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The last century has experienced a marked increase in emerging infectious disease 

(EID, hereafter) – jeopardizing human, domestic animal, and wildlife health. EIDs are 

commonly associated with spillover from one host species into a novel host species, with 

many destructive diseases, for both livestock and wildlife, emerging at the wildlife-

livestock interface. As global change continues to erode the boundaries between human 

and wildlife systems, it will become increasingly more important to understand the key 

components influencing host susceptibility as well as pathogen/parasite spread and 

persistence. 

However, understanding disease systems, especially within wildlife, is complex, 

as processes at multiple scales of biological organization are relevant to pathogen/parasite 

dynamics. At the within-host scale, pathogens interact with host cells and co-infecting 

pathogens, and these within-host dynamics affect host susceptibility, infectious period, 

and pathogen transmission potential. At the host population-level scale, heterogeneity 

across hosts as well as pathogen dispersal between hosts interacts with within-host 

processes to ultimately influence the distribution of infectious agents within-hosts, across 

hosts, and over time. Studying disease in natural systems enables researchers to observe 

the outcome of interactions of numerous multi-scale sources of variation and predict 



 
 

 

realistic parasite/pathogen dynamics. Ultimately, this work should enable the 

development of adaptive disease management. 

For my PhD dissertation, I explored how within-host patterns and processes 

inform population-level patterns in African buffalo (Syncerus caffer) of Kruger National 

Park (KNP), South Africa. Specifically, I studied infectious agents associated with two 

diseases that infect cattle and buffalo at the South African wildlife-livestock interface: the 

bovine respiratory disease complex and theileriosis. In Chapter 2, I found that 

evolutionarily conserved immune responses (i.e., non-specific inflammatory response) can be 

used to detect disease exposure without a priori knowledge of pathogen identity – a tool 

than can be further developed for EID surveillance. In Chapter 3, I weighed the effect of 

host traits, pathogen co-occurrence and environmental variability on probability of 

infection by viral and bacterial pathogens within the bovine respiratory disease complex 

as well as characterized temporal trends in pathogen incidence. I found that the 

importance of each factor was inconsistent across pathogens – co-occurrence was the best 

indicator of virus occurrence whereas host ID was the best indicator of bacterial 

infection. Importantly, I found that within-host dynamics only partially elucidated 

seasonal cycling in population-level disease dynamics. In Chapter 4, I developed 

molecular methods to quantify cryptic spatio-temporal variation in vector-borne, 

hemoparasite (Theileria: the etiological agent of theileriosis) assemblages of African buffalo. 

In Chapter 5, I used the high resolution data from Chapter 4 to describe the structure of 

Theileria assemblages within and across hosts, in both space and time. Chapter 5 uses novel 

analytical approaches to distill complex Theileria assemblages into functional groups based 

upon their life-history patterns. This characterization enabled me to estimate the relative 

importance of dispersal and host heterogeneity on distribution of these parasites thereby 

enabling me to predict efficacy and side-effects of vector-borne disease management tools. 
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CHAPTER 1: GENERAL INTRODUCTION 

Infectious agents that cause disease (parasites and/or pathogens) are key drivers 

behind ecological and evolutionary trajectories, and individual health outcomes, in 

animal and plant communities (Hudson, Dobson & Newborn 1998; Stearns 2016). 

However, anthropogenic alterations are quickly changing the impact parasites and 

pathogens have on an ecosystem. For instance, human encroachment on wildlife habitat  

(Hassell et al., 2017) and translocation of domestic animals (Wiethoelter et al., 2015) 

increases opportunities for infectious agents to spread to new host species and throughout 

new geographic locations. The human facilitated transfer of disease from livestock to 

wildlife, and vice versa, has repeatedly caused mass mortality and economic loss (e.g., 

Roeder, Mariner & Kock 2013; Loots et al., 2017). Thus, understanding how parasites 

and pathogens spread across, and persist within, natural systems, is critical in better 

predicting, and possibly managing, the impact of disease on wildlife populations as well 

as at the wildlife-livestock- human interface.    

However, understanding disease systems, especially within wildlife, is complex, 

as processes at multiple scales of biological organization are relevant to pathogen/parasite 

dynamics. At the within-host scale, pathogens interact with host cells and co-infecting 

pathogens (i.e., other strains and species simultaneously infecting the host (Johnson, de 

Roode & Fenton 2015), and these within-host dynamics affect host susceptibility 

(Gorsich et al., 2018), infectious period (Arafat et al., 2018), and pathogen transmission 

potential (Ezenwa & Jolles 2015), connecting within-host processes to population level 

disease dynamics. At the host population-level scale, behavioral, physiological and 

ecological heterogeneity across hosts, typically manifesting as proportion of hosts 

infected (prevalence) (White, Forester & Craft 2018), as well as pathogen dispersal 

between hosts (Craft 2015) interacts with within-host processes to ultimately influence 

the distribution of infectious agents within-hosts, across hosts, and over time.   

For my PhD dissertation, I explored how within-host patterns and processes 

inform population-level patterns in African buffalo (Syncerus caffer) of Kruger National 

Park (KNP), South Africa. I primarily examined how host physiology and within-host 

parasite/pathogen assemblage dynamics elucidate temporal variation in prevalence. My 
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PhD research was based upon two large field studies: Study (1) (used in Chapter 3) 

sampled a herd of 200 free ranging African buffalo every six months for four years; 

Study (2) (used in Chapters 2, 4, 5) sampled a herd of 65 semi-free ranging African 

buffalo every two-three months for two years. Study (2) awarded me the opportunity to 

live in KNP and participate in field sampling for ~ 1.5 years of my PhD. The unique, 

longitudinal nature of these studies was ideal for exploring multi-scale disease systems, 

as they enabled me to map individual and population level infection histories, revealing 

temporal patterns not discoverable with typical cross-sectional study designs. 

The advantage of using African buffalo of KNP for my dissertation research was 

two-fold: (i) African buffalo are a tractable model system to study foundational disease 

ecology and eco-immunology (Jolles, Beechler & Dolan 2014; Ezenwa & Jolles 2015; 

Ezenwa et al., 2019); (ii) African buffalo share a multitude of parasites/pathogens with 

cattle, thus, studying multi-scale disease dynamics in African buffalo unlocks avenues of 

research for adaptive disease management at the human-wildlife interface.   

The African buffalo is a model system for studying disease ecology and eco-

immunology as they can be tracked in naturally variable systems, allowing researchers to 

observe disease outcomes that would not occur in a laboratory or clinical setting (Jolles, 

Beechler & Dolan 2015). Furthermore, African buffalo are close relatives of domestic 

cattle, thus, disease diagnostics and immunological assays developed for cattle can be 

implemented in buffalo (e.g., Ezenwa & Jolles 2015; Gorsich et al., 2015; Henrichs et al., 

2016). Livestock are globally important for food and economic security, thus, there is a 

multitude of cattle disease diagnostics and immunological assays that can be used for 

African buffalo research (Jolles, Beechler & Dolan 2015).  

Kruger National Park (KNP), located in the top north-eastern corner of the 

country, is South Africa’s largest game reserve at 19,485 km2, and supports ~37,000 

buffalo (SANPARKS 2010-2011). African buffalo play important ecological roles as 

they are bulk grazers, opening up habitat for short-grass grazers (Prins 1996), and are 

prey species, particularly for lions (Owen-Smith & Mills 2008). The African buffalo is 

highly prized by the tourism industry throughout southern Africa (Michel & Bengis 

2012). However, central to this dissertation, the African buffalo is a reservoir host (i.e, a 

primary host that harbors a parasite/pathogen but shows little or no ill effects of infection) 
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for destructive livestock diseases (Michel & Bengis 2012). KNP borders many small-

scale farms where cattle are the primary source of household wealth / economic security 

(Sikhweni & Hassan 2013). Thus, understanding disease dynamics in buffalo is important 

for promoting the livelihoods of people surrounding KNP as well as easing tension, and 

thereby promoting wildlife conservation, at this human-wildlife interface.  

In chapter 2, I demonstrate how evolutionarily conserved immune responses (i.e., 

non-specific inflammatory response) can be utilized to detect emerging infectious 

disease. In chapter 3, I examine the relative effect of host traits, environment, and co-

infection on the within-host occurrence of upper respiratory infections (viruses and 

bacteria) associated with the bovine respiratory disease complex, a complex that is 

common and economically destructive in cattle (Taylor et al., 2010). I also characterize 

monthly and yearly trends in population-level disease dynamics (number of new cases 

per month: incidence) to evaluate if within-host patterns inform population-level patterns. 

In chapter 4, I develop diagnostic methods to describe community structure, both within- 

and among hosts, of blood-borne protists (Theileria) infecting African buffalo. African 

buffalo and cattle share the same Theileria species (3 species-clades) and subtypes (Mans 

et al., 2016), with African buffalo the purported reservoir host for Theilerias that cause 

significant economic loss at the wildlife-livestock interface (Norval, Perry & Young 

1992). African buffalo are typically co-infected with all three species-clades, with 

prevalence (proportion of animals infected) of each clade ranging from 65-100% in adult 

animals. In chapter 5, I identify potential processes structuring Theileria assemblages 

within and across hosts and identify how the meta-community ecology of Theileria in 

buffalo can be used to better understand Theileria co-existence in African buffalo as well 

as evaluate the efficacy of management practices in cattle surrounding KNP.  
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CHAPTER 2: DETECTION OF PATHOGEN EXPOSURE IN AFRICAN 

BUFFALO USING NON-SPECIFIC MARKERS OF INFLAMMATION 

Abstract 

Detecting exposure to new or emerging pathogens is a critical challenge to 

protecting human, domestic animal, and wildlife health. Yet current techniques to detect 

infections typically target known pathogens of humans or economically important 

animals. In the face of the current surge in infectious disease emergence, non-specific 

disease surveillance tools are urgently needed. Tracking common host immune responses 

indicative of recent infection may have potential as a non-specific diagnostic approach 

for disease surveillance. The challenge to immunologists is to identify the most 

promising markers, which ideally should be highly conserved across pathogens and host 

species, become upregulated rapidly and consistently in response to pathogen invasion, 

and remain elevated beyond clearance of infection. This study combined an infection 

experiment and a longitudinal observational study to evaluate the utility of non-specific 

markers of inflammation [NSMI; two acute phase proteins (haptoglobin and serum 

amyloid A), two pro-inflammatory cytokines (IFNγ and TNF-α)] as indicators of 

pathogen exposure in a wild mammalian species, African buffalo (Syncerus caffer). 

Specifically, in the experimental study, we asked (1) How quickly do buffalo mount 

NSMI responses upon challenge with an endemic pathogen, foot-and-mouth disease 

virus; (2) For how long do NSMI remain elevated after viral clearance and; (3) How 

pronounced is the difference between peak NSMI concentration and baseline NSMI 

concentration? In the longitudinal study, we asked (4) Are elevated NSMI associated 

with recent exposure to a suite of bacterial and viral respiratory pathogens in a wild 

population? Among the four NSMI that we tested, haptoglobin showed the strongest 

potential as a surveillance marker in African buffalo: concentrations quickly and 

consistently reached high levels in response to experimental infection, remaining elevated 

for almost a month. Moreover, elevated haptoglobin was indicative of recent exposure to 

two respiratory pathogens assessed in the longitudinal study. We hope this work 

motivates studies investigating suites of NSMI as indicators for pathogen exposure in a 

broader range of both pathogen and host species, potentially transforming how we track 

disease burden in natural populations. 
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2.1 Introduction 

Emerging infectious diseases cause human suffering (Shears & Dempset 2015, 

Kelser 2016), threaten food security (Vurro, Bonciani & Vannacci 2010), and contribute 

to the decline of vulnerable populations and species (Genton et al, 2012). As such, in the 

face of elevated rates of infectious disease emergence in humans (Brierley et al., 2016, 

Meyer et al., 2016), domestic animals (Openshaw et al., 2016) and wildlife (Adlard et al., 

2015, Ingersoll et al., 2016, Price eta al., 2016), effective surveillance for pathogen 

exposure is increasingly important. 

Surveillance for emerging infections is challenging because it requires detection 

of previously unreported infectious agents, and/or diagnosis of exposure or infection in 

understudied animal species. Indeed, animals are hosts to hundreds of pathogens and 

parasites (Pérez et al., 2006) with previously unidentified species regularly documented 

(Blackwell 2011, Woolhouse et al., 2012, Rodicio et al., 2004). Yet, available disease 

diagnostics typically target known infections that cause detectable pathology in humans 

or economically important domestic animals resulting in a relatively narrow range of tests 

that are highly pathogen specific. Common molecular techniques to detect pathogens 

include tests that detect genetic material of the pathogen itself and antibody-based 

diagnostics that detect the host’s antibodies to a given pathogen. Advancing sequencing 

methods show promise for simultaneously detecting a wider range of pathogens (Metzker 

2010, Petti 2007) but, while genetically based techniques often have high sensitivity and 

specificity, they are limited to detection of active infections. Many infections last only a 

few days and thus may escape detection unless sampling can occur on a tight time frame. 

Most importantly, diagnostic techniques based on amplifying pathogen genetic material 

still require pathogen specific primers and/or previous publication of genetic sequences 

and are, thus, unsuitable in situations where the identity of the pathogens are uncertain. 

Antibody-based techniques, such as enzyme-linked immunosorbent assays or 

immunofluorescence assays, offer a way to detect infection after pathogen exposure has 

occurred because antibody titers to many infections can remain elevated for months to 

years after primary infection (Guerrant, Walker & Weller 2011). However, antibody-

based techniques typically used in disease diagnostics are highly pathogen specific, 

which limits their utility in detecting novel infections. 
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An ideal diagnostic approach for monitoring (often unknown) infections in natural 

populations would complement existing genetic and antibody techniques by detecting the 

presence of pathogens non-specifically, using immunological markers that indicate recent 

presence of infection. Ideal markers should increase rapidly and reliably in response to a 

broad range of pathogens and remain elevated for a consistent period after active 

infection has subsided. A test that detects exposure both early in infection, as well as past 

pathogen clearance, could aid in monitoring population health and improve surveillance 

for emerging infections. 

Here, we suggest that non-specific markers of inflammation (NSMI hereafter) 

have potential for use in detecting pathogen exposure in natural populations. NSMI 

include APP [this study: haptoglobin, serum amyloid A (SAA)] and cytokines (here: 

TNF-α, IFNγ). APP are an integral part of the acute inflammatory response to pathogen 

exposure and engage in opsonization of pathogens and scavenging of toxic substances 

(Ceciliani et al., 2012). SAA is produced by the liver after acute phase induction by pro-

inflammatory cytokines; its main functions include binding cholesterol from 

inflammation sites, modulating the function of innate immune cells, and opsonizing 

pathogens for destruction by immune cells (Ceciliani et al., 2012). Haptoglobin binds 

hemoglobin, which prevents oxidative damage and deprives bacteria of iron needed to 

grow (Ceciliani et al., 2012). Cytokines are small “messenger” proteins secreted by 

immune cells to mediate the immune response. TNF-α is a primary signaling molecule in 

systemic inflammatory reactions and is a vital component of the acute phase response; 

IFNγ is a key signaling molecule in clearance of intracellular pathogen infections 

(Murphy 2011). 

We combined an infection experiment and a longitudinal observational study to 

evaluate the utility of these four NSMI as indicators of pathogen exposure in a wild 

mammalian species, African buffalo (Syncerus caffer) (Figure 1). Specifically, in the 

experimental study we asked (1) How quickly do buffalo mount NSMI responses upon 

challenge with an endemic pathogen, foot- and-mouth disease virus (FMDV); (2) For 

how long do NSMI remain elevated after viral clearance; and (3) How pronounced is the 

difference between peak NSMI concentration and baseline NSMI concentration? In the 

longitudinal study, we asked (4) Are elevated NSMI associated with recent exposure to 
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seven bacterial and viral respiratory pathogens, in a natural host population? 

 

2.2 Methods 

African buffalo (Syncerus caffer) included for this study were located within 

Kruger National Park (KNP), a 19,000 𝑘𝑚2 reserve located in northeastern South Africa. 

Two populations were used for the study: (1) 12 1- to 2-year-old bovine tuberculosis (BTB) 

and FMDV free wild-caught buffalo obtained from Hluhluwe iMfolozi Park and 

transferred to the Skukuza State Veterinary enclosure (FMDV experiment buffalo, 

hereafter); (2) a herd of 60–75 wild buffaloes, of mixed age and sex, contained within a 

900-ha enclosure near Satara camp in the central area of KNP (cohort buffalo, hereafter) 

(Figure 2.1). The first population was used in a FMDV challenge experiment identifying 

triggers of FMDV transmission and tracing viral evolution; the second population is part 

of an ongoing observational study identifying drivers of FMDV dynamics. The study was 

conducted under South Africa Department of Agriculture, Forestry and Fisheries Section 

20 permits Ref 12/11/1 and Ref 12/11/1/8/3, ACUP project number 4478 and 4861, 

Onderstepoort Veterinary Research Animal Ethics Committee project number 100261-Y5, 

and the Kruger National Park Animal Care and Use Committee project number 

JOLAE1157-12 and JOLAE1157-13. 

 

2.2.1 Field sampling 

 

2.2.1.1 FMDV experiment buffalo 

Foot-and-mouth disease virus is an endemic viral infection of cloven-hoofed 

ungulates, with African buffalo acting as the maintenance host (Vosloo et al., 2017). 

Briefly, 12 buffalo were exposed to FMDV (day 2) by allowing them to mix with recently 

infected [via injection, using protocols optimized previously for buffalo: Maree et al. 

(2016)] animals. All 12 recipient animals were sedated on days 2, 4, 6, 8, 11, 14, and 30 

days post FMDV exposure to allow for collection of blood samples for quantification of 

NSMI and FMD viremia. Immobilizations were conducted by South African State 

Veterinarians using standard protocols for buffalo (McKenzie 1993). Blood was collected 
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via jugular venipuncture directly into vacutainer tubes with (plasma, whole blood) or 

without (serum) heparin, and stored on ice for transport back to the laboratory. Immediately 

upon arrival at the laboratory, blood was centrifuged at 5000 × g for 10 min; plasma and 

serum pipetted off the cellular layer into sterile microcentrifuge tubes and stored at −80°C 

until analysis. In addition, 1.5 ml of whole blood, collected in tubes with heparin, was 

aliquoted into separate, sterile microcentrifuge tubes and incubated at 37°C for 72 h. After 

72 h, plasma was pipetted off the cellular layer and stored at 4°C until cytokine analysis 

24–72 h later (Ezenwa & Jolles 2015). Samples collected within 3 days of each other were 

all processed on the same cytokine assay; therefore, samples collected 3 days prior to 

running the assays were stored at 4°C for 72 h, samples collected 2 days prior to running 

the assays were stored at 4°C for 48 h and samples collected 1 day prior to running the 

assays were stored at 4°C for 24 h. 

 

2.2.1.2 Cohort buffalo 

Cohort buffalo were originally captured in 2001 from the North of KNP and have 

been maintained since then in the enclosure as a BTB free breeding herd. During our study 

period (2014–2016), the herd included 65–70 animals. Natural births and deaths occurred 

during the study, leading to a total of 77 individuals included in analyses. 

The enclosure is entirely within KNP and has numerous other wild animals typical 

of the ecosystem (e.g., giraffes, zebra, warthogs, small mammals, and small predators). 

However, the enclosure excludes megaherbivores (rhino, hippo, elephant) and large 

predators (lion, leopard). Cohort buffalo graze and breed naturally and find water in 

seasonal pans and manmade (permanent) water points. In extreme dry seasons, 

supplemental grass and alfalfa hay are supplied. 

Cohort buffalo were caught every 2–3 months from February 2014 to February 2016, 

totaling 10 capture periods. To sample, buffalo were herded into a capture corral, separated 

into groups of 4–10 animals, and sedated. Buffalo that evaded corral capture were darted 

individually from a helicopter. Sedation procedures are outlined in Couch et al. (2017). 

Animals were released from the capture corral within 1–5 days after captures. 

The animals’ sex was determined visually. Age was determined by a combination 

of incisor wear and tooth emergence for animals older than 2.5 years, and via body size 
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and horn growth in younger calves, as described in Jolles, Cooper & Levin (2005). Body 

condition was determined by assigning a score from 1 to 5 based on manually palpating 

four sites (ribs, hips, spine, and tail base); average score was used in all analyses (Ezenwa, 

Jolles & O’Brien 2009). At each capture period, blood was collected and processed 

identically to FMDV experiment procedures, with the addition of serum being stored for 

analysis of exposure by respiratory pathogens. 

 

2.2.2 Laboratory methods 

Foot-and-mouth disease virus qRT-PCR and respiratory pathogen ELISAs were 

run using serum samples. NSMI markers were quantified using plasma samples; cytokine 

assays were run using incubated plasma samples (outlined in field methods section) 

whereas haptoglobin and SAA assay were run using non-incubated plasma samples. 

 

2.2.2.1 FMDV experiment buffalo 

The number of FMDV RNA genome copies per ml of serum, expressed as log10, 

was measured using quantitative qRT-PCR methods outlined in Ref. (Maree et al., 2016). 

Buffalo were considered to have an active viral infection if genome copies per ml of serum 

were >3.2 log10. Thus, one individual was removed from the study as serum qRT-PCR 

results never exceeded >3.2 log10 genome copies/ml of serum. 

Non-specific markers of inflammation were measured via sandwich ELISA per 

manufacturers’ instructions (Haptoglobin: Life Diagnostics 2410; Serum amyloid A: Life 

Diagnostics SAA-11; TNF-α: Ray-Bio ELB-TNFa; IFNγ: Bio-Rad MCA5638KZZ). All 

NSMI ELISAs were run within 1 month of collection. Importantly, FMDV experimental 

buffalo were monitored for exposure to seven common respiratory pathogens, however, no 

animals seroconverted during the experiment. Pathogens tested for, and methods used to 

estimate seroconversion are identical to methods outlined below (Methods, laboratory 

methods, cohort buffalo). 

 

2.2.2.2 Cohort buffalo 

Identical to the FMDV experiment, APP were measured via sandwich ELISA per 

manufacturers’ instructions (Haptoglobin: Life Diagnostics 2410; Serum amyloid A: Life 
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Diagnostics SAA-11; TNF-α: Ray-Bio ELB-TNFa; IFNγ: Bio-Rad MCA5638KZZ). 

Seroconversion, a proxy for incidence, of seven common viral and bacterial 

respiratory pathogens (Figure 1) was measured for each capture period via sandwich 

ELISAs per manufacturers’ instructions [Adenovirus (AD-3), parainfluenza virus (Pi-3), 

bovine herpes virus, Mannheimia haemolytica (MH), Mycoplasma bovis (MB): Bio-X 

IPAMM; bovine diarrhea virus (BVDV): Bio-X BVDV; bovine respiratory syncytial virus: 

Bio-X BRSV]. Samples were considered positive for pathogen antibodies if antibody titers 

exceeded threshold absorbance values calculated using the quality control procedures 

outlined in each Bio-X kit. Incidence was calculated as a binomial variable. Incidence was 

assigned a 1 if an animal seroconverted from t0 to t1 (i.e., absorbance values were below 

threshold concentrations at t0 but above threshold absorbance at t1) and 0 if the animal had 

not seroconverted. 

With the exception of SAA, all NSMI and respiratory pathogen ELISAs were run 

within 2 weeks of capture periods. All SAA ELISAs were run in September 2016. 

 

2.2.3 Mathematical & statistical analyses 

 

2.2.3.1 FMDV experiment buffalo 

Mathematical modeling was carried out using R [R Core Team (R version 3.2.3)]. 

To evaluate the response of each NSMI to FMDV infection, we calculated (i) the time to 

NSMI peak from initial FMDV exposure (i.e., from the first day FMDV serum genome 

copies/1 ml of serum >3.2 log10), and (ii) the period for which NSMI remained elevated 

after the host cleared the virus. In addition, mean peak concentration and baseline 

concentration were calculated for each NSMI. 

The period for which NSMI remained elevated past viral clearance was calculated as 

follows: first, an exponential decay curve Eq. 1 was fit starting from peak NSMI 

concentration (Figure 1): 

 

𝑦 = 𝑎𝑒𝑘𝑡 .                                                                 Eq. 1 
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Next, decay rate (k) and intercept (a) were extracted from individual exponential 

decay equations, and baseline NSMI (yBL) levels were estimated from averaging day-2 

and day-14 NSMI concentrations. The time when NSMI returned to baseline levels after 

their peak, (tBL), was calculated using Eq. 2: 

 

𝑡𝐵𝐿 =
log(𝑦𝐵𝐿)−log(𝑎)

𝑘
.                                                               Eq. 2 

 

 Time at viral clearance (tvc) was assigned based on the first-day FMDV genome 

copies dropped below 3.2 log10/ml of serum after initial incidence. Days’ NSMI was 

elevated past viral clearance which was calculated by Eq. 3: 

 

𝑡𝑁𝑆𝑀𝐼𝑒𝑙𝑒𝑣𝑎𝑡𝑒𝑑𝑓𝑟𝑜𝑚𝑉𝐶 = 𝑡𝐵𝐿 −𝑡𝑉𝐶 .                                           Eq. 3 

 

Animals in which the NSMI concentration did not exceed twofold baseline levels were 

determined not to have mounted that particular NSMI response and removed from future 

analysis (for that NSMI). If NSMI concentrations did not peak until 30 days post FMDV 

challenge these animals were removed from the analysis as their exponential decay curve 

would have been fit to only one data point. Final sample sizes included in each NSMI 

analysis are included in Table 2.1. 

NSMI concentration by day is presented in Figure A1. 

 

2.2.3.2 Cohort buffalo 

Statistical analyses for cohort buffalo were performed in R using lme4 (Bates et 

al., 2015) and lmerTest (Kuznetsova, Brockhoff & Christensen 2016). 

Mixed effects logistic regressions were used to evaluate the effect of NSMI on 

respiratory disease incidence. Multiple samples per individual were used for all analyses, 

thus Animal ID was included as a random intercept to avoid pseudo-replication. Host 

traits (body condition, age, sex) and season may influence respiratory disease incidence 

(McNulty 2015); therefore, they were included as fixed effects within each model. A 

model was run for each combination of respiratory pathogen × NSMI (mixed effects 



15 
 

 
logistic regression model example Eq. 4): 

 

𝑙𝑜𝑔𝑖𝑡{𝑃(𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝑖𝑗 = 1|𝑁𝑆𝑀𝐼1𝑗 , 𝑏𝑜𝑑𝑦𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛2𝑗 , 𝑠𝑒𝑥3𝑗 , 𝑎𝑔𝑒4𝑗 , 𝑠𝑒𝑎𝑠𝑜𝑛5𝑗 , 𝜀𝑗)} =

𝛽0 + 𝛽1𝑁𝑆𝑀𝐼 +𝛽2𝑏𝑜𝑑𝑦𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 +𝛽3𝑠𝑒𝑥 +𝛽4𝑎𝑔𝑒 +𝛽5𝑠𝑒𝑎𝑠𝑜𝑛 +𝜀𝑗.                 

Eq.4 

 

where 𝜀 j ~ N (0, ψ) represents Animal ID as a random intercept. The association 

of NSMI with respiratory disease incidence was evaluated post seroconversion. Our 

models asked whether prior disease incidence between [t0 and t1] was associated with 

elevated NSMI at t1. Thus, each model was run with explanatory variables corresponding 

to the t1 time step, and disease incidence measured for the preceding capture interval. 

Haptoglobin and SAA spanned several orders of magnitude and were severely 

right skewed, thus were log2 transformed to increase model stability and avoid issues 

with influential data points. 

To prevent errors that can arise from multiple testing, statistical significance of 

each dependent variable was defined using significance levels corrected via the 

Benjamini and Hochberg’s false discovery rate controlling procedure (Benjamini & 

Yekutieli 2001). Benjamini and Hochberg’s false discovery rate controlling procedure 

assigns a significance level based upon rank of p-value within the family of tests; 

therefore, the particular significance level for each model is specified within Table 2.2. 

The test statistic and resulting p-value were calculated using Satterthwaite’s 

approximation of degrees of freedom (Kuznetsova, Brockhoff & Christensen 2016). 

For significant associations between pathogen incidence and NSMI, average 

marginal predicted probabilities for given levels of NSMI concentration and area under 

the curve (AUC) were calculated using R packages lme4 (Bates et al., 2015) and pROC 

(Xavier et al., 2011). Marginal predicted probabilities were calculated using models 

described in Eq. 4. 1,000 marginal predicted probabilities of pathogen incidence were 

calculated for 100 fixed values of NSMI and randomly selected (from the data) values of 

age, sex, body condition, season, and animal id. Average marginal predicted probability 

and 95% confidence intervals for pathogen incidence were then constructed from the 
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1,000 values calculated for each fixed NSMI concentration. AUC, or the area under the 

receiving operating characteristic curve, is a standard diagnostic analysis used to measure 

how well a parameter can distinguish between two diagnostic groups based upon the 

specificity (true negative rate) and sensitivity (true positive rate) of the test. 

 

2.3. Results 

2.3.1 FMDV experiment buffalo 

Buffalo mounted robust NSMI responses to FMDV infection, as evidenced by 

differences between mean peak and baseline NSMI concentrations (Table 2.1; Figure 

2.2). 

The mean time from FMDV incidence to peak NSMI concentration was 3–7 days 

for all NSMI (Table 2.1; Figure 2.3). On average, viral clearance occurred at 4.72 (±0.20) 

days after initial FMDV infection (i.e., the first-day FMDV RNA copies >3.2 log10/ml of 

serum). Haptoglobin remained elevated for the greatest number of days past viral 

clearance (21 days on average), with the lowest interindividual variation in time elevated, 

followed by IFNγ, SAA, and TNF-α (Figures 2.1 & 2.3; Table 2.1). 

All individuals showed increases in haptoglobin, SAA, and IFNγ, however, only 

3/11 contact buffalo mounted detectable TNF-α responses. Haptoglobin displayed the 

greatest difference in mean peak and baseline concentration, followed by SAA, IFNγ, and 

TNF-α. 

 

2.3.2 Cohort buffalo 

For each NSMI, we tested whether elevated levels of the marker were indicative 

of infection by a range of respiratory pathogens during the preceding 2–3 months. 

