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CHAPTER 1 

General Introduction 

1.1.Motivation 

Practical engineering design problems are generally complex with limited budget. 

However, due to the involvement of high risk in terms of public safety, economic 

resources, etc. in such design problems, we require our design decisions to be as 

accurate as possible. A risk in engineering design can be defined as the potential for a 

design to fail to meet critical requirements due to being flawed, infeasible, inefficient 

etc. In the early design phase, it is very important for the designers to able to identify 

the interesting regions in the large complex design space when the cost is low; this 

helps in guidance as the designers can avoid investing on detailed and expensive design 

analysis on infeasible or inefficient designs. Thus, the goal is to provide efficient design 

decisions in the early design phase to reduce the overall cost of the design process. It 

is impossible to conduct expensive evaluations of every possible design, therefore, low-

cost optimization models are necessary, specific to the domain of design problem, to 

help the designers with efficient decisions in early design phase. However, such 

practical design problems are hard to implement in a simple optimization framework, 

due to the complexity in the formulation of objective functions and constraints, high 

simulation or function evaluation cost, inclusion of uncertain design parameters, etc. 

Also, approximating a complex design problem into much simpler problem can lead to 

the negligence of original complex constraints and, thus, can result in infeasible designs 

and not be a useful choice for practical decisions. This motivates us to consider an 

appropriate optimization framework for a complex design problem to obtain better 

decisions in the early design phase, which can reduce higher cost in the later design 

phase. Practically, there is a cost consideration with the complexity in the optimization 

framework due to complex function evaluations, large constraints validation, complex 

simulations, etc. which act as a counter-balance for better decisions. Some practical 

design problems have been investigated where complex optimization frameworks have 

been modeled [1], [2]. In this work, we are focused on the application of sequential and 

hierarchical optimization frameworks to solve complex design problems, representing 
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the domain of problems practiced in different industries. Different sequential [3], [4] 

and hierarchical or nested methods [5], [6] have been attempted to solve these 

problems. This research is focused on the investigation of the bi-level (nested) and 

Bayesian (sequential) design techniques. Thus, the overall research goal is to 

investigate hybrid optimization architectures in solving early phase design problems 

with a trade-off among model complexity, performance, and cost.  

 

1.2. Research Objectives and Contribution 

The four research objectives of this dissertation are now presented: 

RO-1: Investigating bi-level design architectures in early resilient system 

design optimization: 

In the domain of complex dynamic system engineering, we generally have a high 

failure cost: for example, life loss from aircraft disasters due to any system failures. 

The goal for this study is to investigate an appropriate design architecture for efficient, 

high resilience design solutions, reducing risk of failures. A resilient design is the 

design of a system which has the ability to recover from faults, partially or completely, 

to attain a desired level of performance and mitigate risk. Redundancy in engineering 

design, is the duplication or installation of critical components or functions of a system 

with the intention of increasing reliability of the system or to improve actual system 

performance. Redundancy is one method of achieving system resilience. Figure 1.1 is 

an example of a resilient commercial aircraft complex engineered system. However, in 

such complex system design problems (e.g. aircraft systems), the challenges or the 

complexities involve a challenging design space due to a mixed-integer problem from 

discrete choices of systems and subsystems (eg. airfoil, flaps, propellers, battery etc.), 

and continuous operational variables (flight height, speed etc.) with multiple 

considerations of costs from design, manufacturing, operation and safety measures. An 

efficient design solution should have the best trade-off among these costs. With such 

complexities in the early integrated resilient system design problem, this research 

contributes by investigating a nested bi-level design architecture and compares this with 

other common simpler optimization architectures like single stage and sequential in 
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terms of the solution quality, time complexities and general usefulness. The research 

will benefit the domain of complex engineering systems and the proposed bi-level 

optimization framework (nested design) can be applicable in such practical design 

problems where in the early design stage, the designer will be able to consider multiple 

design options (concepts), compare numerically among those design options 

(concepts), and find true efficient designs (concept selection in terms of low risk factor) 

for future consideration in manufacturing or implementation.  

 

 

Figure 1.1. Example of a resilience system (commercial aircraft) (from google) 

 

RO-2: Developing a sequential Bayesian optimization design architecture as a 

design classifier:  

In addition to the challenges in the first research objective, in other complex design 

problems, the objective or constraint functions might also be represented by many 

mathematical equations or need very costly simulation models. These kind of functions 

are called black-box functions and such design problems are called black-box problems. 

Figure 1.2 shows a conceptual comparison between white-box and black-box models 

in software testing. In the white-box, we know the complete application codes, whereas 

in the black-box model, the complex and expensive application codes are too 

complicated for a human brain to interpret or are unknown to the designer. Thus, unlike 
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a white-box model, we know only the model inputs and outputs but not any mapping 

equations from input to output. Generally, these kind of black-box problems can be 

solved by a Bayesian optimization (BO) [7]. Bayesian optimization is a low-cost black-

box global optimization tool in the sequential design method where we learn and update 

our knowledge from prior evaluated designs (data), and proceed to the selection 

(sampling) of new designs for future expensive evaluation, with a target to find the 

optimal region at minimal evaluation cost. In the complex design problems like in the 

domain of complex engineered system (Aircraft design) or in physical and mechanical 

systems of material science and manufacturing, there can lie a discontinuity from 

discrete choice of designs, discrete design domain (or regions) or discontinuity in 

material properties etc. However, one of the challenges is that the standard BO assumes 

a continuous black-box function [7] and therefore, with a discontinuous space in a 

black-box design problem, the performance of BO does not guarantee true convergence 

and thereby raises the concern on the quality of the solution. As in the black box design 

problem, there can also lie an unknown location of a black-box constraint, which with 

neglecting can also lead to provide solution inaccuracy, posing high risk designs. 

Focusing on these challenges on a discontinuous black-box design problem with 

unknown constraints, this research contributes in tackling these with adopting a design 

space-partitioning approach. This research investigates integrating a classification 

technique into the existing efficient sampling method of BO, with no constraint on the 

amount and quality of pre-existing training data, which any existing machine learning 

classifiers are dependent to [8], [9].  

 
Figure 1.2. Comparison between white-box and black-box models 
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RO-3: Stage 2: Developing a weighted Tchebycheff multi-objective Bayesian 

optimization with regression-based model calibration: 

In the black-box design problems in the domain of complex static or dynamic systems, 

one can have multiple black-box objectives with respect to design, operational, safety 

measures etc. In optimizing the problems, a multi-objective Bayesian optimization 

(MOBO) architectures is generally suited. In recent years, two common approaches 

that has been taken: 1. formulating a multi-objective (hyper-volume) acquisition 

function [10], [11]  and 2. building a combined (single) multi-objective function and 

treat it as a single acquisition function [12] . The first approach however possesses 

significant model complexity with large number of objectives [12]. The second 

approach does not possess such limitations, however, but requires a special 

consideration of the choice of the method to formulate the multi-objective. A global 

criterion method, such as the weighted Tchebycheff method, is well suited for this 

second approach; however, a challenge of this method is the need for prior knowledge 

of utopia values. A utopia value in a multi-objective problem is the optimal solution of 

the objective when the same is optimized independently (not considering other 

objectives). As computational cost grows significantly with multiple BO for optimizing 

each objective independently (to find utopia), this research contributes in developing a 

weighted Tchebycheff MOBO with a regression based model calibration approach, 

where the utopia values are iteratively estimated from regression analysis of the 

available sampled data, guided by the acquisition function of weighted Tchebycheff 

black-box multi-objective function to minimize computational expense. 

RO-4: Developing a nested weighted Tchebycheff multi-objective Bayesian 

optimization, embedded with a regression model selection algorithm for utopia 

estimation: 

In the black-box multi-objective optimization problem in the domain of complex 

system design, the objectives are unknown (black-box) and due to the sequential 

sampling in a MOBO, the challenge further lies in the prior choice of regression models 

to be fitted in the weighted Tchebycheff MOBO, to best represent the black-box 

objectives from the available sampled data. Also, with an efficient choice of a 

regression model fitting the limited data (early knowledge), the efficiency of a given 
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regression model in estimating utopia values can degrade with the availability of more 

data through sequential sampling (increasing knowledge). With an inappropriate 

regression model estimating unknown model parameters (like utopia), large errors can 

also lead to the concern in solution accuracy in the MOBO setting, which ultimately 

leads to potentially inefficient or high-risk design solutions in any complex system 

design. Thus, to overcome these challenges and in the common focus of this 

dissertation to identify appropriate design architecture for better decisions, this research 

contributes in developing a nested weighted Tchebycheff MOBO. Here, to add 

flexibility, a regression model selection procedure is nested into the weighted 

Tchebycheff MO-BO design architecture, ultimately to find an appropriate regression 

model from a finite set of pre-defined models. The research contribution also includes 

investigating this flexible MO-BO design architecture by comparing the performance 

with earlier developed non-flexible architectures and architectures with other model 

selection procedures.  

 

1.3.Case Studies 

This dissertation uses two primary case studies to demonstrate the methods from this 

research. They are described as follows: 

Case Study 1: The first case study, as a motivational problem to the first research 

objective, is the design of a multirotor drone model. In this problem, a trade-off 

between different cost objectives like design, operational and resilience cost are 

considered with different choices of systems (battery, rotor or line architectures), 

operations (flight height) and different choices of resilience policy in response to 

system (battery, rotor or line architectures) failures.  This problem represents the early 

system resilience design under fault-scenario simulation. The problem considers two 

extreme flight scenarios representing different levels of flight risk: 1. A Rural scenario 

with relatively low cost of failure and 2. A Congested scenario with very high cost of 

failure. While design resiliency in this work is considered the system’s ability to 

recover from faults to avoid from any disaster (high decrease in failure cost relative to 

low increase in design or operational cost), design redundancy in this work is defined 
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as the intention of installing more complex systems than required to increase system 

dependability (low decrease in failure cost relative to high increase in design cost).  

Case Study 2: The second case study, from the domain of mechanics and 

manufacturing, is a cyclic pressure-temperature loaded thin tube design. This can be 

considered as a high-risk design problem due to having high failure outcomes of the 

material structures due to cyclic loading. Focusing on practical challenges of a black-

box design problems as discussed earlier, this second case study represents a 

motivational example to the second, third and fourth research objectives, assuming 

multiple black-box objectives and an unknown creep-fatigue failure constraint 

boundary along the discontinuity of the discrete design domain of safe and unsafe 

region. 

The roadmap for this dissertation is as follows. Chapter 2 uses the first case study 

and compares multiple architectures, and selects a nested bi-level architecture for early 

design resilience with discrete-continuous design space, and with a trade-off among 

multiple objectives. Chapters 3-5 focus on the second case study of the cyclic loaded 

thin tube design. Chapter 3 builds a sequential BO architecture as a design classifier by 

optimizing the location of the unknown constraint boundary (also representing the 

discontinuity) within a pseudo-continuous design space, which partitions and classifies 

safe and unsafe thin tubes in terms of creep-fatigue failure. Chapter 4 solves the multi-

objective black-box problem with weighted Tchebycheff MO-BO and regression-based 

model calibration for utopia value estimation. Chapter 5 investigates the model 

selection procedure in an attempt to add flexibility and enhance the overall performance 

of the weighted Tchebycheff MOBO, leading to a nested weighted Tchebycheff 

MOBO. Chapter 6 concludes the dissertation with overall research accomplishments, 

current limitations, and future research directions.  

 

1.4. Intellectual Merit 

The principle purpose of the research is to provide an appropriate optimization 

framework and its application to complex engineering design problems during the early 

design process. The development of different architectures to mitigate several design 
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challenges mentioned earlier, extends the practical application of bi-level and Bayesian 

optimization for the design of experiment problems with discontinuous response 

surface, and solving machine learning classification problems.  This efficient sequential 

learning will allow for better resource allocation to experiments, providing efficient 

investments. Furthermore, the reduction of model complexities with large number of 

objectives, and the additional knowledge in Bayesian Optimization framework through 

model calibration from low-cost statistical approach, increases the efficiency and thus 

align towards practical implementation. Finally, the development of Bi-level 

framework, representing a nested approach, opens a new direction in solving complex 

engineering system designs which are subject to high risk to failure consequences.   

 

1.5. Broader Impact 

The research in this dissertation will make significant steps as a positive impact on 

society. As practical engineering design problems are generally complex with limited 

budget, for the betterment of the society, we will need our design decisions to be as 

accurate as possible. It is very unlikely for a simple standard optimization formulation 

to be applicable for industrial problems due to the complexity in formulation of 

objective and constraints.  Considering an oversimplified or inappropriate model for a 

design problem can lead to providing incorrect solutions, which can cause negative 

impact on society, especially when there is an involvement of high risk. Such high risk 

can be measured in terms of life loss or loss of resources as in the nuclear sectors, 

aerospace industries, pharmaceutical industries, consumer industries etc. In another 

way, any redundant costly design architectures should also be avoided in the early 

design to avoid the increase in cost of the overall design process. Thereby, by 

developing an efficient optimization models to solve such complex engineering design 

problems with a trade-off between solution accuracy and model cost in a decision 

making process in the early design phase, we can help the designers in reducing such 

risks while minimizing costs. The research also considers uncertainty in the 

optimization process, and towards minimizing prediction error of such uncertain 

parameters, which further reduces the risk in design decisions. Therefore, the outcome 
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of the research reduces the gap between design optimization theory and its practical 

application to reduce risk of failure due to any catastrophic incidents, thus maximizing 

design safety.    
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ABSTRACT** 

In large scale complex engineered system design problems, multidisciplinary 

optimization has been utilized and plays a key role in design research. In such 

problems, it is often difficult to optimize for the whole system in a single level consisting 

of large numbers of design variables, objective functions and constraints. Also, it is 

often necessary to ensure that the design will be resilient to hazardous events to ensure 

safe, sustainable, and economical operations. To design resilience into the complex 

engineered system, it is necessary to consider a trade-off among high-level design 

redundancy of systems, operations, and the resilience policy used to respond and 

mitigate any hazardous contingencies. Therefore, it can be helpful to break down the 

overall problem into several sub-problems where optimizing each of the sub-problems 

guarantees an optimal solution to the main problem. With high risk of failure 

consequences in this early resilient design, an appropriate optimization architecture is 

necessary. This chapter compares different architectures for the resilient design of a 

drone model, finally selecting a bi-level architecture. In a nested bi-level design 

architecture, a decision at the upper level provides a unique projection to the lower 

level design space. In this architecture, the lower level problem is solved for each 

candidate design at the upper level, leading to an optimal solution at both levels. 

Though the computational cost of the bi-level architecture is the highest, it provides an 

overall better performance than simpler architectures like single-stage and sequential 

in terms of the optimal tradeoffs of design redundancy (design and operational cost) 

and resiliency for a low risk design solution.  

 

2.1.Introduction 

Incorporating resilience in the design of a system is beneficial to ensure it operates 

as safely, sustainably, and economically as possible when there are hazardous events 

[13]–[15]. Optimizing resilience can involve the physical design of the system (e.g. 

redundancy and sensors) and the contingency management of the system (how it 

responds to hazardous events). Prior work [16]–[20] has shown both of these types of 

resilience optimization in the design of aerospace systems. For example, the resilience 
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optimization of a health management system in a power balance model of the Space 

Shuttle Main Engine involved the allocation of sensors needed to detect a hazard [16]-

-an instance of optimizing a design for resilience. Other work has focused on 

optimizing the resilience of in-flight aircraft fault accommodation (e.g. trim, throttle, 

and switch adjustments for various hazards) [17] -one of many instances (see: [18]–

[20]) of optimizing the contingency management for resilience. These approaches 

complement each other, since contingency management must have some inherent 

flexibility afforded to it from the design features to operate effectively and resilient 

design features must likewise be leveraged effectively by contingency management to 

effectively mitigate hazards. Designing resilience into a system thus can and should 

involve optimizing both its high-level design and operational features and its 

contingency management.  

However, while there have been design studies which optimize the either design or 

contingency management individually, there has been much less research dedicated to 

optimizing both in an integrated framework. This joint optimization of design and 

resilience policy is somewhat analogous to the co-design problem. In co-design, one 

simultaneously optimizes the plant (or architecture) of the system and its control system 

[21]. There are two main formulations which can be used in co-design: a bi-level 

architecture (called a nested strategy) and a single-stage architecture (called a 

simultaneous strategy). In the bi-level architecture, the lower-level control optimization 

is performed at each iteration of the upper-level plant or architecture optimization. In 

the all-in-one architecture, on the other hand, both the plant design and control policy 

are optimized at the same time in a single problem [21]. Neither approach is universally 

preferred; the best strategy depends on considerations such as the computational time 

of inner and outer loops and the computational complexity of the problem [Sec. 3.3.3, 

[21]]. In the emerging area of reliability-based co-design, one optimizes the design and 

performance of a system while maintaining a desirable reliability for the system (i.e. 

keeping the probability of certain limiting states below specified constraint thresholds 

[22]. While this reliability-based co-design problem is similar to resilience-based 

design in intention--minimizing the cost of the system and ensuring it mitigates 
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hazards--the formulation is different because of the consideration of hazards: in 

reliability based design, risk is dealt with as a constraint on the system failure 

probability, while in resilience-based design risk is represented as a cost used in the 

objective. 

2.1.1. Research motivation 

Previous approaches in resilience optimization, on the other hand, have used three 

architectures to structure the optimization problem: a sequential approach, a bi-level 

approach, and an all-in-one approach. In the sequential approach, the upper-level 

optimization allocates resilience lower-level control sub-problems based on a high-

level model of design risk [23], [24]. Thus, there is an underlying assumption that the 

upper and lower levels are not coupled--that no solution in the second stage will change 

the optimal decision made in the first stage. If this assumption does not hold, e.g., if 

the value of a sensor or redundancy depends on how it can be leveraged to reconfigure 

the system, then it could cause the optimization approach to output a sub-optimal 

solution. In a nested bi-level design architecture, a decision at the upper level provides 

a unique projection to the lower level design space. In this architecture, on the other 

hand, the lower-level optimizes resilience strategies as a single iteration of the top-level 

optimization [25], [22], leading to increased computational cost. In simultaneous 

approaches, both the design and control of the system are considered in one problem 

[26] -often by focusing on either the design or control of the system. Despite the 

presentation of various methods to solve individual design problems, little has been 

done to understand the performance and suitability of these methods for the general 

case of resilience optimization. To understand how optimization architectures can 

affect solution quality and computational performance, there is first a need to formalize 

the integrated (design, operational, and contingency management) optimization of 

resilience. This type of problem is shown in fig. 2.1, which shows the variables, models, 

cost functions, and interactions between each optimization sub-problem. Considering 

a problem like this is challenging, because one must jointly structure the problems in 

such a way that the interactions between design, operational, and resilience models are 
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modelled and taken into account effectively with the need of an appropriate design 

architecture. 

 

Fig.2.1. Integrated Resilience Optimization framework pursued in this work where 

design, operational, and resilience variables are jointly optimized. 
 

2.1.2. Research contribution 

To meet this need, this chapter presents two main contributions: 

 The formalization of the integrated resilience optimization problem shown in 

fig. 2.1 as a joint optimization of design, operational, and resilience variables 

in a value-based framework, and 

 The elaboration and comparison of optimization architectures which may be 

applied to the integrated resilience optimization problem in terms of solution 

quality, computational cost and general usefulness. 

To demonstrate this framework and compare architectures, this work considers the 

high-level optimization a multirotor drone's battery pack and rotor architecture, 

operational altitude, and battery and rotor fault-based flight reconfiguration. This 

model is composed of a high-level design cost model, a flight simulation operational 

model, and a resilience model where the flight simulation is injected with a number of 

faults. Using the integrated resilience optimization formulation, this model illustrates 

both the need to consider problem architecture when design and resilience models are 
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coupled and the computational cost needs in resilience optimization when the resilience 

model involves a large set of independent operational model simulations. 

**The remaining sections elaborate upon these contributions. Section 2.2 presents 

prior research about structuring optimization problems and previous applications of 

mathematical optimization in the design of resilience. Section 2.3 then presents a drone 

resilience problem with formulation of design, operational and resilience costs. Section 

2.4 formalizes the integrated resilience optimization problem with several optimization 

architectures like single-stage, sequential and nested bi-level. Section 2.5 then provides 

a trade-space analysis of the design space of the drone problem, and then a comparative 

study among different architectures in terms of effectiveness and computational cost. 

Finally, Section 2.6 summarizes the findings, identifies limitations with the methods, 

and offers potential directions for future work.** 

 

2.2. Background 

Prior work has studied the use different optimization architectures and presented 

different frameworks for resilience optimization. This section discusses this work and 

how it relates to the contributions in this paper. 

2.2.1. Optimization architectures 

The complexity inherent to optimizing large-scale and multi-disciplinary systems has 

led to the study of distributed optimization architectures in the field of multidisciplinary 

design optimization (MDO) [27]. Unfortunately, the development of a distributed 

optimization architecture that consistently converges across a wide range of problems 

is still an open problem, and distributed approaches often have increased computational 

cost compared to monolithic formulations [27]. However, while architectures can 

increase solution difficulty, the heterogeneous design spaces often approached in 

complex systems design make it necessary to break the problem into components for 

ease of solution [28]. Because aircraft design is a multidisciplinary design problem like 

this, with multiple models and coupled objectives, interest in the area has resulted in 

application tools for real problems [29]–[31] and frameworks for integrating MDO in 

design [32], [33]. 
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Bi-level optimization architectures are often used in multidisciplinary design 

optimization for large scale complex systems when the optimal decision in one model 

depends on the optimal decision in another model. Bi-level optimization was first 

realized in the field of game theory by economist Heinrich Freiherr von Stackelberg in 

1934 [34] that described this hierarchical problem, where one problem, the lower level-

level problem, is embedded (nested) within another problem, called the upper-level 

problem, acting as a constraint. To solve the problem, each iteration of the optimization 

of the upper level corresponds to a full optimization of the lower-level problem at a 

specific set of values used in the upper level problem [35]. While these approaches are 

applicable to certain classes of problems such as competitive games where one wants 

to know the best strategy to defeat the opponent's best strategy [36], computational cost 

is an issue when they are used on traditional problems instead of a monolithic approach 

[35]. Nevertheless, Stackelberg games have been used to represent complex robust 

design problems where one wishes to design the system to be as robust as possible to 

adverse events, because these events are analogous to the lower-level “adversaries” in 

traditional Stackelberg games [37].  

**A simple formulation of Bi-Level Optimization problem can be written as below: 

min
𝑥

𝐹(𝑥, 𝑦)  (Upper Level) 

s.t (Upper Level Constraints) 

𝐺𝑖(𝑥, 𝑦) ≤ 0 𝑓𝑜𝑟 𝑖 = {1,2 … 𝑁}  

  x ϵ X and y ϵ S(x)                                                                               (2.1) 

                                                                          

min
𝑦

𝑓(𝑥, 𝑦) (Lower Level) 

          s.t (Lower Level Constraints) 

𝑔𝑗(𝑥, 𝑦)  ≤ 0 𝑓𝑜𝑟 𝑗 = {1,2 … 𝑛}  

     y ϵ Y                                                                                                  (2.2)                                                                     

In this formulation, x and y are upper and lower level decision variables, respectively; 

𝐺𝑖 and 𝑔𝑗 are the 𝑖𝑡ℎ and 𝑗 𝑡ℎ  inequality constraints in upper and lower level, 

respectively; 𝐹(𝑥, 𝑦) and 𝑓(𝑥, 𝑦)  are upper and lower level objective functions, 
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respectively; and S(x) is the solution set of the lower level problem for the upper level 

candidate decision x. 

Papers have been published attempting bi-level programming in various complex 

design problems. This approach has been extensively applied in the field of 

transportation and defense strategy. Labbe, Marcotte and Savard in 1998 proposed a 

bilevel model of taxation and its application in toll-setting problem in highways. In this 

bilevel model the leader wants to maximize revenue from taxation schemes, while the 

follower rationally reacts to those tax levels [38]. Chen and Subprasom [39] formulated 

a stochastic bilevel programming model for a Build-Operate-Transfer (BOT) road 

pricing problem under demand uncertainty. Braken and McGill [40] proposed a bilevel 

optimization model in defense applications which includes strategic force planning 

problems and two general purpose force planning problems. In recent years, this 

approach has been accepted and is being widely used in strategic bomber force 

structure, and allocation of tactical aircraft to missions. Roghanian et. al. [41] presented 

a bilevel multi-objective programming model in enterprise-wide supply chain planning 

problems considering uncertainties on market demand, production capacity and 

resource availability. Recently, Biswas et. al. [42] developed a bilevel flexible robust 

design on complex large scale multi-reservoir system under risk of future shortage of 

energy, which provides better optimal decision (higher revenue) than a standalone 

framework. Since bilevel optimization is computationally expensive, mathematical and 

dimension reduction approaches have also been taken in [42] to reduce the 

computational cost at minimal loss of information.**  

Two-stage Optimization is an architecture used in mathematical optimization to 

consider uncertainty in decision-making [43]. Two-stage optimization was introduced 

by Dantzig [44] and Beale [45] as a way of solving linear programming problems with 

stochastic variables. In these formulations, the first stage optimizes the decisions 

available before the uncertain variable is known, while the second stage optimizes the 

decisions available after the uncertain variable is realized. However, since taking the 

uncertainty into account in the first stage requires taking into account the second-stage 

actions, a recourse function for the optimal second-stage response must be provided. 



18 

 

 

 

 

 

This recourse function is the optimal resilience cost given realized values of the 

uncertain variables, which can either be derived analytically and/or approximated using 

a discrete set of scenarios (stochastic programming problems of this type are usually 

formulated to be linear) [46], [47]. Thus, where a bi-level approach might find the 

optimal policy over a space of uncertainty (e.g. finding the best design and operational 

policy over the set), two-stage approaches find the best policy before and after 

uncertain variables have been realized. However, inherent to this framework is the idea 

that the second-stage variables can or will be optimized after the fact. For engineered 

systems, this may not necessarily be the case: while a PHM system might be able to 

identify a fault, it may not necessarily be able to optimize the response to the fault in 

real time, instead using a predetermined contingency management scheme for that 

particular fault. Thus, this work focuses on the optimization of that policy before the 

uncertainty is realized (where all variables are optimized together), rather than after 

(where two-stage approaches are applied). 

 Recent developments in the field of multidisciplinary design optimization have 

considered the unique situation of combined plant and control design [48]. Co-design 

is the special application of multidisciplinary design optimization to the simultaneous 

design of the plant (or design) of a system and its dynamic control policy or architecture 

which is used when control and design considerations are coupled. Co-design can be 

performed in a nested (bi-level) or simultaneous (all-at-once) architecture [49], and has 

been used in a number of applications for combined plant, control system, and 

architecture optimization [21]. For example, co-design has previously been applied in 

aircraft design to the aerodynamics and control of tail-fin controlled supersonic 

missiles, where the choice of optimal tail planform is coupled with the choice of 

optimal tail control profile [50]. This situation is similar to the resilience optimization 

problem--except that in the resilience optimization problem the control of the system 

must be optimal not only over the nominal scenario, but over the set of fault scenarios. 

2.2.2. Design and optimization of resilience 

There are a number of competing definitions for resilience in the literature, including 

resistance, absorption, restoration, and recovery [15]. The definition used in this is the 
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common engineering definition: the ability of the system to prevent and recover from 

hazards [51] with a focus on system recoverability [52]. While one could improve 

resilience at all costs, there are often design trade-offs to incorporating resilience, since 

design features (e.g., safety margin, redundancy) can also affect performance. To 

enable the trading of resilience with performance and other considerations, many 

design frameworks have been put forward which quantify the value of resilience in the 

overall cost function used to assess the merit of designs [53], [54], [26] (though other 

approaches exist, see [55]–[57]). One major advantage of value-of-resilience design 

frameworks is that they provide an objective which can be used by an optimization 

method to find the most resilient set of parameters for a system and can incorporate the 

designer's valuation of uncertainty [24]. Thus, many optimization frameworks and 

applications use an overall life-cycle cost function as the overall objective, which 

incorporates both the cost of resilience and the cost of performance and design 

considerations [58]–[62].  

In resilience-based design, there have been some previous efforts to optimize the 

contingency management policy of a system together with its physical design and 

operations. Mehr et. al. [63] proposed the unified optimization of a mission's prognostic 

and health management, asset design, and asset management as three disciplines in a 

multi-objective multi-disciplinary optimization of mission price, vehicle weight, and 

launch availability. Since then, major works in resilience-based design have theorized 

the general early-stage resilience allocation problem as a sequential problem of first 

allocating resilience to subsystems and then optimizing the reliability and health 

management of those systems to achieve the required resilience [23], [54]. 

Additionally, in a prognostics and health management application, Niu and Jiang used 

a sequential approach, first optimizing the “local” usage profile of a braking system to 

reduce maintenance and then optimizing the “global” maintenance policy for the brake 

to minimize the maintenance cost-per-braking-distance, finding that optimizing both 

resulted in less overall cost than only optimizing one or the other [64].  

Finally, there have also been examples of bilevel and two-stage (a related 

architecture, see Section 2.2.1 architectures for use in resilience optimization. Two-
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stage approaches are often used in the resilient design of infrastructure networks [65]–

[67], though have recently been introduced in a general systems design context [24].  

Similar to the bi-level approach, the two-stage approach optimizes the system to 

prepare for adverse events in the first stage (upper level) and optimizes the system to 

mitigate and recover from adverse events in the second stage (lower level). The 

difference between the two-stage approach and the integrated resilience optimization 

formulation pursued in this work is that a two-stage formulation assumes that one can 

optimize the second-stage variables after the hazard has occurred, rather than relying 

on a predetermined policy (as is done in this work). More recently, Zhang et al. have 

used a bi-level optimization approach to determine the optimal construction and 

capacities of service centers that maximizes resilience in the case of service center 

disruptions [68]. One goal of this work is to compare the merit of bi-level approaches 

like this (e.g.[68]) with the sequential approaches previously (i.e. [23], [54]) presented 

for the general design of resilience. 

 

2.3. Early Resilience Design Problem 

 

  

Fig. 2.2. (Left) Multi-rotor (Octa-copter) drone (from google); (Right) Functions and 

Flows of Multi-rotor Model Represented as an Undirected Graph. The Battery 

(StoreEE) powers the system while the rotor lines (AffectDOF) use the system control 

commands (Ctl1 and Dir1) to change the position of the aircraft (DOFs). 

 

To demonstrate the utility of the architectures in the design of resilience, this work 

considers a multirotor drone case study representative of a typical early resilience-
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based design scenario. This model has been implemented in the fmdtools software 

package [69] and is publicly-available in the examples repository [70]. The structure 

of the multirotor model is shown in fig. 2.2. This case study focuses on the design of 

the rotor line architecture (AffectDOF), battery pack architecture (StoreEE), flight 

planning (Planpath), and recovery (ManageHealth) functions. The objective is to 

design a resilient architecture, operational profile, and resilience policy which will 

minimize the cost of failures while minimizing total operational and design cost.  

The design of the battery and line architectures is motivated by minimizing design 

cost, minimizing weight (to increase operational performance), and enabling 

reconfiguration in case of the individual battery and rotor failures in to increase 

resilience. To achieve this in the battery, four structures are considered--monolithic, 

parallel, series, or series-parallel. When a battery fault occurs, a parallel architecture 

enables a reconfiguration which keeps the same voltage at a lower maximum current 

draw while a series architecture enables a reconfiguration which can keep the same 

current draw at a lower voltage. Series-parallel enables both types of reconfiguration 

at the expense of increased weight and cost. Three line architectures are also 

considered--a quad-copter configuration with four rotors, a hexa-copter configuration 

with six rotors, and an octo-copter configuration with eight rotors. While these line 

architectures increase resilience by enabling the system to remain stable in the case of 

individual line faults, they also increase weight and design cost (which can also harm 

resilience). The resulting design cost of the system is: 

𝐶𝐷 = 𝑐𝑏(𝑥𝑏) + 𝑐𝑙(𝑥𝑙)                                                                                                   2.3 

where the cost functions 𝑐𝑏 and 𝑐𝑙, as well as the total design 𝐶𝐷 are for each value of 

design variables: the battery pack architecture 𝑥𝑏 and line architecture 𝑥𝑙 respectively. 

The design costs are provided in Table 2.1. 

 

Battery 𝐶𝐷($) Line/Rotor 𝐶𝐷($) 

Monolithic 0 Quad-copter 0 

Series-split 300 Hexa-copter 1000 

Parallel-split 300 Octa-copter 2000 

Split-both 600   

Table 2.1. Design costs for the battery and line architectures of multi-rotor drone** 
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Fig. 2.3. Flight Plans of Multirotor at Different Operational Altitudes. A higher 

operational altitude leads to a shorter flight but results in lower-quality imagery. 

 

The purpose of this drone is to surveil a given area. To perform this task, it must fly 

over the area at a specific operational altitude and sense (e.g., photograph) the area 

below it at that altitude. As shown in fig. 2.3, different operational altitudes lead to 

different flight-plans which cause the drone to fly for a longer or shorter amount of 

time. When the drone flies lower, it must fly for longer, but it also senses more 

information, yielding higher operational revenue. This relationship is quadratic and 

related to the number of points viewed, according to the operational cost function: 

𝐶𝑂 = −𝑛 ∑ 0.5 +
2

𝑒ℎ,𝑝
2 (𝑥ℎ,𝑥𝑏,𝑥𝑙) 𝑝∈𝐴                                                                                   2.4 

where 𝐶𝑂 is the operational cost, 𝑛 is the number of flights, 𝑝 is an individual viewed 

grid point in the set of viewed gridpoints shown in fig. 3, the operational variable 𝑥ℎ is 

the input flight altitude, and the resulting altitude at each point in the simulation is 𝑒ℎ,𝑝. 

**It is to be noted that by providing the minus (-) sign in eqn. 2.4, the operational 

revenue is transformed to cost and thereby we transform our objective from the 
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maximization of operational revenue to minimization of operational cost**. In addition 

to costs, the design of the operations is subject to constraints:  

 It must return to the starting location with at least 20% charge. 

 It must return with no faults present. 

 It must stay within a feasible range of operational altitudes over the flight 

simulation. 

