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Chapter 1: Introduction

Modern communication systems often have the ability to transmit signals on multiple

communication mediums (e.g., RF, visible light) or interfaces (e.g., MAC layer protocols)

at the same time. Even in the same medium, it is very likely that a single transmitter has

access to multiple frequency bands using technologies like Orthogonal frequency-division

multiplexing (OFDM) or Multiple-Input Multiple-Output (MIMO) [33] [20]. As a result,

a centralized controller can choose single medium or multiple mediums simultaneously

to transmit the signals on. However, there has not been much literature on the optimal

strategies that utilize the multi-medium in a resource efficient way while maximizing

users’ experiences. In this thesis, we present a scheduling framework to optimize the

resource allocation for a multi-channel system on the background of several application

scenarios.

1.1 Multi-channel model and smart scheduler

Communication and networking technologies have advanced tremendously over the past

several decades. Notably, the original ”end-to-end” argument [48] for designing ”dumb”

and ”fast” physical and link layer devices (e.g., routers and switches) are now less ap-

plicable with the declining cost of silicon. In fact, the trend in recent years has been

to design fast and sophisticated hardware to efficiently support various networking ab-

stractions for many emerging networking technologies such as network virtualization and

Software Defined Network (SDN) [49]. For example, SDN with OpenFlow allows for fast
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construction of logical networks that are decoupled from physical networks, to provide

many benefits such as network isolation, flexible routing, workload orchestration, or ap-

plication specific Quality of Service (QoS). To provide all of these benefits, sophisticated

software and hardware and the information across various OSI layers must be optimized

jointly. In this thesis, we generalize the diversity available to an end transmitter as ”ab-

stract channels”. The abstracted diversities could be spatial, frequency, link, or protocol

diversity. The spatial diversity may include the different paths of an end-to-end transmis-

sion; the frequency diversity may include different RF bands or/and optical frequencies;

the link diversity may include difference network interfaces like WiFi or Ethernet; the

protocol diversity may include the different transmission protocols for each link. Over-

all, in the proposed framework, any abstracted channel can be parameterized by a set of

environmental variables, which are typically related to the packet delivery rate (PDR),

power consumption or security grades. And those environmental parameters will be fed

to a software-controlled smart scheduler, which is an important component of the vir-

tualization technologies. Typically, a smart scheduler is connected to a high-speed data

source, and has access to control the data delivery of the multi-channel communication

system. According to a policy, the smart scheduler will be able to determine which ab-

stract channel should be used at which time slot in order to achieve QoS requirements

for various applications under resource constraints. The policy is determined based on

the environmental parameters of the available abstract channels, and the specific QoS

requirements as well. Note that:

• The QoS requirements can be user specific, or centralized as an overall optimization

objective;

• The policy can be deterministic, or randomized to achieve some stochastic perfor-
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mance requirements;

• The policy can be static to simplify the allocation process, or dynamic to have the

ability to adapt to the change of abstract channels;

• The policy can be determined with all prior available knowledge of the multi-

channel model, or learned gradually during the transmission process.

For example, in a typical indoor wireless communication usage scenario, the smart sched-

uler can be implemented as a router/access point(AP). It is connected to a fast Internet

backbone, and provides internet access to multiple users with different applications. The

channel characteristics for each user can be very different, and may be rapidly changing

as well. As a result, the access point should take advantage multi-channel availability,

and schedule the transmission accordingly. A smart scheduler should be able to gather

information of all users’, including channel condition (SNR), incoming traffic pattern,

current backlogging length and so on. Based on those information, instead of using a

fixed transmission schedule, the scheduler should be adjusting transmission schedules in

real time to satisfy all application’s requirements.

1.2 Application problems for study

Next, we will briefly introduce three application problems that the proposed framework

will be applied to:

1. Smart scheduler for WiFi-FSO hybrid indoor communication femtocell (WiFO):

In this problem, we propose a smart scheduler that utilizes the channel options to

maximize the QoS for each users in a WiFO femtocell system. The WiFO system

aims to overcome the WiFi capacity overload problem by (1) enhancing wireless
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capacity using the complement free-space optics (FSO) technology which does not

interfere with WiFi transmissions; (2) providing larger per user bandwidth; (3)

providing mobility via a novel architecture that enables wireless devices to seam-

lessly receives data simultaneously from FSO and WiFi channels. The WiFi and

FSO channels are abstracted as channels with different throughput, packet deliv-

ery rate and power consumption. Since when a specific user moves among optical

and RF transmitters will result significant changes of all those parameters, we ap-

proach this problem as a dynamic decision-making problem. A dynamic decision-

making problem utilizes the observable state at each time slot, and tries to find

the time/state-varying optimized action based on certain observation at certain

time slot. We model this problem as a Markov decision process (MDP) problem.

We try to find an optimized policy, i.e., a mapping between all possible observable

states of the abstract channels and a scheduling decision. If the smart scheduler

follows this policy for long enough, the QoS requirement of all applications will be

satisfied to the maximized extent. While most existing algorithms solving MDP

problem are model-based, in Chapter 2 we propose a online learning algorithm

that is model free and applicable to large scale problems. A smart scheduler will

be able to learn a dynamic policy by observing the current state and the outcome

of a certain action. The performance and robustness of this online unsupervised

learning algorithm is shown in simulation result. Due to the generalization, this

learning algorithm can also be applied to other last-mile indoor packet delivery

systems.

2. Smart scheduler for mitigating SATCOM eavesdropping and fading

A number of hurdles must be overcome before a high bandwidth and low-latency
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SATCOM Internet can be realized. SATCOM links are inherently broadcast, and

hence is susceptible to jamming [12, 34, 31, 54] and eavesdropping attacks [11, 21].

They are less reliable as compared to fiber optic lines, due to severe fading caused

by unexpected clouds, rains, and electrical storms. The eavesdropping and fading

problem is addressed in Chapter 3. In this problem, the abstract channels are the

diversities of space and frequency of the satellite communication paths. We propose

a novel multi-user transmission scheduler that aims to alleviate these challenges

via time and channel diversity. In particular, the proposed scheduler is a low

complexity randomized algorithm that multiplexes user data over multiple channels

and time slots to combat eavesdropping, and environmental fading while satisfying

the requested throughput of individual users with high probability. Analysis and

simulation results demonstrate effectiveness of the proposed scheduler. We assume

the abstract channel parameters are available at the smart scheduler, and intended

to find a schedule to maximize the security of the transmission in one shot. We

formulate the problem as convex an optimization problems with the background

of information theory. Generally speaking, we make the usage of multiple channels

as even as possible by maximizing the entropy function, so that an eavesdropping

attacker cannot focus its power/time on a specific channel. The convexity of the

problem is proved and the algorithm to solve them as convex optimization problems

are well established. We also provide analytical bound of the optimality results.

3. Smart scheduler for mitigating frequency hopping (FH) jamming attack

Jamming attack is anther possible threat to a secure SATCOM network. By trans-

mitting high-power noise at the communication channel, a jammer can severely

degrade the channel’s SNR thus negatively impact the QoS. In Chapter 4, we an-
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alyze one of the most common techniques to mitigate jamming, that is, frequency

hopping (FH). In this problem, the abstract channels are the physical channels

used for FH with different carrier frequencies. We analyze the behavior of the

transmission scheduler in a game theory perspective, assuming that both the jam-

ming attacker and defender acting optimally. Importantly, we present some closed

forms of the Nash Equilibrium (NE) solutions, and analyze several scenarios with

different information available for the attacker.

Note that although in this thesis we focus our discussion on the scenarios above,

the application of the presented framework is not limited to them. For example, recent

literature on channel bonding use a similar idea where a high level connection such as

TCP can be bonded simultaneously to many underlying physical interfaces such as WiFi

or Ethernet. Thus, our proposed framework can be used in these settings as well.
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Chapter 2: Application I: Packet scheduling with WiFO hybrid

communication femtocell

2.1 Description

Over the past several years, WiFi has become an indispensable wireless access technol-

ogy. However, its limited wireless capacity is increasingly becoming a critical issue with

an increase in network access from smart phones and tablets. For example, consider

the popular WiFi system 802.11g which has a theoretical maximum rate of 54 Mbps.

However, typical WiFi networks operate at only a fraction of the maximum capacity,

e.g., 15-20 Mbps due to a number of factors such as the MAC protocol overhead and the

distances between the wireless devices and the access point (AP). A simple calculation

shows that such limited wireless capacities fail to provide adequate bandwidth for many

scenarios. For example, consider a typical conference venue consisting of 40 attendees

in a room or hotel lobby. With so many people in a small area, the overall bandwidth

for 802.11g including the MAC protocol overhead is only a few megabits, e.g., 10 Mbps.

Thus, each user will have an average of 250kbps which is unacceptable for video stream-

ing applications. Another example is the boarding area in an airport terminal where

the current WiFi networks fail to provide adequate Internet access when there are many

passengers.

We focus on improving the downlink bandwidth of the current WiFi systems in which,

data is transmitted from the Internet to the mobile devices via the AP. This scenario
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is the common scenario that causes the bandwidth overload in WiFi networks since the

downlink traffic is often orders of magnitude larger than that of uplink traffic. That

said, the uplink scenarios where the wireless devices send data to the Internet, can be

handled using the existing WiFi mechanisms without the assisted FSO transmissions.

In most scenarios, users are often stationary, e.g., sitting on terminal benches at

airports or lounges in hotel lobbies. As such, a network of LEDs with the high-speed

Ethernet infrastructure can be deployed directly above the appropriate spots to provide

local high rate FSO transmissions, in addition to the WiFi transmission. The current

FSO technologies are inexpensive with the transmitters and receivers using LEDs and

silicon photodiodes (PDs) that cost less than $20. In addition, they operate around

20mW with good SNR and well within the eye safety (850nm). Importantly, FSO can

provide 50 Mbps for typical transmission range (3 to 5 meters), without interfering

with the WiFi transmissions. This implies that a 10 Gigabit backbone Ethernet can

theoretically modulate 200 LEDs at 50 Mbps each. Following are some salient features

of the proposed WiFO systems.

Closed-Loop Architecture. Fig. 2.1 shows the architecture of the proposed WiFO

system for the downlink scenarios. All the data from the Internet to the devices in a

WiFi network is first traversed through the AP. For an IP packet of a given flow, the AP

will decide whether to send the data on the WiFi or FSO channels. If it decides to send

the data on the FSO channel for a particular device or user, the data will be encoded

appropriately, and broadcast on the Gigabit Ethernet network with the appropriate

information to allow the right FSO transmitter to receive the data. Upon receiving

the data, the transmitter relays the data to the intended device below it. If the AP

decides to send the data on the WiFi channel, then it just directly broadcast the data

through the usual WiFi protocol. Upon receiving the data from the FSO channel, the
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Figure 2.1: WiFO architecture

receiver decodes the data, and sends a feedback/ACK to the AP via the WiFi channel,

completing a closed-loop transmission.

AP-centric Design. The AP will handle all the sophisticated functions, e.g., which

channels to send the data on, how to encode the data, as well as setting the FSO

and WiFi transmission parameters. Such an architecture will allow better overall perfor-

mance through the joint optimization of multiple flows while keeping the wireless devices

simple. Specifically, the AP-centric architecture is designed based on the cross-layer op-

timization approach with minimal modifications to the existing WiFi mechanisms. An

important consequence of this design is that all existing applications are agnostic to the

implementations of the lower OSI layers, and thus they will operate seamlessly in the

WiFO system.

Channel Feedback. Feedback channel is critical to the WiFO’s bandwidth and

mobility. Unfortunately, sending the feedback from a receiver via the FSO channel

is problematic due to difficult deployment and interferences with the forward channel.

Therefore, we employ a novel feedback scheme that uses WiFi transmissions to report
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the channel conditions on the FSO channel (see Fig. 2.1). Specifically, the WiFO system

implements a control channel that is used for sending periodic SNR feedback, as well

as the ACK messages for the FSO transmissions, from a mobile device to the AP using

high-priority WiFi control channels.

Mobility. In the existing WiFi infrastructure, at any moment, a mobile device is

associated with an AP via a beacon signal. As a mobile device moves from the coverage

of one AP into another, its association changes to the new AP with higher SNR level.

Similarly, the WiFO system provides mobility as a user moves from one light cone to

another.

Cross Layer Optimization. Given the current conditions of the FSO and WiFi

channels, the performance of the WiFO system depends on the joint optimization that

produces optimal system parameters and policies. The main challenge is how to allo-

cate the transmission rates to FSO and WiFi channels optimally. This rate allocation

problem directly dictates the designs of various algorithmic components and parameters

in the WiFO system. Specifically, at the physical layer, the choices of the modulation

schemes, channel coding, and transmission power levels must be jointly optimized for

both WiFi and FSO channels. At the link layer, packet scheduling policy is to allocate

packets appropriately to FSO or WiFi queues, effectively performing rate allocation over

the two channels. Here, we take a more general way to model this problem mathemati-

cally. The WiFi/FSO channels are generalized as channels with different parameterized

characteristics,and multiple users are generalized as applications with different incoming

data throughput and quality of service (QoS) requirements. Depend on the location

and mobility of users, channel characteristic and application QoS can vary. All kinds of

this information are available are the centralized AP, and a smart AP should constantly

examining the network environment and make dynamic decisions to allocation channel
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resources. Now, we present a MDP based mathematical framework that takes the ad-

vantage of multiple channels and can deal with changing network environment in large

scale.

2.2 Related works

There is rich literature on resource and scheduling algorithms. In particular, the packet

scheduler problem can be formulated as a Markov Decision Process (MDP) problem

[44]. An MDP problem is well studied as a stochastic dynamic programming problem

with many algorithmic solutions such as Backward Induction and Value Iteration or

Policy Iteration. MDP solutions are purely model based. That is, given a state s and

action a, the precise model of the transition probability T (s, a, s′) and the instant reward

r(s, a) must be provided to the algorithm which this approach less useful in the real world

scenarios where models cannot be accurately determined. A more popular approach is to

online Reinforcement Learning (RL). One popular algorithm is the Q-learning algorithm

[35] to be described shortly. Using the Q-learning algorithm, an RL agent learns an

optimal state-action pair by interacting with real environment without any modeling

knowledge. At each time step the learning agent examines the current state s and

takes action a that maximizes Q(s, a). This mechanism makes it easy to implement an

online learning algorithm that gradually improves the agent’s performance. As a result,

RL has been applied to network/communication control optimization. For example,

routing scheme in [22] employed multi-agent RL to improve delivery time and avoid

congestion. And in [42], the scheduling-admission problem of time varying channels

is formulated as a constrained MDP, then an improved online learning algorithm was

shown to outperform traditional Q-learning. While RL has been widely applied, many
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challenges (to be described shortly) need to be further studied to make the RL algorithms

useful for real-world problems with large state space and fast changing environment. In

particular, the combination of RL and deep learning utilizes neural network as a non-

linear function approximator, and make it possible for the learning agent to deal with

complicated Q functions and enormous size of state spaces. For example, in [37][36],

convolutional neural network (CNN) were used to train a learning agent to play multiple

Atari games. With no prior knowledge of the game, an agent is learned to perform equally

or better than human, based only on the screen images. The well known Alpha Go [50]

further confirm the possibility of applying RL on problems of very large size. Similarly,

we propose a DQ framework for designing packet schedulers that utilizes benefits of both

deep learning architecture and Q-Learning.