Haptoglobin was a significant indicator of two respiratory pathogens: MB and Pi-3 

(Table 2.2; Figure 2.4). After controlling for animal traits and season, for every twofold 

increase in haptoglobin there was a 21% increase in the odds of prior MB incidence and a 

13% increase in the odds of prior Pi-3 incidence. As expected for NSMI, the sensitivity 

and specificity of haptoglobin as a marker of each particular pathogen was significant 

(Lower CI of AUC > 0.5) but moderate. The AUC for haptoglobin as a classifier of MB 

was 0.67 (95% CI 0.52–0.77) and Pi-3 was 0.586 (95% CI 0.53–0.64) (Figure 2.5). 
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Although not significant by standards of the Benjamini and Hochberg’s false discovery 

rate controlling procedure, there was suggestive evidence (p-value <0.05) that IFNγ was 

an indicator of MB incidence (Table 2.2). For every unit increase in IFNγ, there was an 

11% decrease in the odds of prior MB incidence 

 

2.4. Discussion 

Mitigating disease outbreaks and identifying pathogen presence is crucial in 

evaluating ecosystem health (Preston et al., 2016, Polley 2005), creating effective 

wildlife conservation plans (Hear et al., 2013, Thompson, Lymbery & Smith 2010, 

Smith, Sax & Lafferty 2006) and improving global health (Macpherson 2013, Colwell, 

Dantas-Torres & Otranto 2013). Current techniques to detect pathogen exposure are 

primarily limited to (1) tests that are highly specific to both pathogen and host, and (2) 

pathogens that cause detectable pathology in humans and economically important 

animals; yet, the diversity of pathogen communities in natural populations is only 

beginning to be uncovered (Anthony et al., 2013, Bailey et al., 2016) with specific 

diagnostic tools for novel infections generally unavailable. 

Given the current surge in infectious disease emergence (Jones et al., 2008), new 

diagnostic approaches, which can detect diverse pathogens, over an extended time frame 

within a broad range of hosts, are urgently needed. Our study demonstrates a possible 

approach to detecting infections non-specifically, using inflammatory markers. 

Despite the overwhelming diversity of pathogen species that can infect a given 

host, early stages of immunological response are considered evolutionarily conserved, 

and primary defenses are similar for a diversity of pathogens (Mogensen 2009) within 

many hosts (Rowley 1996). Consequently, tracking first-line immune response has 

potential as a non-specific diagnostic approach for monitoring the burden of disease in a 

population of interest. Invertebrate and vertebrate hosts initially respond to pathogen 

challenge by mounting an inflammatory response (Rowley 1996). Due to the ubiquity of 

the inflammatory response, proteins upregulated during this initial stage of infection may 

hold promise as non-specific markers of pathogen exposure. 

In this study, we used experimental and observational approaches to explore the 

utility of four NSMI in detecting pathogen exposure. We included two APP (haptoglobin 
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and SAA) and two cytokines involved in inflammatory responses (IFNγ and TNF-α). 

Buffalo mounted quick and robust acute phase responses to experimental 

challenge with FMDV, with the magnitude of NSMI responses similar to those reported 

in cattle (Cray, Zaias & Altman 2009). We found that, in response to FMDV infection, 

haptoglobin remained elevated the greatest number of days past viral clearance with the 

smallest degree of interindividual variation. Haptoglobin reached peak concentrations 

within a week of FMDV incidence and remained elevated for more than 3 weeks past 

FMDV clearance. Elevated haptoglobin levels were, thus, detectable both during and for 

several weeks after FMDV infection. Complementary to this, we found in our cohort 

study that haptoglobin was a significant indicator of recent natural incidence by two out 

of seven viral and bacterial respiratory pathogens. 

Within the last 20 years, haptoglobin has been used to study inflammation in 

domestic animals (Cray, Zaias & Altman 2009) but has been more strongly associated 

with bacterial infections (Goodson et al., 1996). We found haptoglobin to be significantly 

associated with both a viral (Pi-3) and a bacterial (MB) pathogen. Abnormal haptoglobin 

concentrations have been found in cattle infected with FMDV (Höfner, Fosbery & 

Eckersall 1994, Stenfeldt et al., 2011) and Pi-3 (Rodrigues et al., 2015). All buffalo 

included in the experimental study mounted SAA and IFNγ responses to experimental 

FMDV infection within a week, however, on average, SAA remained elevated for just 

under 2 weeks and IFNγ remained elevated for just over 1 week. IFNγ was also a 

suggestive indicator of MB in our cohort study. TNF-α responses were detectable in one-

fourth of our experimentally FMDV-infected buffalo, were short-lived for animals that 

mounted a response, and showed no associations with respiratory pathogens we 

monitored in our cohort study. Our results for SAA and IFNγ, especially IFNγ, suggest 

potential of NSMI for disease monitoring. Perhaps, inflammatory cytokines, particularly 

TNF- α, responses are mounted quickly, either very localized or low in magnitude, and 

short lived because of the collateral damage they elicit (Graham, Allen & Read 2005, 

Sears et al., 2011). Haptoglobin contributes to “cleaning up” products of inflammation 

(Murphy 2011) and, thus, should cause significantly less immunopathology. The function 

of haptoglobin may, thus, explain the comparatively long lived, high magnitude 

responses we observed.  
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We found haptoglobin to be a significant classifier of MB and Pi-3, however, 

specificity would be considered low by veterinary and human medical diagnostic 

standards. Low specificity is expected, given that haptoglobin responds to multiple 

inflammatory processes including exposure to unknown pathogens, stress, trauma, and 

autoimmune disorders (Cray, Zaias & Altman 2009); and indeed, the goal here was to 

find non-specific markers indicative of pathogen exposure. Although sensitivity and 

specificity was low, and haptoglobin only detected two out of seven respiratory 

pathogens, our results are particularly encouraging because we are likely to be 

underestimating the true sensitivity of haptoglobin and other NSMI in the cohort study, 

due to the “mismatch” between capture interval (2–3 months) and NSMI response (e.g., 

haptoglobin: 3 weeks). This is likely caused by an increased number of false negatives—

animals that were exposed to a given pathogen, but had no detectable elevation in NSMI 

at time of capture. More frequent captures should thus improve the performance of NSMI 

in detecting pathogen exposures. In addition, using a combination of NSMI may help to 

tease apart sources of inflammation, allowing researchers to filter out non-infectious 

processes and improve test specificity. 

Our work points to the possibility of defining markers for non-specific disease 

surveillance but raises many new questions about discovering which combinations of 

markers can potentially work in different host species, and for detection of different 

suites of pathogens. For example, future research could investigate a broader range of 

cytokines, such as inflammatory cytokines, Il-6 and Il-1beta, and additional APP, such as 

fibrinogen or C-reactive protein, and negative APP such as albumin or transferrin. 

Dugovich et al. (2017) recently described the utility of natural antibodies (nAbs), 

antibodies that associate with the innate immune response and bind to multiple microbial 

agents, in assessing immunological status of desert bighorn sheep. In addition, in 

mammals, toll-like receptors (TLRs), proteins integral in recognition of infection, are 

highly conserved to recognize broad groups of pathogens (Takeda, Kaisho & Akira 

2003). As such, the utility of nABs and TLR expression as disease surveillance tools 

warrants future research. 

A systematic approach could follow host responses to pathogenic challenge, from 

pathogen recognition to inflammation, and define effectors that typify responses to 
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different groups of pathogens. Immunologists could potentially tailor NSMI panels for 

detecting different groups of parasites, such as hemoparasites or gastro-intestinal 

infections—and explore whether taxonomic relatedness of parasites, or similarity of 

infection sites are most important in selecting appropriate NSMI. 

Assays for APP and pro-inflammatory cytokines have been developed for 

domestic animals and laboratory model species, including cows, sheep, goats, horses, 

dogs, cats, mice, and rats. A handful of studies have used serum and urine based assays to 

monitor health and disease incidence in wildlife species including Grant’s zebra (Cray, 

Hammond & Haefele 2013), European mouflon (Smitka et al., 2015), Przewalkski’s 

horses (Sander et al., 2016), rhesus macaques (Krogh et al., 2014). As such, the tools for 

beginning to define panels of NSMI for disease monitoring, already exist for a broad 

range of mammalian host species. Due to the devastation that emerging infectious 

diseases have elicited in amphibian (Daszak et al., 1999) and marine invertebrate (Menge 

et al., 2016, Maynard et al., 2016) systems, identifying inflammatory markers that detect 

pathogen exposure in non-mammalian vertebrates and invertebrates could prove 

invaluable to conservation biologists. 

For NSMI that are stable in stored samples, such as frozen sera, the utility of 

NSMI could extend beyond current surveil- lance to include retrospective studies—

biobanks are a commonly available but underused resource for human, animal, and wild- 

life studies. Beechler et al. (2017) demonstrated that haptoglobin concentrations in stored 

serum remain stable for at least 4 years, and Hegemann et al. (2017) documented stability 

of haptoglobin, nAbs, and total immunoglobulins during extended storage, suggesting 

that undertaking retrospective evaluations of populations is a feasible and viable option 

for future studies. 

Developing non-specific diagnostic tools is essential to detect emerging infections 

in animal and human populations and effectively tracking the burden of infection in 

natural populations. In the face of the vast diversity of pathogens and host species, an 

approach that tracks conserved inflammatory responses to a range of infections may 

provide a tractable pathway toward recognizing changes in disease burden that can then 

be followed up with specific diagnostic testing. Our study on infections in African 

buffalo provides a proof of concept, showing that APP and/or pro-inflammatory 
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cytokines can provide useful information about pathogen exposures. It is our hope that 

this work will open opportunities for investigating suites of NSMI as indicators for 

pathogen exposure, potentially transforming how we measure disease in natural 

populations. 
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Table 2.1 Foot-and-mouth disease virus (FMDV) experiment: mean (±SE) baseline 

non-specific marker of inflammation (NSMI) concentration, peak NSMI 

concentration, days from FMDV incidence to peak concentration and days elevated 

from viral clearance for the FMDV virus. 

NSMI 

# buffalo 

that 

responded 

Baseline 

concentration 

(ng/mL) 

Peak concentration 

(ng/mL) 
Days to peak 

Days elevated 

post viral 

clearance 

    Mean S.E. Mean S.E. Mean S.E. Mean S.E. 

Haptoglobin 11 401.26 22.38 491890.80 22722.45 5.40 0.29 21.23 0.39 

Serum 

amyloid A 
11 273.46 20.02 13806.46 135.45 3.33 1.17 

11.18 2.66 

TNF-⍺ 3 0.88 0.45 3.18 1.61 6.67 0.19 7.75 2.56 

IFNγ 11 0.52 0.08 7.30 0.49 4.40 0.30 16.51 1.74 

Animals were considered to have mounted a NSMI response if NSMI concentration exceeded 2× baseline 

concentration after FMDV infection; with a total of 11 animals participating in the study. Days to peak was 

calculated by counting the number of days between the first day FMDV RNA copies exceeded 3.2 copies/5 

μl of serum and the day NSMI reached peak concentration. Days elevated from viral clearance was 

calculated by estimating the time it took for NSMI to return to baseline concentrations after viral clearance 

(when FMDV RNA copies were less than 3.2 copies/5 μl serum post FMDV incidence). If peak 

concentrations were only reached on day 30, animals were excluded from mean calculations of days to 

peak and days elevated from viral 

clearance. Notably, mean peak concentration for haptoglobin was approximately 1,226 times higher than 

mean baseline levels, 50 times higher for SAA, 14 times higher for IFNγ, and four times higher for TNF-α. 
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Table 2.2. Cohort study: results of logistic regression models examining the non-

specific markers of inflammation (NSMI) as indicators of recent (2–3 months) 

parasite exposure after accounting for body condition, sex, age, season, and animal 

id. 
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FDR significance levels are false discovery rate significance levels, which avoid issues for false positives 

that can occur when using multiple testing procedures. Bold values indicate statistically significant 

relationships. 

  

NSMI 
Pathoge

n 
             β         SE 

Test 

statistic 

FDR sig 

level 
p-value 

log2 (Haptoglobin) 

 BHV −0.06 0.04 −1.66 0.02 0.097 

 PI-3 0.12 0.04 3.21 0.01 0.001 

 BRSV −0.06 0.06 −1.03 0.04 0.656 

 BVDV −0.03 0.04 −0.79 0.03 0.431 
 AD-3 0.01 0.04 0.38 0.05 0.707 
 MB 0.19 0.06 3.18 0.01 0.001 

  MH −0.02 0.04 −0.59 0.04 0.554 

log2 (Serum amyloid A) 
 BHV −0.04 0.02 −1.95 0.01 0.05 

 PI-3            0.003 0.02 0.18 0.05 0.86 
 BRSV −0.03 0.03 −1.02 0.04 0.31 
 BVDV −0.1       0.08 −1.47 0.03 0.14 
 AD-3 0.01 0.02 0.61 0.04 0.54 
 MB 0.36 0.19 1.88 0.01 0.06 

  MH −0.05 0.03 −1.74 0.02 0.08 

TNF-α       

 BHV −0.19 0.31 −0.62 0.04 0.54 
 PI-3 −0.32 0.26 −1.23 0.01 0.22 
 BRSV −0.63 0.71 −0.88 0.02 0.38 
 BVDV −0.24 0.36 −0.68 0.03 0.50 
 AD-3 −0.10 0.21 −0.47 0.04 0.64 
 MB       0.28 0.23 1.19 0.01 0.23 

  MH −0.06 0.24 −0.27 0.05 0.78 

IFNγ       

 BHV −0.77 0.59 −1.32 0.03 0.19 
 PI-3 0.20 0.18 1.12 0.04 0.26 
 BRSV −3.63 2.19 −1.66 0.02 0.10 
 BVDV 0.17 0.15 1.19 0.04 0.23 
 AD-3 0.35 0.18 1.91 0.01 0.06 
 MB −2.23 1.03 −2.16 0.01 0.03 

  MH 0.27 0.29 0.13 0.05 0.90 
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Figure 2.1. A schematic illustrating the study design and analysis for the foot-and-

mouth disease virus (FMDV) experiment and cohort buffalo longitudinal study. The 

bar graph (cohort study, middle panel) depicts the number of new cases throughout the 

study period of seven respiratory parasites. The number of new cases of viral parasites 

are displayed in dark gray (ad3 = Adenovirus; bhv = bovine herpes virus II; brsv = 

bovine respiratory syncytial virus; bvdv = bovine viral diarrheal virus; pi3 = 

Parainfluenza virus), the number of new cases of bacterial parasites are displayed in light 

gray (mb = Mycoplasma bovis, mh = Mannheimia haemolytica). The line graphs (FMDV 

experiment, bottom panel) illustrate the exponential decay curve fit from day of peak 

NSMI concentration to day NSMI returned to baseline for each animal. All animals 

mounted haptoglobin, SAA, and IFNγ responses, however, only three animals mounted a 

TNF-α response 
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Figure 2.1 
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Figure 2.2. Foot-and-mouth disease virus experiment: mean baseline and peak 

NSMI. Y axes are log transformed for ease of visual comparison between non-specific 

markers of inflammation peak and baseline concentrations. Haptoglobin peak and 

baseline concentrations displayed the greatest difference and least variability followed by 

serum amyloid A (SAA), IFNγ, and TNF-α. The horizontal bands represent the 25, 50, 

and 75% quartiles whereas the vertical lines represent 1.5 times the interquartile range 

above the upper quartile and below the lower quartile, and dots represent outliers. 
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Figure 2.3 Foot-and-mouth disease virus experiment: time from first day of FMDV 

infection to peak non-specific markers of inflammation concentration and time 

NSMI remained elevated after viral clearance. On average, all NSMI concentrations 

reached peak in 3–7 days. Haptoglobin concentrations remained elevated the longest past 

viral clearance, with the least variability, followed by serum amyloid A (SAA), IFNγ, and 

TNF-α. Individuals where NSMI concentrations peaked on day 30 were excluded from 

calculations as this was thought to be due to a secondary infection. The horizontal bands 

represent the 25, 50, and 75% quartiles, whereas the vertical lines represent 1.5 times the 

interquartile range above the upper quartile and below the lower quartile, and dots 

represent outliers. 
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Figure 2.4 Cohort study: elevated haptoglobin was associated with Mycoplasma bovis 

(MB) and parainfluenza virus (Pi-3) exposure during the preceding 2–3 months. Y axes 

show average marginal predicted probabilities of pathogen incidence. Marginal predicted 

probabilities were calculated using models described in Eq. 4. 1,000 marginal predicted 

probabilities of pathogen incidence were calculated for 100 fixed values of NSMI and 

randomly selected (from the data) values of age, sex, body condition, season, and animal 

id. Average marginal predicted probability and 95% CI intervals for parasite incidence 

were then constructed from the 1,000 values calculated for each fixed NSMI 

concentration. Due to large seasonal variation, the lower confidence interval of MB is 

slightly higher than 0. 
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Figure 2.5 Cohort study: area under the curve (AUC) for detection of Mycoplasma bovis 

(MB) and Parainfluenza Virus (Pi-3) based on elevated haptoglobin. AUC, or the area 

under the receiving operating characteristic (ROC) curve, is a standard diagnostic 

analysis used to measure how well a parameter can distinguish between two diagnostic 

groups based on the specificity (true negative rate) and sensitivity (true positive rate) of 

the test. The gray line represents the trend the diagnostic parameter would follow if the 

AUC was equal to 0.5. The blue line represents the observed trend; the closer the curve 

follows the left and top border of the graph, the more accurate the test. If the blue line 

falls below the gray line (AUC < 0.5), it indicates that the test is not significantly better 

than random. 
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CHAPTER 3: FACTORS EXPLAINING VARIATION IN UPPER 

RESPIRATORY INFECTION IN A WILDLIFE HOST ARE DISTINCT 

DESPITE FUNCTIONAL SIMILARITIES AMONG PATHOGENS 

 

Abstract 

The dynamics of directly transmitted pathogens in natural populations are likely 

to result from the combined effects of seasonal variation in host physiological status, 

pathogen biology and interactions among pathogens within a host. Discovering how these 

factors work in concert to shape temporal variation in pathogen dynamics in natural host 

– multi-pathogen systems is fundamental to understanding population health. Here, we 

elucidate the effect of host trait and pathogen co-occurrence on within-host pathogen 

occurrence and relate findings to temporal trends in population-level disease dynamics 

(incidence) using one of the most comprehensive studies of co-infection in a wild 

population: a suite of seven directly-transmitted respiratory infections, all associated with 

the economically impactful bovine respiratory disease complex (BRDC), from a four-

year study of 200 free-ranging African buffalo (Syncerus caffer). Occurrence of upper 

respiratory infections was common among buffalo throughout the study. The strongest 

indicator of single-pathogen occurrence for respiratory viruses within our system was, in 

fact, pathogen co-occurrence. The strongest predictor for respiratory bacterial was host 

ID. We observed distinct seasonal peaks in incidence of four out seven pathogens and 

bovine-syncytial virus exhibited clear outbreak dynamics in our final study year. Co-

occurrence dynamics as well as a handful of host traits may explain these trends. 

However, we observed a large portion of unexplained variation in within-host occurrence 

suggesting that there are a number of other physiological, behavioral, environmental and, 

perhaps, higher-level processes influence temporal patterns in population level disease 

dynamics. Our study indicates new avenues of research for monitoring and managing 

BRDC, especially at this wildlife-livestock interface. 
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3.1 Introduction 

A central goal of epidemiology and disease ecology is to understand and predict 

the dynamics of infectious diseases in host populations. Work in these fields have 

emphasized the fundamental role of fluxes in the proportion of susceptible, infected, and 

recovered hosts in determining disease dynamics by reproducing the range of temporal 

patterns seen in nature ‒ from cyclic to endemic ‒ with elegantly simple models. 

However, beyond modelling general disease dynamic patterns, understanding temporal 

variation in disease incidence has remained challenging (Germann et al., 2006, Hall et al., 

2006).  

Even in the simplest case of direct pathogen transmission between hosts, temporal 

patterns in disease dynamics are likely to result from the interplay between variation in 

host behavior and physiology, and factors affecting pathogen viability outside the host. 

Contact patterns among hosts can change dramatically in response to seasonal 

fluctuations in aggregation (e.g., during breeding seasons) or changes in the distribution 

of resources (e.g., convening near water during dry periods), and this can drive variability 

in pathogen transmission. For example, rotavirus, measles and Streptococcus pneumoniae 

outbreaks have all been linked to aggregation of children during the fall school term (Fine 

& Clarkson 1982; Cook et al., 1990; Dowell et al., 2003). Likewise, raccoons (Procyon 

lotor) with clumped food resources had higher prevalence of directly transmitted 

parasites than those populations with dispersed resources (Wright & Gompper 2005). The 

availability of susceptible hosts may also change with seasonal or annual shifts in 

immune and reproductive status of hosts (Nelson & Demas 1996; Jolles, Beechler & 

Dolan 2015). For instance, outbreaks of ovine pneumonia in bighorn sheep (Ovis 

canadensis) tend to co-occur with the peak of the mating season in the fall (Cassirer et 

al., 2013). Finally, pathogen viability outside the host can change with humidity, 

temperature and exposure to UV radiation which allows risk forecasting based on 

meteorological information for some pathogens, such as cholera (Colwell 1996) and 

influenza (Lowen et al., 2007). 

Though less well understood, interactions among pathogens infecting the same 

hosts can add yet another layer of complexity to temporal patterns of disease 

transmission. For example, in human childhood diseases, temporary (i.e. quarantine) or 
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permanent (i.e. death) removal of hosts from the susceptible pool due to one pathogen, 

can slow transmission of a secondary pathogen, resulting in biennial disease cycles, 

instead of annual cycles that would be expected if the two pathogens were circulating 

independently (Rohani et al., 1998; Huang & Rohani 2006). Within a host, co-occurring 

pathogens can also interact either directly through competition for shared resources or 

indirectly through immune-mediated interactions (Graham 2008; Griffiths et al., 2011). 

Effects of these interactions on the transmission dynamics of one or both co-infecting 

pathogens have been demonstrated (Telfer et al., 2010; Beechler et al., 2015; Susi et al., 

2015; Gorsich et al., 2019); and in some cases co-infecting pathogens appear to equal or 

outweigh environmental and host factors in importance as predictors of infection (Telfer 

et al., 2010; Henrichs et al., 2016).  

Discovering how host, pathogen, and environmental factors interact to shape 

variation in infection risk in typical but complex multi-pathogen systems within hosts 

(Cox 2001; Pedersen & Fenton 2007) is fundamental to understanding population health 

in the context of rapidly changing environments and ultimately, to the development of 

adaptive disease management strategies. Yet, the breadth and depth of data needed to 

dissect the causes of multi-pathogen disease dynamics in natural populations are rarely 

attainable: longitudinal studies assessing multiple, potentially co-infecting pathogens, and 

detailed data on host physiological status across different seasons. 

Here we present such data from a four-year study of 200 free-ranging, female 

African buffalo (Syncerus caffer) in Kruger National Park, South Africa. Every six 

months, buffalo were captured, screened for seven directly transmitted respiratory 

pathogens (Table 3.1), and their physical and reproductive status evaluated (Table 3.2). 

Specifically, we monitored host factors that have been shown to correlate with disease 

susceptibility and contact frequency (body condition, reproductive status, age, herd 

association, co-infection (Rodwell, Whyte & Boyce 2001; Keeling & Rohani 2008; 

Gorsich et al., 2015)) in a population where half of the individuals were treated with an 

anthelmintic drug (Ezenwa & Jolles 2015).  

We ask: (1) What is the relative significance of host traits and pathogen co-

occurrence on within-host pathogen occurrence of seven respiratory pathogens and (2) do 
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host-traits and co-occurrence patterns elucidate monthly and annual population-level 

disease incidence?  

For our first question, we used a joint-species distribution model (JSMD) to 

partition the variance in disease occurrence associated with host traits (Table 3.2), 

variation and co-variation (pathogen co-occurrence) associated with sample, host ID, 

year. The pathogens we investigate are associated with the common, but economically 

destructive (Griffin 1997), bovine respiratory disease complex (BRDC) in cattle (Lillie 

1974). Within BRDC, viruses (Pi-3, AD-3, BVDV, BHV, BRSV) typically occur 

simultaneously within a host, or nearly so, and are then followed by bacterial infections 

(MH and/or MB) (Smith et al., 2019). Thus, we hypothesized that concomitant viral 

infection would explain the largest portion of variation in virus occurrence. We further 

expected that host traits associated with contact rates and networks (i.e., pregnancy and 

calf status (Swain et al., 2105), food availability via body condition (Spaan et al., 2019), 

herd association (Krause et al., 2015)) would explain a moderate but secondary portion of 

variance in virus occurrence.  

In BRDC, bacterial infections occur subsequent to viral infections, so we 

expected bacterial infections to be weak indicators of viral infections and vice versa. 

Though, we did expect some co-variacen between MH and pathogens known to 

significantly damage the respiratory tract, namely Pi-3, BHV, BRSV and BVDV ((Lopez, 

Thomson & Savan 1976; Rice et al., 2007; Srikumaran, Kelling & Ambagala 2007). 

Instead, we expected that host traits associated with immunocompetence (e.g., lactation 

(Mallard et al., 1998; Trillmich et al., 2020), poor body condition, and age-horn residuals 

(Ezenwa & Jolles 2008)) would explain the most variation in bacterial infection because 

the bacterial infections we studied here are typically commensal microbes that become 

virulent under stressful conditions.  

To answer our second question, we characterized monthly and yearly trends in 

pathogen occurrence to determine whether the results of our JSDM align with temporal 

variation in population-level disease dynamics, thereby corroborating the effects of 

seasonal variation on host traits. We hypothesized that if within-host pathogen occurrence 

was mostly predicted by variables that describe seasonally fluctuating behaviors or 

changes in immune status, such as body condition or reproductive status, then we would 
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observe similarly timed seasonal trends in population-incidence rates. For example, if we 

found a correlation between pathogen occurrence and body condition, which might 

indicate the importance of contact rates due to seasonal resource aggregation (Spaan et 

al., 2019), then we would expect peak occurrence during the wet season (November-

April). Likewise, if the JDSMs suggest a correlation between pathogen occurrence and 

pregnancy status or calf status (i.e. whether a female was caring for calf), then we would 

expect to see seasonal peaks in pathogen occurrence either before December or after 

January, respectively, because the main calving season is December – January.  

In absence of any clear markers of temporal variation in our JSDM, the temporal 

trend analyses may indicate the effects of variables that were not included in the initial 

JDSM. For example, our study design enrolled similarly-aged animals, so the range in 

age was small and the herds collectively aged. So, if we observed a sustained decline in 

pathogen occurrence it may indicate that as animals gain acquired immunity over time 

(Simon et al., 2015). Static host traits including herd (representing similar contacts and 

shared resources) and age-horn residuals (representing static host quality and immuno-

competence) may obscure any temporal trends in occurrence.  

 

3.2 Methods 

3.2.1. Study area  

 Kruger National Park (KNP) is located in the north-eastern corner of South 

Africa between 22.5 and 25.5°S, and 31.0 and 31.6°E (Supp fig 1). The area of the KNP 

is 19,485 km2, but since 2002, the area available to wildlife has effectively doubled due 

to the removal of fences between private game reserves in the west and Mozambique in 

the east. The population of African buffalo in the park is about 37,000 animals 

(SANPARKS 2010-2011). Our four-year project was restricted to buffalo in the southern 

KNP and took place between June 2008 and June 2012. 

On average, 84% of KNP’s total rainfall is concentrated between November to 

April (Zambatis 2003) with approximately 600 mm of rainfall per year in the southern 

KNP (Venter & Gertenbach 1986). The dry season typically occurs May – October.  

Rather than using calendar year in our analyses, we used rainfall year, hereafter referred 

to as “year,” with year commencing in November.  
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3.2.2. Sampling regime 

Young (2-5 years old), female African buffalo were captured as part of a study on 

parasite interactions in free-ranging buffalo (Ezenwa & Jolles 2015). The first 100 

buffalo were captured from the Lower Sabie herd between 23 June and 5 July, 2008 

(Figure B1). The second 100 buffalo were captured from the Crocodile Bridge herd 

between 1 and 8 October, 2008 (Figure B1). Buffalo were re-captured approximately 

every 6 months after this initial capture, through June 2012. Any buffalo that died or 

emigrated from the study area during the study period was replaced with an animal of 

similar age so that a near-constant sample size of 200 was maintained at each capture 

(sampling design is explained in detail in Spaan et al., 2019).  

 

3.2.3. Sample and data collection 

Buffalo were located and identified via radio-collars (7 GPS collars to locate 

herds, 193 VHF collars to identify individuals). At capture, buffalo were chemically 

immobilized with etorphine hydrochloride (M99) and ketamine by darting from a truck or 

helicopter. Following sample and data collection, immobilization was reversed using 

diprenorphine (M5050). 

While buffalo were immobilized, blood and host-trait data were collected from 

each animal. Blood samples for serological assays were collected via jugular 

venipuncture in sterile tubes containing no anticoagulant. Blood was placed on ice and 

stored in a cooler box within 5 minutes for transportation back to the laboratory. At the 

laboratory, serum was collected after centrifugation for 20 minutes at 2,000 g and stored 

at -20°C until analysis. Host-trait measures included age, body condition, horn width, 

pregnancy status, lactation status and calf-at-heel status using previously published 

methods (Table 2).  

Half of the studied buffalo in each herd were administered an oral anthelmintic 

treatment in the form of a Panacur® slow-release bolus at every capture. The bolus 

contains the active ingredient fenbendazole. Nematode egg shedding is effectively 

eliminated in buffalo for ~160 days after a single administration (Ezenwa et al., 2010) 
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and alters African buffalo response to infection by microparasites (Ezenwa & Jolles 

2015). The other half of each herd did not receive Panacur® at any capture.  

All animal procedures were approved by SANParks internal research permit 

process, Oregon State University (ACUP 4478, ACUP 3267) and the University of 

Georgia (A2010 10-190-Y3-A5) Institutional Animal Care and Use Committees 

(IACUC), which follow the 8th Edition of the Guide for the Care and Use of Laboratory 

Animals (Guide), NRC 2011; the Guide for the Care and Use of Agricultural Animals in 

Research and Teaching (Ag Guide), FASS 2010; and the European Convention for the 

Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes, 

Council of Europe (ETS 123). 