Finally, to mitigate failures in the drone, it may be helpful to have different recovery 

strategies for specific detectable faults. In the multirotor case, two sets of faults are 

considered: faults in the rotor lines and faults in the battery. When these faults are 

detected, the drone has a number of options for flight recovery: continuing the mission, 

returning to base, flying to the closest safe landing point, or landing immediately 

(options 0,1,2,3 in the model).  The resilience costs of the system depend on the 

performance of resilience policy, flight-plan, and design architectures over the given 

set of fault scenarios: 

𝐶𝑅 = ∑ 𝑛𝑟𝑠𝑐𝑠(𝑥𝑏𝑝, 𝑥𝑙𝑝, 𝑥ℎ, 𝑥𝑏 , 𝑥𝑙)𝑠∈𝑆                                                                                   2.5 

where 𝐶𝑅 is the overall resilience cost, 𝑠 is a scenario in the set of fault scenarios 𝑆, 𝑛 

is the number of flights, 𝑟𝑠 is the per-flight scenario rate, 𝑐𝑠 is the cost of a scenario, 

and the resilience variables are 𝑥𝑏𝑝, the battery reconfiguration policy, and  𝑥𝑙𝑝, the line 

reconfiguration policy. The cost of each scenario comes from the flight, landing or 

crashing, and repair costs of each modelled simulation, as shown below.  

𝑐𝑠 = 𝑐𝑓 + 𝑐𝑙 + 𝑐𝑟                                                                                                        2.6 

The flight costs 𝑐𝑓 come from the safety cost of flying with a fault, amount of time 

flying with a fault, and the viewed operational value of the mission. The landing costs 

𝑐𝑙 come from the impact to safety from landing in the target area as well as the cost of 

landing in an area with property restrictions (which is anywhere but the landing areas). 

Finally, 𝑐𝑟 is the repair cost which is the minimum between the replacement and the 

repaired costs of the system.  

 

2.4. Design Architectures for Early Resilience System Optimization** 
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In this section, we have presented three different optimization frameworks which are 

commonly applied in a design problem. The optimization frameworks are Bi-level 

optimization, Sequential optimization and single stage optimization. Considering the 

example problem of resilient design of a multirotor drone, our objective is to investigate 

these optimization frameworks in order to provide the optimal resilient design which 

gives the best trade-off between design, operation and failure cost. 

2.4.1. Bi-level design architecture for the multi-rotor drone resilience design 

Figure 2.4 shows the bi-level framework for the complex system design, considering 

an example problem of the multirotor drone problem. The upper level is focused on the 

system design in a nominal environment whereas the lower level is focused on the 

resilience policy design in a fault-injected environment. In this framework (fig. 2.4), 

the lower level problem optimizes for each iteration of the upper level problem. Thus, 

following the multirotor problem, below is the formulation of the upper and lower level 

optimization problem. 

 

Fig. 2.4. Bi-level design architecture of the early drone resilient design problem** 

 

2.4.1.1. Upper level 
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The upper level decision variable, objective function and constraints are stated as 

follows 

Decision Variable: 

The upper level decision variables are battery 𝑥𝑏, line architectures 𝑥𝑙 and the 

operational height 𝑥ℎ. 

Objective Function: 

We minimize the total Design and Operational Cost, considering two exterior penalties 

for both independent upper level and lower level decision dependent constraints 

violation: 

min
𝑥𝑏,𝑥𝑙,𝑥ℎ 

𝐶𝐷 + 𝐶𝑂 + 𝒫1 + 𝒫2                                                                                           2.7 

𝒫1 = max(0, 𝐺1)2 + ℳ2𝐺2 + 𝐺3
2                                                                               2.8          

𝒫2 =  ℳ𝑟max (0, 𝑔4)                                                                                                  2.9 

where 𝐶𝐷 and 𝐶𝑂 are the normalized design and operational costs; 𝒫1 and 𝒫2 are the 

upper and lower level penalty functions; 𝐺1, 𝐺2 and 𝐺3 are the upper level constraints 

dependent to only upper level decision variables; ℳ2 is a very large penalty value for 

𝐺2 violation; ℳ𝑟 is a penalty value for constraint 𝑔4, which depends on both upper and 

lower level decision variables. 

Constraint Functions: 

The constraint functions are as follows: 

 Battery Life percent at the end of flight: 

 𝑔1 =  20 − 𝐼𝑒                                                                                                             2.10 

 Fault checking at the end of flight: 

𝑔2 = {
1 𝑖𝑓 ℱ𝑒𝑛𝑑 𝑒𝑥𝑖𝑠𝑡𝑠

0              𝑒𝑙𝑠𝑒
                                                                                               2.11   

 Maximum flight elevation at each timesteps: 

 𝑔3 =  ∑ max (0, 𝑒ℎ,𝑝 − 122)𝑝∈𝐴                                                                                 2.12 

 Failure Cost (need to run lower level problem): 

𝑔4 =  𝐶𝑅,𝑜𝑝𝑡,𝑘                                                                                                             2.13 

where 𝐶𝑅,𝑜𝑝𝑡,𝑘 is the optimal resilience cost at iteration 𝑘 of the upper level. To find the 

value of 𝐶𝑅,𝑜𝑝𝑡,𝑘, below lower level problem is optimized iteratively.  
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2.4.1.2. Lower level 

The lower level problem in this drone example is an unconstrained problem. However, 

it is noted that any constraints related to the resilience policy design can be 

incorporated. The upper level inputs and lower level decision variables and objective 

function are stated as follows: 

Input Variables: 

For iteration 𝑘 of the upper level optimization problem, the input candidate decisions 

are battery 𝑥𝑏, line architectures 𝑥𝑙 and the operational height 𝑥ℎ  

Decision Variable: 

The lower level decision variables are the resilience policy for battery 𝑥𝑏𝑝 and line 

architectures 𝑥𝑙𝑝. 

Objective Function: 

We minimize the total resilience cost, given the fault scenarios. 

min
𝑥𝑏𝑝, 𝑥𝑙𝑝 

𝐶𝑅(𝑥𝑏𝑝, 𝑥𝑙𝑝, 𝑥ℎ, 𝑥𝑏 , 𝑥𝑙)                                                                                      2.14 

where 𝐶𝑅 is the resilience costs which is the function of both upper and lower level 

decisions. 

Final Output: 

The optimal solutions after meeting the user specified convergence criteria of both 

upper and lower levels are optimal battery 𝑥𝑏,𝑜𝑝𝑡, line architectures 𝑥𝑙,𝑜𝑝𝑡, operational 

height 𝑥ℎ,𝑜𝑝𝑡, resilience policy for battery 𝑥𝑏𝑝,𝑜𝑝𝑡 and line architectures 𝑥𝑙𝑝,𝑜𝑝𝑡; design 

cost 𝐶𝐷,𝑜𝑝𝑡, operational cost 𝐶𝑂,𝑜𝑝𝑡 and resilience costs 𝐶𝑅,𝑜𝑝𝑡 at optimal decisions. 

In order to lower the computational cost, we have modified the architecture where 

the lower level problem is only executed if the current upper level decision is feasible, 

i.e, no violation of constraints 2.10 - 2.12. This eliminates any redundant lower level 

optimization as any optimal solution of the lower level is optimal to the infeasible 

projected upper level design space, thus the lower level solution is also infeasible. Thus, 

instead of lower level execution and thereby to increase the computational efficiency 

of the bi-level design, a very large value of 𝒫2 is inputted in the penalized objective 

function 2.7.  
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2.4.2. Sequential design architecture for the multi-rotor drone resilience design 

Figure 2.5 shows the sequential framework for the complex system design, considering 

an example problem of multirotor drone problem. The stage 1 is focused on the system 

design in the nominal environment whereas the stage 2 is focused on the resilience 

policy design in the fault injected environment. In this framework (fig. 2.5), the two 

stages optimize sequentially where the Stage 1 problem runs first, and then the optimal 

solution of stage 1 is passed as the input parameters into the stage 2 optimization. 

Below, we provided the changes in the formulation from the bi-level design. 

 

Fig. 2.5. Sequential design architecture of the early drone resilient design problem** 

 

The stage 1 optimization problem is mostly similar to the upper level problem in 

bi-level design with decision variables as battery 𝑥𝑏, line architectures 𝑥𝑙 and the 

operational height 𝑥ℎ; and the objective function to minimize the total Design and 

Operational cost, considering exterior penalty (refer eqn. 2.8) for violation of 

constraints equations (2.10 – 2.12). Thus, in the sequential framework as the stage 1 

runs independently to stage 2, we omit the last term 𝒫2 of equation (2.7). Likewise, we 

do not have the constraint equation (2.13). After the convergence criteria is met, we get 
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the stage 1 optimal solution as optimal battery 𝑥𝑏,𝑜𝑝𝑡, line architectures 𝑥𝑙,𝑜𝑝𝑡, 

operational height 𝑥ℎ,𝑜𝑝𝑡; design cost 𝐶𝐷,𝑜𝑝𝑡, operational cost 𝐶𝑂,𝑜𝑝𝑡 at optimal 

decisions. 

The stage 2 problem mostly resembles the lower level problem in the bi-level design, 

however, runs for single time after considering the stage 1 optimal solutions as the input 

parameters. Thus, the decision variables in stage 2 are the resilience policy for battery 

𝑥𝑏𝑝 and line architectures 𝑥𝑙𝑝 with minimizing total resilience cost, given the fault 

scenarios. Thus, the equation 2.14 is modified to 2.15:  

min
𝑥𝑏𝑝, 𝑥𝑙𝑝 

𝐶𝑅(𝑥𝑏𝑝, 𝑥𝑙𝑝, 𝑥ℎ,𝑜𝑝𝑡, 𝑥𝑏,𝑜𝑝𝑡, 𝑥𝑙,𝑜𝑝𝑡)                                                                       2.15 

Finally, the stage 2 problem converges to provide optimal resilience policy for battery 

𝑥𝑏𝑝,𝑜𝑝𝑡 and line architectures 𝑥𝑙𝑝,𝑜𝑝𝑡; resilience cost 𝐶𝑅,𝑜𝑝𝑡 at optimal decisions. 

2.4.3. Single-Stage design architecture for the multi-rotor drone resilience 

design 

Figure 2.6 shows the all-in-one framework for the complex system design, considering 

an example problem of multirotor drone problem. Here, both the upper and lower levels 

of the bi-level design have been compacted into a single framework. Thus, all the 

decision variables such as battery 𝑥𝑏, line architectures 𝑥𝑙, the operational height 𝑥ℎ, 

resilience policy for battery 𝑥𝑏𝑝 and line architectures 𝑥𝑙𝑝 have been considered 

together. Likewise, we consider a multi-objective framework where we together 

minimize the objective 1: total design and operational cost and objective 2: resilience 

cost. We formulated the weighted Tchebycheff multi-objective function [71]–[73] as 

below:  

min
𝑥𝑏,𝑥𝑙,𝑥ℎ,𝑥𝑏𝑝,𝑥𝑙𝑝

max
𝑖∈𝑁

{𝑤𝑖|𝑌𝑖 − 𝑢𝑖|} + 𝒫1                                                                        2.14 

𝑌1 = 𝐶𝐷 + 𝐶𝑂                                                                                                             2.15 

𝑌2 = 𝐶𝑅                                                                                                                      2.16 

where 𝒫1 is the penalty factor (refer eqn. 2.8) for violation of constraints equations 

(2.10 – 2.12);  𝑌𝑖 is the ith objective with 𝑤𝑖and 𝑢𝑖 are the weight preferences and the 

utopia values of the ith objective respectively; 𝑁 = 2 is the number of objectives in this 

problem. The utopia values are the optimal solution when the respective objective is 
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optimized individually. The final output will be the optimal solutions as mentioned in 

both bi-level and sequential design frameworks. 

 
Fig. 2.6. Single-stage design architecture of the early drone resilient design 

problem** 
2.4.4. Optimization algorithm and convergence criteria 

So far we have discussed how for each design architectures, different cost models like 

design, operational and resilience costs are coupled together with the common goal of 

optimizing towards a trade-off among the costs. Now, to solve this problem, we have 

considered two methods of optimization techniques. As 𝑥𝑏, 𝑥𝑙, 𝑥𝑏𝑝 and 𝑥𝑙𝑝 are discrete 

design variables whereas 𝑥ℎ is a continuous design variable, we started with an 

exhaustive “brute force” search [74] where we first discretize 𝑥ℎ to n number of finite 

design values. With this brute force algorithm, all the finite design combinations are 

evaluated and thus result in a global convergence. However, we find a sub-optimal 

solution due to the discretization in case if the true 𝑥ℎ,𝑜𝑝𝑡 does not include with the 

discretized grid points: thus 𝑥ℎ,𝑜𝑝𝑡  ≠  𝑥̅ℎ,𝑜𝑝𝑡 where 𝑥̅ℎ,𝑜𝑝𝑡 is the optimal solution 

among the discretized grid points. Also, this sub-optimal 𝑥̅ℎ,𝑜𝑝𝑡 can affect the optimality 

of the other discrete design variables. However, it is to be noted, the way we structured 

the bi-level design, the lower level has only discrete design variables and thus always 

guarantees a global lower level convergence in this drone resilience design. This 

eliminates a common issue of convergence in bi-level design when the lower level 

problem fails to convergence (or does not have a guarantee in convergence). Once the 
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brute search algorithm is converged, we can run another optimization technique with 

the earlier optimal results as the initial or starting design values. This way we can polish 

the earlier solutions and aim for a better optimal solution. Given the nature and the 

constraints (e.g. computational time) of the problem, we can consider either a direct, 

heuristic or gradient-based search (if only the function is differentiable); however, in 

this problem we selected a downward simplex method or Nelder-Mead simplex 

algorithm, which only uses function values, not first or second derivatives. The 

convergence criteria are design and objective function tolerance limits which is set to 

10-4. Attempts have been made to enhance performance Nelder-Mead algorithm for 

high dimensional problems [75], [76] and alternative approaches can be considered in 

future research.   

 

2.5. Results** 

As discussed in the problem description in Section 2.3, the drone design problem can 

be run in different design scenarios which each have different failure costs because of 

the mission of the drone. In this chapter, we consider two extreme flight scenarios: rural 

and congested scenarios. The Python function used for the brute search optimization 

algorithm is scipy.optimize.brute, and to polish the solution with another Nelder-Mead 

algorithm, we put the function optimizie.fmin as one of the arguments in 

scipy.optimize.brute. The results are obtained from running on a machine with 

configuration of Windows 10, Intel Processor 3.4 GHz and 16 GB RAM. 

2.5.1. Trade-Space Analysis 

Figures 2.7 and 2.8 are the trade-space analysis of the set of design variables and the 

objective functions for rural and congested scenarios. The battery and rotor/line 

architecture options are coded in numbers as in Table 1. The resilience policies for both 

battery and line architectures are coded as continuing the mission (0), returning to base 

(1), flying to the closest safe landing point (2), or landing immediately (3). In both the 

scenarios, the design cost is comparatively much lower than the other operational and 

failure costs, and thus will not have much individual influence on the optimal solutions. 

Thus, we add the design and operational costs as the total nominal cost (in nominal 
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situation) whereas the resilience cost is the failure cost (in faulty situation). In the rural 

scenario, the landing (i.e. crashing) cost of the multi-rotor drone is low due to low risk 

of life loss. The resilience cost in the rural scenario mostly involves the repair or 

replacement cost which is much lower in magnitude than the operational cost or the 

nominal cost (fig. 2.7). In the congested scenario, on the other hand, the resilience or 

failure costs overwhelm the nominal cost, as now the consequences are very high due 

to high risk of life loss (fig. 2.8).  

 

Fig. 2.7. Trade-space analysis of the early drone resilient design problem for rural 

flight scenario** 

 

As shown in the trade-space analysis of both scenarios, while there is a clear 

dependency between variables in the design and operational models with positive 

association between design and operational costs, the resilience policy also has an 



32 

 

 

 

 

 

effect (negative association) on the operational costs. Additionally, the resilience 

policies for any faults on the drone systems (battery or rotor/line architectures) also 

have an interactive effect where the policy 1 (to base) and 2 (to closest safe landing 

point) have minimal mean and variability of the resilience cost. Due to this complex 

trade-off among the different cost models, the system architecture, operations and 

resilience policy should be considered together when exploring the design space in 

order to find the optimal trade-offs. These properties make it a difficult problem to 

optimize, since the optimal choices of design, operations, and resilience policies are 

coupled but take place in different models. After conducting this preliminary analysis 

over the design space, in the next section, we analyze the solutions from different 

optimization architectures. 

 

Fig. 2.8. Trade-space analysis of the early drone resilient design problem for 

congested flight scenario** 
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2.5.2. Comparison of the design architectures in early resilient design 

In this comparative study, the research interest is to look at the trade-off between the 

nominal cost (design + operational cost) and the resilience or failure cost as we want to 

obtain a low-risk design for both the scenarios. Considering both the rural (low-risk) 

or congested (high-risk) scenarios, we are interested in the magnitude we are increasing 

the design and operational cost to minimize failure costs, by optimizing with different 

design architectures to ultimately conclude the appropriate design architecture which 

has a better likelihood to balance the combined cost for two extreme scenarios. Table 

2.2 and 2.3 are the optimal solutions and the respective design costs, operational 

revenue, resilience cost and the total revenue for single-stage, sequential and nested bi-

level design architectures. As mentioned, the operational revenue is the negative of the 

operational cost, thus high values are better for operational revenue. The total revenue 

is defined as the difference between operational revenue and the sum of design and 

failure or resilience cost; thus higher total revenue is better. As we focused on preferring 

low-risk designs, in the single-stage architecture, we considered three values of 

weighting the resilience cost objective: 𝑤2 = 0.5, 0.7, 0.9. Similarly, in the bi-level 

architecture, we considered three values of penalization ℳ𝑟 = 1, 10, 100 which 

represents increasing preference on the objective of resilience cost. ℳ𝑟 = 1 means 

equal preference between objective 1: nominal cost and objective 2: resilience or failure 

cost. Unlike these two design architectures, where the designers can control the 

preferences of the objectives, the sequential architecture does not consider this trade-

off due to the independent nature of optimizing these two objectives. To avoid the 

optimization algorithm influencing only one objectives due to differences in objective 

magitudes, we normalize the cost values during the optimization. However, with the 

final solution transformed into the real values, we can see a clear picture of the trade-

off of increasing the design and operational costs (decreasing operational revenue) in 

lowering the resilience cost at these two flight scenarios. The different single stage and 

bi-level architectures with varying preference of resilience objective are named in Table 

2.2 and 2.3 as below: 
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Architecture 𝒙𝒐𝒑𝒕 𝐶𝐷($) 𝑅𝑂(103 $) 𝐶𝑅(103 $) Total Revenue 

(𝑅𝑂 − 𝐶𝐷

− 𝐶𝑅) 

 (103 $) 

Time  

(0m : 

0s) 

Sequential [0, 0, 

23, 1, 2] 

0 14559.1 39.72 14519.4 0m : 

39s 

Single-stage 

A 

[0, 0, 

26, 0, 0] 

0 14535.4 66.15 14469.3 15m: 

0s 

Single-stage 

B 

[0, 0, 

29, 1, 0] 

0 14518.6 44.10 14474.5 15m: 

0s 

Single-stage 

C 

[2, 0, 

29, 1, 2] 

300 14518.6 24.82 14493.5 16m: 

10s 

Bi-level A [0, 0, 

23, 1, 2] 

0 14559.1 39.72 14519.4 35m: 

55s 

Bi-level B [1, 0, 

80, 0, 1] 

300 14459 10.25 14448.5 44m: 

59s 

Bi-level C [1, 0, 

98, 0, 1] 

300 14456 10.21 14445.5 42m: 

43s 

  Table 2.2. Comparison of the optimal solutions of multi-rotor drone problem from the 

design architectures at rural flight scenario**. 

 

Architecture 𝒙𝒐𝒑𝒕 𝐶𝐷($) 𝑅𝑂(103 $) 𝐶𝑅(103 $) Total Revenue 

(𝑅𝑂 − 𝐶𝐷

− 𝐶𝑅) 

 (103 $) 

Time  

(0m : 

0s) 

Sequential [0, 0, 

23, 1, 2] 

0 14559.1 128195 -113636 0m : 

44s 

Single-stage 

A 

[0, 0, 

29, 0, 0] 

0 14518.6 230704 -216185 15m : 

4s 

Single-stage 

B 

[0, 0, 

29, 2, 2] 

0 14518.6 128195 -113676 16m 

:0s 

Single-stage 

C 

[1, 0, 

27, 1, 0] 

300 14529.2 48797.7 -34268.5 16m 

:0s 

Bi-level A [2, 0, 

23, 1, 2] 

300 14559.1 39499.9 -24941 41m 

:20s 

Bi-level B [2, 0, 

23, 1, 2] 

300 14559.1 39499.9 -24941 41m 

:59s 

Bi-level C [2, 0, 

80, 1, 1] 

300 14559 21182.6 -6624 49m 

:18s 

  Table 2.3. Comparison of the optimal solutions of multi-rotor drone problem from the 

design architectures at congested flight scenario**.  

Note: 𝒙𝒐𝒑𝒕 = [𝑥𝑏 , 𝑥𝑙 , 𝑥ℎ, 𝑥𝑏𝑝, 𝑥𝑙𝑝]
𝑜𝑝𝑡

 and the 𝐶𝐷 is in dollars where the other cost 

columns are in 1K dollars; 𝑅𝑂 = −𝐶𝑂 is the operational revenue. 
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 Single-stage A: equal preference 𝑤1 = 𝑤2 = 0.5. 

 Single-stage B: unequal preference 𝑤1 = 0.3, 𝑤2 = 0.7. 

 Single-stage C: unequal preference 𝑤1 = 0.1, 𝑤2 = 0.9. 

 Bi-level A: equal preference ℳ𝑟 = 1. 

 Bi-level B: unequal preference ℳ𝑟 = 10. 

 Bi-level C: unequal preference ℳ𝑟 = 100. 

As expected, we can clearly see the computational cost is highest for the bi-level 

architectures in both the flight scenarios. However, the cost values at the optimal 

solutions among these architectures at both flight scenarios differ among architectures. 

Starting with the rural scenario (table 2.2), the operation revenue is the highest for 

sequential and the bi-level A, but the lowest for the bi-level C. Interestingly, the 

resilience cost is the lowest for the bi-level C. This is because in the rural scenario the 

failure costs are much lower, and when we consider higher preference to minimize the 

failure cost, we add substantial redundancy to the design and add significant operational 

cost, thus lowering the operational revenue. Thus, we see the total revenue is the worst 

in bi-level C. But, as the bi-level architecture has the control to adjust the preference, 

we see the same architecture also attained the best total revenue as in bi-level A when 

equal preferences of objectives are considered, thus avoiding substantial redundancy in 

design. The single-stage architecture, however, provides excess resilience cost even at 

the equal preference of the objectives (single-stage A), and thus does not have the best 

total revenue. Similar to bi-level design, the total revenue decreases (adding 

redundancy) as we increase the preference of minimizing resilience costs. Thus, we see 

that when the failure cost is much lower in the early resilience system design (for e.g. 

no or minimal crashing cost), the sequential and the bi-level stage work best when 

avoiding excess redundant design in attaining a better (maximize) resiliency in design. 

However, this scenario can be only restricted for planned actions when failure cost is 

low. In a real scenario (e.g. full aircraft flight), the fault occurrence is unknown and 

therefore the flight scenario will be unknown during the fault (crashing in rural or 

congested areas), and ultimately the failure cost is likely unknown (low or high). This 

uncertainty of the magnitude of risk in the early resilience design, leads us to compare 
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the design architectures for the congested flight scenarios (table 2.3), when the 

resilience cost is much higher.  

    The operational revenue is the highest for the sequential and all the bi-level 

architectures; however, with a slight increase in design cost, the bi-level design 

architectures attain significant decreases in the resilience costs over the sequential 

architecture. Like the rural scenario, as we increase the preference to minimize risk, the 

resilience cost decreases. Now, due to having high failure cost in the congested flight 

scenario, adding the preference of resiliency in optimization does not add redundancy 

and we obtain a low-risk design in a high-risk scenario. Thus, the total revenue is best 

in the bi-level architectures. The negative total revenue in table 2.3 denotes the loss 

incurred; thus we are looking for the design solution with minimal loss. The negative 

total revenue or the loss for the optimal solution in sequential architecture is the second 

worst with almost five times higher loss than the bi-level A solution. Single-stage 

architectures re inefficient with all the highest costs and lowest revenue in single-stage 

A. Thus, we see that when the failure cost is much higher in the early resilience system 

design due to high risk to failure consequences, the bi-level stage works better than the 

other architectures in attaining a better resiliency in design without any significant 

increase of other costs due to excessive redundancy in the design.      

 

2.6. Conclusion** 

When optimizing the value of a system, resilience often must be traded with design and 

operational considerations to find the best solution. Because the design and operational 

profile usually affect the resilience of a system, it is necessary to optimize the design, 

operational, and resilience policy in an integrated approach. When structuring this 

optimization problem, it is prudent to choose an architecture which effectively finds 

the optimum design at a satisfactory computational cost. This chapter introduced the 

integrated resilience optimization formulation of the early resilience-based design 

problem and presented different optimization architectures to leverage this framework. 

These architectures were then compared on a drone design problem where one must 

choose an appropriate design architecture which minimizes design and operational 
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costs while maximizing the resilience (minimizing resilience cost) of the contingency 

management of the drone over a set of fault scenarios. The result in this problem shows 

a trade-off of any redundant costs in achieving higher resiliency, depending on the flight 

scenarios. Two extreme scenarios have been considered in this chapter—1. Rural 

scenario (low-risk) where the failure cost is negligible and 2. Congested scenario (high-

risk) where the failure cost is very high. It has been found, for a low-risk scenario, as 

the design redundancy cost is much higher comparing to design resilience cost, the 

preference over minimizing the failure cost increases significantly the operation costs. 

Here the bi-level architecture attains one of the best, only when we avoid any 

preferences on the high resilient or low risk design. On the other hand, for a high-risk 

scenario, as the design redundant cost is much lower comparing to design resilient cost, 

the preference over minimizing the failure cost has negligible adverse effect on the 

operation costs. Here, the bi-level architecture outperformed the others, with or without 

any preference on the design resiliency in the optimization. Thus, as overall, the bi-

level design architectures did the best performance irrespective of two extreme 

scenarios to attain the best solutions. This results shows the general potential of the bi-

level architecture in the domain of early resilience complex engineered system design 

to attain the efficient design solutions in terms of redundancy and resiliency at any risk-

level scenarios, with proper tuning of preference level of resiliency. However, as a 

limitation, the convergence and computational issue still need future investigation for 

extending to any large scale early resilient design problem, while having mixture of 

discrete and continuous design variables in both upper and lower level. The ultimate 

choice of architecture depends on the nature of the problem considered, including the 

computational cost at each level, the interacting design constraints, and the size, scope, 

and form of the problem. 
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ABSTRACT 

The chapter presents a novel approach to applying Bayesian Optimization (BO) in 

predicting an unknown constraint boundary, also representing the discontinuity of an 

unknown function, for a feasibility check on the design space, thereby representing a 

classification tool to discern between a feasible and infeasible region. Bayesian 

optimization is a low-cost black-box global optimization tool in the Sequential Design 

Methods where we learn and update our knowledge from prior evaluated designs, and 

proceed to the selection of new designs for future evaluation. However, BO is mostly 

suited to problems with the assumption of a continuous objective function, and does not 

guarantee true convergence when having discontinuous design space. This is because 

of the insufficient knowledge of the BO about the nature of the discontinuity of the 

unknown true function. Therefore, in this chapter, we have proposed to predict the 

location of the discontinuity using a BO algorithm on the artificially projected 

continuous design space from the original discontinuous design space. The proposed 

approach has been implemented in a thin tube design with the risk of creep-fatigue 

failure under constant loading of temperature and pressure. The stated risk depends on 

the location of the designs in terms of safe and unsafe regions, where the discontinuities 

lie at the transitions between those regions; therefore, the discontinuity has also been 

treated as an unknown creep-fatigue failure constraint. The proposed BO algorithm 

has been trained to maximize sampling towards the unknown transition region, finally 

to act as a high accuracy classifier between safe and unsafe designs with minimal 

training cost. The converged solution has been validated for different design 

parameters with classification error rate and function evaluations at an average of 

<1% and ~150, respectively. Finally, the performance of our proposed approach in 

terms of training cost and classification accuracy of thin tube design is also shown to 

be better than the existing ML algorithms like SVM, Random Forest and Boosting. 

 

3.1. Introduction 

In the early design phase, it is very important for the designers to be able to identify the 

feasible regions in a large design space while the design cost is low. This knowledge 
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guides can help guide the designers to eliminate inferior designs and avoid investing in 

the high cost manufacturing and testing of those designs at the later design phase. With 

efficient knowledge of the feasible space, the designers can also avoid falsely selecting 

infeasible designs as optimal which can result in high risk to failure consequences. In 

design practice, most of the design problems are too complex to be handled by simple 

optimization frameworks due to having constraints on cost, time, formulation, etc. 

Also, approximating a complex design problem into much simpler problems can lead 

to the negligence of the original complex constraints; thus the design may violate those 

constraints and not provide a useful choice for practical decisions. Some practical 

design problems have been investigated where complex optimization frameworks have 

been modeled [1], [2], [77]. However, in many design problems, it is difficult to 

numerically formulate an objective function or constraint boundaries and therefore we 

consider those as black-box problems with high function evaluation cost due to limited 

resources [78], [79]. Thus, a trade-off between learning and expense is present, and a 

low fidelity surrogate model is often implemented to reduce cost. When we have 

no/limited knowledge on the expensive true unknown functions, we cannot guarantee 

the maximization of our learning towards optimizing the functions without proper 

guidance or expertise. Also, due to the mentioned high function evaluation cost, 

exhaustive search is not a valid option. In such problems, a Bayesian Optimization 

technique (BO), which eliminates the need of standard formulation of the black-box 

functions, is widely applied in sequential learning and provides better guidance in 

sampling the designs for expensive experiments or function evaluations in order to find 

the optimal region of that unknown function at minimal cost of experiments. In the BO 

approach, we first build a posterior surrogate model, given the data from the current 

evaluations. We then use this model to strategically select the best design locations for 

future evaluations by maximizing the Acquisition functions, defined from the posterior 

model. BO can be used in optimizing any black-box functions in a design problem, 

either to emulate the unknown objective functions when the goal is to locate the optimal 

solutions, or to emulate the unknown constraints when the goal is the classification and 

preservation of only potential good designs [80]. This chapter is focused on BO 
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framework to emulate the unknown constraint boundary as a classification problem for 

design feasibility check. However, the motivation behind this classification problem 

comes from the ultimate goal of design optimization under the complex design space 

which has been described in the next section.  

3.1.1. Research motivation 

Although BO is a powerful method, it works on the assumption that the true function 

is continuous [7] and generally fails to converge to the solution if the objective function 

has a discontinuity. This is because of insufficient knowledge of the BO about the 

nature of the discontinuity of the unknown true function. Figures 3.1- 3.2 provide an 

example where a BO model fails to converge to the true discontinuous function even 

after excessive sampling. Figure 3.1 shows the true response function in terms of design 

variables 𝑥1, 𝑥2where there is jump discontinuity at 𝑥1, 𝑥2 = 1.   Figure 3.2 shows how 

inefficiently the BO model emulated the true function even after 500 sampling for 

function evaluations, denoted by black dots, and produces a very non-smooth surface 

with many peaks near the discontinuity. Now, with this limitation of BO for the 

discontinuous design space, we will next talk about a research example problem to 

highlight our motivation behind the design feasibility check classification problem.   

 
Fig 3.1. True discontinuous response 

function 

 
Fig 3.2. Discontinuous Response 

function from BO model after 500 

function evaluations at design location 

denoted by black dots. 

 

3.1.1.1. Compact heat exchanger design example 

In this chapter, we consider the design of a diffusion bonded Compact Heat Exchanger 

(CHX) as a motivating example. In the design of a diffusion bonded CHX, the ultimate 
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goal is to find the optimal design geometries which minimizes the risk of creep-fatigue 

failure under constant loading of temperature and pressure. The stated risk depends on 

the location of the design in regions such as Elastic, Shakedown, Plastic or Ratchetting. 

A similar example has been provided for thin tubes where the location of the designs 

can be numerically represented from a Bree Diagram [81] (Figure in Appendix A.3.1) 

in terms of pressure and thermal stresses.  Under cyclic loading, the Elastic and 

Shakedown region in the Bree diagram are considered as the safe region where no strain 

accumulation occurs or the growth of residual strain is practically diminishing when 

sufficient loading cycles are applied. However, Plastic and Ratchetting in the Bree 

diagram are unsafe designs where the plastic strain accumulates until failure.  When 

the complexity of the design increases like in diffusion bonded CHX [82] (Figure in 

Appendix A.3.2), we cannot provide a numerical representation of the function which 

defines the location of designs; thus it can be considered as black-box problem. 

However, the transition between Shakedown and Plastic or Ratchetting creates a jump 

discontinuity at the transition line due to different formulation in strain analysis in each 

region. This is the limitation of the application of BO as we have demonstrated earlier 

in section 3.1.1, and thus the convergence of the model to find the optimal solution 

cannot be trusted when the design space has discontinuity, as it has high likelihood to 

lead to non-optimal solutions. Also, since we have no knowledge of the true function, 

it is evident that we have no knowledge on the location of discontinuous transition 

region as well, representing the black-box unknown constraint boundary between the 

safe and unsafe region. Thus, ignoring the constraint boundary can lead to preserving 

infeasible solutions, which can lead to very high design failure costs, such as accidents, 

economic disasters etc. This motivates us to believe that it is necessary first to 

understand the discontinuity of the unknown function, build the constraint boundary to 

classify between safe and unsafe design in terms of creep-fatigue failure as a design 

pre-stage before attempting to find the optimal design.  

