.

26

Table 2.7. Frequency of selecting main features among top N = five variables in 50

replication of Simulation 3

To explore this result in more depth, we repeat this experiment without multiplying the

error term by ten. This simplifies the variable selection task by boosting signal-to-noise

ratio. Table below shows the new variable selection results. This time both regular RF and

CBFS with average method are able to detect features in interaction terms in every

iteration.

Table 2.8. Frequency of selecting main features among top N = five variables in 50

replication of Simulation 3 with improved signal-to-noise ratio

CBFS

(Average Method)

CBFS

(Intersection

Method)

Regular RF

x 50 23 50

y 50 19 50

w 50 19 50

z 50 16 50

q 50 15 50

 CBFS

(Average Method)

CBFS

(Intersection

Method)

Regular RF

x 6 8 18

y 9 7 13

w 9 3 8

z 10 7 6

q 7 4 7

27

2.2.2 Wine Quality Data

The wine quality data has been used in several data mining studies [50], [56]. The response

variable in this dataset is wine quality score, which ranges from one to ten, based on

physicochemical tests. It contains about 4900 instances with 11 features: fixed acidity,

volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur

dioxide, density, pH, sulphates, and alcohol. Five independent noise variables with

standard normal distribution are added to the dataset to compare variable selection

performances of CBFS and regular RF. We replicate this experiment 50 times by changing

the random_state argument of RandomForestRegressor function which is used in regular

RFs and RFs in CBFS [55]. Table 2.9 compares the variable selection results of the three

methods.

28

Table 2.9. Frequency of selecting main features among top N = 11 variables in 50

replications for wine quality data

CBFS

(Average

Method)

CBFS

(Intersection

Method)

Regular RF

Fixed acidity 42 33 50

Volatile acidity 50 50 50

Citric acid 1 24 50

Residual sugar 41 49 50

Chlorides 23 30 50

Free sulfur

dioxide
50 47 50

Total sulfur

dioxide
46 47 50

Density 46 43 50

pH 7 39 50

Sulphates 48 48 50

Alcohol 50 26 50

Regular RF outperforms the other methods. We hypothesize that these results are due to

the formation of small clusters in the CBFS clustering step. Having a small number of

observations in clusters can result in overfitting of RFs and selection of noise variable. In

an attempt to evaluate our hypothesis, we repeat this experiment with a few tweaks in our

settings. We fix both the number of response bins and the number of clusters in each

response bin to two (M and K parameters in the CBFS algorithm). We also reduce the max

depth of RFs from ten to five to avoid overfitting. Table 2.10 shows that these tweaks have

improved the performance of CBFS with average and intersection methods.

29

Table 2.10. Frequency of selecting main features among top N = 11 variables in 50

replications for wine quality data with updated experiment settings

CBFS

(Average

Method)

CBFS

(Intersection

Method)

Regular RF

Fixed acidity 50 47 50

Volatile acidity 50 50 50

Citric acid 44 45 50

Residual sugar 50 50 50

Chlorides 50 40 50

Free sulfur

dioxide
50 50 50

Total sulfur

dioxide
50 28 50

Density 50 50 50

pH 50 45 50

Sulphates 27 44 50

Alcohol 50 50 50

2.2.3 Bike Sharing Data

The bike sharing is a regression dataset where the response variables is the number of

rented bikes for casual and registered bikers in every hour of 2011 and 2012 in Capital

bikeshare system. This dataset contains 17389 instances and 12 features: season, year,

month, hour, holiday (binary variable), weekday, workingday (binary variable), weather

situation (categorical with 4 categories), temperature, feeling temperature, humidity, and

windspeed. Five independent noise variables with standard normal distribution are added

to the dataset to compare variable selection performances of CBFS and regular RF.

30

Intuitively, we think casual bikers and registered bikers might have different sets of

important features. Thus, we replicate this experiment 50 times for each group by changing

the random_state argument of RandomForestRegressor function that is used in regular RFs

and RFs in CBFS.

2.2.3.1 Registered Bikers Group

Let us start with the registered bikers group. Table 2.11 shows the variable selection results

for the three methods.

Table 2.11. Frequency of selecting main features among top N = 12 variables in 50

replications for registered bikers

CBFS

(Average

Method)

CBFS

(Intersection

Method)

Regular RF

Season 0 0 50

year 50 36 50

Month 0 47 50

Hour 50 50 50

Holiday 0 0 0

Weekday 50 17 50

Working day 23 0 50

Weather situation 0 0 50

Temperature 50 50 50

Feeling

Temperature
50 50 50

Humidity 50 50 50

Wind speed 27 50 25

31

This table shows that CBFS methods do not select season and weather situation among top

features. One possible explanation is that these features are highly correlated with some

other features such as temperature and humidity. Or, similar to wine quality data, these

results are due to the formation of small clusters in data. Let us repeat this experiment by

fixing both the number of response bins and the number of clusters in each response bin to

two (M and K parameters in the CBFS algorithm). This should result in larger clusters. In

addition, we reduce the max depth of RFs from ten to five to avoid overfitting. Table 2.12

shows the variable selection results for this new setting. The results from the CBFS with

average method is in agreement with regular RF except for the season feature.

Table 2.12. Frequency of selecting main features among top N = 12 variables in 50

replications for registered bikers with updated experiment settings

CBFS

(Average

Method)

CBFS

(Intersection

Method)

Regular RF

Season 1 0 50

year 50 50 50

Month 43 27 50

Hour 50 50 50

Holiday 0 0 0

Weekday 50 50 50

Working day 50 50 50

Weather situation 50 2 50

Temperature 50 50 50

Feeling

Temperature
50 50 50

Humidity 50 50 50

Wind speed 50 48 50

32

2.2.3.2 Casual Bikers Groups

Now, let us redo this experiment for casual bikers with the default settings described at the

beginning of section 2.2. Table 2.13 presents the variable selection results for all candidate

methods.

Table 2.13. Frequency of selecting main features among top N = 12 variables in 50

replications for casual bikers

CBFS

(Average

Method)

CBFS

(Intersection

Method)

Regular RF

Season 0 0 50

year 0 0 50

Month 0 50 50

Hour 50 50 50

Holiday 0 0 0

Weekday 50 50 50

Working day 50 0 50

Weather situation 0 0 34

Temperature 50 50 50

Feeling

Temperature
50 50 50

Humidity 50 50 50

Wind speed 50 50 50

Similar to our first attempt at registered bikers, CBFS methods do not pick some of the

main features. We redo this experiment with the same limitations on the number of

response bins, clusters, and RF depth that we used in our second experiment for registered

bikers. Table 2.14 shows the improvement in CBFS results.

33

Table 2.14. Frequency of selecting main features among top N = 12 variables in 50

replications for casual bikers with updated experiment settings

CBFS

(Average Method)

CBFS

(Intersection

Method)

Regular RF

Season 50 36 50

year 50 28 50

Month 50 50 50

Hour 50 50 50

Holiday 0 0 50

Weekday 50 50 50

Working day 50 50 50

Weather situation 50 0 50

Temperature 50 50 50

Feeling

Temperature
50 50 50

Humidity 50 50 50

Wind speed 50 46 50

2.3 Summary

In some cases, such as the motivational example in chapter 1, RF does not detect the effect

of locally important variables in presence of dominant features. This section introduces

CBFS with average and intersection methods as variable selection techniques which aim

to address this issue. CBFS uses binning and clustering to segment data into homogenous

regions where the effect of variables can be locally isolated and detected. The variable

34

selection performance of CBFS is compared to regular RF in simulations provided in this

chapter.

Simulation 1 presents a response surface which is dominated by an exponential term. The

main challenge for CBFS and regular RF is to detect the effect of the less significant feature

which is masked by this exponential term. Results show that the CBFS with average and

intersection methods outperform regular RF. It is hypothesized that the success of CBFS

is a result of the clustering step in its algorithm. Some clusters are probably formed in

regions where the value of the exponential term is small, and this makes it possible to

isolate and detect the effect of the locally important feature in these regions.

A highly nonlinear data with interaction terms is used in simulation 2. CBFS with average

method clearly exceeds other candidates in this case. The comparison between CBFS with

intersection method and regular RF is challenging. CBFS with intersection method picks

locally salient features more often than regular RF. However, regular RF detects globally

important features in more iterations.

Simulation 3 is meant to illustrate how the 3 methods perform when applied to low signal-

to-noise ratio data. CBFS with intersection method is found to be the inferior candidate.