 

3.2.4. Serology 

Buffalo sero-status for each of the respiratory pathogens were determined using 

commercially available assays after each capture, as previously described (Glidden et al., 

2018). Briefly, monoclonal antibodies specific to the F protein of BRSV and the NS3 

protein of BVDV were detected in serum using separate competitive ELISA kits (Bio-X 

Diagnostics, Belgium) while BHV, Pi-3, AD-3, MB and MH serostatuses were assessed 

using direct ELISA test kits (Bio-X Diagnostics, Belgium). Buffalo were tested for bTB 

using the BOVIGAM ELISA kit (Prionics, Switzerland) which is a standard whole blood 

interferon-gamma (IFNγ) assay (Wood & Jones 2001; Schiller et al., 2009). This kit in 

particular has been optimized for use in African buffalo (Michel et al., 2011). 

 

3.2.5. Statistical analyses 

3.2.5.1 Classifying occurrence 

All animals were recruited as adults so it was impossible to determine whether the 

first detected increases in antibody titers were due to a primary exposure, re-exposure or 

recrudescence (Table 3.1). For this reason, we define pathogen “occurrence” to include 

all three possibilities. We expect the within-host and population-dynamics to be similar 

for each type of occurrence as they represent initiation of active, transmissible infections. 

Identical to Glidden et al., (2018), BRSV and BVDV were tested using a competitive 
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ELISA which give scores of 0-100% positive). Samples were deemed positive if ELISA 

scores were > 50%, per manufacturer instructions.  If the animal was tested 6 or more 

times with only one, weakly positive (<65%) result, we assumed the test result was a 

false positive. Occurrence of BRSV or BVDV was counted if test results went from 

negative (<50%) to positive (>50%) or if positive animals had a 15+% increase in their 

competitive ELISA score from one capture to the next (Glidden et al., 2018). We 

observed low occurrence of BVDV and thus excluded it from further analyses (Figure 

3.1). For BHV, Pi-3, AD-3, MH and MB, ELISAs were scored on a 0-5 scale and 

occurrence was counted if the ELISA score increased by 2 or more points between two 

captures, per manufacturer instructions. ELISA results were previously shown to 

correlate with other markers of inflammation and infection (Glidden et al., 2018). 

bTB is an active, chronic infection that displays disparate behavior from the other 

pathogens of interest which are self-limiting or chronic but with latent periods (Table 

3.1). For this reasons, we did not include it as one of our respiratory pathogens of interest. 

However, bTB correlates with a change in immune system signaling (Ezenwa & Jolles 

2015, Tavalire et al., 2019) thus, we controlled for the effect of bTB by including if and 

when the animal converted to bTB positive as a host trait. To determine bTB conversion 

we considered an animal’s full IFNγ bTB data set (all sampling points): an animal was 

considered to have become bTB positive only if we observed at least two consecutive 

negative tests followed by at least two consecutive positive tests (Ezenwa & Jolles 2015). 

Out of the animals included in our final data set (section 3.2.5.2), 72 converted to bTB+ 

throughout the study. 

 

3.2.5.2 Estimating the relative significance of host traits, environment and pathogen co-

occurrence on pathogen occurrence 

Joint Species Distribution Models (JSDM) (Ovaskainen et al., 2017) allow for 

detection of abiotic (e.g., climate) and biotic (e.g., species interactions) on community 

assembly. As JSMD are hierarchical multivariate models, they allow us estimate the 

effect of specified covariates on pathogen occurrence as well as use the between-

pathogen residual association to quantify pathogen co-variance (co-occurrence) after 

accounting for covariates that might underlie co-variance patterns (Ovaskainen et al., 
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2017). Accounting for covariates that may underlie pathogen co-occurrence allows us 

hone in on true interactions versus species correlations. We fit our JSDM using Bayesian 

inference in the R package Hmsc (Hierarchical Modelling of Species Communities) 

(Ovaskainen et al., 2017). As a response matrix (Y matrix (Okaskainen et al., 2017)), we 

used the presence-absence of the six respiratory pathogens (probit models): Pi-3, AD-3, 

BHV, MH, MB, BRSV. As fixed effects (X matrix (Ovaskainen et al., 2017)), we 

included host traits hypothesized to influence within-host occurrence: age, capture herd, 

body condition, age-horn residual, pregnancy status, lactation status, calf at heel status 

(Table 3.2). As stated previously, bTB status and anthelmintic bolus status influence 

immune response (Ezenwa & Jolles 2015); thus, we controlled for the effect of each by 

including them as covariates in the X matrix. We also included season to account for 

seasonally-fluctuating host traits or pathogen biology (i.e., viability in the environment) 

not defined in our model. Continuous variables were rescaled by centering and dividing 

by two standard deviations in the R package arm (Gelman et al., 2008; Gelman 2018) so 

that effect sizes were comparable among continuous covariates.  

We included three random effects in our model, at the sample-level, animal-level 

and year level thereby modeling variation in pathogen occurrence and co-occurrence 

within a single sample, within an individual over time and year (structure of random 

effects matrices described in detail in Ovaskainen et al., 2016). More specifically, the 

sample-level random effect describes co-variation among pathogens over time (i.e. 

pathogens are more likely or less likely to co-occur within a sample), after accounting for 

all other fixed and random effects (i.e., residual association) (Ovaskainen et al., 2016; 

Ovaskainen et al., 2017). The animal-level random effect (animal ID) describes residual 

variation derived from a pathogen occurring within the same host over many sampling 

points as well as the  co-variation among pathogens within those hosts, after accounting 

for other fixed and random effects (residual association). Animals collectively aged 

throughout the study which means that any effect of age on occurrence could be 

confounded by study year. For this reason, we included year to control for the effect of 

year on pathogen occurrence. Similarly to sample and animal ID, the year-level random 

effect indicates whether a pathogen was more likely to occur in the same year and if 

pathogens are more or less likely to occur within the same year. 
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We evaluated model explanatory power using area under the receiving operator 

characteristic (AUC), root-mean-squared-error (RMSE) and Tjur’s R2. AUC measures 

the ratio between true and false positives. RMSE measures the squared difference 

between estimated occurrence and true species occurrence. Tjur’s R2
 is a pseudo-R2 used 

to evaluate model fit for logistic regressions (Tjur 2009). More specifically, Tjur’s R2 is 

the difference between the average predicted probability for every entered value of the 

dependent variable and the average predicted probability for each category (0 or 1) of the 

dependent variable (Okaskainen et al., 2017; Dallas et al., 2019). To compare the 

variation explained by each factor, we partitioned variance explained into specified host 

traits (Table 3.2) and season as well as sample, animal ID and year. We defined a 

variable as having strong statistical support if 95% of the posterior probability 

distribution did not overlap 0 and moderate statistical support if 90% of the posterior 

probability distribution did not overlap 0. We utilized flat priors (Hmsc default priors) as 

we did not have enough information about the system to estimate informative priors 

(described in full detail in Ovaskainen et al., 2017). We recorded 10,000 MCMC 

samples, which consist of a record from of a state from the MCMC chain, from four 

MCMC chains (the first 1000 of which were burn-in), while skipping 10 MCMC steps 

between samples. Visual inspection of MCMC traces, effective sample and the Gelman-

Rubin diagnostic (a partial scale reduction factor) were used to assess model 

convergence. We included 705 samples from 191 individuals in our analyses.  

 

3.2.5.3 Characterizing monthly and yearly variation in population-level disease dynamics 

We examined population-level temporal trends in the number of new cases of 

each pathogen (incidence) using general additive models in the R package mgcv (Wood 

2011). For the purposes of the model a new case was defined identically to “occurrence” 

in section 3.2.5.1. For each month of the study and for each pathogen, we summed the 

number of new cases and used this as the dependent variable (Poisson errors) in each 

model (six models total, one per pathogen). We included calendar month and rainfall year 

as independent, smooth terms. For month, the penalized smoothing basis was a cyclic 

cubic regression spline. We used a cyclic cubic regression spline because it allows us to 

account for months occurring in a loop since environmental conditions in the last month 
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of the year (December) are similar to the first month of the year (January) (Kiguchi & 

Minami 2012). For year, the penalized smoothing basis was a P-spline (Eliers & Marx 

1996). Number of animals sampled per month-year was included as a fixed effect to 

account for sampling effort. For each pathogen, we selected the best fit model by 

selecting the model with the lowest second-order Akaike information criteria (AICc: 

Hurvich & Tsai 1989). We further evaluated model fit using deviance explained (Wood 

2017). Model diagnostics were evaluated using the ‘gam.check’ function in the mcgv 

package which plots quantile-quantile plots of residuals, the linear predictor versus 

residuals, the histogram of residuals and the plot of fitted values versus response. We also 

used ‘gam.check’ to check whether the basis dimension for the smooth term was 

adequate. We omitted the first study year from the analyses because there was only two 

months of data for that year, which left a total of 43 sampling time points for these 

analyses.  

 

3.3 Results 

3.3.1. Summary of prevalence and co-infection rate 

With the exception of BVDV, occurrence of respiratory infections in buffalo were 

common (Table 3.1): in a given six-month capture interval, nearly 50% of our study 

animals acquired at least one respiratory infection. Co-infection was also common: 

buffalo had between 0 and 4 pathogen occurrences at each sampling event, with an 

average of 1.34 occurrences of respiratory infections per animal per year (Figure 3.1.).  

 

3.3.2. Estimating the relative significance of host traits, environment and pathogen co-

occurrence on pathogen occurrence 

 Which factors explained the largest portion of variance in pathogen occurrence 

were inconsistent across pathogens. We found that a collection of specified host traits had 

a significant effect on pathogen occurrence of AD-3, Pi-3, BHV, BRSV and a moderate 

effect on MH and MH occurrence but there was not one consistent host trait indicating 

occurrence of all pathogens or even within taxonomic groups (Figure 3.2, Figure 3.3, 

Figure B3, Table B1). Importantly, host traits generally explained on a very small portion 

of variance in occurrence of each pathogen (Figure 3.2, Figure 3.3, Figure B3, Table B1). 
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Pi-3, AD-3 and BHV models had the highest explanatory power, followed by BRSV, MH 

and MB (Tjur R2: AD-3 = 0.219, Pi-3 = 0.216, BHV=0.166, BRSV=0.152, MH=0.134, 

MB=0.035; Figure 3.2, Table B5). 

The sample-level random effect comprised the highest portion of variance 

explained in occurrence of three viral infections – AD-3, Pi-3 and BHV –  which all 

displayed strong, positive co-variance patterns with each other (Figure 3.2, Figure 3.3,  

Table B2, Table B6). These results indicate that the best indicator of occurrence of one of 

these suite of viruses is co-occurrence by another member within the suite. For the fourth 

virus, BRSV, year comprised the highest portion of variance explained in occurrence 

(Figure 3.2, Table B2).  

For the bacterial pathogens, host ID comprised the highest portion of variance 

explained in occurrence of MH while host ID and season comprised the highest portion in 

variance explained in occurrence of MB (Figure 3.2, Table B2). Interestingly, at the 

animal-level, there was moderate statistical support suggesting that MH and MB 

positively co-vary (Figure 3.2, Figure 3.3, Table B3, Table B6). This result suggest that 

the same animals are likely to be infected with MH repeatedly and, although our model 

only explained a very small portion of variance in MB occurrence, MB positively 

associates with MH in these animals.  

 

3.3.4. Characterizing monthly and yearly variation in population-level disease dynamics  

We characterized temporal variation in incidence using generalized additive 

models to explore if the temporally-variable factors identified by our JDSM models 

corresponded with monthly and yearly variation such that we could describe consistent 

population-level disease dynamics.  

Deviance explained was quite high for each model (MH = 55.00%, MB=65.40%, 

Pi-3=61.10%, AD-3=59.40%, BRSV=74.80%, BHV = 48.60%), however, some of this 

deviance explained may be attributed to sample size, which we included as a covariate to 

account for sampling effort. Figures for the number of new cases and confidence intervals 

by month are included in Figure B4. 

Month had a significant effect on the number of new cases of MH, MB, Pi-3, AD-

3 and BRSV (Figure 3.5, Table B7). The number of new cases of Pi-3, AD-3 and MB 
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peaked during the wet season months (Pi-3: November, AD-3: December, MB: February; 

Figure 3.5, Figure 3.7) whereas MH peaked at the transition between the wet and dry 

seasons (May; Figure 3.5, Figure 3.7). The number of new cases of BRSV decreased in 

October suggesting that the fewest new cases occurred during October (Figure 3.5, Figure 

3.7).  

Year had a significant effect on the number of new cases of AD-3, BRSV and 

BHV (Figure 3.6, Table B7). BRSV exhibited one large outbreak during the final year of 

the project (Figure 3.6, Figure 3.7, Table B7)). The study population also appeared to 

have two outbreaks of BHV with a larger outbreak occurring within the Nov 2009-Oct 

2010 rainfall year and a smaller outbreak occurring within the Nov 2011-Dec 2012 

rainfall year (Figure 3.6, Figure 3.7, Table B7). Though AD-3 occurrence exhibited 

cyclical seasonal dynamics with a consistent peak in the wet season months, our 

population-level models suggest that fluctuations in incidence were higher towards the 

end of the project (Figure 3.6, Figure 3.7, Table B7). 

 

3.4 Discussion 

We first aimed to evaluate determinants of within-host pathogen occurrence by 

partitioning variance among the fixed effects (host traits, season) and random effects 

(sample, animal ID, year) with a JSDM. We next sought to characterize yearly and 

monthly trends in population disease-dynamics to explore if the pathogen had 

epidemiological dynamics consistent with what we expected from the JSDM result. We 

found that a mosaic of factors explained occurrence in the guild of pathogens we tested 

for, but the factors explaining the largest portion of variation were not consistent. 

Pathogen co-occurrence explained the largest portion of variation in the viral pathogens: 

AD-3, Pi-3 and BHV. Host ID explained the largest portion of variation in occurrence of 

the bacterial pathogens: MH and MB. Additionally, season explained another significant 

portion of variation in the occurrence of MB. The best explanatory factor of BRSV 

occurrence was year. We found evidence of seasonal cycling consistent with predictions 

resulting from our JDSMs for Pi-3, AD-3 and MB. We also found seemingly stochastic 

outbreaks at the population level for BRSV. However, no set of specified host traits 

helped clearly elucidate temporal variation in incidence.  
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We hypothesized that viral co-infection would be the strongest determinant of 

viral pathogen occurrence for pathogens associated with BRDC in cattle. Consistent with 

our hypothesis, we found that concomitant infections were more important indicators of 

occurrence than host traits for AD-3, Pi-3, and BHV. These pathogens commonly co-

occur in cattle but physiological risk factors are currently unknown and an active area of 

research (Taylor et al., 2010). Co-occurrence could be the product of a direct (e.g., tissue 

damage (DaPalma et al., 2010)) or indirect interaction (e.g., immunomodulation 

(Cavanaugh et al., 1998)) between these viruses. AD-3, Pi-3 and BHV have been found 

to co-circulate in cattle during short periods of water and food limitation and/or exposure 

to environmental pollutants (Earley et al., 2017), thus change in physiological status 

could drive co-variation patterns and associations could be a result of a correlated 

decrease in host defenses. However, physiological risk factors associated with cattle 

shipping are often inconsistent or inconclusive (Taylor et al., 2010). We included coarse 

proxies of host immune status (age-horn residuals, body condition) and found that host 

quality only had a small but significant, negative effect on Pi-3. Future work could 

quantify finer scale immune-competence and evaluate if an immunological mechanism 

underlies virus co-occurrence in this system (e.g., molecular markers of inflammation 

correlate with Pi-3 occurrence in buffalo (Glidden et al., 2018)). Alternatively, BRDC 

most often arises during cattle transport, which causes increased co-mingling of cattle 

(Taylor et al., 2010). As such, increased contact rates and a general increase in exposure 

probability could underlie viral co-occurrence. We roughly accounted for temporal and 

spatial variation in contact (increased condition, herd, pregnancy status) in our model and 

found that these variables had a significant effect on Pi-3, AD-3 and BHV, however, 

effects were not consistent across pathogens. Future work could better control for the 

effect of exposure on pathogen occurrence and co-occurrence by using wildlife proximity 

collars to explicitly quantify contact networks (Rushmore et al., 2020) and using network 

metrics as a covariate in the JSDM. Alternatively, in cattle, Pi-3 is often a permissive 

infection for other viral infections, enabling viruses to circumvent host defenses (Smith et 

al., 2019), pointing to co-occurrence patterns being the result of pathogen-pathogen 

facilitation. Indeed, pathogen co-occurrence could be driven by an additive or synergistic 

relationship between host immune status, host behavior and direct pathogen-pathogen 
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facilitation or a distinct but unmeasured covariate driving synchronous dynamics of these 

three pathogens. 

We found that the animal ID explained the largest portion of variance in MH 

incidence, suggesting that MH occurrence is more likely to re-occur in the same animals, 

over many sampling time steps. Similarly, MB occurrence was best explained by season 

as well as animal ID, but with less explanatory power than for MH. Probability of MB 

occurrence was higher in the wet season (characterized by high temperatures and 

humidity (Zambatis 2003)) and population-level incidence peaked towards the end of the 

wet season. Consequently, MB occurrence may be better explained by environmental 

exposure. MB is believed to persist in the environment for long periods of time 

(McAuliffe et al., 2006) and, in humans, mycoplasma incidence has been shown to 

increase with temperature and humidity (Onozuka et al., 2009).  

Part of the animal ID variation in MH occurrence consists of the moderate, 

positive covariation with MB that we detected. Our study is not the first to detect co-

occurrence of MB and MH. In cattle, lesions caused by MH infection are commonly 

found to be co-infected by MB (Gagea et al., 2006), and MH proliferation is understood 

to follow mycoplasma infection/proliferation (Rice et al., 2007). However, the reason(s) 

for the co-occurrence is less understood. MH and MB are normally found in the 

respiratory tract (Ayling 2000; Cozens et al., 2019) but pathogenic subtypes proliferate 

under stressful conditions (Maunsell et al., 2011; Cozens et al., 2019). As probiotics have 

been used in dairy calves to inhibit the invasion and proliferation of pathogenic MH 

(Amat et al., 2020), the proportion of variance in bacterial occurrence explained by host 

ID could be related to individual microbiome composition. Alternatively, static host 

traits, such as immune phenotype, may contribute to likelihood of infection by these 

bacterial infections (e.g., genetically based immune phenotype regulates bTB 

susceptibility in buffalo (Tavalire et al., 2019).  

With our JDSM models, the best determinant of BRSV occurrence was year 

which explained 60% of variance. Our population-level analysis corroborate the findings 

from the JDSM in that we found one large outbreak at the end of the study. In cattle, 

BRSV outbreaks correlate with moving animals between farms, thus, outbreaks are most 

likely facilitated by introduction of BRSV by animals not included in the study 
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(Sarmiento-Silva et al., 2010).  Of course, we are limited in our ability to confirm BRSV 

as an outbreak pathogen because of the length of the study. A longer time series would 

have enabled us to examine if outbreaks were sporadic or cyclical and thereby allow us to 

hone in on mechanistic drivers of outbreaks or identify if outbreaks occur stochastically. 

Contrary to our hypothesis, BRSV did not significantly co-vary with any other pathogen 

despite being associated with the BRDC in cattle. We expected co-occurrence because 

BRSV is well known for damaging host tissue and facilitating proliferation of pathogenic 

bacteria (Lopez, Thomson & Savan 1976; Rice et al., 2007; Srikumaran, Kelling & 

Ambagala 2007). Of course, there is a possibility that BRSV does co-occur but with a 

time-lagged. A more frequent sampling regime may uncover cross-taxonomy 

associations. Similarly, we observed very low incidence of BVDV despite BVDV also 

being a common infection with the BRDC in cattle. 

The second objective of our study characterized monthly and yearly trends in 

incidence and examined whether the patterns in occurrence were consistent with 

population-level patterns. We found evidence for seasonal cycling of Pi-3, AD-3, MH 

and MB. Seasonally variable host traits had a small but significant effect on the 

occurrence of Pi-3 and AD-3 and a moderate effect on MB and MH, however, counter to 

our hypotheses, no seasonally variable host trait (body condition, reproductive status) 

overwhelmingly matched population-level trends. As described previously, seasonal 

dynamics of MB matched what we would expect if temporal variation is driven by 

pathogen viability (i.e., MB can persist in the environment during the wet season). In 

humans, adenovirus incidence typically peaks during cooler, drier months (Price et al., 

2019), however, our observations indicate that adenovirus in buffalo peaks during hotter, 

wetter months suggesting opposite effects of climate on pathogen viability. However, in 

both systems, seasonal peaks correspond to periods of increased contact rates (Moryiama 

et al., 2020; Spaan et al., 2019; Rushmore et al., 2020). Perhaps asynchronous disease 

seasons of human versus buffalo adenovirus are a results of asynchronous contact 

patterns. Clearly, a mix of host traits, pathogen characteristics (e.g., viability), co-

infection dynamics and variables not measured here interact to influence seasonal trends.  

This study did not include juveniles so any population-level fluctuations in 

immune status through birth pulses of newly susceptible animals are difficult to identify. 



52 
 

 

If we assume calves are protected via maternal immunity throughout the first 6 months 

but are newly susceptible the following wet season (Combrink et al., 2020) then we may 

see a spike in incidence at this time as 1-year-old calves act as super-spreaders for the 

remainder of the population, explaining peaks in incidence during the wet season. We 

also did not include any males in this study though they likely affect infection dynamics 

as well. During the wet season, males re-join the herd to breed (Turner et al., 2005) and 

could be introducing or re-introducing pathogens.  

Overall, for each pathogen, we observed a large portion of unexplained variation 

in within-host occurrence. Our analysis suggests that there are a number of other 

processes influencing temporal patterns in disease dynamics. As many of these pathogens 

cause short lived infection or pathology, detection of variables associated with occurrence 

may necessitate more frequent sampling intervals. For respiratory infections, host traits 

may only explain a small portion of variation in occurrence but may explain a large 

portion of variation in ability to clear a pathogen once infected and disease induced 

morbidity/mortality. Serology data limits our ability to characterize multiple different 

infection outcomes (i.e., time to clearance, pathogen intensity), however, future work 

could use higher resolution data (e.g., quantitative PCR) to weigh the effect of host traits 

on different outcomes of infection. 

In summary, we found that drivers of temporal variation in disease dynamics are 

multi-factorial and pathogen dependent, even within a group of inter-guild pathogens 

(directly transmitted micro-parasites that infect the upper respiratory tract). Kruger 

National Park is surrounded by pastoral land and cross-species disease, specifically 

disease of cattle, causes significant economic loss (Chaminuka, McCrindle & Udo 2011). 

Our study indicates new avenues of research for monitoring and managing BRDC, 

especially at this wildlife-livestock interface.  
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Table 3.1. Biology of respiratory pathogens included in this study, and annual 

incidence in African buffalo.  

 

Pathogen 

(Abbreviation) 

Family 

(subfamily) Type Description 

Average 

Annual 

Incidence ± 

SD 

Mycoplasma 

 bovis (MB) 
Myco-

plasmataceae 

Bacterial, 

opportunistic 

MB commonly causes calf pneumonia, mastitis and 

arthritis while occasionally causing swelling of various 

reproductive organs and abortion in cattle. Infected cattle 

can shed the bacteria for months to years  (Nicholas & 

Ayling 2003). 

20.2 ± 2.1% 

 

Mannheimia 

haemolytica 

(MH) 

Pasteurellaceae 
Bacterial, 

opportunistic 

Though MH can act as a commensal and commonly exists 

in the upper respiratory tract of healthy ruminants, it is 

also associated with pneumonia and bovine respiratory 

disease complex in cattle after a hosts’ immune defenses 

have been compromised by stress or another infection 

(Rice et al., 2007). 

11.0 ± 1.8% 

 

Bovine  

Adenovirus-3 

(AD-3) 

Adenoviridae  

(mastadenovirus) 
Viral, acute 

The pathogenic effects of AD-3 alone remain 

controversial but when associated with disease, can cause 

oculonasal discharge, colic, diarrhea, enteritis and fever in 

cattle (Coetzer, Thomson & Tustin 2006). 

13.3 ± 3.8% 

 

Bovine  

Parainfluenza-3 

(Pi-3) 

Paramyxoviridae 

(respirovirus) 
Viral, acute 

When interacting with other disease-causing factors, 

clinical signs of Pi-3 include coughing, pyrexia, nasal 

discharge and inappetence. Cattle develop a strong 

immune response, but sterile immunity is short-lived 

(Maclachlan & Dubovi 2010). 

12.0 ± 3.2% 

 

Bovine  

Herpesvirus-1 

(BHV) 

Herpesviridae 

(Alphaherpes-

virinae) 

Viral, chronic 

(latent) 

Also known as Infectious Bovine Rhinotracheitis, BHV 

affects the respiratory and reproductive tracts of bovids; 

reactivation of latent infections may play an important 

role in transmission in cattle (Maclachlan & Dubovi 

2010). 

11.3 ± 5.2% 

 

Bovine 

Respiratory  

Syncytial Virus 

(BRSV) 

Paramyxovirus 

(pneumovirus) 

Viral, acute or 

chronic (latent) 

While most infections are unapparent, some BRSV 

infected animals present with fever, coughing and upper 

respiratory discharge. Most severe disease is reported in 

calves under 6mo. Persistent infections have been 

suggested based on epidemiological and experimental data 

in cattle (Van Vuuren 1994; Valarcher et al., 2001). 

Reinfection is also common; in fact, cows can be infected 

more than once per year (Van der Poel et al., 1994). 

12.1 ± 15.0% 

 

Bovine Viral 

Diarrhea Virus 

(BVDV) 

Flaviviridae 

(pestivirus) 

Viral, acute or 

chronic (latent) 

In cattle, BVDV can present as clinically inapparent, a 

mild acute diarrheal disease, a fatal mucosal disease or as 

an in utero infection from which persistent infections can 

develop (Brownlie et al., 1987). 

1.9 ± 0.4% 
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Table 3.2. Within-host traits and environmental variables included in the JSDM. A 

description of each host trait included in the X matrix of our JSDM. 

 

Variable 

Variable 

type 

Collection information, 

data transformation, and units 

Season Categorical 

Pathogen exposure regimes, pathogen viability, host behavior and host 

immunocompetence may fluctuate with season thus we included season at sampling 

to detect seasonality of pathogen occurrence and hypothesize about seasonally 

variables not explicitly defined within our model. Wet = Nov –  Apr;  Dry = May – 

Oct. 

Age  Continuous 
Approximate age of each animal, in months, based on teeth regressions as per Jolles, 

Cooper and Levin (2005). 

Capture herd Binomial 
This variable refers to the herd in which the buffalo was found during the given 

capture, Crocodile Bridge or Lower Sabie. 

Condition Categorical 

Visualization and palpation of the ribs, spine, hips and the base of the tail was scored 

on a scale of 1 (very poor) to 5 (excellent); overall body condition score was 

calculated as the average of these four scores. Condition at the beginning of the 

interval, i.e. at the previous capture, was used in analyses (Ezenwa, Jolles & O’Brien 

2009). 

Age-horn residual Continuous 

The regression residuals of age at first capture on horn width (cm) was collected at 

the previous capture. In female buffalo, the variable is a marker of GI parasite 

infection with higher residuals indicating lower parasite richness as well as lower 

coccidia occurrence and intensity (Ezenwa & Jolles 2008). 

Pregnancy status Binomial 
Pregnancy status is based on palpation by a veterinarian via rectal palpation (Karen et 

al., 2011)  

Lactation status Binomial Lactation status was assessed by manual milking of all four teats (Jolles 2007) 

Calf at heel status Binomial 
This variable indicates whether there was a calf at the mother’s side during visual 

surveys when animals were being picked out for darting 

 bTB convert  Binomial 

bTB is typically a chronic, subclinical disease of the lung and upper respiratory tract 

in African buffalo. bTb interactions with host traits and other pathogens have been 

well characterized in African buffalo. Due to the chronicity of infection, we included 

if the animal converted to bTb as a host trait.  

Anthelmintic bolus 

treatment 
Binomial 

As part of another study (Ezenwa & Jolles 2015), half of the buffalo in each herd 

were administered a slow-release, oral anti-helminthic treatment (Fenbendazole aka 

Panacur) at every capture. 
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Figure 3.1. Infection by multiple pathogens in the same time period was common. 

This figure shows the proportion of observations of each infection as a single infection 

(dark grey) and as a co-infection with other focal pathogens (color corresponds to exact 

co-infection). For example, we observed 124 samples with only an MB infection (first 

(grey) portion of the first bar) and 26 samples that had an MB and MH co-infection 

(second (orange) portion of the first bar). Here we have defined co-infection as an 

occurrence (initial infection, re-infection or recrudescence) of two or more pathogens 

between any two sampling events (~6 month period). 
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Figure 3.2. Variance in pathogen occurrence explained by specified host traits, season 

and random effect. The bars are ordered from highest to lowest Tjur’s R2. (A) Bar height was 

standardized such that, for each pathogen, the terms were scaled to sum to Tjur’s R2. The 

unexplained variance is equal to 1-Tjur’s R2. (B) Bar height equals Tjur’s R2 for each pathogen. 

Pathogen associations at the sample and animal-id level explained the largest portion of 

variance in these models suggesting that pathogen co-occurrence is the best predictor of 

pathogen occurrence. 
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Figure 3.3. Pathogen response to host traits. Significant host traits (support level > 

0.95) colored by mean response. For categorical variables, the subscript represents the 

baseline group. Continuous variables were centered and scaled to two standard 

deviations from the mean. Color indicates the direction (orange = negative effect or 

higher for the baseline group, purple = positive effect or higher for non-baseline group) 

and magnitude of the mean posterior estimate for the effect of each trait on pathogen 

occurrence. Host traits where support level was > 0.90 are included in supplementary 

materials figure 3. 
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Figure 3. 4. Species co-occurrence: Mean species associations estimated from 

species-species covariance matrix from (A) the sample-level random effect and 

(B) animal-level random effect. Circles represent viruses and squares represent 

bacteria. Purple edges represent positive associations. For the sample-level random 

effect, the support level was = 0.99 for the associations shown and < 0.90 for all other 

associations. For the animal-level random effect, the support level was = 0.91 for the 

associations shown and < 0.90 for all other associations.  