3.1.2. Research contribution 

To address the issues of sections 3.1.1 and 3.1.1.1, this chapter proposes an approach 

to Bayesian Optimization in solving the stated classification problem, to predict the 
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location of the discontinuous transition region as a constraint boundary between safe 

and unsafe regions, by strategically sampling designs and minimizing the cost of 

expensive function evaluations and maximizing classification accuracy towards 

predicting the true boundary. Focusing on these challenges on a discontinuous black-

box design problem with unknown constraint, this research contributes in tackling these 

with adopting a design space partitioning approach. Here, the original discontinuous 

design space is first transformed into a pseudo continuous design space by building a 

heuristic, then optimize the location of the unknown constraint or the discontinuity with 

the BO on this artificially created continuous design space. This new function helps us 

to develop the acquisition function in the proposed BO model, which when maximized, 

guide our sampling towards the desired unknown constraint boundary (transition 

region), which ultimately maximize the classification accuracy. Thus, a sequential 

Bayesian optimization is developed as a design classifier in locating and partitioning 

the discontinuous design space along the discontinuity to mitigate the performance 

issue of BO by optimizing on two separate continuous design spaces or by eliminating 

the infeasible designs during optimization for finding the efficient or optimal design 

solutions. The impact of this research is to finally provide a design methodology or 

classification tool to classify the creep-fatigue failure feasibility of any new designs in 

the specified design space, without conducting any further expensive function 

evaluations once the model is fully trained (converged). The content of this chapter 

focuses on the proof of concept and therefore we have simplified the large scale 

complex design of the diffusion bonded CHX into a simple thin tube where we will be 

able to compare the results obtained from the proposed model with the known true 

solution. The proposed approach can be considered as the pre-stage for the optimization 

of the design geometry of diffusion bonded CHX to minimize the risk of failure with 

manufacturing and experimental cost, subject to constraints for creep-fatigue failure 

(from proposed pre-stage) and other manufacturing constraints, which is considered as 

future research.   

The roadmap of this chapter is as follows. Section 3.2 provides an overview on 

Bayesian Optimization and machine learning to solve classification problem. Section 
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3.3 talks more on the thin tube problem and the formulation, projecting the original 

discontinuous design space to the artificial continuous design space, from knowledge 

gained by actual function evaluations or experiments.  Section 3.4 provides the detail 

description of the design methodology in fast and adaptive sampling towards predicting 

the constraint boundary (transition region) and minimizing error rate in the 

classification problem. Section 3.5 shows the results of the proposed approach under 

different design parameters. Section 3.6 concludes the chapter 3 with final thoughts.  

 

3.2.Background 

3.2.1. Classification problem 

Classification problem, in general, is a subset of machine learning problems where the 

main idea is to subset a region of interest or design space into labels or clusters through 

proper training of a machine learning tool with existing data. After the designer is 

satisfied with the training the model, then for any new design data, without going for 

expensive evaluations, can be classified as which label the design has the maximum 

probability to belong to. Classification problems can be subdivided into Binary 

Classification and Multi-Label Classification problems. To solve this, different 

machine learning tools has been used like Support Vector Machine (SVM), Random 

Forest, Boosting [83]–[85]. Recently advanced method like neural network has been 

widely used in both binary and multi-label classification problems [86], [87]. Inan et. 

al. [88] proposed a robust neural network based classification method for premature 

ventricular contractions whereas Li et. al. [89] attempted a hyperspectral image 

reconstruction method using convoluted neural network to enhance classification 

accuracy. Similarly, clustering approaches has been taken, especially for multi-label 

classification problem with large number of labels [90]. Barros et. al. [91] proposed a 

probabilistic clustering approach for hierarchical multi-label classification of Protein 

Functions. Solving a design classification problem with standard machine learning 

classifier methods is dependent on the quality or amount of training data and always 

raise the question on how much data is enough to get the maximum learning [8], [9], 

thus can be very critical to the sampling cost and methods. Therefore, in order to apply 
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these machine learning algorithms, we need to assume we already have a lot of existing 

data, which is not true in our classification problem. Considering a black-box problem 

where these sampled designs undergo expensive evaluations, training data is limited 

due to very high cost. As mentioned earlier, the research objective in this chapter is not 

only to identify an appropriate classifier tool, but also an efficient sampling strategy for 

training the classifier sequentially towards the desired goal of  fast and adaptive 

learning (minimizing expensive evaluations). With this BO as a design classifier, we 

attempt to first optimize the location (discontinuity or constraint boundary) with the 

existing technique of minimizing expensive sampling (data) for fast and adaptive 

learning (data sampling suggested where there is more likelihood of achieving user-

defined good solutions), then classify any new designs (either side of the discontinuity 

or constraint boundary) by the trained posterior surrogate model of the converged 

(maximized learning) BO. Thus, this research also contributes in integrating the 

classification technique into the existing efficient sampling method of BO, without 

having to worry about pre-existing data. 

3.2.2. Bayesian optimization 

Bayesian optimization [7] (BO) is an emerging field of study in the Sequential Design 

Methods. It has been considered as a low-cost global optimization tool for design 

problems having expensive black-box objective functions. The general idea of BO is 

to emulate an expensive unknown design space and find the local and global optimal 

locations while reducing the cost of function evaluation from expensive high-fidelity 

models. As discussed in [7], the reason it is called Bayesian is that it follows the 

ideology of Bayes theorem, which states that “posterior probability of a model (or 

parameters) M given evidence (or data, or observations) E is proportional to the 

likelihood of E given M, multiplied by the prior probability of E.”  

In mathematical notation it can be stated as below: 

𝑝(𝑀|𝐸) ∝ ℓ(𝐸|𝑀)𝑝(𝑀)                                                                                           (3.1) 

In the BO setting, the prior represents the belief of the unknown function 𝑓, assuming 

there exists a prior knowledge about the function (e.g. smoothness, noisy or noise-free 

etc.). Given our prior belief, the likelihood represents how likely the data, 𝐷, we have 
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observed. These data are the sampled data where we know the true function value from 

expensive evaluations and can be viewed as the realizations from the unknown 

function. Finally, given the data we sampled, we can get the posterior distribution in 

the BO as a posterior surrogate model (e.g. Gaussian process model): Δ = 𝑝(𝑓|(𝐷)) is 

developed from these sampled data. Thus, eqn. 1.3 in the Bayesian optimization setting, 

can be modified as below: 

𝑝(𝑓|(𝐷1:𝑘)) ∝ ℓ((𝐷1:𝑘)|𝑓)𝑝(𝑓)                                                                                  (3.2) 

where 𝐷1:𝑘 = [𝑥1:𝑘, 𝑓(𝑥1:𝑘)] is the augmentation of the observation or sampled data 

till 𝑘𝑡ℎ iteration of BO. This augmentation of data at each iteration combines the prior 

distribution with the likelihood function.  

This approach has been widely used in many machine learning problems [92]–[96]. 

However, attempts have been made when the response is discrete such as in consumer 

modeling problems where the responses are in terms of user preference [7], [97]. The 

idea is to approximate the user preference discrete response function into continuous 

latent functions using Binomial-Probit model for two choices [98], [99] and 

polychotomous regression model for more than two choices where the user can state 

no preference [100]. BO has also been implemented in multi-objective [101] and high 

dimensional [102], [103] engineering design problems.  

BO adopts a Bayesian perspective and assumes that there is a prior on the function; 

typically, we use a Gaussian process prior. The prior is represented from the experiment 

or training data which is assumed as the realizations of the true function. The overall 

Bayesian Optimization Approach has two major components: A predictor or Gaussian 

Process Model (GPM) and an Acquisition Function (AF). As shown in Figure 3.3, in 

this approach, we first build a posterior GPM, given the data from the current 

experiments. The surrogate GPM then predicts the objective or response of the samples 

generated from a DOE based sampling method within the design space. We then use 

this model to strategically select the best design locations for future experimentation 

by maximizing the acquisition functions, defined from the posterior simulations which 

is obtained from the GPM. However, we need to assume that the objective or response 

is Lipschitz continuous [7]. As an alternative to a GPM, random forest regression has 
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been proposed as an expressive and flexible surrogate model in the context of 

sequential model-based algorithm configuration [104]. Although random forests are 

good interpolators in the sense that they output good predictions in the neighborhood 

of training data, they are very poor extrapolators where the training data are far away 

[105]. This can lead to selecting redundant exploration (more experiments) in the non-

interesting region as suggested by the acquisition function in the early iterations of the 

optimization, due to having additional prediction error of the region far away from the 

training data.  This motivates us to consider the GPM in a Bayesian framework while 

extending the application to discontinuous design response surfaces, which can be 

represented as complex practical problems in the domain of experimental design. We 

next describe the GPM and AF. 

 

Figure 3.3. Bayesian Optimization Framework [106] 
 

3.2.2.1.Gaussian process model (GPM) 

Figure 3.4 shows a simple 1D Gaussian Process Model with one design variable 𝑥 and 

one response variable 𝑧 = 𝑓(𝑥). The dots are the experimental design variables and the 

dotted and solid lines are the true and the predictor mean functions or responses in the 

design space, given the observations. The shaded area along the solid line shows the 

measure of uncertainty over the surrogate GPM prediction. We can clearly see that the 

variance near the observations is small and increases as the design samples are farther 

away from the observational data, thereby related to kriging models where the errors 

are not independent. Much research has been ongoing regarding incorporating and 

quantifying uncertainty of the experimental or training data by using a nugget term in 

the predictor GPM. It has been found that the nugget provides better solution and 
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computational stability framework [107], [108]. Furthermore, GPM has also been 

implemented in high dimensional design space exploration [109] and BIG DATA 

problems [110], as an attempt to increase computational efficiency. A survey of 

implementation of different GP packages has been provided in different coding 

languages such as MATLAB, R, Python [111].  

 
Figure 3.4. 1D Gaussian Process (from Wikipedia) 

 

3.2.2.2. Acquisition function (AF) 

The second major component in Bayesian optimization is the Acquisition Function 

whose goal is to guide the search for future experiments towards the desired goal and 

thereby bring the sequential design into the BO. The AF predicts an improvement 

metric for each sample. The improvement metric depends on exploration (unexplored 

design spaces) and exploitation (region near high responses). Thus, the acquisition 

function gives high value of improvement to the samples whose mean prediction is 

high, variance is high, or a combination of both. Thus, by maximizing the acquisition 

function, we select the best samples to find the optimum solution and reduce the 

uncertainty of the unknown expensive design space. Throughout the years, various 

formulations have been applied to define the acquisition functions. One such method 

is the Probability of Improvement, PI [112] which is improvement based acquisition 

function. Jones in [113] notes that the performance of PI(·) “is truly impressive;… 

however, the difficulty is that the PI(·) method is extremely sensitive to the choice of 

the target. If the desired improvement is too small, the search will be highly local and 

will only move on to search globally after searching nearly exhaustively around the 

current best point. On the other hand, if the small-valued tolerance parameter ξ in PI(.) 



49 

 

 

 

 

 

equation is set too high (see [113]), the search will be excessively global, and the 

algorithm will be slow to fine-tune any promising solutions.” Thus, the Expected 

Improvement acquisition function, EI [7], is widely used over PI which is a trade-off 

between exploration and exploitation. Another Acquisition function is the Confidence 

bound criteria, CB, introduced by Cox and John [114], where the selection of points is 

based on the upper or lower confidence bound of the predicted design surface for 

maximization or minimization problem respectively. 

 

3.3. Problem Description 

In this section, we describe the thin tube design problem which represents the proof of 

concept for the large complex design of diffusion bonded Compact Heat Exchanger 

(CHX). As the tube is assumed to undergo constant loading of temperature and 

pressure, there will be risk of creep-fatigue failure which will vary with the design 

geometry. Fatigue damage is created when one cycles a test specimen at a fixed stress 

amplitude for enough cycles until it develops microstructural damage and eventually 

fails. Creep damage is created when one holds a test specimen at a fixed load for a long 

enough time that it eventually develops microstructural damage and fails. Creep-

fatigue damage is therefore to do both of these things simultaneously (i.e. a stress 

controlled cycle with a hold) and the specimen will generally fail sooner than 

conducting the cycling and the hold individually. As mentioned previously, our goal is 

to predict the transition region between the safe and unsafe region as defined in section 

3.1.2. For design variables for the CHX which will influence creep-fatigue behavior, 

we choose the radius (rad) and length (l) of the tube. Next we describe the 

experimentation and the formulation of the objective function which depends on the 

experimental results and the prior knowledge on the domain of solid mechanics. 

3.3.1. Model experiments 

In this section, we provide the computation of the location of any design in terms of 

Elastic, Plastic, Shakedown and Ratchetting, and the respective strain accumulation. 

We represent these outputs as the responses from the expensive experiments. In our 

problem of thin tube design, though these computations are not expensive and can be 
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done analytically, we still represent these as expensive function evaluations which will 

be true for our future problem of considering the actual diffusion bonded CHX 

geometry where expensive Finite Element Analysis is required. The computations have 

been done based on the formulation of a Bree diagram [81]. In this chapter, we 

considered the Bree diagram for a non-work-hardening material whose yield stress 

remains unchanged by changes in mean temperature, as provided in Appendix A.3.1. 

For the sake of simplicity, we have ignored the further division of Shakedown (S1, S2) 

and Ratchetting (R1, R2) as shown in the figure, and assumed a single region of 

Shakedown (S) and Ratchetting (R). This is because, for the purpose of our problem 

any design in Shakedown is considered safe, while in Ratchetting is considered unsafe.  

Below are the steps for computation of the various stresses and strains for the thin 

tube required for our methodology: 

Step 1: Calculate Pressure and Temperature Stress: 

𝜎𝑝 = 𝑃 ∗ 𝑟𝑎𝑑/𝑑                                                                                                         (3.3) 

𝜎𝑡 = (𝐸 ∗ 𝛼 ∗ ∆𝑇)/2(1 − 𝜌)                                                                                     (3.4) 

Where, 

∆𝑇 =  ∆𝑇𝑠𝑙𝑜𝑝 ∗ 𝑙 + 𝑇𝑖𝑛                                                                                              (3.5) 

∆𝑇𝑠𝑙𝑜𝑝 = −𝑇𝑖𝑛 + 𝑇𝑜𝑢𝑡 ∗ (
𝑟𝑎𝑑−𝑟𝑎𝑑𝑚𝑖𝑛

𝑟𝑎𝑑𝑚𝑎𝑥−𝑟𝑎𝑑𝑚𝑖𝑛
)                                                                  (3.6) 

where 𝜎𝑝 and 𝜎𝑡 are the pressure and temperature stresses; P is internal pressure 

subjected to the tube which is taken as 25MPa; rad is the radius; d is the wall thickness; 

𝑙 is the length; E = 200GPa is the Young’s Modulus; 𝛼 = 16𝑒 − 6 is the thermal co-

efficient of  the linear expansion; 𝜌 = 0.27 is the Poisson Ratio; ∆𝑇 is temperature drop 

across the wall with 𝑇𝑖𝑛 and 𝑇𝑜𝑢𝑡 are the inlet and outlet temperatures which are taken 

as 400ºC and 20ºC, respectively; 𝑟𝑎𝑑𝑚𝑖𝑛 and 𝑟𝑎𝑑𝑚𝑎𝑥 are the minimum and maximum 

radius.  

Step 2: Determine the region of the design: 

Case 1: 

 If 𝜎𝑝 ≤  0.5𝜎𝑦 and 𝜎𝑡 <  2𝜎𝑦, (𝜎𝑦 = 205MPa is the yield stress), the design is in 

the Elastic or Shakedown (Safe) region;  
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 else, if 𝜎𝑡 >  2𝜎𝑦, the design is in Plastic or Ratchetting region (Unsafe). For the 

design in Plastic or Ratchetting, if  𝜎𝑝 ∗ 𝜎𝑡  ≤  𝜎𝑦
2, the design is in Plastic. 

 else, if 𝜎𝑡 =  2𝜎𝑦, the design is in at the transition line.  

Case 2: 

 If 𝜎𝑝 >  0.5𝜎𝑦 and 𝜎𝑝 + 0.25𝜎𝑡 <  𝜎𝑦, the design is in Elastic or Shakedown 

(Safe);  

 else, if 𝜎𝑝 + 0.25𝜎𝑡 >  𝜎𝑦, the design is in Ratchetting region (Unsafe). 

 else, if 𝜎𝑝 + 0.25𝜎𝑡 =  𝜎𝑦, the design is in at the transition line.  

Step 3: Calculate the strain accumulation: 

 If the design is in Elastic/Shakedown, strain 𝜀𝑠 can be calculated as: 

𝜀𝑠 = (
2

𝐸
) ∗ (𝜎 − (

𝑥

𝑑
) ∗ 𝜎𝑡)                                                                                 (3.7) 

where 

𝜎 =  𝜎𝑝 + 2 (
𝑥

𝑑
) ∗ 𝜎𝑡                                                                                        (3.8) 

and x is the section of the tube wall, which varies from 0 at the outer wall to d at the 

inner wall. Since our problem is subjected to internal pressure, the maximum stress is 

at the inner wall of the tube. Thus, we consider the worst condition and focus on the 

stress at the inner wall at 𝑥 = 𝑑.  

 If the design is in Plastic, strain 𝜀𝑝can be calculated as: 

𝜀𝑝 = (𝜎𝑡 − 2𝜎𝑦) ∗ 𝑛/𝐸                                                                                   (3.9) 

 If the design is in Ratchetting, strain 𝜀𝑟can be calculated as: 

𝜀𝑟 = (
2𝑛∗𝜎𝑡

𝐸
) ∗ (1 − 2√(𝜎𝑦 − 𝜎𝑝)/𝜎𝑡)                                                            (3.10)                       

Where 𝑛 is the number of cycles. In this problem, we considered 𝑛 =50. 

It is to be noted that when the design is at the transition line, as per Step 2, we avoid 

the Step 3 strain calculation for those designs as for those designs, equation 3.7, 3.9 or 

3.10 are all justified which creates the jump discontinuity (refer Appendix Fig. A.3.3 

for 1D example). In the next section, we have presented the formulation of the distance 

metric which mitigates this discontinuity issue, suitable for the BO framework.    

3.3.2. Formulation of distance metric 
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In this section, we provide the formulation of the distance metric. Although we can 

obtain the strain accumulation for a particular design from the model experiments, we 

do not have a good idea of strain accumulation for a design close to the transition 

region, where we do not know which equation (eq. 3.7, 3.9, 3.10) applies. Therefore, 

with the value of strain only, it is difficult to formulate an objective function where we 

can either maximize or minimize the strain accumulation in the BO model in order to 

maximize the accuracy and iteratively get closer to the unknown transition region. 

Also, the jump discontinuity still lies at the transition line between safe and unsafe 

region in the design space of strain accumulation. Therefore, we propose to formulate 

a new function with the help of the experimental results, which we have defined as a 

distance function, Y, by transforming the original discontinuous design space into 

artificially created continuous design space. The computation of the distance value for 

any designs is based on the heuristics that, given two designs that are in the Shakedown 

(Safe) region, the design having more strain accumulation is closer to the unknown 

transition region and therefore higher value will be assigned. The reverse occurs for 

any design in Plastic or Ratchetting (Unsafe) region where for any two designs in those 

regions, the design having lower strain accumulation is towards the unknown transition 

region and therefore lower value will be assigned. Thus, this prior knowledge helps us 

to build our distance function where we first separate the sampled designs (prior data) 

in terms of regions which can be evaluated from experiments (Step 2 in Section 3.3.1). 

It is worth noting that for the complex problem of diffusion bonded HCX, the 

determination of the region for a design must be conducted from FEA. After we 

separate all the sampled designs into regions as Elastic/Shakedown, Plastic and 

Ratchetting, next we assume a linear increment of strain accumulation with increasing 

the risk of creep-fatigue failure and build our formula for computing the distance value 

of the ith design at iteration k of BO model, 𝑌𝑘,𝑖 as below: 

 For design i, in Elastic/Shakedown: 

  𝑌𝑠,𝑘,𝑖 = 𝑌𝑆𝑚𝑖𝑛 +
(𝜀𝑠,𝑖−min (𝜺𝒔,𝒌)) 

max(𝜺𝒔,𝒌)−min (𝜺𝒔,𝒌)
∗ (𝑌𝑆𝑚𝑎𝑥 − 𝑌𝑆𝑚𝑖𝑛)                                            (3.11) 

 For design i, in Plastic: 
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  𝑌𝑝,𝑘,𝑖 = 𝑌𝑃𝑚𝑖𝑛 +
(𝜀𝑝,𝑖−min (𝜺𝒑,𝒌)) 

max(𝜺𝒑,𝒌)−min (𝜺𝒑,𝒌)
∗ (𝑌𝑃𝑚𝑎𝑥 − 𝑌𝑃𝑚𝑖𝑛)                                     (3.12) 

 For design i, in Ratchetting: 

  𝑌𝑟,𝑘,𝑖 = 𝑌𝑅𝑚𝑖𝑛 +
(𝜀𝑟,𝑖−min (𝜺𝒓,𝒌)) 

max(𝜺𝒓,𝒌)−min (𝜺𝒓,𝒌)
∗ (𝑌𝑅𝑚𝑎𝑥 − 𝑌𝑅𝑚𝑖𝑛)                                      (3.13) 

where 𝜀𝑠,𝑖, 𝜀𝑝,𝑖, 𝜀𝑟,𝑖are the strain accumulation of design i, given the design falls into 

Elastic/ Shakedown, Plastic or Ratchetting respectively; min(𝜺𝒔,𝒌) , max(𝜺𝒔,𝒌) are the 

minimum and the maximum strain accumulation among all the sampled designs 

(training data) in Shakedown at iteration k; min(𝜺𝒑,𝒌) , max(𝜺𝒑,𝒌) are the minimum 

and the maximum strain accumulation among all the sampled designs (training data) in 

Plastic at iteration k; min(𝜺𝒓,𝒌) , max(𝜺𝒓,𝒌) are the minimum and the maximum strain 

accumulation among all the sampled designs (training data) in Ratchetting at iteration 

k; 𝑌𝑆𝑚𝑖𝑛, 𝑌𝑆𝑚𝑎𝑥 are the minimum and maximum distance function bounds for the 

designs in Elastic/ Shakedown and are set as 0 and 0.45 respectively; 𝑌𝑃𝑚𝑖𝑛 , 𝑌𝑃𝑚𝑎𝑥 are 

the minimum and maximum distance function bounds for the designs in Plastic and re 

set as 0.55 and 1 respectively; 𝑌𝑅𝑚𝑖𝑛, 𝑌𝑅𝑚𝑎𝑥 are the minimum and maximum distance 

function bounds for the designs in Ratchetting and re set as 0.51 and 1 respectively. 

With changing the values for 𝑌𝑆𝑚𝑎𝑥, 𝑌𝑃𝑚𝑖𝑛, 𝑌𝑅𝑚𝑖𝑛, the efficiency of the model 

changes in terms of accuracy and cost of function evaluations and, therefore, a 

sensitivity analysis has been done within a recommended range of values which will 

be described later. However, the values given have been found to produce consistent 

performance in terms of accuracy.  

The idea of the objective is that the design samples, at iteration k, in the 

Elastic/Shakedown region which are nearest to the predicted transition region will have 

𝑌𝑠,𝑘,𝑖= 0.45 and the design samples in the Elastic/Shakedown region which are farthest 

from the predicted transition region will have 𝑌𝑠,𝑘,𝑖=0. All the other samples, or training 

data, in the Elastic/ Shakedown region will have values within the range of [0-0.45] 

based on the closeness to the predicted transition region. Similarly, at iteration k, the 

sample in the Plastic or Ratchetting region which is nearest to the predicted transition 

region will have 𝑌𝑝,𝑘,𝑖 or 𝑌𝑟,𝑘,𝑖= 0.55 and the sample in the Plastic or Ratchetting region 
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which is farthest from the predicted transition region will have 𝑌𝑝,𝑘,𝑖 or 𝑌𝑟,𝑘,𝑖=1. All the 

other samples or training data in the Elastic/ Shakedown region will have values within 

the range of [0.55-1] based on the closeness to the predicted transition region. The 

width of the transition region thus set in this case as [0.45-0.55], assuming the true 

transition or constraint boundary line is at  𝑌𝑠,𝑖 = 𝑌𝑝,𝑖 = 𝑌𝑟,𝑖 =0.5 for any iteration of 

the BO model. In our formulation, this setting of distance value of 0.5 for any design 

at the transition line build the continuity in the design space. It is to be noted that 

knowing the distance value at the transition line, we attempt to optimize the location of 

the unknown transition region, given the width of the region. Locating the exact 

transition line or constraint boundary will require exhaustive experiments or function 

evaluations and may occur overfitting issues in prediction to classify safe and unsafe 

designs; therefore, we assume that with sequential improvement of the prediction of 

the location of the transition region from BO increases accuracy in the location of 

transition line (constraint boundary line) as well.  

To summarize, the reasons to construct the distance function are 1) an output as a 

discrete region is not useful in the BO framework: we need to transform region 

knowledge into a continuous metric, and 2) it allows us to define our objective in the 

BO framework in terms of finding the transition region between Elastic/Shakedown vs. 

Plastic and Ratchetting. It is to be noted that this is a sequential design approach and 

with more training data (increase prior knowledge), the values of distance function, Y 

for all the training data, except at the transition line, changes and are re-computed per 

iteration. 

 

3.4. Design Methodology 

Figure 3.5 shows the detailed structure of the proposed Bayesian Optimization 

framework. Below is the algorithm with explanation of each steps of the proposed pre-

stage Bayesian Optimization framework to predict the transition region between safe 

and unsafe region for the thin tube problem as describe in section 3.3.1; however, the 
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general algorithm is applicable to larger scale problems such as the diffusion bonded 

CHX.   

 
Figure 3.5.  Overall flow-chart of the proposed Bayesian Optimization framework  

 

Step-by-Step description for proposed Bayesian Optimization to find the transition 

region between safe and unsafe designs of the thin tube 

Step 0 (Initialization): Define the design space or the region of interest for the given 

problem. From the defined design space, generate grid matrix 𝑿̿ using a DOE approach. 

Conduct function evaluations or experiments of very limited randomly generated 

samples in the design space. In our thin tube problem, we choose 10 random selected 

designs as starting samples which are not included in 𝑿̿.  

Step 1: Build a training data matrix with the sampled designs: The data consist of X as 

design input variables and Y as output functions. In our problem, we define X as the 

matrix of design geometries as radius (rad) and length (l) of the thin tube and 𝒀 as the 

vector of distance values of the respective sampled designs as described in Section 3.3. 

Create the training data matrix, assuming at iteration k, 𝑫𝒌 = {𝑿𝒌, 𝒀(𝑿𝒌)}. It is to be 



56 

 

 

 

 

 

noted 𝑫𝒌 contains the distance values for all sampled designs from any region. Also, 

like in the Bree diagram, it is possible to choose the pressure and temperature stresses 

as the design variables. However, with design geometry as the design variables, it is 

more useful for a designer to directly visualize and understand the efficiency of the 

designs. 

Step 2: GPM: Next, with the knowledge gained from previous experiments (prior 

knowledge), 𝑫𝒌 = {𝑿𝒌, 𝒀(𝑿𝒌)}, we can develop a single posterior Gaussian Process 

model.  

Step 3: Use the posterior GP model 𝚫𝐤, to conduct posterior predictive simulations of 

the non-sampled designs in the grid matrix 𝑿̿ and predict respective mean and MSE of 

distance values, forming two vectors of  𝝁(𝒀̿(𝑿̿))| 𝚫𝐤 and 𝝈𝟐(𝒀̿(𝑿̿))| 𝚫𝐤 respectively. 

Step 4: Define objectives to sample designs towards unknown transition region: Now, 

we have the vector of predictive posterior means of all the non-sampled designs, we 

need to define our objective, for which the acquisition function will be formulated. In 

this classification problem between safe and unsafe designs, our goal is to therefore 

maximize sampling of designs towards the unknown transition boundary and thus train 

the BO model sequentially with higher accuracy towards the transition region. Thus, 

maximizing the distance function for the set of designs in Elastic or Shakedown (Safe) 

will create the optimal region towards the transition region as the design in Shakedown 

closest to the transition region will have higher distance values. Similarly, minimizing 

the distance function for the set of designs in Plastic and Ratchetting (Unsafe) will 

create the optimal region towards the transition region as the designs in those regions 

closest to the transition region will have lower distance function values.  

 To convert into a single-objective maximization problem, we did the 

elementwise transformation of the vector 𝝁(𝒀̿(𝑿̿))| 𝚫𝐤. Let us define the transformed 

mean vector as  𝝁𝑻(𝒀̿(𝑿̿)), after conducting the elementwise operation as follows: 

 {
𝜇(𝑦̿(𝑥̿)) 𝑖𝑓 𝑥̿𝑟𝑒𝑔𝑖𝑜𝑛  ∈ 𝐸𝑙𝑎𝑠𝑡𝑖𝑐/𝑆ℎ𝑎𝑘𝑒𝑑𝑜𝑤𝑛

1 − 𝜇(𝑦̿(𝑥̿)) 𝑖𝑓 𝑥̿𝑟𝑒𝑔𝑖𝑜𝑛  ∈ 𝑃𝑙𝑎𝑠𝑡𝑖𝑐/𝑅𝑎𝑐ℎ𝑒𝑡𝑡𝑖𝑛𝑔
                                                (3.14) 
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where 𝑦̿ is the scalar posterior mean value of the non-sampled design 𝑥̿. 

Step 5: Define the Acquisition Function and maximize the Acquisition function 𝑢(. ): 

After the transformation as mentioned in Step 4, we calculated the acquisition function 

value elementwise as 𝑢(𝑦̿(𝑥̿)|𝚫𝐤), for each non-sampled designs, considering the 

respective mean and MSE values in vectors 𝝁𝑻(𝒀̿(𝑿̿)) and 𝝈𝟐(𝒀̿(𝑿̿)). Thus, we 

develop the vector of the acquisition function values as 𝒖(𝒀̿(𝑿̿)|𝚫𝐤). A selection 

criterion is applied to choose new design location for future sampling, {𝑥̿𝑚𝑎𝑥};  𝑥̿𝑚𝑎𝑥  ∈

 𝑿̿, which will maximize the predicted improvement of the learning of the unknown 

design space (maximizing acquisition function). Thus we select the design with 

maximum acquisition function value as, 

 𝑦̿𝑚𝑎𝑥(𝑥̿𝑚𝑎𝑥 ) = max (𝒖(𝒀̿(𝑿̿)|𝚫𝐤))                                                                    (3.15)                   

Augment the Data, 𝑫̿𝒌 = {𝑫𝒌; (𝑥̿𝑚𝑎𝑥, 𝑦̿𝑚𝑎𝑥)}. The methodology used to compute the 

acquisition function has been described in section 3.4.3.  

Step 6: Check for convergence criteria 1. If not met, run j=1: n loops of Step 2 to 6; 

each loop takes one optimal design location {𝑥̿𝑚𝑎𝑥,𝑗}; to select the best n design 

locations 𝑿̿𝒎𝒂𝒙 = {𝑥̿𝑚𝑎𝑥,1, … , 𝑥̿𝑚𝑎𝑥,𝑛} to proceed to the next round of experiments. 

This step provides multiple experimental data in a single round of an experiment since 

it will be unrealistic and time consuming to provide one experiment at a time. The 

assumption behind this step is that we believe the GP prediction of {𝑥̿𝑚𝑎𝑥,𝑗} is accurate 

and proceed to the next best location {𝑥̿𝑚𝑎𝑥,𝑗+1} by minimizing the error in the current 

selected location{𝑥̿𝑚𝑎𝑥,𝑗}. We believe this is a fair assumption since with more 

knowledge, the GP prediction will be close to the actual experiment data. In the early 

round of experiments, although we might see deviations from the actual experiment 

results (not following the assumptions), with the knowledge from those experiments, 

eventually the GP will improve and provide predictions closer to the actual experiment 

results as the model convergences (following assumptions). 
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Step 7: Expensive Function evaluations:  Conduct experiments for new design location 

𝑿𝒌+𝟏 = 𝑿̿𝒎𝒂𝒙. This step is outside the model environment as actual experiments will 

be conducted from the original high-fidelity model to generate required outputs (strain 

accumulation and the location of the designs), which ultimately used to compute 

distance metric (Eq. 3.9 - 3.11). Therefore, the new experiment data is: 

{𝑿𝒌+𝟏, 𝒀(𝑿𝒌+𝟏)}. 

Step 8: Data Augmentation: Update the prior knowledge for the next iteration of the 

model. Update training data matrix with current experimented data 𝑫𝒌+𝟏 =

{𝑫𝒌; (𝑿𝒌+𝟏, 𝒀(𝑿𝒌+𝟏))}. Repeat Steps 2 to 8 until convergence.  

Step 9: If convergence criteria 2 is met, update the GP with the final training data 𝚲, 

augmented with final sampled data and stop the model. Convergence criteria 1 and 2 

will be explained later in this section. 

Step 10: Feasibility Check between safe and unsafe region: 

This step is after the optimization is completed and the proposed BO model is fully 

trained, satisfying convergence criteria. Now, instead of running expensive 

evaluations, to classify any new designs as safe or unsafe design, we check the 

feasibility using the trained low-cost BO model: 

If the posterior predictive mean of the new design, µ((𝑌𝑛𝑒𝑤(𝑋𝑛𝑒𝑤))| 𝚲) ≤  0.5, the new 

design is in safe region.  Otherwise, the new design is in the unsafe region.  The value 

0.5 is the threshold as we set this distance value at the transition boundary line. 