Regular RF does a slightly better job than CBFS with average method. One possible

explanation for this result is that RFs in CBFS are exposed to a smaller number of

observations in each cluster, in comparison to regular RF which is fitted to the whole data,

and more data points are needed for RFs to learn patterns in low signal-to-noise ratio data.

35

Wine quality and bike sharing datasets are used as real datasets to explore the application

of our methods. In both datasets, regular RF is found to be more successful. We hypothesize

that these results are due to the formation of small clusters in the CBFS clustering step.

Having a small number of observations in clusters can result in overfitting of RFs and

selection of noise variable. In an attempt to evaluate our hypothesis, we repeated this

experiment with a few tweaks in our settings. A smaller number of bins and clusters are

used to avoid forming small clusters. This improved the performance of CBFS. In general,

CBFS requires a large enough sample size in each cluster to be able to select important

features effectively.

These results show the potential of CBFS in detecting features in a variety of settings. It is

notable that our results are only generalizable to simulation settings included in this

chapter. Further research is required before inferring our findings to broader population of

data structures.

36

CHAPTER 3: LOCAL PREDICTION – AN EXTENSION TO CBFS

3.1 Introduction

As described in the previous chapter, features are used to form clusters in clustering-based

feature selection (CBFS), and one random forest (RF) is fitted to each feature-based cluster.

We only use features in making these clusters so that we will be able to assign unseen

points to these clusters and use the corresponding RF to make local predictions. This

chapter explores two local prediction methods based on the same idea: local prediction

with supervised clustering (LPSC) and local prediction with unsupervised clustering

(LPUC). LPSC uses cluster assignments of training set data as labels and assigns new

points to clusters using a RF classifier. The LPSC steps are summarized in Algorithm 3.1.

Algorithm 3.1: Local Prediction with Supervised Clustering (LPSC)

Input: Number of response bins M; Maximum number of feature-based clusters in

each response bin K; Train and Test sets.

Output: Local predictions for Test set data points.

1. Split Train set into M same-sized bins based on response value rankings.

2. Scale each feature in Train set to have zero mean and unit variance. Store mean and

standard deviations of each feature, i.e. 𝑋�̅� and 𝑆𝑗 for 𝑗 ∈ {1, … , 𝑝} where p is the total

number of features.

3. Within each response bin, use only scaled features to make clusters and find optimal

number of clusters in range 2 to K using Silhouette score.

4. Fit separate local RF regressors to data points in each cluster.

5. Use clustering assignments of data points in step 3 as labels to make a RF classifier.

6. Scale features in Test set by subtracting the corresponding 𝑋�̅� and dividing by

corresponding 𝑆𝑗 from step 2.

7. Predict cluster assignment of Test set data points using the RF classifier in step 5.

8. Use the corresponding RF regressor from step 4 to predict the response value of Test

set cases.

37

In LPUC, new points are assigned to clusters based on proximity to cluster centers in

feature space. Algorithm 3.2 outlines the steps of LPUC.

Local prediction performances of these methods are compared to regular RF in generated

and real datasets in this chapter.

3.2 Results

This section presents real-world and generated datasets to compare the prediction

performance of regular RF, LPUC, and LPSC. We use simulation functions from section

2.2 for our generated datasets. Regarding real-world datasets, we use wine quality and bike

sharing datasets from University of California Irvine machine learning repository [50]–

[52].

Algorithm 3.2: Local Prediction with Unsupervised Clustering (LPUC)

Input: Number of response bins M; Maximum number of feature-based clusters in

each response bin K; Train and Test sets.

Output: Local predictions for Test set data points.

1. Split Train set into M same-sized bins based on response value rankings.

2. Scale each feature in Train set to have zero mean and unit variance. Store mean and

standard deviations of each feature, i.e. 𝑋�̅� and 𝑆𝑗 for 𝑗 ∈ {1, … , 𝑝} where p is the

total number of features.

3. Within each response bin, use only scaled features to make clusters and find optimal

number of clusters in range 2 to K using Silhouette score.

4. Fit separate local RF regressors to data points in each cluster.

5. Scale features in Test set by subtracting the corresponding 𝑋�̅� and dividing by

corresponding 𝑆𝑗 from step 2.

6. Assign Test set data points to the clusters in step 3 based on Euclidean proximity to

cluster centers in feature space.

7. Use the corresponding RF regressor from step 4 to predict the response value of

Test set cases.

38

For each dataset, 75% of the data points are randomly selected for the train set and the

remaining 25% make the test set. Each experiment is replicated 50 times. LPSC and LPUC

split data into 5 same-sized bins based on response value rankings. KMeans and

silhouette_score functions with their default parameters from the scikit-learn library in

Python are used to form feature-based clusters and determine the optimal number of

clusters, respectively [53], [54]. In each response bin, we limit the maximum number of

feature-based clusters considered by silhouette score to eight to reduce computation time

and avoid forming very small clusters. RandomForestRegressor and

RandomForestClassifier functions from the same Python library are used to fit RF

regressors and classifiers, respectively [55], [57]. For the number of features to consider at

each node, RF regressors use one-third of features and RF classifiers use the square root of

total number of features. All RFs consist of 100 trees with a maximum depth of ten. The

rest of RF parameters are set to scikit-learn default values. Finally, for the sake of fairness

in comparing regular RF, LPUC, and LPSC, the number of trees in regular RF is set to the

same total number of trees as is used by RF regressors in LPUC or LPSC. For example, if

four RF regressors with 100 trees each are used in LPUC, then a regular RF with 400 trees

is used for comparison. All the other parameters of regular RF and RF regressors in LPUC

and LPSC are identical.

We use the above-mentioned setting as our default for all experiments in this chapter.

However, depending on experiment outcomes, we may repeat some experiments with

another set of parameters in some cases. The results for default and updated settings are

presented in such cases.

39

3.2.1 Simulations

3.2.1.1 Simulation 1

We start with the motivational example introduced in section 1.4. Here is the simulation

function:

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑒|𝑥1| + 10 𝑠𝑖𝑛(𝑥2) + 𝜀 (4)

10000 data points are generated with 𝑥1 and 𝑥2 independently following a uniform(-5,5)

distribution, and the error term having a standard normal distribution. Ten independent

noise variables, each with a standard normal distribution, are added to the data set. Figure

3.1 compares the prediction performance of regular RF, LPUC, and LPSC based on mean

squared error (MSE). Note that LPUC and LPSC perform the same on the train set because

these methods only differ in how they assign unseen points (test set data) to feature-based

clusters.

Figure 3.1. Prediction performance comparison between local methods and regular RF in

Simulation 1 with 10 noise variables

40

Local prediction methods outperform regular RF in the train set. This is not surprising since

local RF regressors are fitted to homogenous sets of data resulting from the initial binning

step, based on response value rankings, in local methods’ algorithms. In the test set, LPSC

achieves the lowest MSE. This is more evident in Figure 3.2 which shows the paired

difference in MSE of LPSC and regular RF in all replicates of this simulation. The test set

MSE for LPUC is much larger than other methods. This is probably due to poor assignment

of test set cases to feature-based clusters. For example, a large error occurs if a test set case

with small response value is predicted by a local RF for a cluster of large response value

cases.

Figure 3.2. Paired comparison of test set MSE for LPSC and regular RF in Simulation 1

with 10 noise variables

We repeat this simulation with 50 noise variables to see the effect of extra noise variables

on prediction performance of these methods. Figure 3.3 shows that MSEs are increased but

the ranking of methods based on their performance is the same as simulation with 10 noise

variables.

41

Figure 3.3. Prediction performance comparison between local methods and regular RF in

Simulation 1 with 50 noise variables

Finally, Figure 3.4 provides a closer look at MSE differences of regular RF and LPSC in

the test set. LPSC outperforms other methods in this simulation.

Figure 3.4. Paired comparison of test set MSE for LPSC and regular RF in Simulation 1

with 50 noise variables

3.2.1.2 Simulation 2

A highly nonlinear response surface with interaction terms is simulated in this section to

compare local prediction methods and regular RF. A sample of 10000 data points is

generated using the formula in the equation below:

42

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑥 + 𝑦 + 𝑧2 + 𝑤 + 𝑞 + 𝑠𝑖𝑛(𝑥𝑦2) + 𝑒𝑧𝑤𝑞2
+ 𝜀 (5)

The features and error term each independently follow the standard normal distribution. In

addition to 𝑥, 𝑦, 𝑧, 𝑤, and 𝑞, 50 independent noise variables with the standard normal

distribution are added to the data set. Figure 3.5 compares the prediction accuracy of the

three methods.