  



66 
 

 

 

Figure 3.5. GAM predictions for number of new cases per calendar month, after 

controlling for sample number. Dynamics are depicted for pathogens where the 

calendar month was significant in our final model. 
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Figure 3.6. GAM predictions for number of new cases per rainfall year, after 

controlling for sample number. Pathogen dynamics are depicted if the rainfall was 

significant in our final model. The x-axis marks the rainfall year (year of the study: 

calendar months it encompassed). 
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Figure 3.7. Incidence rate per month of the study. Incidence was calculated by 

summing the number of new cases in a month and dividing by the number of animals 

sampled. Standard errors were calculated by (√(incidence*(1-incidence)) / number of 

animals sampled.  Rainfall years are shaded by alternating white and grey 

backgrounds.  
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CHAPTER 4: ELUCIDATING CRYPTIC DYNAMICS OF THEILERIA 

ASSEMBLAGES IN AFRICAN BUFFALO USING A HIGH-THROUGHPUT 

SEQUENCING INFORMATIC APPROACH 

 

 

Abstract 

 

Increasing access to next‐generation sequencing (NGS) technologies is 

revolutionizing the life sciences. In disease ecology, NGS‐based methods have the 

potential to provide higher‐resolution data on communities of parasites found in 

individual hosts as well as host populations. Here, we demonstrate how a novel 

analytical method, utilizing high‐throughput sequencing of PCR amplicons, can be 

used to explore variation in blood‐borne parasite (Theileria—Apicomplexa: 

Piroplasmida) assemblages of African buffalo at higher resolutions than has been 

obtained with conventional molecular tools. Results reveal temporal patterns of 

synchronized and opposite fluctuations of prevalence and relative abundance of 

Theileria spp. within the host population, suggesting heterogeneous transmission 

across taxa. Furthermore, we show that the assemblage composition of Theileria spp. 

and their subtypes varies considerably between buffalo, with differences in 

composition reflected in mean and variance of overall parasitemia, thereby showing 

the potential to elucidate previously unexplained contrasts in infection outcomes for 

host individuals. Importantly, our methods are generalizable as they can be utilized to 

describe blood‐borne parasite assemblages and/or communities in any host species. 

Furthermore, our methodological framework can be adapted to any parasite system 

given the appropriate genetic marker.The findings of this study demonstrate how a 

novel NGS‐based analytical approach can provide fine‐scale, quantitative data, 

unlocking opportunities for discovery in disease ecology. 
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4.1 Introduction 

The increasing availability of NGS data is revolutionizing many aspects of the life 

sciences—from novel insights into microbial ecology and microbiomes (Costello et al., 

2009) to innovative monitoring tools for biodiversity (Smith, Thomas, Levi, Wang, & 

Wilmers, 2018; Yoccoz, 2012). In disease ecology, NGS‐based analytical methods have 

the potential to provide higher‐resolution data on communities of parasites found in 

individual hosts and host populations than data obtained using conventional diagnostic 

approaches (highlighted in Zylberberg, 2019). 

Until now, disease ecologists have used standard medical and/ or veterinary 

diagnostic approaches to detect parasites, including microscopy (Hernandez‐Lara, 

Gonzalez‐Garcia, & Santiago‐Alarcon, 2017; Jolles, Ezenwa, Etienne, Turner, & Olff, 

2008), antibody‐based techniques (Beechler et al., 2015; Gorsich et al., 2018), and 

conventional polymerase chain reaction (PCR) (Telfer et al., 2010). These approaches 

often suffer, to varying degrees, from three limitations that are relevant for investigating 

parasites in ecological systems: (A) a lack of breadth, (B) a lack of depth, and/or (C) a 

lack of precision. (A) With tools that require specific binding agents for each taxon of 

interest (e.g., PCR‐ and antibody‐based detection), researchers typically only detect the 

specific parasites or parasite groups for which the diagnostic assay is designed. In 

particular, in the context of non‐model host organisms and emerging infectious diseases, 

researchers may not detect parasites that are key drivers of community dynamics and/ or 

novel parasites. Nonspecific methods can ensure broad detection of etiological agents 

(Glidden et al., 2018); however, (B) identifying important within‐host interactions 

(between parasite and host immune response and/or other parasites) may necessitate 

identifying infectious agents at low taxonomic levels. For example, infections by 

Plasmodium, the etiological agent of malaria in humans, often consist of multiple 

genotypes (Arnot, 1998; Smith, Felger, Tanner, & Beck, 1999). Plasmodium genotypes 

can respond differentially to treatments, with particular genotypes resistant to 

antimalarial medication (Huijben, Sim, Nelson, & Read, 2011). In the absence of 

treatment, drug‐resistant strains are suppressed by their nonresistant counterparts; 

however, treatment results in a “competitive release” of drug‐resistant genotypes 
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(Huijben et al., 2011), which could result in higher prevalence and abundance of drug‐

resistant parasites within a host population. (C) Finally, when analyzing the impact of 

parasite interactions on parasite transmission and host health, presence/absence data (as 

opposed to abundance or relative abundance) may mask intricate community interactions 

(Budischack et al., 2018; Lello, Boag, Fenton, Stevenson, & Hudson, 2004). 

Consequently, conventional diagnostic approaches often fail to capture variation in 

parasite community structure that is relevant to understanding parasite transmission 

dynamics and differential infection outcomes for the host. 

Promisingly, novel molecular techniques are increasing disease ecologists' 

capacity to evaluate the structure and dynamics of parasite communities across a range of 

taxonomic scales. NGS of amplicons (NGSA, hereafter) can magnify the information 

obtained in one assay (Ogorzaly et al., 2015), as this approach targets one region of DNA 

and provides millions of sequences with low error rates (Glenn, 2011). Primers designed 

to target DNA can be conserved across high taxonomic levels, while encompassing 

enough nucleotide variation to distinguish among species or genotypes, enabling 

simultaneous detection of a multitude of taxa (Lindahl et al., 2013), and an estimation of 

the relative abundance of each taxon within a sample (Nelson, Morrison, Benjamino, 

Grim, & Graf, 2014). NGSA rose to popularity through microbiome research, which uses 

NGSA to target a short segment of the 16S rRNA gene to describe highly diverse 

microbial communities (Costello et al., 2009). Recently, NGSA has been used to identify 

diversity in micro- and macro parasite communities in the rufous mouse lemur 

(Microcebus rufus) (Aivelo & Nordberg, 2018), Trypanosome assemblages in the koala 

(Phascolarctos cinereus) (Barbosa et al., 2017), and Eimeria assemblages in the brush‐

tailed rock‐wallaby (Petrogale penicillata) (Vermeulen, Lott, Eldridge, & Power, 2016). 

Along with the latest developments in NGSA technologies, new bioinformatic tools (such 

as SeekDeep; Hathaway et al., 2017) have enabled the detection of variation down to a 

single nucleotide level in Illumina MiSeq data, thereby allowing for the distinction 

between or among haplotypes/subtypes (e.g., Plasmodium spp.: Hathaway et al., 2017, 

Boyce et al., 2018; Zhong et al., 2018). 

Here, we used NGSA and SeekDeep to obtain qualitative and quantitative 

sequence data for piroplasm assemblages, at the species clade and subtype levels, in a 
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herd of African buffalo (Figure 1) caught every 2–3 months for 2 years. Piroplasms are 

intracellular protists, including the genera Theileria and Babesia, which infect the red 

and/or white blood cells of a range of host species (Abdela & Tilahun, 2016; Homer, 

Aguilar‐Delfin, Telford, Krause, & Persing, 2000; Tarav et al., 2017; Yabsley & Shock, 

2013). Piroplasms are particularly important parasite species within eastern and southern 

African ecosystems, as infections can cause substantial mortality in wildlife of 

conservation concern (Nijhof et al., 2005), as well as mortality and decreased 

productivity in economically significant livestock (Schoeman, 2009). Although rarely 

infected with Babesia spp. (Henrichs et al., 2016; Mans, Pienaar, Ratabane, Pule, & Latif, 

2016), African buffalo have been reported to be simultaneously infected with multiple 

species of Theileria, encompassing a multitude of subtypes (Mans, Pienaar, & Latif, 

2015). Infection with multiple Theileria spp., as opposed to single‐species infections, 

results in dramatically different pathological disorders in cattle (Woolhouse et al., 2015), 

indicating that parasite interactions can adversely impact host health. 

Disentangling the complex African buffalo—Theileria system poses two major 

challenges that previous studies using conventional approaches were unable to overcome: 

First, Theileria is taxonomically complex and classical taxonomists have difficulty 

distinguishing between species and haplotypes, requiring genetically distinct, yet closely 

related organisms, to remain distinguished as “subtypes” (reviewed in Mans et al., 2015). 

Importantly, subtypes are restricted by host specificity and geographic range, indicating 

important biological differences (Chaisi, Collins, Potgieter, & Oosthuizen, 2013; Mans, 

Pienaar, & Latif, 2011; Mans et al., 2016; Pienaar, Potgieter, Latif, Thekisoe, & Mans, 

2011). Attempting to differentiate between subtypes using PCR‐ and antibody‐based 

approaches has been riddled with issues of cross reactivity (Mans et al., 2015). Second, 

Theileria spp. are too common in African buffalo for presence/absence data to be useful 

in understanding disease dynamics (i.e., animals are almost always infected with all 

species; Henrichs et al., 2016). Thus, uncovering Theileria assemblage dynamics 

necessitates quantitative data at fine‐scale taxonomic resolution, making the African 

buffalo—Theileria system an ideal case study for describing the power of NGSA 

techniques in disease ecology. 

We demonstrate how combining NGSA and novel bioinformatics tools enables a 



75 
 

 
sound estimation of parasite transmission and persistence dynamics by describing 

population prevalence (i.e., the number of hosts infected) and population frequency (the 

relative abundance of each taxon in the host system) of each taxon. We then demonstrate 

how our methods can be used to evaluate the effect of assemblage dynamics on infection 

outcome by assessing variation in Theileria assemblage among hosts and showing that 

variation in assemblage structure relates to parasitemia—a proxy for the magnitude of the 

effect of parasites on host health (e.g., Asghar, Hasselquist, & Bensch, 2011; Sol, Jovani, 

& Torres, 2003; Stjernman, Raberg, & Nilsson, 2008). Overall, we highlight how novel 

molecular and bioinformatic techniques can provide the breadth, depth, and precision of 

data needed to understand parasite community dynamics within host populations and in 

individual hosts. 

 

4.2 Methods 

4.2.1 Study area  

African buffalo included in this study were located in a 900‐ha enclosure within 

the Kruger National Park (KNP) a 19,000‐km2 preserve, located in northeastern South 

Africa (S 24 23′ 52″, E 31 46′ 40″). The enclosure is entirely within KNP and has 

numerous other wild animals typical of the ecosystem (e.g., giraffes, zebra, warthogs, 

small mammals, and small predators). However, the enclosure excludes megaherbivores 

(rhino, hippo, elephant) and large predators (lion, leopard). Study animals graze and 

breed naturally and find water in seasonal pans and man‐made (permanent) water 

troughs. In extreme dry seasons, supplemental grass and alfalfa hay is supplied. 

 

4.2.2 Sample collection and DNA extraction 

A herd of 41–54 individually marked buffalo, of varying sex and age, was 

maintained throughout this study. Natural births and deaths occurred, leading to a total of 

66 individuals sampled for this study and 443 samples. Buffalo were captured every two 

to three months from February 2014 to October 2015, totaling nine sampling time points. 

Animals were included in the study if they were captured at least two times. Animal 

capture and sedation protocols have previously been described by Glidden et al. (2018). 

During each capture, 2 ml of whole blood was collected via jugular venipuncture directly 
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into EDTA‐coated vacutainers and stored on ice during transport. One milliliter of whole 

blood was pipetted into sterile microcentrifuge tubes and stored at −80°C until it was 

used for DNA extractions while the rest of blood was immediately used to measure red 

blood cell counts using an automated hematology analyzer (Vet ABC, Scil Animal Care 

Company). 

DNA was extracted from 200 µl of EDTA blood using DNeasy Blood and Tissue 

Kit (Qiagen) following the manufacturer's protocol. DNA extractions were shipped to the 

University of Melbourne, Australia, and stored at −20°C until further testing. 

 

4.2.3 Next-generation sequencing of PCR amplicons 

 

4.2.3.1 Library preparation and Illumina MiSeq 

The V4 hypervariable fragment (~500 bp) of the 18S rRNA gene of Theileria was 

targeted for the NGSA. Briefly, PCR amplicons were generated using the RLBF (5′–

GAG GTA GTG ACA AGA AAT AAC AAT–A3′) and RLBR (5′–TCT TCG ATC CCC 

TAA CTT TC–3′) primers (Gubbels et al., 1999) using the AmpliTaq Gold 360 

mastermix (Life Technologies) in a thermal cycler (Veriti‐384™; Applied Biosystem). 

The first PCR was run for the initial denaturation for 2 min at 94°C followed by 30 cycles 

of 30 s at 94°C, 30 s at 57°C, and 1 min at 72°C and a final extension of 8 min at 72°C. 

PCR amplicons were purified using magnetic beads and visualized on 2% E‐Gel Agarose 

Gel stained with SYBR Safe DNA Gel Stain (Thermo Fisher). The second PCR was 

performed to index the amplicons using the TaKaRa Taq DNA Polymerase (Clontech), 

and it was run for 2 min at 94°C, 15 cycles of 30 s at 94°C, 30 s at 57°C, 1 min at 72°C, 

and a final extension of 1 min at 72°C. The PCR products were then purified using 

magnetic beads, quantified by fluorometry (QuantiFlour® dsDNA System), and 

normalized. The equimolar pool of amplicons was cleaned again using magnetic beads to 

concentrate the pool and then measured using an Agilent High‐Sensitivity D1000 Tape 

System (Agilent Technologies). The pool was diluted to 5 nM, and the molarity was 

confirmed again using the Tape System and sequenced on an Illumina MiSeq Reagent 

Kit v3 (600 cycle) using 2 × 300 base pairs paired‐end reads. Positive (Theileria 
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orientalis) and negative (no DNA template) controls were also included during each step 

of the experiment. 

 

4.2.3.2 Bioinformatic analyses 

As this study aimed to describe assemblage dynamics of closely related taxa, the 

objective of the bioinformatic analysis was to filter and cluster sequences with single 

base‐pair resolution and calculate relative abundance of each unique sequence within a 

sample. 

DADA2 (run in Qiime2 V. 2016.6.0 using the DADA2 plugin: V. 2018.6.0; Callahan et 

al., 2016) and SeekDeep (V 2.5.1; Hathaway et al., 2017) are two filtering and clustering 

softwares reported to obtain single base‐pair resolution. To decide on the best pipeline to 

use for the analysis, an in silico mock Theileria assemblage analysis was conducted to 

test reproducibility of each software (Appendix C1). After our mock assemblage analysis, 

we decided to use SeekDeep for all analyses. Furthermore, 10% of our samples were run 

in duplicate. We confirmed repeatability up to 1% relative abundance and use this cutoff 

throughout the rest of our analyses (Appendix C2). 

Subsequently, FASTQ files from all samples were processed using a within‐

sample relative abundance cutoff of 1% and the Illumina MiSeq tag, allowing no 

mismatches. Within the SeekDeep pipeline, sequences that were marked as likely 

chimeric were removed. Additionally, we removed any sequences that occurred once 

within the study as this would imply a unique sequence that occurred in one animal at one 

time point. Phred quality score of each consensus sequence was assessed in FastQC (V. 

0.11.7). As the final PCR amplicon is ~460 bp, sequences were retained in the analysis if 

bases had an average Phred quality score >30 (1 error per 1,000 bases). 

 

4.3.3.3 Phylogenetic analyses 

Bayesian inference (BI) and neighbor joining (NJ) analyses were conducted to 

identify sequences. First, a nonredundant database of all Theileria and Babesia subtypes 

known to infect African buffalo, as well as closely related species, was curated using the 

existing literature (Mans et al., 2015) and the NCBI database (GenBank). SeekDeep 

sequences and reference sequences were imported into Mesquite (V 3.51; Maddison & 
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Maddison, 2018) and aligned using MUSCLE (V 3.8.31; Edgar, 2004). For the BI 

analysis, the likelihood parameters were based on the Akaike Information Criterion (AIC) 

test in jModeltest V.2.1.10 (Darriba, Taboada, Doallo, & Posada, 2012; Guindon & 

Gascuel, 2003). The likelihood parameters used were TrN + I + G (Nst = 6; rates = 

invariable + gamma). A Bayesian tree was constructed using the Monte Carlo Markov 

Chain analysis in MrBayes (V.3.1.2). Four simultaneous tree‐building chains were used 

to calculate posterior probabilities for 2,000,000 generations, saving every 100th tree. A 

consensus tree was constructed based upon the final 75% of trees produced (burnin = 

0.25%).  

The NJ analyses were conducted in MEGA 7.0 (Kumar, Stecher, & Tamura, 

2016), and the nodes were tested for robustness with 10,000 bootstrap replicates. The 

data format was set to DNA, and gaps were treated as missing data. For the substitution 

model, substitution type was nucleotide, the method used was the number of differences, 

substitutions included were transitions and transversions, and rates among sites were 

uniform. The tree topology was checked for concordance. Theileria spp. clades were 

considered supported if NJ bootstrapping values were >75% and Bayesian posterior 

probability values were >0.95. Subtype clades were considered supported if NJ 

bootstrapping values were >75%. 

 

4.3.4 Calculation of parasitemia 

Quantitative methodology used to calculate parasitemia of the collective Theileria 

genus (i.e., assemblage abundance), including development of a quantitative PCR, is 

outlined in Appendix C3. 

 

4.3.5 Describing Theileria composition at the population and individual level 

R software (V 3.4.3) was used for all Theileria assemblage analyses. To evaluate 

patterns of Theileria assemblages across the host population and generate hypotheses 

regarding differences in taxon transmission, we calculated prevalence of each taxon over 

the study period (Theileria spp.‐positive samples/total number of samples), prevalence of 

each taxon at each sampling time point (Theileria spp. positive samples/total number of 

samples per sample collecting point), frequency of each taxon over the entire study 
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(number of individual Theileria spp. sequences/total number of Theileria sequences), and 

frequency of each taxon at each sampling time point (number of sequences per Theileria 

spp./total number of Theileria sequences per time point). 

To evaluate individual patterns of Theileria assemblages, we used PERMANOVA 

to assess whether assemblages were significantly different between individual animals, 

with assemblages characterized by relative abundance of taxa. PERMANOVA was run 

for clade and subtype assemblages. We ran PERMONVA using the adonis function in 

vegan (Oksanen et al., 2007), including individual ID and sampling time point as fixed 

effects. The assemblage dissimilarity matrices were calculated using Bray–Curtis 

distance measures. 

To explore the relationship between Theileria assemblages and infection outcome, 

we visualized variation in assemblage composition (i.e., the presence and relative 

abundance of each taxon within a sample) in relation to mean (±standard error of mean) 

parasitemia for each animal. First, we calculated average relative abundance of each 

taxon, at the clade and subtype level per animal followed by mean (±SE) parasitemia per 

animal. Subsequently, average (±SE) parasitemia per animal was then plotted from 

highest to lowest. Stacked bar plots for average assemblages for each animal were plotted 

using phyloseq (McMurdie & Holmes, 2013) and ggplot2 (Wickham, 2016). 

 

4.3. Results 

 

4.3.1 NGS of PCR amplicons reveals rich parasite assemblages 

 A total of 440 (of 443) DNA samples were amplified and sequenced. A total of 

32,727,499 reads passed quality trimming, with an average of 69,407 ± 1,929 reads per 

sample. The median number of reads per sample was 60,285 (interquartile 1:48,127; 

interquartile 3:78,472). Three samples had less than 1,000 reads and were removed from 

further analyses while 17 unique sequences appeared in only one sample each and were 

removed from analyses. A total of 29 unique sequences were identified. Our negative 

control only very weakly amplified (read count = 77), and we did not find any sequences 

due to contamination. On average, sequences were 455 (SE ± 0.59) nucleotides in length, 

ranging from 460 to 451 nucleotides. Bayesian inference and NJ phylogenetic methods 
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produced trees with similar topologies; hence, only a representative NJ tree is presented 

here (Figure 4.2). 

Analyses of 29 unique sequences revealed three main clades (Figure 4.2). The 

first clade contained four sequences which grouped with previously published sequences 

of the T. velifera clade, with strong statistical support (bootstrap value of NJ = 99%; 

posterior probability value for BI = 1.0). One of these sequences (MK792966) grouped 

with T. velifera (KU206307), two (MK792967 and MK792974) with T. velifera B 

(GU33376), and one (MK792987) in between T. velifera A (GU733375) and T. velifera‐

like sequence (JQ706077) (Figure 2). The second clade contained 11 sequences and 

grouped within the 

T. taurotagi clade (nodal support NJ = 95%; BI = 0.93). Five sequences (MK792969, 

MK792979, MK792982, MK792989, and MK792991) grouped with T. sp. (bougasvlei) 

(nodal support NJ = 95%; BI = 1.0), whereas the remaining four (MK792971, 

MK792983, MK792984, and MK792993) and two (MK792981 and MK792988) grouped 

with 

T. parva and T. sp. (buffalo), respectively (Figure 4.2). The past literature has obtained 

similar bootstrap support for T. parva and T. sp. (buffalo) (Mans et al., 2015: nodal 

support NJ = 65%; Mans et al., 2011: NJ bootstrap value of 64); however, analysis using 

alternative markers has differentiated these as unique taxa (Bishop et al., 2015). The third 

clade contained 14 sequences that grouped within the T. mutans clade (nodal support NJ 

= 100%; BI = 1.0). The T. mutans clade included six subtypes: T. mutans‐like 1 

(MK792968, MK792992); T. mutans‐like 2 (MK792970, MK792980, MK792994, 

MK792990); T. mutans‐like 3 (MK792972, MK792973, MK792975); T. mutans MSD 

(MK792977, MK792978, MK792985); T. mutans (MK792976); and one in between T. 

mutans and T. mutans MSD (MK792986) (Figure 2). Pairwise differences (%), and 

prevalence and frequencies of 29 sequences are provided in Tables C1 and C2. 

 

4.3.2 Theileria assemblages vary in time and across individuals  

 

4.3.2.1 Population patterns 

We evaluated patterns of Theileria spp. infection in our study population averaged 



81 
 

 
over the entire study period and change in infection patterns over time, by assessing the 

prevalence (number of samples the taxon appeared in/number of samples in study or at 

time step) and frequency (number of sequences per taxon/number of sequences in study 

or at time step) of Theileria clades and subtypes. Clade‐level analysis of Theileria spp. 

prevalence suggested a uniform and time‐invariable high prevalence of all three clades 

(Figure 4.3a, b; Table C2). However, higher taxonomic resolution revealed variation in 

overall prevalence (Figure 4.3c; Table C2) as well as temporal variation in subtypes in 

the population (Figure 4.3d). For example, each Theileria clade contained 2–3 common 

subtypes (overall prevalence >0.75) and 1–3 fewer common subtypes (overall prevalence 

<0.5) (see Table C2). Some subtypes showed little variation in prevalence throughout the 

study (e.g., T. velifera and T. velifera B), whereas others exhibited oscillatory patterns 

(e.g., T. mutans, T. mutans MSD, and T. (sp.) buffalo) (Figure 4.3d). As prevalence is 

used to estimate transmission of parasites within a system (Hens et al., 2012), our 

findings suggest there may be variation in transmission between taxa, and within each 

taxon, over time. 

Clade‐level analysis of Theileria frequency indicates overall and temporal 

variation in frequency of clades (Figure 4.4a, b; Table C2) and subtypes (Figure 4.4c; 

Table C2). Notably, subtypes that occur at high prevalence throughout the study period 

(e.g., T. mutans‐like 1, T. mutans‐like 3, T. velifera, and T. velifera B) also occur at high 

frequencies; however, the variation in overall frequency between taxa is much more 

pronounced. As such, including frequency data provides a more informative depiction of 

population‐level parasite dynamics than prevalence alone. Frequency appears to remain 

somewhat constant for the majority of the subtypes with a few exceptions (Figure 4.4d). 

Interestingly, T. mutans‐like 1 and T. mutans‐like 3 appear to undergo synchronous 

fluctuations, whereas both T. mutans‐like 1 and T. mutans‐like 3 appear to undergo 

antagonistic fluctuations with T. (sp.) bougasvlei (Figure 4.3d). 

 

4.3.2.1 Individual patterns 

We found that assemblage composition was significantly different between hosts 

at the clade (Figure 4.5a; Table 4.1, PERMANOVA, R2 = 0.66, p‐value < .001) and 

subtype level (Figure 4.5b; Table 4.2, PERMANOVA, R2 =0 .723, p‐value < .001). 
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Animals with high parasitemia appeared to have distinctly different assemblages 

than those with low parasitemia, both at the clade subtype level (Figure 4.5). The 

variance in parasitemia appeared to increase with mean parasitemia (Figure 4.5c). At the 

clade level, animals with higher average relative abundance of T. velifera had the highest 

mean and most variable parasitemia (Figure 4.5a, c). Similarly, at the subtype level, 

animals with a higher relative abundance of T. velifera B had the highest mean and the 

most variable parasitemia 

(Figure 4.5b, c). Notably, animals with higher mean parasitemia, and corresponding high 

parasitemia variance, also had higher average relative abundance of subtype T. mutans. 

 

4.4. Discussion 

We utilized NGSA to investigate previously cryptic dynamics of Theileria 

assemblages in wild African buffalo at the herd and individual levels over a two‐year 

period. 

We found that our methodology increased the breadth of data collected within our 

system, as we simultaneously identified three species clades, and twelve closely related 

Theileria subtypes, two of which had not previously been reported in our system (see 

Figure 4.2). We increased the depth of data collected by analyzing data at two taxonomic 

levels (species group and subtype) and established methodological framework to collect 

data at broader (genera: all Theileria and Babesia species) and narrower (genotype) 

taxonomic groupings (Figures 4.3‒4.5). Finally, we increased the precision at which we 

were able to view assemblage dynamics by obtaining relative abundance data for each 

taxon (Figures 4.4 & 4.5). 

In particular, the increase in depth and precision enabled us to observe patterns not 

discernible using traditional analytical approaches. When analyzing our data at the clade 

level, we found uniformly high prevalence across individuals and over time (Figure 4.3a, 

b). These findings match Henrichs et al. (2016), which found African buffalo to be 

infected with the same species clades at all points in time and was thus unable to tease 

apart Theileria assemblage dynamics due to the use of invariable, qualitative data at 

broad taxonomic levels. Subtype analyses revealed a much more dynamic system: 

subtypes varied in overall prevalence with a handful of subtypes remaining remarkably 
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constant over time and others exhibiting synchronous and/or antagonist fluctuations in 

prevalence (Figure 4.3c, d). Variation among taxa and similarities in temporal trends at 

the clade and subtype level became even more distinct when analyzing the frequency, or 

relative abundance of each taxon, at the population level (Figure 4.4). Interestingly, 

examining subtype frequency revealed that only 1–2 subtypes drive dominance of species 

clades. Furthermore, the high frequency of T. sp. (bougasvlei), yet relatively low 

frequency of the T. taurotragi clade, highlights that examining data at coarse taxonomic 

levels may mask the effects of influential taxa within a system. Overall, variation in 

population patterns of each taxon suggests heterogeneous transmission within this genus, 

while synchronous and opposite patterns of abundance may point to significant 

interactions among Theileria subtypes—trends that future research can further 

investigate. 

 We found striking associations between mean parasitemia, parasitemia variance, 

and assemblage composition (Figure 4.5). Our data visualization indicated that animals 

with higher mean parasitemia have, on average, conspicuously, higher relative 

abundances of the T. velifera species clade and lower relative abundances of the T. 

mutans species clade. Assemblage composition reveals interesting patterns at the subtype 

level, albeit with additional nuances: trends observed in the T. velifera species groups 

appeared to be primarily driven by dominance of T. verlifera B; furthermore, animals 

with higher mean parasitemia had, on average, lower relative abundances of T. mutans 

species clade but higher relative abundances of T. mutans (Figure 4.5b). Parasitemia has 

been negatively associated with host health outcomes (Asghar et al., 2011; Sol et al., 

2003; Stjernman et al., 2008) as such T. velifera B and T. mutans may be the more 

pathogenic subtypes within this system. However, hosts may also be tolerant of Theileria 

(i.e., as parasitemia increases, host fitness remains constant; Råberg, Graham, & Read, 

2009); in this case, parasitemia would not negatively correlate with host fitness or, 

perhaps, tolerance varies with assemblage composition. Overall, our methods enable 

exploring how assemblage composition influences host fitness with initial links to 

parasitemia offering interesting hypotheses regarding how fine scale in parasite 

assemblage affects host health outcomes. 

 Importantly, the diversity of our assemblages is well supported by the existing 
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literature. We detected almost all Theileria subtypes previously detected in southern KNP 

(Mans et al., 2016). We did not find T. sp. (sable), which has previously been reported in 

African buffalo in KNP (Henrichs et al., 2016). T. sp. (sable) may have been previously 

reported in African buffalo as the T. sp. (sable) RLB probe cross hybridizes with T. 

velifera (Mans et al., 2011). Mans et al. (2016) used amplicon sequencing, using the 

Roche 454 platform, to describe the prevalence of Theileria spp. in South Africa, but did 

not detect 

T. sp. (sable) in African buffalo. The absence of T. sp. (sable) within our study underlines 

how NGSA ameliorates specificity and sensitivity issues, such as cross reactivity, that 

plague alternative diagnostic tools. Notably, we found two species that have not been 

previously reported. Interestingly, these species, particularly the subtype most closely 

related to T. velifera, were detected in the same animal across multiple time points. We 

may have detected these species because we used very high read coverage (on average 

69,407 ± 1,929 reads per sample). 

When adapting our methods to other study systems, we encourage careful 

consideration of study design. For example, if using markers more variable than the 18S 

gene (e.g., more low frequency yet biologically important sequences) or addressing 

questions that necessitate the inclusion of low frequency sequences (e.g., mutation and 

evolution), we suggest running all samples in triplicate. We found the relative 

abundances of unique sequences within our samples were highly repeatable at a relative 

abundance of >1% (Appendix C2). However, during our replication experiment, we 

found a few low abundance sequences (<1%) that occurred in both replicates. Using 

duplicates or triplicates of all samples would allow researchers to differentiate between 

true low abundance sequences and noise, allowing for accurate reporting of genetic 

diversity within a population. 