3.4.1. Gaussian process model formulation of the thin tube 

In this section, we present the GPM in our proposed BO model. The general form of 

the GPM is as follows: 

𝑦(𝑥) = 𝑥𝑇𝛽 + 𝑧(𝑥)                                                                                               (3.16)                                                                               

where 𝑥𝑇𝛽 is the Polynomial Regression model. In our model, we have used 1st and 2nd 

order polynomial regression model. The polynomial regression model captures the 

global trend of the data. In general, 1st order polynomial regression is used, which is 

also known as universal kriging [115]; however, it has also been claimed that it is fine 
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to use a constant mean model [116]. 𝑧(𝑥) is a realization of a correlated Gaussian 

Process with mean 𝐸[𝑧(𝑥)] and covariance 𝑐𝑜𝑣(𝑥𝑖 , 𝑥𝑗) functions defined as follows: 

𝑧(𝑥)~ 𝐺𝑃 (𝐸[𝑧(𝑥)], 𝑐𝑜𝑣(𝑥𝑖 , 𝑥𝑗)) ;                                                                        (3.17) 

𝐸[𝑧(𝑥)] = 0, 𝑐𝑜𝑣(𝑥𝑖 , 𝑥𝑗) = 𝜎2𝑅(𝑥𝑖 , 𝑥𝑗)                                                               (3.18)                                               

𝑅(𝑥𝑖 , 𝑥𝑗) = exp (− ∑ 𝜃𝑚(𝑥𝑚
𝑖 − 𝑥𝑚

𝑗
)

2
𝑑
𝑚=1 ) ;                                                          (3.19) 

𝜃𝑚 = (𝜃1, 𝜃2, … . , 𝜃𝑑)         

where 𝜎2 is the overall scale parameter and 𝜃𝑚is the correlation length parameter in 

dimension m of d dimension of 𝑥. These are termed as the hyper-parameters of GP 

model.  𝑅(𝑥𝑖 , 𝑥𝑗) is the spatial correlation function. In our model, we have used a 

Gaussian Spatial correlation function which is given by equation 3.13. The objective is 

to estimate (by MLE) the hyper-parameters 𝜎, 𝜃𝑚 which creates the surrogate model 

that best explains the training data 𝑫𝒌 at iteration k.  

After we build the GP model, the next task of the GP model is to predict (Step 3) an 

arbitrary point drawn from the grid matrix in Step 0. Assume 𝑫𝒌 = {𝑿𝒌, 𝒀(𝑿𝒌)} is the 

prior information from previous experiments from high fidelity models, representing 

the realizations of prior belief of the unknown true functions, and 𝑥̿𝑘+1 ∈ 𝑿̿ is any new 

design. The predictive output distribution of 𝑥𝑘+1, given the posterior GP model, is 

given by equation 3.20.  

𝑃(𝑦̿𝑘+1|𝑫𝒌, 𝑥̿𝑘+1, 𝜎𝑘
2, 𝜽𝒌) =  𝑵(𝜇(𝑦̿𝑘+1(𝑥̿𝑘+1)), 𝜎2(𝑦̿𝑘+1(𝑥̿𝑘+1)))                        (3.20)                                                                                                                                    

where: 

𝜇(𝑦̿𝑘+1(𝑥̿𝑘+1)) = 𝒄𝒐𝒗𝒌+𝟏
𝑻 𝑪𝑶𝑽𝒌

−𝟏𝒀𝒌;                                                                         (3.21) 

𝜎2(𝑦̿𝑘+1(𝑥̿𝑘+1)) =  𝑐𝑜𝑣(𝑥̿𝑘+1, 𝑥̿𝑘+1) − 𝒄𝒐𝒗𝒌+𝟏
𝑻 𝑪𝑶𝑽𝒌

−𝟏𝒄𝒐𝒗𝒌+𝟏                             (3.22)               

𝑪𝑶𝑽𝒌 is the kernel matrix of already sampled designs 𝑿𝒌 and 𝒄𝒐𝒗𝒌+𝟏 is the covariance 

function of new design 𝑥̿𝑘+1 which is defined as follows: 

   𝑪𝑶𝑽𝒌  =  [
𝑐𝑜𝑣(𝑥1, 𝑥1) ⋯ 𝑐𝑜𝑣(𝑥1, 𝑥𝑘)

⋮ ⋱ ⋮
𝑐𝑜𝑣(𝑥𝑘, 𝑥1) ⋯ 𝑐𝑜𝑣(𝑥𝑘, 𝑥𝑘)

]                                                                                                                                     

  𝒄𝒐𝒗𝒌+𝟏 = [𝑐𝑜𝑣(𝑥̿𝑘+1, 𝑥1), 𝑐𝑜𝑣(𝑥̿𝑘+1, 𝑥2), . . , 𝑐𝑜𝑣(𝑥̿𝑘+1, 𝑥𝑘)]     
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3.4.2. Generating grid points from unknown design spaces of thin tube 

In this section, we discuss the generation of grid points within the specified design 

spaces, where the selected grid points by the acquisition function will be considered as 

samples for experiments. The goal of generating a grid using a rectangular grid or Latin 

hypercube is to use the space filling properties to cover the entire design space of the 

unknown design response surface. More details on the formulations and sampling 

strategies of these two methods has been referred in the paper [117]. However, the 

proposed model is not restricted to use these two methods and the user can select a 

preferred sampling strategy. 

3.4.3. Acquisition function formulation of the thin tube 

In this section, we provide a detailed formulation of the acquisition function for Step 4 

of the proposed model.  Three types of acquisition functions have been studied in the 

model: Probability of Improvement, Expected Improvement and Full Exploration 

search. The first acquisition function considers the idea of pure exploitation (selecting 

design points where predicted mean is high); the second acquisition function develops 

on the idea of exploitation (selecting design points where predicted mean is high) and 

exploration (selecting design points where predicted variance is high). The final 

acquisition function is based on only exploration. The final acquisition function is very 

useful when the design space is very flat, and the global optimal solution is confined in 

a very small region. With the first two acquisition functions, it has been seen the model 

falls into false convergence since the design space is flat with limited samples in the 

early iterations. The acquisition function predicts very low probability/expected 

improvement as all the responses have similar values for all the experimented design 

inputs. Thus, when the design surface is unknown and could be very flat in most 

regions, it is important to use a full exploration acquisition function in the early 

iterations of the model to ensure that any potential optimal region is not missed. Once 

we find a sample within the confined interesting region, we can switch back to 

exploration-exploitation search to avoid unnecessary selection of samples for 

experiments in the non-optimal regions. In our model, we have set a switching criterion 

as follows: 
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do Full Exploration search 

𝑖𝑓 max(𝒀𝒌) − min(𝒀𝒌) ≤ 𝛿  𝑘 = 1,2, … 𝐾 

else do Expected Improvement or Probability of Improvement 

where 𝛿 is a very small value which is set as 0.1. We can also set 𝛿 as the percentage 

(say 1%) of the mean 𝒀𝒌.   

After selecting an appropriate acquisition function, we optimize over the GP to get 

the next design input location  

 {𝑥̿𝑚𝑎𝑥}; 𝑥̿𝑚𝑎𝑥  ∈  𝑿̿ such as  

𝑥̿𝑚𝑎𝑥 = argmax
𝑥𝑖∈ 𝑿̿

𝒖(𝒀̿(𝑿̿)|𝚫𝐤)                                                                            (3.23)                                                                                   

where 𝒖(𝒀̿(𝑿̿)|𝚫𝐤) is the vector of acquisition function values of all the elements of 

vector 𝒀̿(𝑿̿) given the posterior model at iteration k. Below are the equations for the 

acquisition functions, Probability of Improvement (Eq. 3.24), Expected Improvement 

(Eq. 3.25, 3.26) and Full Exploration (Eq. 3.27)  

𝑢(𝑦̿(𝑥̿)|𝚫𝐤) = 𝑃𝐼(𝑦̿(𝑥̿)) =

 {
Φ (

𝜇(𝑦̿(𝑥̿))−𝑦(𝑥+)−𝜉

𝜎(𝑦̿(𝑥̿))
, 𝑚𝑒𝑎𝑛 = 0, 𝑠𝑑 = 1)  𝑖𝑓 𝜎(𝑦̿(𝑥̿)) > 0

0 𝑖𝑓 𝜎(𝑦̿(𝑥̿)) = 0
                                 (3.24)   

                

𝑢(𝑦̿(𝑥̿)|𝚫𝐤) = 𝐸𝐼(𝑦̿(𝑥̿)) =

 {
(𝜇(𝑦̿(𝑥̿)) − 𝑦(𝑥+) − 𝜉) ∗ Φ(Z, 0,1) +  𝜎(𝑦̿(𝑥̿)) ∗ 𝜙(𝑍)   𝑖𝑓 𝜎(𝑦̿(𝑥̿)) > 0 

0 𝑖𝑓 𝜎(𝑦̿(𝑥̿)) = 0
         

                                                                                                                                (3.25)                                                                                                                    

𝑍 =  {

𝜇(𝑦̿(𝑥̿))−𝑦(𝑥+)−𝜉

𝜎(𝑦̿(𝑥̿))
  𝑖𝑓 𝜎(𝑦̿(𝑥̿)) > 0

0  𝑖𝑓 𝜎(𝑦̿(𝑥̿)) = 0
                                                                  (3.26) 

                                                     

𝑢(𝑦̿(𝑥̿)|𝚫𝐤) =  𝜎2(𝑦̿(𝑥̿))                                                                                       (3.27) 

where 𝑦(𝑥+)is the maximum actual response among all the experimented data until the 

current stage which is at 𝑥 = 𝑥+ ; 𝜇(𝑦̿) and 𝜎2(𝑦̿) are the predicted mean and MSE 

from GPM for the non-sampled design 𝑥̿ ∈ 𝑿̿ ; Φ(. ) is the cdf; 𝜙(. ) is the pdf; 𝜉 ≥ 0 
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is a small value which is recommended to be 0.01 [93] as this works well in most cases 

whereas the cooling function of 𝜉 did not. Jones [113] notes that the performance of 

PI(·) is highly sensitive to the value of ξ, with non-ideal values leading to poor 

performance. 

3.4.4. Convergence criteria 

In this section, we have discussed on the convergence criteria established into the 

model. From the steps of the proposed BO model, there are two checks for convergence 

in the model in Step 5 and in Step 8 in Section 3.4. The convergence criteria in Step 5 

is Convergence 1 and the convergence criteria in Step 8 is Convergence 2. If either of 

the convergence checks succeed, the model stops and return the final solution. Below 

is the list of Convergence criteria which can be implemented into the models. 

Convergence 1: 

a. The maximum improvement value of the acquisition function in selecting the first 

design sample (1st iteration in Step 5) after conducting actual experiments is less 

than α=0.001. Mathematically, it can be stated as  

If 𝑗 == 1  

max{ 𝑢(𝒀̿(𝑿̿|𝚫𝐤)} ≤ α                                                                                (3.28) 

Convergence 2: 

a. The absolute difference in the total mean MSE of the predicted responses in m 

successive iterations is less than α1. 

|μ (𝜎2(𝒀̿𝒌)) −  μ (𝜎2(𝒀̿𝒌+𝒎)) | ≤  𝛼1                                                                   (3.29) 

Where, 𝒀̿𝒌 is the column vector of all the predicted value of matrix 𝑿̿ at iteration 𝑘. 

b. Stopping the model after limiting the budget in terms of maximum number of 

experiments or function evaluations, i.e ∑ 𝑛𝑘 ≥ 𝑆 where 𝑆 is the maximum number 

of function evaluations possible; 𝑛𝑘 is the number of samples selected for 

experiments at kth iteration.  

3.5.Results 
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In this section, we will show the results of the proposed Bayesian Optimization 

framework on the design of the tube in terms of the performance of finding the 

transition region between safe and unsafe region. We used the DACE package [117] in 

MATLAB to fit the GP model in the Bayesian Optimization. With radius and length of 

the tube as decision variables, two test scenarios have been considered with different 

values of thickness of the tube given as 1.7mm and 1.2mm. The feasible bounds for 

radius and length are [4 – 6.55] mm and [0.1-1] m, respectively. Figures 3.6 - 3.9 shows 

the results after the model satisfies convergence criteria 1, considering two different 

thickness of tube (thickness =1.7mm and 1.2mm).  

3.5.1. Predicted transition region of converged model 

 
Figure 3.6. Transition region between 

Safe and Unsafe region for Thickness = 

1.7mm (Convergence 1 satisfied) 

 
Figure 3.7. Transition region between 

Safe and Unsafe region for Thickness = 

1.2mm (Convergence 1 satisfied) 

The pink and black dots in the Figures 3.6 and 3.7 represent the randomly starting 

samples and the BO guided adaptive sample design locations that have been trained 

from actual function evaluations as described in section 3.3.1. The final posterior 

predicted transition region, representing also the discontinuity or the constraint 

boundary region, has been developed based on those prior training data only and, 

therefore, the designers can provide decisions about the feasibility of any new designs 

in the specified design space based on the small sample of data, instead of undergoing 

further experiments. The green and red highlighted region represent the final transition 

region which is defined as the predicted distance function value 𝑌, ranges between 0.4 

to 0.5 and 0.5 to 0.6 respectively, given the prior training data. The green highlighted 

region represents the area in the Shakedown region (safe), but very close to transition 
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region near the constraint boundary line. The red dots represent the area in the Plastic 

or Ratchetting region (unsafe), but very close to transition region near the constraint 

boundary line. 

 
Figure 3.8. Comparison with Bree 

diagram of thin tube for Thickness = 

1.7mm 

 
Figure 3.9. Comparison with Bree 

diagram of thin tube for Thickness = 

1.2mm 

From visualization, we can see that a that design falls above the green region is most 

likely to be safe and a good design. A design that falls within the green or red region is 

very close to the transition region and therefore recommended for further analysis. Any 

design that falls below the red region is most likely not a safe design, susceptible to 

creep-fatigue failure. The converged results of both scenarios from the proposed BO 

framework have been compared with the true solution (Bree Diagram of thin tube) in 

terms of pressure and temperature stresses in Figures 3.8 and 3.9. The grey shadowed 

part is the region of interest of our test cases where we show our predicted transition 

region (denoted by red and green) centered about the true transition line. We know 

from the Bree diagram that below the solid black and dashed red line is the 

Elastic/Shakedown (safe) region and above those are the Plastic and Ratchetting region 

(unsafe), respectively. The region of interest in Figure 3.8 does not cover the 

Ratchetting region; thus, we see the red region above the solid black line (towards the 

plastic region) and the green region below the solid black line (towards the elastic 

region). The region of interest is more complicated in Figure 3.9, since the region 

covers Elastic/Shakedown (below black and red dashed line), Plastic (above black line) 

and Ratchetting region (above red dashed line). It can be understood that due to a more 
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complex design response surface, the model took more training data (black dots) for 

the 1.2mm vs. the 1.7mm thickness to reach model convergence. 

3.5.2. Classification error 

Next, we consider a randomly selected 100k new designs (test data) from Latin 

Hypercube sampling in the same design space for validation to classify between safe 

and unsafe region (Step 9 in Section 3.4). Tables 3.1 and 3.2 provide the confusion 

matrices for both the test scenarios with a classification error rate of 0.42% when 

𝑌𝑆𝑚𝑎𝑥= 0.45 and   𝑌𝑃𝑚𝑖𝑛 =  𝑌𝑅𝑚𝑖𝑛= 0.55. We found some incorrect classifications as 

the BO model optimizes for a transition region rather than the true line. However, our 

assumption appears reasonable, as optimizing the model to locate the transition region 

provides efficient learning and high accuracy (error rate < 1%) in locating the true 

constraint boundary line. 

 Table 3.3 provides a summarization of the sensitivity analysis of the values of 

𝑌𝑆𝑚𝑎𝑥, 𝑌𝑃𝑚𝑖𝑛, 𝑌𝑅𝑚𝑖𝑛 in eqs. 3.11 – 3.13 in terms of the number of training data 

sampled and the accuracy of the model in terms of the classification of the new designs, 

considering the equivalent 100k test data and both values of thickness parameter of the 

thin tube after model convergence (Convergence 1).  In this case study, from the 

sensitivity analysis, we can see best consistent accuracy of classification for both 

scenarios of thickness values when 𝑌𝑆𝑚𝑎𝑥= 0.45 and 𝑌𝑃𝑚𝑖𝑛 =  𝑌𝑅𝑚𝑖𝑛= 0.55 having a 

mean error rate of 0.55 and 0.52, respectively. However, considering the amount of 

training data sampled, a range of  𝑌𝑆𝑚𝑎𝑥 between 0.45 to 0.48 and 𝑌𝑃𝑚𝑖𝑛, 𝑌𝑅𝑚𝑖𝑛 

between 0.55 and 0.52 is good in terms of tradeoff between cost of training data and 

the accuracy of classification. However, beyond that range, we can see that either we 

have significant error rate (mean approx. 5.3%) or significant cost of training data 

(mean approx. 150-200) to reach the minimal error rate. Thus, when we attempt to 

locate the exact transition line (last two rows of Table 3.3) vs. a region, the model has 

the highest error rate (~ 5.3%) and requires much more sampling to reduce error, 

making the model inefficient.  
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 Safe 

(Actual) 

Unsafe 

(Actual) 

Safe (Model Estimated) 50328 359 

Unsafe (Model Estimated) 58 49255 

Table 3.1. Confusion matrix to classify between safe and unsafe region for Thickness 

= 1.7mm 

 Safe 

(Actual) 

Unsafe 

(Actual) 

Safe (Model Estimated) 44603 352 

Unsafe (Model Estimated) 64 54981 

Table 3.2. Confusion matrix to classify between safe and unsafe region for Thickness 

= 1.2mm. 

 

𝒀𝑺𝒎𝒂𝒙 𝒀𝑷𝒎𝒊𝒏 Thickness 

(mm) 

# design 

samples 

(training 

data) 

Error 

rate 

(%) 

Mean 

Error 

Rate 

(%) 

0.4 0.6 1.7 113 0.53 0.495 

0.4 0.6 1.2 158 0.46 

0.43 0.57 1.7 78 0.47 0.485 

0.43 0.57 1.2 134 0.5 

0.44 0.56 1.7 60 0.5 0.48 

0.44 0.56 1.2 253 0.46 

0.45a 0.55a 1.7a 67 0.42 0.42 

0.45a 0.55a 1.2a 120 0.42 

0.46 0.54 1.7 63 0.48 0.5 

0.46 0.54 1.2 96 0.51 

0.47 0.53 1.7 31 0.58 0.52 

0.47 0.53 1.2 120 0.46 

0.48 0.52 1.7 45 0.38 0.53 

0.48 0.52 1.2 99 0.68 

0.49 0.51 1.7 31 1.39 0.935 

0.49 0.51 1.2 99 0.48 

0.5 0.5 1.7 218 7.27 5.3 

0.5 0.5 1.2 18 3.33 

Table 3.3. Summarization of the performance of the proposed BO model at different 

values of 𝑌𝑆𝑚𝑎𝑥, 𝑌𝑃𝑚𝑖𝑛, 𝑌𝑅𝑚𝑖𝑛 

Notea: The results shown in Fig 3.8-3.13 consider use this region. 

Sensitive analysis has been presented in this chapter as preliminary study to see 

the effect of gap width (Table 3.3, col 2- col 1) on the model performance. Though we 

have seen some changes in the model classification accuracy, but that has mostly been 

overall <1% error rate. This shows the performance is not extremely sensitive to the 



67 

 

 

 

 

 

gap width and therefore, in general application, we can think of a standard value (not 

too wide or thin gap width) as the values provided in the sensitivity analysis. However, 

this chapter was focused on understanding the sensitivity and further research on the 

strategy to optimize the band width as a trade-off between model performance and cost 

has been considered in future scope. 

3.5.3. Comparison to existing classification methods 

 

Methods Thick-

ness 

(mm) 

Error 

rate (# 

Training 

data 2500, 

2500) b 

Mean 

Error 

Rate 

(%) 

Error 

rate (# 

Training 

data 67, 

120) c 

Mean 

Error 

Rate (%) 

Proposed 

BO 

 

1.7 NA NA 0.42 0.42 

1.2 NA NA 0.42 

SVM 1.7 0.24 0.325 0.65 1.49 

1.2 0.41 2.32 

Random 

Forest 

1.7 0.56 0.56 0.57 0.72 

1.2 0.56 0.86 

Ada-

Boosting 

1.7 0.85 3.39 0.85 9.15 

1.2 5.92 17.45 

Table 3.4. Comparison of proposed BO with Existing Classification Methods 

Noteb: Full matrix of 2500 samples used to train the SVM, RF and ADA for both 

scenarios of thickness parameter 

Notec: Out of 2500 designs, only the 67 and 120 selected designs sampled from the 

proposed BO model are used to train the SVM, RF and ADA for both scenarios of 

thickness parameter respectively. 

 

Finally, Table 3.4 shows a comparison of our proposed method with other 

methods, such as a Support Vector Machine (SVM), Random Forest (RF) and Ada 

Boosting (ADA) [83]–[85], for classification between safe and unsafe designs among 

100k randomly selected new thin tube designs, considering both thickness values. 

These existing methods were implemented using inbuilt function in R packages [118]–

[120], with a radial kernel in SVM and 2000 trees (iterations) for ADA; the responses 

are provided as standard binary values (0-unsafe and 1-safe).  At first, we use Latin 

Hypercube sampling to generate a full matrix, 𝑿̿ (refer Section 3.4, Step 0), over the 
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design space as the training data (2500 samples) for the SVM, RF and ADA models. 

From results in Table 4, we can see in classification, SVM gives the best performance 

(err rate = 0.325) and ADA gives worst performance (err rate =3.39). Though SVM has 

lower error rate than our proposed BO method, it took much more sampling to train the 

models (2500 samples vs. 67 and 120 samples), thus causing a significant increase in 

experimental or function evaluation cost. Thus, we did another comparison where we 

used only the training data used, until convergence, of the proposed BO models to train 

the SVM, RF and ADA models. Using the minimal BO training data, our proposed 

method provides the best performance (err. rate = 0.42), while SVM gives much higher 

error rate of 1.5%, and ADA is the worst (err. rate = 9.15%). The detailed confusion 

matrices for classification using SVM, RF and ADA are provided in Appendix Table 

A.3.1-A.3.4. In this problem, as our main objective is to classify the design between 

safe and unsafe region, the BO model guides us to do more sampling towards the 

unknown transition region so that the surrogate GP model predict the output for a 

design with high accuracy close to the transition boundary than the designs which are 

far away from the transition boundary. This is because the designs closer to the 

boundary are more critical for mis-classification, thus higher prediction accuracy is 

required from GP model, thus higher sampling over that region has been recommended 

by the BO model. This is not true for the designs farther away from the transition 

boundary, since even with lower prediction accuracy, the designs still have lower 

likelihood to jump the threshold (refer Section 3.4, Step 10), and thus still have higher 

likelihood to fall under the true classification. Therefore, more sampling in such non-

interesting region would be redundant considering the trade-off between experimental 

cost and model classification accuracy. Thus, with the strategic and adaptive sampling 

from BO model, we could see a minimal error rate with minimal training design 

samples (Table 3.4). Now, given the designs are safe, the goal for predicting the 

respective output with higher accuracy from the surrogate model in that safe design 

space towards finding the optimal design will be addressed in future research. 

 

3.6. Conclusion and Future Research Scope 



69 

 

 

 

 

 

In this chapter, we have proposed the application of the Bayesian Optimization to locate 

the constraint boundary of at the transition region between safe and unsafe region for 

thin tube in terms of risk of creep fatigue failure under constant application of pressure 

and temperature stresses, and thereby use as a classification tool for evaluation of new 

designs as good or bad designs. As we have discussed, the constraint boundary in this 

problem also represents the discontinuity of the function (discontinuous transition 

region); the proposed strategy provides a way to tackle the discontinuous design space 

by projecting to an artificial continuous design space for better convergence of BO 

model.  However, it is worthy to mention that once we obtain the required data (region 

and strain accumulation) for the design, the formulation of the distance function is not 

dependent upon the scale or complex design geometry as in 316SS DB-CHX (Figure 

A.3.2). The complexity arises on how those required data is obtained in complex design 

(eg. Finite element analysis). At each iteration, the model with prior knowledge of 

training data sampled from previous iterations updates the posterior predictive model. 

This informs the acquisition function to choose the design for sampling in the next 

iteration to maximize learning of the optimal region of the unknown function. However, 

unlike the standard BO model for maximization or minimization problems, our 

objective is to locate the unknown constraint boundary. Therefore, we reformulate our 

objective function as a distance function which helps us to recast our objective as a 

maximization problem where the maximum objective function value, or the new 

optimal region, is towards the true constraint boundary.  

Our proposed BO approach does not have dependencies of having pre-existing 

training data as incorporating Bayesian knowledge into the optimization framework 

allows us to strategically select design samples to maximize the learning iteratively and 

minimize the overall cost for sampling for expensive function evaluations (training 

data) to achieve the desired level of accuracy. With the resulting small error rate, we 

have high likelihood that the model emulates the true constraint boundary and this will 

help us to continue our problem to the next stage (future research) to find the optimal 

design as we have higher confidence to preserve only feasible designs in term of Creep-

fatigue failure. The next stage of research will be focused on the full framework will 
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be implemented in a complex high-dimensional 316SS DB-CHX (Figure A.3.2) design. 

In this problem, we use the results of the classification as an optimization pre-stage, 

where the design optimization problem considers application and manufacturing 

constraints.    
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APPENDIX A OF CHAPTER 3 

FIGURES 

A.1. Bree Diagram 

 
 

Figure A.3.1. Bree diagram of non-work-hardening material whose yield stress 

remain unchanged by the change in mean temperature [81] 

 

A.2. 316 SS diffusion bonded Hybrid Compact Heat Exchanger  

 

 
Figure A.3.2. (left) Hybrid Compact Heat Exchangers (H-CHX); (right) unit cell 2D 

view [82] 
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A.3. An example of discontinuity at the strain calculation of the thin tube 

(Numerically calculated from Bree diagram) 

   

  
 

Figure A.3.3. 1D representation of the jump discontinuity at the strain level, 

considering constant 𝜎𝑝 and variable 𝜎𝑡; (left) at the transition between Shakedown and 

Plastic region for 𝜎𝑝 = 82𝑀𝑃𝑎 where the discontinuity observed at 𝜎𝑡 = 410 𝑀𝑃𝑎; 

(right) at the transition between Shakedown and Ratchetting region for 𝜎𝑝 =

143.5𝑀𝑃𝑎 where the discontinuity observed at 𝜎𝑡 = 246 𝑀𝑃𝑎  

 

 

 

 

TABLES 

Existing Method for Classification: Support Vector Machine(SVM), Random Forest 

and Ada-Boosting 

 

 

Full Data Matrix in Step 1, used as Training Data (2500 samples) 

Methods SVM Random Forest Boosting 

 Safe 

(Actual) 

Unsafe 

(Actual) 

Safe 

(Actual) 

Unsafe 

(Actual) 

Safe 

(Actual) 

Unsafe 

(Actual) 

Safe (Model 

Estimated) 

50370 222 50210 384 49768 618 

Unsafe 

(Model 

Estimated) 

16 49392 176 49230 232 49382 

 Table A.3.1 Confusion matrix to classify between safe and unsafe region for 

Thickness = 1.7mm (err rate = 0.24%, 0.56%, 0.85%) 
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Methods SVM Random Forest Boosting 

 Safe 

(Actual) 

Unsafe 

(Actual) 

Safe 

(Actual) 

Unsafe 

(Actual) 

Safe 

(Actual) 

Unsafe 

(Actual) 

Safe (Model 

Estimated) 

44471 213 44428 320 43354 1313 

Unsafe 

(Model 

Estimated) 

196 55120 239 55013 4605 50728 

 Table A.3.2. Confusion matrix to classify between safe and unsafe region for 

Thickness = 1.2mm (err rate = 0.41%, 0.56%, 5.92%) 

 

Training Data are ONLY sampled from proposed BO till convergence, where 

𝑌𝑆𝑚𝑎𝑥= 0.45 and   𝑌𝑃𝑚𝑖𝑛 =  𝑌𝑅𝑚𝑖𝑛= 0.55 (refer Table 3) 

Methods SVM Random Forest Boosting 

 Safe 

(Actual) 

Unsafe 

(Actual) 

Safe 

(Actual) 

Unsafe 

(Actual) 

Safe 

(Actual) 

Unsafe 

(Actual) 

Safe (Model 

Estimated) 

49950 210 50241 427 49768 618 

Unsafe 

(Model 

Estimated) 

436 49404 145 49187 232 49382 

Table A.3.3. Confusion matrix to classify between safe and unsafe region for 

Thickness = 1.7mm (err rate = 0.65%, 0.57%, 0.85%) 

 

Methods SVM Random Forest Boosting 

 Safe 

(Actual) 

Unsafe 

(Actual) 

Safe 

(Actual) 

Unsafe 

(Actual) 

Safe 

(Actual) 

Unsafe 

(Actual) 

Safe (Model 

Estimated) 

42611 263 44259 447 27680 16987 

Unsafe 

(Model 

Estimated) 

2056 55070 408 54886 467 54866 

Table A.3.4. Confusion matrix to classify between safe and unsafe region for 

Thickness = 1.2mm (err rate = 2.32%, 0.86%, 17.45%) 
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ABSTRACT 

Bayesian optimization (BO) is a low-cost global optimization tool for expensive black-

box objective functions, where we learn from prior evaluated designs, update a 

posterior surrogate Gaussian process model, and select new designs for future 

evaluation using an acquisition function. This research focuses upon developing a BO 

model with multiple black-box objective functions. In the standard Multi-Objective 

optimization (MOO) problem, the weighted Tchebycheff method is efficiently used to 

find both convex and non-convex Pareto frontiers. This approach requires knowledge 

of utopia values before we start optimization. However, in the BO framework, since the 

functions are expensive to evaluate, it is very expensive to obtain the utopia values as 

a prior knowledge. Therefore, in this chapter, we develop a MO-BO framework where 

we calibrate with multiple linear regression (MLR) models to estimate the utopia value 

for each objective as a function of design input variables; the models are updated 

iteratively with sampled training data from the proposed multi-objective BO. This 

iteratively estimated mean utopia values is used to formulate the weighted Tchebycheff 

multi-objective acquisition function. The proposed approach is implemented in 

optimizing thin tube geometries under constant loading of temperature and pressure, 

with minimizing the risk of creep-fatigue failure and design cost, along with risk-based 

and manufacturing constraints. Finally, the model accuracy with frequentist, Bayesian 

and without MLR-based calibration are compared to true Pareto solutions. 

 

4.1. Introduction 

In the early design phase, it is very important for the designers to be able to identify 

potential good design decisions in the large design space while the design cost is low. 

This helps the designers to easily eliminate the undesirable designs and avoid investing 

in high cost manufacturing and testing of those designs at the later design phase. In 

practice, most of the design problems are too complex to be handled by simple 

optimization frameworks due to having constraints in cost, time, formulation, etc. Also, 

approximating a complex design problem into much simpler problems can lead to the 

disregard of original complex constraints; thus it can violate such constraints and not 
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be a useful approach for practical decisions. Some practical design problems have been 

investigated where complex optimization frameworks have been modeled [1], [2], [77]. 

However, in many design optimization problems, it is difficult to numerically formulate 

an objective function and therefore we consider those problems having a black box 

objective function with high function evaluation cost due to limited resources, tools, 

time, etc. Thus, a trade-off between learning and expense is likely; therefore, a low-

fidelity surrogate model is developed to reduce the cost. When we have no/limited 

knowledge on the expensive true objective function, we cannot guarantee the 

maximization of our learning towards an optimal solution without proper guidance or 

expertise. Also, due to the mentioned high function evaluation cost, exhaustive search 

is not a valid option. In such black box engineering design problems, a Bayesian 

Optimization technique (BO), which eliminates the need of standard formulation of 

objective functions [101]–[103], is widely applied in sequential learning to provide 

better guidance in sampling the designs for expensive experiments or function 

evaluations in order to find the optimal region of the unknown function at minimal cost 

of experiments. In this approach, we first build a posterior surrogate model, given the 

data from the current evaluations. We then use this model to strategically select the best 

design locations for future evaluations by maximizing the acquisition functions, 

defined from the posterior model.  

4.1.1. Research motivation 

In the design of mechanical components under temperature and pressure cycling, such 

as heat exchangers, the design decisions are defined as optimal geometries which 

focuses on multiple objectives, such as minimizing the risk of creep-fatigue failure and 

the design cost under continuous cycling of temperature and pressure. The stated risk 

depends on the location of the design material state, such as within the Elastic, 

Shakedown, Plastic or Ratchetting region. An example has been provided for thin tubes 

where the location of the design can be numerically represented from a Bree Diagram 

[81] (Figure in Appendix A.4.1) in terms of pressure and thermal stresses.  Under cyclic 

loading, the Elastic and Shakedown region in the Bree diagram are considered as the 

safe region where no strain accumulation occurs or the growth of residual strain is 
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practically diminishing when sufficient loading cycles are applied. However, Plastic 

and Ratchetting in the Bree diagram are unsafe designs where the plastic strain 

accumulates until failure.  The cost of the design involves the total cost in the entire 

design process and thus can be based on material, component, manufacturing, assembly 

and quality checking. When the complexity of the design increases like in compact heat 

exchangers [82], we cannot provide a numerical representation of the function which 

defines the location of designs. Also, considering different costs in the design process 

makes the cost function hard to formulate. This makes both the objectives such as risk 

and cost functions to be black-box functions, representing the problem as black-box 

multi-objective design problem. 

 In the standard multi-objective problem, the Weighted Tchebycheff method [71], 

[73], a global criterion method, is used to find the Pareto frontier to identify every 

Pareto-optimal solution from both convex and non-convex regions of the frontier. In a 

minimization problem, a point 𝑥∗ in the feasible design space S is Pareto Optimal if 

and only if there does not exist another point 𝑥 in the set S that gives a lower minimum 

objective function for at least one of the objectives 𝑓𝑖(𝑥) < 𝑓𝑖(𝑥∗) without sacrificing 

the others 𝑓𝑗(𝑥) ≤ 𝑓𝑗(𝑥∗). However, this approach requires knowledge of utopia 

values, i.e., optimal values of each objective independently, before we start 

optimization. Thus, for a multi-objective optimization problem having two objectives, 

we need to solve three optimization problems with three different objective functions: 

one problem with objective function 1 (finding utopia 1); one problem with objective 

function 2 (finding utopia 2); and finally the multi-objective function. It is obvious that 

with n objectives, the number of optimization problems increases to n+1. In the BO 

framework, since the objective functions are black-box and expensive to evaluate, it is 

very expensive to conduct so many optimizations to obtain the utopia values as a priori 

knowledge. One way we can mitigate this issue is by providing a rough approximation 

of global minimum or maximum values of the single objective problems [121], [122]. 