Figure 3.5. Prediction performance comparison between local methods and regular RF in

Simulation 2

Note that the ranges of MSE values are substantially different in test and train sets. This

level of variability in these results is probably due to the features in the exponential term

in Equation 5. Figure 3.6 shows the results on a log scale.

43

Figure 3.6. Prediction performance comparison between local methods and regular RF in

Simulation 2 on a log scale

Table 3.1 provides a numerical summary of MSE values for each method on original scale.

In test set, MSE values for LPUC has a lower minimum, first quartile (Q1), median, and

third quartile (Q3) than regular RF. The performances of all methods are relatively close

in the train set. That being said, making any comparisons based on MSE is challenging for

this highly non-linear simulation function.

Table 3.1. Numerical summary of MSE results in Simulation 2

 Train Set MSE Test Set MSE

LPUC and

LPSC

Regular

RF
LPUC LPSC Regular RF

Min 6.64E+09 5.92E+09 3.51E+10 4.04E+11 5.61E+10

Q1 4.25E+14 4.06E+14 3.06E+14 2.21E+16 5.96E+15

Median 8.21E+19 9.86E+19 1.06E+18 2.04E+21 8.14E+20

Q3 6.02E+23 5.09E+23 5.73E+23 2.09E+26 1.46E+26

Max 9.99E+47 9.63E+47 1.78E+69 1.78E+69 1.78E+69

44

3.2.1.3 Simulation 3

The simulation function in Equation 6 presents a low signal-to-noise ratio response surface

with underlying interaction terms. Note that the presence of 10ε in this formula makes this

response surface very noisy. 10000 data points are generated using this equation.

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑥𝑦 + wzq + 10𝜀 (6)

The main features and error term all independently follow the standard normal distribution.

50 independent noise variables with standard normal distribution are added to the data set.

Boxplots shown in Figure 3.7 indicate the superiority of regular RF in the test set. Note

that the MSE for local methods is significantly different between test and train sets.

Figure 3.7. Prediction performance comparison between local methods and regular RF in

Simulation 3

Local methods have a much smaller MSE in the train set in comparison to the test set. This

could be either due to overfitting of local RF regressors or poor assignment of test set cases

to feature-based clusters. Let us repeat this experiment by fixing both the number of

response bins and the number of feature-based clusters within each response bin to two (M

45

and K parameters in the CBFS algorithm). This limits the total number of feature-based

clusters to four. We hope this reduces the test set error in two ways: (1) by reducing the

error due to a poor assignment of test set cases to feature-based clusters; (2) by resulting in

a larger number of data points in each cluster which can decrease the chances of overfitting.

Finally, we limit the maximum depth of RFs to five in a further attempt to reduce the

probability of overfitting. Figure 3.8 shows that LPSC achieves a lower MSE than regular

RF in both train and test sets with this new experiment setting.

Figure 3.8. Prediction performance comparison between local methods and regular RF in

Simulation 3 with updated settings

Figure 3.9 shows the paired comparison between MSE values of LPSC and regular RF on

test sets.

46

Figure 3.9. Paired comparison of test set MSE for LPSC and regular RF in Simulation 3

with updated settings

3.2.2 Wine Quality Data

The wine quality data has been used in several data mining studies [50], [56]. The response

variable in this dataset is wine quality score, which ranges from one to ten, based on

physicochemical tests. It contains about 4900 instances with 11 features: fixed acidity,

volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur

dioxide, density, pH, sulphates, and alcohol. Five independent noise variables with

standard normal distribution are added to the dataset. 75% of the data points are randomly

selected for the train set and the remaining 25% make the test set. We replicate this

experiment 50 times by changing the random seed which results in different train and test

sets at each replicate. Figure 3.10 compares the prediction accuracy of the three methods.

47

Figure 3.10. Prediction performance comparison between local methods and regular RF

when applied to the wine quality data

LPUC and LPSC achieve a lower MSE in train sets but a higher MSE in test sets in

comparison to regular RF. This could be either due to overfitting of local RF regressors or

poor assignment of test set cases to feature-based clusters.

Let us repeat this experiment by fixing both the number of response bins and the number

of feature-based clusters within each response bin to two (M and K parameters in the CBFS

algorithm). This limits the total number of feature-based clusters to four. We hope this

reduces the error due to poor cluster assignments of test set cases. Furthermore, we limit

the maximum depth of RFs to five in an attempt to reduce the probability of overfitting.

Figure 3.11 shows an increase in MSE values for all methods in train sets. This is expected

as we decrease the maximum depth of RFs. However, the MSE values in test sets are very

similar to values in Figure 3.10. Again, regular RF outperforms local methods in test sets.

48

Figure 3.11. Prediction performance comparison between local methods and regular RF

when applied to the wine quality data with updated experiment settings

3.2.3 Bike Sharing Data

The bike sharing is a regression dataset where the response variables is the number of

rented bikes for casual and registered bikers in every hour of 2011 and 2012 in Capital

bikeshare system. This dataset contains 17389 instances and 12 features: season, year,

month, hour, holiday (binary variable), weekday, workingday (binary variable), weather

situation (categorical with 4 categories), temperature, feeling temperature, humidity, and

windspeed. Five independent noise variables with standard normal distribution are added

to the dataset. We compare the prediction accuracy of local methods and regular RF for

registered and casual bikers. We replicate this experiment 50 times by changing the random

seed which results in different train and test sets at each replicate. We do separate

experiments for casual and registered bikers in this section.

3.2.3.1 Registered Bikers Group

Let us start with the registered bikers group. Figure 3.12 shows the results for the registered

bikers group.

49

Figure 3.12. Prediction performance comparison between local methods and regular RF

for registered bikers

Regular RF outperforms local methods in test sets. Figure 3.13 shows the paired

comparison between MSE values of LPSC and regular RF on test sets.

Figure 3.13. Paired comparison of test set MSE values between LPSC and regular RF for

registered bikers

Similar to wine quality data, LPUC and LPSC achieve a lower MSE in train sets but a

higher MSE in test sets in comparison to regular RF. This could be either due to overfitting

of local RF regressors or poor assignment of test set cases to feature-based clusters.

Let us repeat this experiment by fixing both the number of response bins and the number

of feature-based clusters within each response bin to two (M and K parameters in the CBFS

50

algorithm). This limits the total number of feature-based clusters to four. We hope this

reduces the error due to poor assignment of test set cases to feature-based clusters.

Furthermore, we limit the maximum depth of RFs to five to reduce the probability of

overfitting. Figure 3.14 shows an increase in MSE values for all methods in train sets. This

is expected as we decrease the maximum depth of RFs. In the test set, on the other hand,

LPSC achieves a lower MSE than regular RF.

Figure 3.14. Prediction performance comparison between local methods and regular RF

for registered bikers group with updated experiment settings

Figure 3.15 shows the paired comparison between MSE values of LPSC and regular RF on

test sets in our new experiment for registered bikers. Clearly, LPSC achieves a lower MSE

on test sets in comparison to regular RFs.

51

Figure 3.15. Paired comparison of test set MSE values between LPSC and regular RF for

registered bikers with updated experiment settings

3.2.3.2 Casual Bikers Group

This section compares the performance of the three methods when applied to casual bikers

group data. Figure 3.16 presents MSE values obtained from each method on test and train

sets.

Figure 3.16. Prediction performance comparison between local methods and regular RF

for casual bikers

Similar to our first attempt at registered bikers, regular RF outperforms local methods in

test sets. We redo this experiment with the same limtations on the number of response bins,

52

clusters, and RF depth that we used in our second experiment for registered bikers. Figure

3.17 shows the results of this new experiment.

Figure 3.17. Prediction performance comparison between local methods and regular RF

for casual bikers group with updated experiment settings

This time LPSC acheives a lower MSE in test sets in comparison to regular RFs. This is

more evident in Figure 3.18 which shows the paired comparison of these MSE values.

Figure 3.18. Paired comparison of test set MSE values between LPSC and regular RF for

casual bikers with updated experiment settings

53

3.3 Discussions

This chapter proposes LPUC and LPSC as local prediction methods. These methods are

compared to regular RF in three simulations. In Simulation 1, LPSC outperforms regular

RF in both train and test set. However, LPUC shows poor performance in the test set.

A highly nonlinear response function with interaction terms is used in Simulation 2. For

all three methods, MSE values exhibit a large variance. This makes it particularly

challenging to make a comparison between candidate methods. That being said, LPUC

achieves the lowest MSE among three methods in the test set.