2.3 Mathematical model of the problem

2.3.1 Problem model overview

Based on the WiFO system, or any other indoor packet delivery system that has multiple

channel access, we now present the mathematical model of the channel scheduling prob-

lem as an MDP. We look into several algorithms, apply those to this specific problem

and analyze the results. From now on, we treat the network controller/scheduler/AP as

a learning agent, and those terms are used interchangeably.

We assume there are several users running total of N applications with different

QoS requirements (e.g., data rate, packet loss rate and delay). The links between each

user and the AP are characterized by different channel conditions. Due to the limita-

tion of processing power and channel capacity available for the AP, it can only serve
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limited number of users/applications in a fixed amount of time. The goal of the AP is

to dynamically allocate its resources to satisfy all users QoS requirements. Since the

network conditions can change quickly, the AP’s resource allocation policy should adapt

to the new network conditions timely. Fig. 2.2 shows the components involving the AP’s

operations.

1. External environment: The environment is modeled as a black box to the AP.

The parameters of environment can be the channel quality, data rates, movement

speed and direction of each user, and the like. The AP can only infer the external

environment by interacting with it and observing the outputs, in RL terminology,

the immediate rewards.

2. Observable states: The observable state is the internal states of the AP that can

be observed and used to infer about the environment and make a good decision.

States can be pending packets to be transmitted, current packet loss count, and

the like.

3. Resources: Example of resources are computational power or total bandwidth.

4. QoS requirements: Examples of QoS are minimum bandwidth or maximum delay

requested by an application. The AP needs to find the policy that satisfies those

requirement.

5. Policy: A policy is a mapping between the observable states and an action such

at sending a packet from a particular application given the current backlogs of all

other applications.

By observing the states and actions, together with the corresponding rewards over time,

the goal of the smart AP is to learn a policy that optimally allocates its resources while
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satisfying the user’s QoS requirements.

Figure 2.2: Problem framework

We now focus on the particular problem of designing a packet scheduler to provide

QoS for different applications. A packet scheduler uses multiple queues for different ap-

plications as shown in Fig. 2.3. The en-queue and de-queue rates control the data rates,

delay, and packet loss rates of the applications. Assuming that each user/application is

associated with a buffer of length Li, i = 0, 1, ..., N − 1. Time is discretized into small

time slots T0. To simplify the analysis, in a single time slot, we assume the AP will take

one action to transmit first, then new packet arrives.

Departure of a packet: At the beginning of each time slot, the AP observes the current

network state, and decides which packet from the queues (applications) to serve, i.e., de-

queue a packet from a queue and transmits. Depend on the QoS requirements, the AP

can also do nothing if necessary (e.g., to save energy). The channel associated to each
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application is modeled as the packet delivery rate (PDR), denoted as qi, i = 0, 1, ..., N−1.

If a transmission attempt fails, the transmitted packet has to be put back in the queue

for re-transmission.

Arrival of a packet: At each time slot, a packet might arrive, and it will be added to

the end of the appropriate queue. The probability of a packet arrival for each application

is denoted as pi, i = 0, 1, ..., N − 1. If the time slot length T0 is small enough, the arrival

model is approximately Poisson, and pi can be found by the average throughput of an

application. Specifically, if on average application i requires incoming data throughput

of m bytes/s, and each packet has K bytes, then pi can be found by:

pi =
mT0
K

. (2.1)

After a packet arrives, if its destination queue/buffer is full, the packet is dropped. The

packet scheduler is trained to minimize a certain objective such as the probability of

a packet drop due to full queue as a result of channel conditions. In this paper, the

target of a smart packet scheduler is to find a policy that minimizes the packet loss

rates. We note that the AP can only observe the current backlog length of each queue

(applications) at the beginning of a time slot. The environmental parameters pi and qi

are not available.

2.3.2 Markov Decision Problem

Now we model our problem as an MDP problem based on the background knowledge

introduced in Chapter 1, as follows: States: At a time slot t, the observable state is an
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Figure 2.3: Application flows are modeled as queues

N tuple, denoting the backlog length of each application.

st = (lt0, l
t
1, ..., l

t
N−1), (2.2)

where lti is the backlog length of application i at time slot t.

Actions: For the simplicity, we assume only deterministic policy. That is to say, at

each time slot, the agent decides to send one packet for one of the applications, or not

to send at all, with probability of 1. The total number of possible action is N + 1. The

action at time t, at, is determined by the policy. After an action is taken, the agent

interact with the environment and observe the state of next time slot, st+1.

Instant Rewards: Given st, at, st+1, the AP will observe the instant reward Rt, which

is the sum of instant rewards from all applications:

Rt =

N−1∑
i=0

ri(s
t, at, st+1). (2.3)

For each application, its QoS requirements can be modeled by choosing an appropriate

ri(·). For this paper, as an example, we consider the packet loss due to a full backlog
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buffer, so a negative constant Ci is assigned to each application as a penalty of packet

loss, that is:

ri(s, a, s
′) =


Ci, if a packet is lost.

0, elsewise.

Remark 1. By changing Ci for each application, the controller is able to distribute

the network resources unevenly to some of the applications. Thus, the priority for each

application can be manually set by the assignment of Ci. A larger Ci means smaller

penalty, indicating the corresponding application has higher priority when network is

congested. Speaking in a more generalized way, a typical ri(·) can be a function that

is non-increasing in backlog length, packet drop rate, power consumption of each trans-

mission, and so on. It should also be a function that is non-decreasing in packet delivery

and so on. One application can submit custom-designed ri(·) to describe its specific QoS

requirement.

Transition probability: The transition probability, p(s′|s, a), is not available to the

learning agent due to the unknown arrival probabilities pi and qi. But still, at each time

slot, given the action taken and packet arrival probability, the transition probability from

lt0, l
t
1, ..., l

t
N−1 to lt+1

0 , lt+1
1 , ..., lt+1

N−1 can be uniquely determined.

Optimal policy: The optimal policy is a policy that maximizes the estimated dis-

counted reward, that is, a mapping π∗(s→ a) such that the total discount reward:

Rtotal = E[
∑
t

βtRt], (2.4)

is maximized. β is a discount parameter between 0 and 1. Given the definition of instant
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reward, the maximization of total discounted reward can results a policy that has a spe-

cific long-term optimized performance (minimized delay, minimized power consumption,

maximized throughput or even the combinations of a few). Since the instant reward is

the penalty of packet loss. Maximizing Rtotal will minimize the expectation of packet

loss.

2.4 Approaches

Given the environment model, this problem can be solved in several ways, depending on

the availability of information and the size of the problem. To be exact, the well-known

algorithms such as the value iteration (VI) can be used if all the model parameters

are known. Model-free online learning algorithms such as the Q-learning algorithm can

solve the problem at a smaller scale. To that end, we also present a neural network based

Q-learning algorithm that can be applied to large size problem.

2.4.1 Model-based approach

For the model-based approach, we assume that the transition probability T (s, a, s′) and

instant reward function r(s, a) are both instantly available to the agent. In an infinite

discounted reward problem, given a policy π, the value of a state s, Vπ(s) is defined as:

Vπ(s) = Eπ,T [
∞∑
i=0

βir(si, π(si))], (2.5)

in which β is a discount factor between 0 and 1, si is the state after i steps, and r(si, π(si))

is the instant reward at si and taking action according to policy π. Vπ(s) can be found
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by solving the following Bellman equation:

Vπ(s) = r(s, π(s)) +
∑
s′∈S

T (s, π(s), s′)Vπ(s′). (2.6)

Bellman equation can be solved by stochastic dynamic programming with arbitrary

initial value of V (s) for any s. The value iteration algorithm is as follows:

Algorithm 1 Value Iteration

1: Randomly initialize V (s) for all s ∈ S (Usually all 0)
2: while |V (s)− Vprev(s)| > ε do
3: for s in S do
4: Vprev(s) = V (s);
5: V (s) = maxa∈A(r(s, a) +

∑
s′∈S T (s, a, s′)Vprev(s

′));
6: end for
7: end while

V (s) converges to the solution for Bellman Equation according to [44]. After a ε-

optimal V (s) is found, the policy is:

π(s) = argmaxa∈A(r(s, a) +
∑
s′∈S

T (s, a, s′)Vprev(s
′)). (2.7)

Remark 2. Value iteration algorithm is not applicable for implementing a real network

controller as the model parameters are often not timely available. Instead, the VI algo-

rithm is applied to small problems to find the true value of each state and we use them

to verify the correctness of other algorithms.
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2.4.2 Q-learning with noisy temporal differential updates

The learning agent tries to learn the optimal policy by interact with the environment

without knowing the actual system model, i.e., the transition probability and instant

reward as a function of current state s, action a and next state s′. Similar to value iter-

ation, one way to find the estimated value of V (s) is by performing temporal differential

updates as follows:

V (s)← V (s) + α(r(s, a) + V (s′)− V (s)), (2.8)

or equivalently:

V (s)← (1− α)V (s) + α(r(s, a) + V (s′)). (2.9)

In fact, temporal differential updates is a noisy version of value iteration. It replaces the

reward expectation term in Eq. 2.6,
∑

s′∈S T (s, a, s′)Vprev(s
′), with a sampled version

with the action a.

At any state s, the action a is chosen by the following exploration/exploit policy:

a =


argmaxa∈A(r(s, a) +

∑
s′∈S T (s, a, s′)V (s′)), w.p. ε,

randomly chosen from action space A, w.p. 1− ε.
(2.10)

After finding a, Eq. 2.8 is used to update the value of current state s. It is obvious

that temporal differential update of the value function still needs a model to perform.

Usually, this model can be acquired by estimating the transition probability from the

agents’ decision trajectory at a cost of time and space complexity. Instead, a model-free
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learning agent can use temporal differential to update the Q value:

Q(s, a) = Q(s, a) + α(r(s, a) +max′aQ(s′, a′)−Q(s, a)). (2.11)

At any state s, given the current Q(s, a) mapping, use the following exploration/exploit

policy without any knowledge of the model:

a =


argmaxa∈AQ(s, a), w.p. ε,

randomly chosen from action space A, w.p. 1− ε.
(2.12)

The pseudo code for the Q-learning algorithm is shown below:

Algorithm 2 Q-learning by temporal differential updates

Randomly initialize Q(s, a) for all s ∈ S and a ∈ A (Usually all 0);
Set agent at initial state s;
while |Q(s, a)−Qprev(s, a)| > ε do

Agent takes action a by Eq. 2.12;
Observe next state s′, instant reward r;
Update Q value: Q(s, a) = Qprev(s, a) + α(r +max′aQ(s′, a′)−Qprev(s, a));
s = s′;

end while

To make sure the Q-learning algorithm converge(w.p.1), the learning rate α should

satisfy [35]:

∞∑
n=0

αn =∞, (2.13)

∞∑
n=0

α2
n <∞, (2.14)

where αn is the learning rate at iteration n. A commonly used learning rate is α = k
k+n ,
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where k is a positive number that can be tuned for convergence speed.

2.4.3 Q-learning with function approximation

In this specific problem setting, the state and action space can get very large. For ex-

ample, 10 users with maximum queue length of 20 will result 2010 states. With limited

computation resources at the AP, it is not realistic to store a huge table for all (s, a)

pairs and to visit all (s, a) pairs. Instead, a practical approach is to use function approx-

imation which extracts a feature vector φ(s, a) from s, and the real Q(s, a) table can be

approximated by a function F (·):

Q̂(s, a) = F (φ(s, a)). (2.15)

If F (·) is convex and can be parameterized by a vector θ, the optimal Q̂(s, a) can be

found by minimizing the square error loss function:

||Q̂(s, a)−Q(s, a)||2, (2.16)

using a gradient method over θ. Since the true value of Q(s, a) in Eq. 2.16 is not

immediately available during online training, we use a sampled version to replace Q(s, a):

Qsample(s, a) = r(s, a) + βmaxa′Q̂(s′, a′). (2.17)

Thus, the stochastic gradient update rule for θ will be:

θ ← θ + α(r(s, a) +maxa′Q̂(s′, a′|θ)− Q̂(s, a|θ))∇θQ̂(s, a|θ). (2.18)
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The simplest approximator is the linear combination of φ(s, a) and θ:

Q̂(s, a) =
∑
n

φn(s, a)θn, (2.19)

in which n is the dimension of the feature vector. The performance of linear approximator

is acceptable in small size problem. Fig. 2.4 shows the experimental result of a small

problem with 2 applications (A and B) and 3 available actions (send A, send B, send

nothing). The true value of a state when A has 2 packets and B has 3 packets is calculated

by value iteration. It is compared to the result of classic Q-learning and the result of

linear function approximator. It shows that the approximated Q value is close to the

truth but with some approximation error. While in a problem with such small size this

error may not be critical, linear approximator is not suitable for problems with larger

size.
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2.4.4 Non-linear function approximation with neural network (NN)

In this section, we describe a non-linear function approximator based on the DQN frame-

work introduced in [37]. Due to the large number of states, we use a neural network

with multiple hidden layers to approximate the Q(s, a).

2.4.4.1 Features and NN model

We model this problem as a regression problem. Instead of extracting the feature from

(s, a) pair, only the state is used to generate the input feature. The output layer of the

NN contains N + 1 neurons and each of them is associate with an action, as shown in

Fig. 2.5. By doing this, we take advantage of the smaller action space size (number of

applications, usually way less than the number of states), so we can obtain Q̂(s, a) values

for all actions and find the best action in just one pass of forward propagation.