For example, the global minimum values of risk and cost could be zero. However, the 

value might not be feasible due to different manufacturing and design constraints and 

therefore are not the true utopia values. As in figure 4.1, we can see as we deviate from 
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true utopia values (u`) in the X or Y directions, we cannot find the true optimal solution 

(C) for a specific weighting factor (w) and fall into a different location at C`, further 

minimizing one objective function at the expense of the other. Thus, providing an 

incorrect utopia values can lead to a deviation from the true Pareto-optimal solutions 

and will not represent the desired trade-off between the objectives. This motivates us 

to predict the utopia values using low-cost statistical regression models instead of 

guessing. This helps to have better prediction of utopia values, thereby increasing the 

accuracy to fall into at least a better local optimal solution at negligible computational 

cost 

 
Figure 4.1. Incorrect utopia values leading to deviate from true pareto-optimal 

solution 

 

4.1.2. Research contribution 

The main goal in this chapter is to propose an approach to properly utilize the existing 

BO training data to predict the utopia values, rather than using a fixed educated guess 

(global solution). In this chapter, we focus on linear regression models to predict the 

utopia values; however, the proposed approach can be extended to implement any 

linear or non-linear regression models based on the complexity of the problem. To 

better illustrate the approach, we have simplified the large scale complex design of a 

heat exchanger into a simple thin tube where we will be able to compare the results 

obtained from the proposed model with the known true solutions. The road-map of this 

chapter is as follows. Section 4.2 provides an overview on Bayesian optimization, 

multi-objective optimization, and linear regression modeling using frequentist and 
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Bayesian approaches, and model calibration and validation. Section 4.3 talks more on 

the thin tube problem and the formulation of the objectives and constraint functions 

along with the detailed description of the multiple linear regression modelling.  Section 

4.4 provides the algorithm of the proposed MO-BO framework. Section 4.5 shows the 

results of the proposed approach with detailed comparison. Section 4.6 concludes the 

chapter 4 with final thoughts. 

 

4.2. Background 

In this section, we provide literature reviews on Bayesian optimization (BO) in single 

and multi-objective settings, different methods for formulating multi-objective 

functions, and developing multiple linear regression models in frequentist and 

Bayesian approaches. 

4.2.1. Bayesian optimization 

 

 
Figure 4.2. Bayesian Optimization Framework [106] 

 

Bayesian optimization [7] (BO) is an emerging field of study in the Sequential Design 

Methods. It has been considered as a low-cost global optimization tool for design 

problems having expensive black-box objective functions. The general idea of BO is 

to emulate an expensive unknown design space and find the local and global optimal 

locations while reducing the cost of function evaluation from expensive high-fidelity 

models. This approach has been widely used in many machine learning problems [92]–

[96]. However, attempts have been made when the response is discrete such as in 
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consumer modeling problems where the responses are in terms of user preference [7], 

[97]. The idea is to approximate the user preference discrete response function into 

continuous latent functions using Binomial-Probit model for two choices [98], [99] and 

polychotomous regression model for more than two choices where the user can state 

no preference [100]. BO has also been implemented in multi-objective [101] and high 

dimensional [102], [103] engineering design problems.  

BO adopts a Bayesian perspective and assumes that there is a prior on the function; 

typically, we use a Gaussian process prior. The prior is represented from the experiment 

or training data which is assumed as the realizations of the true function. The overall 

Bayesian Optimization Approach has two major components: A predictor or Gaussian 

Process Model (GPM) and an Acquisition Function (AF). As shown in figure 4.2, in 

this approach, we first build a posterior GPM, given the data from the current 

experiments. The surrogate GPM then predicts the objective or response of the samples 

generated from a DOE based sampling method within the design space. We then use 

this model to strategically select the best design locations for future experimentation 

by maximizing the acquisition functions, defined from the posterior simulations which 

is obtained from the GPM. However, we need to assume that the objective or response 

is Lipschitz continuous [7]. As an alternative to a GPM, random forest regression has 

been proposed as an expressive and flexible surrogate model in the context of 

sequential model-based algorithm configuration [104]. Although random forests are 

good interpolators in the sense that they output good predictions in the neighborhood 

of training data, they are very poor extrapolators where the training data are far away 

[105]. This can lead to selecting redundant exploration (more experiments) in the non-

interesting region as suggested by the acquisition function in the early iterations of the 

optimization, due to having additional prediction error of the region far away from the 

training data.  This motivates us to consider the GPM in a Bayesian framework while 

extending the application to discontinuous design response surfaces, which can be 

represented as complex practical problems in the domain of experimental design. We 

next describe the GPM and AF. 
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4.2.1.1.Gaussian process model (GPM) 

 

 
Figure 4.3. 1D Gaussian Process (from Wikipedia) 

 

Figure 4.3 shows a simple 1D Gaussian Process Model with one design variable 𝑥 and 

one response variable 𝑧 = 𝑓(𝑥). The dots are the experimental design variables and the 

dotted and solid lines are the true and the predictor mean functions or responses in the 

design space, given the observations. The shaded area along the solid line shows the 

measure of uncertainty over the surrogate GPM prediction. We can clearly see that the 

variance near the observations is small and increases as the design samples are farther 

away from the observational data, thereby related to kriging models where the errors 

are not independent. Much research has been ongoing regarding incorporating and 

quantifying uncertainty of the experimental or training data by using a nugget term in 

the predictor GPM. It has been found that the nugget provides better solution and 

computational stability framework [107], [108]. Furthermore, GPM has also been 

implemented in high dimensional design space exploration [109] and BIG DATA 

problems [110], as an attempt to increase computational efficiency. A survey of 

implementation of different GP packages has been provided in different coding 

languages such as MATLAB, R, Python [111].  

4.2.1.2.Acquisition function (AF) 

The second major component in Bayesian optimization is the Acquisition Function 

whose goal is to guide the search for future experiments towards the desired goal and 

thereby bring the sequential design into the BO. The AF predicts an improvement 

metric for each sample. The improvement metric depends on exploration (unexplored 

design spaces) and exploitation (region near high responses). Thus, the acquisition 
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function gives high value of improvement to the samples whose mean prediction is 

high, variance is high, or a combination of both. Thus, by maximizing the acquisition 

function, we select the best samples to find the optimum solution and reduce the 

uncertainty of the unknown expensive design space. Throughout the years, various 

formulations have been applied to define the acquisition functions. One such method 

is the Probability of Improvement, PI [112] which is improvement based acquisition 

function. Jones in [113] notes that the performance of PI(·) “is truly impressive;… 

however, the difficulty is that the PI(·) method is extremely sensitive to the choice of 

the target. If the desired improvement is too small, the search will be highly local and 

will only move on to search globally after searching nearly exhaustively around the 

current best point. On the other hand, if the small-valued tolerance parameter ξ in PI(.) 

equation is set too high (see [113]), the search will be excessively global, and the 

algorithm will be slow to fine-tune any promising solutions.” Thus, the Expected 

Improvement acquisition function, EI [7], is widely used over PI which is a trade-off 

between exploration and exploitation. Another Acquisition function is the Confidence 

bound criteria, CB, introduced by Cox and John [114], where the selection of points is 

based on the upper or lower confidence bound of the predicted design surface for 

maximization or minimization problem respectively. In multi-objective BO problems, 

Expected Improvement Hyper-volume (EIHV) acquisition functions have been 

modeled to provide better performance [10], [11]. However, to increase the 

computational efficiency, Yang et al. [123] modified the EIHV acquisition function 

into the Expected Hyper volume gradient-based (EIHVG) acquisition function and 

proposed an efficient algorithm to calculate it. To reduce the computational cost, other 

acquisition functions like the Max-value Entropy Search (MESMO) [124] and 

Predictive Entropy Search (PESMO) [125] have been formulated. Abdolshah et. al.  

[126] proposed a multi-objective BO framework with preference over objectives on the 

basis of stability and attempting to focus on the Pareto front where preferred objectives 

are more stable. 

4.2.2. Multi-objective optimization 
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The numerical optimization problems can be classified on the basis of number of 

objective functions as Single (SOO) and Multi-Objective Optimization problems 

(MOO). MOO is the extension of SOO with having more than one objectives as 

equation 4.1. 

min 𝑓(𝑿) = [min𝑓1(𝑿), min𝑓2(𝑿), … . min𝑓𝑛(𝑿)]  𝑠. 𝑡 𝑋 ∈ ℝ                                         (4.1) 

It is obvious that SOO is relatively simpler with lower computational cost; however, in 

practical problems it may be a challenge to formulate a single objective problem and 

therefore, much focus has been given on Multi-Objective Optimization methods 

(MOO). The question we want to solve in any MOO is the optimal design decisions 

under user defined preferences of objectives; optimal solutions at different trade-offs 

of objectives are represented by a Pareto frontier. The methods to solve MOO problems 

can be classified into a priori and a posteriori Methods. The most fundamental a priori 

method is the Weighted Sum Method (WS) [127] where we transform all the objectives 

into a single objective of weighted objectives. The method though simple and fast, is 

inefficient to find the true pareto-optimal points, mainly in the non-convex region. To 

increase the performance, a global criterion method, the Weighted Tchebycheff method 

(WTB) [71]–[73] is introduced where the multi-objectives are combined into a 

weighted distance metric that guarantees finding all the Pareto-optimal solution. 

Another a priori method is the ϵ-Constraint method where the most critical objective is 

picked and treated as a single objective problem where the other objectives treat as 

constraints [128]. Another a priori method is the Lexicographic method where the 

objective functions are organized sequentially in order of preferences [129]. Some 

posterior methods used in MOO problems are Vector Evaluated Genetic Algorithm 

(VEGA) [130], Niche Methods [131], Particle Swarm Algorithm (PSO) [132], NGSA 2 

[133], etc.  Readers can view [127], [134] for the application in practical multi-

objectives design problems using the above mentioned priori and posteriori methods, 

as well as ref. [135] for additional methods. It is a challenging task to pick a best 

method, as the performance of the methods depend on the problems and its constraints 

on dimension, formulation, computational cost, uncertainty in design etc. In this 

chapter, we choose to focus on Weighted Tchebycheff method in formulating the 
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proposed multi-objective BO framework. Details of the method will be provided in the 

later section 4.3. 

4.2.3. Multiple linear regression modelling 

In this section, we provide some background on Multiple linear regression (MLR) 

which can be defined as the dependent response or objective variables as the linear 

function of the independent explanatory or design input variables. It is a statistical 

procedure to predict the values of a response variable from a collection of explanatory 

variable values, given the experimental data of another collection of explanatory 

variable. Thereby, the statistical model reduces the cost of extensive real experiments, 

and therefore, can also be thought of as surrogate modeling and helps in large scale 

studies at much cheaper cost.  The general formulation of MLR is given below as 

equation 4.2. 

𝜇(𝑌|𝑿) =  𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝                                                                            (4.2) 

where 𝜇(𝑌|𝑿) denotes the mean of the response variable Y in terms of the set of p 

explanatory variables 𝑿 = [𝑋1, … 𝑋𝑝]. If a linear model is used, the following 

assumptions should be met: the response variables should be linearly dependent 

(linearity assumption) and normally distributed (normality assumption) to each 

explanatory variable; the variance of the residual error should be constant throughout 

the values of explanatory variables; lastly, the observations or the experiments should 

be independent. The response variables should be continuous whereas the explanatory 

variables can be both discrete and continuous. Kuiper [136] applied multiple regression 

models to predict the car values based on mileage, make, model, engine size, interior 

style, and cruise control. Timothy [137] presented a research on multiple regression 

analysis to identify the impact of length of superintendent longevity, continuity, and 

tenure in New Jersey School Districts on student achievement. Regression modelling 

has also been researched on machine learning problems [138], experimental design 

[139], observational studies in medical science [140]. Not only in prediction, but also 

the model is extensively used in making inferences [141] on the relationship between 

response and explanatory variables. The general model in equation 4.2 corresponds to 

the frequentist approach, however, a different version of the MLR model is the 
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Bayesian Multiple Linear Regression (BMLR) model. Unlike in MLR, BMLR has a 

prior distribution of 𝜷 co-efficient, generally a normal or Gaussian prior distribution 

𝑝(𝜷), a likelihood function ℓ(𝑌|𝑿, 𝜷) which is the regression model, and a posterior 

distribution, 𝑝(𝜷|𝑌, 𝑿). The posterior distribution can be formulated as equation 4.3.  

𝑝(𝜷|𝑌, 𝑿) ∝  ℓ(𝑌|𝑿, 𝜷)𝑝(𝜷)                                                                                      (4.3) 

O. Seidou et. al [142] presented a Bayesian Linear Regression model in the study of 

hydrology and climate science for better performance in sudden change of relationship 

between key variables due to sudden climatic or environmental changes. Tao and 

Elaine [143] presented a Bayesian linear regression in Spectroscopic calibration. 

Bayesian framework has also been attempted in experimental design [144] and multi-

scale regression problems [145]. Likewise, in MLR, BMLR models can also be used 

for making Bayesian inferences [146]. In this chapter, have investigated and 

implemented both MLR and BMLR models in formulating the proposed multi-

objective BO framework. Details of the formulation and implementation of MLR into 

MO-BO will be provided in the later section 4.3, 4.4.  

4.2.4. Model calibration and validation 

In the data-driven modeling approach, the performance of the model can be improved 

by tuning the unknown model parameters based on how closely they represent the real 

complex expensive designs. This tuning of model parameters is model calibration 

while the measurement of the performance of the model after calibration, by comparing 

the model solution with the true solution, is the model validation. Adequate true data 

is desired for model calibration and validation; however, getting true data can be very 

expensive and sometimes not possible in complex design problems. Due to the use of 

true data in model calibration and validation, it is necessary for the designer to know 

which parameters are likely to be more sensitive to the model before they start 

collecting true data. Calibrating and validating a model for any insensitive (minimal 

sensitive) model parameters will multiply the cost of true data collection. Thus, a 

sensitivity analysis should be done between the model parameters to observe the 

relationship between input and output functions [147], [148] by conducting a study 

with limited existing true data, or approximated model data, or solely on the knowledge 
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of the designers. Regression analysis is one of the low-cost statistical tools for 

sensitivity analysis which gives the variation of the output to the inputs. Finally, 

assuming true data from expensive evaluations, model calibration and validation can 

be done iteratively until designers find the best model parameter values, satisfying the 

model overall performance in terms of the trade-off between model accuracy and cost 

of data sampling. Model calibration and validation becomes further challenging when 

we have uncertainty on the model parameters and/or the true output values [149]. In 

such cases, a distribution of the model parameter is considered instead and distribution 

of the model output is validated with true values (if the true outputs are known and 

fixed) or the true distribution of the outputs (if the true outputs are known but 

uncertain). When we do not know the true distribution of the uncertain outputs, model 

validation is challenging and expert knowledge is required. Reviews of different 

techniques for model calibration and validation, considering the availability of true data 

and the model input-output uncertainty is provided in these papers [150]. 

 

4.3. Problem Description 

In this section, we describe the thin tube design problem which provides the proof of 

concept for a larger complex design problem, such as a compact heat exchanger. As 

the tube is assumed to undergo constant loading of temperature and pressure, there will 

be risk of creep-fatigue failure which will vary with the design geometry. Fatigue 

damage is defined as cycling a test specimen at some fixed stress amplitude for enough 

cycles that it will develop micro-structural damage and eventually fail. Creep damage 

is defined as holding a test specimen at a fixed load for a long enough time that 

eventually it will develop micro-structural damage and fail. Creep-fatigue damage is 

therefore to do both of these simultaneously (e.g. a stress controlled cycle with a hold) 

such that the specimen will generally fail sooner than doing the cycling or holding 

individually. In our problem, we choose the design variables as radius (R), length (L), 

and thickness (t) of the tube. Next we overview the experimentation, the regression 

modeling and the formulation of the multi-objective function and the constraints which 

depend on the experimental results and the regression models. 
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4.3.1. Experiments 

In this section, we provide a short overview of the experimental procedure. To 

formulate the objective of risk of creep-fatigue failure, we need to find the location of 

any design in terms of Elastic, Plastic, Shakedown and Ratchetting, and the respective 

strain accumulation. We represent these outputs as the responses from the expensive 

experiments. In this chapter, we considered the Bree diagram for a non-work-hardening 

material whose yield stress remains unchanged by changes in mean temperature as 

provided in Appendix A.4.1. For the sake of simplicity, we have ignored the further 

division of Shakedown (S1, S2) and Ratchetting (R1, R2) as shown in the figure, and 

assumed a single region of Shakedown (S) and Ratchetting (R), because the design 

risks are equivalent in the S1 and S2, and R1 and R2 regions, respectively. The three 

major steps we follow in the procedure are 1) Calculate Pressure and Temperature 

Stress of the design point, 2) Determine the region of the design in terms of Elastic, 

Plastic, Shakedown and Ratchetting and 3) Calculate the strain accumulation based on 

the location of the design. The detailed computation of the whole process for the thin 

tube can be found in our earlier chapter [Section 3.3.1, chapter 3]. In thin tube design, 

though these computations are not expensive and can be done analytically, we still 

represent these as expensive function evaluations which will be true in our future 

problem of considering a compact heat exchanger where expensive Finite Element 

Analysis (FEA) is required. 

4.3.2. Formulation of objective function and constraints 

In this section, we provide the formulation of the proposed multi-objective objective 

function and the manufacturing and other design constraints.     

4.3.2.1.Multiple objectives for the thin tube problem 

In this section, we discuss the objectives considered in the problems. The first objective 

is the distance function, 𝑌1, which is defined on the location of the design and the 

respective strain values. The quantification of the distance function was the scope of 

chapter 3, and therefore, we provided a short overview in this chapter to help the reader 

to understand. We would encourage the readers to look into [Section 3.3.2, chapter 3] 

for detailed computation and explanation. The general idea is to create a distance metric 
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which gives a higher value (towards 1) as the designs moves toward the unsafe region 

(Plastic and Ratchetting), posing a higher risk of creep fatigue failure under constant 

loading of temperature and pressure. Alternatively, the distance metric gives a lower 

value (towards 0) as the designs moves toward safe region (Elastic and Shakedown) 

and the distance metric, 𝑌1 ≈ 0.5 gives an indication that the design is close to the 

transition between the safe and unsafe region. Since our goal is to minimize the risk of 

creep-fatigue failure, we minimize the distance function. Thus, our objective 1 is 

defined as below: 

min
𝑅,𝐿,𝑡

𝑌1 = min
𝑅,𝐿,𝑡

𝑓(𝜓, 𝜉, 𝑘)                                                                                              (4.4) 

Equation (4.4) is the distance function which measures the risk of creep-fatigue failure 

where  𝜓 ∈ Ψ is the region (elastic, shakedown, plastic and ratchetting) within the 

design space  Ψ; 𝜉 is the total strain accumulation; 𝑘 is the 𝑘𝑡ℎ iteration of the BO 

model. It is to be noted that in each iteration, with more experimental or training data 

(increase prior knowledge), the distance value for all the training data is re-evaluated.  

The next objective is the cost function, 𝑌2, which is defined in our problem as the 

material cost of the tube. For the sake of simplicity and he numerical computation, we 

focus upon the material cost only. Another reason to include the material cost is that 

intuitively, we can think of having more material in the tube generally leads to stronger 

design and minimizes the risk of creep-fatigue failure but increase the cost of the 

design. Thus, we have a trade-off between risk and material cost. It is to be noted, our 

proposed MO-BO model has the flexibility to add any other cost as part of our 

objectives, which can be a black box function in the complex design. Thus, our 

objective 2 is defined as below: 

min
𝑅,𝐿,𝑡

𝑌2 = min
𝑅,𝐿,𝑡

 𝑃𝜌𝑉 = min
𝑅,𝐿,𝑡

 𝑃𝜌𝜋𝑡𝐿(2𝑅 − 𝑡)                                                                (4.5) 

𝑃 is the material cost per kg, 𝜌 is the density of the material, 𝑉 is the total volume of 

the tube. 

4.3.2.2. Linear regression models for the thin tube problem 

In this section, we provide the formulation of multiple linear regression models with 

both frequentist and Bayesian approaches, and the prediction of utopia values. These 
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models are used for calibration to get the estimate of the utopia for better representation 

of the true solutions. As we have already discussed earlier (fig. 4.1) how the utopia 

values affect the accuracy of the weighted Tchebycheff Pareto-optimal solutions and 

we proceed to approximate the unknown utopia values for our black-box problem. 

Thus, after we complete the experimental procedure and formulate both objectives, the 

next step is to find the utopia values for both objectives. The utopia values of an 

objective function are the optimal value of the objective, if each objective function is 

optimized independently of the other objectives. Thus, in our problem, to start the 

multi-objective optimization, we need to run two separate optimizations to find the 

utopia values. However, as we mentioned, this is not desirable if we have black-box 

functions as we cannot run expensive experiments based on three BO models. Also, 

predicting the utopia from the surrogate GP model of proposed MO-BO is not ideal 

since the data is sampled based upon finding the optimal region of the different trade-

offs of the multi-objective function, not for finding the optimal region of the individual 

objectives. Thus, the proposed MO-BO model, with iterations, does not provide a 

guarantee of sampling designs towards the independent optimal region (utopia) of each 

objective. In such cases when there are limited samples at the individual optimal region 

of the objective functions, since the error in GP is not independent, there is a likelihood 

of bad and/or no improvement in estimating utopia. Thus, in this section, we propose 

the formulation of error independent linear regression models in order to predict the 

utopia values, given the same experimental data we sampled from the multi-objective 

BO model. Since the objectives are assumed independent with each other during the 

computation of utopia, we defined two independent models, one for each objective. We 

considered a full additive model per Eqn. (4.6) and (4.7), where both the objectives are 

a function of all predictor design variables (R, L and t). It is also to be noted that the 

models do not need to have the same predictor design variables and the decision of one 

regression model selection should be independent of the other models.   

𝜇𝑘̂(𝑌1|𝑅, 𝐿, 𝑡) =  𝛽̂0,1,𝑘 + 𝛽̂1,1,𝑘𝑅 + 𝛽̂2,1,𝑘𝐿 + 𝛽̂3,1,𝑘𝑡                                                (4.6) 

𝜇𝑘̂(𝑌2|𝑅, 𝐿, 𝑡) =  𝛽̂0,2,𝑘 + 𝛽̂1,2,𝑘𝑅 + 𝛽̂2,2,𝑘𝐿 + 𝛽̂3,2,𝑘𝑡                                               (4.7) 
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where 𝜷̂.,𝟏,𝒌 = (𝛽̂0,1,𝑘, 𝛽̂1,1,𝑘,  𝛽̂2,1,𝑘, 𝛽̂3,1,𝑘)
𝑇

 ;  𝜷̂.,𝟐,𝒌 = (𝛽̂0,2,𝑘, 𝛽̂1,2,𝑘,  𝛽̂2,2,𝑘, 𝛽̂3,2,𝑘)𝑇 

are the vectors of estimated regression co-efficient for objective Eqn. (4.6) and (4.7) 

respectively at iteration k of the MO-BO model; 𝜇̂(. |𝑅, 𝐿, 𝑡) is the mean of the 

estimated objective function. 

In the Bayesian approach, the estimation of regression coefficients for 𝑖𝑡ℎ objectives 

and 𝑘𝑡ℎ iteration of the MO-BO model, 𝜷̂.,𝒊,𝒌 = (𝛽̂0,𝑖,𝑘, 𝛽̂1,𝑖,𝑘,  𝛽̂2,𝑖,𝑘 , 𝛽̂3,𝑖,𝑘)
𝑇
 are 

complex as we need to formulate the prior 𝑝(𝜷), likelihood function ℓ(𝑌|𝑿, 𝜷), and 

posterior distribution 𝑝(𝜷|𝑿, 𝑌). For BMLR, we set Gaussian (or normal) priors in 

eqns. 4.8, 4.9:  

𝑝(𝜷.,1,𝑘)~𝑴𝑽𝑵(𝝁̂𝜷.,𝟏,𝒌−𝟏
, 𝒄𝒐𝒗̂𝜷.,𝟏,𝒌−𝟏

𝟐 𝑰𝒑+𝟏)                                                               (4.8) 

𝑝(𝜷.,2,𝑘)~𝑴𝑽𝑵(𝝁̂𝜷.,𝟐,𝒌−𝟏
, 𝒄𝒐𝒗̂𝜷.,𝟐,𝒌−𝟏

𝟐 𝑰𝒑+𝟏)                                                               (4.9) 

Therefore, the posterior distribution is defined as equations 5.18, 5.19: 

𝑝(𝜷.,1,𝑘|𝑌1, 𝑅, 𝐿, 𝑡) ∝ 𝑙𝑘(𝑌1|𝑅, 𝐿, 𝑡, 𝜷.,1,𝑘)  𝑝(𝜷.,1,𝑘)                                               (4.10) 

𝑝(𝜷.,2,𝑘|𝑌2, 𝑅, 𝐿, 𝑡) ∝ 𝑙𝑘(𝑌2|𝑅, 𝐿, 𝑡, 𝜷.,2,𝑘)  𝑝(𝜷.,2,𝑘)                                               (4.11) 

where 𝝁̂𝜷.,1,𝑘−1
, 𝝁̂𝜷.,2,𝑘−1

, 𝒄𝒐𝒗̂𝜷.,1,𝑘−1

𝟐 𝑰𝒑+𝟏, 𝒄𝒐𝒗̂𝜷.,2,𝑘−1

𝟐 𝑰𝒑+𝟏 are the estimated means and 

the variances, respectively, of the beta parameters for objectives 1 and 2 at iteration 

𝑘 − 1 of the MO-BO model. 𝑰𝒑+𝟏 is the (𝑝 + 1) identity matrix where 𝑝 is the number 

of input design variables. Thus, the general idea is to compute the posterior distribution 

of the regression coefficients at the current iteration of MO-BO model; the respective 

prior distribution is taken as the posterior distribution of the regression coefficients at 

the previous iteration. Thus unlike the frequentist approach, in the Bayesian framework 

we consider both the knowledge of experimental or training data and the prior 

knowledge of the estimate of regression coefficients parameters. More details on the 

workflow of the proposed MO-BO model will be explained in Section 4.4. 

Now, once the regression models are developed with the sampled training data, the 

next step is to predict the objectives, given a new set of unsampled design data (say 

𝑅𝑓 , 𝐿𝑓 , 𝑡𝑓) which are not sampled from expensive experiments or function evaluations. 

As we want to minimize the objectives (Eqn. 4.4, 4.5), therefore, the estimated utopia 
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values at iteration 𝑘, will be the minimum predicted mean values per Eqn. (4.12) and 

(4.13). 

𝜇̂𝑘(𝑢1) = min (𝜇𝑘̂(𝑌1|𝑅𝑓 , 𝐿𝑓 , 𝑡𝑓))                                                                                (4.12) 

𝜇̂𝑘(𝑢2) = min (𝜇𝑘̂(𝑌2|𝑅𝑓 , 𝐿𝑓 , 𝑡𝑓))                                                                               (4.13) 

These estimated utopia values will be input as the fixed unknown parameters in the 

weighted Tchebycheff multi-objective function of the MO-BO model which will be 

described in the later section. The prediction error or the uncertainty of the outputs 

(utopia) of regression models will be addressed in future. Thus, we calibrate the MO-

BO model from the results of regression analysis and using the sequentially sampled 

data (true data) from the proposed MO-BO model. 

4.3.2.3. Weighted Tchebycheff multi-objective function 

In this section, now we have defined the multiple objectives and the prediction of utopia 

for each objective, we can start formulating the multi-objective objective function using 

Weighted Tchebycheff method. It is to be noted, though our focus in this chapter is the 

Tchebycheff method, we can apply the proposed approach to any multi-objective 

methods where we need the prior knowledge of utopia. The idea is to select the 

objective functions which are farther away from the respective utopia values. 

Therefore, the weighted Tchebycheff multi-objective black-box function is defined as 

eqn. 4.14. We define this as black-box function since 𝑌𝑖 are assumed as black-box 

objective function, which is true for the complex design.  

𝑌𝑚𝑢𝑙𝑡𝑖 = max
𝑖=1,2,..,𝑁

{𝑤𝑖|𝜇̂(𝑌𝑖|𝚫𝐤) − 𝜇𝑘̂(𝑢𝑖)|}                                                          (4.14) 

where 𝑤𝑖 is the weighting factor of 𝑖𝑡ℎ objective; 𝑁 = 2 is the total number of 

objectives; 𝜇̂(𝑌𝑖|𝚫𝐤) is the estimated posterior mean of the 𝑖𝑡ℎ objective function, given 

the posterior Gaussian process model 𝚫𝐤, at iteration 𝑘 of the MO-BO; 𝜇𝑘̂(𝑢𝑖) is the 

estimated mean utopia value of the 𝑖𝑡ℎ objective function, which has been calibrated 

from the selected regression model. Minimizing the maximum weighted distance from 

the utopia, among the objective functions will provide the non-dominated solutions or 

pareto-optimal solutions. 

4.3.2.4. Design and manufacturing constraints for the Thin Tube Problem 
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Below are some of the manufacturing and design constraints which have been 

considered in this problem to ensure the safe and realistic design solutions. 

a. Creep-Fatigue failure 

Though one of our objectives is to minimize the risk of creep fatigue failure, the 

minimization of the other objective increases the risk of creep fatigue failure. Thus, in 

the trade-off between risk and cost, it is acceptable to have a design which falls in the 

domain of safe region (Elastic, Shakedown) but closer to the transition to the unsafe 

region (Plastic, Ratchetting), thus minimizing the cost at the expense of risk of failure. 

However, in the similar trade-off, it is not acceptable to have a design which is likely 

to fall into unsafe region, irrespective of the reduction of cost. We termed that design 

as an unsafe design and therefore not a feasible solution. Thus, we formulate the 

constraint to bound the objective 1 and ensure we do not have a trade-off where the 

design will fail. Since the transition boundary will not be known exactly when the 

objectives are black-box, we can only predict the transition boundary. The approach to 

predict the transition boundary between safe and unsafe region was done by another 

Bayesian optimization model, which was the major focus of chapter 3. In this chapter, 

we assumed that we have already identified the transition region. Thus, to account for 

the uncertainty of the prediction of the transition region, we define the Probabilistic 

constraint as Eqn. (4.15) 

𝑃((𝜇̂(𝑌1(𝑅, 𝐿, 𝑡)|𝚲)) ≤ 0.5) ≥ 𝑅𝑒𝑙                                                                        (4.15)                                                                                     

where (𝜇̂(𝑌1(𝑅, 𝐿, 𝑡)|𝚲) is the predicted value of the response distance function, 𝑌1, for 

the input design variables, given the converged GP model of the BO framework in the 

pre-stage [Section 3.4, chapter 3]. This converged model maximizes the accuracy of 

the predicted location of the transition boundary between safe and unsafe regions to 

classify a new design at a minimal error rate. This error rate is taken into account as the 

Probabilistic constraint 10 where 𝑅𝑒𝑙 = 0.99  is the reliability factor. The value 0.5 is 

the threshold since we set this distance value at the transition boundary line.   

b. Normal Stress 
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 The normal stress should not exceed the yield stress. Therefore, constraint eqn. (4.16) 

is defined as 

𝐿𝐷

2𝜋𝑅𝑡
− 𝜎𝑦 ≤ 0                                                                                                              (4.16) 

where 𝐿𝐷 = 1𝐾𝑁 is the load exerted on the wall of the thin tube, 𝑡 is the thickness, 

𝜎𝑦 = 205𝑀𝑃𝑎 is the yield stress.                                                                                                                                                       

c. Buckling Load 

The tube should not buckle. Therefore, the constraint eqn. (4.17) is defined as 

𝐿𝐷 −
𝜋3𝐸𝑅3𝑡

4𝐿2 ≤ 0                                                                                                          (4.17)                                                                                                                                                                

where 𝐸 = 207 𝐺𝑃𝑎 is Young Modulus. 

d. Aspect Ratio 

This constraint eqn. (4.18) ensures to avoid any unrealistic design solutions with L>>R. 

𝑅

𝐿
≤  𝛿                                                                                                                      (4.18) 

Where 𝛿 = 0.025 in this problem. 

 

4.4. Design Methodology 

Figure 4 shows the detailed structure of the proposed weighted Tchebycheff multi-

objective Bayesian Optimization framework with the implementation (highlighted in 

red) of the regression models (MLR or BMLR). Below is the algorithm with 

explanation of each step of the proposed MO-BO framework in order to find the 

optimal geometry of the thin tube problem which minimizes two objectives such as risk 

and cost. It is noted that the algorithm will be applicable for a large-scale problem, such 

as a compact heat exchanger, with > 2 objectives. 

4.4.1. Step-by-Step Explanation for Proposed Weighted-Tchebycheff 

MOBO 

Step 0 (Initialization): Define the design space or the region of interest for the given 

problem. From the defined design space, generate a grid matrix 𝑿̿ using a DOE 

approach. These grid designs are unsampled, meaning we don’t know the true output 

function values for these designs. Load all the experimental data sampled during a pre-

stage optimization. As explained before, the pre-stage optimization is assumed to be 
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done before starting this optimization process. It is to be noted, when there is no 

requirement to conduct the pre-stage optimization, this algorithm can be initialized with 

limited randomly selected experimental data. Calculate the objectives and normalize 

the values. Normalizing each objective is preferred to avoid any discrepancies due to 

inconsistent magnitude between the objectives. 

 

Step 1: Build a training data matrix with the sampled designs:  We build a training data 

matrix with the sampled data. We define X as design input variables and Y as output 

functions. In our problem, we define 𝑿 = [𝑹, 𝑳, 𝒕]  as the matrix of design geometry 

containing radius, length and thickness of the thin tube and 𝒀 = [𝒀𝟏, 𝒀𝟐] as the matrix 

of the distance and cost functions of the respective sampled designs (as described in 

Section 4.3). Create the training data matrix, assuming at iteration 𝑘, 𝑫𝒌 =

[𝑿𝒌, 𝒀(𝑿𝒌)]. 

 

Step 2: Constraint Validation: Next, we validate the generated design grid matrix 𝑿̿ 

and the available sampled data with the constraints eqs. 13-16. We select only the 

designs which do not violate the constraints. Also, we filter the feasible sampled data 

from the data sampled in our pre-optimization problem. This is optional in general as 

when pre-optimization is not conducted and the starting sampling can be selected 

randomly over the feasible design space. Let, 𝑿𝒇 = {𝑹𝒇, 𝑳𝒇} be the feasible unsampled 

grid matrix and 𝑫𝒇,𝒌 be the filtered feasible sampled data matrix with 𝑫𝒇,𝒌 ∈ 𝑫𝒌.  