Simulation 3 considers a low signal-to-noise ratio response surface with interactive

features. Local methods achieve a lower MSE in the train set but the reverse is true for the

test set. This behavior could be either due to overfitting of local RF regressors or poor

assignment of test set cases to feature-based clusters. For example, a large error occurs if a

test set case with small response value is predicted by a local RF for a cluster of large

response value cases. To further investigate this behavior, we repeat this experiment by

limiting the number of response bins and the number of feature-based clusters within each

response bin to two (M and K parameters in the CBFS algorithm). This limits the total

number of feature-based clusters to four. We hope this reduces the test set error in two

ways: (1) by reducing the error due to a poor assignment of test set cases to feature-based

clusters; (2) by resulting in a larger number of data points in each cluster which can

decrease the chances of overfitting Finally, we limit the maximum depth of RFs to five in

a further attempt to reduce the probability of overfitting. Regular RF achieves the lowest

54

MSE in both test and train sets even after these changes in experiment settings. Note that

observations with similar features may end up in different response bins because of the

multiplier of the error term in the simulation function. This could be the reason for this

behavior.

We use wine quality and bike sharing data as our real-world dataset. Using our default

experiment settings, local methods achieve a lower MSE in train sets but higher MSE in

test sets in comparison to regular RF in both datasets. Similar to the simulation 3, this

behavior could be either due to overfitting of local RF regressors or poor assignment of

test set cases to feature-based clusters. Thus, we repeat these experiments with the same

limitations we used in our second experiment for Simulation 3. This time LPSC

outperforms regular RF in bike sharing data. In wine quality data, however, regular RF still

achieves a lower MSE than both local methods. This could be due to the smaller number

of instances in the wine quality dataset in comparison to our generated datasets and bike

sharing data.

55

CHAPTER 4: LOCALLY ADJUSTED FEATURE IMPORTANCE

The CBFS algorithm, which is introduced in chapter Chapter 2:, shows the potential of

using local RFs for variable selection. As part of CBFS algorithm, we use only features in

making clusters to be able to assign unseen points to these clusters and use the

corresponding RF to make local predictions. This idea is explored in local prediction

methods proposed in chapter Chapter 3:. It is hypothesized that some part of the prediction

error for these local prediction methods come from misassignment of test set points to the

feature-based clusters. Thus, this clustering step is not part of the variable selection method

introduced in this chapter. This chapter presents a variable selection method called locally

adjusted feature importance (LAFI), which identifies locally important features based on

different regions of the response variable values.

4.1 LAFI Algorithm

LAFI uses a binary tree approach to split data into bins based on response variable rankings.

Next, it uses a RF-based variable selection method to find important variables for each bin

separately. This method is described in section 0 below. Finally, the LAFI score is

calculated by aggregating the variable selection results from all bins. The binning and

aggregating steps are outlined in section 4.1.2.

56

4.1.1 Variable Selection with Random Forest

The variable selection algorithm described here is applied to each response bin separately.

This approach to variable selection is derived from Genuer et al. work on variable selection

using RF [10]. The first step is the crude variable selection that is designed to eliminate

variables with very little promise. This step is computationally cheap and can reduce

feature dimensionality when applied to datasets with a large number of noise variables.

The idea behind this step is that noise variables have a close to zero mean feature

importance (FI), and any variable with mean FI lower than a threshold should be dropped.

This threshold is set to the minimum predicted value obtained from fitting a classification

and regression tree (CART) to standard deviations of variables’ FI, after sorting variables

based on decreasing mean FI. This threshold can be thought of as a conservative estimate

of standard deviation of FI scores for low importance variables. The steps of this method

are shown in Algorithm 4.1.

We revisit the simulation function in Equation 4 to illustrate the steps of this algorithm.

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑒|𝑥1| + 10 𝑠𝑖𝑛(𝑥2) + 𝜀 (4)

Algorithm 4.1: Crude Variable Selection

Input: Tree depth to use in CART, Number of RFs to fit to data M

Output: Selected variables in crude step

1. Fit M RFs to data and calculate mean and standard deviation of FI for each variable

2. Plot standard deviations of FIs in decreasing order of mean FIs

3. Fit a CART to the plot in step 2 with standard deviation of FI for the variables as

response and the ranking of mean FI for the variables as predictor. Find the

minimum predicted value for SD of FI (response variable), and set this as threshold.

4. Drop any variables with a mean FI smaller than threshold

5. Output remaining variables

57

10000 data points are generated with 𝑥1 and 𝑥2 independently following a uniform(-5,5)

distribution, and the error term with standard normal distribution. Eight independent noise

variables with standard normal distribution are added to the data set. The left plot in Figure

4.1 shows FI scores obtained from fitting 50 RFs with 500 trees to this data. The right plot

presents the fitted CART to the standard deviation of FI scores. Note that the features are

sorted based on mean FI in both plots.

Figure 4.1. FI scores for features in simulated data (left) and fitted CART to standard

deviations of these FI scores (right)

The CART’s minimum fitted value, which is used as the threshold in this step, is less than

0.0005. Figure 4.2 shows that this threshold is below mean FI of all variables in this

simulation. Thus, none of the features are dropped in this step.

58

Figure 4.2. FIs obtained from 50 RFs and dashed line indicating variable elimination

threshold

The crude variable selection is followed by refined variable selection. This step uses out of

bag (OOB) scores as its variable selection criterion. To calculate OOB scores, we first

calculate R2 values on unseen data for each tree. As mentioned in section 1.3, each tree in

RF uses a bootstrap sample of original data as input, and unseen data, for each tree, are the

ones that are not selected in this bootstrap sample. Next, OOB score is calculated as the

average of these R2 values obtained from all the trees in a RF. See the appendix for further

details on OOB scores.

A simple approach would be choosing the model that results in the highest OOB score.

However, this can produce unstable results due to the natural randomness in RF algorithm.

A more stable option is to pick the smallest model that has a mean OOB score greater than

mean OOB score of the best model minus its standard deviation. Finally, the variables used

in this model are the selected features in the refined variable selection step. Algorithm 4.2

summarizes the refined variable selection steps.

59

OOB scores for the nested models presented in Figure 4.3 indicate that 𝑥1 is selected in the

refined step. This is not surprising if we only consider global behavior of variables since

𝑥1 in the exponential term is dominating the response surface.

Figure 4.3. Refined variable selection selects 𝑥1 with mean OOB score larger than dashed

line threshold

4.1.2 Binning and Aggregating

This step uses the variable selection method described above to pick locally salient

variables at different levels. It starts from top level where it uses all data for variable

Algorithm 4.2: Refined Variable Selection

Input: Set of selected features from crude step S, Number of RFs to fit to data H

Output: Selected variables in refined step

1. Fit H RFs to data and use variables in S as input features

2. Sort features in S based on mean FI obtained from the fitted RFs

3. Fit another set of H RFs while using only the most important variable from step 2

as input feature, record OOB scores

4. Add next most important variable to feature space and fit H new RFs, record OOB

scores

5. Repeat step 3 until all variables in S have been included

6. Pick the model with highest mean OOB score and subtract the standard deviation

of its OOB score from its mean. Set this as threshold.

7. Pick smallest model with mean OOB score larger than the threshold in step 6.

8. Input features of the selected model in step 7 are selected features in this step.

60

selection. For the following levels, it recursively binary splits data into bins based on

response value rankings, and selects important variables in each bin. At each level, the

fraction of bins where a variable is selected is recorded. LAFI is the average of these

fractions over all levels. Variables with LAFI smaller than a user-defined threshold are

dropped. This threshold and the number of levels are the two parameters of this algorithm.

Using more levels in this algorithm increases the chances of selecting locally important

variables. However, this also increases the chances of picking noise variables as the bins

get smaller and fitted RFs become prone to error due to small sample size. It also

significantly increases the computation time. Algorithm 4.3 outlines the steps of binning

and aggregating.

Figure 4.4 shows the localized variable selection results at level 2 of the simulated data. In

bin 1, where cases with lower 50% of response value are kept, both 𝑥1 and 𝑥2 are picked.

However, in bin 2, where 𝑥1 inflates the response, 𝑥1 is selected as the only important

variable.