Figure 2.5: An example of the NN model

The input feature vector is the vector presentation of the current backlog lengths of

all applications at the beginning of each epoch. The backlog lengths are normalized over

the queue size such that 0 ≤ φi(s) ≤ 1:

φ(s) = [l0/L0, l1/L1, ..., lN−1/LN−1]. (2.20)
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2.4.4.2 Experienced replay

Since for the most of the time, the action is taken by choosing a corresponding to the

maximum output of the NN, a slight change of NN parameters may cause a total different

policy and alters the learning trajectory. As a result, updating the NN parameters just

by one sampled Q(s, a) is very risky and may result in very unstable performance.

To counter this effect, we employ experienced replay [36][37] that uses a memory pool

to memorize the newest M transitions. At the beginning of each time slot, the agent

takes action based on the output of the NN, and the whole transitions (s, a, s′, r) are

recorded in the memory pool. The oldest transition is deleted if the pool size is larger

than M . Then, a mini-batch is randomly chosen from the pool to perform a gradient

descent updates of the NN parameters θ, rather than using just one sampled Q(s, a).

2.4.4.3 Loss function

Similar to the linear case, Qsample(s, a) is used to estimate the true value of Q(s, a), as

in Eq. 2.17. Then stochastic gradient descent method is used to to carry out one step

of update to minimize the mean square error:

fc =
||Qsample(s, a)− Q̂(s, a)||2

size of mini-batch
. (2.21)

2.4.4.4 Delayed update of target NN

Note that in Eq. 2.17, we still need one pass of forward propagation of the NN to find the

Q̂(s′, a′). When the NN parameters are updated, the sample itself changes too. In the

meantime, with one update with SGD in Eq. 2.18, only one biased sample of transition
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based on current θ(one mini-batch if using experienced replay) is used to update the

whole neural network, which will approximate the value of millions of Q(s, a) in the

future steps. This update can be very inaccurate and may negatively impact the future

learning trajectory. To further improve the stability of the algorithm, an extra target NN

is introduced. The decision NN is used to find the current best action, and is updated

by the mini-batch every time slot. The target NN is used to find the Qsample(s, a). The

target NN is only updated every Ttarget time slots by copying the current decision NN

to it. Thus, the target NN is updated with all transactions (or multiple mini-batches)

that are sampled during Ttarget time. For most of the time, the decision NN is optimized

towards a ”fixed target” instead of a target that keeps changing. If the decision NN and

target NN are denoted as θ and θ′, the new update rule is:

θ ← θ + α(r(s, a) +maxa′Q̂(s′, a′|θ′)− Q̂(s, a|θ))∇θQ̂(s, a|θ). (2.22)

2.4.4.5 Learning procedure

The complete learning algorithm is shown in Fig. 2.6 and Algorithm 3.

• Decision Phase: At the beginning of each time slot, the agent observes the state

and feeds the input feature vector into the decision NN. Based on the output, the

agent either does random exploration, or takes the action a associated with the

maximum NN output. At the end of the time slot, the agent observes the state s′

and instant reward r, records the transition (s, a, s′, r) in the memory.

• Learning Phase: A mini-batch is randomly chosen from the memory and is used to

update the decision NN’s parameters by the stochastic gradient descent algorithm.
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If the number of time slots is a multiple of Ttarget, then copy the decision NN to

the target NN.

Figure 2.6: Graph of FC-NN approximation algorithm

2.4.4.6 Improvement of Stochastic Gradient Method (SGM)

We use ADAM optimizer [24] as a replacement of SGM for better convergence speed. An

ADAM optimizer is a combination of gradient with momentum and RMSprop. It shows

better convergence performance in many other deep reinforcement learning algorithms

[4][14]. ADAM’s performance in this problem is evaluated in Section 2.5.

2.5 Results

In this section, we show the performance evaluation of the presented learning algorithm.

We assume the AP has a total capacity of 12 Gbps for all the users. While most commonly

used wireless routers have smaller capacity, AP with larger capacity is expected in the

future. Thus, if a packet has a fixed size of 1500 bytes, the time slot length will be 1 µs.
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Algorithm 3 Non-linear Q function approximation

-Random initialize decision NN parameters θ;
-Set the target NN parameters θ′ = θ;
for i in [0,max number of epochs] do

-Random initialize backlog lengths for all buffers: (l0, l1, ..., lN−1);
for j in [0,max number of transitions] do

-Find feature vector φ(s);
-i = random([0, 1]):
if i < ε then
a = random([a0, a1, ...aN−1]) ;

else
a = argmaxaQ̂(s, a|θ);

end if
-Take action a, observe r, s′ and add (s, a, r, s′) to history pool;
-Randomly sample a mini-batch from history pool;
-Find Qsample(s, a|θ′) = r +max′aQ̂(s′, a′|θ′) with target NN;
-Find Q(s, a|θ) with decision NN;
-update θ by Eq. 2.22;

end for
-Update target NN: θ′ = θ.

end for

Based on this, application’s incoming data rate can be translated to arrival probability

by Eq. 2.1. A scenario with 10 applications is simulated using various channel conditions

and traffic patterns. Hyperparameters of the NN are shown in Table 2.1.

First, the applications are associated with a randomly generated pi and qi for i =

0, 1, ..., 9 to model network conditions and data rates. We also make
∑

i pi close to the

mean of qi so the total incoming data rate is close to AP’s total channel capacity. Thus,

the algorithm is running on a slightly congested environment.

Fig. 2.7 shows the convergence curve of the total discounted reward in each epoch,

up to 5000 epochs (equivalent to 5 seconds in real time). The plain SGD is very noisy

especially at the beginning since most of the states are not visited. Due to a fixed

learning rate, the total discounted rate converges very slowly when compared to others.
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Table 2.1: Hyperparameters of the neural network

Hidden layers 64× 32

Mini-batch size 64

History pool size 100000

Parameter initializer Xavier initializer

Delayed update frequency Ttarget 10000T0

Learning rate α 0.0001

Discount rate β 0.9999

The ADAM optimizer converges with a constant step size converges faster, however

it diverges from the optimal soon after reaching the optimal due to its instability. A

carefully chosen shrinking step-size can deal with the instability, but it requires fine

tuning of the parameters and a longer converging time. The delayed update of target

NN handles the instability well and it maintains a better converge time (< 1000 epochs)

as shown in Fig. 2.7. Fig. 2.8 shows the average packet loss of last 500 epochs of the

5000 epochs. Again, ADAM with delayed target NN update outperforms others with a

much lower packet loss rate of 0.55%, while the packet loss rate of the other three are

22%, 19% and 3%.

Now we evaluate the robustness of the algorithm by introducing a sudden change of

the arrival data rates. In Fig. 2.9, we randomly choose an application and assign it a

large pi = 0.35 while other 9 applications have pi = 0.05. After training for 2000 epochs,

the large incoming data rate is re-assigned to another application. In a real scenario,

this can happen when some applications are newly started/reconfigured. It can be seen

that the algorithm adapts to the new environment very well within a short period of

fluctuation (less than 500 epochs, in our set up that is about 0.5 seconds). The packet
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Figure 2.7: Comparison of performance

loss rate changes with the total discounted reward accordingly.

Now we evaluate the algorithm’s performance under a sudden change in channel

conditions by changing the PDR. As shown in Fig. 2.10, at the beginning, the channel

PDR associated with a particular application is qi = 0.9. After training for 1500 epochs

(1.5 seconds), the PDR is changed to qi = 0.65. This could be a result of this user

moving away from the transmitter or behind some obstacles. The channel condition is

bad such that the expectation of number of transitions to finish all packets in 1000 time

slots is about 1030. In other words, on average it takes about 1030 transmissions to

send all arriving packets in an epoch. We can see that the algorithm converges quickly

to a point where the packet loss rate of 0.3%, close to the best it can do. After 3500

epochs (3.5 seconds), the channel PDR is changed to a very good value, qi = 0.99, and

the packet loss result is back to close to 0.

Next we show the impact of the instant reward Ci assigned to a specific user. In

this scenario, we set pi = 0.091 and qi = 0.9 for all applications to eliminate the bias
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from the environment. Also, we make
∑

i pi slightly larger than average qi to simulate

a more congested network conditions. Fig. 2.11 shows the average packet loss when the

instant reward is uniformly assigned, that is, Ci = −10 for all applications. The packet

loss rate for each application is around 2.5 per 1000 time slots. In Fig. 2.12, application

3’s instant reward is increase to −1 to decrease its priority. Because the AP does not

have enough resources to fulfill all applications’ requirement, it serves fewer packets from

application 3. As a result, the packet loss rate of application 3 is increased by a large

amount to give the other 9 applications a better performance. This can be verified by

the decrease of the average packet loss rate from 2.62 to 1.57 per 1000.

Remark 3. : Importantly, due to the proposed DQN architecture, the one pass for-

ward/backward propagation (computing the output for a given input to the DNN) can

be very fast. Also, since the algorithm does not require any hand-labeled data, the

agent can be continuously trained and make decision simultaneously in real time in the

practical settings where traffic characteristics and channel conditions change frequently.
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Figure 2.9: Dynamic policy adjustment with a sudden change in traffic rates

2.6 Summary

In this Chapter, we describe an adaptive packet schedulers that can be applied to a

WiFi-FSO hybrid indoor communication system, or any last-mile packet delivery system

that has multiple channel access. We present the scheduling policy that optimize for

application specific quality of service (QoS) requirements. The framework models the

problem as an MDP and integrates a deep neural network with online Q-learning algo-

rithms that enables a DQ-based packet scheduler to learn a good packet transmission

policy. Importantly, a DQ based packet scheduler can be deployed without any prior

training or network traffic models. Rather, the DQ- based packet scheduler progressively

learns a good policy in real-time, based directly on the available observations. Our sim-

ulation results indicate that the proposed DQ-based scheduler can adapt to the changes

in network conditions and/or application requirements in real time to achieve various

QoS.
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Chapter 3: Application II: Mitigating Eavesdropping and fading:

Efficient resource scheduler for secure multi-channel satellite

communication

3.1 Description

Based on the background of SATCOM introduced in Chapter 1, in this chapter, we de-

scribe a scenario where we can generalize the satellite links as multiple channels, and

proposes a novel multi-user transmission scheduler that aims to alleviate eavesdrop-

ping/fading problems via time and channel diversity. In particular, the proposed sched-

uler is a low complexity randomized algorithm that multiplexes user data over multiple

frequencies and time slots to combat eavesdropping and environmental fading while sat-

isfying the QoS requirements of individual users with high probability. First, we present

two typical usage examples: one shows the frequency diversity of the channels, the other

shows the spatial diversity:

Example 1: Consider a simple scenario in which a satellite acts as a relay node

between a sender(s) and a receiver(s) as shown in Fig. 3.1. The communication between

the satellite and the sender (receiver) commonly takes place on some specified frequency

band. However, communication on a fixed band for sufficiently long time is potentially

vulnerable to jamming and eavesdropping attacks. Doing so provides an opportunity for

an attacker to collect enough statistical information to enable it to infer the transmitting

band. Knowing this, an attacker can launch a jamming attack by generating noise on
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the same transmission band and directs at the satellite to decrease the SNR. With suffi-

cient noise power, an attacker can seriously degrade or cut off both satellite uplink and

downlink. Knowing the transmission band, an eavesdropper can also listen and decode

the information if the satellite transmission does not use sufficiently strong encryption.

From the wireless communication perspective, transmitting information on a fixed band

is also not optimal due to channel selected fading, depending on the unexpected clouds,

rains, electrical storms [8] [28] that can create link burst losses or outages. As will be dis-

cussed shortly, the solution to both security and performance problem is to employ both

time and frequency diversity. OFDM, for example, is a classical technique to combating

fading by spreading the symbols over multiple frequencies. However, OFDM uses only

small consecutive bands with no data scheduling and rate allocation among the bands.

Our solution provides high level scheme that views frequency diversity as a special case.

Before discussing our approach, we now describe the second scenario to highlight the

problem that frequency diversity might not be able to address, and to outline how a

future satellite constellation together with our solution can help.

Example 2: We consider a future satellite constellation as shown in Fig. 3.2.

Each satellite acts as a router. Consequently, the information can be sent from any

one satellite to another. A sender and a receiver on earth can communicate with each

other via a number of relay satellites. A sender/receiver might have the capability to

communicate to multiple satellites. Similar to scenario one, using a fixed path between a

sender and a receiver is not only vulnerable to jamming/eavesdropping attacks but also

is susceptible to burst losses and outages. However, the future satellite constellation can

further increase the resiliency and robustness with additional spatial diversity. As seen,

in Fig. 3.2, there are three paths (red, blue, and brown) that can be used simultaneously

to transmit data from the sender to the receiver. Due to the different locations of the
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Figure 3.1: Frequency diversity: Sender transmits data over multiple frequency bands.
Different colors denotes different frequencies. Frequency diversity helps to combat chan-
nel fading as well as eavesdropping and jamming attacks.

three last-mile satellites (S1, S2, and S3), the three satellite-earth links provide spatial

diversity to combat potential cloud, rains, and electrical storms. Specifically, these last-

mile satellites might transmit data to different ground stations (B1, B2, B3) that belong

to a secure ground network. The receiver in the secure network can collect the data from

these ground stations. Because of spatial diversity, the fading and burst losses caused

by the local clouds/rain/storm near the receiver can be alleviated since data is also

simultaneously transmitted on other unaffected satellite-earth links.

In this chapter, we still study a high level abstraction framework that employs the

principle of diversity to enhance communication performance over multiple available

abstract channels described in Chapter 1. Instead of the indoor communication scenario

in Chapter 2, we study the problem in the background of security data delivery of

SATCOM. The main issue we want to address is that, given a number of users with QoS

requirements, together with a number of channels and their qualities (e.g., packet loss

rates, SNR), how can we optimally transmit the data for these users in such a way to
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Figure 3.2: Spatial diversity: Sender simultaneously transmits data on multiple paths
to a receiver. Receiver belongs to secure ground network and collect data from multiple
satellite links. This path diversity architecture increase security and robustness against
channel failure.

satisfy each user’s QoS requirement while minimizing the probability of the transmitted

data to be compromised.

3.2 Related works

Our work in this chapter shares similar flavor with rich literature in wireless commu-

nication that uses spatial and frequency diversity [51] to increase capacity and combat

fading. On the other hand, our work aims to propose a high level model optimization

where each channel does not need to be a frequency band. Our work also proposes a

randomized algorithm to send data of multiple users simultaneously onto these abstract

channels in such a way to satisfy each user’s QoS requirement.

Also, our work in this chapter is similar to many works on resource and scheduling al-

gorithms [29, 3, 30, 40]. However, a majority of these algorithms are deterministic which

lead to higher complexity. Some of these algorithms aim to find approximate solutions to



39

hard problems such as the job scheduling under deadline constraints [43, 6], which have

been shown to be NP-complete. On the other hand, our proposed algorithm is proba-

bilistic in nature that results in low complexity which can be implemented for SATCOM.