Overall, we found that using an NGS‐based approach allowed us to obtain data 

powerful enough to further our understanding of assemblage dynamics in the Theileria—

African buffalo system. Our dataset will enable us to explore a range of questions, 

including explicitly defining mechanistic links between parasite assemblage and host 

health as well as assemblage processes that alter pathogen persistence. Notably, the 

primers used for NGSA are conserved across all species of Theileria and Babesia, 
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regardless of host species (Gubbels et al., 1999). Thus, this methodology can be used to 

study blood‐borne parasite assemblages of a broad range of host species, including the 

tick vector. We believe that, given the appropriate genetic marker, our workflow is 

readily adaptable to other disease systems. As exemplified by our study, the application 

of NGSA in disease ecology will exponentially increase our understanding of causes and 

consequences of variation in parasite assemblages in natural host populations. 
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Table 4.1. PERMANOVA results table for species clade assemblage composition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 df SS MS F statistic R2 p 

Time 8 0.687 0.086 4.477 .030 <.001 

Animal 65 15.077 0.232 12.092 .662 <.001 

Residuals 366 7.021 0.019  .308  

Total 439 22.786   1.000  

Note: p‐values based on 999 permutations. 

Abbreviations: animal, animal ID; df, degrees of freedom; MS, 

mean sum of squares; SS, sum of squares; time, sampling time point 
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Table 4.2. PERMANOVA results table for subtype assemblage composition 

 

 df SS MS F statistic R2 p 

Time 8 1.374 0.172 5.552 .030 <.001 

Animal 65 33.677 0.518 16.746 .726 <.001 

Residuals 366 11.323 0.031  .244  

Total 439 46.374   1.000  
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Figure 4.1. African buffalo in Kruger National Park, South Africa. Photograph courtesy 

of Robert Spaan. 
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Figure 4.2. Phylogenetic relationship among consensus sequences of Theileria spp. 

determined in this study (bold) and the reference sequences for all Theileria spp. that 

infect African buffalo as well as closely related species (regular font, sequences with 

subtype names). Relationships were inferred from phylogenetic analysis of sequence data 

for a ~460‐bp region of the 18S V4 rRNA gene by neighbor joining and Bayesian inference. 

Neighbor joining bootstrap values >75% and Bayesian inference posterior probabilities 

>0.90 are included on tree branches 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



94 
 

 
 
 

 
 
Figure 4.2 
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Figure 4.3. Prevalence of Theileria species clades and subtypes. The overall prevalence 

of Theileria spp. over the entire study and at each sampling time point for each clade (a, b) 

and subtype (c, d). Note: Colors for each taxon are identical in bar plots and line graphs. 
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Figure 4.4. Frequencies of Theileria species clades and subtypes at a population level. 

Overall frequencies of Theileria spp. over the entire study and at each sampling time point 

for each clade (a, b, respectively) and subtype (c, d, respectively). Note: Colors for each 

taxon are identical in bar plots and line graphs 
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Figure 4.5. Parasitemia and variation in assemblage composition at an individual 

level. (a) Averaged clade assemblage composition for each animal. (b) Averaged subtype 

assemblage composition. (c) Percent parasitemia (mean and SE) for each animal. The y‐

axis extends from 0% to 1% (not 100%). Each figure is ordered from the animal with the 

lowest mean % parasitemia to the highest % parasitemia. 
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Figure 4.5 
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CHAPTER 5: MULTIPLE SPATIO-TEMPORAL PROCESSES SHAPE 

STRUCTURE OF COMPLEX MICROPARASITE ASSEMBLAGES WITHIN 

AND AMONG HOSTS 

 

Abstract 

 

 Understanding the structure and dynamics of complex parasite communities is 

fundamental to uncovering variation in host susceptibility as well as parasite spread and 

persistence. Analogous to free-living meta-communities, parasite assemblage structure is 

governed by an interplay between resource utilization and response, within and among 

host heterogeneity, and dispersal capacity. Further, death of hosts drives stochastic 

extinction of parasite populations, with the birth of hosts continually creating new, open 

habitat patches. The continual opening of new habitats enables patch and/or neutral 

dynamics to structure parasite communities in absence of differential resources use and 

response and host heterogeneity. Distribution of parasite assemblages is most likely 

driven by processes occurring at multiple spatio-temporal scales, however, particularly 

for micro-parasites, advancing sequencing technology has only just allowed for 

informative description of temporal and spatial variation in assemblage structure.   

 Here we investigated the structure and dynamics of a piroplasm assemblage, 

comprised of twelve strains of Theileria parasites, in a herd of African buffalo in Kruger 

National Park, South Africa. The entire herd was sampled ten times during a period of 

two years, and included animals of all ages. At each sampling event, hosts were evaluated 

in terms of high-throughput read counts of all twelve subtypes of Theileria and burdens 

of the two main local tick vectors for Theilerias, as well as immunologic and physiologic 

parameters that might affect Theileria infections. We used a life-history analysis to 

elucidate temporal variation in host and population infection history. For microparasites, 

life histories are typically described with reference to their host populations, focusing on 

the infected host as the functional unit, rather than the individual parasite. Microparasite 

life history variation can thus be conceptualized in terms of host age at first infection, 

parasite prevalence and within-host abundance throughout the host’s life span. We then 

used multi-variate statistics to determine how host resources and immune response 

further structure parasite assemblages at varying spatial scales.  



100 
 

 
 We found that subtypes grouped in time and space by their life-history strategy. We 

found that common Theileria parasites group along two life history axes, colonization 

ability and persistence of infection, with all combinations of these traits represented in 

our parasite assemblage. Further, we provide evidence that both host traits and vector 

dynamics contribute to shaping Theileria assemblages within and across hosts. Wildlife 

study systems such as this can serve as model systems to elucidate how parasite 

assemblages function, how they affect their hosts, and ultimately, how disease control 

interventions might utilize assemblage dynamics to implement successful and cost-

effective practices. 

 

5.1 Introduction 

Understanding the structure and dynamics of complex parasite communities within hosts 

and host populations is fundamental to understanding variable outcomes of infections for 

individual hosts (Abbate et al., 2018), changing burdens of infection over time in host 

populations (Budischak et al., 2018), and to predicting effectiveness and side effects of 

disease control interventions (Ezenwa & Jolles 2015).  

 Ecological processes that drive parasite distribution within and among hosts, resulting 

in observed community and meta-community structure, include analogous mechanisms to 

free-living systems (Johnson, de Roode & Fenton 2015). The distribution of free-living 

species is governed by their ability to survive and reproduce in a local habitat path 

(community) as well as their ability to disperse across a region of habitats (meta-

community). Neutral models assume species equivalency, whereas niche-based models 

relax this assumption allowing for differences in species’ resource utilization and 

response (i.e, interspecific interactions) as well as dispersal capacity (Leibold & Chase 

2018). In some niche-based systems, local and regional heterogeneity in environmental 

conditions, and differential use of habitats (i.e, niche), influence species distribution 

within a community and across a meta-community (Leibold & Chase 2018). Further, 

demographic stochasticity can cause local extinctions – if local environmental conditions 

are homogenous, and species exhibit a competitive hierarchy, local extinctions open 
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habitat for competitively inferior, but dispersal superior, species to colonize before being 

displaced by competitively superior, dispersal inferior, species (Tillman 1994). In this 

instance, species co-exist throughout a meta-community using a competition-colonization 

trade and niche availability changes with temporal variability of local interaction 

networks (Tillman 1994).    

 In host-parasite systems, niches emerge through availability of host tissue and/or host 

nutrients (resources) and regulation by the host immune system (trophic interactions), 

which can both be influenced by co-infecting parasites (competition-facilitation 

interactions) (Pedersen & Fenton 2007, Rynkiewicz, Pedersen & Fenton 2015). Thus, 

niches for parasites can be defined by variation in host immune response and resource 

utilization, and the resulting parasite-parasite interaction network, on multiple spatio-

temporal scales. For example, parasites might use specific host tissue and sort in space 

within the hosts (Pedersen & Fenton 2007) or might infect specific hosts (e.g., hosts that 

have different immune phenotypes based upon sex (Krasnov et al., 2005; Metcalf & 

Graham 2018) or genetics (Williams-Blangero et al., 2012)) and sort among hosts. Niche 

availability may also vary temporally within hosts, with fluctuations in host resources 

(e.g., blood cells) or immune responsiveness (Beechler et al., 2017) driving changes to 

the parasite infra-community (Kendig et al., 2020); and at the population scale, where 

asynchronous changes in host physiology can alter niche availability among hosts. 

Additionally, due to birth and death of hosts, habitat patches for parasites are by 

definition ephemeral, with births driving the continual creation of new, open habitat 

patches. Although relatively unexplored in host-pathogen systems (but see Harbison et 

al., 2008, Mordecai et al., 2016), succession dynamics in hosts could thus allow the 

persistence of competitively inferior, but rapidly dispersing, pathogens, by infecting 

young animals before being displaced by competitively superior pathogens with slower 

transmission rates (Tillman 1994).  

 Dispersal capacity between patches can provide species an advantage which either 

enables them to colonize new patches (i.e, newborn animals) and occupy environments 

absent of competitively superior species, or disperse at such high rates between patches 

that they can persist in unfavorable habitats despite the presence of competitively 

dominant species, thereby preventing competitive exclusion (Pacala & Roughgarden 
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1982; Chesson 1985). On the other hand, dispersal capacity can be limited so that species 

are not present in all habitat patches where they could otherwise maintain positive growth 

(Cadotte 2006; Condit, Chisolm & Hubbel 2012) – this limitation may slow their ability 

to colonize new habitat patches or re-colonize existing patches. Alternatively, dispersal 

capacity can be invariable across species, but sufficient for each species to disperse 

throughout the meta-community, so that local environment is the only driver of species 

assemblage (Leibold & Chase 2018). In vector-transmitted disease, dispersal advantages 

may arise through occupying unique niches within vectors such as infecting vectors that 

are typically found at higher abundances within the environment or on the intermediate or 

definitive host, more efficient uptake by the vector, or competitive dominance within the 

vector. Consequently, vectors might serve as an additional source of niche availability, 

complementary or contradictory to host-related niche axes (e.g., vector (snail) 

composition influences parasite community structure in pacific chorus frogs: Mihaljevic 

et al., 2018).          

 A majority of work investigating the processes that structure parasite assemblages has 

focused on the spatial organization of macroparasites (Rigels et al., 2013, Dallas & 

Presley 2014). Distribution of parasite assemblages is most likely drive by niche 

occupancy at multiple spatio-temporal scales, however, particularly for micro-parasites, 

informative temporal and spatial patterns have been challenging to detect. Microparasite 

communities have been less tractable, in part because microparasite diagnostics, until 

recently,  have tracked prior exposure rather than current infection (i.e., detection of 

antibodies), or current infection has been characterized merely as present or absent, 

limiting power to detect variation in community structure and species interactions 

(Fenton, Viney & Lello 2010). However, new diagnostic tools (e.g., sequencing 

technologies: chapter 4; Glidden et al., 2019) enable collecting higher resolution data that 

reveals more variation in parasite distribution. Importantly, we can now unravel temporal 

variation by classifying microparasites according to their life history strategy as well as 

examine previously cryptic variation in host resource use and response. Microparasite life 

histories are aptly classified by focusing on the infected host as the functional unit, rather 

than the individual parasite (Vicente et al., 2007). Microparasite life history variation can 

thus be conceptualized in terms of host age at first infection, parasite prevalence and 
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within-host abundance throughout the host’s life span. Thus, characterizing 

microparasites by their life history strategy enables one to describe parasites’ 

colonization ability and ephemerality within-hosts, as well as speculate on their 

competitive rank in within-host assemblage. Pairing life-history analyses with typical 

multivariate community assembly analyses, which align species abundances with habitat 

characteristics (e.g., resources, predation), allows one to more comprehensively dissect 

the drivers of parasite assemblages across space and time. 

  Here we investigated the structure and dynamics of a piroplasm assemblage, 

comprised of twelve subtypes of Theileria microparasites, in a herd of African buffalo in 

Kruger National Park, South Africa (Glidden et al., 2019). Theileria are tick-borne 

intracellular protists within the phylum Apicomplexa (Norval, Perry & Young 1992). 

African buffalo are reservoir hosts for three species clades (T. taurotragi, T. mutans, T. 

velifera), which also infect cattle at the wildlife-livestock interface and cause 

economically significant morbidity and mortality (Mans et al., 2016). In the buffalo host, 

all Theileria have a life stage in which they infect lymphocytes (a type of white blood 

cell) and red blood cells (Norval, Perry & Young 1992). However, Theileria within the T. 

taurotragi species clade (T. parva, T. sp. (bougasvlei), T. sp. (buffalo)) are primarily 

transmitted by ticks within the Rhipicephalus genus and replicate within white blood cells 

of the mammalian host, before transfer to red blood cells for uptake by the tick vector; 

whereas Theileria within the T. mutans and T. velifera clades are transmitted by 

Amybolyomma ticks and primarily replicate within red blood cells of the mammalian host 

(Norval, Perry & Young 1992). While immune response to T.mutans and T. velifera is 

poorly understood, protective immunity against T. parva (in the T. taurotragi clade) in 

cattle is largely mediated by CD8+ cytotoxic T cells (McKeever et al., 1994) and CD4+ 

cells associated with Type 1 T helper cells (Baldwin et al., 1992) – both of which are 

typical immune response to intracellular parasites (Murphy 2011). Wild African buffalo 

tend to be infected by all 3 species clades of Theileria at most times (Henrichs et al., 

2016), but quantitative diagnostic techniques have revealed striking variation in relative 

abundance of subtypes within buffalo, and in assemblage structure among hosts (Glidden 

et al., 2019). These findings raise the question how so many closely related parasite 

subtypes, with overlapping resource utilization and immune response, can coexist in a 
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host population, and what processes structure Theileria assemblages in individual buffalo 

hosts.  

 We assessed Theileria life history variation in terms of the initial timing and 

persistence of infection, as well as the relative abundance of each Theileria stubtype 

throughout the host’s life span, providing us with measures of colonization ability, 

chronicity / ephemerality and relative competitive ability for each strain. Next, we 

evaluated how the structure of parasite communities within individual buffalo associated 

with static and temporally variable host traits. Finally, we examined patterns of tick-

infestation among the buffalo over time, to understand the role of vector dynamics in 

driving Theileria assemblage dynamics, particularly as they relate to colonization and 

ephemerality.  

 

5.2 Methods 

5.2.1 Study system and sample collection 

 African buffalo included in this study were located in a 900-hectare enclosure within 

the Kruger National Park (KNP) a 19,000 km2 preserve, located in northeastern South 

Africa (S 24 23' 52", E 31 46' 40") (Figure D1). The enclosure is entirely within the KNP 

and has numerous other wild animals typical of the ecosystem (e.g., giraffe, zebra, 

warthogs, small mammals and small predators).  However, the enclosure excludes mega-

herbivores (rhino, hippo, elephant) and large predators (lion, leopard). Study animals 

graze and breed naturally and find water in seasonal pans and man-made (permanent) 

water troughs.  In extremely dry conditions, supplemental grass and alfalfa hay was 

supplied. At any given time, depending on births and deaths, the herd consisted of around 

50 buffalo with 66 total animals. 

         The herd was sampled at two-three month intervals from February 2014 – 

December 2015 (capture time points = 10). Animal capture and sedation protocols have 

previously been described by Couch et al. (2017). The study was conducted under South 

Africa Department of Agriculture, Forestry and Fisheries Section 20 permits Ref 12/11/1, 

ACUP project number 4478 and 4861, Onderstepoort Veterinary Research Animal Ethics 

Committee project number 100261-Y5, and the Kruger National Park Animal Care and 

Use Committee project number JOLAE1157-12. 
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 Body condition was measured during immobilization by visually inspecting and 

palpating four areas on the buffalo where fat is stored: ribs, spine, hips and base of tail.  

Each area was scored from 1 (very poor) to 5 (excellent) and an overall body condition 

score was calculated, as the average of all four areas (Ezwenwa, Jolles & O’Brien 2009). 

For animals born during the study, their birthdate was recorded and their age was tracked 

accordingly. Age was assessed from body length and horn length for animals born before 

the start of the study but < 2 years old, incisor emergence patterns for buffalo aged 2-5 

years, and from tooth wear of incisor one for buffalo aged 6 years and older (Jolles 2007). 

Length (cm) of each buffalo was measured from the base of the skull to the base of the 

tail; horn length (cm) for animals < 2 years old was measured from the base of the skull 

to the tip of the horn. Pregnancy was evaluated at each capture time point via rectal 

palpation (Beechler et al., 2012). To enable estimation of tick abundances, given the 

constraint of limited immobilization time, a photograph was taken at the base of the 

inguinal, periaxillary and perianal region (methods of obtaining photographs during 

immobilization are described in detail in Anderson et al., 2012; methods of measuring 

abundance from photographs described in 5.2.5 and Sisson et al., 2017). When an animal 

was initially included in the study (during the first capture period or when the animal was 

born) an ear clip was taken for genomics analyses.  

 During each capture, 15 mL of whole blood was collected via jugular venipuncture 

directly into EDTA-coated and serum-separating vacutainers and stored on ice during 

transport. One millilitre of whole blood was pipetted into sterile microcentrifuge tubes 

and stored at -80°C until used for DNA extractions. 10mL of whole blood was 

centrifuged at 5000g for ten minutes and the serum was pipetted off the cellular layer into 

a sterile microcentrifuge. Serum was stored at -80°C until serum globulin concentrations 

(g/dL) were analyzed using Abaxis Vetscan VS2 (Abaxis Inc., Union City, CA, USA) 

chemistry analyzer on the large animal profile (Abaxis SKU500-023) (detailed methods 

in Couch et al. (2017)). The remainder of blood was immediately used to measure 

hematology variables (red blood cell count (106/mm3), mean corpuscular volume (µm3) 

(representing mean size of a red blood cell); white bloods cell counts(106/mm3)) using an 

automated hematology analyzer (Vet ABC, Scil Animal Care Company, USA) as well as 

make blood slides (protocol described in Broughton et al. (2017)). Once dried, slides 
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were analyzed, by the same researcher, for the proportion of white blood cell type 

(neutrophils, lymphocytes, eosinophils, basophils, monocytes). Count of each white 

blood type was calculated by multiplying the proportion of white blood cells by total 

white blood cell count. 

 The KNP experiences pronounced seasonal variation in rainfall and vegetation 

(MacFadyen et al., 2018), which correlates with changes in buffalo physiology (Ryan et 

al., 2012) within KNP and vector abundances in similar savannah ecosystems systems 

(Titcomb et al. 2017). Seasonal fluctuations in the environment are well described by an 

environmental vegetation index (Ryan et al., 2012). We used 16-day composite, 250-m 

resolution NDVI data from the Moderate Resolution Imaging Spectroradiometer 

(MODIS). We utilized pre-processed data from January 2014 to December 2015 obtained 

from MODIS for the North American Carbon Program (MODIS for NACP, 

https://accweb.gsfc.nasa.gov/; Gao et al., 2008, Tan et al., 2011). We extracted the NDVI 

data 16-day composite image to the 900-hectare enclosure (Figure D1), located southwest 

of Satara Rest Camp, Kruger National Park, and generated a median statistic using R [R 

Core Team (R version 3.6.3)]. R was used for all analyses included in section 5.2.2 – 

5.2.5. Rainfall data (mm/capture month) used in the analysis was collected from the 

weather monitoring station located at the Satara Ranger Station, ~ 1km north of the 

enclosure (Scientific Services, Kruger National Park MeteorologicalRecords ; 

http://www.sanparks.org/conservation/scientific_new/savannah_arid/data_resources/weat

her.php). 

 

5.2.2 Quantifying Theileria assemblages 

We used high throughput amplicon sequencing to detect and quantify read counts of 

Theileria subtypes using an 18S rRNA sequence specific to piroplasms (Theileria spp. and 

Babesia spp.) (Gubbels et al., 1999). Theileria taxon were grouped by subtypes based on 

Neighbor-Joining and Bayesian Inference analyses using previously published Theileria 

18S sequences (chp 4; Glidden et al., 2019). We detected twelve Theileria subtypes: 

T.mutans species clade subtypes: T. mutans, T.mutans MSD, T. mutans-like 1, T. mutans-

like 2, T. mutans-like 3, T. mutans-like (undescribed); T. velifera species clade subtypes: 

T. velifera, T. velifera B, T. velifera-like (undescribed); T. taurotragi species clade 
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subtypes: T. parva, T. (sp) bougasveli, T. (sp) buffalo. Detailed methodology is described 

in Glidden et al. (2019) (chapter 4). In total, we included 488 samples from 66 animals 

spanning ten capture periods with on average 7.5 time points per animal. 

 

5.2.3 Describing parasite life histories: colonization, ephemerality, extinction and rank 

through time 

 We identified unique life histories by considering a newborn animal as a new 

habitat patch and analyzing change in mean relative abundance and prevalence of each 

Theileria species by age (months). The relationship between relative abundance of each 

Theileria subtype and animal age was non-linear, as such we described this relationship 

using a basis-spline regression (Appendix D1; Duan & Jiang 2020). We fit models with a 

Dirichlet-multinomial distribution (probability mass function: Eq. 1): 

Pr(𝒙| 𝜶) = 
(𝑛!)𝛤(∑𝛼𝑘)

𝛤(𝑛+∑𝛼𝑘)
∏

𝛤(𝑥𝑘+𝛼𝑘)

(𝑥𝑘!)𝛤(𝛼𝐾)

𝐾
𝑘=1                                                      Eq. 1 

 

Where n represents the number of read counts in a sample, 𝑥𝑘 is the number of read counts 

for each subtype in a sample and 𝛼𝑘 represents the relative abundance (proportion) of that 

subtype within the sample. Thus, the Dirichlet-multinomial distribution accounts for the 

compositional nature of our data as well as sampling effort (Appendix D1; Harrison et al., 

2019; Duan & Jiang 2020). As we had repeated measures, we weighted each observation 

by a within-animal dependency (Appendix D1; Duan & Jiang 2020).  

         After fitting the basis spline regression, we quantified point estimates indicative of 

different life history strategies (Appendix D1).We first calculated the average host age at 

first infection (when relative abundance > 0.01; 0.01 is our limit of detection (chapter 4; 

Glidden et al., 2019)) to identify variation in pathogen colonization ability. Next, we 

calculated the average relative subtype abundance when the slope of the regression 

approaches 0 after initial infection (equilibrium); this measure provided us an estimation 

of subtype rank in climax communities (i.e., competitive rank) as well as subtypes that are 

cleared from the host (i.e., are transient or go extinct).  We calculated average host age at 

equilibrium to further characterize Theileria subtype life histories. We used bootstrapping 

methods to estimate a 95% confidence interval around these estimates (Appendix D1).  
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 To determine if Theileria are cleared from their hosts, thereby quantifying subtype 

extinction and ephemerality, age-prevalence curves were created by binning animals within 

6-month age categories and calculating Eq. 2 for each subtype for each age class: 

𝑃𝑟𝑒𝑣𝑒𝑙𝑎𝑛𝑐𝑒 =
𝑛𝑜.𝑎𝑛𝑖𝑚𝑎𝑙𝑠𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑

𝑛𝑜.𝑎𝑛𝑖𝑚𝑎𝑙𝑠𝑠𝑎𝑚𝑝𝑙𝑒𝑑
.                                              Eq. 2 

 

Standard errors for prevalence of each subtype for each age class were calculated by Eq. 

3.: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑒𝑟𝑟𝑜𝑟 = 
√𝑛𝑜.𝑎𝑛𝑖𝑚𝑎𝑙𝑠𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑−(1−𝑛𝑜.𝑎𝑛𝑖𝑚𝑎𝑙𝑠𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑)

𝑛𝑜.𝑎𝑛𝑖𝑚𝑎𝑙𝑠𝑠𝑎𝑚𝑝𝑙𝑒𝑑
.                        Eq. 

3  

 

 Age-prevalence curves were particularly useful in determining parasite clearance and 

ephemerality in our study as we were tracking the same individuals through time. 

 

2.4 Identifying variation in Theileria assemblages and life history strategies associated 

with host traits 

 We examined the effect of host traits on Theileria assemblage composition using a 

combination of multivariate statistics and mixed effects models. Specifically, we 

examined the effect of fluctuating host traits associated with resource availability and 

immune responses to Theileria parasites (red blood cell count, mean corpuscular volume 

(MCV; red blood cell size), white blood cell count, white blood cell composition, 

globulin concentration, body condition, reproductive status), traits that vary 

unidirectionally (age) and static host traits (sex, genetic background) on distribution of 

Theileria. We also included median NDVI to account for seasonal fluctuations in vector 

abundances or host physiology not explicitly accounted for in our model. As Theileria of 

buffalo replicate in lymphocytes and red blood cells (Norvak, Perry & Young 1992), 

which they may further specialize on based upon cell size (Budischak et al., 2018), red 

blood cell count, MCV, white blood cell count and proportion and abundance of 

lymphocytes represent parasite resources. Notably, proportion and abundance of each 
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white blood cell type (lymphocyte, neutrophil, basophil, monocyte, eosinophil) indicates 

unique immune functions (Murphy 2011). Thus, total white blood cell count, white blood 

cell composition and counts of each white blood cell type, globulin concentration (which 

are partially composed of antibodies (Murphy 2011)), body condition (Gilot-Fromont et 

al., 2012), sex (Krasnov et al., 2005; Metcalf & Graham 2018), and reproductive status 

(Trillmich et al., 2020) serve as markers of immune response and/or immuno-

competence. Genetic background could relate to availability of parasite resources or 

immune response (Tavalire et al., 2019), depending on the pathways upregulated by the 

genetic markers that influence parasite distribution.   

 To initially explore associations between host traits and Theileria distribution, we used 

principle component analysis (PCA) to quantify assemblage composition of samples in 

Theileria ordination space and then used linear mixed models to estimate the effect of 

host traits (as described in the previous paragraph, with the exception of genetic 

background) along PCA axes one (PC1), two (PC2) and three (PC3). To account for 

sampling effort and the compositional nature of our data, Theileria read counts were 

center-log transformed (Gloor et al., 2017) and thus interpreted as abundance relative to 

the sample mean. For each PCA axis we fit a global linear mixed model with sample PC 

coordinates as the dependent variable, host traits, and median NDVI as covariates and 

animal ID and capture number as random intercepts. Our random effects control for the 

repeated nature of our study design as well as quantify variation in space and time not 

accounted for by our covariates. We used linear mixed models to explore the effect of 

host traits on assemblage composition as linear mixed models allow inclusion of 

continuous and categorical covariates as well as inclusion of random effects. To avoid 

over-parameterization of this initial analysis, we reduced the dimensionality of white 

blood cell count and composition by summarizing these variables using a PCA described 

in Appendix D2. All continuous covariates were transformed to standard deviation from 

the mean to allow for comparison of effect size across host traits. 

 When initially visualizing the data we observed that PC1 coordinates follow an 

exponential decay with age. As such, for PC1, we ran three separate models where age was 

linear, age was transformed to age + age2 (quadratic), and age was transformed to (½)age 

(exponential). We compared these models using AICc (Akaike's Information Criterion 
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with small-sample correction (Hurvich & Tsai 1989)) and selected the model with the 

exponential transformation (AICc linear=2465.95, AICc quadratic=2420.82, AICc 

exponential=2314.32). For each PC, we compared models with and without each random 

effect using a log likelihood test. After selecting for random effects, we calculated AICc 

for all combinations of model covariates and selected for the most parsimonious model 

within two AICc units of the model with the lowest AICc. We further evaluated model fit 

by calculating marginal and conditional R2; marginal R2 represents the portion of variance 

explained by the fixed effects while conditional R2 represents the portion of variation 

explained by the fixed and random effects (Nakagawa & Schielzeth 2012). Model selection 

tables are included in Tables D1-D3.   

 We found that variation in host age, hematology and immunology best summarized 

variation in PC1 (section 5.3.2.1). To better disentangle if particular Theilerias were 

associated with particular hematological or immunological variables, we ran a multi-level 

partial least square regression. Partial least square regression allows one to evaluate the 

numerical relationship between multiple continuous response and explanatory variables, 

even when either set of variables are collinear (Wold, Sjöström & Eriksson 2001). We 

included abundances of each white blood cell types, globulin concentration, mean 

corpuscular volume and (½)age as explanatory variables (X matrix - variables that were 

significant predictors in our PC1 best fit model, all scaled to standard deviations from the 

mean) and center-log-transformed Theileria read counts as response variables (Y matrix). 

To control for our repeated measure study design, we used a multi-level partial least square 

regression that decomposes the variance in the X and Y matrix and then applies partial 

least square regression on the within-subject variation matrix (Liquet et al., 2012). We 

evaluated model performance by using leave-one-out cross validation to estimate Q2, R2, 

and mean square error of prediction (Lê Cao, González & Déjean 2009). 

 We found that variation in host ID summarized a large portion of variation in PC2, 

which was mostly explained by the presence of T. sp. (buffalo) (results 5.3.2.2). As such, 

we ran a genome wide association (GWA) analysis to test for an association between host 

genetic background and T. sp. (buffalo) presence. We included 974 assembled single-

nucleotide polymorphisms (SNP) (Appendix D3; Tavalire et al., 2019). To control for 

genetic substructure in our sample, we performed a PCA using SNP markers in the R 
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package adegenet (Jombart & Ahmed 2011) and included the first three axes of this 

relatedness PCA as fixed effects in our models (Tavalire et al., 2019). We individually fit 

each SNP to a mixed effects logistic regression (presence of T. sp. (buffalo) as the 

response), including the fixed effects and random effects that were included in our PC2 

best fit model. To account for type 1 errors, we adjusted p-values using a false discovery 

rate correction (Benjamini & Hochberg 1995; reported here as q-values); we included a 

SNP in our final model if the q-value was <0.05. We included all SNPs that were significant 

in these marginal models in a final global model and retained SNPs that did not change in 

significance level. RAD-tag sequences containing significant SNPs were then mapped to 

the African buffalo genome (Glanzmann et al., 2016) as in Tavalire et al., (2019). Using 

the linkage block previously calculated for this population of buffalo, we considered 

annotated proteins within a 29kb window of each SNP as potential candidates for indicators 

of host physiological variation (Tavalire et al., 2019). For those RAD-tag sequences that 

did not map to the genome, we used blastn (Madden 2002) to identify putative candidate 

proteins, however we could only search for proteins containing each RAD-tag and not 

within a window around an SNP of unknown location.   