Algorithm 4.3: Binning and Aggregating

Input: Number of levels L, User-defined threshold T

Output: Selected Variables based on LAFI

1. Implement variable selection method described in 0 to the whole data (only one

bin in level 1)

2. Split bin(s) into two same-sized bins based on response value rankings.

3. Run variable selection in each bin in step 2.

4. At each level, record the fraction of bins in which each variable is picked.

5. Repeat steps 2 through 4 until reaching L levels (should have 2L-1 bins in the last

level).

6. For each variable, define LAFI as the average of fractions calculated in step 4.

7. Output variables with LAFI larger than T

61

Figure 4.4. Localized variable selection in level 2 bins

Table 4.1 shows the number of bins in which variables are picked at each level. LAFI score

is calculated based on this table. For example, N8 is picked at 50% of bins in level 3 (2 out

of 4), 12.5% of bins in level 4 (1 out of 8), and 25% of bins in level 6 (8 out of 32). Thus,

the average fraction of times N8 is selected over these 6 levels is 14.58%. This translates

to LAFI score of 0.1458.

Table 4.1. Selection frequency of variables at each level

 Variables in descending LAFI score order

 X1 X2 N8 N5 N1 N7 N4

Level 6 31/32 20/32 8/32 14/32 8/32 8/32 6/32

Level 5 16/16 11/16 0/16 4/16 3/16 2/16 3/16

Level 4 8/8 6/8 1/8 1/8 1/8 1/8 1/8

Level 3 4/4 3/4 2/4 0/4 1/4 1/4 1/4

Level 2 2/2 1/2 0/2 0/2 0/2 0/2 0/2

Level 1 1/1 0/1 0/1 0/1 0/1 0/1 0/1

62

Figure 4.5 shows the results of our proposed method. Variables 𝑥1 and 𝑥2 are selected as

the only variables with LAFI larger than T. We use T = 0.2 as an ad hoc value because it

separates main features from noise variables in most of our experiments in this chapter.

Next, we fit two RF regressors to the data - one with all the variables, i.e. full model, and

one with only 𝑥1 and 𝑥2. Excluding all noise variables in the reduced model results in

significantly lower MSE.

Figure 4.5 Variables 𝑥1 and 𝑥2 are picked based on LAFI using a threshold of T = 0.2.

The reduced model with just these selected variables results in improved MSE

4.2 Results

This section presents real-world and simulated datasets to explore the performance of

LAFI. We use simulation functions from section 2.2 and the ozone dataset from mlbench

package in R to compare the variable selection performance of regular RF and LAFI [58].

63

RandomForestRegressor and tree functions from the scikit-learn library in Python are used

to build RFs and CARTs, respectively. A CART with a depth of 4 and 20 RFs are used in

the crude variable selection step. Regarding the refined variable selection step, the H

parameter, which is the number of RFs to fit to data, is set to 20. Each RF considers one-

third of features at each node and uses 100 trees with a maximum depth of ten. The rest of

RF and CART parameters are set to RandomForestRegressor and tree’s default values,

respectively. Lastly, we use 3 layers and a threshold of 0.2 for the binning and aggregating

step.

4.2.1 Simulations

Each simulated dataset consists of 10000 data. We randomly select 75% of the data points

are for the train set and the remaining 25% make the test set. Each simulation scenario in

this chapter is replicated 50 times. Finally, in each replicate, we compare the prediction

accuracy of a RF model with all input features, i.e., a full model, vs. the prediction

acccuracy of a RF model with selected variables from LAFI, i.e., a reduced model. These

RF models share the same parameters with RF models used in the variable selection step.

4.2.1.1 Simulation 1

We start with the motivational example introduced in section 1.4. Here is the simulation

function:

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑒|𝑥1| + 10 𝑠𝑖𝑛(𝑥2) + 𝜀 (4)

64

10000 data points are generated with 𝑥1 and 𝑥2 independently following a uniform(-5,5)

distribution, and the error term having a standard normal distribution. Ten independent

noise variables, each with a standard normal distribution, are added to the data set. Ideally,

𝑥1 and 𝑥2 would be selected over the noise variables. Figure below shows that LAFI

successfully distinguishes the main features, 𝑥1 and 𝑥2, from the noise variables.

Furthermore, dropping variables with LAFI score below 0.2 improves the prediction

accuracy in both test and train sets. It is notable that each replicate of this experiment takes

about 10 minutes to run on 20 CPUs with 2.1 GHz processing speed. This time is longer

than the run time of CBFS because of the refined variable selection step which uses nested

models. All RF and clustering functions are run in parallel using these CPUs.

Figure 4.6. Boxplots of LAFI scores across 50 simulations: sorted features based on mean

LAFI score (left). Prediction accuracies of full and reduced models (right) in Simulation

1

To compare LAFI scores with FI scores obtained from regular RF, we fit 50 RFs to the

same simulated datasets. The results for top 20 variables based on mean FI scores are

65

presented in Figure 4.7. Several noise variables are picked over 𝑥2 which is a locally

important feature.

Figure 4.7. Top 20 variables based on mean feature importance obtained from Regular

random forest in 50 replications of Simulation 1

4.2.1.2 Simulation 2

A highly nonlinear function with interaction terms is simulated in this section to compare

LAFI and regular RF. A sample of 10000 data points is generated using the formula in the

equation below:

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑥 + 𝑦 + 𝑧2 + 𝑤 + 𝑞 + 𝑠𝑖𝑛(𝑥𝑦2) + 𝑒𝑧𝑤𝑞2
+ 𝜀 (5)

The features and error term all independently follow the standard normal distribution. In

addition to 𝑥, 𝑦, 𝑧, 𝑤, and 𝑞, 50 independent noise variables with the standard normal

distribution are added to the data set. The results from 50 replication of this simulation are

presented in Figure 4.8. The left plot shows that LAFI picks the main features over noise

variables. The right plot compares prediction accuracy of reduced models, which use

variables with LAFI score larger than 0.2, and full models.

66

Figure 4.8. Boxplots of LAFI scores across 50 simulations: sorted features based on mean

LAFI score (left). Prediction accuracies of full and reduced models (right) in Simulation

2

Note that the ranges of MSE values are very large due to the features in the exponential

term in Equation 5. Table 4.2 provides a numerical summary of MSE values. In test sets,

MSE values for reduced models have a lower minimum, first quartile (Q1), and third

quartile (Q3) but a larger median than full model. Due to this large variability in MSE

values, making any comparisons based on MSE is challenging for this simulation function.

Table 4.2. MSE comparison between full and reduced models in Simulation 2

 Train Set MSE Test Set MSE

 Full Model Reduced Model Full Model Reduced Model

Min 6.90E+08 7.00E+08 6.49E+10 4.68E+10

Q1 7.57E+13 7.62E+13 2.44E+16 2.32E+16

Median 3.04E+19 3.11E+19 8.79E+20 1.24E+21

Q3 4.78E+23 4.90E+23 4.50E+26 2.52E+26

Max 6.89E+47 6.50E+47 1.78E+69 1.78E+69

67

For the sake of comparison, Figure 4.9 presents the FI scores obtained from regular RF

when fitted to the same simulated datasets. Variables are sorted based on mean FI on x-

axis. Regular RF only selects three of the main features over noise variables.

Figure 4.9. Regular random forest feature importance for 50 replications of Simulation 2

4.2.1.3 Simulation 3

The simulation function in Equation 6 presents a low signal-to-noise ratio response surface

with underlying interaction terms. Note that presence of 10ε in this formula makes this

response surface very noisy. 10000 data points are generated using this equation.

 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑥𝑦 + wzq + 10𝜀 (6)

The main features and error term all independently follow the standard normal distribution.

50 independent noise variables with standard normal distribution are added to the data set.

Figure 4.10 shows that LAFI selects main features over the noise variables. However, most

LAFI scores are above the 0.2 threshold. Thus, variables are rarely dropped and there is

not a significant difference in prediction accuracy of full and reduced models.

68

Figure 4.10. Sorted features based on mean LAFI score (left) and prediction accuracies of

full and reduced models (right) in Simulation 3

We use regular RF to on the same set of simulated datasets. The resulting FI scores from

regular RFs are presented in Figure 4.11. Regular RF fails to select all the main features

over noise variables.

Figure 4.11. Regular random forest feature importance for 50 replications of Simulation 3

Let us repeat this simulation with an improved signal-to-noise ratio by changing the error

term multiplier from ten to one in Equation 6.

69

Figure 4.12 shows a wide gap between LAFI scores of main features and noise variables

in most replicates. This results in lower MSE values for the reduced model in both train

and test sets.