Even though the proposed algorithm is probabilistic, the approximate solution is proved

to be bounded within the optimal solution with high probability.

3.3 Mathematical model of the problem

3.3.1 Convex Optimization Formulation

In this section, we formulate the multi-user scheduling problem as a convex optimization

problem. The solution to the convex optimization problem is then used in a randomized

algorithm to ensure security while satisfying all the QoS requirements. The multi-user

scheduling problem is as follows. Given a number of users with the pre-specified QoS

requirements (e.g., throughputs), a number of available channels and their qualities (e.g.,

packet loss rates), prior knowledge about how secure each channel is, and the number of

time slots for transmitting the data, we want to decide, for any given time slot, which

user’s data and which channel it should be sent on, in order to satisfy each user’s QoS

requirement and maximizing the ”security” level of data.

The decision on which user’s data will be transmitted at a particular time slot and

channel is probabilistic. We emphasize on the importance of probabilistic methods, i.e.,

randomized scheduling algorithms for security. First, a typical deterministic algorithm

poses higher security risk than a typical randomized scheduling algorithm. Consider a

following simple example in which there is only a single user, and two available channels

for transmitting its data. At any time slot, using a deterministic algorithm, we can
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either to transmit the data on channel 1 all the time or on channel 2 all the time. In this

case, an attacker/eavesdropper can listen to these channels over multiple time slots and

determine the transmitting schedule correctly, and therefore designs an effective attack,

e.g., jamming on the transmitted channel only. On the other hand, suppose that at

any time slot, we flip an unbiased coin. If the head occurs, then data is transmitted

on channel 1. Otherwise, data is transmitted on channel 2. Using such a randomized

scheduling algorithm, the attacker would have only 50% chance of predicting the correct

channel regardless of the number of time slots it observes. Note that the throughput of

both schemes are the same. Our proposed algorithm uses the same randomized approach

in which for a given time slot and a channel, the scheduling algorithm will send the data

from a user with some probability.

Before mathematically formulating the problem, we introduce the notion of entropy

and Kullback-Leibler (KL) distance [9] in order to quantify our notion of security. In-

tuitively, entropy characterizes the amount of information or amount of uncertainties in

the outcomes of an i.i.d (independently identically distributed) random variable. For a

discrete random variable X, it is defined as:

H(X) = −
∑
i

p(xi) log (p(xi)), (3.1)

where p(xi) denotes the probability mass function of X. On the other hand, KL distance

is a measurement between the two distributions p(x) and q(x). It is defined as:

KL(P ||Q) =
∑
i

p(xi) log
p(xi)

q(xi)
. (3.2)

Note that KL distance is not symmetric. Nevertheless, a smaller KL distance implies
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the two distributions are more similar, and a larger KL distance implies otherwise.

We now apply the notion of information theoretic security to our multi-channel set-

ting as follows. Consider a single user and let p(xi) denote the probability that a piece of

data from that user is sent on channel i at any time slot. Then, the best way to prevent

a jammer/eavesdropper from making a good prediction about which channel is used to

transmit the data is to make p(x) a uniform distribution, i.e., p(xi) = 1/c where c is the

number of channels. Furthermore, the probability of correctly predicting the transmit

channel is 1/c, regardless of the number of time slots used by the eavesdropper/jammer

to collect the statistics due to the i.i.d distribution of p(x). While using a uniform distri-

bution is good for security, the QoS requirement might not be satisfied due to some low

quality channels. Therefore, one approach to balance between security and performance

is to find a distribution that is as close to the uniform distribution as possible while

satisfying the QoS requirements. Specifically, using KL distance and let q(x) = 1/c, we

want to find p(x) such as KL(p||q) is minimum while the QoS constraints are satisfied.

We will discuss these constraints shortly. Now using Eq. 3.2, we have:

KL(p||q) =
∑
i

p(xi) log
p(xi)

q(xi)
(3.3)

=
∑
i

p(xi) log p(xi)−
∑
i

p(xi) log
1

c
(3.4)

= −H(X)− log
1

c
.

Since log 1
c is a constant, for a single user, the objective is to find the p(x) that

minimizes the negative entropy.

We are now ready to formulate the multi-user randomized scheduling problem. We

will first describe a generic problem from which many scheduling problems with various
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QoS metrics can be cast as one of its instances. The generic problem is as follows. There

are u−1 (1 . . . u−1) actual users and one ”virtual” user u, c number of channels, t number

of time slots. At every time slot i and for every available channel j, the scheduler will

randomly choose a user k and send its data on the channel j with probability xkij . x
u
ij

denotes the probability that the scheduler does not send any data. A reward rij is

rewarded to a user k if k is chosen for sending data in time slot i and on channel j.

Furthermore, each user k requires at least an average reward Rk over the t time slots.

The goal is to find the xk∗ij , i = 1, 2, . . . , t, j = 1, 2, . . . , c, k = 1, 2, . . . , u that maximize

the weighted entropy of the conditional probability distributions ykj =
∑

i x
k
ij of sending

data for the actual user k (i.e., k 6= n) given channel j while satisfying the average reward

constraints Rk per time slot for all users.

Table 3.1: Chapter 2: Notations

u Total number of users

c Total number of available channels

t Number of time slots in a round

rij Reward for sending data at time slot i on channel j

Rk Average of reward for user k per time slot

xkij Conditional probability of sending data for user k

given time slot i and channel j, xkij
4
= P (k|i, j)

ykj Conditional probability of sending data for user k

given channel j, ykj =
∑

i x
k
ij

yj
4
= (y1j , y

2
j , . . . , y

u
j )

Now, let yj denote the probability mass vectors of length u whose elements are ykj =∑
i x

k
ij . yj is a valid probability mass function that specifies the conditional probability

of sending data for different users for given channel j. As discussed previously, we want

yj to be similar to a uniform distribution since if an attacker eavesdrops on channel j,
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it can only observe a fraction of the data of a user k since data for each user is spread

out due to the effect of uniform-like distribution. Since we want yj to be similar to a

uniform distribution for every channel j, then based on previous discussion, we want to

minimize the weighted sum of negative entropies of yj as:

f(y1, y2, . . . yc) = −
∑
wj

wjH(yj), (3.5)

where H(yj) denotes the entropy of yj and wj denotes the pre-specified weights for each

channel. When channel j is more secure, wj is be smaller, implying that one can send

a large fraction of a single user on channel j. Using the notations in Table 3.1, the

multi-user scheduling problem then can be cast as the following convex optimization

problem:

Problem P1

Minimize: −
∑

wj
wjH(yj)

Subject to:

∑
k

xkij = 1, i = 1, . . . , t, j = 1, . . . , c, (3.6)

ykj =
∑
i

xkij , j = 1, 2, . . . , c, k = 1, . . . , u, (3.7)

1

t

∑
i,j

xkijrij ≥ Rk, k = 1, . . . , u− 1, (3.8)

xkij ≥ 0, i = 1, . . . , t, j = 1, . . . , c, k = 1, . . . , u, (3.9)

xkij ≤ 1, i = 1, . . . , t, j = 1, . . . , c, k = 1, . . . , u. (3.10)
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Equality constraint Eq. 3.6 ensures that the probabilities of sending data of different

users for a given time slot and channel must add to 1. The inequality constraints (3.9)

and (3.10) arise by definition of probability. Constraint (3.7) is simply a calculation of

marginal distribution, and constraint (3.8) enforces the minimum reward for each user.

Note that (a) the reward in constraint Eq. 3.8 is just an average reward per time slot

and (b) the constraints are not enforced for the virtual user u. The virtual user u is used

to allow the algorithm not to send any data for any user. Specifically, when xuij > 0 then

there is a non-zero probability that the system is not sending any data on channel j at

time slot i. This happens when there is enough system resource to accommodate every

user.

P1 is a convex optimization problem because the objective function is convex and

all the constraints are linear. The objective function is convex because any entropy

H(yj) is a concave function in the distribution yj [9] and a positive linear combination

of concave functions is also a concave function [5], and therefore −
∑

wj
wjH(yj) is a

convex function.

We note that many multi-channel communication settings with QoS requirements

can be cast as an instance of problem P1. As an example, we consider a simple scenario

for which the notion of rewards can be used to model the QoS requirements. In this

scenario, suppose each channel j has a packet loss rate pj (independent of time slot),

some fixed sending rate sj packets per second, and the duration of a time slot is d

seconds. Furthermore, each user k requires an average throughput of at least Tk packets

per second. The objective and all the constraints except constraint (3.8) in P1 can be

used for this scenario. Constraint (3.8) can be easily modified to reflect the current

scenario by letting

rij = pjsj , R
k =

Tk
d
.
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Note that the throughput is not the only applicable QoS criteria. Other metrics/constraints

such as power, packet losses, or even the combination of them, can be modeled using

appropriate reward functions. We also note that there exists many efficient methods

for solving convex optimization problems such as gradient descent algorithms [5]. In

practice, P1 is small and can be solved in real time. Therefore, we will not discuss the

algorithmic solution for P1.

3.3.2 Analysis

When the optimal xk∗ij is found, the scheduling algorithm is simple because for a given

time slot and a channel, it just simply picks the data from a user based on xk∗ij . However,

since the algorithm is probabilistic, the empirical average reward R̂kt for user k per time

slot over t time slots is a random variable:

R̂kt =

t,c∑
i,j
Rkij

t
,

where Rkij are i.i.d Bernoulli random variables, i.e.

Rkij =


rij with probability xk∗ij

0 with probability 1− xk∗ij .

By the weak law of large number and if rij = rj for all i, we would expect that

lim
t→∞

R̂kt → Rk =

t,c∑
i,j

xk∗ij rij .
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In practice, we are interested in how close R̂kt to Rk for a given number of channels and a

finite number of time slots. Specifically, we consider the probability that R̂kt < (1− ε)Rk

which is the probability that the algorithm produces an empirical average reward that is

smaller than the required reward by a factor of ε for a given number of channels c over

a finite number of time slots t. We want P (R̂kt < (1 − ε)Rk) as small as possible. We

have the following Proposition 1:

Proposition 1. Let xk∗ij be the optimal solution to problem P1, Ak = {(i, j)|xkij > 0},

and define µk =
t,c∑
i,j
xk∗ij , r

k
max = max

(i,j)∈Ak
rij , r

k
min = min

(i,j)∈Ak
rij, then

1.

P

(
R̂kt < (1− ε)Rk

)
≤

(
e−ε

(1− ε)
(1−ε) r

k
max
rk
min

)µk
. (3.11)

2. If rkmax
rkmin

> 2
2−ε then ε− (ε− ε2

2 ) r
k
max

rkmin
≥ 0. Let C = ε− (ε− ε2

2 ) r
k
max

rkmin
, then

P

(
R̂kt < (1− ε)Rk

)
≤ e−Cµk . (3.12)

Furthermore, for a common case where rij = rj , ∀i, j, i.e, the rewards only depend

on channel and not time, and let λk =
c∑
j
xk∗1j , then:

P

(
R̂k < (1− ε)Rk

)
≤ e−Cλkt. (3.13)

Proof. See the Appendix A.

The main intuition of Proposition 1 is that when running the proposed randomized

algorithm, the probability of the empirical reward (e.g. throughput) is less than the
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specified reward requirement by a factor of ε is exponentially decreased with the numbers

of time slots and channels. To see this, Eq. 3.11 is simplified into an exponential form

in Eq. 3.12. We note that µk =
∑t,c

ij x
k∗
ij is proportional to the number of time slots

t for a given number of channels. In typical cases, c > 0 and therefore the probability

that the empirical reward is less than the required reward by a factor ε is exponentially

decreased with the number of time slots used. This can be seen by Eq. 3.13 where rij is

assumed to be constant (again a typical case) with respect to time slot i. Given a time

slot duration is typically small, the randomized algorithm will most certainly produce

results that satisfy the average reward requirement (e.g. throughput) over a reasonable

short duration. Next, we discuss the results for some real world scenarios.

3.4 Discussions and Results

We present the simulation results for five different scenarios to illustrate the benefits of

the proposed randomized algorithm.

Scenario 1: We consider a simple scenario to illustrate the intuitive result of the

algorithm. Specifically, we consider only two real users, two channels, and two time

slots. The time slot duration is 1 ms. During each time slot and for a given channel,

the sender can transmit an amount of data of 10 Kbits or 20 Kbits, depending on the

time slot and channel as shown in Fig. 3.3. Assuming that each user requests 15 Mbps.

Now, there are more than one way to schedule the transmission that satisfy the user’s

requests. A simple scheduler would transmit user one’s data on channel 1 and user 2’s

data on channel 2 all the time. Clearly, this assignment satisfies the users requests since

each channel can support 30 Kbits/2 ms = 15 Mbps. However, this scheme is vulnerable

since a jammer/eavesdropper can attack/eavesdrop on user 1 by focusing on channel 1
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(assuming that an attacker with limited resource can only attack/eavesdrop on only one

channel). On the other hand, a scheme that randomly transmits the data of user 1 (or

2) on channel 1 at 50% of the time and the other 50% on channel 2 is much more secure

since an eavesdropper will not be able to have access to the entire data of a single user.

Indeed, the proposed algorithm produces such results as shown in Fig. 3.4.

Figure 3.3: Reward structure for scenario 1

Fig. 3.4(a) shows the conditional probability that the data is sent on each channel

given that user k’ is selected for sending. The two bars indicates the two channels. Note

that the third user in Fig. 3.4(a) is a virtual user that models the scenario where the

algorithm does not send any data. As seen, for both users, there is a 50% chance that

their data will be sent on channel 1 or 2, making this scheme robust to eavesdropping and

jamming. Fig. 3.4(b) shows the conditional probability that the data sent on channel j

belong to user k given that channel j is selected for sending. For an eavesdropper that

has access to channel 1, it can see data from user 1 50% of the time, and similarly for

user 2. Fig. 3.4(c) shows the average throughput for two users as a function of time. As

seen, the average throughput is around the requested throughput of 15 Mbps and the

variances of these throughputs reduce as the number of time slots increases as predicted

by Proposition 1.