 

Step 3: Predicting the utopia from Regression Analysis: Conduct linear regression 

modeling, either frequentist or Bayesian approach, using the feasible sampled data, 

𝑫𝒇,𝒌, as explained in Section 4.3.2.2. The reasons for not including any infeasible data 

for our regression modelling is to avoid any influential observations outside the feasible 

design space. For Bayesian MLR, at iteration 𝑘 = 1, we start with non-informative 

prior as 𝑝(𝜷.,.,1)~𝑵(𝟎, 𝟏𝟎𝟔). For iteration, 𝑘 > 1, we update the prior as explained in 
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equation 8, 9. Calculate the mean utopia values for both objectives, 𝜇̂𝑘(𝒖) =

[𝜇̂𝑘(𝑢1), 𝜇̂𝑘(𝑢2)]. These values, at iteration 𝑘, is used in Step 6. 

Step 4: GPM: Next with the full available sampled data (prior knowledge), 𝑫𝒌, we can 

develop posterior surrogate Gaussian Process models for each objectives 

independently, 𝚫𝐤. Thus, we develop a Bayesian framework. It is to be noted to build 

the GP model, unlike in Step 3 regression modeling, we have also used the infeasible 

data, sampled during pre-optimization stage. This is because with more data, GP model 

reduces uncertainty in the overall design space and provides better prediction where 

more data are sampled. 

 

Step 5: Use the posterior GP model to conduct posterior predictive simulations of the 

unsampled feasible designs in the grid matrix 𝑿𝒇 and predict respective mean and MSE 

of the objective outputs, forming two matrices of 𝝁̂(𝒀𝒇(𝑿𝒇))| 𝚫𝐤 and 𝝈̂𝟐(𝒀𝒇(𝑿𝒇))| 𝚫𝐤 

respectively. 

 

Step 6: Define the Acquisition Function and maximize the Acquisition function 𝑼(. ):  

Define the weighted Tchebycheff multi-objective Acquisition Function and maximize 

the Acquisition function, 𝑼(. |𝚫𝐤). Minimizing the maximum weighted distance from 

the utopia, among the objective functions will provide the non-dominated solutions or 

pareto-optimal solutions. Equation 4.14 has been accounted to below maximization 

problem, thereby selecting samples for expensive function evaluations from the set of 

feasible unsampled grid matrix, 𝑿𝒇 with higher likelihood of being a pareto-optimal 

solution: 

max
𝑅𝑓,𝐿𝑓,𝑡𝑓

 𝑈(− max
𝑖=1,2

{𝑤𝑖|𝜇̂(𝑦𝑓,𝑖(𝑅𝑓 , 𝐿𝑓 , 𝑡𝑓)|𝚫𝐤) − 𝜇𝑘̂(𝑢𝑖)|})                                           (4.19) 

We calculated the acquisition function value for each feasible non-sampled designs 

individually, considering the respective mean and MSE values in matrices generated in 

Step 5. Thus, we develop the vector of the acquisition function values as 

𝑼(−𝒀𝒎𝒖𝒍𝒕𝒊(𝑿𝒇)|𝚫𝐤). It is to be noted that we transformed the multiple objectives into 

a single multi-objective function using the Tchebycheff method, thus we can treat eqn. 
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(4.19) as single objective acquisition function. Since the general setting in BO is the 

maximization the acquisition function and our goal is to minimize the objectives like 

risk and cost, we added a negative sign before the weighted Tchebycheff multi-

objective function. In this chapter, we applied an Expected Improvement (EI) 

acquisition function. In the computation of EI for all the unsampled designs, the vectors 

of the predicted MSE of the respective weighted Tchebycheff multi-objective function, 

𝝈̂𝟐(𝒀𝒎𝒖𝒍𝒕𝒊(𝑿𝒇)), is the predicted MSE of the individual objective (from GP in Stage 5) 

which has maximum weighted Tchebycheff distance. Thus, for a design 𝑥𝑓, 

𝜎̂2 (𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓)) = 𝜎𝑦𝑓,𝑖

2 (max
𝑖=1,2

{𝑤𝑖|𝜇̂(𝑦𝑓,𝑖(𝑅𝑓 , 𝐿𝑓 , 𝑡𝑓)|𝚫𝐤) − 𝜇𝑘̂(𝑢𝑖)} )                    (4.20)                                     

Finally, the Expected-Improvement Acquisition function is formulated as below Eqn. 

(4.21) and (4.22): 

𝑢(𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓)|𝚫𝐤) = 𝐸𝐼 (𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓)) =

 {
(𝜇̂ (𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓)) − 𝑦𝑚𝑢𝑙𝑡𝑖(𝑥+) − 𝜉) ∗ Φ(Z, 0,1) + 𝜎̂ (𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓)) ∗ 𝜙(𝑍)   𝑖𝑓 𝜎̂ (𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓)) > 0 

0                                                                                                                                        𝑖𝑓 𝜎̂ (𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓)) = 0
                                                                                                            

                                                                                                                                (4.21) 

𝑍 =  {

(𝜇̂(𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓))−𝑦𝑚𝑢𝑙𝑡𝑖(𝑥+)−𝜉)

𝜎(𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓))
  𝑖𝑓 𝜎̂ (𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓)) > 0

0                                           𝑖𝑓 𝜎̂ (𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓)) = 0

                                   (4.22) 

where 𝑦𝑚𝑢𝑙𝑡𝑖(𝑥+) is the maximum of the negative actual responses (for minimization 

problem) among all the sampled data until the current stage which is at 𝑥 = 𝑥+; 

𝜇̂ (𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓)) and 𝜎̂ (𝑦𝑚𝑢𝑙𝑡𝑖(𝑥𝑓)) are the predicted mean and MSE from GPM for the 

non-sampled design 𝑥𝑓 ∈  𝑿𝒇; Φ(. ) is the cdf; 𝜙(. ) is the pdf; 𝜉 ≥ 0 which is 

recommended to be 0.01 [15]. 

A selection criterion is applied to choose new optimal design 

locations, {𝑥𝑓,𝑚𝑎𝑥}; 𝑥𝑓,𝑚𝑎𝑥  ∈  𝑿𝒇  which will maximize the predicted improvement of 

the learning of the unknown design space (maximizing acquisition function). Thus we 

select the design with maximum acquisition function value as, 

 𝑦𝑓,𝑚𝑎𝑥(𝑥𝑓,𝑚𝑎𝑥) = max (𝑼(−𝒀𝒎𝒖𝒍𝒕𝒊(𝑿𝒇)|𝚫𝐤))                                                      (4.23)                   
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Augment the Data, 𝓓𝒌 = [𝑫𝒌; (𝑥𝑓,𝑚𝑎𝑥, 𝑦𝑓,𝑚𝑎𝑥)]. 

 

Step 7: Check for convergence criteria 1. If not met, run j=1: n loops of Step 4 to 7; 

each loop takes one optimal design location {𝑥𝑓,𝑚𝑎𝑥,𝑗}; to select the best n design 

locations 𝑿𝒇,𝒎𝒂𝒙 = {𝑥𝑓,𝑚𝑎𝑥,1, … , 𝑥𝑓,𝑚𝑎𝑥,𝑛} to proceed to the next round of experiments. 

The reason for this step to provide multiple experimental data in a single round of an 

experiment as it will be time consuming to provide one experiment at a time. The 

assumption behind this step is that we believe the GP prediction of {𝑥𝑓,𝑚𝑎𝑥,𝑗} is accurate 

and proceed to the next best location {𝑥𝑓,𝑚𝑎𝑥,𝑗+1} by minimizing the error in the current 

selected location{𝑥𝑓,𝑚𝑎𝑥,𝑗}. We believe this is a fair assumption since with more 

knowledge GP prediction will be close to the actual experimented data. Therefore, in 

the early round of experiments, though we might see deviations from the actual 

experimented results (not following the assumptions), with the knowledge from those 

experiments, eventually the GP will improve and provide predictions closer to the 

actual experimented results as the model goes to convergence. 

 

Step 8: Expensive function evaluations: Conduct experiments for new design locations 

𝑿𝒌+𝟏 = 𝑿𝒇,𝒎𝒂𝒙. This step is outside the model environment as actual experiments will 

be conducted from the original high-fidelity model. As described earlier, the outputs 

from the actual experiments like strain accumulation and the location of the designs in 

terms of Elastic, Shakedown, Plastic and Ratcheting from the function evaluation will 

be modified into the distance function. Likewise, the cost function is also assumed to 

be evaluated from actual experiments, thereby increasing the flexibility of the proposed 

model when the cost cannot be numerically computed in large complex scenarios. 

Therefore, new experimented data is: {𝑿𝒌+𝟏, 𝒀(𝑿𝒌+𝟏)} 

 

Step 9: Data augmentation: Update the prior knowledge for the next iteration of the 

model. Update training data matrix of both the regression (Step 3) and the GP models 

(Step 4) with current sampled data as 𝑫𝒇,𝒌+𝟏 = {𝑫𝒇,𝒌; (𝑿𝒌+𝟏, 𝒀(𝑿𝒌+𝟏))} 𝑫𝒌+𝟏 =
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{𝑫𝒌; (𝑿𝒌+𝟏, 𝒀(𝑿𝒌+𝟏))}. Repeat Step 3 to 9 until convergence. Repeat Step 3 to 9 until 

convergence. 

Step 10: If convergence criteria 2 met, update the GP with the final training data 𝚲, 

augmented with final sampled data and stop the model. After convergence, note the 

optimal solution, 𝑿𝒐𝒑𝒕 = {𝑅𝑜𝑝𝑡, 𝐿𝑜𝑝𝑡, 𝑡𝑜𝑝𝑡} and 𝒀𝒐𝒑𝒕 = {𝑌1(𝑿𝒐𝒑𝒕), 𝑌2(𝑿𝒐𝒑𝒕)}. 

Convergence criteria 1 and 2 will be explained in the next section. 

  

 
Figure 4.4.  Overall flow-chart of the proposed MO-BO framework with regression-

based model calibration 

 

4.4.2. Convergence criteria 

In this section, we have discussed on the convergence criteria established into the 

model. From the steps of the proposed MO-BO model, there are two checks for 

convergence in the model in Step 7 and in Step 10. Label the convergence criteria in 

Step 7 Convergence 1 and the convergence criteria in Step 10 Convergence 2. If either 

of the convergence checks succeed, the model stops and returns the final solution. 

Below is the list of Convergence criteria which can be implemented into the models. 

Convergence 1. 
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The maximum improvement value of the acquisition function in selecting the first 

design sample (1st iteration in Step 7) after conducting actual experiments is less than 

α. In this problem, α = 10−6.  Mathematically, it can be stated as  

If 𝑗 == 1  

max{ 𝑈(−𝒀𝒎𝒖𝒍𝒕𝒊(𝑿𝒇)|𝑫𝒌)} ≤ α                                                                             (4.24) 

Convergence 2. 

Stop the model after limiting the budget in terms of maximum number or experiments 

or function evaluations, i.e. ∑ 𝑛𝑘 ≥ 𝑆 where 𝑆 is the maximum number of function 

evaluations possible; 𝑛𝑘 is the number of samples selected for experiments at kth 

iteration.  

4.5. Results 

In this section, we will show the results of the proposed weighted Tchebycheff multi-

objective Bayesian optimization framework on the design of the tube in terms of the 

performance in finding optimal solutions by minimizing the risk of creep-fatigue failure 

at constant loading of temperature and pressure, and the material cost of the design, 

considering design and manufacturing constraints. With radius, length and thickness of 

the tube as decision variables, referring to Step 0-Algorithm 4.1, the pre-stage 

optimization is done to locate and optimize the transition boundary (see constraint eqn. 

4.15) between safe and unsafe designs in terms of Creep-fatigue failure. The feasible 

bounds for radius, length and thickness are [4 – 6.55]mm, [0.1 - 1]m and [0.8 – 1.7]mm 

respectively and this defines our region of interest.  Considering the convergence 

criteria 1 (Eq. 4.24), where α = 10−3, table 4.1 shows the confusion table for mis-

classification which gives a low error rate of 1.1 %. 

 

 Safe 

(Actual) 

Unsafe 

(Actual) 

Safe (Model Estimated) 41956 867 

Unsafe (Model 

Estimated) 

236 56941 

Table 4.1. Confusion matrix to classify between safe and unsafe region of thin tube 

design. 
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4.5.1. Data Analysis 

 

 
Figure 4.5. Scatter plots with correlation matrix among design variables and obj. 

functions. 

 

Before running the MO-BO problem, we conduct some statistical data analysis to 

visualize the relationship among the design variables and objective functions. It is to 

be noted that the data sampled from the pre-optimization problem is first filtered to get 

only the feasible data for this multi-objective optimization problem. Any data which is 

infeasible for this problem is discarded since those can affect our analysis and the 

proposed data-driven MO-BO model by acting as an influential observations or 

outliers. This is because, in the current MO-BO model, sampling will be only done 

within the feasible design space and will not be explored in the infeasible region. Figure 

4.5 shows the scatter plots with correlation matrix among the design variables (Radius, 

Length and Thickness) and objectives (Distance and Cost). From the correlation matrix 

we can clearly see the negative association (corr. coeff. = -0.73) between both 

objectives, which signifies the trade-offs in our optimization problem. We can see the 

design variables are all positively correlated (0.847, 0.74 and 0.168 respectively) with 
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cost function, which agrees with the intuition that with the increase of radius, length 

and thickness, the material cost of the tube increases. Similarly, we see radius and 

length are negatively correlated (-0.547 and -0.911) with distance function, which 

shows the risk of creep fatigue failure increases with the decrease of these variables. 

Interestingly, thickness is weakly positively correlated (0.125) with distance function, 

which is a discrepancy with our intuition. However, we believe this is due to the current 

data set as we see thickness is negatively correlated (-0.288 and -0.432 respectively) 

with both radius and length. This shows that with increase of thickness, the designs 

have lower radius and length which increases the distance function. However, since the 

relationship of radius and length with the objective functions are much stronger than 

thickness, those variables will primarily drive the trade-offs in our MO-BO problem. 

Looking at the scatter-plots of the design variables with the objective functions, we see 

some variables better meet linearity assumptions than the others. Similar conclusions 

can be drawn from the residuals plots as in figures 4.6 and 4.7, where we see some 

patterns. However, none of the plots show a strong violation of linearity or the constant 

variance assumption; therefore, we have focused in this chapter with linear models. 

However further improvement can be achieved considering more complex models, 

including non-linear terms and that study is left for future research. 

 
Figure 4.6. Residuals vs fitted and Design Variables for MLR model for Distance 

function 
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Figure 4.7. Residuals vs fitted and Design Variables for MLR model for Cost 

function 

 

4.5.2. Comparison between MLR-based calibrated and non-calibrated MO-

BO model 

 

 
 

Figure 4.8. Pareto-optimal solutions at Obj. Criterion Space for (left) weighting 

factors 𝑤11 and 𝑤21; (right) weighting factors 𝑤12 and 𝑤22 

 

Next, we run the proposed MO-BO model using two scenarios of weighting factors on 

objectives distance and cost functions, 𝒘𝟏𝟏 = [0,0.1, … ,1] and 𝒘𝟐𝟏 = 1 − 𝒘𝟏𝟏; 𝒘𝟏𝟐 =

[0,0.025, … ,1] and 𝒘𝟐𝟐 = 1 − 𝒘𝟏𝟐, and considering the convergence criteria 1 (eqn. 

4.24) with α = 10−5. We used the DACE function in MATLAB for GP model. The 

MO-BO model along with the MLR models has been coded in MATLAB 2018. Figure 

4.8 show the comparison among Pareto optimal solutions at those weights using 
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different optimization methods and different strategies (calibrating vs non-calibrating) 

for providing utopia values in the objective criteria space. The red circles in both the 

figures are the Pareto-frontiers obtained numerically from the exhaustive search using 

the weighted Tchebycheff method, where the true utopia values [0.1764, 0.3545] are 

known. Thus, all the red circles can be considered as the true Pareto-optimal solutions, 

which are well spread with the weighting factors (trade-offs) of the objectives, likely 

giving unique solutions at different weights. This shows the efficiency of the weighted 

Tchebycheff method in solving MOO problems. Next, assuming the utopia values are 

unknown and the objectives are black-box, we conduct the weighted Tchebycheff MO-

BO model with model calibration where utopia values are iteratively predicted from 

MLR models (denoted by blue +); and without model calibration by considering 

constant global optimal values [0, 0] as suggested in [121], [122], (denoted by black 

*). We can see the earlier (blue +) are more spread and closely aligned with true Pareto 

solutions (red circles) than the former (black *). 

 
 

Figure 4.9. Euclidean norm distance for (left) weighting factors 𝑤11 and 𝑤21; (right) 

weighting factors 𝑤12 and 𝑤22 

 

For better visualizations, we calculated and compared the Euclidean norms of 

the Pareto-optimal solutions, from calibrated and non-calibrated MO-BO at different 

weights, using the origins as the respective true Pareto-optimal solutions (red circles in 

fig. 4.8). The better method should have minimum Euclidean norms and the values 

should have minimum variability (insensitive) to different weighting parameter values. 

From fig. 4.9 (left figure), we can see, the results (blue line) from the proposed 
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calibrated MO-BO approach where the Pareto-optimal solutions are much more 

accurate and the solution accuracy is less variable across the weights or trade-offs 

between objectives (mean Euclidean norm = 0.1043; std. dev= 0.0377) than the results 

(black line) from using non-calibrated model with utopia values of global solutions [0, 

0] (mean Euclidean norm = 0.1209; std. dev= 0.0623). Similar conclusions can be 

drawn from fig. 4.9 (right figure) where Euclidean norms are compared across 41 

weights in 𝒘𝟏𝟐 and 𝒘𝟐𝟐, where we see minimum mean and std. dev of the norm for the 

proposed model as 0.1082 and 0.0349 respectively, when compared the models without 

calibration as 0.1297 and 0.0537 respectively. Although, we see the proposed approach 

has relatively higher norm values in the range of weights in 𝒘𝟏𝟐 as [0.15-0.25], it is 

much better overall in comparison (following minimum norm and variability to 

weights).  

 

4.5.3. Comparison between frequentist and Bayesian MLR-based calibrated 

MO-BO model 

 

  
Figure 4.10. Euclidean norm distance with weighting factors 𝑤11 and 𝑤21 for (left) 

thin tube problem with 2 design vars: R and L; (right) thin tube problem with 3 design 

vars: R, L and t 

 

Finally, we made a comparison of the proposed MO-BO model using frequentist MLR 

and Bayesian MLR in terms of accuracy (minimum Euclidean norm) and the variability 

towards the true Pareto-optimal solutions as shown in fig. 4.10. We considered the 

weighting factor, 𝒘𝟏𝟏 = [0,0.1, … ,1] and 𝒘𝟐𝟏 = 1 − 𝒘𝟏𝟏, with two case studies. The 
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first case study (left figure of 4.10) is the 2D problem where the radius (R) and length 

(L) of the tube are considered as decision variables, while the thickness (t) of the tube 

is kept as a constant value at 1.7mm. The second case study (right figure of 4.10) is the 

3D problem with radius (R), length (L) and thickness (t) are all design variables. The 

Bayesian MLR model has been implemented in STAN using a Markov Chain Monte 

Carlo (MCMC) approach (no. of Markov chain =4, no. of warmup iter/chain =1000, 

max. iter/chain =4000) and considering Metropolis–Hastings (MH) sampling 

algorithm to approximate posterior distribution of regression co-efficient. From the 

comparison in 2D problem, we can interestingly see better accuracy and less variability 

to different weights in frequentist MLR-based calibrated MO-BO model (denoted by 

blue line) than in Bayesian MLR-based calibrated MO-BO model (denoted by green 

line) where the mean Euclidean norm and the standard deviation in frequentist 

approach are 0.0048 and 0.0037 respectively compared to those in Bayesian approach 

of 0.011 and 0.0078, respectively. However, both these approaches clearly surpass the 

performance of a model with non-calibrated fixed utopia values (black line) and a 

model with using the infeasible data for calibration (red line). Next, moving to the 3D 

problem (right figure of 4.10), we see the Bayesian MLR-based calibrated MO-BO 

model (denoted by red line) performs better than frequentist MLR-based calibrated 

MO-BO model (denoted by blue line) with mean and standard deviation of the 

Euclidean norm are 0.078 and 0.039; 0.104 and 0.038 respectively. Similarly, the 

model without calibration performs the worst. We know that one of the criteria for 

efficiency of the MO-BO models is how accurate we predict the utopia values. We 

think the Bayesian linear regression model performs better than the frequentist method 

in reducing the overall residual errors as expected, but not necessarily minimizing the 

residual error near the utopia region which gives lower accuracy to predict the utopia 

values. This is why we see MO-BO model calibrated with the Bayesian MLR provided 

lower accuracy for the 2D case study problem. However, both approaches show good 

performance overall. The further improvement will be addressed in future where we 

will add some trade-off and flexibility in selecting regression models to minimize the 
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residual error near the utopia region along with the overall reduction in the entire 

feasible design space. 

 

4.6. Conclusion 

In this chapter, we have proposed the application of Bayesian optimization to account 

for multiple objectives, formulating the acquisition function of weighted Tchebycheff 

method and calibrating the MO-BO model in which the prior knowledge of utopia 

values of each objective (optimal values of each objective independently) are iteratively 

predicted using frequentist or Bayesian MLR models. This proposed weighted 

Tchebycheff multi-objective Bayesian Optimization model (weighted Tchebycheff 

MO-BO) is applied to thin tube design, as a proof of concept to find the optimal 

geometry (radius, length and thickness), considering two objectives such as distance 

(risk of failure) and cost function, with manufacturing and design constraints. The data 

used in the prediction of the utopia point in each iteration is the sampled data from 

expensive experiments or function evaluations, suggested by maximizing the weighted 

Tchebycheff multi-objective acquisition function. Thus, in the calibration of the 

proposed MO-BO model, the MLR models utilizes the existing sampled experiment 

data, while providing at least better local optimal solutions than the non-calibrated 

model in terms of an overall accuracy and its variability at different trade-offs, as shown 

in the results. Our approach incorporates a Bayesian framework (using a Gaussian 

prior) into the optimization, where we strategically select design samples in order to 

maximize the learning (locating optimal designs) iteratively and reduce the overall cost 

of training data to achieve the desired level of accuracy, without the need of numerical 

formulations and having potential to consider for practical design problems. This proof 

of concept also shows potential broader impacts to optimize any number of black-box 

expensive objective functions, with no/minimal increment of complexity as the number 

of objectives increases, unlike in previous work where the complexity of the 

formulation (hyper-volume) of multi-objective acquisition function rises significantly 

with increasing the number of objectives. Though the focus of this chapter is on one 

multi-objective optimization technique (weighted Tchebycheff), the method is 
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applicable to any other global criterion multi-objective optimization methods where 

prior knowledge of utopia is required. 

4.6.1. Limitations and future research 

There are few directions that we can proceed in this research as future tasks. As stated 

earlier, we started our work in this chapter with implementing linear regression models 

and thereby obtained better model accuracy. The future research scope is to add 

flexibility and further increase the proposed MO-BO model accuracy, where we 

develop a model selection (linear or non-linear) criteria based on the measure of cost, 

complexity, and trade-off in minimizing errors in fitting any complex black-box 

objective function at the overall feasible design space or in specific regions (optimal 

region), thereby broadening the utility of the proposed approach. Over the years, multi-

objective BO has been handled by formulating the acquisition functions which consider 

mean vectors of objectives, obtained from independent runs of GP models for each 

objective. Finally, the full framework will be implemented in the complex high-

dimensional design of a diffusion bonded heat exchanger while addressing the 

scalability issues. 
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APPENDIX A OF CHAPTER 4 

FIGURES 

A.1. Bree Diagram 

 

 
 

Figure A.4.1. Bree diagram of non-work-hardening material whose yield stress 

remain unchanged by the change in mean temperature [81] 
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ABSTRACT 

In this work, we propose a nested Multi-objective Bayesian optimization MO-BO 

framework where we investigate a regression model selection procedure to estimate the 

utopia values for a global criterion method, such as the Weighted-Tchebycheff method, 

as the function of design input variables. In chapter 4, we have demonstrated a 

Weighted-Tchebycheff MO-BO approach which attempts to increase the model 

performance by estimating the model parameters (utopia) in formulating acquisition 

function of the weighted Tchebycheff multi-objective black-box functions, through 

calibration using regression analysis. However, the existing MO-BO model lacks 

flexibility in selecting the appropriate regression models given the guided sampled data 

and therefore, can under-fit or over-fit as the iterations of the MO-BO progress. This 

ultimately can reduce the model performance. The proposed approach is implemented 

in optimizing a multi-modal benchmark problem and a thin tube design under constant 

loading of temperature and pressure, with minimizing the risk of creep-fatigue failure 

and design cost. In this case study, different user-defined simple-to-complex regression 

models have been fitted with currently sampled training data from the MO-BO and the 

best model is selected following a prediction root mean square error approach. The 

utopia is estimated or updated given the iteratively selected regression models, which 

are used to formulate the weighted Tchebycheff multi-objective acquisition function. 

Finally, the nested weighted Tchebycheff MO-BO model performance is compared with 

different MO-BO frameworks with respect to parameter estimation, solution accuracy 

and function evaluation cost. 

 

5.1. Introduction 

In the early design phase, it is very important for the designers to be able to identify 

potential good design decisions in a large design space while the design cost is low. In 

practice, most of the design problems are too complex to be handled by simple 

optimization frameworks due to having constraints in cost, time, formulation, etc. In 

many design optimization problems, it is difficult to numerically formulate an objective 

function and therefore we consider those problems as having black box objective 
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functions with high function evaluation cost. When we have no or limited knowledge 

on the expensive true objective function, we cannot guarantee the maximization of our 

learning towards an optimal solution without proper guidance or expertise. 

Furthermore, due to the mentioned high function evaluation cost, exhaustive search is 

not a feasible option. In such black box engineering design problems, a Bayesian 

Optimization technique (BO), which eliminates the need of standard formulation of 

objective functions [101]–[103], is widely applied in sequential learning to provide 

better guided design sampling to minimize expensive function evaluations in finding 

the optimal region of the unknown design space. 

5.1.1. Research motivation 

In our previous chapter, we presented a weighted Tchebycheff multi-objective Bayesian 

optimization (MO-BO) where the prior utopia values are estimated iteratively using 

multiple linear regression model (MLR). The utopia point is the optimum of each 

objective individually and is needed for global criterion multi-objective methods such 

as the weighted Tchebycheff. The stated framework reduces the model complexities in 

formulating an acquisition function for a problem with increasing number of objectives, 

and increases the overall Pareto-optimal solution accuracy from estimating utopia 

instead of considering an educative guess [121], [122]. However, this existing model 

lacks flexibility where a simple linear regression model has been pre-defined for utopia 

estimation at each iteration of the MO-BO. Obviously, the simple regression model 

will under-fit if the unknown objective function is complex (non-linear). To avoid this, 

predefining a complex regression model can lead to overfitting if the unknown 

objective function is truly linear. In both the cases, the error in the utopia estimation 

increases. As shown in figure 5.1, we can see as we deviate from true utopia values (u`) 

in the X or Y directions, we cannot find the true optimal solution (C) for a specific 

weighting factor (w) and will fall into a different location at C`, further minimizing one 

objective function at the expense of the other. As the error in estimating utopia value 

increases, for instance due to inappropriate selection of regression models, we can 

observe an increase in deviation from the desired trade-off between the objectives, 

thereby, the MO-BO model may perform poorly. For obvious reasons, it is hard to 
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know a priori what could be the true nature of the black-box objective functions. Also 

in MO-BO, as the data sampling is done sequentially towards finding the multi-

objective optimal region, the performance of different simple to complex regression 

models can vary iteratively depending on the available data at each iteration. 

 

 
Figure 5.1. Incorrect utopia values leading to deviate from true pareto-optimal 

solution 

  

5.1.2. Research contribution 

Attempting to increase the model performance, we introduce a regression model 

selection approach nested into the existing weighted Tchebycheff MO-BO. This 

iteratively selected regression model estimates the utopia values as a function of design 

input variables. Our main goal is to propose a design architecture for multi-objective 

black box problems in which one properly utilizes the existing sampled training data 

during model calibration and improves in predicting the utopia rather than having a 

fixed pre-defined regression model, by adding flexibility to choose a regression model. 

To illustrate the approach, we consider the same case study problem as in the previous 

chapters: cyclic pressure-temperature loaded thin tube design as we will be able to 

compare the results obtained from the proposed model with the true solutions. 

However, it is to be noted the scope of the proposed nested weighted Tchbycheff MO-

BO is applicable to any multi-objective black-box problem, such as a diffusion bonded 

Compact Heat Exchanger [82]. The road-map of this chapter is as follows: Section 5.2 
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provides an overview on single and multi-objective Bayesian optimization. Section 5.3 

provides the weighted Tchebycheff black box multi-objective formulation for two case 

studies, a 2D multi-modal multi-objective benchmark problem and a cyclic reloaded 

thin tube design problem.  Section 5.4 talks about different simple to complex 

regression models considered for the case study for the purpose of estimation of utopia 

points. Section 5.5 provides the proposed algorithm of the iterative model selection 

process implemented in the existing weighted Tchebycheff MO-BO framework. 

Section 5.6 compares the results of the nested weighted Tchbycheff MO-BO among 

other design architectures in terms of different performance parameters. Section 5.7 

concludes chapter 5 with final thoughts.  

 

5.2. Overview on Bayesian Optimization 

 

 
Figure 5.2. Bayesian Optimization Framework [106] 

 

Bayesian optimization [7] is an emerging field of study in the sequential design 

methods. It is considered as a low-cost global optimization tool for design problems 

having expensive black-box objective functions. The general idea of the Bayesian 

optimization is to emulate an expensive unknown design space and find the local and 

global optimal locations while reducing the cost of function evaluation from expensive 

high-fidelity models. This approach has been widely used in many machine learning 

problems [92]–[96]. However, attempts have been made when the response is discrete 

like in consumer choice modelling problems where the responses are in terms of user 
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preference [7], [97]. The idea is to approximate the user preference discrete response 

function into continuous latent functions using Binomial-Probit model for two choices 

[98], [99] and polychotomous regression model for more than two choices where the 

user can state no preference [100]. 

5.2.1. Gaussian process model (GPM) 

BO adopts a Bayesian perspective and assumes that there is a prior on the function; 

typically, we use a Gaussian process (GP) prior. The overall Bayesian optimization 

approach has two major components: A predictor or Gaussian process model, and the 

acquisition function. As shown in figure 5.2, starting with a Gaussian prior, we build a 

posterior Gaussian process model, given the current available data from the expensive 

function evaluations. The surrogate GPM then predicts the outputs of any unsampled 

designs within the region of feasible design space. The uncertainty of these outputs for 

any unsampled designs near the observational data is small and increases as the 

unsampled designs are farther away from the observational data, thus related to kriging 

models where the errors are not independent. In order to incorporate and quantify 

uncertainty of the experimental or training data, one approach is to use a nugget term 

in the predictor GPM, which is largely discussed in the literature. It has been found that 

the nugget provides better a solution and computational stability framework [107], 

[108] as it mitigates the ill-conditioning of the correlation matrix. The technique is 

similar to Tikhonov regularisation where a small positive number 𝜗 is added on the 

main diagonal of the correlation matrix, which is called the nugget. Furthermore, GPM 

has also been implemented in high dimensional design space exploration [109] and big 

data problems [110], as an attempt to increase computational efficiency. As an 

alternative to GPs, random forest regression has been proposed as an expressive and 

flexible surrogate model in the context of sequential model-based algorithm 

configuration [104]. Although random forests are good interpolators in the sense that 

they output good predictions in the neighbourhood of training data, they are very poor 

extrapolators where the training data are far away [105]. This can lead to selecting 

redundant exploration (more experiments) in the non-interesting region as suggested 

by the acquisition function in the early iterations of the optimization, due to having 
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additional prediction error of the region far away from the training data.  This motivates 

us to consider the GP model in Bayesian framework. However, in multi-objective 

settings, the GP model still fits each objective or response variables independently, thus 

assuming the objectives are uncorrelated.  A survey of different GP packages available 

for different coding languages such as MATLAB, R, Python can be found in [111]. 

5.2.2.  Acquisition function (AF) 

The second major component in Bayesian optimization is the acquisition function 

whose goal is to strategically select the best design locations for future experimentation, 

defined from the posterior simulations which are obtained from the GP model. The 

acquisition function predicts the improvement in learning of sampling new designs, 

thereby, guiding the search for the optimum and bringing sequential design into the 

BO. The improvement value depends on exploration (unexplored design spaces) and 

exploitation (region near high responses). Thus, the acquisition function gives a high 

value of improvement to the samples whose mean prediction is high, variance is high, 

or both. Thus, by maximizing the acquisition function, we strategically select design 

points which have the potential to have the optimal (maximum value of the unknown 

function) and gradually reduce the error to align with the true unknown function with 

iterations. Throughout the years, various formulations have been applied to define the 

acquisition functions. One such method is the Probability of Improvement (PI) [112] 

which is improvement based acquisition function. Jones in [113] notes that the 

performance of PI(·) “is truly impressive;… however, the difficulty is that the PI(·) 

method is extremely sensitive to the choice of the target. If the desired improvement is 

too small, the search will be highly local and will only move on to search globally after 

searching nearly exhaustively around the current best point. On the other hand, if the 

small-valued tolerance parameter 𝜀 in PI(.) equation, as in [113],  is set too high, the 

search will be excessively global, and the algorithm will be slow to fine-tune any 

promising solutions.” Thus, Expected Improvement (EI) acquisition function [7] is 

widely used over PI which is a trade-off between exploration and exploitation. Another 

acquisition function is the Confidence bound criteria (CB) introduced by Cox and John 

[114], where the selection of points is based on the upper or lower confidence bound 
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of the predicted design surface for a maximization or minimization problem 

respectively. In multi-objective BO problems, the Expected Improvement Hyper-

volume (EIHV) acquisition functions have been modelled to provide better 

performance [10], [11]. However, to increase the computational efficiency, [123] 

modified the EIHV acquisition function into the Expected Hyper volume gradient-

based (EIHVG) acquisition function and proposed an efficient algorithm to calculate 

it. To reduce the computational cost, other acquisition functions like the Max-value 

Entropy Search (MESMO) [124] and Predictive Entropy Search (PESMO) [125] have 

been formulated. [126] proposed a multi-objective BO framework with preference over 

objectives on the basis of stability and attempting to focus on the Pareto front where 

preferred objectives are more stable. However, due to the computational complexity of 

all these MO-BO approaches with increasing number of objectives, the weighted 

Tchebycheff method has been augmented in MO-BO in [12] with a ridge regularization 

term to smoothen the converted single multi-objective function. Likewise, in previous 

chapter 4, we have implemented a weighted Tchebycheff method in MO-BO by 

introducing regression-based model calibration to estimate the parameter (utopia) of 

the multi-objective function. As stated earlier, the scope of this chapter is to modify the 

architecture in order to enhance the model performance.     