 We found that variation in host ID also summarized a large portion of variation in PC3; 

for samples that contained equilibrium assemblages (results 5.3.1; animals > 2 years), 

sample coordinates along PC3 were primarily dependent upon on the rank of T.mutans-

like 1-3 versus T. sp. (bougasvlei) or T.parva (results 5.3.2.3). As such, we ran two GWA 

analyses identical to the one described in the previous paragraph (one for T. sp 

(bougasvlei), one for T. parva). However, for each model, the response variable described 

whether T. sp. (bougasvlei) or T. parva ranked higher than T.mutans-like 1-3 (binomial: 

1=ranked higher, 0=ranked lower).  

 Linear mixed models and generalized linear mixed models were run using lme4 (Bates 

et al., 2015), with p-values calculated via the Satterthwaite’s degrees of freedom method 

in lmerTest (Kuznetsova et al., 2017). Selection of random effects was conducted with the 

package lmtest (Zeileis & Hothirn 2002). Selection of fixed effects and evaluation of model 

fit was conducted using MuMin (Barton 2009). For each analysis, influential animals as 

well as datum were evaluated in the package influence.ME (Nieuwenhuis, Grontenhuis, 

Pelzer 2012): each model was iteratively refit by removing one animal or datum and the 
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change in significance of each fixed effect was evaluated for each iteration. We detected 

no influential data. Normality of model residuals and heteroskedasticity were evaluated 

using normal probability and scale-location plots, respectively. Ordination analyses were 

conducted in base R, PCA coordinates were extracted using ggfortify (Tang, Horikoshi & 

Li 2016). The multi-level partial least squares regression analysis was conducted in 

mixOmics (Lê Cao, González & Déjean 2009). 

 

5.2.4 Detecting signatures of a competition-colonization trade-off 

 We hypothesized that dispersal superior, competitively inferior subtypes may specialize 

on newborn animals because they are absent of dispersal inferior, competitively superior 

subtypes (i.e., competition-colonization trade-off). We looked for signatures of the 

competition-colonization trade-off by using a linear regression, modeled in base R, to 

quantify the relationship between age of first infection (colonization ability) and relative 

abundance in climax communities (rank, a proxy for competitive ability). We assumed 

independence of parameter estimates used as data in the model. Normality of model 

residuals and heteroscedasticity were evaluated using normal probability and scale-

location plots, respectively.  

 

5.2.5 Identify potential for niche partitioning within vectors & for vector dynamics to 

contribute to succession dynamics 

 Tick pictures were scored as “low”, “medium” or “high” quality. “High” quality pictures 

were of high enough resolution to determine accurate tick abundances as well as identify 

tick genus (Rhipicephalus or Amblyomma), thus, samples in which the photograph quality 

was “medium” or “low” from any of the three regions were removed from analyses (Sisson 

et al, 2017). A single observer (DS) then counted and identified, to genus, ticks found on 

each buffalo at each time point. In total, we had 178 “high” quality samples from 52 

animals spanning 9 capture periods. Ticks were counted using the software ImageJ 

(Schneider, Rasband & Eliceiri 2012). Identically to Anderson et al. (2013), total tick 

abundance, for each genera, on each buffalo at each capture point, were calculated using 

Eq.4 : 
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𝑡𝑖𝑐𝑘𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 = (2 × 𝑎𝑥𝑖𝑙𝑙𝑎𝑟𝑦𝑡𝑖𝑐𝑘𝑐𝑜𝑢𝑛𝑡) + (2 × 𝑖𝑛𝑔𝑢𝑖𝑛𝑎𝑙𝑡𝑖𝑐𝑘𝑐𝑜𝑢𝑛𝑡) +

𝑝𝑒𝑟𝑖𝑎𝑛𝑎𝑙𝑡𝑖𝑐𝑘𝑐𝑜𝑢𝑛𝑡.                                                                                         Eq.4 

 

 We evaluated the temporal and spatial variation in tick abundance by using a generalized 

linear mixed model (Negative binomial distribution) to evaluate the relationship between 

tick abundance and buffalo traits associated with tick abundance (age, condition: Anderson 

et al., 2013) and environmental conditions related to variability in questing ticks in 

savannah ecosystems (vegetation cover: Jung Kjær et al. (2019), rainfall: Titcomb et al. 

(2017)). As animal size also correlates with tick abundance (Harrison et al., 2010; Vor et 

al., 2010), we originally included body length in our model, however, this was highly 

correlated (pearson’s r = 0.69) with age and thus we removed it from analyses. In 

preliminary data visualization we observed that both Amblyomma and Rhipicephalus 

abundances change non-linearly with age. Thus our global model included age, age2, 

condition and median ndvi as fixed effects and animal ID and capture number as random 

intercepts. We ran individual models for Amblyomma and Rhipicephalus abundances and 

compared model output to elucidate variation in T. taurotragi vs. T. velifera and T. mutans 

species clades dynamics. We compared models with and without each random effect using 

a log likelihood test. After selecting for our random effects, we calculated AICc for all 

combinations of model covariates and selected for the most parsimonious model within 

two AICc units of the model with the lowest AICc. We then calculated marginal and 

conditional R2 for the final model. When calculating R2 the delta method was used for 

calculating observation level variance as this can be used for the negative binomial 

distribution (Barton 2009). 

 We ran generalized linear mixed models using lme4 (Bates et al., 2015), with p-values 

calculated via the Satterthwaite’s degrees of freedom method in lmerTest (Kuznetsova et 

al., 2017). Model selection and diagnostics tests were run identically to methods outlined 

in section 5.2.3. Model selection tables are in Tables D4, D5. 

 

5.3. Results 

5.3.1 Life history: Subtypes exhibit variation in colonization, ephemerality and rank 

through time  
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 Individual buffalo typically acquired most subtypes of Theileria by the time they were 

one year old (Figure 5.1, Figure 5.2, Table 5.1). After the host was > 2 years relative 

abundance of most subtypes remained quite invariable through time (Figure 5.1), 

suggesting that buffalo over the age of two years tend to harbor relatively stable climax 

assemblages of Theileria parasites (Figure 5.1, Figure 5.2b). However, we found 

substantial variation in subtype life histories, driven by variable subtype dynamics in 

young buffalo and differential abundances in climax assemblages (Figure 5.1, Figure 

5.2).  

 T. velifera, T.velifera B, T. mutans, and T. mutans MSD appear to be early colonizers 

as they were present in most calves at their first sampling time point. Early infection with 

these subtypes was quite ubiquitous with >75% of animals 0-18 months old infected with 

these four subtypes. T. velifera and T.velifera B infected calves at high relative 

abundances and then persisted at moderate relative abundances in juvenile and adult 

animals: prevalence across all age groups was 100% for T. velifera and >75% for T. 

velifera B. In contrast, T. mutans, and T. mutans MSD were commonly cleared from the 

host after initial infection: About ½ of animals cleared T. mutans by the time they were 

24-30 months old and almost all animals cleared T. mutans MSD by the time they 

reached 18-24 months of age. As such, these subtypes can be divided into two life history 

groups: Early-persistent (T. velifera, T.velifera B) and early-ephemeral (T. mutans, 

T.mutans MSD). 

 T. mutans-like 1, T. mutans-like 2, and T. mutans-like 3 appear to be late colonizers, 

with average age of first infection > 5 months, with T.mutans-like 3 not infecting animals 

until they were, on average 10 months old. From 18-24 months of age, 100% (standard 

error = 0) of animals were infected with these subtypes indicating that animals harbored 

persistent infections throughout their lifetime. T. mutans-like 3 and T. mutans-like 1 had 

the highest average relative abundance at equilibrium indicating that these two subtypes 

are commonly the highest ranking within adult animals.  

 T. sp. (bougasvlei) and T. parva exhibit much more variable patterns. The average age 

of first infection was > 5 months, however, the 95% confidence interval around this 

estimate is quite large. Likewise, the mean relative abundance of T. sp. (bougasvlei) in 

climax assemblages was very variable (95%CI = 0.02-0.35), and variable prevalence for 
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these subtypes indicates that some hosts may gain and lose infections throughout their 

lifetime.  

 As such these late colonizing subtypes can be divided into two life history groups: 

late-persistent (T. mutans-like 1, T.mutans-like 2, T.mutans-like-3: T. mutans-like 1-3) 

and late-ephemeral (T. parva, T. sp. (bougasvlei)). 

 Lastly, T. velifera undefined, T. mutans undefined and T. sp. (buffalo) only infected a 

fraction of the host population and did not exhibit clear within-host infection patterns. 

These subtypes exhibit no clear life history patterns in buffalo. 

 Our analyses indicated that, with the exception of the subtypes with no distinct life-

history groups, dispersal capacity is high enough that all Theileria can reach all habitat 

patches within a buffalo’s first year of life. However, the differences in colonization 

ability, and ephemerality of late-persistent subtypes, indicate that there is may be some 

variability in dispersal capacity. Notably, for early colonizers and late-persistent 

colonizers, age of first infection was noticeably invariable indicating that they were 

consistent across sample years.   

 

5.3.2 Host traits influence Theileria assemblage composition 

 We found that our first three PC axes meaningfully polarized differences in life history 

strategy (Figure 5.3). First, PC1 (50.8% variance explained) split Theileria based on their 

colonization ability: samples with high abundances, relative to the sample mean, of early 

colonizer subtypes were distributed along the positive pole of PC1 whereas samples with 

high abundances, relative to the sample mean, of late colonizing subtypes were 

distributed along the negative pole of PC1. PC2 (13.36% variance explained) split 

Theileria based on their exhibition of clear life histories or no clear life history as PC2 

was most obviously explained by differences in presence of T. sp. (buffalo). T. mutans 

undefined and T. mutans undefined also located along the negative pole of PC2. PC3 

(9.57% variance explained) primarily split late-persistent versus late-ephemeral Theileria, 

with samples with higher ranks of T. sp. (bougasvlei) and T. parva distributed along the 

negative pole of PC3 and samples with higher ranks of T. mutans-like 1-3 distributed 

along the positive pole. Interestingly, our PCA revealed no clear patterns in differential 

distribution of early-persistent versus early-ephemeral subtypes within young animals 
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when both life-history groups were present in juvenile animals (Table D6). Furthermore, 

our PCA revealed no clear patterns of differential distribution of subtypes within each life 

history group (Table D6).  

 

5.3.2.1 PC1: Temporally variable host traits drive variation in distribution of early versus 

late colonizers  

 For PC1, we found that our best fitting model included (½)age, wbc composition, 

globulin concentration, mean corpuscular volume, pregnancy status, and median NDVI 

as fixed effects (Table D7) and animal ID as a random intercept. Model comparison did 

not support the inclusion of capture number (𝝌2 PC1 = 1.01, p-value=0.31). (½)age ,wbc 

composition, globulin concentration and mean corpuscular volume had a significant 

effect on Theileria assemblage PC1. Our fixed effects explained a significant portion of 

variation in PC1 (marginal R2   = 0.74, conditional R2= 0.86) Our partial least squares 

regression, which was sufficiently explained by the first component (cumulative Q2 > 

0.0975; Table D8), also polarized early versus late colonizers along axis 1, and most 

strongly polarized early-ephemeral versus late-persistent subtypes. Mean corpuscular 

volume and globulin concentrations were positively associated with late-colonizers and 

negatively associated with early-colonizers (Figure 5.4). Our partial least square 

regression suggests that differences in white blood cell composition across subtypes are 

driven by monocyte, basophil and eosinophil abundances, with late-colonizers positively 

associated with eosinophils and early-colonizers positively associated with basophil and 

monocyte counts (Figure 5.4). The relationship between our age variable (½age) and 

subtypes abundances, relative to the sample mean, is identical to what we report in our 

succession analysis (Figure 5.4).   

 

5.3.2.2 PC2: Age, genetics and host ID explain presence of T. sp. (buffalo)     

 For PC2, we found that our best fitting model included age, median NDVI and late 

pregnancy as covariates and animal ID as a random intercept (Figure 5.5, Table D9). 

Model comparison did not support the inclusion of capture number (𝝌2 PC2=0.13, p-

value=0.93). Only age had a significant effect on PC2 - older animals tended to have 
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assemblages that included T. sp. (buffalo). We found that animal ID explained a large 

portion of variation in these data (marginal R2   = 0.07, conditional R2= 0.58). We found 

that, throughout the study, only 20 animals were infected with T. sp. (buffalo), with 13 of 

these animals infected for > 50% of the time they were included in the study (Figure 5.5). 

As such, our random effect describes that T. (sp) buffalo was more likely to infect this 

subset of animals over many sampling points. Consequently, we ran a GWA analysis to 

identify differences in genetic background that could underpin variation in animal-level 

variation. We found two genetic markers that had a small but significant effect on odds of 

T. (sp) buffalo infection (Table D10). One genetic marker did not map to the annotated 

buffalo genome (SNP 488), however, being homozygous (GG) at this marker only 

increased an animals’ odds of infection by ~ 0.5%. SNP 678 mapped to protein coding 

regions involved in chromatin binding. However, being homozygous (CC) at this marker 

only increased animals’ odds of infection by 2%.  

 

5.3.2.3 PC3: Capture number and host ID drive variation in distribution of late-persistent 

versus late-ephemeral subtypes 

 PC3 segregated late-persistent (T. mutans-like 1-3) from early-persistent (T. parva, T. 

sp. (bougasvlei)) life histories. Our best fitting model to explain variation in the 

abundance, relative to the sample mean, of these groups included NDVI as a fixed effect 

and capture number and animal ID as random intercepts (Figure 5.5, Table D11). 

However, NDVI did not have a significant effect on PC3. Variation in PC3 explained by 

the random effects was quite large in comparison to variation explained by the fixed 

effects (marginal R2   = 0.005, conditional R2= 0.59). The variance of animal ID was 

larger than capture number. We did not find any SNPs that significantly associated with 

subtype rank. 

 

5.3.3 Succession dynamics influence distribution of late-persistent versus early-

ephemeral subtypes: Evidence for a competition-colonization trade-off  

 There was strong evidence for a colonization-competition trade-off among subtypes 

within the T. mutans and T. taurotragi clades: subtypes colonizing hosts at a very young 

age tended to have relatively low abundance in climax assemblages of Theileria parasites 
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(Figure 5.2, Table D12). However, variation in point estimates for T. taurotragi clade 

suggests that this pattern is driven primarily by subtypes within the T. mutans clade. 

Subtypes within the T. velifera clade did not fit this pattern, in that they exhibited high 

colonization ability and moderate (T. velifera) to high (T. velifera B) relative abundances 

at equilibrium (Figure 5.2, Table D12). Thus, the relationship is most clear between 

early-ephemeral and late-persistent subtypes.   

 

5.3.4 Tick abundances increase and saturate with host age but clear differences exist in 

abundance of Amyblyomma versus Rhipicephalus abundances throughout time 

 Tick abundance for both genera was comparable to those reported in free-living 

African buffalo (Anderson et al., 2013). For both genera of ticks, we found that our best 

fit model included age, age 2 and median NDVI (Figure 5.6, Table D13) and capture 

number as a random intercept. Our Amyblyomma model also included animal ID as a 

random intercept, however, for Rhipicephalus, model comparison did not support the 

inclusion of animal ID (𝜒2 = 0.03, p-value=0.85). For both tick genera, tick abundances 

significantly increases and saturates with host age, although we found a stronger effect of 

age on Amblyomma abundance (Figure 5.6, Tabld D14). Median NDVI did not have a 

significant effect on either Amblyomma or Rhipicephalus abundance. Similarly to 

Anderson et al., (2013), we observed that Amblyomma are much more abundant, 

particularly on adult animals, than Rhipicephalus (Figure 5.6). We found the marginal R2 

for our Amblyomma model was quite high (0.70) suggesting that age explains a large 

portion of variation in our data and the portion of variation explained by the random 

effects was relatively low (conditional R2= 0.89) suggesting that Amblyomma 

abundances, after accounting for age and median NDVI, only vary slightly across animal 

ID and capture number. In contrast, the marginal R2 for our Rhipicephalus was relatively 

low (0.27) while the proportion of variation explained by capture number was quite high 

(conditional R2= 0.68). Our results suggest that Rhipecephalus abundances vary 

temporally, independently of age and NDVI, with Rhipicephalus abundance likely to be 

higher at certain captures than others.  
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5.4 Discussion 

Studying Theileria parasites in wild buffalo, we described (for the first time) life history 

variation in an assemblage of closely related microparasites that commonly co-infect and 

persist in the same individual hosts and host populations. We found that common 

Theileria  parasites group along two life history axes, colonization ability and persistence 

of infection, with all combinations of these traits represented in our parasite assemblage: 

efficient colonizers that are quickly displaced by stronger competitors, quick colonizers 

that persist throughout the host’s lifetime maintaining high relative abundance, sluggish 

colonizers that commonly persist as dominate subtypes throughout the host’s lifetime, 

and slow colonizers that vary in rank and can be temporarily cleared from a host. We also 

found a subset of relatively rare Theileria that follow no clear life-history patterns. While 

there is, thus, no general trade-off between colonization and persistence across all 

Theileria, we did observe a colonization-persistence trade-off in the largest Theileria 

clade we studied, T. mutans. T. mutans segregate into early-ephemeral versus late-

persistent life history strategies, and these divisions explain a majority of the variation in 

T. mutans subtype distribution among buffalo. Further, we provide evidence that both 

host traits and vector dynamics contribute to shaping Theileria communities within hosts: 

Across all clades, vector dynamics likely influence differences in colonization and 

dispersal capacity. The abundance of early vs late colonizing Theileria was associated 

with variation in host resources and immune response, whereas a rare but sometimes 

locally dominant subtype (T. sp. (buffalo)) was primarily influenced by static host traits. 

In addition, the late-infecting subtypes segregated into persistent versus ephemeral 

groups according to the host tissue the parasite primarily replicates in as well as the 

parasites’ primary vector species. As such, analyzing our dataset through the lens of life-

history variation and spatio-temporal differences in niche availability provided novel 

insight on the structuring of this diverse vector-borne microparasite assemblage. 

Interestingly, none of the host or vector data we collected differentiated the distribution 

of Theileria subtypes within the same life history grouping, suggesting functional 

redundancy within life history groups.  

 The early-ephemeral and late-persistent subtypes we observed all grouped within the 

T. mutans species clade. The early-ephemeral subtypes were largely extirpated from adult 
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animals, while the late-persistent subtypes infected 100% of adult animals and T.mutans-

like 1 & 3 remained at the highest relative abundance within adult animals. Our linear 

regression indicated a clear, negative relationship between age at first infection and 

relative abundance in climax assemblages. Taken in concert, these results indicate a 

competition-colonization trade-off between early-ephemeral and late-persistent subtypes. 

This trade-off would enable T. mutans and T.mutans MSD to persist at the population-

level despite their clearance from adult animals and explain their variable distribution 

among age classes. Interestingly, T. mutans and T.mutans MSD infect cattle and buffalo 

whereas T.mutans-like 1 & 3 have only been reported in buffalo (Mans et al., 2016); 

these results are consistent with free-living communities where generalist species are 

superior dispersers, and thus superior colonizers, whereas specialists are dominant local 

competitors (Fernandez-Fournier & Aviles 2018). The mechanisms underlying variation 

in colonization ability of T. mutans subtypes are unknown. To the best of our knowledge, 

T. mutans subtypes are all transmitted by the tick genus Amyblyomma (Mans et al., 2016), 

which increase and saturate with host age indicating that exposure to T. mutans subtypes 

is constrained by buffalo age. Amblyomma ticks found on buffalo in the KNP are 

typically A. hebraeum (Anderson et al., 2013) suggesting that T. mutans subtypes share 

the same tick species. Early-colonizers may infect these ticks at higher prevalence, 

thereby obtaining a colonization advantage through a dispersal advantage. Early-

colonizers may be found at higher prevalence within the tick vector by more effectively 

reproducing in A. hebraeum. Alternatively, Glidden et al., (2019) (chapter 4) noted that 

animals with higher relative abundances of early-colonizers, including early-ephemeral 

subtypes, had higher total assemblage abundances (% blood cells infected by all 

Theileria). Thus, ticks that feed on calves have higher exposure rates to Theileria than 

ticks that feed on adult animals, which may lead to a higher prevalence of early-

colonizing subtypes in tick populations – however, fewer ticks feed on calves than adult 

animals, thus, exposure rates for ticks feeding on calves would have to be high enough to 

overcome the difference in abundance of ticks feeding on juvenile versus adult animals. 

 Early-colonizing and late-colonizing Theileria associated with distinct host traits. The 

only host resource that associated with abundance, relative to the sample mean, of early-

colonizing versus late-colonizing subtypes was red blood cell size (MCV) – MCV 
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increase with late-colonizing subtypes indicating that early-colonizing subtypes are 

associated with small red blood cells, typical or microcytic anemia, or late-colonizing 

subtypes are associated with large red blood cells, typical of regenerative anemia (Neiger, 

Hadley & Pfeiffer 2002). Thus, early vs. late colonizing subtypes may specialize on 

different red blood cells sizes, as is hypothesized with the etiological agent of malaria 

(Budischack et al., 2018). Theileria infections are generally associated with loss of red 

blood cells (Norval, Perry & Young 1992). As regenerative anemia indicates that a host 

can rapidly replace red blood cells, hosts may be able to better tolerate late-colonizing 

subtypes. In this case, host health and ability to replace damaged tissue, as opposed to 

characteristics of individual cells, may be the niche. A natural follow-up to our work is to 

determine the relationship between the dynamics of the Theileria assemblage and host 

health to better predict and understand the outcomes of disease management 

interventions. Theileria is typically managed, with variable success (Woolhouse et al., 

2015), by treating cattle with arachnicide to periodically remove ticks – our analyses 

indicate that treating cattle for ticks could change the ecological and evolutionary 

trajectory of Theileria assemblages by shifting communities toward dominance by early, 

efficient colonizers. A shift could be deleterious or protective of the host depending on 

the health effects of different Theileria life history groups.  

 Our analysis indicated that white blood cells did not serve as differential resources for 

early versus late colonizing subtypes as proportion of lymphocytes did not have an effect 

on PC1 in our linear mixed model and subtype center-log-transformed read counts did 

not associate with lymphocyte abundance in our partial least squares regression analysis. 

However, we did observe that globulins (a proxy for antibody concentration) and 

abundances of basophils, eosinophils, and monocytes associated with differences in 

abundances, relative to the sample, mean of early versus late colonizing Theileria. These 

white blood cells are not involved in the life cycle of Theileria, instead they each 

orchestrate a unique immune responses (Murphy 2011). Consequently, our analyses 

indicate that immune response mediates variation in Theileria distribution. We found that 

late-colonizing subtypes were associated with higher abundances of globulins. As 

antibodies can have neutralizing effects on Theileria (Musoke et al., 1992), host immune 

response may be less effective at removing late-colonizing subtypes. Perhaps, late-
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colonizing subtypes drive an upregulation in immune response that excludes early-

ephemeral subtypes (e.g., apparent competition: Råberg et al., 2006). Interestingly, in our 

partial least squares analysis, cells associated with upregulation of T helper cell-2 (Th2) 

immunity (eosinophils) positively correlated with late-colonizing Theilerias; whereas 

effector cells in T helper cell-1 (Th1) immunity (monocytes) and Th2 immunity 

(basophils) positively correlated with early-colonizing subtypes. Th1 immunity is 

associated with Theileria clearance (Baldwin et al., 1992; McKeever et al., 1994) 

whereas Th2 immunity has been found to associate with Theileria manipulation of the 

immune response and subsequent within host persistence (Yamada et al., 2009). 

Furthermore, heavy tick infestation also promotes a Th2 response (Ferreira & Silva 

1999). Th2 immunity is historically understood to downregulate Th1 immunity (Fenton, 

Lamb & Graham 2008) – perhaps immunomodulation by both Theileria and vector 

promotes persistence of some subtypes. Future work could more precisely characterize 

immune response against versus immune-modulation by each subtype as well as examine 

how parasite-parasite and vector-host interactions affect the host immune system to 

promote subtype clearance or persistence.  

 Three of the Theileria subtypes we examined were rare in the buffalo herd, and thus 

could not be classified in terms of life history traits. Variation in PC2, which was 

primarily polarized by presence of T. sp. (buffalo), was partially explained by age but 

mostly explained by host ID. As tick abundances generally increased with age, the age 

effect may be due to an increase in probability of exposure with age. Interestingly, this 

subtype repeatedly, or persistently, infected a small subset of individuals throughout the 

study, suggesting that T. sp. (buffalo) exploits specific susceptibilities in some hosts. A 

GWA analysis identified two loci with small but significant effects on the odds of T. sp. 

(buffalo) infection. T. sp. (buffalo) transforms leukocytes by causing them to proliferate 

indefinitely (Bishop et al., 2015) and our analysis indicated that genes associated with 

chromatin binding proteins, which are important in transcription, had a small effect on T. 

sp. (buffalo) presence. The difference in African buffalo’s ability to inhibit or promote T. 

sp. (buffalo) ability to manipulate host resources (i.e, cells to reproduce in) provides an 

interesting avenue for future molecular research. Advancing molecular methods are 

allowing researchers to translate high throughput sequencing data to absolute abundances 
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as well as better account for sequencing biases (McLaren et al., 2019, William, Hughes & 

Willis 2019). Additional GWA studies could examine the relationship between absolute 

abundance of T. sp. (buffalo) to examine if the same genetic markers account for 

variability in the absolute abundance of T. sp. (buffalo) in peripheral blood, which may 

be a more meaningful proxy for intra-lymphocyte replication rate. Moreover, gene 

expression is important for regulation of Theileria parasites (Dewangan et al., 2015); 

future work could examine if animal-level differences in gene expression better describe 

variation associated with animal ID.  

 None of the host traits we evaluated explained variation in the distribution of late-

ephemeral (T. parva, T. sp. (bougasvlei)) versus late-persistent (T. mutans-like 1-3) 

Theileria life history groups among buffalo, but host ID and capture number seemed to 

play a role. Genomic and gene expression differences among hosts might account for the 

observed effect of host ID (Dewangan et al., 2015); however, a GWA analysis failed to 

identify any loci associated with the relative abundance of these groups. As briefly 

described with T. sp. (buffalo), late-ephemeral subtypes grouped in the T. taurotragi 

clade, which primarily reproduce within lymphocytes in the host’s lymphatic system 

(Norval, Perry & Young 1992). As such, the fluctuations in abundances of these 

subtypes, detected by sampling peripheral blood, could be attributed to rate of 

proliferation occurring within the lymphatic system – this may also explain ephemerality 

of these subtypes as proliferation in the lymphatic system can occur at a low enough rates 

that parasitemia is not detected in peripheral blood (Olds, Mason & Scoles 2018). 

Alternatively, differences in vector dynamics may influence distribution of late-

colonizing life-history subtypes within and among hosts. The vector of late-persistent 

subtypes, Amblyomma, is consistently high in adults whereas the vector of late-ephemeral 

subtypes Rhipecephalus, is low and variable over-time. Fluctuating abundances of the 

vector could influence variable (re) exposure rates thereby influencing temporal 

variability observed within the host. In support of this, PC3 (rank of late-colonizing 

subtypes) and Rhipephalus abundance were both explained by capture number. 

Variability in exposure rates could also account for the high variability in colonization 

rate and relative abundance at equilibrium of late-ephemeral subtypes. However, the 

effect of exposure on within-host dynamics is confounded by taxonomy dependent 
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within-host clearance rates. T. mutans subtypes, as well as T. velifera, can persist in cattle 

for years without re-infection (Norval, Perry & Young), whereas T. taurotragi subtypes 

may persist for a fraction of that time (Norval, Perry & Young). As such, the effect of 

vector dynamics on within-host persistence versus ephemerality may only be fully 

elucidated once subtype specific clearance rates vs. rate of (re) infection are precisely 

quantified.  

 None of our analysis provided clear direction for understanding distribution patterns of 

early-persistent (T. velifera, T. velifera B) versus early-ephemeral (T. mutans, T. mutans 

MSD) life histories. Astonishingly, T. velifera subtypes infected all animals early and 

remained at near-constant relative abundances throughout the life-time of the host: it is 

unclear how T. velifera subtypes excel at colonization and persistence. Perhaps these 

early-persistent subtypes benefit from facilitative interactions with other subtypes (e.g., 

Ramiro et al., 2016) – future work analyzing parasite interactions in this system will test 

this idea (Appendix D4). Maybe T. velifera subtypes are such efficient dispersers that 

constant re-invasion of hosts swamps any effects of competition by other Theilerias 

(Pacala & Roughgarden 2009, Chesson 1985). Even vertical transmission may play a role 

in the life history strategy of these subtypes (Baek et al., 2003; Mekata et al., 2018), as 

buffalo calves were consistently infected by the time we first captured them, and all 

reproductive age animals were infected. How the success of this group of Theileria 

relates to its effects on host health is yet to be explored – based on their ubiquity and 

distribution across all ages of hosts one would expect that adverse effects on the health 

should be minimal. Interestingly, work in cattle has shown that T. velifera parasites may 

even confer indirect benefits on host health, in that co-infection with T. velifera appears 

to protect against mortality associated with far more virulent T. parva infection 

(Woolhouse et al., 2015). If T.velifera is transmitted vertically then perhaps, a long-term 

management plan could infect reproductive age females with T. velifera, preemptively 

conferring calf tolerance to T. parva. Removal of ticks could then be done with less 

frequency, or perhaps even eliminated, depending on how important tick induced Th2 

immunity is for influencing Theileria assemblage structure and how long T. velifera 

persist in the host without re-infection.  
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 While we have documented some of the factors driving the distribution of Theileria 

parasites with different life histories among buffalo, our study does not address variation 

in the abundance of subtypes sharing the same life history patterns. Theileria within each 

life-history group were also the most taxonomically related (chapter 4; Glidden et al., 

2019), which is consistent with patterns one would expect if an assemblage was 

influenced by niche filtering (Fowler, Lessard & Sanders 2013). Future work could 

evaluate if this pattern is indeed due to niche filtering and if niche filtering is occurring at 

the host and/or vector level.   

 Our research illustrates the value of a pairing life-history analyses with typical 

community assembly analyses to understand the structure and dynamics of complex 

parasite assemblages. Evaluating a parasite assemblage through the lens of life history 

variation revealed an interplay of host-parasite, host-vector and parasite-parasite 

relationships that underlie the spatio-temporal distribution of parasite taxa in a natural 

host population. Many questions remain – with the most immediate questions regarding 

mechanisms enabling functional redundancy of parasite strains with similar life histories, 

infection dynamics in the tick vectors and the influence of different parasite functional 

groups on host health. Our analyses illustrate innovative analytical approaches to 

determine parasite colonization rates and assemblage rank, and evaluate host 

susceptibility, providing the tools for discovering how dispersal may pair with parasite 

interactions and host filtering to influence parasite distributions. Wildlife study systems 

such as this can serve as model systems to elucidate how parasite assemblages function, 

how they affect their hosts, and ultimately, how disease control interventions might 

utilize assemblage dynamics to implement successful and cost-effective practices. 
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Table 5.1. Point estimates for Theileria life history infection patterns. Age (months) 

1st infection, age (months) at equilibrium, relative abundance at the equilibrium. 