Scenario 2: In scenario 1, the total requested throughput is equal to the total system

throughput. In scenario 2, the reward structure is the same as that of scenario 1 except



49

the requested throughputs are reduced to 13.5 Mbps for each user. Fig. 3.5(a) shows

the conditional probability that the data is sent on each channel given that user k is

selected for sending. Again, for a given user, the data is uniformly distributed over the

two channels. Fig. 3.5(b) shows the conditional probability that the data sent on channel

j belongs to user k given that channel j is selected for sending. For an eavesdropper

that has access to channel 1, it can see data from user 1 45% of the time, data from

user 2 45% of the time, and 10% of time it sees no data transmitted. The third (yellow)

bar represents the probability that the ”data” come from the virtual user, i.e., no data

being transmitted. This is plausible since the total requested throughput is 10% below

the system throughput. Fig. 3.5(c) shows the average throughput for two users as a

function of time. As seen, the average throughput is around the requested throughput

of 13.5 Mbps and the variances of these throughputs reduce as the number of time slots

increases as predicted.

Scenario 3: In this scenario, we consider a scenario consisting of 5 users, 5 channels,

and 1 time slot. In this case, rij = rj = 15 Kbits. In other words, the reward only depend

on channel, not time, and all the channels have the reward of 15 Kbits per time slot (1

ms). Or equivalently, the average throughput is 15 Mbps. The requested throughput for

user 1 to user 5 are: 25 Mbps, 20 Mbps, 15 Mbps, 10 Mbps, and 4 Mbps. In this case,

the system is operating at near capacity of 75 Mbps (5 × 15 Mbps). Fig. 3.6(a) shows

the conditional probability that the data is sent on each channel given that user k is

selected for sending. As seen, for a given user, the data is uniformly distributed over the

channels. This makes sense since all the channels have the same capacity and it makes

no difference to distribute the data of any user to any channel. Note that user 6 is the

virtual user. On the other hand, Fig. 3.6(b) shows the conditional probability that the

data sent on channel j belongs to user k given that channel j is selected for sending.
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Since the requested throughput for each user is different, we can see that the probability

of sending data for different users on a given channel is different. The probability of

sending data for user 1 is the highest since it requests 25 Mbps and the probability of

sending data for user 5 is lowest since it requests 4 Mbps. Fig. 3.6(c) shows the average

throughput for different users as a function of time. As seen, the average throughput

is around the requested throughputs for each user. Furthermore, the variances of these

throughput reduce as the number of time slots increases as predicted.

Scenario 4: This scenario is similar to that of scenario 3 except the reward structure

is changed. In particular, channels 1 to 5 have rewards of 5 Kbits, 10 Kbits, 15 kbits, 20

Kbits, and 25 Kbits. The time slot duration is still 1 ms, and the requested throughput for

user 1 to user 5 are still: 25 Mbps, 20 Mbps, 15 Mbps, 10 Mbps, and 4 Mbps. Fig. 3.7(a)

shows the conditional probability that the data is sent on channel given that user k is

selected for sending. As seen, for a given user, the data is no longer uniformly distributed

over the channels. This is due to the fact that the channels do not have the same capacity

as in scenario 3. For each user, it is not possible to send data on each channel evenly to

maximize the entropy like in previous scenarios, otherwise the throughput requirement

will not be satisfied. Instead, while still maintaining the distribution close to the uniform

distribution, the users with smaller throughput requirement use less of those channels

with high capacity in order to save bandwidth for those users with larger requirement.

This is confirmed in 3.7(a). On the other hand, Fig. 3.7(b) shows the conditional

probability that the data sent on channel j belongs to user k given that channel j is

selected for sending. Again, it shows that a greater amount of better channels will be

used to serve those users with higher throughput requirements. Due to the varying

capacities of different channels, the channels are no longer uniformly used. Fig. 3.7(c)

shows the average throughput for different users as a function of time. As seen, the
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average throughput is around the requested throughputs for each user and the variances

of these throughput reduce as the number of time slots increases.

Scenario 5: In this scenario, one of total 5 channels is less secure than other chan-

nels. As a result, the weight wj of each channel is not the same anymore. The weight

parameter is changed from [1, 1, 1, 1, 1]T to [0.5, 0.5, 0.5, 3, 0.5]T , indicating that the 4th

channel is significantly more vulnerable to attack than other channels. Throughput re-

quirement and all 5 channels’ rewards are the same as in Scenario 3. Fig. 3.8(a) shows

the conditional probability that the data is sent on a channel given a specific user. Notice

that overall the usage of channel 4 is decreased as compared to Scenario 3. (i.e., the

usage of channel 4 by the virtual user 6 is increased, which means the ”idle” time for

channel 4 is increased.) In order to compensate its vulnerability, channel 4’s conditional

distribution is closer to a uniform one as compared to other channels, so that it would

be more difficult for the potential attackers to get information from this channel. This

result is shown in Fig. 3.8(b). Still, Fig. 3.8(c) shows all users throughput requirements

are satisfied, and the variances decrease as the number of time slots increases.

Scenario 6: In this scenario, we show that different QoS constraints can be applied

to this framework, and the combination of them can solve a more sophisticated real

world scenario problem. First, we assume that each channel has a fixed transmitting

power, and each user has an energy budget. The time slot is still 1 ms. Channel 1 to

5’s transmission powers are 2 mW, 2 mW, 2 mW, 1 mW, 1 mW, respectively, and user’s

power budgets are 2 mW, 1.8mW, 1.6 mW, 1.4 mW, 1.2 mW. Now, the throughput

constrains in Eq. 3.8 is replaced by the energy reward for each channel: -2 µJ, -2 µJ, -2

µJ, -1 µJ, -1 µJ. A negative reward indicates the energy is consumed when a channel is

chosen. For each user, the power it consumed in each time slot should be less than its

power budget. Fig. 3.9(a) shows the simulation results of channel usage and Fig. 3.9(b)
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is the actual power consumption. Notice that all users’ power consumption is less than

the budget, and users 1 to 4 do not consume the maximum power. By using less power,

it makes user’s data distribution closer to the uniform distribution. So it would be more

difficult for a potential attacker to have access to the user’s data on a particular channel.

Thus, extra power is not necessary in this case.

Fig. 3.10(a), Fig. 3.10(b) and Fig. 3.10(c) show a more realistic case when both

throughput and power consumption are taken into account. As a result, there are two

kinds of rewards for each channel/time slot: a) A positive reward indicates throughput

gain. b) A negative reward indicates the power it consumed. These combined rewards

can be found in in Table 3.2(a). Both kinds of reward should be constrained by the

resource available for each user, shown in Table 3.2(b). Thus, similar to Eq. 3.8, two

constrains corresponding to throughput and power can to be added to Problem P1. Fig.

3.9(c) shows the optimized transmission schedule given channel 1 to 5 is chosen. Fig.

3.9(d) and Fig. 3.9(e) show both power and throughput requirements are satisfied.

Table 3.2: Rewards and constrains for Scenario 6

Channel 1 2 3 4 5

Throughput reward (Kbits) 30 30 20 15 15

Energy cost (µJ) -2 -2 -2 -1 -1

(a)

User 1 2 3 4 5

Throughput requirement (Mbps) 25 25 20 20 15

Power budget (mW) 2 1.8 1.6 1.4 1.2

(b)
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3.5 Summary

In this chapter, we proposes a novel multi-user transmission scheduler that aims to

alleviate eavesdropping/environmental fading issues of SATCOM via time and channel

diversity. In particular, the proposed scheduler is a low complexity randomized algorithm

that multiplexes user data over multiple frequencies and time slots to combat those issues

while satisfying the Quality of Service (QoS) requirements of individual users with high

probability. Analysis and simulation results demonstrate effectiveness of the proposed

scheduler.
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Figure 3.4: Scenario 1: (a) Conditional probability that the data is sent on a channel j,
given that user k is selected for sending; (b) Conditional probability that the data sent
on channel j belong to user k given that channel j is selected for sending; (c) Average
throughput of users as a function of time slots
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Figure 3.5: Scenario 2: (a) Conditional probability that the data is sent on a channel j,
given that user k is selected for sending; (b) Conditional probability that the data sent
on channel j belong to user k given that channel j is selected for sending; (c) Average
throughput of users as a function of time slots



56

1 2 3 4 5 6

User

0

0.05

0.1

0.15

0.2

0.25

P
(j
|k

)

(a)

1 2 3 4 5

Channel

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
(k

|j
)

(b)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time slot

0

5

10

15

20

25

30

A
v
e

ra
g

e
 r

a
te

(c)

Figure 3.6: Scenario 3: (a) Conditional probability that the data is sent on a channel j,
given that user k is selected for sending; (b) Conditional probability that the data sent
on channel j belong to user k given that channel j is selected for sending; (c) Average
throughput of users as a function of time slots
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Figure 3.7: Scenario 4: (a) Conditional probability that the data is sent on a channel j,
given that user k is selected for sending; (b) Conditional probability that the data sent
on channel j belong to user k given that channel j is selected for sending; (c) Average
throughput of users as a function of time slots
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Figure 3.8: Scenario 5: (a) Conditional probability that the data is sent on a channel j,
given that user k is selected for sending; (b) Conditional probability that the data sent
on channel j belong to user k given that channel j is selected for sending; (c) Average
throughput of users as a function of time slots



59

1 2 3 4 5

Channel

0

0.05

0.1

0.15

0.2

P
(k

|j
)

(a)

0 1000 2000 3000 4000 5000

Time slot

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

A
v
er

ag
e 

p
o
w

er
 c

o
n
su

m
p
ti

o
n
 (

m
W

)

(b)

Figure 3.9: Scenario 6: (a) Conditional probability that the data sent on channel j
belong to user k given that channel j is selected for sending, with power budget; (b)
Average power consumption of users as a function of time slots, with power budget (c)
Conditional probability that the data sent on channel j belong to user k given that
channel j is selected for sending, power and throughput constraints combined; (d) Av-
erage power consumption of users as a function of time slots, power and throughput
constraints combined; (e) Average throughput of users as a function of time slots, power
and throughput constraints combined
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Figure 3.10: Scenario 6: (a) Conditional probability that the data sent on channel j
belong to user k given that channel j is selected for sending, power and throughput
constraints combined; (b) Average power consumption of users as a function of time
slots, power and throughput constraints combined; (c) Average throughput of users as
a function of time slots, power and throughput constraints combined
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Chapter 4: Application III: Mitigating satellite jamming: A game

theory prospective

4.1 Description

Satellite jamming has its roots in radio frequency (RF) jamming [46]. RF jamming is

a simple idea. Its aim is to degrade the signal’s integrity between a pair of senders

and receivers by transmitting noise with sufficient power on the same communication

band as the sender and receiver in order to lower the signal-to-noise ratio (SNR) of

their transmission. Consequently, RF jamming can reduce or effectively cut off the

communication link between the sender and receiver. Fig. 4.1 shows a typical scenario

Sa

Satellite

Defender A acker

Jamming

Figure 4.1: A typical scenario of a uplink radio interference and mitigation with potential
satellite communications applications.
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where an attack occurs at a satellite. The defender transmits information to the satellite

using the spread-spectrum technique, where the transmitted signal is spread over multiple

transmission bands. On the other hand, the attacker tries to reduce the information

rate by transmitting noise via spread-spectrum techniques, i.e., jamming the defender’s

signal. A jamming attack is successful if the attacker is able to greatly reduce the

defender’s information rate. Central to a successful attack is the capability of the jammer,

which includes the following: (1) transmission power and (2) information about the

frequency on which the good signal is transmitted. The reason for this is clear because

the noise generated by the jammer needs to have sufficient power and to be on the

same band as the good signal in order to reduce the SNR of the good signal. For

satellite communications, the transmission between earth-based terminals is relayed by

a satellite. Thus, an effective way for the jammer to attack is through the relay, i.e., the

satellite, since it is more difficult to attack the terminal. The difficulty comes from the

fact that the jammer needs to be in proximity of the receiver, which it may know, or it

might increase the potential of being detected. Thus, in this chapter, we will analyze

the frequency hopping (FH) radio jamming and mitigation in which, both the jammer

and the defender will employ their optimal strategies based on what they know from a

zero-sum game theoretic setting. Specifically, our contributions include:

1. Formulate the problem of minimizing the damaging effect of satellite jamming

attacks using the two-player asymmetric zero-sum game framework. The payoff

is modeled as the channel capacity of the defender under white additive Gaussian

noise. The defender and attacker are capable of spreading their signals over a

pre-specified frequency band.

2. Provide performance analysis for the Perfect Information Game. In this scenario,
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both attacker and defender are rational and intelligent entities with perfect knowl-

edge of the game. We show that there exists an optimal Nash equilibrium (NE)

strategy for each player. Furthermore, we obtain a closed-form for the NE strate-

gies that turns out to be a modified version of the well-known water-filling problem

[10]. Any deviation from their own NE strategy would reduce their payoffs.

3. Provide performance analysis for the Defender-biased game (typical cases). In this

scenario, an attacker has partial information about the game, while the defender

has perfect information about the game. We show that the defender will take

advantage of this lack of knowledge and play an optimal strategy to obtain a payoff

that is higher than the rate obtained if the attacker would play the NE strategy

with perfect information. This is the important property of a game that has NE.

4. Provide performance analysis for the Attacker-biased game (rare cases). We an-

alyze the special case when the attacker knows the defender’s strategies, but the

defender does not know the attacker’s strategy due to imperfection information.

We provide an algorithm to find the corresponding payoffs.

4.2 Related works

There exists rich literature on secure SATCOM. To prevent eavesdropping, standard

cryptographic techniques for transmissions in insecure environments [32] can be directly

used in SATCOM. Cryptographic techniques encrypt the transmitted information such

that even when an eavesdropper obtained the encrypted data, it cannot recover the

transmitted information without a secret key. Cryptographic techniques encrypt the

transmitted information such that even when an eavesdropper obtained the encrypted
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data, it cannot recover the transmitted information without a secret key. Cryptographic

techniques however require key exchange protocols, tend to be computational expensive,

and lead to consume more satellite resources. Furthermore, cryptographic techniques

cannot defend against the jamming attack. Jamming attacks aim to degrade the signal’s

integrity between a pair of sender and receiver by transmitting noise with sufficient power

on the same communication band as the sender and receiver in order to lower the signal-

to-noise ratio (SNR) of their transmission. Consequently, jamming attack can reduce or

effectively cut off the communication link between the sender and receiver. To mitigate

jamming attack in SATCOM, frequency-hopping and spread spectrum techniques [54]

have been proposed recently. The main idea is to spread the transmitted information

across different frequency bands so that if one frequency band is jammed, information

can be recovered from other unjammed frequency bands. Our work is similar to these

works in the sense that we use channel and time diversity to combat eavesdropping and

jamming. On the other hand, ours is the first to quantify the diversity via information

theoretic quantity entropy.

RF jamming has been used to disrupt radar systems that guide aircraft and missiles.