 

5.3. Motivational Problems  

In this section, we describe one benchmark problem and one design problem: 

 2-D Six-hump camel back function and Inversed-Ackley's Path function 

 Thin tube design problem 

We introduce these problems, which will be explored in the case study, to aid in 

understanding the formulation of the regression model selection approach. 

5.3.1.  Benchmark Problem 

For the benchmark problem, we considered two popular global optimization test 

functions as our objectives: the 2-D Six-hump camel back function  and Inversed-

Ackley's Path function [151]. These functions are drawn from the literature on 

evolutionary algorithms and global optimization, and were chosen in this chapter due 
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to their non-linearity and multi-modal nature and thereby having a reasonable 

complexity in the guided search towards the optimal solutions. We will treat these 

functions as black-box in our MO-BO architecture. Below is the formulation of the 2D 

benchmark problem: 

Maximize Objective1: 2-D Six-hump camel back function: 

max
𝑥1, 𝑥2

𝑌1 = max
𝑥1,𝑥2

(4 − 2.1𝑥1
2 + 𝑥1

4

3) 𝑥1
2 + 𝑥1𝑥2 + (−4 + 4𝑥2

2)𝑥2
2                       (5.1)           

Maximize Objective2: 2-D Inversed-Ackley's Path function:   

max
𝑥1, 𝑥2

𝑌2 = max
𝑥1, 𝑥2

𝑎 × exp (−𝑏√𝑥1
2+𝑥2

2

2
) + exp (

𝑐𝑜𝑠(𝑐𝑥1)+cos (𝑐𝑥2)

2
) − 𝑎 − exp (1)     (5.2)                     

where  𝑎 = 20; 𝑏 = 0.2; 𝑐 = 2𝜋; −3 ≤ 𝑥1 < 3; −2 ≤ 𝑥2 < 2; 𝑥1, 𝑥2  ≠ 0. 

The values of a, b and c are considered as in [151].  

5.3.2.  Cyclic pressure-temperature loaded thin tube design problem 

For the design problem, we use the design of a thin tube under pressure-temperature 

cycling. As the tube is assumed to undergo constant loading of temperature and 

pressure, there will be risk of creep-fatigue failure which will vary with the design 

geometry. Fatigue damage is defined as cycling a test specimen at some fixed stress 

amplitude for enough cycles that it will develop micro-structural damage and 

eventually fail. Creep damage is defined as holding a test specimen at a fixed load for 

a long enough time that eventually it will develop micro-structural damage and fail. 

Creep-fatigue damage is therefore to do both of these simultaneously (e.g. a stress 

controlled cycle with a hold) such that the specimen will generally fail sooner than 

conducting the cycling or holding individually. The stated risk is defined based upon 

the location of the structural design in strain-defined regions such as elastic, 

shakedown, plastic or ratcheting. A similar example has been provided for thin tubes 

where the location of the designs can be numerically represented from a Bree Diagram 

[81] (fig. Appendix A.5.1) in terms of pressure and thermal stresses.  Under cyclic 

loading, the elastic and shakedown region in the Bree diagram are considered as the 

safe region where no strain accumulation occurs or the growth of residual strain is 

practically diminishing when sufficient loading cycles are applied. However, plastic 
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and ratcheting in the Bree diagram are unsafe designs where the plastic strain 

accumulates until failure. Along with the risk, we have also considered the material 

cost of the tube. For a better tube design, we should minimize both the risk and cost 

functions. When the complexity of the design increases like in a diffusion bonded 

Compact Heat Exchanger [82], we cannot provide a numerical representation of such 

functions which define the location of designs. Also, considering different costs in the 

entire design process like material, component, manufacturing, assembly and quality 

checking makes the cost function hard to formulate. This makes both the objectives 

such as risk and cost functions to be black-box functions, representing the problem as 

a black-box multi-objective design problem for which we proposed the Bayesian 

framework in the chapter. Here, we assume the risk and cost functions for our case 

study problem are expensive black-box functions. We choose the design variables as 

radius (R), length (L), and thickness (t) of the tube. Next we state the experimental 

procedure for the formulation of the multi-objective functions and the constraints for 

the thin tube problem. 

5.3.2.1. Experimental procedure 

To formulate the objective of risk of creep-fatigue failure, we need to find the location 

of any design in terms of elastic, plastic, shakedown and ratcheting, and the respective 

strain accumulation. We represent these outputs as the responses from the expensive 

experiments. In this chapter, we consider the Bree diagram for a non-work-hardened 

material whose yield stress remains unchanged by changes in mean temperature as 

provided in Appendix A.5.1. For the sake of simplicity, we have ignored the further 

division of shakedown (S1, S2) and ratcheting (R1, R2) as shown in the figure, and 

assumed a single region of shakedown (S) and ratcheting (R), because the design risks 

are equivalent in the S1 and S2, and R1 and R2 regions, respectively. The three major 

steps we follow in the procedure are 1) Calculate Pressure and Temperature Stress of 

the design point, 2) Determine the region of the design in terms of elastic, plastic, 

shakedown and ratcheting and 3) Calculate the strain accumulation based on the 

location of the design. The detailed computation of the whole process for the thin tube 

can be found in [Section 3.3.1, chapter 3].  
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5.3.2.2. Problem formulation of thin tube design 

The objective functions and the constraints of the thin tube problem is as follows: 

min
𝑅,𝐿,𝑡

𝑌1 = min
𝑅,𝐿,𝑡

𝑓(𝜓, 𝜉, 𝑘)                                                                                   (5.3) 

min
𝑅,𝐿,𝑡

𝑌2 = min
𝑅,𝐿,𝑡

𝑃𝜌𝜋𝑡𝐿(2𝑅 − 𝑡)                                                                       (5.4) 

Subject to (Constraints):  

𝑃((𝜇̂(𝑌1(𝑅, 𝐿, 𝑡)|𝚲)) ≤ 0.5) ≥ 𝑅                                                                       (5.5) 

𝐿𝐷

2𝜋𝑅𝑡
− 𝜎𝑦 ≤ 0                                                                                                                 (5.6)  

𝐿𝐷 −
𝜋3𝐸𝑅3𝑡

4𝐿2 ≤ 0                                                                        (5.7) 

𝑅

𝐿
≤  𝛿                                                                                                                              (5.8) 

Equation (5.3) is a distance function which measures the risk of creep-fatigue failure 

where  𝜓 ∈ Ψ is the region (elastic, shakedown, plastic and ratchetting) within the 

design space  Ψ; 𝜉 is the total strain accumulation; 𝑘 is the 𝑘𝑡ℎ iteration of the BO 

model. It is to be noted that in each iteration, with more experimental or training data 

(increase prior knowledge), the distance value for all the training data is re-evaluated. 

Equation (5.4) is the cost function where 𝑃 is the material cost per kg; 𝜌 is the density 

of the material. Equation (5.5) is the probabilistic constraint of creep-fatigue failure 

with Reliability factor, 𝑅 = 0.99 where 𝜇̂(𝑌1(𝑅, 𝐿, 𝑡)|𝚲) is the estimated mean of 

output objective, distance value, for the input design variables, given the converged 

posterior surrogate Gaussian Process model 𝚲 of the MO-BO framework in the pre-

stage [Section 3.4, chapter 3]. The value 0.5 is the threshold since we set this distance 

value at the transition boundary line between safe and unsafe region. For details, 

readers can look into the formulation of distance metrics, which builds eqns. 5.3 and 

5.5, in chapter 3. Equations 5.6-5.8 are the deterministic constraint equations for normal 

stress, buckling load and aspect ratio respectively where 𝐿𝐷 = 1𝐾𝑁 is the load exerted 
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on the wall of the thin tube, 𝜎𝑦 = 205𝑀𝑃𝑎 is the yield stress, 𝐸 = 207𝐺𝑃𝑎 is the 

Young’s modulus, 𝛿 = 0.025 in this case study.  

5.3.3. Weighted Tchebycheff multi-objective black-box function 

Finally, the weighted Tchebycheff multi-objective black-box function in our Bayesian 

optimization setting for either maximization (benchmark problem) or minimization 

(thin tube problem) of the multiple objectives is as follows: 

min
𝑿

𝑌𝑚𝑢𝑙𝑡𝑖 = min
𝑿

max
𝑖=1,2,..,𝑁

{𝑤𝑖|𝜇̂(𝑌𝑖|𝚫𝐤) − 𝜇𝑘̂(𝑢𝑖)|}                                                 (5.9) 

where 𝑤𝑖 is the weighting factor of 𝑖𝑡ℎ objective; 𝑁 = 2 is the total number of 

objectives; 𝜇̂(𝑌𝑖|𝚫𝐤) is the estimated mean value of the 𝑖𝑡ℎ objective function, given 

the posterior surrogate Gaussian process model 𝚫𝐤, at iteration 𝑘 of the MO-BO; 

𝜇𝑘̂(𝑢𝑖) is the estimated mean utopia value of the 𝑖𝑡ℎ objective function, which has been 

calibrated from the selected regression model. Minimizing the maximum weighted 

distance from the utopia among the objective functions will provide the non-dominated 

solutions or Pareto-optimal solutions. Finally, eqn. 5.9 is transformed into maximizing 

the acquisition function of 𝑌𝑚𝑢𝑙𝑡𝑖, as max
𝑿

𝑈(−𝑌𝑚𝑢𝑙𝑡𝑖), thereby selecting samples for 

expensive function evaluations with higher likelihood of being a Pareto-optimal 

solution. 

 

5.4. Regression Models for the thin tube design 

In this section, we focus on the different simple-to-complex regression models, 

considered in this case study. Since the true nature of the design space or unknown 

objectives is assumed unknown (black-box), we have considered different flavours of 

regression models to understand their selection as the iteration of the MO-BO progress. 

In total, we have considered 7 models, used in regression analysis for estimation and 

prediction of outputs for given independent variables, including: 1. Mean model (MM), 

2. Multiple linear regression model (MLR), 3. Log-transform of multiple linear 

regression model (log-MLR), 4. Bayesian multiple linear regression model (BMLR), 

5. Second order polynomial model (SOP) (or quadratic model), 6. Support Vector 

Machine regression model (SVMR) and 7. GPM. It is to be noted that the design 
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architecture is not constrained to implement only these models, and any regression 

models can be opted out or introduced into the nested MO-BO framework at the start 

of the optimization (with any prior educative guess from existing similar problems and 

when the knowledge is very limited) or at the mid or later stage of the optimization 

(when we have better knowledge). However, for the sake of simplicity in model 

comparison, we have considered these models throughout the optimization process, 

assuming we have limited knowledge on the nature of the objectives to start with. Next, 

we have presented the formulation of fitting these models, using the sampled data in 

our case study. As our goal is to predict the utopia which is the optimal solution of an 

objective function independent of other objectives, we have considered 𝑛 = 2 

regression models for learning 𝑛 = 2 objectives. The formulation of the models has 

been stated for the higher dimensional (3D) thin tube design; however, for the 2D 

benchmark problem (eqn. 5.1-5.2), the design variables [𝑅, 𝐿, 𝑡] can be replaced with 

[𝑥1, 𝑥2] in the following equations as required. 

Model 1: The mean model (MM) is the simplest, only having intercepts in the 

regression model in equation (5.10-5.11): 

𝜇𝑘̂(𝑌1|𝑅, 𝐿, 𝑡) =  𝛽̂0,1,𝑘                                                        (5.10) 

𝜇𝑘̂(𝑌2|𝑅, 𝐿, 𝑡) =  𝛽̂0,2,𝑘                                                        (5.11) 

where 𝛽̂0,1,𝑘 ;  𝛽̂0,2,𝑘 are the estimated regression coefficient (intercepts) for objective 

Eqn. (5.3) and (5.4), respectively, at iteration k of the MO-BO model; 𝜇̂(. |𝑅, 𝐿, 𝑡) is the 

estimated mean of the objective function, given the sampled data from expensive 

function evaluations in the Bayesian optimization framework.  

Models 2 & 3: Likewise, the equations for the estimated means of the objective 

functions fitted in MLR and log-MLR models are as follows:  

𝜇𝑘̂(𝑌1|𝑅, 𝐿, 𝑡) =  𝛽̂0,1,𝑘 + 𝛽̂1,1,𝑘𝑅 + 𝛽̂2,1,𝑘𝐿 + 𝛽̂3,1,𝑘𝑡                                                (5.12) 

𝜇𝑘̂(𝑌2|𝑅, 𝐿, 𝑡) =  𝛽̂0,2,𝑘 + 𝛽̂1,2,𝑘𝑅 + 𝛽̂2,2,𝑘𝐿 + 𝛽̂3,2,𝑘𝑡                                                (5.13) 

𝜇𝑘̂(𝑌1|𝑅, 𝐿, 𝑡) =  𝑒𝛽̂0,1,𝑘 × 𝑒𝛽̂1,1,𝑘𝑙𝑜𝑔𝑅 × 𝑒𝛽̂2,1,𝑘𝑙𝑜𝑔𝐿 × 𝑒𝛽̂3,1,𝑘𝑙𝑜𝑔𝑡                                    (5.14) 

𝜇𝑘̂(𝑌2|𝑅, 𝐿, 𝑡) =  𝑒𝛽̂0,2,𝑘 × 𝑒𝛽̂1,2,𝑘𝑙𝑜𝑔𝑅 × 𝑒𝛽̂2,2,𝑘𝑙𝑜𝑔𝐿 × 𝑒𝛽̂3,2,𝑘𝑙𝑜𝑔𝑡                                    (5.15) 
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where 𝜷̂.,𝟏,𝒌 = (𝛽̂0,1,𝑘, 𝛽̂1,1,𝑘,  𝛽̂2,1,𝑘, 𝛽̂3,1,𝑘)
𝑇

 ;  𝜷̂.,𝟐,𝒌 = (𝛽̂0,2,𝑘, 𝛽̂1,2,𝑘,  𝛽̂2,2,𝑘, 𝛽̂3,2,𝑘)𝑇 

are the vectors of estimated regression co-efficient (intercepts, slopes) for objective 

Eqn. (5.3) and (5.4) respectively at iteration k of the MO-BO model. We considered 

full additive models per Eqn. (5.12-5.15), where both the objectives are a function of 

all predictor design variables (R, L and t). It is also to be noted that for the benchmark 

problem, the log-MLR models are avoided due to having negative values for the 

objective 2 (eqn. 5.2). 

Model 4: In the Bayesian approach [142], [143], the estimation of regression 

coefficients for 𝑖𝑡ℎ objectives and 𝑘𝑡ℎ iteration of the MO-BO model, 𝜷̂.,𝒊,𝒌 =

(𝛽̂0,𝑖,𝑘, 𝛽̂1,𝑖,𝑘,  𝛽̂2,𝑖,𝑘, 𝛽̂3,𝑖,𝑘)
𝑇
 are complex as we need to formulate the prior 𝑝(𝜷), 

likelihood function ℓ(𝑌|𝑿, 𝜷), and posterior distribution 𝑝(𝜷|𝑿, 𝑌). For BMLR, we set 

Gaussian (or normal) priors in eqns. 5.16, 5.17:  

𝑝(𝜷.,1,𝑘)~𝑴𝑽𝑵(𝝁̂𝜷.,𝟏,𝒌−𝟏
, 𝒄𝒐𝒗̂𝜷.,𝟏,𝒌−𝟏

𝟐 𝑰𝒑+𝟏)                                                             (5.16) 

𝑝(𝜷.,2,𝑘)~𝑴𝑽𝑵(𝝁̂𝜷.,𝟐,𝒌−𝟏
, 𝒄𝒐𝒗̂𝜷.,𝟐,𝒌−𝟏

𝟐 𝑰𝒑+𝟏)                                                             (5.17) 

Therefore, the posterior distribution is defined as equations 5.18, 5.19: 

𝑝(𝜷.,1,𝑘|𝑌1, 𝑅, 𝐿, 𝑡) ∝ 𝑙𝑘(𝑌1|𝑅, 𝐿, 𝑡, 𝜷.,1,𝑘)  𝑝(𝜷.,1,𝑘)                                               (5.18) 

𝑝(𝜷.,2,𝑘|𝑌2, 𝑅, 𝐿, 𝑡) ∝ 𝑙𝑘(𝑌2|𝑅, 𝐿, 𝑡, 𝜷.,2,𝑘)  𝑝(𝜷.,2,𝑘)                                              (5.19) 

where 𝝁̂𝜷.,1,𝑘−1
, 𝝁̂𝜷.,2,𝑘−1

, 𝒄𝒐𝒗̂𝜷.,1,𝑘−1

𝟐 𝑰𝒑+𝟏, 𝒄𝒐𝒗̂𝜷.,2,𝑘−1

𝟐 𝑰𝒑+𝟏 are the estimated means and 

the variances, respectively, of the beta parameters for objectives 1 and 2 at iteration 

𝑘 − 1 of the MO-BO model. 𝑰𝒑+𝟏 is the (𝑝 + 1) identity matrix where 𝑝 is the number 

of input design variables. Thus, the general idea is to compute the posterior distribution 

of the regression coefficients at the current iteration of MOBO model; the respective 

prior distribution is taken as the posterior distribution of the regression coefficients at 

the previous iteration. The BMLR has been implemented using a Markov Chain Monte 

Carlo (MCMC) approach (no. of Markov chain = 4, no. of warmup iter/chain = 1000, 

max. iter/chain = 10000) and using the Gibb’s sampling (GB) algorithm to approximate 

the posterior distribution of regression coefficients. 
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Model 5: With increasing complexity by adding also square and the pairwise interaction 

terms of the predictor design variables, we define the quadratic or SOP model as 

follows: 

 𝜇𝑘̂(𝑌1|𝑅, 𝐿, 𝑡) =  𝛽̂0,1,𝑘 + 𝛽̂1,1,𝑘𝑅 + 𝛽̂2,1,𝑘𝐿 + 𝛽̂3,1,𝑘𝑡 + 𝛽̂4,1,𝑘𝑅2 + 𝛽̂5,1,𝑘𝐿2 +

𝛽̂6,1,𝑘𝑡2 + 𝛽̂7,1,𝑘𝑅𝐿 + 𝛽̂8,1,𝑘𝐿𝑡 + 𝛽̂9,1,𝑘𝑅𝑡                                                     (5.20) 

𝜇𝑘̂(𝑌2|𝑅, 𝐿, 𝑡) =  𝛽̂0,2,𝑘 + 𝛽̂1,2,𝑘𝑅 + 𝛽̂2,2,𝑘𝐿 + 𝛽̂3,2,𝑘𝑡 + 𝛽̂4,2,𝑘𝑅2 + 𝛽̂5,2,𝑘𝐿2 +

𝛽̂6,2,𝑘𝑡2 + 𝛽̂7,2,𝑘𝑅𝐿 + 𝛽̂8,2,𝑘𝐿𝑡 + 𝛽̂9,2,𝑘𝑅𝑡                                                     (5.21) 

Models 6 & 7: For the previous models, the errors are assumed independent. Thus, we 

considered the Support Vector Machine Regression model (SVMR) and the Gaussian 

process model (GPM) for the case studies where the errors are dependent. These 

models are altogether different from the earlier stated models, having different 

statistical approaches in formulation. SVMR and GPM are considered nonparametric 

techniques because they rely upon kernel functions. SVMR is a popular method in the 

domain of machine learning and widely used both in classification and regression 

problems for complex data [152], [153]. SVMR has the flexibility to define how much 

error is acceptable in the model and fit the data accordingly. Here, the objective is to 

minimize the sum of 𝑙2 norm of the co-efficient vector, 𝜷 and the mean 𝜀-insensitive 

error, | . |𝜀 of all the data. Thus, the optimization problem can be stated as: 

min
1

𝑛
∑ (|𝑦𝑗 − 𝑓(𝑺𝑗)|

𝜀
)𝑛

𝑗=1 + ||𝜷||
2

                                                                               (5.22) 

|𝑦𝑗 − 𝑓(𝑺𝑗)|
𝜀

= |𝑧|𝜀 = {
0            𝑖𝑓 |𝑧| < 𝜀 
|𝑧| − 𝜀  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                 (5.23) 

 𝑓(𝑺𝑗) = 𝑺𝑗𝜷 + 𝑏;  𝑺𝒋 = [𝑅, 𝐿 , 𝑡]𝑗  ; 𝑗 = 1: 𝑛                                                                           (5.24) 

where 𝑺𝑗 is the 𝑗𝑡ℎ(row) sampled designs used for fitting the model; 𝑦𝑗 is the 𝑗𝑡ℎ(row) 

true output value; 𝑏 is the bias, 𝜀 is the error margin and 𝑛 is the number of training 

sampled data (rows). The above eqns. 5.22-5.24 are the primal formulation where the 

primal variable is the co-efficient vector 𝜷, for which the dual form is eqns. 5.25-5.26, 

which has been solved using the algorithm Sequential minimal optimization (SMO) 

[154]. The dual form of 5.22 can be written as, which is minimized w.r.t the Lagrange 

multipliers: 
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min 𝜀 ∑ (𝛼𝑗
+ + 𝛼𝑗

−)𝑛
𝑗=1 + ∑ 𝑦𝑗(𝛼𝑗

+ − 𝛼𝑗
−)𝑛

𝑗=1 +
1

2
∑ ∑ (𝛼𝑖

+ − 𝛼𝑖
−)(𝛼𝑗

+ −𝑛
𝑗=1

𝑛
𝑖=1

𝛼𝑗
−) 𝐺(𝑺𝒊, 𝑺𝒋)                                                                                                            (5.25) 

subject to ∑ (𝛼𝑗
+ − 𝛼𝑗

−)𝑛
𝑗=1 = 0, 0 ≤  𝛼𝑗

+, 𝛼𝑗
− ≤ 𝐶                                                 (5.26) 

where 𝛼𝑗
+, 𝛼𝑗

− are the 𝑗𝑡ℎ(row) non-negative Lagrange multipliers (dual variables); 

𝐺(𝑺𝒊, 𝑺𝒋) is the kernel function between the sampled design, 𝑺. 𝐶 is a user defined 

constant, which balance between model complexity and the approximation error. The 

primal variables, 𝜷(𝛼𝑗
+, 𝛼𝑗

−) can be found as the linear combination of the training 

sampled designs as 5.27. 

𝜷(𝛼𝑗
+, 𝛼𝑗

−) = ∑ (𝛼𝑗
+ + 𝛼𝑗

−)𝑛
𝑗=1 𝑺𝒋                                                                              (5.27) 

Finally, the estimated scores for the objectives (𝑌1, 𝑌2) for a new design 𝑿 are of the 

form: 

𝜇𝑘̂(𝑌1|𝑿) = ∑ 𝛼̂1,𝑗,𝑘𝑮𝒌(𝑺𝒋, 𝑿) + 𝑏̂1,𝑘
𝑛
𝑗=1                (5.28) 

𝜇𝑘̂(𝑌2|𝑿) = ∑ 𝛼̂2,𝑗,𝑘𝑮𝒌(𝑺𝒋, 𝑿) + 𝑏̂2,𝑘
𝑛
𝑗=1                                                                           (5.29) 

where 𝛼̂𝑖,𝑗,𝑘  = 𝛼𝑖,𝑗,𝑘
+ − 𝛼𝑖,𝑗,𝑘

− is the difference between the two non-negative 

𝑗𝑡ℎ(row) Lagrange multipliers for the fitted SVMR model, estimating 𝑖𝑡ℎ objective of 

the 𝑘𝑡ℎiteration of MOBO model; 𝑮𝒌(𝑺𝒋, 𝑿) is the Kernel function between each 

sampled design and the new design. In this paper, we considered the kernels as 

‘Gaussian’ and ‘linear’ for the benchmark problem and the thin tube design, 

respectively; 𝑏̂ is the bias estimate. It is to be noted that the SVMR can be efficient 

with different kernel functions or tuning of error margin 𝜀.  The proposed design 

architecture has the flexibility to modify SVMR models at any stage of the iteration 𝑘 

of nested MO-BO, if required. However, for the sake of simplicity in the comparison, 

we have avoided that in this case study.  

Like the SVMR, GPM is another tool extensively used in machine learning 

applications [155], [156]. GPM is attractive because of its flexible non-parametric 

nature and computational simplicity and is, therefore, generally applied within a 

Bayesian framework, which offers valid estimation and uncertainties in our prediction 

of function values in nonlinear black-box optimization problems. In our earlier work 
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as in chapter 3, we have used Gaussian process, fitted inside a Bayesian optimization 

framework, in the classification problem as well. The general form of the GP model, 

given the matrix of designs 𝑺 for fitting, is as follows: 

𝑌(𝑺) = 𝑺𝑻𝜷 + 𝑧(𝑺)                                                                          (5.30)                                                                               

where 𝑺𝑻𝜷 is the 2nd order polynomial regression model. 𝑧(𝑺) is a realization of a 

correlated Gaussian Process which is defined as follows: 

𝑧(𝑺)~ 𝐺𝑃 (𝐸[𝑧(𝑺)], 𝑐𝑜𝑣(𝑺𝑖, 𝑺𝑗)) ; 𝑺𝒋 = [𝑅, 𝐿 , 𝑡]𝑗  ; 𝑗 = 1: 𝑛                                    (5.31) 

𝐸[𝑧(𝑺)] = 0, 𝑐𝑜𝑣(𝑺𝑖, 𝑺𝑗) = 𝜎2𝑅(𝜃, 𝑺𝑖, 𝑺𝑗);  𝑖, 𝑗 = 1: 𝑛                                           (5.32)                                               

𝑅(𝜃, 𝑺𝑖, 𝑺𝑗) = exp (− ∑ 𝜃𝑚(𝑠𝑚
𝑖 − 𝑠𝑚

𝑗
)

2𝑝
𝑚=1 ) ;                                    (5.33) 

𝜃𝑚 = min
𝜃

|R|1/𝑛𝜎2                                                                                                                (5.34) 

Where 𝑅(𝑺𝑖, 𝑺𝑗) is the spatial correlation function; |𝑅| is the determinant of 𝑅; 𝜎2 is 

the overall scale parameter and 𝜃𝑚 is the correlation length parameter in dimension m 

of p dimension of 𝑥. The bound of 𝜃𝑚 is considered as [1𝑒−1, 20] with starting value 

as 10, as suggested in [117]. These are termed as the hyper-parameters of GP model.  

The optimal 𝜃𝑚 is found as solving eqn. 5.34. In our model, we have used a Gaussian 

Spatial correlation function which is given as eqn. 5.33. The estimated score of the 

objectives (𝑌1, 𝑌2)  for a new design 𝑿 are of the form: 

𝜇𝑘̂(𝑌1|𝑿) = 𝑿𝑻𝜷̂.,1,𝑘 +  𝒓(𝑿)𝑻ℛ−𝟏(𝒀𝟏(𝑺) − 𝑺𝑻𝜷̂.,1,𝑘)            (5.35) 

𝜇𝑘̂(𝑌2|𝑿) = 𝑿𝑻𝜷̂.,2,𝑘 +   𝒓(𝑿)𝑻ℛ−𝟏(𝒀𝟐(𝑺) − 𝑺𝑻𝜷̂.,2,𝑘)                                                (5.36) 

𝑺 = [𝑺𝟏, … . , 𝑺𝒏]𝑻; 𝒀𝒒 = [𝑦𝑞,1, … . , 𝑦𝑞,𝑛]
𝑻
; ℛ−𝟏 = 𝑅(𝜃, 𝑺𝑖, 𝑺𝑗)

−1
; 𝑖, 𝑗 = 1: 𝑛;  

𝒓(𝑿) = [𝑅(𝜃, 𝑺1, 𝑿), … . , 𝑅(𝜃, 𝑺𝑛, 𝑿)]𝑇  

where 𝒓(𝑿) is the vector of correlation between each sampled design in 𝑺 and new 

design 𝑿; 𝒀𝒒(𝑺) is the vector of true responses (𝑞𝑡ℎ objectives) for the respective 

sampled designs in matrix 𝑺; 𝑺𝑻𝜷̂.,𝑞,𝑘 is the estimated design 𝑞𝑡ℎ output (objective) 

function matrix of all the sampled designs 𝑺; ℛ is the Gaussian spatial correlation 

matrix between the sampled designs, 𝑺. It is to be noted the matrix ℛ is symmetric and 

positive definite (from the bounds on 𝜃𝑚)  and therefore, matrix ℛ−1 exists and is also 
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symmetric. Thus, as the errors are dependent, the variability in the estimation of any 

new design which is nearer to the sampled design (used in fitting the model) is lesser 

than any new design which is farther from the sampled design. 

 

5.5. Model Selection Criteria Procedure 

The overall MO-BO design architecture with a brief version of the algorithm and the 

convergence criteria are provided in chapter 4. In the current chapter, we describe the 

model selection algorithm to estimate utopia values following a prediction root mean 

square error approach, which is nested in the weighted Tchebycheff MO-BO 

(highlighted in red, fig. 4.4). We call this the inner loop of the weighted Tchebycheff 

MO-BO. Figure 5.3 shows the detailed flow chart of the model selection procedure. 

The key point in the procedure is to compute two criteria, which together define the 

model selection criterion. In fig. 5.3, the steps (blocks) highlighted in blue, green and 

red are involved in criteria 1, criteria 2 and both criteria 1 and 2 respectively. The 

selection procedure is based upon the research objective to answer how good a certain 

model has estimated the certain parameters (utopia values); we do not consider the 

complexity of the model as part of the selection criteria. Our work aims to add 

flexibility to the model comparison among different families of models, which is 

formulated with different assumptions and statistical approaches, by focussing upon 

the measure of this goodness of fit in the estimation. This is the reason we have 

considered SVMR and GPM along with families of linear regression models, together 

with Bayesian and frequentist regression models. Also, the comparison ignores the 

trade-off between model accuracy and computational cost due to the increase of model 

parameters (e.g., number of regression co-efficient). This is because in the BO 

framework, this computational cost is negligible compared to the expensive function 

evaluations and we know with lower accuracy in estimation, there is higher chance to 

deviate from true optimal solutions. It is worthy to mention, in other problems where 

the research goal is different than stated here, further investigation is needed to ensure 

an appropriate model comparison and selection procedure. 
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Figure 5.3. Model selection algorithm to estimate utopia (Inner loop of the MOBO) 

 

5.5.1.  Criterion 1: Global improvement 

The first criterion to consider in the model selection procedure is the overall global 

improvement by the model to estimate the designs across the feasible design space. 

Thus, criteria 1 is focused on selecting a model at iteration 𝑘 of the nested MO-BO 

model, which gives the best fit in general. With a best fit in general, the model has 

higher likelihood to provide better estimation of utopia values. 

The steps to follow for computing criterion 1 are: 

Step 1: Training Data: We define 𝑿 as design input variables and 𝒀 as output functions. 

In our thin tube problem, we define 𝑿 = [𝑹, 𝑳, 𝒕] as the matrix of design geometry 

containing radius, length and thickness of the thin tube and 𝒀 = [𝒀𝟏, 𝒀𝟐] as the matrix 

of the distance (risk) and cost functions of the respective sampled designs. Create the 

feasible (validating constraints 5.5-5.8) sampled data matrix (guided from the 

acquisition function of eqn. 5.9), assuming at iteration 𝑘 of the MO-BO, 𝑫𝒇,𝒌 =

[𝑿𝒌, 𝒀(𝑿𝒌)] and 𝑫𝒇,𝒌 ∈ 𝑫𝒌.  

 

Step 2: Conduct Monte-Carlo cross-validation:  
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Step 2a. Split 𝑫𝒇,𝒌 into two subsets of training 𝑫𝒇,𝒌
𝑻  and validation 𝑫𝒇,𝒌

𝑽  datasets 

without replacement at the proportion of 𝑝𝑇 and 𝑝𝑉 respectively where 𝑝𝑇 +  𝑝𝑉 = 1. 

Step 2b. Given 𝑫𝒇,𝒌
𝑻 , fit all the pre-defined regression models to estimate 

objective 𝑖, 𝚳𝒓,𝒊,𝒌, where 𝑟 is the defined regression model number.  

Step 2c. Estimate the objectives and create vectors of 𝝁𝒌̂(𝒀𝒊) for each input 

design in 𝑫𝒇,𝒌
𝑽 , given the regression model 𝚳𝒓,𝒊,𝒌.  

Step 2d. Validate the estimated objectives in 2c with the true objective values 

in 𝑫𝒇,𝒌
𝑽 . Thus, calculate mean-squared-error 𝜖1,𝑖,𝑙 to estimate objective 𝑖 and at iteration 

𝑙 of the cross-validation for all the input designs 𝑿𝒌
𝑽 in 𝑫𝒇,𝒌

𝑽 . 

𝜖1,𝑖,𝑙 =  𝜇(𝒀𝒊(𝑿𝒌
𝑽) − 𝝁𝒌̂(𝒀𝒊(𝑿𝒌

𝑽)))𝟐                                                                            (5.37) 

Step 2e. Repeat Step 2a. - 2d. for 𝐿 times. In this case study, 𝐿 = 100. 