Figure 4.12. Sorted features based on mean LAFI score (left) and prediction accuracies of

full and reduced models (right) in Simulation 3 with improved signal-to-noise ratio

Finally, Figure 4.13 presents the FI scores obtained from regular RFs fitted to the same

simulated sets of data. There is a clear gap between FI scores of main features and noise

variables. Furthermore, none of the noise variables has a larger mean FI score than the

main features.

70

Figure 4.13. Regular random forest feature importance for 50 replications of Simulation 3

with improved signal-to-noise ratio

4.2.2 Ozone Data

This dataset is obtained from mlbench package in R [58]. This is a regression dataset where

the reponse variables is daily maximum one-hour-average ozone reading in Los Angeles

in 1976. There are 12 features in this dataset: month, day of month, day of week, pressure

height, wind speed, humidity, temperature at Sandberg, temperature at El Monte, inversion

base height, pressure gradient, inversion base temperature, and visibility. We randomly

selected 75% of the data points for the train set and the remaining 25% make the test set.

LAFI scores are calculated based on train set data. Next, we compare the prediction

accuracy of a RF model with all input features, i.e., full model, to the prediction accuracy

of a RF model with selected variables from LAFI, i.e., reduced model. We replicate this

experiment 50 times by changing the random seed which results in different train and test

sets at each replicate.

Wind speed and weekday have the lowest LAFI scores in Figure 4.14. Intuitively, day of

the week does not seem to be a good predictor for ozone level. Regarding wind speed,

71

Genuer et al. and Chèze et al. came to the same conclusion [10], [59]. In most iterations,

both of these variables have a lower than 0.2 LAFI score and are excluded in reduced

models. There is no significant difference between MSE values of full and reduced models.

Figure 4.14. Sorted features based on mean LAFI score (left) and prediction accuracies of

full and reduced models (right) in Ozone data

Figure 4.15 shows the FI scores from regular RF. Again, wind speed and weekday are

found to be the least important features.

72

Figure 4.15. Regular random forest feature importance for Ozone data

4.3 Summary

Simulations in this chapter show that FI obtained from regular RF might fail in detecting

locally important features in some cases. To address this issue, we introduce LAFI, which

takes local importance into consideration. Three simulated datasets, as well as a real

dataset, are used to compare LAFI with FI from regular RF. Features with LAFI score

larger than a threshold are selected. Next, we compare the prediction accuracies of RF

model with all input features (full model) vs. a RF model with selected variables from

LAFI (reduced model).

Simulation 1 presents a response surface which is dominated by an exponential term. The

main challenge is to detect the effect of less significant feature which is masked by this

exponential term. The main features achieve a higher LAFI score than noise variables. On

73

the other hand, regular FI scores of several noise variables are larger than the FI score of

the locally salient feature. In addition, the reduced model, which includes features selected

by LAFI, shows a better prediction performance than the full model with all the input

features.

A highly nonlinear function with interaction terms is used in simulation 2. All the main

features achieve a higher LAFI score than noise variables, while this is not the case for

regular FI. The MSE values obtained from full and reduced models are very large due to

the features in the exponential term in this simulation function. This makes it challenging

to make comparisons based on MSE in this case. That being said, MSE values for reduced

models have a lower minimum, first quartile, and third quartile but a larger median than

full model.

Simulation 3 presents a low signal-to-noise ratio response surface with interaction terms.

Similar to previous simulations, the LAFI scores for main features are larger than noise

variables. However, regular RF fails to pick all the main features over noise variables. In

most replicates of this simulation, LAFI scores of all input features are larger than our

threshold. Thus, the prediction performance of reduced and full models are very close. We

repeat this simulation with an improved signal-to-noise ratio. This time both LAFI and FI

pick main features over noise variables. This results in lower MSE for reduced models.

Lastly, we use ozone dataset from mlbench package in R. The response variables is daily

maximum one-hour-average ozone reading in Los Angeles in 1976. Day of the week and

wind speed are found to be the features with lowest LAFI and regular FI score. This result

74

is in agreement with two other studies that use this dataset. The reduced models achieve

similar MSE values to full models but have fewer input features.

75

CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH

DIRECTIONS

In some cases, such as the motivational example in chapter 0, regular RF does not detect

the effect of locally important variables in presence of dominant features. We have

introduced cluster-based feature selection (CBFS) and locally adjusted feature importance

(LAFI) as local variable selection methods which aim to address this issue. We have also

explored the extension of CBFS for local prediction in chapter 3. This chapter summarizes

our conclusions and presents future research directions for our work in previous chapters.

Here are future research directions that are applicable to all methods presented in this study:

1) One of the main reasons that we used RF in our algorithms is that it can detect

nonlinear patterns in data. However, our methods could work with other variable

selection and prediction methods that are capable of detecting nonlinear patterns.

Gradiant boosting machine (GBM) is an example of such methods [60]. It is notable

that GBMs requires longer training times than RFs. This is why we chose RF over

GBM.

2) Our methods are developed for regression problems. Investigating ways to extend

these methods to classification problems could be a fruitful research path. This

requires changing the split criterion in RF and using a different binning strategy for

the response variable. In other words, we can not split data based on response value

rankings when the response variable is categorical.

76

3) Naturally, our results are only generalizable to datasets and simulation settings

included in this chapter. Further research is required before inferring our findings

to a broader population of data structures. Some examples of such interesting

extensions will be – (a) multivariate response data sets, for which our response-

based methods have to be modified for deriving locally importance features; (b)

graph based learning, for which networks can be considered as part of both response

and explanatory variables.

Method-specific conclusions and future research opportunities are presented in the

following sections of this chapter.

5.1 Localized Variable Selection with CBFS

We have introduced CBFS which uses binning and clustering to segment data into

homogenous regions where the effect of variables can be locally isolated and detected.

Next, it uses RF to select features within each cluster. Finally, average and intersection

methods are proposed to aggregate the variable selection results from these clusters.

We have used simulations and real datasets to compare the variable selection performance

of CBFS and regular RF. In simulations, where we generated 10000 data points for each

simulation function, CBFS performed better than regular RF in most cases. However, in

real datasets, regular RF was more successful in terms of correctly identifying original

input features from added noise variables. We hypothesized that these results were due to

77

the formation of small clusters in the CBFS clustering step. Having a small number of

observations in clusters can result in overfitting of RFs and selection of noise variables. In

an attempt to evaluate our hypothesis, we repeated this experiment with a few tweaks in

our settings. We used a smaller number of bins and clusters to avoid forming small clusters.

This improved the performance of CBFS. In general, CBFS requires a large enough sample

size in each cluster to be able to select important features effectively. Finally, we believe

CBFS could be improved in the following ways:

1) In some cases, small clusters are formed in CBFS. As a result, RFs in CBFS are

exposed to a smaller number of observations and can not efficiently learn

patterns in data and detect important features. This could be addressed by using

a clustering method with size constraints. Although there has been some

research on such algorithms, we could not find an efficient implementation of

these algorithms in Python [61], [62].

2) We have used similar parameters for RFs fitted to clusters in CBFS. However,

we hope that tuning individual RFs could enhance the results. One way to do

this would be to split data in each cluster into train and validation sets and use

a grid search on main RF parameters such as number of trees, maximum depth,

and number of features to consider at each node. It is also notable that this would

make CBFS computationally more expensive.

3) One of the steps of CBFS is feature-based clustering with KMeans algorithm in

Python [53]. We have used Euclidean distance in the KMeans algorithm but

other distance measures should be investigated as well. Especially, in cases

78

where categorical features are present in a dataset. We refer the reader to

Similarity measures for categorical data: A comparative evaluation by Boriah

et al. for a literature review on distance measures for categorical variables [63].

4) The feature-based clustering step in CBFS may suffer from the curse of

dimensionality in high-dimensional problems. In short, the points would be

similarly distant from each other in high-dimensional space and this would

make clustering less efficient. See On k-anonymity and the curse of

dimensionality by Aggarwal for further information on this topic [64]. It is

hoped that including an initial crude variable selection step, similar to the one

in LAFI’s algorithm, could reduce feature dimensionality before the clustering

step.

5.2 Local Prediction Methods

As described in chapter chapter 2, features are used to form clusters in CBFS, and one RF

is fitted to each feature-based cluster. We use only features in making these clusters to be

able to assign new observations to these clusters and use the corresponding RF for the

assigned cluster to make local predictions. We have explored two local prediction methods:

local prediction with supervised clustering (LPSC) and local prediction with unsupervised

clustering (LPUC). LPSC uses cluster assignments of training set data as labels and assigns

new points to clusters using a RF classifier. In LPUC, new points are assigned to clusters

based on proximity to cluster centers in feature space.