It is also used to disrupt radio broadcast stations in wartime or during tense periods

in enemy countries [45]. Currently, there also has been a rise in the number of cases in

which RF jamming techniques are used to launch denial of service (DoS) attacks in WiFi

and cellular networks [57]. Notably, wireless sensor networks are most vulnerable to RF

jamming attacks due to their limited transmission power and capability of mitigating

attacks [55], [27]. Early literature on defense techniques against RF jamming attacks

typically focused on narrow band jamming. Specific techniques such as transversal filters

[26] or the singular-value decomposition (SVD)-based method [52] are proposed to sup-

press single-tone attacks. On the other hand, when information on jamming frequency
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is not known at the defender, defense schemes using channel codes such as convolutional

codes, or Bose-Chaudhuri-Hocquenghem (BCH) codes, have been shown to be highly ef-

fective [31]. However, these techniques introduce extra latency and bandwidth. Recently,

a number of adaptive anti-jamming techniques have been proposed for global positioning

system (GPS) satellites [25]. For example, these schemes include adaptive antenna array

[53] and frequency/time domain filtering [7]. Another type of anti-jamming technique

uses spread-spectrum methods such as frequency hopping [23], [18], [19] to evade the

jammer. Specifically, in [18], a detect/transmit mode switch mechanism is proposed to

identify the jamming frequency statistics, and an optimized frequency hopping strategy

is proposed based on the Markov decision process [18]. In [19], the defender observes

the jamming statistics and, based on this, generates a frequency hopping pattern to

minimize the error rate caused by jamming. Other spread-spectrum-based techniques

such as a scheme using notch filters on the base band [12] are also shown to be effective

against jamming attack. More recently, many novel approaches have been proposed on

jamming/anti-jamming attacks. [15] improves the attack efficiency towards a wireless

smart grid network by dynamically implementing spoofing and jamming. The optimality

is found by dynamic programming. A security-aware efficient data transmission scheme

for Intelligent Transportation System (ITS) is introduced in [16] by cloud-based server

using dynamic server selection methodology.

All of the aforementioned techniques assume that attackers are not sufficiently knowl-

edgeable about the defender. On the other hand, a sophisticated attacker can employ

different jamming strategies adaptively to reduce the effectiveness of a defense strategy.

Essentially, both the defender and attacker play a game in which the defender tries to

maximize some payoff, e.g., throughput, and the attacker tries to minimize it. Therefore,

the game theory approach [38] is often employed to study channel security as well as
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spectrum allocation [47], [41]. Work based on game theory in the context of FH jam-

ming [60], [17], [1] has also been done. For example, in [60], the NE of an uncoordinated

frequency hopping (UFH) scenario is characterized by showing a mixed strategy for the

transmitter, receiver, and jammer. A more sophisticated scenario, namely quorum-based

FH rendezvous, is analyzed in [1]. Unlike the other FH techniques that simply randomly

pick a frequency band, a quorum-based FH rendezvous uses a quorum rule to pick the

transmission channel, and the jammer chooses the attack channel in the same way. In

this case, the NE of a three-player game is shown not to exist, but does exist for a simpli-

fied two-player game. Additionally, recent research has focused on the gaming analysis of

a timing channel [56], [59], [58], [13]. In [56], W. Xu et. al described the timing channel

anti-jamming technique. The timing channel is able to transmit data encoded by the

time duration of a signal. The power allocation game between the transmitter and the

defender in a timing channel can be modeled as a non-zero-sum Stackelberg Game. Un-

like Nash equilibrium, a Stackelberg equilibrium assumes that one player is leading while

the other is following. In the game analyzed in [59], [58], [13], the transmitter is modeled

as the leader and the attacker is the follower. It is proved that a Nash equilibrium and

a Stackelberg equilibrium both exist, and the latter performs better for the transmitter.

While the analysis is thorough for a timing channel with specific payoff functions, our

work in this chapter takes a more generalized approach by defining the payoff as the

total capacity.

4.3 Mathematical model of the problem

Table 4.1 shows the notations that are used.

We assume a free space path loss model, as shown in Fig. 4.1, because both the
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Table 4.1: Chapter 3: Notations

N Number of discrete frequency bins

B Bandwidth per frequency bin

PD Total power received at satellite relay from the defender

PA Total power received at satellite relay from the attacker

PN Average noise power over all frequency bins

n ∈ RN+ Vector whose ith element denotes the average additive white noise
power on frequency bin i

x ∈ RN+ Strategy of defender, received power on certain frequency bin i is xi

y ∈ RN+ Strategy of attacker, defined similarly as x

X Feasible set of defender strategies. X = {x ∈ Rn+|
∑N

i xi ≤ PD}.
Y Feasible set of attacker strategies. Y = {y ∈ Rn+|

∑N
i yi ≤ PA}.

x∗, y∗ Optimal strategy used by defender and attacker, respectively

p, p∗ ∈ R Expected payoff and optimal payoff, respectively

defender and the attacker are typically in the line of sight (LOS) to the satellite relay.

In addition, this paper considers a decoder and forward type relay satellite, and does

not include the typical satellite channel characteristics, e.g., non-linearity in a satellite

transponder, a rain loss, etc. This paper focuses on the effects on the data rate of the

channel from a transmitter to a relay satellite under a jamming attack environment. The

power at the relay satellite received from the defender and the attacker can be simplified

as xi = PDTi

(√
GDTGRλi
4πdDR

)2
and yi = PATi

(√
GATGRλi
4πdAR

)2
, respectively, at a certain

frequency bin i, where GDT and GAT are the transmit antenna gain of the defender

and attacker, respectively; dDR and dAR are the distance from the defender and the

attacker to the relay satellite, respectively; GR is the receiver antenna gain at the relay

satellite; and λi is the wavelength at the hopping frequency i. Therefore, if xi and yi
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are determined, then the corresponding transmit power PDTi and PATi at frequency bin

i can be computed using the other known parameters. Hence, this paper focuses on the

computation of xi and yi using game theory. The satellite jamming game is modeled

as a zero-sum game. The objective of the defender is to maximize the information rate,

while the objective of the attacker is to minimize this rate. Assuming that the channels

have white additive Gaussian noise, if the defender plays strategy x and the attacker

plays strategy y, then the information rate, i.e., the maximum bit rate [9] that can be

transmitted by the defender is

f(x,y) =
N∑
i=1

B log

(
1 +

xi
ni + yi

)
. (4.1)

We note that the maximum bit rate, or the channel capacity, is widely used as game

payoff in literature. In [2], an OFDM transmitter’s payoff is modeled as the sum of

the capacity of all sub-channels, taking into account of fading channel gains as well as

possible power costs. Here in Eq. 4.1 we suppose a more general representation. We now

begin with the scenario where both attacker and defender know each other’s strategies

and the payoff matrix. This is called the Perfect Information Game.

4.3.1 Perfect Information Game

Similar to the classic zero-sum game discussed above, if the defender knows the attacker’s

strategy, and vice versa, then the goal for the defender is to find the optimal strategy x∗

that maximizes the payoff, in particular the information rate, which is

max
x∈X

min
y∈Y

f(x,y).
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Similarly, the goal for the attacker is to find its optimal strategy y∗ that minimizes the

information rate which is:

min
y∈Y

max
x∈X

f(x,y).

It is not immediately clear whether this game has a NE as the classic zero-sum game .

The NE is obtained when there exists a pair (x∗,y∗) such that maxx∈X miny∈Y f(x,y) =

miny∈Y maxx∈X f(x,y).

Our first result is that this game does indeed have a NE. Our proof relies on the

following theorem from the work of J. Neumann [39].

Theorem 1. Let x ∈ X and y ∈ Y, if f(x,y) is concave in x for any y, and f(x,y) is

convex in y for any x. Then:

max
x∈X

min
y∈Y

f(x,y) = min
y∈Y

max
x∈X

f(x,y).

Definition 1. f(x) is a convex function if for 0 ≤ a ≤ 1 and for any x, y, the following

applies:

f(ax + (1− a)y) ≤ af(x) + (1− a)f(y).

Similarly, f(x) is a concave function if

f(ax + (1− a)y) ≥ af(x) + (1− a)f(y).

We are now ready to prove the first result.

Proposition 2. The spread-spectrum game where the information rate is the payoff has

a Nash equilibrium.

Proof. See Appendix B.
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Proposition 3. Let PD and PA be the total powers of the defender signal and attacker

signal received by the satellite, and let x∗ be the optimal defender strategy; then the

satellite hub’s maximum information rate (payoff) is

p∗ =
∑
i∈J

B log

(
1 +

x∗i
(PA + P JN )/|J |

)
(4.2)

+
∑

i∈(K\J)

B log

(
1 +

x∗i
ni

)
,

in which J and K denote the set of index of bins used by the attacker and defender,

respectively. P JN denotes the amount of noise power in those bins. |J | denotes the

cardinality of J . When the optimal attacker and defender use all the frequency bins

(|J | = N),

p∗ = NB log

(
1 +

PD
PA + PN

)
.

Proof. Consider the attacker’s viewpoint. The attacker knows that the defender knows

its strategy. Naturally, the defender would try to maximize the information rate based

on the given attacker’s strategy y. Thus, from the attacker’s viewpoint, it will try to

minimize the information rate. In other words, the attacker will solve this problem:

p∗ = min
y∈Y

max
x∈X

N∑
i=1

B log

(
1 +

xi
ni + yi

)
. (4.3)

First, consider the max problem from the defender’s viewpoint given the attacker’s

strategy y. The defender will play the optimal strategy x such that

x∗ = argmaxx∈X

N∑
i=1

log

(
1 +

xi
ni + yi

)
.
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Note that B in the equation above can be omitted since it is a constant, so the optimal

solution will not change. With a slight modification, this can be viewed as the well-

known problem of capacity maximization of parallel Gaussian channels. Specifically, we

now consider ni + yi as the average power of background noise in bin i. In particular,

the optimal x∗ can be found using the Lagrange’s multiplier method. To maximize a

concave function f(x) subject to a number of constraints gi(x) ≤ 0, i = 1, 2, . . . ,M ,

the Karush-Kuhn-Tucker (KKT) conditions state that the optimal x∗ must satisfy the

following:

∂f(x)

∂xi
− λi

∂gi(x)

∂xi
|x=x∗ = 0, i = 1, 2, . . . ,M. (4.4)

Replacing f(x) =
∑N

i=1 log
(

1 + xi
ni+yi

)
for given ni and yi, g1(x) =

∑N
i=1 xi − PD

into Eq. 4.4 yields

xi + ni + yi = λ−1. (4.5)

Now, summing up the left- and right-hand sides over i, with the total noise power

PN =
∑N

i=1 ni, yields

λ−1 =
PD + PA + PN

N
. (4.6)

From Eqs. (4.5) and (4.6), the optimal strategy x∗ for the defender is

x∗i =
(PD + PA + PN )

N
− yi − ni, i = 1, 2, . . . , N. (4.7)

Next, from the attacker’s viewpoint, it will find y∗ that minimizes Eq. 4.3. Substi-
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tuting Eq. 4.7 into Eq. 4.3 yields the following:

p =

N∑
i=1

B log

(
1 +

xi
ni + yi

)
(4.8)

=
N∑
i=1

B log

(
1 +

PD+PA+PN
N − ni − yi

ni + yi

)

=
N∑
i=1

B log

(
PD + PA + PN

N

)

−
N∑
i=1

B log (ni + yi),

which is minimized when
∑N

i=1 log (ni + yi) is maximized. Now, using the Lagrange

method with µ as the multiplier yields

yi = µ−1 − ni, i = 1, 2, . . . , N. (4.9)

Summing the left- and right-hand sides of Eq. 4.9 yields

µ−1 =
PA + PN

N
.

Therefore, the optimal strategy of the attacker y∗ is

y∗i =
PA + PN

N
− ni. (4.10)

Since y∗i ≥ 0 is required, if from Eq. 4.10, y∗i < 0, then simply set y∗i = 0, ignore bin

i, and re-run the analysis with the remaining N − 1 bins. Repeat this process to obtain

a feasible solution. If J is used to denote the set of bin indexes used by the attacker

with cardinality |J |, and P JN denotes the amount of noise power in those bins, then y∗i
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can be expressed as

y∗i =


PA+P

J
N

|J | − ni, i ∈ J

0, otherwise.

(4.11)

Next, plug y∗ into the payoff expression Eq. 4.7 to find x∗i . If x∗i < 0, then set x∗i = 0

and ignore bin i. If K is used to denote the set of bin indexes used by the defender with

cardinality |K|, and PKN denotes the amount of noise power in those bins, then x∗i can

be expressed as

x∗i =


PD+PA+P

K
N

|K| − y∗i − ni, i ∈ K

0, otherwise.

(4.12)

Now, notice that |J | ≤ |K| ≤ N(see Remark 4). Then the following is obtained:

p∗ =
∑
i∈N

B log

(
1 +

x∗i
y∗i + ni

)
(4.13)

=
∑
i∈K

B log

(
1 +

x∗i
y∗i + ni

)
=

∑
i∈J

B log

(
1 +

x∗i
(PA + P JN )/|J |

)
+

∑
i∈(K\J)

B log

(
1 +

x∗i
ni

)
.
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When |J | = |K| = N ,

p∗ =
∑
i∈N

B log

(
1 +

x∗i
y∗i + ni

)
(4.14)

= NB log

(
1 +

PD
PA + PN

)
.

Now, by Proposition 2, maxx∈X miny∈Y f(x,y) = miny∈Y maxx∈X f(x,y); therefore,

the payoff of the defender is q∗ = p∗.

Remark 4. From Eq. 4.9, the optimal strategy for the attacker is essentially to try to fill

every bin so that they have equal power. When this is not possible for some bins, it omits

those bins and tries to make the power levels of the remaining bins equal. This strategy

follows our intuition since any attacker’s strategy that deviates from uniform distribution

on the power levels, by symmetry, would allow the defender to take advantage of it. Also,

note that in a low SNR scenarios where every frequency bin has low noise power compared

to the total power of the receiver, then |J | = N or the attacker will spread its power

over all the frequency bins. Finally, the bins that will be used by the attackers will be

those with the lowest noise power levels.

Fig. 4.2(a) illustrates two cases: (1) every frequency bin is used, and (2) some

frequency bins are not used in the attack. In both cases, it is noted that the jammer

tries to spread the power over the bins as evenly as possible. In turn, the defender also

tries to spread the power evenly over every bin. These are optimal strategies for both

cases.