 

Step 3: Define criterion 1: Calculate root-mean-square of the vectors MC cross-

validated mean-squared-errors of 𝑖𝑡ℎ objective, 𝝐𝟏,𝒊,.. Thus criterion 1 at iteration 𝑘 of 

MO-BO for 𝑖𝑡ℎ objective can be stated as,  

Ε1,i,k = √𝜇(𝝐𝟏,𝒊,.)                           (5.38)   

5.5.2.  Criterion 2: Local improvement 

The second criterion is the local improvement by the model specific to our region of 

interest in the design space, which is the utopia region. It is to be noted that the purpose 

of the regression model is to have a good estimate at the utopia region, as a large error 

in any other region is not going to impact the MO-BO model performance. Although 

selecting a model with a good overall prediction accuracy as in criterion 1 has a 

likelihood of better estimation of the utopia region as well, it does not provide a 

guarantee of the best estimation among other models. In other words, comparing fitted 

model 1 and 2 as in fig. 5.4a using the training data (blue dots), although model 1 has 

higher error for the validation data (green dots), it has lower error in predicting utopia 

design (red dot). In this example, we see the overall better fit model 2 has high error at 

the utopia region, which is the region of interest. Thus, along with the global 

improvement, we have also focused on the second criteria on reducing the estimation 
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error specifically at the utopia region. However, doing so, the challenges lies that since 

the utopia design is unknown (red dot in figs. 5.4a, 5.4b), we will not know the true 

values of the objectives. This restricts the straightforward MC cross-validation as in 

section 5.5.1. 

 
Figure 5.4a. Model Comparison: Model 

1 has higher error on predicting 

validation data, but lower error on 

predicting utopia. 

 
Figure 5.4b. Objective for Criteria 2: To 

minimize the error of predicted utopia 

between model 2 (full data) and model 1 

(subsampled training data) 

 

To mitigate this issue, we follow the assumption that fitting a model with more 

data will have higher likelihood for better estimation. Thus, the estimation error of the 

model, after fitting with the full feasible sampled dataset 𝑫𝒇,𝒌 is likely to be lower than 

that when fitted with feasible subsampled dataset 𝑫𝒇,𝒌
𝑻 . Following this, we assume that 

the reference utopia values for cross-validation are the estimated utopia values fit with 

the full feasible sampled dataset 𝑫𝒇,𝒌 (denoted by red dot on model 2 regression line in 

fig. 5.4b) and the criterion 2 is to select the model which minimize the predicted error 

𝜉 in fig. 5.4b. The steps to follow for computing criterion 2 are: 

Step 1: Training Data: Same as stated in section 5.5.1. In addition, let 𝑿𝒇 = [𝑹𝒇, 𝑳𝒇, 𝒕𝒇] 

be the feasible unsampled grid matrix for which the objective values are unknown. 

 

Step 2: Estimate utopia with full data:  
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Step 2a. Given 𝑫𝒇,𝒌, fit all the pre-defined regression models to estimate 

objective 𝑖, 𝚳𝒓,𝒊,𝒌, where 𝑟 is the defined regression model number.  

Step 2b. Estimate the objectives and create vectors of 𝝁𝒌̂(𝒀𝒊) for each 

unsampled design 𝑿𝒇, given the regression model 𝚳𝒓,𝒊,𝒌.  

Step 2c. Estimate the utopia of objective 𝑖, as the minimum of vectors 𝝁𝒌̂(𝒀𝒊): 

𝜇𝑘̂(𝑢𝑖) =  min
𝑅𝑓,𝐿𝑓,𝑡𝑓

(𝝁𝒌̂(𝒀𝒊))                                                                                           (5.39) 

Store the estimated utopia 𝜇𝑘̂(𝑢𝑖) and the respective design values, 𝒙𝒇,𝒊,𝒌 ∈ 𝑿𝒇. 

 

Step 3: Conduct Monte-Carlo cross-validation:  

Step 3a. Consider the same training 𝑫𝒇,𝒌
𝑻  subsampled dataset and the fitted 

model 𝚳𝒓,𝒊,𝒌 as in step 2a and 2b, section 5.5.1. 

Step 3b. Estimate the objective or utopia values 𝜇𝑘̂(𝑢𝑖)  for respective input 

design 𝒙𝒇,𝒊,𝒌, given the regression model 𝚳𝒓,𝒊,𝒌.  

Step 3c. Validate the estimated utopia values in 3b with the estimation done 

with full samples in 2c. Thus, calculate squared-error 𝜖2,𝑖,𝑙 to estimate utopia of 

objective 𝑖 and at iteration 𝑙 of the cross-validation. 

𝜖2,𝑖,𝑙 =  (𝜇𝑘̂(𝑢𝑖) − 𝜇𝑘̂(𝑢𝑖))𝟐                                                                                  (5.40) 

Step 3d. Repeat Step 3a. – 3c. for 𝐿 times. In this case study, 𝐿 = 100. 

 

Step 4: Define criterion 2: Calculate root-mean-square of the MC cross-validated 

squared-errors of 𝑖𝑡ℎ objective, 𝝐𝟐,𝒊,.. Thus the criterion 2 at iteration 𝑘 of MO-BO 𝑖𝑡ℎ 

objective can be stated as,  

Ε2,i,k = √𝜇(𝝐𝟐,𝒊,.)                           (5.41) 

Finally, the combined model selection criteria (among 𝑟 models) for 𝑖𝑡ℎ objective to 

estimate utopia in the minimum of the addition of normalized values of eqns. 5.38 and 

5.41 and can be stated as, 

min
𝚳𝒊,𝒌

|Ε1,i,k| + |Ε2,i,k|                                                                                             (5.42) 
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where the optimal estimated solution is 𝜇𝑘̂(𝑢𝑖)𝑜𝑝𝑡 = 𝜇𝑘̂(𝑢𝑖|𝚳𝒊,𝒌,𝒐𝒑𝒕). This value is 

inputed into the weighted Tchebycheff black-box objective function (eqn. 5.9) for MO-

BO model calibration.  

 

5.6. Results 

In this section, we present and discuss the results of comparing the proposed nested 

weighted Tchebycheff MO-BO model with other design architectures at convergence 

with respect to three major performance criteria. Those are as follows: 1) to maximize 

the overall prediction accuracy of utopia values, 2) to minimize the number of 

expensive function evaluations until convergence of MO-BO and 3) to maximize the 

overall accuracy of converged to true Pareto optimal solutions. We consider weighting 

factors on objectives distance and cost functions as 𝒘𝟏 = [0, 0.1, . . ,1] and 𝒘𝟐 = 1 −

𝒘𝟏  respectively. We used the DACE package [117] in MATLAB for the regression 

and surrogate GP models. For fitting other regression models, we have used MATLAB 

built-in functions: fitlm (for fitting MM, MLR, log-MLR and SOP or Quadratic), 

bayeslm (for fitting BMLR) and fitrsvm (for fitting SVMR). The full nested weighted 

Tchebycheff MO-BO model with Expected Improvement type acquisition function has 

been coded in MATLAB 2018 and run in a machine with configuration of Windows 

10, Intel Processor 3.4 GHz and 16 GB RAM.  

5.6.1. Case study 1: Benchmark problem 

Firstly, we have presented the results for the multi-objective benchmark problem as 

referred in eqns. 5.1-5.2. 

5.6.1.1. Discussion on the proportion of models selected by nested MO-BO 
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Figure 5.5. Proportion of regression models selected till nested MOBO convergence 

at various weighting factors for benchmark problem 

 

Figure 5.5 shows the proportion of selecting each of the pre-defined six models for 

model calibration to estimate the model parameters (utopia) for the multi-objective 

optimization of the benchmark problem over all iterations at each weight combinations 

until convergence of the MO-BO. The bottom right figure is the total number of models 

selected across all weight factors of the objectives. To estimate utopia value for both 

objectives eqns. 5.1-5.2, we see the model selection varies among models with 

relatively higher complexities than the other pre-defined models, with high percentage 

for SVMR (Gaussian kernel) and GPM. As we know, both test functions are highly 

non-linear or multi-modal, the algorithm avoided the selection of simpler models; 

however, we do see a small proportion of simple linear models at the early stage of 

iteration. This could be because at the early stage, the data is limited and so the true 

nature of the objectives was not identified, and with sequential sampling of data, the 

MO-BO architecture has been guided to select better regression models as per fig. 5.5.  

 

5.6.1.2. Comparison of different MOBO architectures 
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Architecture*  A B C 

Euclidean norm 

(utopia) 

Mean 18 79.87 33.73 

Std. 16.16 70.69 55.4 

Func. eval. Mean 129 192 118 

Euclidean norm 

(Pareto optimal) 

Mean 20.08 95.91 16.26 

Std. 20.14 40.96 20.88 

Table 5.1: MOBO design architectures performance comparison for benchmark 

problem 

 

Table 5.1 shows the overall quantitative measurement of the performance of different 

MO-BO design architectures across the weighting factors, 𝒘𝟏, in terms of the stated 

performance criteria for the benchmark problem. Figures 5.6-5.8 are the visualization 

of Table 5.1 at each weighting factors, 𝒘𝟏. To achieve performance criteria 1 and 2, 

our objective is to minimize the Euclidean norms of utopia prediction and the Pareto-

optimal solutions from the true values of utopia and the Pareto-optimal at different 

weight parameters, and eventually to minimize the mean Euclidean norms across all 

the weight parameters (Table 5.1). The true maximum values for both objectives of the 

benchmark problem are 162.9 and -0.2501 respectively. The true Pareto-optimal are 

obtained numerically from the exhaustive search using the weighted Tchebycheff 

method, where the true utopia values are known. With minimizing the mean Euclidean 

norms, we have focussed on minimizing the standard deviation of the Euclidean norms 

across different weight parameters. This will ensure that along with the overall minimal 

solution accuracy, the solution is also less variable across the weights or trade-offs 

between objectives.  The architectures are summarized in Table 5.1 below: 

 Architecture A: nested MO-BO with model selection criterion 1. 

 Architecture B: nested MO-BO with model selection criterion 2. 

 Architecture C: nested MO-BO with model selection criteria 1 and 2 (proposed). 
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Figure 5.6. Euclidean norms between 

predicted and true utopia values for 𝑤1 =
[0, 0.1, . . ,1] (benchmark problem) 

 
Figure 5.7. Total MOBO guided func. 

evaluation till convergence for 𝑤1 =
[0, 0.1, . . ,1] (benchmark problem) 

 
Figure 5.8. Euclidean norms between predicted and true Pareto-optimal values for 

𝑤1 = [0, 0.1, . . ,1] (benchmark problem) 

 

5.6.2. Case study 2: Cyclic pressure-temperature loaded thin tube design 

problem 

Now, we have presented the results for the multi-objective thin tube design problem as 

referred in eqns. 5.3-5.8. Like the earlier problem, we have started with investigating 

the proportion of each regression model selection to capture the nature of the objectives 

for estimation of the utopia. 

5.6.2.1. Discussion on the proportion of models selected by nested MO-BO  
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Figure 5.9. Proportion of regression models selected till nested MOBO convergence 

at various weighting factors for thin tube design problem 

 

Figure 5.9 shows the proportion of selecting each of the pre-defined seven models for 

model calibration to estimate the model parameters (utopia) for the multi-objective 

optimization of the thin tube design over all iterations at each weight combinations 

until convergence of the MOBO. To estimate utopia values for objective eqn. 5.3, we 

see that model selection varies among log-MLR, BMLR, SOP and GP with higher 

percentage of log-MLR and SOP. As the weight of objective 1 increases, we see the 

model selection of utopia 1 shifts from log-MLR to SOP, thus trading off towards the 

linear model with higher complexities. Furthermore, we do not see any selection of 

MM, MLR and SVMR (linear kernel). Thus, changing the kernel function affects the 

selection of the SVMR model significantly as now the model is inefficient to capture 

any non-linearity of the objectives. This shows the nature of the objective is not fully 

linear and therefore, relatively simpler linear models considered in this case study are 

not appropriate here. However, we see a small proportion of Bayesian linear regression 

model due to its superiority over its frequentist version as it contains the prior 
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information of the regression coefficients. This result agrees with our linearity 

validation of the objectives when the MO-BO has been calibrated with only MLR 

models where the assumption was not perfectly met. One interesting observation is 

when we optimize with the full preference on objective 1 with 𝒘𝟏𝟏 = 1 (bottom middle 

figure), we see almost the whole proportion shifted to GP model. This is because of the 

special case that the multi-objective acquisition function of the MO-BO framework 

also guides the sampling at the objective 1 utopia region as we are giving importance 

entirely to minimizing objective 1. Thus, eventually with more sequential sampling in 

the utopia region, the architecture is flexible to use the benefit of error dependency of 

a Gaussian process as the prediction error of utopia will be much lower. This is the 

same reason why we see such a high percentage of GPM selection to estimate the utopia 

for objective eqn. 5.4. We started this MO-BO with the sampling done during the pre-

optimization stage in chapter 3 where the objective is to locate the unknown creep-

fatigue failure constraint (eqn. 5.5). This region is at the utopia of objective 2 since the 

minimization of the cost of tube will maximize risk, which eventually converges 

towards the creep-fatigue failure constraint. Thus, the architecture has the flexibility to 

choose regression models for estimation and calibration of the MO-BO based on the 

starting samples, weighting preferences of the multiple objectives and available 

sequential sampling guided by acquisition function. 

5.6.2.2. Comparison of different MOBO architectures 

 

Architecture*  A B C D E 

Euclidean norm 

(utopia) 

Mean 0.1 0.145 0.083 0.103 0.057 

Std. 0.034 0.115 0.047 0.106 0.021 

Func. eval. Mean 492 487 508 596 690 

Euclidean norm 

(Pareto optimal) 

Mean 0.068 0.091 0.07 0.104 0.078 

Std. 0.03 0.033 0.03 0.038 0.039 

Table 5.2: MOBO design architectures performance comparison for thin tube design 

 

Table 5.2 shows the overall quantitative measurement of the performance of different 

MO-BO design architectures across the weighting factors, 𝒘𝟏, in terms of the stated 

performance criteria for the thin tube problem. Figures 5.10-5.12 are the visualization 
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of the performance of different architectures at each weighting factors, 𝒘𝟏. The true 

maximum values for both objectives of the thin tube problem are 0.1764 and 0.3545, 

respectively. Similarly, the true Pareto-optimal solutions are obtained from the 

exhaustive search with true utopia values. Table 5.2 is similar to Table 5.1, but also 

including two existing architectures D and E from chapter 4. Also, the line connecting 

black stars * in figs. 5.10 and 5.12 are the respective MO-BO model performance 

without any calibration or iterative estimation of utopia, considering a fixed value of 

(0, 0): this assumption leads to the worst estimation (as has been addressed in chapter 

4). In this chapter, we are drawing comparisons among the architectures where 

estimation of utopia has been done, but with different procedures. The two existing 

architectures D and E, where utopia estimation is performed, in Table 5.2 are defined 

as below: 

 Architecture A: nested MO-BO with model selection criterion 1. 

 Architecture B: nested MO-BO with model selection criterion 2. 

 Architecture C: nested MO-BO with model selection criteria 1 and 2 (proposed). 

 Architecture D: MO-BO model integrated with only MLR. 

 Architecture E: MO-BO model integrated with only BMLR. 

 

 
Figure 5.10. Euclidean norms between 

predicted and true utopia values for 

𝑤1 = [0, 0.1, . . ,1] (thin tube design) 

 
Figure 5.11. Total MOBO guided func. 

evaluation till convergence for 𝑤1 =
[0, 0.1, . . ,1] (thin tube design) 
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Figure 5.12. Euclidean norms between predicted and true pareto-optimal values for 

𝑤1 = [0, 0.1, . . ,1] (thin tube design) 

 

 

Sensitivity Analysis: Finally, we also investigated with the sensitivity of the 

proportion of training and validation data 𝑝𝑇and 𝑝𝑉 , respectively, as mentioned in the 

algorithm 5.1 and 5.2, in the performance criteria. In doing the sensitivity analysis, we 

considered the proposed design architecture C with three test values of 𝑝𝑇 =

0.5, 0.7, 0.9. Eventually, 𝑝𝑉 = 0.5, 0.3, 0.1, respectively. It is to be noted, all the results 

shown for both case studies considered the setting of 𝑝𝑇 = 0.7 and 𝑝𝑉 = 0.3, thus can 

be considered as default setting in this chapter. We do not consider the case where the 

amount of training data is less than the validation data as this is not generally 

recommended in any model validation approach. Figures 5.13-5.15 and Table 5.3 show 

the performance of architecture C at three different proportional combinations of 

training and validation data in the regression model selection procedure, in terms of the 

three performance criteria. Similar performance results (mean and standard deviation 

values in Table 5.3) show that the proportion of the training and validation data did not 

provide any significant effect to the accuracy of the estimation of the utopia or the 

Pareto-optimal solution accuracy for the thin tube design. Although for most of the 

weight factors the total function evaluations are similar, we see a high increase in total 

function evaluation for the setting of 𝑝𝑇 = 0.5 and 𝑝𝑉 = 0.5 at 𝑤1 = 0.3. This makes 

the mean function evaluation higher than the other two test cases for this particular case 

only.  
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Architecture C 𝑝𝑇: 𝑝𝑉 50:50 70:30 

(default) 

90:10 

Euclidean norm 

(utopia) 

Mean 0.086 0.083 0.085 

Std. 0.047 0.047 0.048 

Func. eval. Mean 545 508 509 

Euclidean norm 

(Pareto optimal) 

Mean 0.07 0.07 0.07 

Std. 0.032 0.03 0.031 

Table 5.3: Sensitivity analysis on proportion of training and validation data at 

regression model selection procedure for design architecture C (proposed) for thin 

tube design 

 

 
Figure 5.13. Euclidean norms between 

predicted and true utopia values for 

proposed architecture C at 𝑤1 =
[0, 0.1, . . ,1] (thin tube design) 

 
Figure 5.14. Total MOBO guided func. 

evaluation till convergence for proposed 

architecture C 𝑤1 = [0, 0.1, . . ,1] (thin 

tube design) 

 
Figure 5.15. Euclidean norms between predicted and true pareto-optimal values for 

proposed architecture C 𝑤1 = [0, 0.1, . . ,1] (thin tube design) 

 

5.6.3. Discussion on the performance of different MOBO architectures for both 

case studies  
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 Case Study 1: Benchmark problem: In analysing the performance of different 

architectures, we can see architecture B performs the worst. This intuitively makes 

sense as the algorithm in 5.2 depends on the assumption of good overall fitting of the 

data by the reference model. As we did not consider the overall minimal error in fitting 

over the entire design space (algorithm in 5.1), the architecture D is prone to select the 

regression models only based on the utopia prediction error, where the error can be 

estimated from inappropriate reference models, thus resulting to an overall lower utopia 

Pareto-optimal solution accuracy. The total expensive function evaluations before 

convergence are also the highest for architecture B. However, the architectures A and 

C have an interesting comparison where we see the best (minimum) mean Euclidean 

norms between the estimated and true utopia across all weight combinations for 

architecture A, but best (minimum) mean function evaluations and mean Euclidean 

norms between the MO-BO converged and true Pareto-optimal solutions across all 

weight combinations for the proposed architecture C. With further investigation of C 

(fig. 5.8), we see high mean Euclidean norm of utopia and the respective standard 

deviation across all weight combinations are due to very high errors for only two weight 

combinations of 𝑤1 = 0.1, 0.2. The accuracy of utopia estimation for other nine weight 

combinations are very minimal. However, with the high error in utopia estimation, the 

final optimal solutions accuracy of C is lower than A for these two weight 

combinations. Breaking down the utopia estimation accuracy (say for 𝑤1 = 0.2), we 

find the absolute errors of utopia 1 from the true utopia for architectures A and C are 

140.1 and 0.08, respectively. The same absolute errors of utopia 2 are 2.37 and 2.42, 

respectively. Thus for 𝑤1 = 0.2, we have much higher preferences on objective eqn.5.2 

than objective eqn. 5.1. Thus, although the Euclidean norm of utopias for C is higher 

than A, it has better estimation of utopia 2 for which the objective is highly preferred 

in the multi-objective optimization. This could be the reason why we see better optimal 

solutions even with overall higher Euclidean norm of utopias from true values, as the 

inaccuracy of utopia estimation is comparatively less penalized for the objectives with 

lower preferences (lower value of weights). We can check this intuitively by putting 
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𝑤1 = 0 in eqn. 5.9, which will have no effect on the optimal solution accuracy with the 

increase of the error in utopia 1 estimation, 𝜇̂(𝑢1).  

Case Study 2: Cyclic pressure-temperature loaded thin tube design: To 

measure the performance from the comparison done based on the three criteria, Table 

5.2 has been converted into scores as per Table 5.4. The score does not only tell the 

rank of the design architectures, but also provides the measure of how close or far way 

the performance of an architecture is from the best among them. It is to be noted we 

calculate the scores only for the mean Euclidean norms, but not for the standard 

deviation of the same.  This is because we give first preference of minimizing the mean 

norms, as the design architecture having lower mean norms and higher standard 

deviations is better than higher mean norms and lower standard deviations. In case we 

have the same mean Euclidean norms for two architectures, the scores for standard 

deviation of the norms comes into play to break the tie.  

 

Architecture A B C D E 

Criteria 1: 

Utopia prediction accuracy 

(Mean Euclidean norm) 

51.1 0 70.5 47.7 100 

Criteria 2: 

Function evaluation 

97.5 100 89.7 46.3 0 

Criteria 3: 

Pareto-optimal solution 

accuracy (Mean Euclidean 

norm) 

100 36.1 94.4 0 72.2 

Total Scores (out of 300) 248.6 136.1 254.6 94 172.2 

Table 5.4: Design architecture performance metric for thin tube design (scores*) 

Note*: Scores are between 0-100 with 100 being the best and is calculated from 

individual rows (1, 3 and 4) of Table 1, following the equation: 

𝑠𝑥 = 100 − (
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
∗ 100) 

 

 From Table 5.4, we can see existing architecture D is among the lower scores in 

every criterion, with an overall worst performance (lowest total score) as the linearity 

assumption was found not to be met.  Architecture E has the best scores in predicting 

utopia (criteria 1); the next best architecture is the proposed architecture C with a score 
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of 70.5.  Architecture A is behind architecture E, with half the performance of the best 

architecture E. In reducing the expensive function evaluation cost (criteria 2), 

architectures A, B and C clearly outperform architectures D and E, which demonstrates 

the value of flexibility in selecting regression models with much faster convergence in 

reaching optimal solutions. Although architecture B has the best scores, the proposed 

architecture C is close in performance. 

With respect to the accuracy of Pareto-optimal solutions (criteria 3), architectures B 

and D lag behind by significant margins. Both of these architectures also had the worst 

scores in predicting the utopia, which intuitively make sense as an incorrect prediction 

of utopia has more likelihood to give incorrect Pareto-optimal solutions. Also, 

architecture B, as in benchmark problem, turned out to be worst among A and C. Thus, 

for both the case studies, we see that although the region of interest is the utopia region, 

providing some priority on overall good fit in the selection criteria of the regression 

model is also necessary. Another interesting comparison between A and C is that 

although the architecture C performance score was much higher in predicting the 

utopia, it attains a slightly lower score in the accuracy of Pareto-optimal solution than 

A. As in the benchmark problem, we did a similar investigation and found the reason 

for this is due to the respective results at 𝑤1 = 0.3 (refer fig. 5.9, 5.11). Thus, in this 

weight combination, higher penalization should be for the error in estimation utopia 2. 

However, we see both architectures have the same absolute error of 0.076. Thus, this 

could be due to another scenario where the utopia prediction is incorrect but along the 

direction of the weight combination as shown in Appendix A.5.2. However, an infinite 

number of such values are possible which is difficult to know, and while incorrect 

utopia predictions may lead to accurate Pareto solutions (by chance), the focus of this 

work is to estimate closer to the true utopia to generalize the design architecture for 

solving any similar problems, not only for this case study. The proposed architecture C 

is the second best in criteria 3 with only slightly behind the best architecture A. Finally, 

we see that the proposed architecture C has not out-performed in any of the 

performance criteria, but has the best all-around performance with the best score of 
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254.6. The next best is architecture A. Comparing the standard deviations, we see the 

same standard deviation for both A and C in the accuracy of Pareto-optimal solutions.  

5.7. Conclusion         

In this chapter, we presented a nested weighted Tchebycheff multi-objective Bayesian 

optimization framework, where the parameter (utopia values) of the acquisition 

function of the weighted Tchebycheff multi-objective function is estimated from 

regression analysis in order to calibrate the MO-BO for better performance. The utopia 

estimation is done from the chosen regression model among different pre-defined 

models with various complexities based on proposed selection criteria. The complete 

model selection procedure is nested with the MO-BO and is formulated to run 

iteratively as part of the model calibration. The results from the case study of cyclic 

pressure-temperature load thin tube design problem with two objectives of minimizing 

risk and cost, show that the introduction of the flexibility in model selection for 

calibration has given a much better all-round performance in better estimation of 

utopia, faster convergence to locate Pareto-optimal solutions and finally better accuracy 

in locating the Pareto-optimal solutions. The proposed nested MO-BO architecture is 

applicable to many black-box multi-objective optimization problems with minimal or 

no increase of model complexities with higher number of multiple objectives; and 

flexibility to define (at the start) or change (in-between iterations of MOBO) to any 

specific number or different families of regression models as necessary, in the 

comparison and selection procedure. Also, we can say that the proportion of training 

data and the validation data in the selection procedure in the proposed architecture is 

not sensitive in the thin tube design and therefore it is appropriate to use a fixed 

proportion, with larger training dataset, during the regression model selection 

procedure at every iteration of the MO-BO. The two selection criteria in choosing the 

regression model for estimation worked efficiently when coupled together in the nested 

MO-BO design architecture. Though considering only selection criteria 1 in the nested 

MO-BO competes well with the same considering both selection criteria, selection 

criteria 2 is still important to consider for this problem as the ultimate goal is focused 

only on efficient prediction of the utopia point.  
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5.7.1.  Limitations and future work 

Based on the analysis from the results discussed in 6.3, the proposed design architecture 

can be improved by investigating the weighting combination between the model 

selection criteria 1 and 2, which will be addressed in the future. The default setting in 

this case study is equal preference, which is not optimal. As we understand from 

comparing architectures A and C in both the case studies, the weighting preference is 

likely to be higher on selection criteria 1. Also, another interesting factor which was 

found during the analysis of the case studies, other than estimation accuracy of utopia 

(considered in this chapter), which effects the Pareto-optimal solution accuracy is the 

dependency of the penalization of optimal solutions accuracy on the weight preferences 

on the multiple objectives. Although the focus of this chapter is on the weighted 

Tchebycheff method, the architecture is applicable to any other global criterion multi-

objective optimization methods where prior knowledge of utopia is required. Finally, 

the full framework will be implemented in the complex high-dimensional design of a 

diffusion bonded heat exchanger. 
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APPENDIX A OF CHAPTER 5 

FIGURES 

A.1. Bree Diagram 

 

 
 

Figure A.5.1. Bree diagram of non-work-hardening material whose yield stress 

remain unchanged by the change in mean temperature [81] 

 

 

  
Figure A.5.2.  (left) incorrect utopia at 𝑢′ lead to incorrect pareto-solutions at 𝐶′ with 

weight preferences between the objectives, 𝒘. (right) incorrect utopia at 𝑢′ along the 

direction of weight preferences between the objectives, 𝒘, still provide true pareto-

solutions at 𝐶. 
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CHAPTER 6 

General Conclusion 

This dissertation is focused on complex design problems, representing towards realism 

in practical engineering design problems, for which many simple design optimization 

architectures are not adequate for finding optimal or efficient designs with high solution 

accuracy. In the early design phase, when the cost is comparatively low, finding true 

efficient designs from a complex architecture is necessary to minimize the likelihood 

of the designers falsely conducting costly experimental analysis or production of bad 

designs. On the other hand, an overly complex design architecture can contain 

excessive redundancy leading to high design cost and complexities. Thus, this work 

shows the development and investigation of different hybrid design optimization 

architectures, demonstrated on two case studies which focus on a global trade-off 

between model accuracy or efficiency vs complexities or cost.  

The work in chapter 2 is of the domain of complex engineered systems, with 

early resilient system design and discontinuous design space (mixed integer problem) 

where the comparison has been made with simple single stage and sequential vs. a 

complex nested bi-level design architecture. The result in chapter 2 shows the bi-level 

architecture has potential to provide a better trade-off between multiple cost objectives 

in the integrated resilience system optimization, ultimately providing the best resilient 

designs. Although the bi-level design has higher model complexities, the results open 

a new direction in solving complex engineering system designs which are subject to 

high risk to failure consequences.  

 The work in chapter 3 is under the domain of complex black-box mechanical 

system design, with discontinuities (also representing here as an unknown constraint) 

due to discrete design domain. To solve this problem, this work starts with an 

artificially created continuous design space, then follows a domain partition approach, 

and a sequential Bayesian optimization (BO) architecture is built on this artificially 

created continuous design space. The architecture, once converged, provides a trained 

posterior surrogate model which is treated as a design classifier in order to partition the 

design space into two continuous design spaces along the discontinuity, also 
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represented here as the design feasibility classifier for the unknown safety measure 

constraint. This research also focused on building the classifier for the case with no 

pre-existing data, where data collection has high evaluation cost due to time, cost, etc. 

The BO architecture has the ability to guide the design sampling for expensive function 

evaluations towards maximum learning of the desired objectives at minimized 

evaluation cost, which other approaches do not exhibit, thereby reducing the overall 

design cost significantly.  

 The work in chapter 4 is extended to black-box optimization problems with 

multiple objectives. By developing a weighted Tchebycheff multi-objective Bayesian 

optimization (MOBO) architecture with a regression-based model calibration 

technique, the architecture does not introduce additional complexities in the 

formulation of acquisition function for a problem with large number of objectives; it 

also increases the solution quality from the iterative prediction of the unknown model 

parameters, such as the utopia values, through regression analysis. 

 Finally, the work in chapter 5 increased the flexibility of the design architecture 

in Chapter 4 by nesting a regression model selection procedure to estimate the utopia 

values, into the weighted Tchebycheff MOBO. The selection procedure handles 

uncertainty, coming from the unknown model parameters, into the MOBO design 

architecture. The results show that this flexibility in the choice of the regression model 

provides a much better estimate of utopia, increases the convergence rate of the MOBO 

model (lesser function evaluations) and ultimately leads to better optimal solutions.  

 Though the work in chapters 3-5 is applied on the complex mechanical system 

design in the domain of material science, it can be extended to any other fields of black-

box design problems. However, for the work in Chapter 3 to other domain of problems, 

a new heuristic is required for transforming the original discontinuous design space to 

the artificially created continuous design space, before the BO is applied. Although the 

work in chapters 3-5 are interconnected, the work in chapter 3 can be considered 

independently. The results from these chapters has the potential to apply into large scale 

problems with the continuation of the research, thus bridging the gap between design 

optimization theory and its practical application.  
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 Finally, we conclude this dissertation by listing the research accomplishments, 

current limitation and future directions.  

 

6.1. Research Accomplishments 

List of research accomplishments in this dissertations are as follow: 

 Developed a nested Bi-level design architecture (in Python) for early integrated 

resilient system design. 

 With an overall analysis and comparison with other simpler architectures, 

successfully showed the benefit of bi-level design in early resilient designs with 

handling different risk-level scenarios (research objective 1). 

 Formulated an objective function to artificially create a continuous design space 

from the original discontinuous design space. 

 Developed a sequential BO architecture (in MATLAB) with the acquisition 

function, formulated from the custom created objective function, guiding the 

sampling for expensive evaluation to learn the unknown discontinuity or safety 

measure constraints.  

 With an overall analysis and comparison with other design classification ML 

approaches, successfully showed the benefit of the BO design in the black-box 

design classification or domain partitioning problem (research objective 2). 

 Created a regression based calibration function (in MATLAB). 

 Formulated the weighted Tchebycheff black-box multi-objective function and 

develop the weighted Tchebycheff MOBO design architecture in MATLAB by 

coupling with a calibration function. 

 With an overall analysis and comparison with the non-calibrated MOBO 

architectures, successfully showed the benefit of the calibration function in MOBO 

in the black-box design optimization problem (research objective 3). 

 Modified the regression based calibration function (fixed model) into a ‘flexible’ 

regression based calibration function with a model selection procedure. 

 Nested the modified function into the existing weighted Tchebycheff MOBO.  
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 With an overall analysis and comparison with the non-flexible weighted 

Tchebycheff MOBO architectures, successfully showed the benefit of the model 

selection procedure in the nested weighted Tchebycheff MOBO architecture, with 

efficient handling of parameter uncertainty in the black-box design optimization 

problem (research objective 4). 

 Finally, in answering research objectives 2, 3 and 4, developed a two-stage BO-

nested weighted Tchebycheff MO-BO design architecture. 

 

6.2. Limitations and Future Work 

The limitations which can be addressed in future are as follows: 

 As the drone resilience problem has relatively small finite solutions in the lower 

level to run an exhaustive search, we could guarantee a global optimal lower level 

solution, which guarantees the optimality of the bi-level problem. However, in 

extending to a large scale problem, this will not be the case due to having very large 

number of lower level solutions. Therefore, an investigation on the appropriate 

choice of optimization algorithm should be addressed in future, depending on the 

problem scale and complexities, in order to guarantee the true convergence of the 

bi-level design. Also, the polishing of the optimal solution of the continuous 

variables should be further investigated with other numerical algorithms.    

 The BO model for the classification problem can be applied to any other field of 

black-box problem having a discontinuous design space, once a heuristic can be 

built to artificially create the continuous design space. As the heuristic changes with 

different domains of problem, we will need further investigation with different 

domain of problems while still following the common approach to tackle the 

discontinuous design space (domain partition technique) by optimizing the location 

of the discontinuity or constraint boundary (example -transition creep-fatigue line). 

Also, the extension of the approach to partition or classify into more than 2 domains 

or classes will be addressed in the future.  

 The nested weighted Tchebycheff MOBO model for the optimization problem is 

applicable to any domain of black-box problems; however, the regression model 
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selection procedure can be improved with future investigation on the optimal 

preference for each selection criteria.   

 Finally, the two stage BO-MOBO model can be considered for future 

implementation to a large scale problem, such as the design problem of 316 

stainless steel diffusion bonded Hybrid Compact Heat Exchangers (H-CHX). 
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