Estimates include mean [95% confidence interval]. 

species 

clade subtype age 1st infection age at equilibrium 

relative abund at 

equilibrium 

T. velifera T. velifera 0.036[0-0.65] 25.86[19.49-32.22] 0.11[0.07-0.14] 

 
T. velifera B 0.036[0-0.69] 19.81[9.54-30.07] 0.16[0.10-0.21] 

 
T. velifera UD NA 0.036[0-0.13] 0.00[0-0.00] 

T. mutans T. mutans-like 1 8.03[6.08-9.97] 20.83[10.17-31.48] 0.20[0.13-0.27] 

 
T. mutans-like 2 7.91[5.11-10.70] 19.27[9.41-29.12] 0.09[0.05-0.13] 

 
T. mutans-like 3 10.79[8.48-13.09] 36.17[25.10-47.23] 0.20[0.13-0.29] 

 
T. mutans MSD 0.92[0-3.21] 16.00[10.97-21.02] 0.01[0-0.02] 

 
T. mutans 0.036[0-0.64] 21.30[16.20-26.39] 0.02[0-0.05] 

 
T. mutans U  D NA 0.036[0-0.13] 0.00[0-0.00] 

T. 

taurotragi T. sp. (bougasvlei) 6.13[2.097-10.15] 23.32[2.23-44.40] 0.19[0.02-0.35] 

 
T. sp. (buffalo) NA 0.036[0-0.13] 0.00[0-0.00] 

 
T. parva 5.32[1.27-9.36] 35.44[18.48-52.39] 0.06[0.03-0.10] 
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Figure 5.1. Life history variation in Theileria. (A) Relative abundance by age: Newborn animals represent new patches 

allowing us to observe colonization patterns. The points represent data whereas the lines represent estimates for average 

relative abundance by age fit with a basis-spline regression. Data were weighted by animal ID to account for the repeated 

measures study design. (B) Age prevalence curves for each subtype: Prevalence of each subtype within each age bin (18-24 

months = 1.5-2 years, 42-48 months = 3.5-4 years, 66-72=5.5-6 years, 90-96=7.5-8 years). As our study was a repeated 

sample, longitudinal design subtypes that are highly prevalent in early age bins that are absent or at low prevalence in later age 

bins indicate that they were cleared from the host as the host age.
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Figure 5.2. Life history analysis point estimates and signatures of a competition-

colonization trade-off. (A) Regression line and point estimates (lines indicate 95% CI) 

indicating a positive correlation between age at first infection and relative abundance at 

equilibrium. (B) Age at equilibrium indicating that Theileria assemblages reach 

equilibrium at around 2 years old. *The regression line is only fit to the T. taurotragi 

(blue) and T. mutans (red) species clades as T. velifera subtypes do not seem to fit this 

trade-off (Table D12).  
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Figure 5.3. PCA describing Theileria assemblage composition. Variation along PC1 is 

best explained by differences in abundances of early colonizing (early-persistent: dark 

red; early-ephemeral: dark blue) and late colonizing subtypes (late-persistent: light red; 

late-ephemeral: light glue blue); variation along PC2 is best explained by presence of 

subtypes with no clear life-history pattern (purple), particularly T. sp. (buffalo); variation 

along PC3 is best explained by differences in rank of late-persistent versus late-

ephemeral subtypes. Theileria were quantified using amplicon sequencing; read counts 

for each subtype have been center-log transformed. Points represent samples and axes 

have been scaled.   
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Figure 5.4. Partial least squares regression describing the association between 

continuous host traits and Theileria subtype abundance, relative to the sample 

mean, along component axis 1. (A) A correlation plot mapping the subtypes and host 

traits in sample space; the first two components are depicted. Early-ephemeral are show 

in dark blue, early-persistent in dark red, late-ephemeral in light blue and late-persistent 

in light red, in clear life history in purple. (B) A heat map describing the correlation 

between host traits (x axis) and subtypes (y axis) on component axis 1. We used partial 

least squares to disentangle the relationship between continuous, temporally variables 

that had a significant effect on Theileria PC1.  
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Figure 5.5. Random effects explained the largest amount of variation in PC2 and 

PC3. (A) A histogram depicting percent time infected with T. sp. (buffalo). PC2 

polarized based on the presence of T. sp. (buffalo), a subtype that displayed no clear life-

history traits; animal ID accounted for the largest portion of variation in our linear mixed 

effects model suggesting a few animals are likely to be infected over many capture 

periods. (B) A stack bar plot depicting average relative abundance of late-persistent (red, 

top three bars) versus late-ephemeral (blue, bottom two bars) subtypes for each animal. 

PC3 polarized based upon the rank of late-persistent versus late-ephemeral subtypes in a 

sample; our linear mixed model suggests that animal ID accounted for the largest portion 

of variation in PC3 followed by capture number. (C) Average relative abundance of late-

persistent versus late-ephemeral at each capture time point. For (B) and (C) only samples 

in which the animal was > 2 years old was used; bars were scaled to equal 1. For (B), 

animals were ordered from the animal with the lowest T. sp. (bougasvlei) abundance 

(TBg) to the highest. 
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Figure 5.6. Tick abundances and model predictions from generalized mixed models 

(negative binomial distribution) evaluating the effect of age on tick abundances. In 

both models, the best fit model included age, age2, and median NDVI. However, only age 

and age2 had a significant effect on tick abundances. The Amblyomma model included an 

animal ID and capture number random effect whereas the Rhipicephalus model only 

included a capture ID random effect. The marginal R2 represents the proportion of 

variance explained by the fixed factors alone (Nakagawa & Schilezeth 2013). 
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CHAPTER 6: GENERAL CONCLUSIONS 

The last century has experienced a marked increase in emerging infectious disease 

(EID, hereafter) (Daszak, Cunningham & Hyatt 2001) – jeopardizing human (Chidiac & 

Ferry 2016; Bloom & Cadarette 2019), domestic animal (Chomel 2011; Martin et al., 

2011), and wildlife health (Thompson, Lymbery & Smith 2010; Loots et al., 2017). EIDs 

are commonly associated with spillover from one host species into a novel host species 

(Rhyan & Spraker 2010; Cunningham, Dobson & Hudson 2012; Wood et al., 2012), with 

many destructive diseases, for both livestock and wildlife, emerging at the wildlife-

livestock interface. As global change continues to erode the boundaries between human 

and wildlife systems (Watson et al., 2018), it will become increasingly more important to 

understand the key components influencing host susceptibility as well as 

pathogen/parasite spread and persistence. Disease ecology research has revealed that 

disease systems are incredibly complex: Host resistance, and consequent 

parasite/pathogen replication and transmission, is influenced by a multitude of factors 

including, but not limited to, co-infection patterns (Ezenwa & Jolles 2015; Gorsich et al., 

2018) and host immuno-competence (Bakar et al., 2016). Variation within and among 

hosts leads to, and feedbacks with, population-level disease dynamics (White, Forester & 

Craft 2018). Studying disease in natural systems enables researchers to observe the 

outcome of interactions among these sources of variation and predict realistic 

parasite/pathogen dynamics. Ultimately, this work should enable the development of 

adaptive disease management. 

In this dissertation, I studied within-host and population level dynamics of 

pathogen and parasite assemblages of African buffalo. Specifically, I studied infectious 

agents associated with two diseases that increase tension at the human-wildlife-livestock 

interface in southern African by jeopardizing livestock health: the bovine respiratory 

disease complex (Taylor et al., 2010) and theileriosis (Norval, Perry & Young 1992). My 

work illustrates how buffalo can be used to better understand processes influencing host 

susceptibility and disease persistence within and around Kruger National Park – 

hopefully extensions of this work will use research findings to evaluate and develop more 

effective disease management programs. A central pillar of my work was developing and 

adapting laboratory and analytical tools to better uncover non-linear and cryptic 
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processes in noisy systems. The skills I developed during my PhD will help me to 

continue to advance our understanding of disease ecology within complex, multi-scale 

systems. 

In Chapter 2, I developed foundational knowledge in eco-immunology and found 

that non-specific markers of inflammation can be used to detect pathogen exposure. 

Specifically, I found that markers that are associated with inflammation but do no cause 

immuno-pathology (haptoglobin) are the most promising markers as they are 

systemically present at high concentrations and elevated for long periods of time. Future 

work should identify other non-specific markers of inflammation that possess similar 

properties thereby increasing our capacity to detect exposure history without a priori 

knowledge of the pathogen identity. Development of these tools would be valuable across 

a range of systems, particularly vulnerable wildlife in which we have little knowledge of 

their patho-biome and/or alternative methods of detecting a history of exposure (e.g., 

invertebrates that lack adaptive immunity).  

In Chapter 3, I learned new statistical tools for describing ecological communities 

and non-linear trends (joint-species distribution models, general additive model) as well 

as the advantages and disadvantages of using serology data. I used a variance partitioning 

methods to compare the importance of pathogen-pathogen associations, environmental 

variability, and host traits on probability of infection of upper respiratory tract pathogens 

within the bovine respiratory disease complex. I found that the importance of each factor 

was inconsistent across pathogens. However, for three out of the five respiratory viruses 

investigated, the best indicator of infection was co-occurrence by another virus. In 

contrast, the best indicator of infection for bacterial pathogens was host ID. Importantly, I 

found that within-host dynamics only partially elucidated seasonal cycling in population-

level disease dynamics. I am currently working with another Jolles Lab graduate student 

to evaluate if inclusion of metrics associated with host contact (e.g., number of contacts 

within an observation period, duration of contacts) better describes variation in within-

host occurrence and temporal variation in incidence for these pathogens. I also plan to 

work with co-author Courtney Coon to conduct a similar analysis using identical data 

collected from cattle herds surrounding KNP. 
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In Chapter 4, I learned new laboratory and bioinformatics tools for describing 

Theileria assemblages at multiple taxonomic scales. This work unveiled previously 

cryptic spatial and temporal variation in African buffalo-Theileria assemblages. Using 

the data from Chapter 4, I was able to identify possible processes structuring Theileria 

assemblages within and among buffalo in Chapter 5. In Chapter 5, I teamed up with 

researchers from the Department of Statistics to develop analytical tools for describing 

non-linear trends in compositional data within a repeated study design. These tools 

increase the capacity for researchers to accurately (i.e., the structure of the data is 

properly accounted for) use sequencing data to map non-linear patterns and process in 

ecological systems. Using this analysis, I was able to identify that Theileria vary in their 

colonization rate and persistence within the host (i.e., life history strategies). 

Furthermore, I identified that a subset of Theileria co-exist within the same host 

throughout their lifetime, whereas a subset is extirpated from adult animals but co-exists 

at the population level through a competition-colonization trade-off. Life history patterns, 

and co-existence among life-history groups, is likely driven by a combination of host 

physiology, vector dynamics, and parasite-parasite interactions. Better understanding the 

mechanisms supporting Theileria assemblage distribution has immediate implications for 

disease management at the buffalo-cattle interface.      
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APPENDIX A – CHAPTER 2 SUPPLEMENTARY FIGURES 

 
 
 
 
 
 

 
 
 
Figure A1. Box plots depicting NSMI concentrations for each day of the FMDV 

experiment. Animals were excluded from the figure if they did not mount an NSMI 

response (concentrations did not exceed 2-fold the baseline) or the concentrations peaked 

on day 30. Concentrations were log transformed to reduce the range of all NSMI axes. 

The horizontal bands represent the 25%, 50% and 75% quartiles whereas the vertical 

lines represent 1.5 times the interquartile range above the upper quartiles and below the 

lower quartile, and dots represent outliers. 
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APPENDIX B – CHAPTER 3 SUPPLEMENTARY TABLES AND FIGURES 

 
 

Table B1. Mean estimate (β) for each host trait and season; estimates where the 

support was > 0.95 are bolded and highlighted in dark grey and where the support was 

>0.90 are highlighted in light grey.  

 

  BHV Pi-3 AD-3 MH MB BRSV 

intercept -1.799 -1.997 -1.729 -1.536 -1.145 -1.581 

bTB status1 0.086 0.019 0.095 0.107 0.017 0.267 

bolus2 0.117 0.024 -0.174 -0.015 0.134 -0.105 

horn 

residuals 0.218 0.108 0.282 -0.140 -0.022 -0.195 

age (months) 0.011 -0.105 0.301 -0.316 -0.109 0.262 

herd3 0.273 0.279 0.161 0.020 -0.128 -0.090 

pregnant4 0.191 0.438 0.147 -0.118 0.066 0.038 

lactating5 -0.047 -0.147 -0.036 -0.168 -0.052 0.006 

calf at heel6 -0.004 0.057 -0.031 0.370 0.295 0.289 

condition 0.334 -0.301 0.098 0.066 0.150 0.281 

season7 -0.177 0.113 0.483 -0.219 0.348 0.164 

 
1baseline = negative; 2baseline=no bolus;3baseline = crocodile bridge; 4baseline=not pregnant;5baseline=not 

lactating;  6baseline=calf at heel; 7baseline = dry season  
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Table B2. Sample-level species-species residual associations. Covariance matrix (Ω) 

for pathogens (sample level random effect); covariance has been converted to correlation 

to scale from -1 to +1. Estimates where the support was > 0.95 are bolded and 

highlighted in dark grey. Support was < 0.90 for all other pathogens. 

 

 BHV Pi-3 AD-3 MH MB BRSV 

BHV 1.000 0.996 0.996 0.297 0.210 -0.374 

Pi-3 0.996 1.000 0.997 0.298 0.211 -0.375 

AD-3 0.996 0.997 1.000 0.298 0.210 -0.374 

MH 0.297 0.298 0.298 1.000 0.090 -0.082 

MB 0.210 0.211 0.210 0.090 1.000 -0.100 

BRSV -0.374 -0.375 -0.374 -0.082 -0.100 1.000 

 

 



170 

 

 
 

 

 

Table B3. Animal ID-level species-species residual associations. Covariance matrix 

(Ω) for pathogens (Animal ID-random effect); covariances have been converted to 

correlation to scale from -1 to +1. Estimates where the support was > 0.90 are highlighted 

in light grey. Support was < 0.90 for all other pathogens. 

 

 BHV Pi-3 AD-3 MH MB BRSV 

BHV 1.000 -0.097 0.140 0.455 0.377 0.067 

Pi-3 -0.097 1.000 -0.087 -0.316 -0.243 -0.065 

AD-3 0.140 -0.087 1.000 0.253 0.202 0.018 

MH 0.455 -0.316 0.253 1.000 0.782 0.170 

MB 0.377 -0.243 0.202 0.782 1.000 0.128 

BRSV 0.067 -0.065 0.018 0.170 0.128 1.000 
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Table B4. Rainfall year-level species-species residual associations. Covariance matrix 

(Ω) for pathogens (rainfall year random effect); covariances have been converted to 

correlation to scale from -1 to +1. There was no statistical support for species-species 

associations at the rainfall year-level. 

 

 BHV Pi-3 AD-3 MH MB BRSV 

BHV 1.00 0.30 -0.33 0.24 0.59 0.25 

Pi-3 0.30 1.00 -0.09 0.02 0.15 -0.48 

AD-3 -0.33 -0.09 1.00 -0.12 -0.29 -0.17 

MH 0.24 0.02 -0.12 1.00 0.22 0.20 

MB 0.59 0.15 -0.29 0.22 1.00 0.32 

BRSV 0.25 -0.48 -0.17 0.20 0.32 1.00 
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Table B5. Estimates of model fit. We evaluated model explanatory power using area 

under the receiving operator characteristic (AUC), root-mean-squared-error (RMSE) and 

Tjur’s R2. AUC quantifies the ability of a model to rank occurrences correctly, RMSE 

measures the squared difference between estimated occurrence and true species 

occurrence and Tjur’s R2 measures the difference in predicted probabilities of occurrence 

and probabilities of absence. The table is ordered from lowest to highest Tjur’s R2. 

 

 

  RMSE AUC TjurR2 

AD-3 0.279 0.964 0.219 

Pi-3 0.255 0.972 0.216 

BHV 0.258 0.943 0.166 

BRSV 0.268 0.813 0.152 

MH 0.266 0.935 0.134 

MB 0.389 0.660 0.035 
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Table B6. Variance partitioning for each pathogen. Note that values displayed in the 

table are the proportion of variance explained by each covariate and random effect of the 

total variance explained by the model, as opposed to the proportion of variance in the 

data explained by each covariate or random effect. As such, these values sum to 1 but our 

models did not account for all variation in the data.  

  BHV Pi-3 AD-3 MH MB BRSV 

bTB status 0.012 0.008 0.011 0.014 0.021 0.044 

bolus 0.015 0.008 0.019 0.011 0.049 0.015 

horn residuals 0.033 0.016 0.043 0.018 0.024 0.031 

age (months) 0.014 0.014 0.044 0.051 0.047 0.049 

herd 0.039 0.034 0.020 0.012 0.044 0.016 

pregnant 0.024 0.068 0.017 0.015 0.028 0.013 

lactating 0.018 0.019 0.015 0.019 0.043 0.018 

calf at heel 0.018 0.016 0.015 0.045 0.124 0.047 

condition 0.056 0.037 0.014 0.013 0.057 0.052 

season 0.022 0.015 0.095 0.028 0.204 0.027 

Random: sample 0.598 0.698 0.677 0.031 0.086 0.046 

Random: Animal ID 0.029 0.016 0.014 0.723 0.160 0.034 

Random: Rainfall 

year 0.123 0.053 0.016 0.019 0.114 0.607 
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Table B7. GAM model output for number of new cases by calendar month and 

rainfall year. For each pathogen, a global model was fit for the number of cases per 

month ~ s(calendar month) + s(rainfall year) + sample number. We selected the final 

model by choosing the model with the lowest AICc.  

 

 MH, deviance explained = 56.90% 

parametric terms Estimate SE z-value p-value 

(Intercept) -0.18 0.23 -0.82 0.44 

sample.number 0.04 0.01 5.00 <0.001 

nonparametric terms  edf chi squared p-value 

s(month)   1.75 6.95 0.009 

 MB, deviance explained = 65.40% 

parametric terms Estimate SE z-value p-value 

(Intercept) 0.37 0.16 2.39 0.02 

sample.number 0.04 0.00 8.41 <0.001 

nonparametric terms  edf chi squared p-value 

s(month)   1.92 8.47 0.005 

 Pi-3, deviance explained = 60.40% 

parametric terms Estimate SE z-value p-value 

(Intercept) -0.30 0.20 -1.28 0.20 

sample.number 0.04 0.01 6.51 <0.001 

nonparametric terms  edf chi squared p-value 

s(month)   3.34 26.27 <0.001 
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Table B7 continued.  

 AD-3, deviance explained = 59.40% 

parametric terms Estimate SE z-value p-value 

(Intercept) 0.17 0.19 0.88 0.38 

sample.number 0.03 0.01 5.11 <0.001 

nonparametric terms  edf chi squared p-value 

s(month)  2.00 14.28 <0.001 

s(year)   1.46 5.56 0.03 

     

 BRSV, deviance explained = 74.80% 

parametric terms Estimate SE z-value p-value 

(Intercept) -1.45 0.43 -3.37 <0.001 

sample.number 0.06 0.01 4.39 <0.001 

nonparametric terms  edf chi squared p-value 

s(month)  7.96 20.69 <0.006 

s(year)   1.88 40.68 <0.001 

 BHV, deviance explained = 48.60% 

parametric terms Estimate SE z-value p-value 

intercept -0.36 0.23 -1.55 0.12 

sample number 0.04 0.01 5.47 <0.001 

nonparametric terms  edf chi squared p-value 

s(year)   2.94 17.54 <0.001 
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Figure B1. Map of Lower Sabie & Crocodile Bridge herd locations. Map courtesy of 

Rob S. Spaan.
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Figure B2. Histograms of effective size and Gelman-Rubin diagnostic (potential 

scale reduction factor). A-D) Effective sample size; E-H) Gelman-Rubin diagnostic, 

potential scale reduction factor. 
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Figure B3. Pathogen response to host trait covariates. Host traits with posterior 

probability > 0.90, colored by mean response. For categorical variables, the subscript 

represents the baseline group. Continuous variables were centered and scaled to two 

standard deviations from the mean. Color indicates the direction (orange = negative effect 

or higher for the baseline group, purple = positive effect or higher for non-baseline group) 

and magnitude of the mean posterior estimate for the effect of each trait on pathogen 

occurrence.  
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APPENDIX C – CHAPTER 4 SUPPLEMENTARY TEXT, TABLES AND 

FIGURES 

 

Appendix C1. In silico mock community analysis.  

 

 First, using GenBank, a library of 63 previously published 18S Theileria sequences 

was compiled. An in-house Python script, looping an ART (V 3.19.15; Haung et al., 2012) 

script, was used to randomly select and generate FASTQ files from two Theileria species 

and three haplotypes per species 25 times. Illumina MiSeq forward and reverse read error 

profiles were averaged across 300 samples to obtain an error profile for each simulated 

FASTQ file. Each simulation iteration produced one major haplotype (high relative 

abundance) per species and two minor haplotypes (low relative abundance) per Theileria 

species. The collective mock community consisted of 25 simulated samples, with major 

haplotypes sampled at 35%, 47%, 48.5%, 49.25% and 49.625% relative abundances and 

minor haplotypes sampled at 10%, 5%, 2%, 1%, 0.5%, 0.25% and 0.125% relative 

abundances.  

 SeekDeep (Hathaway, Parobek, Juliano, & Bailey, 2017) and DADA2 (Callahan 

et al., 2016) were run using default settings for Illumina MiSeq paired-end reads. For 

SeekDeep, FASTQ files from all samples were processed using a within-sample relative 

abundance cutoff of 0% and the Illumina MiSeq tag, allowing no mismatches. Within the 

SeekDeep pipeline, sequences that were marked as likely chimeric were removed. For 

DADA2, FASTQ files were processes using the denoise-paired command, trimming 

sequences at 20 base pairs. No additional parameters were included in the command. 

Relative abundance matrixes produced by each software were exported into R software 

(version 3.4.3) and compared to known relative abundances using the Mantel test (Bray-

Curtis distance measures) in vegan (Oksanen et al., 2007). For both software packages, 

Mantel correlation coefficient was > 0.99. Subsequently, the number of false haplotypes 

produced by each software was evaluated. Here, we define false haplotypes as sequences 

that were produced by the software which were not included in our mock community.  

 When evaluating haplotypes that occurred at > 0.1% relative abundance within a 

sample, SeekDeep produced no false haplotypes whereas DADA2 produced two false 

haplotypes; hence, SeekDeep was used for all further analyses. 
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Appendix C1, Table 1. Layout of in silico mock community: Relative abundance of 

each sequence included in each simulated sample. Species 1 and species 2 varied between 

each sample.  
 
 

Sample Relative 

abundance 

species 1.A 

(%) 

Relative 

abundance 

species 1.B 

(%) 

Relative 

abundance 

species 1.C 

(%) 

Relative 

abundance 

species 2.A 

(%) 

Relative 

abundance 

species 2.B 

(%) 

Relative 

abundance 

species 2.C 

(%) 

1 35 10 5 35 10 5 

2 35 10 5 35 10 5 

3 35 10 5 35 10 5 

4 35 10 5 35 10 5 

5 35 10 5 35 10 5 

6 47 2 1 47 2 1 

7 47 2 1 47 2 1 

8 47 2 1 47 2 1 

9 47 2 1 47 2 1 

10 47 2 1 47 2 1 

11 48.5 1 0.5 48.5 1 0.5 

12 48.5 1 0.5 48.5 1 0.5 

13 48.5 1 0.5 48.5 1 0.5 

14 48.5 1 0.5 48.5 1 0.5 

15 48.5 1 0.5 48.5 1 0.5 

16 49.25 0.5 0.25 49.25 0.5 0.25 

17 49.25 0.5 0.25 49.25 0.5 0.25 

18 49.25 0.5 0.25 49.25 0.5 0.25 

19 49.25 0.5 0.25 49.25 0.5 0.25 

20 49.25 0.5 0.25 49.25 0.5 0.25 

21 49.625 0.25 0.125 49.625 0.25 0.125 

22 49.625 0.25 0.125 49.625 0.25 0.125 

23 49.625 0.25 0.125 49.625 0.25 0.125 

24 49.625 0.25 0.125 49.625 0.25 0.125 

25 49.625 0.25 0.125 49.625 0.25 0.125 
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Appendix C2. Duplication study 

Prior to running FASTQ files from all samples through the bioinformatics 

pipeline, 10% of samples were run in duplicates in separate library assembly reactions 

and de-multiplexed, filtered and clustered on SeekDeep (Hathaway et al., 2017) using the 

Illumina MiSeq tag and a within-sample relative abundance cutoff of 0.1%. Pairwise 

differences were assessed using the paired Wilcoxon signed-rank test in the software R 

(version 3.4.3). After increasing the relative abundance cutoff to 1%, there were no 

significant differences in the distribution of relative abundances within duplicate pairs (P 

> 0.05). To further confirm the repeatability of duplicates, an ordination was plotted after 

applying the within-sample 1% relative abundance cutoff using the vegan (Appendix C2, 

Figure 1; non-metric multi-dimensional scaling, Bray-Curtis distance measures, stress = 

0.07) (Oksanen et al., 2007). 
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Appendix C1, Figure 1. A non-metric multidimensional scaling (NDMS) plot for the 

ordination of distance between duplicates PCR of amplicons sequenced using next-

generation sequencing. Each duplicate is a unique color and connected with a line. 

Duplicates are closer to each other in ordination space than other duplicates, particularly 

along the first axis. Additionally, for each pair of duplicates, a Wilcoxon sum signed-rank 

test was conducted to ensure duplicate relative abundances came from the same 

distribution (P > 0.05). 
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Appendix C3. Calculation of % parasitemia   

(i) Plasmid construction 

 To prepare a template for the standard curve, a 178 bp region of the V4 hypervariable 

18S ribosomal RNA fragment of Theileria orientalis was amplified using the forward 

(5’–GAC TTT GGT TCT ATT TTG TTG GA–3’) and the reverse RLBR (5’–TCT TCG 

ATC CCC TAA CTT TC–3’) oligonucleotide primers. The forward primer is the reverse 

complement of the reverse primer originally described by Sibeko et al. (2008) whereas 

the reverse primer was designed by Gubbels et al. (1999). The reagents and PCR 

conditions were optimised in a series of experiments; the final PCR was conducted in a 

25 µL volume containing 10 mM Tris-HCl (pH 8.4), 50 mM KCl (Promega, Madison, 

WI, USA), 3.5 mM MgCl2, deoxynucleotide triphosphates (dNTPs; 200 µM each), 

primers (50 pmol each) and 1 U GoTaq polymerase (Promega) using the following 

protocol: 5 min at 95°C, followed by 35 cycles of 30 s at 95°C, 20 s at 60°C and 1 min at 

72°C, followed by a final extension of 5 min at 72°C. PCR products were run on 3% 

(w/v) agarose gel-purified using the QIAquick Gel Extraction kit (Qiagen) and cloned 

into the pGEM®-T Easy Vector System (Promega) as per manufacturer’s instructions. 

Plasmid DNA was purified from transformed cells (JM109 competent cells, Promega) 

using Wizard® Plus SV Minipreps (Promega), quantified by spectrophotometer 

(Nanodrop 3000?) at 260 nm wavelength, and then subjected to bi-directional, automated 

Sanger sequencing using the same primers used in PCR. The quality of the sequences 

was assessed using the program Geneious Pro 2.0.10 (Kearse et al., 2012) and the 

specificity was confirmed with previously published 18S sequences of T. orientalis.  

 Molecular conversion calculations, based on size and base composition of the DNA 

fragment, were used to estimate the DNA copy number in each plasmid solution. A 10-

fold serial dilution in  molecular grade water (1x108 copy number per reaction – 1x101 

copy number per reaction) was created for use as the standard curve. 

 

(ii) qPCR validation 

Reagents and conditions of the qPCR were optimised in a series of experiments. 

The final qPCR was conducted in 20 µL volume containing 10 µL of Dye Based Master 

Mix (Promega, Australia), 1  µL of each primer (10 pmol), 4  µL ddH20 and 4 µL of 
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DNA template using the following conditions: 5 min at 95 C, followed by 40 cycles of 

30 s at 95 C, 30 s at 58 C, 20 s at 72 C, followed by a final extension of 5 min at 72 

C. Amplicon melt analysis was performed using temperature ramps of 0.3 C between 

70 and 99 C. Each plasmid DNA dilution was run in triplicate and samples were run in 

duplicates. All reactions were prepared using the QIAgility (Qiagen) automated PCR 

setup system. qPCR reactions were run using a Rotor-gene Q (Qiagen) thermocycler. A 

positive (T. orientalis) and no-template controls were included in each assay. The 

specificity of the assay was based on the analyses of the conventional and normalised 

high resolution melt (HRM) curves of amplicons derived from the positive control 

samples, and Theileria was assigned in test samples based on mean HRM temperature. 

Selected qPCR products were cloned using methods as above and sequenced. 

 The analytical sensitivity was determined using a 10-fold serial dilution of plasmids 

whereas the analytical specificity was assessed using DNAs of T. orientalis, T. velifera, 

T. mutans, Babesia bovis, B. bigemina, Anaplasma marginale, A. centrale, A. platys and 

Ehrlichia canis. Assay repeatability was confirmed by running each standard curve in 

triplicate across three separate qPCR reactions over two days. Inter-assay variability was 

determined by comparing amplification efficiency (efficiency = -1 + 10 (-1/slope), the slope 

is of the log-linear relationship between DNA copy number and the cycle threshold (CT) 

values) and correlation coefficient (R2) across plates. Additionally, for each plate, the 

mean CT value was calculated for each dilution. The coefficient of variation (CV: 

standard deviation/mean) of mean CT value per standard curve dilution was calculated 

across plates. Intra-assay variability was assessed by calculating the CV of CT values for 

each dilution within each plate. 