79

Simulation 3 considers a low signal-to-noise ratio response surface with interactive

features. Local methods achieve a lower MSE in the train set but the reverse is true for the

test set. This behavior could be either due to overfitting of local RF regressors or poor

assignment of test set cases to feature-based clusters. For example, a large error occurs if a

test set case with small response value is predicted by a local RF for a cluster of large

response value cases. To further investigate this behavior, we repeat this experiment by

limiting the number of response bins and the number of feature-based clusters within each

response bin to two (M and K parameters in the CBFS algorithm). This limits the total

number of feature-based clusters to four. We hope this reduces the test set error in two

ways: (1) by reducing the error due to a poor assignment of test set cases to feature-based

clusters; (2) by resulting in a larger number of data points in each cluster which can

decrease the chances of overfitting. Finally, we limit the maximum depth of RFs to five in

a further attempt to reduce the probability of overfitting. Regular RF achieves the lowest

MSE in both test and train sets even after these changes in experiment settings. Note that

observations with similar features may end up in different response bins because of the

multiplier of the error term in the simulation function. This could be the reason for this

behavior.

We use wine quality and bike sharing data as our real-world dataset. Using our default

experiment settings, local methods achieve a lower MSE in train sets but higher MSE in

test sets in comparison to regular RF in both datasets. Similar to the simulation 3, this

behavior could be either due to overfitting of local RF regressors or poor assignment of

test set cases to feature-based clusters. Thus, we repeat these experiments with the same

limitations we used in our second experiment for Simulation 3. This time LPSC

80

outperforms regular RF in bike sharing data. In wine quality data, however, regular RF still

achieves a lower MSE than both local methods. This could be due to the smaller number

of instances in the wine quality dataset in comparison to our generated datasets and bike

sharing data. As a potential future research, one could further investigate these results by

cross-validating each RF to omit the overfitting option. This would isolate the prediction

error due to cluster misassignment.

5.3 Localized Variable Selection with LAFI

In chapter 4, we have introduced LAFI which uses a binary tree approach to split data into

bins based on response variable rankings. Next, it uses a RF-based variable selection

method to find important variables in each bin. Finally, LAFI score is calculated by

aggregating the variable selection results from all bins.

Three simulated datasets, as well as a real dataset, are used to compare LAFI with FI from

regular RF. Features with LAFI score larger than a threshold are selected. Next, a RF model

with all input features, i.e. full model, is compared to a RF model with selected variables

from LAFI, i.e. reduced models, in terms of prediction accuracy. Each experiment is

replicated 50 times.

In all simulations, main features had a higher mean LAFI score than noise variable, while

this was not the case for regular FI. In addition, reduced models, which included features

selected by LAFI, showed a better prediction performance than full models with all the

81

input features in most cases. Lastly, we used ozone dataset from mlbench package in R

[58]. The response variable is daily maximum one-hour-average ozone reading in Los

Angeles in 1976. Day of the week and wind speed are found to be the features with lowest

LAFI and regular FI score. This result is in agreement with two other studies that used this

dataset. Reduced models achieved similar MSE values to full models but had fewer input

features.

Finally, here is a list of future research directions:

1) In all of our experiments, we used a depth of 3 for the binary tree that splits data

based on response value ranking. Furthermore, we used a threshold of 0.2 on LAFI

scores for dropping variables. Further research is needed to find optimal values of

these parameters for each dataset. One possible approach would be a grid search to

find the set of values which maximize the prediction accuracy of reduced models.

2) For variable selection within each bin, we used an algorithm derived from the work

of Genuer et al. on variable selection using RF [10]. We picked this algorithm

because of RF’s ability to detect nonlinear patterns. However, LAFI could work

with other variable selection methods as well.

82

Bibliography

[1] T. J. Mitchell and J. J. Beauchamp, “Bayesian variable selection in linear regression,”

Journal of the American Statistical Association, vol. 83, no. 404, pp. 1023–1032, 1988.

[2] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer

classification using support vector machines,” Machine learning, vol. 46, no. 1, pp.

389–422, 2002.

[3] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics

and intelligent laboratory systems, vol. 2, no. 1–3, pp. 37–52, 1987.

[4] H. Wold, “Systems analysis by partial least squares,” 1983.

[5] H. Wold, “Partial least squares,” Encyclopedia of statistical sciences, vol. 9, 2004.

[6] H. Akaike, “A new look at the statistical model identification,” IEEE transactions on

automatic control, vol. 19, no. 6, pp. 716–723, 1974.

[7] G. Schwarz, “Estimating the Dimension of a Model,” Ann. Statist., vol. 6, no. 2, pp.

461–464, Mar. 1978.

[8] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, no. 5, pp.

465–471, 1978.

[9] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Journal of the

Royal Statistical Society. Series B (Methodological), vol. 58, no. 1, pp. 267–288, Jan.

1996.

[10] R. Genuer, J.-M. Poggi, and C. Tuleau-Malot, “Variable selection using random

forests,” Pattern recognition letters, vol. 31, no. 14, pp. 2225–2236, 2010.

[11] A. Hapfelmeier and K. Ulm, “A new variable selection approach using random

forests,” Computational Statistics & Data Analysis, vol. 60, pp. 50–69, 2013.

[12] R. Díaz-Uriarte and S. A. De Andres, “Gene selection and classification of

microarray data using random forest,” BMC bioinformatics, vol. 7, no. 1, p. 3, 2006.

[13] V. Svetnik, A. Liaw, C. Tong, and T. Wang, “Application of Breiman’s random

forest to modeling structure-activity relationships of pharmaceutical molecules,” in

International Workshop on Multiple Classifier Systems, 2004, pp. 334–343.

[14] H. Jiang et al., “Joint analysis of two microarray gene-expression data sets to select

lung adenocarcinoma marker genes,” BMC bioinformatics, vol. 5, no. 1, p. 81, 2004.

[15] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation importance: a

corrected feature importance measure,” Bioinformatics, vol. 26, no. 10, pp. 1340–1347,

2010.

[16] R. Tang, J. P. Sinnwell, J. Li, D. N. Rider, M. de Andrade, and J. M. Biernacka,

“Identification of genes and haplotypes that predict rheumatoid arthritis using random

forests,” in BMC proceedings, 2009, vol. 3, p. S68.

83

[17] M. Wang, X. Chen, and H. Zhang, “Maximal conditional chi-square importance in

random forests,” Bioinformatics, vol. 26, no. 6, pp. 831–837, 2010.

[18] W. Rodenburg et al., “A framework to identify physiological responses in

microarray-based gene expression studies: selection and interpretation of biologically

relevant genes,” Physiological genomics, vol. 33, no. 1, pp. 78–90, 2008.

[19] M. A. Efroymson, “Stepwise regression–a backward and forward look,” Florham

Park, New Jersey, 1966.

[20] H. J. Cordell and D. G. Clayton, “A Unified Stepwise Regression Procedure for

Evaluating the Relative Effects of Polymorphisms within a Gene Using Case/Control

or Family Data: Application to HLA in Type 1 Diabetes,” The American Journal of

Human Genetics, vol. 70, no. 1, pp. 124–141, Jan. 2002.

[21] C. Telmo, J. Lousada, and N. Moreira, “Proximate analysis, backwards stepwise

regression between gross calorific value, ultimate and chemical analysis of wood,”

Bioresource Technology, vol. 101, no. 11, pp. 3808–3815, Jun. 2010.

[22] R. A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Annals

of Eugenics, vol. 7, no. 2, pp. 179–188, Sep. 1936.

[23] G. R. Doddington, “Phonetically sensitive discriminants for improved speech

recognition,” in Acoustics, Speech, and Signal Processing, 1989. ICASSP-89., 1989

International Conference on, 1989, pp. 556–559.

[24] M. J. Hunt, S. M. Richardson, D. C. Bateman, and A. Piau, “An Investigation of

PLP and IMELDA Acoustic Representations and of their Potential for Combination,”

in Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International

Conference on, 1991, pp. 881–884.

[25] R. Haeb-Umbach and H. Ney, “Linear discriminant analysis for improved large

vocabulary continuous speech recognition,” in Acoustics, Speech, and Signal

Processing, 1992. ICASSP-92., 1992 IEEE International Conference on, 1992, vol. 1,

pp. 13–16.