Remark 5. In the real world, it is true that the jammer usually has limited information

about the channel. However, one should not take a myopic view that all information is
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secure. Communication parameters can be leaked through other means (e.g., espionage).

Furthermore, many educated guesses can be made about the satellite hardware and

algorithms since most of this information is public. The point is that a sophisticated

attacker, e.g., nation with large resources can potentially acquire this information. Thus,

there is a need to analyze the perfect information scenario, i.e., the worst case scenario for

the defender. Importantly, the existence of Nash equilibrium guarantees that the payoff

for the attacker under this perfect information scenario is the best it can ever hope

for. Thus, the defender can quantify the degree of damage for given communication

parameters.

4.3.2 Defender-Biased Game

In this game, the attacker does not know the strategy of the defender. On the other

hand, the defender knows the attacker’s strategy and it knows that the attacker does

not know its strategy. Being rational, the defender does not have to play the strategy

x∗ = argmaxx∈X miny∈]Y f(x,y), since the strategy x∗ is optimized for the worst case.

Indeed, by knowing the attacker’s strategy y, the defender can achieve a higher payoff

by playing the strategy as follows:

x∗ = argmaxx∈X

N∑
i=1

B log

(
1 +

xi
ni + yi

)
.

As previously derived in Eq. 4.7,

x∗i =
(PD + PA + PN )

N
− yi − ni, i = 1, 2, . . . , N. (4.15)

If x∗i < 0 for some i, then set x∗i = 0, ignore the frequency bin i, and re-run the
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Lagrange multiplier method for the remaining N − 1 frequency bins.

Now, consider the scenario when the attacker has no knowledge of the background

noise and the defender’s strategy. In this scenario, we propose the following:

Proposition 4. If the attacker has no knowledge of the background noise and the de-

fender’s strategy, then the defender’s optimal payoff is

q∗1 =

|K|∑
i=1

B log

1 +

PD+PKN
|K| − ni

ni + PA
N

,
where K is the set of bin indexes used in the optimal strategy x∗, |K| is the cardinality

of K, and PKN is the total noise power in |K| bins used by the defender.

Proof. Without any information regarding the SNRs of the frequency bins or the de-

fender’s strategy, by the principle of insufficient reasons, the attacker would spread its

power equally among N frequency bins by playing the strategy yi = PA/N . Conse-

quently, from Eq. 4.15, the defender will play the strategy that maximizes the payoff

given yi = PA/N as

x∗i =
(PD + PA + PN )

N
− PA
N

(4.16)

− ni, i = 1, 2, . . . , N.

=
PD + PN

N
− ni,

assuming that PD+PN
N −ni > 0. If for some frequency bin i, the positive power constraint

is not satisfied, then the defender will ignore frequency bin i and re-run the optimization

for the other remaining bins. Plugging in x∗ and yi = PA/N into the payoff function,
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the optimal payoff of the defender can be obtained as

q∗1 =

|K|∑
i=1

B log

(
1 +

x∗i
ni + PA

N

)
(4.17)

=

|K|∑
i=1

B log

1 +

PD+PKN
|K| − ni

ni + PA
N

.
.

Fig. 4.2(b) illustrates the power allocation of the jammer and the defender’s strate-

gies. In this scenario, the jammer simply allocates power uniformly at random over all

frequency bins. On the other hand, the defender will try to equalize the power across all

frequency bins as much as possible, given its power budget.

If the jammer does not know as much information as the defender, then it will not be

able to play the Nash equilibrium strategy correctly. Thus, the defender will be able to

take advantage of this and improve its own strategy to get a higher payoff. For instance,

if the attacker does not have the exact information of noise distribution of the frequency

bins, it randomly chooses some bins to allocate with more power, and other bins with

less. As a result, the defender will be able to allocate more power to those less-corrupted

channels and actually have a higher payoff. It turns out that, in the Defender-biased

scenario, it is actually reasonable for the attacker to split its power budget evenly. Both

our theoretical and simulation results show that a less-uniform noise channel (i.e, channel

whose distribution noise power on the frequency is far from uniform distribution in terms

of Kullback-Leibler (KL) distance will be more advantageous to the defender. That is,

if the attacker’s action makes the noise distribution over the channel less uniform, then

the defender gains by putting more of its power in the less-corrupted frequency bins.
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As a result, the defender gets a better payoff. Intuitively, without any knowledge of the

noise distribution, any non-uniform distribution of the attacker’s power will be unwise,

because it is very likely to bring more variance to the existing noise. A uniform power

distribution, however, at least does not increase the difference of each channel. These

cases are illustrated in Section 4.5.

The game with Perfect Information scenario and the game with Defender Biased

scenario are similar to the case of channel state information (CSI) being available at

both transmitter (TX) and receiver (RX) and the case of CSI being available at only

the RX in a multiple-input and multiple-output (MIMO) system. In this game, both

the defender and the attacker can apply the water-filling strategy simultaneously when

perfect information is available, whereas in the MIMO system, only the TX can apply

the water-filling assuming the known ocean bottom level (i.e., the attacker plus noise

level yi + ni known to the MIMO TX). In the Defender-Biased game, only the defender

can apply the water-filling strategy, whereas the attacker uses the equal power strategy.

This is similar to the MIMO without CSI at TX, where the TX uses the equal power

strategy because it has no information on the ocean bottom level.

4.3.3 Attacker-Biased Game

We now consider the Attacker-biased game. Here the attacker knows the defender’s

strategy, and it knows that the defender does not know its strategy. Similar to Section

4.3.2, suppose the defender uses a strategy x that is known to the attacker; then a

rational attacker will try to minimize the payoff, i.e., information rate using

y = argminy∈Y

N∑
i=1

B log

(
1 +

xi
ni + yi

)
.
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Since B is a constant, it is equivalent to minimizing the function

f(x,y) =

N∑
i=1

log

(
1 +

xi
ni + yi

)
. (4.18)

Using the Lagrange multiplier method, similar to Section 4.3.1 yields

xi
(ni + yi + xi)(ni + yi)

= λ. (4.19)

Letting zi = ni + yi and solving for zi yields

zi = ni + yi (4.20)

=
−λxi +

√
λ2x2

i + 4xiλ

2λ
.

Equivalently, the optimal strategy for the attacker is

y′i =
−λxi +

√
λ2x2

i + 4xiλ

2λ
− ni. (4.21)

However, we do not know λ. The following procedure is used to search for λ using an

upper and a lower bound computed as follows. First, we note that by summing the left-
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and right-hand sides of Eq. 4.19,

λ =

∑
i xi∑

i ((ni + yi + xi)(ni + yi))
(4.22)

≥ PD∑
i (ni + yi + xi)

∑
i (ni + yi)

(4.23)

=
PD

(PA + PD + PN )(PN + PA)
, (4.24)

where Eq. 4.23 is due to Schwartz’s inequality. Now an upper bound for λ can be found

as follows:

λ =

∑
i xi∑

i ((xi + ni + yi)(ni + yi))
(4.25)

≤ PD∑
i (ni + yi)2

(4.26)

≤ PD∑
i n

2
i +

∑
i y

2
i

(4.27)

≤ PD
(
∑
i ni)

2

N +
(
∑
i yi)

2

N

(4.28)

=
NPD

P 2
A + P 2

N

, (4.29)

where N is the number of the frequency bin used for jamming. We note that Eq. 4.28

is due to the well-known bound for l1-norm and l2-norm.

Next, an algorithm that performs the search for λ over these bounds is proposed.

For each value of λ, y′ is computed using inequality (4.21); then y′ is checked to see if

it satisfies all power constraints.

Proposition 5. Let f(λ) =
∑N

i=1 yi. Then f(λ) is monotonically decreasing in λ within

the interval specified by inequality (4.29) and inequality (4.24).

Proof. See Appendix C.
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Based on Proposition 5, a binary search algorithm with the complexity of log(n) can

be used to find λ efficiently, where n is the number of partition in the search space. In

our specific scenario, since we are searching for the right value of λ, if we want the value

of λ to be within ε of the optimal value, then we can set n = O(1/ε). The algorithm is

show in Algorithm 4:

Algorithm 4 Binary search for λ

while |PA − f(λ)| > ε do
if PA − f(λ) > 0 then
λupper = λ

else
λlower = λ

end if
λ = (λlower + λupper)/2

end while

Then, the best strategy for the attacker y′i can be found by Eq. 4.21.

4.4 Extension to Continuous Spread-Spectrum Jamming

In this section, we extend the satellite jamming attack settings from a setting consisting

of finite discrete frequency bins to the setting where signals are spread in a continuous

spectrum, i.e., an uncountable infinite number of frequency bins. In particular, we will

focus on the problem from the defender’s perspective in a Defender-biased game.
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4.4.1 Problem Formulation

To provide a brief background, we first consider the discrete time i.i.d. white Gaussian

channel modeled as:

ri = si + wi,

where wi ∼ N(0, σ2N ) denotes the noise with average power σ2N , si denotes the transmit-

ted signal, and ri denotes the received signal. Furthermore, we assume that

N∑
i=1

s2i ≤ NP,

where P denotes the average power of a transmitted signal. It is well-known that the

capacity for this channel is

C =
1

2
log

(
1 +

P

σ2N

)
.

Furthermore, the capacity is achieved when

si ∼ N(0, P ). (4.30)

Consequently, we also have

ri ∼ N(0, P + σ2N ). (4.31)

Now, we turn our attention to modeling the game. From the defender’s point of

view, the sum of the attacker signal and the background noise signal can be treated as

one single noise signal with the total power as

σ2N = PA + PN .
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The strategies of the defender and the attacker are no longer sets of discrete power

levels on each frequency bin. Rather, their strategies are to find the power spectrum of

their signal so that the payoff functions are maximized. Specifically, in a Defender-biased

game, if we denote the power spectral density of the defender and the total noise as S(ω)

and Z(ω), respectively, the defender intends to find S(ω) to maximize the following

payoff:

C =
1

2

∫ B/2

−B/2
log

(
1 +

S(ω)

Z(ω)

)
dω. (4.32)

4.4.2 Defender-Biased Game with Continues Spread-Spectrum

Proposition 6. To maximize the payoff described in Eq. 4.32, the power spectral density

of the defender S(ω) is

S(ω) = max(P + σ2N − Z(ω), 0),

where Z(ω) are the power spectral density of the total noise. Thus, the optimal payoff is

C =
1

2

∫ B/2

−B/2
log

(
1 +

max(P + σ2N − Z(ω), 0)

Z(ω)

)
dω.

Proof. Consider in the discrete case, the covariance matrices of the transmitted signal

si and the noise zi, which is sum of the attacker’s signal and noise signal. We will show

that these covariance matrices are directly related to the spectrum of the transmitted

and noise signals when N −→ ∞. Let s = {s1, s2, . . . , sN} be the vector denoting the

transmitted signal, z = {z1, z2, . . . , zN} be the vector denoting the sum of noise and

the attacker signal, and r = {r1, r2, . . . , rN} be the vector denoting the received signal.
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Then we have the following channel:

r = s + z, (4.33)

where zi may not be independent.

Given the covariance matrix Kzz of the noise signal, the defender will try to find the

covariance matrix Kss of the transmitted signal such that it maximizes the capacity. We

proceed as follows. We have

Kzz = E[zzT ]

Kss = E[ssT ].

Since Kzz is a symmetric matrix, performing eigenvalue decomposition yields

Kzz = QDQT ,

where D is a diagonal matrix, whose diagonal entries are non-zero eigenvalues, and Q is

the matrix whose columns are eigenvectors; thus, QQT = I. Next, multiplying Eq. 4.33

by QT yields

QT r = QT s + QT z. (4.34)
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Let w = QT z, then

Kww = E[wwT ]

= E[QT zzTQ]

= QTKzzQ

= D.

Therefore, wi are independent. We also note that the power constraint of the signal QT s

and s are the same since

tr(E[QT ssTQ]) = tr(QTKssQ) (4.35)

= tr(KssQQT )

= tr(Kss)

= NP.

Since wi are independent, based on the well-known capacity of additive white noise

channel (Eqs. (4.30) and (4.31)), each component of v = QT s must have independent

Gaussian distribution. Similarly, each component of the corresponding u = QT r must

also have independent Gaussian distribution. Using this condition, multiplying Eq. 4.34

by uT , and taking the expectation on both sides yields

E[uuT ] = E[(QT s + w)(QT s + w)T ] (4.36)

= QKssQ
T + Kww

= QKssQ
T + D.
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Thus,

Kss = QT (Kuu −D)Q. (4.37)

Since ui are independent, or Kuu is a diagonal matrix, choosing

Kuu =

(
P +

tr(D)

N

)
I,

yields tr(Kss) = NP , which satisfies the power constraint. Therefore, the optimal

transmitted signal s for the defender should have its covariance matrix as

Kss = QT

((
P +

tr(D)

N

)
I−D

)
Q.

Here we assume that the defender knows the covariance matrix of the sum of background

noise and the attacker, and thus can compute the optimal Kss.

Now, we turn our attention to the continuous spectrum. If z is wide-sense stationary,

then for N −→∞, the diagonal entries of D are indeed the power spectrum of z. Thus,

using the water-filling argument discussed in the previous section, the optimal spectrum

of s would be

S(ω) = max(P +W (ω)− Z(ω), 0),

where S(ω), W (ω), and Z(ω) are the power spectral densities of s(t), w(t), and z(t),

respectively. Note that W (ω) = σ2N . The corresponding optimal payoff (transmission

rate) is

C =
1

2

∫ B/2

−B/2
log

(
1 +

max(P +W (ω)− Z(ω), 0)

Z(ω)

)
dω.
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4.5 Simulation results

In this simulation, ten bins with an identical bandwidth of 3 kbps are used. Assume

that the defender can deliver -120 dBW at the satellite relay, and the jamming attacker

can deliver half of the power, i.e., -123 dbW. The total noise power is described by

SNR = PD/PN .

In a real-world scenario, the attacker can use any strategy it wants. However, the

attacker will inevitably do less damage to the defender with any strategy that deviates

from its Nash equilibrium strategy, one that assumes both defender and attacker have

perfect information about the game. To illustrate this point, Fig. 4.3 shows what

happens if one player decides to change to some other strategy. In this case, SNR

is fixed at 10dB, and noise distribution is quantified by the concentration index (CI).

One bin is randomly picked, and the CI indicates the average percentage of PN that

is confined in this specific bin. In this case, when N = 10, CI = 0.1 indicates a ”flat”

distribution, while a higher CI indicates a more highly-concentrated one. If the defender

decides to move to some other strategy while the attacker plays its NE strategy, the

defender reduces its payoff as shown by the red curve. Similarly, if the attacker changes

its strategy while the defender stays with its NE strategy, the payoff to the defender

becomes higher as shown by the green curve, i.e., the attacker reduces its payoff since

this is a zero-sum game. As a result, at the NE, both players have no motivation to

move to other strategies, and the payoff is shown by the blue curve.

Fig. 4.4 shows the payoff comparison for all scenarios. Five different scenarios are

considered here:

• Perfect information Nash equilibrium (NE)

• Defender-biased scenario with the attacker uniformly distributing its power (DB-
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U): Attacker distributes its power equally to each frequency bins.

• Defender-biased scenario with the attacker randomly distributing its power (DB-

R): Attacker distributes its power for each bin following the uniform distribution

in [0.25PAN , 1.75PAN ].

• Attacker-biased scenario (AB): Defender does not know the existence of the at-

tacker. As a result, the defender allocates its power by maximizing its capacity

only according to the noise distribution.

• Random scenario (R): Defender’s power allocation follows uniform distribution

[0.25PNN , 1.75PNN ], and the attacker’s power allocation follows uniform distribution

[0.25PAN , 1.75PAN ]

Comparing the DB-U and the NE scenario, the noise powers in the channels become

less uniform as the CI increases, and the defender will have more advantage since it can

adjust its power allocation accordingly. On the other hand, the attacker wants to make

the channel as even as possible in order to ”cancel out” the advantage of the defender.

As expected, Fig. 4.4 shows that in these two scenarios, the defender can obtain a

higher rate when the noise powers in the channels become less uniform. Furthermore,

the information rate in the Defender-biased scenario is always higher than that of the

Perfect Information scenario, as expected. The curve is flat when CI < 0.6, indicating

the filling effect introduced by the attacker. When the channel noise is more uniform

across the frequency bins, the attacker is able to fill the gap between channels with its

limited power budget. Thus, the defender’s gain stays constant by the attacker’s filling.

However, if the attacker has no idea about how the channel noise is distributed, an evenly

distributed jamming power will hardly decrease the extent of variation in power for each
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channel. As a result, in the DB-U case, the payoff keeps increasing as the CI increases.

Comparing the AB and the NE scenarios, it is assumed that the defender always

knows the channel conditions and distributes its power accordingly, but the defender

does not know the existence of the attacker. As the CI increases, the attacker becomes

more effective because of the increase in variation of power across the frequency bins.

The attacker can distribute power according to the defender’s action in order to achieve

optimality. However the attacker’s gain stops increasing at some value of CI. This is

because from this point on, both attacker and defender discard the most noisy channel,

and there will be no further change of variation.

Comparing the DB-U and DB-R scenarios, it is obvious that without the channel

condition, if the attacker decides to use a randomly distributed power allocation, then

the defender will be able to gain a large advantage. Even in the R scenario, where the

defender uses a random strategy instead of an optimized strategy, the attacker may still

get a payoff that is worse than the DB-U case. As we discussed in Section 4.3.2, this

result is not surprising. When the channel condition is not available, a random strategy

of the attacker will be very likely to make the noise distribution in the frequency bins

less uniform. As a result, the defender is able to take advantage of this and applies more

power on those less noisy bins. If the attacker allocates its power evenly, then it at least

will not increase the power differences in each bin.

Fig. 4.5 further illustrates the attacker’s ability to flatten the noise distribution

among the bins, thus eliminating the advantage of variation for defenders. In this case,

PA and PD are fixed, while the noise power increases from SNR = 12.5dB to 5dB.

In both the perfect information and Defender-biased scenarios, the overall performance

decreases as the SNR decreases. In Fig. 4.5(a), when the noise power is sufficiently

small (12.5dB), the attacker is able to fill the gaps, regardless of the channel condition
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variation. In this case, the defender has no benefit, even when CI is large. As the noise

power increases, the attacker will no longer be able to cover the variation at some points,

and the benefit of the defender happens earlier when CI increases. However, as shown

in Fig. 4.5(b), in the Defender-biased scenario, the attacker never flatten the channel.

As a result, benefits for the defender always exists.

Fig. 4.6 compares two different kinds of defender behavior in the Attacker-biased

case. A ”smart defender” distributes its power among the bins according to channel

conditions, while a ”non-smart defender” simply distributes power evenly. Notice that

the AB scenario defined above is actually a smart defender. The result is plotted when

CI = 0.2. It is interesting to see that in this specific scenario, a ”non-smart defender”

always performs better! When the ”smart defender” distributes the power according

to channel condition, the result is more varied. As a result, the attacker’s advantage

becomes even larger. In fact, Eq. 4.21 shows that for a ”non-smart defender”, the

attacker can do nothing more than ”flatten” the variation of the channel noise, which is

the same as in the perfect information case.

Fig. 4.7 shows the defender payoff when the noise distribution is fixed among ten

bins. In this case, 75% of the noise power is concentrated in three bins. As expected,

in all scenarios, performance increases as the SNR increases. At any SNR, the two

Defender-biased scenarios (DB-R and DB-U) always have better performance compared

to the other two. It is obvious that the DB-R scenario will provide more advantages to

the defender because of the extra variance due to the randomness of the attacker. The

NE scenario comes third, and the AB scenario is the worst. Differences among the DB-U,

NE, and AB scenarios decrease when the SNR increases. Given a fixed distribution of

noise across the bins, the absolute difference between a bad channel and a good channel

is small when the SNR is large. As a result, the defender/attacker does not have a huge
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benefit when given the information advantage, and their power is distributed almost

evenly at the end.

4.6 Summary

In this chapter, the FH satellite jamming attack is modeled as a zero-sum game. The

spread-spectrum attack is introduced, and the existence of NE is shown. Furthermore,

analytical results on the perfect information game, Defender-biased game, and Attacker-

biased game are provided. Both theoretical analysis and intuitions agree with the simu-

lated performance results of each scenario under different channel conditions.
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(a)

(b)

Figure 4.2: Optimal power allocations of defender and attacker: (a) Perfect Information;
(b) Defender-Biased.
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Figure 4.3: Illustration of Nash equilibrium
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Figure 4.5: (a) Defender payoff (rate) in perfect information scenario; (b) in Defender-
biased scenario.
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Chapter 5: Conclusion

A transmitter of a modern communication system often has access to more than one

mediums. In this thesis, we generalize the diversity available to the transmitters as

abstract channels, and present a smart scheduling framework that can be applied to

multiple application scenarios. Specifically, we present the in-depth study of three appli-

cation problems, designed and analyzed the optimal scheduling strategy for both indoor

packet delivery system and SATCOM communication system. Taking advantage of the

channel diversities, out presented algorithms are shown to have the ability to satisfy mul-

tiple users’ QoS requirements. First, for indoor packet delivery system, we show the DQ-

based packet scheduler progressively learns a good policy in real-time, based directly on

the available observations. Second, in the context of SATCOM, we proposed scheduler

is a low complexity randomized algorithm that multiplexes user data over multiple fre-

quencies and time slots to combat eavesdropping and environmental fading. Last, to

mitigate the jamming attack in a FH satellite communication system, we analyze the

behaviours of both attacker and defender in a game theory perspective.
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Appendix A: Proof of Proposition 1

The proof will be based on Chernoff bound. Let Rkij be a random variable denoting

the reward obtained by user k at time slot i and channel j. Since at each time slot i

and channel j, the probability of transmitting the data for user k is xkij , then Rkij is a

Bernoulli random variable:

Rkij =


rij with probability xk∗ij

0 with probability 1− xk∗ij

.

Let R̂kt = 1
t

∑t
i=1

∑c
j=1R

k
ij , and Xk

t = tR̂kt , we want to find an upper bound for

P

(
R̂kt < (1− ε)Rk

)
= P

(
Xk
t < t(1− ε)Rk

)
.

Using Chernoff bound, for any a, we have:

P

(
Xk
t ≤ a

)
≤ min

s>0

E(e−X
k
t s)

e−as
. (A.1)

Now,

E(e−X
k
t s) = E(e

−s
t,c∑
i,j
R̂kij

) = E(e−s(R
k
11+R

k
12+···+Rktc)).

Since Rij ’s are independent, we have:

E(e−X
k
t s) = E(e−sR

k
11)E(e−sR

k
12) . . .E(e−sR

k
tc). (A.2)
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Next,

E(e−sR
k
ij ) = e

− s
rij xk∗ij + 1− xk∗ij = 1− xk∗ij (1− e−srij ).

Using the well known inequality

e−x ≥ 1− x

and let x = xk∗ij (1− e−srij ), we have:

E(e−sR
k
ij ) ≤ e−x

k
ij(1−e

−srij ) ≤ ex
k∗
ij (e

−srkmin−1). (A.3)

From Eq. A.2 and Eq. A.3, we have:

E(e−X
k
t s) ≤ e(e

−srkmin−1)
∑t,c
i,j x

k∗
ij = e(e

−srkmin−1)µk . (A.4)

Now, using Eq. A.1, and let a = st(1− ε)Rkt , we have:

P

(
Xk
t ≤ s(1− ε)Rk

)
≤ min

s>0

E(e−X
k
t s)

e−s(1−ε)Rk
(A.5)

≤ min
s>0

e(e
−srkmin−1)µk

e−s(1−ε)Rk
. (A.6)

Taking derivative with respect to s of the right hand side of Eq. A.6 and set it to

zero, we have:

−rkminµkes−r
k
min + (1− ε)rkminµk = 0.

Or,

e−sr
k
min = 1− ε,
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s = − ln (1− ε)
rkmin

. (A.7)

Plug in the optimal s into Eq. A.6, we have:

P

(
Xk
t ≤ t(1− ε)Rk

)
≤ e−εµ

k

(1− ε)
(1−ε) Rk

rk
min

. (A.8)

Since

Rk =

t,c∑
i,j

xk∗ij rij ≤
t,c∑
i,j

xk∗i,jr
k
max = µkrkmax,

Replace Rk = µkrkmax in Eq. A.8, we have:

P

(
Xk
t ≤ t(1− ε)Rk

)
≤

(
e−ε

(1− ε)
(1−ε) r

k
max
rk
min

)µk
, (A.9)

which conclude the proof of part one of Proposition 1.

To prove Eq. 3.12 in Proposition 1, we use the Taylor series expansion of ln (1− ε):

ln (1− ε) = −ε− ε2

2
− ε3

3
− . . .

(1− ε) ln (1− ε) = −ε+
ε2

2
+ δ,

where δ is the sum of all positive terms. Hence,

(1− ε) ln (1− ε) ≥ −ε+
ε2

2
.

Thus,

(1− ε)
(1−ε) r

k
max
rk
min = e

rkmax
rk
min

(1−ε) ln (1−ε)
≤ e

(−ε+ ε2

2
)
rkmax
rk
min .
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Based on this and Eq. A.9, we have

P

(
Xk
t ≤ t(1− ε)Rk

)
≤

(
e
−ε+(ε− ε

2

2
)
rkmax
rk
min

)µk
.

Since µk increases with t, to be useful, we want

−ε+ (ε− ε2

2
)
rkmax
rkmin

< 0.

After a simple algebraic manipulation, this implies that

rkmax
rkmin

>
2

2− ε
,

and Eq. 3.12 follows.

To prove Eq. 3.13 in Proposition 1, we note that if rij = rj for all channel i, then

the optimal probability xk∗ij = xk∗1j since time does not matter. Consequently,

µk =

t,c∑
i,j

xk∗ij = t

c∑
j

xk∗1j = tλk.

Replacing µk = tλk in Eq. 3.12, Eq. 3.13 follows immediately.
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Appendix B: Proof of Proposition 2

Proof. It will be shown that the Hessian ∇2
xf(x,y) is a semi-definite positive matrix

(equivalently, its eigenvalues are greater than or equal to 0) for any given x; thus f(x,y)

is convex in y. Similarly, we will show that ∇2
yf(x,y) is a semi-definite negative matrix

(equivalently, its eigenvalues are less than or equal to zero) for any given y; thus f(x,y)

is concave in x. The proof of Proposition 2 immediately follows using Theorem 1.

First note that

∇2
xf(x,y) =



∂2f(x,y)
∂2y1

∂2f(x,y)
∂y1∂y2

. . . ∂2f(x,y)
∂y1∂yN

∂2f(x,y)
∂y2∂y1

∂2f(x,y)
∂2y2

, . . . ∂2f(x,y)
∂y2∂yN

. . . . . . . . .

∂2f(x,y)
∂yn∂y1

∂2f(x,y)
∂yn∂yN−1

, . . . ∂2f(x,y)
∂2yN

.



With f(x,y) = 1
2

∑N
i=1B log

(
1 + xi

ni+yi

)
,

∂f

∂yi
= − Bxi

2(ni + yi + xi)(ni + yi)

∂2f

∂yi∂yj
=


Bxi(2ni+2yi+xi)

2((ni+yi+xi)(ni+yi))2
i = j

0 i 6= j.

Since B and xi are greater than or equal to zero, ∇2
xf(x,y) is a diagonal matrix
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whose eigenvalues (diagonal entries) are greater than or equal to zero, or equivalently,

∇2
xf(x,y) is a semi-definite positive matrix.

Similarly, for a fixed y, it can be shown that

∂f

∂xi
=

B

2(ni + yi + xi)

∂2f

∂xi∂xj
=


− B

2(ni+yi+xi)2
i = j.

0 i 6= j.

Thus, ∇2
yf(x,y) is a diagonal matrix whose eigenvalues (diagonal entries) are less

than or equal to zero. Equivalently, ∇2
yf(x,y) is a semi-definite negative matrix.
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Appendix C: Proof of Proposition 5

Proof. From Eq. 4.21, f(λ) can be expressed as

f(λ) =
N∑
i=1

−λxi +
√
λ2x2

i + 4xiλ

2λ
− ni

 .

Denote

f(λ)i =
−λxi +

√
λ2x2

i + 4xiλ

2λ
− ni

=
−xi +

√
x2
i + 4xi/λ

2
− ni.

Then,

∂f(λ)i
∂λ

=
∂

∂λ

−xi +
√

x2
i + 4xi/λ

2
− ni


=

∂

∂λ

−xi +
√

x2
i + 4xi/λ

2


=

∂

∂λ


√

x2
i + 4xi/λ

2

 .
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It is obvious that
√

x2
i + 4xi/λ is monotonically decreasing in λ, that is

∂f(λ)i
∂λ

=
∂

∂λ


√

x2
i + 4xi/λ

2


≤ 0.

Thus,

∂f(λ)

∂λ
=

N∑
i=1

∂f(λ)i
∂λ

≤ 0