[26] R. A. Johnson and D. W. Wichern, “Multivariate Analysis,” Encyclopedia of

Statistical Sciences, Aug. 2006.

[27] C. R. Rao, “The utilization of multiple measurements in problems of biological

classification,” Journal of the Royal Statistical Society. Series B (Methodological), vol.

10, no. 2, pp. 159–203, 1948.

[28] J. Fan and R. Li, “Variable Selection via Nonconcave Penalized Likelihood and its

Oracle Properties,” Journal of the American Statistical Association, vol. 96, no. 456,

pp. 1348–1360, Dec. 2001.

[29] C.-H. Zhang, “Nearly unbiased variable selection under minimax concave penalty,”

Ann. Statist., vol. 38, no. 2, pp. 894–942, Apr. 2010.

[30] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,”

Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67,

no. 2, pp. 301–320, 2005.

84

[31] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped

variables,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),

vol. 68, no. 1, pp. 49–67, 2006.

[32] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and

smoothness via the fused lasso,” Journal of the Royal Statistical Society: Series B

(Statistical Methodology), vol. 67, no. 1, pp. 91–108, 2005.

[33] R. Tibshirani, “The lasso method for variable selection in the cox model,” in

Statistics in Medicine, 1997, pp. 385–395.

[34] J. Gui and H. Li, “Penalized Cox regression analysis in the high-dimensional and

low-sample size settings, with applications to microarray gene expression data,”

Bioinformatics, vol. 21, no. 13, pp. 3001–3008, 2005.

[35] H. Hotelling, “Analysis of a complex of statistical variables into principal

components.,” Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.

[36] I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York: Springer-Verlag,

2002.

[37] P. Baldi and K. Hornik, “Neural networks and principal component analysis:

Learning from examples without local minima,” Neural networks, vol. 2, no. 1, pp. 53–

58, 1989.

[38] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A Review and

New Perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[39] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[40] F. Niyaghi, S. Bhattacharyya, and S. Emerson, “Variable Selection using

Intersection and Average of Random Forests,” in JSM Proceedings, Statistical

Learning and Data Science Section, Baltimore, MD, 2017.

[41] A. Liaw and M. Wiener, “Classification and regression by randomForest,” R news,

vol. 2, no. 3, pp. 18–22, 2002.

[42] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and

regression trees. CRC press, 1984.

[43] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of

Machine Learning Research, vol. 12, p. 2825−2830, Oct. 2011.

[44] “1.11. Ensemble methods — scikit-learn 0.19.1 documentation.” [Online].

Available: http://scikit-learn.org/stable/modules/ensemble.html#random-forest-

feature-importance. [Accessed: 24-Apr-2018].

[45] E. Bai, K. Li, W. Zhao, and W. Xu, “Kernel based approaches to local nonlinear

non-parametric variable selection,” Automatica, vol. 50, no. 1, pp. 100–113, Jan. 2014.

[46] W. Zhao, H.-F. Chen, E.-W. Bai, and K. Li, “Local variable selection of nonlinear

nonparametric systems by first order expansion,” Systems & Control Letters, vol. 111,

pp. 1–8, 2018.

85

[47] M. A. Winkel, J. W. Stallings, C. B. Storlie, and B. J. Reich, “Sequential

Optimization in Locally Important Dimensions,” arXiv:1804.10671 [stat], Apr. 2018.

[48] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation

of cluster analysis,” Journal of computational and applied mathematics, vol. 20, pp.

53–65, 1987.

[49] J. MacQueen, “Some methods for classification and analysis of multivariate

observations,” in Proceedings of the fifth Berkeley symposium on mathematical

statistics and probability, 1967, vol. 1, pp. 281–297.

[50] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis, “Modeling wine

preferences by data mining from physicochemical properties,” Decision Support

Systems, vol. 47, no. 4, pp. 547–553, 2009.

[51] H. Fanaee-T and J. Gama, “Event labeling combining ensemble detectors and

background knowledge,” Progress in Artificial Intelligence, vol. 2, no. 2–3, pp. 113–

127, 2014.

[52] D. Dua and E. K. Taniskidou, “UCI Machine Learning Repository,” 2017.

[53] “sklearn.cluster.KMeans — scikit-learn 0.20.2 documentation.” [Online].

Available: https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.KMeans.html. [Accessed: 17-Jan-

2019].

[54] “sklearn.metrics.silhouette_score — scikit-learn 0.20.2 documentation.” [Online].

Available: https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html. [Accessed:

22-Jan-2019].

[55] “3.2.4.3.2. sklearn.ensemble.RandomForestRegressor — scikit-learn 0.20.2

documentation.” [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html.

[Accessed: 19-Jan-2019].

[56] R. R. Curtin et al., “MLPACK: A Scalable C++ Machine Learning Library,”

Journal of Machine Learning Research, vol. 14, no. Mar, pp. 801–805, 2013.

[57] “3.2.4.3.1. sklearn.ensemble.RandomForestClassifier — scikit-learn 0.20.2

documentation.” [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.

[Accessed: 22-Jan-2019].

[58] F. Leisch and E. Dimitriadou, “mlbench: Machine Learning Benchmark Problems,

2005,” URL http://CRAN. R-project. org/. R package version, pp. 1–0.

[59] N. Chèze, J.-M. Poggi, and B. Portier, “Partial and recombined estimators for

nonlinear additive models,” Statistical inference for stochastic processes, vol. 6, no. 2,

pp. 155–197, 2003.

[60] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,”

Annals of statistics, pp. 1189–1232, 2001.

86

[61] B. Babaki, A python implementation of KMeans clustering with minimum cluster

size constraint (Bradley et al., 2000): Behrouz-Babaki/MinSizeKmeans. 2018.

[62] P. S. Bradley, K. P. Bennett, and A. Demiriz, “Constrained k-means clustering,”

Microsoft Research, Redmond, pp. 1–8, 2000.

[63] S. Boriah, V. Chandola, and V. Kumar, “Similarity measures for categorical data:

A comparative evaluation,” in Proceedings of the 2008 SIAM International Conference

on Data Mining, 2008, pp. 243–254.

[64] C. C. Aggarwal, “On k-anonymity and the curse of dimensionality,” in Proceedings

of the 31st international conference on Very large data bases, 2005, pp. 901–909.

[65] “scikit-learn/sklearn/ensemble at master · scikit-learn/scikit-learn · GitHub.”

[Online]. Available: https://github.com/scikit-learn/scikit-

learn/tree/master/sklearn/ensemble. [Accessed: 26-Jan-2019].

87

Appendix: Out of Bag (OOB) Score Calculation

In our variable selection in chapter 4, we have used out of bag scores from

RandomForestRegressor function of sklearn.ensemble module in Python [43]. The

documentation of this function defines OOB score as coefficient of determination (R2) on

unseen data but does not provide a mathematical equation. Below is part of the source code

that calculates OOB scores [65]:

for k in range(self.n_outputs_):

 self.oob_score_ += r2_score(y[:, k], predictions[:, k])

self.oob_score_ /= self.n_outputs_

It first calculates R2 values on unseen data for each tree. Note that each tree in RF uses a

bootstrap sample of original data as input and unseen data are the ones that are not selected

in that bootstrap sample. Next, OOB score is calculated as the average of these R2 values

obtained from all the trees in RF. To write this in a mathematical form, let us define the

following notations:

𝑻: Number of trees in RF

𝑪𝒕: Set of instances from the original pool of data points that are not picked in bootstrap

sample of tth tree; where t ranges from 1 to T

|𝑪𝒕|: Number of elements in set 𝐶𝑡

𝒙𝒕𝒊: Feature vector of ith instance in 𝐶𝑡

𝒚𝒕𝒊: Observed response value for 𝑥𝑡𝑖

�̅�𝒕.:
∑ 𝑦𝑡𝑖

|𝐶𝑡|
𝑖=1

|𝐶𝑡|

𝑓�̂�(𝒙𝒕𝒊): tth tree predicted response value for 𝑥𝑡𝑖 (note that 𝑥𝑡𝑖 is not used in training of tth

tree)

88

Finally, OOB score is calcuated by the formula below:

 𝑂𝑂𝐵 𝑆𝑐𝑜𝑟𝑒 =

∑ [1 −
∑ (𝑦𝑡𝑖 − 𝑓�̂�(𝑥𝑡𝑖))

2|𝐶𝑡|
𝑖=1

∑ (𝑦𝑡𝑖 − �̅�𝑡.)2|𝐶𝑡|

𝑖=1

]𝑇
𝑡=1

𝑇

(7)