 

(iii) qPCR validation results 

 The identity of individual products was confirmed by sequencing, and no product was 

amplified when the DNA template was used from A. marginale, A. centrale, A. platys or 

E. canis. When comparing across plates, for T. orientalis, mean amplification efficiency 

was 0.93±0.02, mean R2 was 0.987±0.005 and mean CV was 8.81±0.49 (range 5.47-

16.13). Intra-assay CV values for T. orientalis ranged from 0.0017-0.0218 with a mean of 

0.0112 (SE±0.0003).  
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(iv) Calculation of parasitaemia 

 We calculated % parasitaemia (parasitaemia, hereafter) from the qPCR result by 

following a method previously described by Pienaar et al. (2011). Volume of whole 

blood used in the qPCR assay was calculated by multiplying the proportion of DNA 

extract used in the assay by volume of whole blood used in the DNA extraction. 

Subsequently, the number of red blood cells in each reaction was then calculated by 

multiplying volume (number of microliters) of whole blood used in each reaction by the 

number of red blood cells per microliter. As the 18S gene of Theileria is believed to have 

two copies per genome (Gardner et al., 2005; Pain et al., 2005; Hayashida et al., 2012), 

copy number per sample (calculated from mean of duplicates) was divided by two to 

obtain the number of parasites per reaction. Parasites in each qPCR reaction per sample 

was divided by red blood cells per reaction and multiplied by 100 to obtain % parasitemia 

(i.e. parasitemia). 

 

(v) Parasitaemia summary statistics 

 Following the establishment of qPCR assay, a total of 440 (out of 443) samples were 

successfully amplified, and the cloning and sequencing of selected qPCR amplicons 

confirmed their identity as Theileria spp. Parasitaemia ranged from 0.001% - 1.151%; 

mean parasitemia was 0.126% (SE ± 0.008).    
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Appendix C3, Figure 1. qPCR melt curves for Theileria spp. and Babesia spp. positive 

controls 
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Table C1. Pairwise distances (number of base pairs) between each unique sequence; sequences are grouped by taxa. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

1.MK792977   1 2 15 18 18 23 21 22 18 20 19 22 21 51 52 52 50 52 54 54 53 53 54 54 56 53 56 57 

2.MK792978 1   1 16 19 19 24 22 23 19 19 18 23 20 51 52 52 50 52 54 54 53 53 54 54 57 54 57 58 

3.MK792985 2 1   15 18 18 23 21 22 18 20 19 24 21 50 51 51 49 51 53 53 52 52 53 53 56 53 56 57 

4.MK792976 15 16 15   10 10 14 12 13 12 16 17 19 16 43 44 44 42 44 43 43 40 40 41 41 49 45 49 50 

5.MK792968 18 19 18 10   2 12 11 11 15 20 21 25 20 47 48 46 46 48 49 49 46 46 47 47 49 45 49 50 

6.MK792992 18 19 18 10 2   13 11 12 17 20 21 25 20 47 48 46 46 48 49 49 46 46 47 47 47 43 47 48 

7.MK792972 23 24 23 14 12 13   2 1 13 17 18 21 17 48 48 47 47 49 48 48 47 47 48 48 54 50 54 55 

8.MK792973 21 22 21 12 11 11 2   1 12 15 16 19 15 46 46 45 45 47 47 47 46 46 47 47 53 49 53 54 

9.MK792975 22 23 22 13 11 12 1 1   12 16 17 20 16 47 47 46 46 48 48 48 47 47 48 48 54 50 54 55 

10.MK792986 18 19 18 12 15 17 13 12 12   18 19 20 18 49 50 50 48 50 50 50 49 49 50 50 57 54 57 58 

11.MK792970 20 19 20 16 20 20 17 15 16 18   1 8 1 47 48 48 46 48 47 47 46 46 47 47 52 50 53 54 

12.MK792980 19 18 19 17 21 21 18 16 17 19 1   9 2 48 49 49 47 49 48 48 47 47 48 48 53 51 54 55 

13.MK792990 22 23 24 19 25 25 21 19 20 20 8 9   9 46 47 47 45 47 46 46 45 45 46 46 55 53 56 57 

14.MK792994 21 20 21 16 20 20 17 15 16 18 1 2 9   47 48 48 46 48 47 47 46 46 47 47 52 50 53 54 

15.MK792969 51 51 50 43 47 47 48 46 47 49 47 48 46 47   1 1 1 1 9 9 11 10 10 12 44 40 44 45 

16.MK792979 52 52 51 44 48 48 48 46 47 50 48 49 47 48 1   2 2 2 10 10 12 11 11 13 45 41 45 46 
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17.MK792982 52 52 51 44 46 46 47 45 46 50 48 49 47 48 1 2   2 2 10 10 12 11 11 13 44 40 44 45 

18.MK792989 50 50 49 42 46 46 47 45 46 48 46 47 45 46 1 2 2   2 10 10 12 11 11 13 45 41 45 46 

19.MK792991 52 52 51 44 48 48 49 47 48 50 48 49 47 48 1 2 2 2   10 10 12 11 11 13 45 41 45 46 

20.MK792981 54 54 53 43 49 49 48 47 48 50 47 48 46 47 9 10 10 10 10   1 3 4 2 4 41 36 40 41 

21.MK792988 54 54 53 43 49 49 48 47 48 50 47 48 46 47 9 10 10 10 10 1   3 4 2 4 41 36 40 41 

22.MK792971 53 53 52 40 46 46 47 46 47 49 46 47 45 46 11 12 12 12 12 3 3   1 1 1 38 33 37 38 

23.MK792983 53 53 52 40 46 46 47 46 47 49 46 47 45 46 10 11 11 11 11 4 4 1   2 2 38 33 37 38 

24.MK792984 54 54 53 41 47 47 48 47 48 50 47 48 46 47 10 11 11 11 11 2 2 1 2   2 39 34 38 39 

25.MK792993 54 54 53 41 47 47 48 47 48 50 47 48 46 47 12 13 13 13 13 4 4 1 2 2   38 33 37 38 

26.MK792966 56 57 56 49 49 47 54 53 54 57 52 53 55 52 44 45 44 45 45 41 41 38 38 39 38   10 2 3 

27.MK792987 53 54 53 45 45 43 50 49 50 54 50 51 53 50 40 41 40 41 41 36 36 33 33 34 33 10   8 8 

28.MK792967 56 57 56 49 49 47 54 53 54 57 53 54 56 53 44 45 44 45 45 40 40 37 37 38 37 2 8   1 

29.MK792974 57 58 57 50 50 48 55 54 55 58 54 55 57 54 45 46 45 46 46 41 41 38 38 39 38 3 8 1   
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Table C2. Table of prevalence and frequency for each clade, subtype and unique (consensus) sequence 
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 Parasite Parasite subtype Consensus sequences 

clade No. 

sample 

Prevale

nce 

No. 

reads 

Frequen

cy 

subtype No. 

samples 

Prevale

nce 

No. 

reads 

Frequen

cy 

sequenc

e 

No. 

samples 

Prevale

nce 

No. 

reads 

Frequen

cy      
  

    
  

    

T. 

mutans 

435 0.989 148816

05 

0.455 T. mutans 226 0.514 136531

2 

0.042 MK792

976 

226 0.514 136531

2 

0.042 

     
T. mutans MSD 111 0.252 617170 0.019 MK792

977 

108 0.245 337939 0.01 

     
  

    
MK792

978 

87 0.198 228888 0.007 

     
  

    
MK792

985 

30 0.068 50343 0.002 

     
T. mutans-like 1 392 0.891 560075

6 

0.171 MK792

992 

4 0.009 4441 0 

     
  

    
MK792

968 

393 0.893 559631

5 

0.171 

     
T. mutans-like 2 387 0.880 203442

8 

0.062 MK792

970 

388 0.882 194160

1 

0.059 

     
  

    
MK792

980 

70 0.159 78515 0.002 

     
  

    
MK792

990 

7 0.016 8476 0 

     
  

    
MK792

994 

2 0.005 5836 0 

     
T. mutans-like 3 375 0.852 523655

2 

0.16 MK792

972 

374 0.850 238120

3 

0.073 

     
  

    
MK792

973 

371 0.843 201210

9 

0.061 

     
  

    
MK792

975 

262 0.595 843240 0.026 

     
T. mutans-like 

undefined 

20 0.045 27387 0.001 MK792

986 

20 0.045 27387 0.001 

     
  

    
  

    

T. 

taurotragi 

410 0.932 787095

9 

0.24 T. parva 379 0.861 214678

9 

0.066 MK792

971 

379 0.861 199197

6 

0.061 

     
  

    
MK792

983 

61 0.139 92841 0.003 

     
  

    
MK792

984 

41 0.093 58853 0.002 

     
  

    
MK792

993 

4 0.009 3119 0 

     
T. sp. bougasvlei 387 0.880 532049

6 

0.163 MK792

969 

388 0.882 506270

0 

0.155 

     
  

    
MK792

979 

72 0.164 120269 0.004 
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MK792

982 

63 0.143 113107 0.003 

     
  

    
MK792

989 

8 0.018 16811 0.001 

     
  

    
MK792

991 

7 0.016 7609 0 

     
T. sp. buffalo 68 0.155 403674 0.012 MK792

981 

69 0.157 371345 0.011 

     
  

    
MK792

988 

12 0.027 32329 0.001 

     
  

    
  

    

T. 

velifera 

439 0.998 997493

5 

0.305 T. velifera 438 0.995 354142

2 

0.108 MK792

966 

439 0.998 354142

2 

0.108 

     
T. velifera B 416 0.945 636797

0 

0.195 MK792

967 

401 0.911 331174

1 

0.101 

     
  

    
MK792

974 

300 0.682 305622

9 

0.093 

     
T. velifera-like 

undefined 

11 0.025 65543 0.002 MK792

987 

11 0.025 65543 0.002 
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APPENDIX D – CHAPTER 5 SUPPLEMENTARY TEXT, TABLES AND 

FIGURES 

 

Appendix D1. Description of basis-spline approach to modeling non-linear 

compositional data with repeated measures 

The statistical modeling in this paper includes three components as follows. First, we use 

Dirichlet-multinomial distribution to model the abundance of parasite subtypes to account 

for the compositional and discrete nature of the count data (Holmes et al. 2012; Chen and 

Li 2013; Tang and Chen 2018). The Dirichlet-multinomial distribution is able to include 

the extra variation of the abundance data, which is called over-dispersion, that cannot be 

captured by the multinomial distribution. Second, we link the logarithm of each 

parameter in the Dirichlet-multinomial distribution to the longitudinal covariate, the age 

of the animal at the capture time, through a smooth function of the covariate. This model 

represents the longitudinal trajectory of the abundance of each parasite subtype by an 

individual smooth function. Third, we use B-spline functions to approximate the above-

mentioned smooth functions for the longitudinal trajectories (Zhu and Qu 2018; Duan 

and Jiang 2020). A B-spline function is a linear combination of known basis functions 

that are piecewise polynomial functions (De Boor 1978), in which the coefficients of the 

basis functions are regarded as the unknown parameters in our statistical model. 

Traditionally, one can use the maximum likelihood principle to obtain the estimated 

values of the unknown parameters, the coefficients of the B-spline basis functions. If the 

observed data are assumed to be independent, then the log-likelihood function is simply 

the sum of the log-likelihood functions of each data point. However, since the parasite 

abundance is measured at different capture time on the same animal, there exist potential 

correlations between these longitudinal measurements. Unfortunately, it is statistically 

challenging to specify the full joint distribution of these correlated observations. 

Therefore, instead of incorporating these correlations into a statistical model, we propose 

to use the weighted log-likelihood function of our statistical model to approximate the 

joint log-likelihood function. In particular, the optimal weights depend on how strongly 

an observation is correlated with the rest of the observations and can be numerically 
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identified with the approach in Ostrovnaya and Nicolae (2012). Finally, we compute the 

estimated values of the unknown parameters in our model by maximizing the B-spline 

objective function, the sum of the weighted log-likelihood function and a penalty 

function on the B-spline coefficients that controls the smoothness of the B-spline 

functions (Zhu and Qu 2018; Duan and Jiang 2020). 

After we obtain the B-spline coefficients and thus the fitted longitudinal curves of 

relative abundances, we can determine a number of point estimates indicative of different 

life history strategies for each subtype of parasites, including the age of first infection, the 

maximum relative abundance, the age at the maximum relative abundance, the relative 

abundance that becomes stable (equilibrium), and the age when the relative abundance 

becomes stable (equilibrium). In particular, the age of first infection is defined to be the 

age at which the relative abundance exceeds 0.01 for the first time. The age when the 

relative abundance becomes stable is theoretically defined to be when the slope of the 

fitted longitudinal curve becomes zero. However, the slope of the fitted curve can never 

be exactly zero numerically. Thus, we set a small positive constant (is set to be 0.004 in 

our analysis) and find all time points where the slope of the fitted curve is smaller than. 

For each time point where the slope of the fitted curve is smaller than, we also check the 

slope of the fitted curve at its following time points (is set to be 2000 in our analysis). 

The time point that has the largest number of time points with slope smaller than  within 

its  following time points is defined to be the age when the relative abundance becomes 

stable. 

In addition, to evaluate the goodness of fit, we use a likelihood ratio test to compare the 

fitted model with the saturated model. The saturated model denotes the model that 

“perfectly” fits the data; in this case, the saturated model is reduced to the observation-

specific multinomial distribution whose parameters, i.e., the multinomial probabilities, 

are estimated by the relative abundances of the parasite subtypes at each observation (at 

each capture time for each animal). If our model fits the data nearly as well as the 

saturated model, the likelihood ratio test statistic, defined to be twice the difference of the 

log-likelihoods between the fitted model and the saturated model, follows asymptotically 

a chi-squared distribution with degree of freedoms equal to the difference of the numbers 
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of parameters between these two models. A goodness of fit p-value is obtained by 

comparing the observed value of the test statistic with its reference distribution. The 

larger the p-value is, the better our model fits the data. 

 

 

References 

Holmes, I., Harris, K., and Quince, C. (2012). Dirichlet multinomial mixtures: Generative 

models for microbial metagenomics. PLoS One 7, e30126. 

Chen, J., and Li, H. (2013). Variable selection for sparse Dirichlet-multinomial 1693 

regression with an application to microbiome data analysis. Ann. App. Stat. 7, 418–442. 

 Tang, Z.-Z., and Chen, G. (2018). Zero-inflated generalized Dirichlet multinomial 2019 

regression model for microbiome compositional data analysis. Biostatistics, 20, 698–713. 

 Zhu, X., and Qu, A. (2018). Cluster analysis of longitudinal profiles with subgroups. 

Electronic Journal of Statistics, 12, 171–193. 

 De Boor, C. (1978). A practical guide to splines. Vol. 27. Springer-Verlag, New York. 

 Ostrovnaya, I., and Nicolae, D. L. (2012). Estimating the proportion of true null 

hypotheses under dependence. Statistica Sinica, 22, 1689–1716. 

Duan, C., and Jiang, Y. (2020). Subgroup analysis of longitudinal profiles for 

compositional count data. Technical report. 

  



199 

 

 
 

 

 

Appendix D2. Principle component analysis describing white blood cell abundance 

and composition.  

 

In our initial model linear mixed model describing the effect of host traits on 

Theileria distributions, we reduced dimensionality of white blood cell (wbc) variables, to 

avoid problems with overfitting, by using principle component analysis (PCA) to plot 

samples in white blood cell space and quantify white blood cell abundance and 

composition by extracting coordinates along PCA axis one and two. We used the first 

two PCA axes as this explained > 50% of variation in wbc composition (Figure 1). The 

first principle component described wbc abundance, with samples with higher wbc 

abundances located along the negative pole (Figure 1). The second principle component 

described wbc composition (Figure 1). We conducted all analyses in R (v 3.6.3). We 

conducted the PCA in base R, extracted PCA coordinates using ggfortify (Tang, 

Horikoshi & Li 2016). 

 
Appendix D2, figure 1. Principle component analysis of white blood cell 

composition.  
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Appendix D3. SNP assembly (from Tavalire et al., 2019) 

 

SNP genotyping and filtering 

We extracted 100-200ng/ml genomic DNA from dried ear tissue samples (DNeasy blood 

& tissue kit, Qiagen) and prepared individual libraries for sequencing using type IIB 

restriction associated DNA (2bRAD) methods, detailed in Wang et al. (2012). Briefly, 

this method uses a type IIB restriction endonuclease (Alf1; Thermo Scientific #ER1801) 

to extract thousands of36bp reads from across the genome. After quality filtering, we 

used SHRiMP (Rumble et al. 2009) to map each individual to the de novo assembly of 

AlfI sites, and we filtered the resultingmatches for statistically weak or ambiguous 

alignments following parameters described by the software authors. We determined 

genotypes at each AlfI site with > 5x coverage, then filtered out monomorphic loci. We 

allowed for 10% missing data at any given locus and one polymorphism per tag. Animals 

that were genotyped at 33% or fewer (< 11800) loci were removed from the dataset. The 

analysis pipeline outlined above was developed by Eli Meyer (available at 

https://github.com/Eli-Meyer). Markers were discarded if they violated Hardy 

Weinberg Equilibrium (p < 0.0001) or had a minor allele frequency less than 10%. 

Ultimately, filtering yielded samples genotyped at 2505 SNPs. 2505 SNPs we used to 

create the relatedness matrix whereas 974 SNPs were used for the GWAS study. 
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Appendix D4. Characterizing a Theileria interaction network. 

Caroline Glidden & Canan Karakoç  

 

METHODS: Quantifying a Theileria subtype interaction network 

 To test for signatures of Theileria interactions, we used empirical dynamic 

modelling tools as described below. We included all center-log-transformed read counts 

of all subtypes detected except for T. mutans-like (undescribed) and T. velifera-like 

(undescribed) as infection by these subtypes is rare in this population (Figure 1, Glidden 

et al., 2019). We tested for causal interactions between pairs of subtypes using 

convergent cross mapping (CCM), which detects information transfer from one variable 

to another using nonparametric state space reconstruction (Takens 1981; Sugihara et al., 

2012; Clark et al., 2015). Since stable estimates from CCM typically require a time series 

of at least 30 sequential observations, we pooled time series across captured animals to 

fill in the state space manifold (Hsieh et al., 2008, Clark et al., 2015). For the initial 

network, we pooled all animals. We initially assumed this was possible, since we have 

similar trajectories of subtypes across animals (Figure 1). However, after observing 

distinct life histories for each subtypes, which indicates that trajectories change based on 

animal age class, we created to additional networks using observations from animals < 2 

years (subadults, age before equilibrium, chapter 5) and > 2 years old (adults, age after 

equilibrium, chapter 5).  

Embedding dimension (E, time-lags used for state space reconstruction) was 

chosen using simplex projection which tests the ability of variables to predict their own 

dynamics through "leave-one-out cross-validation". We chose E as the smallest 

dimension that is within 1% of the best predictive value across the dimensions tested, and 

maximum E is limited to square root of the time series length (Sugihara & May 1990; 

Sugihara et al., 2012; Clark et al., 2015; Ye et al., 2015). For the network using all animal 

and adult animals, as our time series for each buffalo for was ≤10, we chose a maximum 

embedding dimension of four (~√10, Cheng & Tong 1992). For the network using 

subadult animals, as our time series for each buffalo for was ≤8, we chose a maximum 

embedding dimension of three (~√8, Cheng & Tong 1992). 

We used mean absolute error (MAE) to test predictive ability. In order to detect 

interactions with the time lagged effects, we applied CCM with varying prediction lags (-



202 

 

 
 

 

 

1 to 0). Significance of results were determined using nonparametric bootstrapping by 

sampling from the observations with replacement and recalculating statistics for 10,000 

iterations. In cases where CCM identified significant causal interactions, we computed a 

series of Jacobian-like matrices to determine the direction and strength of species 

interactions in each time-step using S-mapping, which is a locally weighted multivariate 

linear regression method in state-space (Deyle et al., 2016). Variables for S-mapping 

were selected based on the number of E of each target variable. If the number of E was 

larger than the number of variables causing the target variable, predictor variables were 

complemented with the time-lagged observations of the target variables. Nonlinearity 

parameter (θ) for S-mapping was defined based on univariate predictive ability (Sugihara 

& May 1990). For the network with all animals and adult animals, due to allowing an 

embedding dimension of 4, we removed animals with less than four time steps from our 

analysis (Nall animals = 481, Nadult animals = 335). For the network with subadult animals, due 

to allowing an embedding dimension of 3, we removed animals with less than four time 

steps from our analysis (Nsubadults = 136). We performed empirical dynamical modeling 

using the R package rEDM (Ye et al., 2019) and EDMhelper (Karakoç & Clark 2020) in 

R (version 3.6.1). We visualized out networks using igraph (Csardi & Nepusz).  

 

Results & Discussion: Networks are heterogeneous between age classes 

Our empirical dynamical modeling analysis included 90 pairwise associations 

between Theileria subtypes. When analyzing the interaction network using all animals, of 

those 90 subtype-subtype pairs, we detected nine significant interactions, with five mean 

(of the smap-coefficient, across samples) interactions positive and four mean interactions 

negative (Table 1, Figure 2). When analyzing the interaction network using only subadult 

animals, we detected 22 significant interactions, with 6 interactions positive, on average, 

and 14 interactions negative, on average (Table 3, Figure 3A).  In contrast, when 

analyzing the interaction network using only adult animals, we detected 6 significant 

interactions, with 2 mean interactions positive and four mean interactions negative (Table 

2, Figure 3B). Notably, the subtypes interacting and direction of interactions changed 

across age classes. Interactions occurred across taxonomic groups in subadults but were 

primarily limited to the T. mutans clade in adults. Our initial interaction network 
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indicates our interaction networks in young animals are characterized by many, strong 

interactions and interaction networks in adult animals, when relative abundances of each 

subtype reach an equilibrium-like state, are characterized by few, weak interactions. 

Consistent with our competition-colonization trade-off indicated in this manuscript, late-

persistent subtypes (T. mutans-like 1-3) cause a decrease in abundance, relative to the 

sample mean, in early-ephemeral subtypes (T. mutans, T. mutans MSD) (Figure 3, Table 

2, Table 3). However, in young animals, early-ephemeral subtypes interact with many 

other subtypes indicating that their final clearance from the host is quite complex and 

perhaps the result of additive or higher-order interactions. Future work could use higher 

sample sizes for each age-class (50 animals, ~10 animals per sample: Clark et al., 2015) 

to more definitively describe these networks. With more data, we may also be able to use 

emperical dynamical modeling to evaluate how Theileria center-log-transformed read 

counts and network properties (mean interaction strength, pairwise interaction strength) 

relate to assemblage stability (e.g., Ushio et al., 2018) and animal health, thereby, 

evaluating if the assemblage dynamics we observed in this paper are indeed conducive to 

host health and survival. 

Diagnostic plots for each network are presented in Figure 4 (all animals), Figure 5 

(subadult animals), and Figure 6 (adult animals).  
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Appendix D4, Table 1. Mean interaction pairwise strength (average smap-coefficient) throughout the study for the 

interaction network with all animals. Interactions highlighted in dark grey were significant (p value <0.05) while 

interactions highlighted in light grey are marginally significant (p value < 0.1 & > 0.05). Row causes (→) column.  

  

row → column Tm Tm1 Tm2 Tm3 TmMSD Tp TBf TBg Tv TvB 

T. mutans 0.00 -0.06 -0.10 -0.08 0.05 -0.15 -0.03 -0.04 0.00 -0.06 

T. mutans-like 1 -0.45 0.00 0.32 0.32 -0.40 0.10 -0.07 0.04 -0.04 -0.12 

T. mutans-like 2 -0.38 0.09 0.00 0.36 -0.21 0.18 -0.02 0.08 -0.05 -0.04 

T. mutans-like 3 -0.28 0.01 0.31 0.00 -0.02 0.16 0.06 0.04 -0.05 -0.12 

T. mutans MSD 0.27 0.00 -0.12 -0.18 0.00 -0.17 -0.04 -0.08 0.01 -0.32 

T. parva -0.23 0.04 0.00 0.01 -0.27 0.00 -0.05 0.20 -0.04 0.00 

T. sp. (buffalo) -0.15 -0.04 -0.04 -0.07 0.05 -0.04 0.00 -0.06 -0.02 -0.10 

T. sp. (bougasvlei) -0.24 0.01 0.01 -0.05 -0.26 0.25 -0.23 0.00 -0.03 0.18 

T. velifera -0.04 0.02 -0.33 -0.23 -0.17 -0.07 -0.19 0.10 0.00 -0.35 

T. velifera B 0.02 -0.07 -0.13 -0.12 -0.03 0.00 -0.15 0.03 0.11 0.00 
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Appendix D4, Table 2. Mean interaction pairwise strength (average smap-coefficient) throughout the study for the 

interaction network with only subadult animals (< 2 years). Interactions highlighted in dark grey were significant (p 

value <0.05) while interactions highlighted in light grey are marginally significant (p value < 0.1 & > 0.05). Row causes 

(→) column.   

row → column Tm Tm1 Tm2 Tm3 TmMSD Tp TBf TBg Tv TvB 

T. mutans 0.00 -0.21 -0.99 -0.21 1.67 -0.24 -0.01 -0.21 0.13 0.04 

T. mutans-like 1 -0.34 0.00 0.52 0.42 -1.51 0.06 -0.02 0.00 -0.07 -0.10 

T. mutans-like 2 -0.17 -0.01 0.00 0.26 -0.34 -0.08 -0.07 -0.08 -0.09 -0.06 

T. mutans-like 3 -0.21 0.20 0.65 0.00 -0.73 0.09 -0.03 0.02 -0.04 -0.10 

T. mutans MSD 0.07 -0.18 -0.81 -0.19 0.00 -0.18 -0.07 -0.18 0.03 0.03 

T. parva -0.12 0.10 -1.08 -0.03 0.53 0.00 0.01 0.28 -0.02 -0.04 

T. sp. (buffalo) -0.11 -0.20 -1.26 -0.41 0.93 0.02 0.00 -0.03 0.18 0.04 

T. sp. 

(bougasvlei) -0.39 0.02 -0.50 0.03 -0.84 0.34 0.06 0.00 -0.07 -0.06 

T. velifera 0.10 -0.49 -0.91 -0.28 1.28 0.005 0.27 -0.43 0.00 -0.28 

T. velifera B 0.56 -0.56 -1.02 -0.59 1.66 -0.08 0.12 -0.23 0.50 0.00 
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Appendix D4, Table 3. Mean interaction pairwise strength (average smap-coefficient) throughout the study for the 

interaction network with only adult animals (> 2 years). Interactions highlighted in dark grey were significant (p value 

<0.05) while interactions highlighted in light grey are marginally significant (p value < 0.1 & > 0.05). Row causes (→) 

column.  

row → column Tm Tm1 Tm2 Tm3 TmMSD Tp TBf TBg Tv TvB 

T. mutans 0.00 -0.04 -0.04 -0.06 0.04 -0.22 -0.31 -0.03 -0.05 -0.11 

T. mutans-like 1 -0.37 0.00 -0.09 0.99 -0.29 0.06 -0.73 -0.10 0.45 -0.26 

T. mutans-like 2 -1.22 -0.03 0.00 0.18 -0.25 0.16 -0.73 -0.04 0.43 -0.07 

T. mutans-like 3 -0.78 0.53 0.42 0.00 -0.19 0.16 -0.26 -0.14 0.19 -0.23 

T. mutans MSD 0.24 -0.10 -0.07 0.04 0.00 -0.27 -0.22 -0.13 -0.09 -0.45 

T. parva -0.33 0.02 0.01 0.14 -0.21 0.00 0.01 0.09 -0.02 -0.04 

T. sp. (buffalo) -0.18 -0.02 -0.03 0.00 0.01 -0.15 0.00 -0.10 -0.04 -0.18 

T. sp. 

(bougasvlei) -0.22 -0.03 -0.03 0.08 -0.18 0.30 -0.77 0.00 0.04 0.19 

T. velifera -1.17 0.39 0.43 0.32 -0.23 -0.190 -0.95 0.15 0.00 0.60 

T. velifera B -0.19 -0.03 -0.04 0.06 -0.06 -0.05 -0.53 0.03 0.05 0.00 
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Appendix D4, Figure 1. Center-log transformed read counts by study capture 

number, averaged over the population for each capture.  Shaded regions indicate 

standard error. Abundance, relative to the sample mean, of each subtype changes non-

linearly over time.  
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Appendix D4, Figure 2. Theileria interaction network when all animals are pooled. 

Significant interactions between Theileria subtypes, indicated by the empirical dynamic 

modeling analysis. Arrows indicate the direction of the interaction (subtypeA → 

subtypeB = subtypeA causes subtypeB). Red arrows (light) indicate a negative interaction 

whereas blue arrows (dark) indicate a positive interaction. Arrows are weighted by 

average interaction strength (s-map coefficient averaged over all animals and all 

captures). Nodes represent each subtype (labeled) and hue indicates subtypes in the same 

species clade. Square nodes indicate subtypes that mainly replicate within white blood 

cells whereas circle nodes indicate subtypes that replicate within red blood cells. 

Interactions are typically limited to taxonomic groups. 
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Appendix D4, Figure 3. Theileria interaction network for (A) animals < 2 years old 

and (B) animals > 2 years old. The interaction network for animals < 2 years old (before 

assemblage reaches an equilibrium-like point) is characterized by many interactions 

across taxonomic groups whereas the interaction network for animals > 2 years old is 

characterized by a few interactions primarily within the T. mutans species clade. 

Significant interactions between Theileria subtypes, indicated by the empirical dynamic 

modeling analysis. Arrows indicate the direction of the interaction (subtypeA → subtypeB 

= subtypeA causes subtypeB). Red arrows (light) indicate a negative interaction whereas 

blue arrows (dark) indicate a positive interaction. Arrows are weighted by average 

interaction strength (s-map coefficient averaged over all animals and all captures). Nodes 

represent each subtype (labeled) and hue indicates subtypes in the same species clade. 

Square nodes indicate subtypes that mainly replicate within white blood cells whereas 

circle nodes indicate subtypes that replicate within red blood cells. Interactions are 

typically limited to taxonomic groups 
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Appendix D4, Figure 4. Library size by prediction skill (rho) for significant 

interactions from the network including all animals. For a system to be a non-linear 

dynamical system, and thus be able to be modeled by empirical dynamical modeling, 

prediction skill should first increase, then saturate with library size.  

  



212 

 

 
 

 

 

 
Appendix D4, Figure 5. Library size by prediction skill (rho) for significant 

interactions from the network including only subadult animals (<2 years old). For a 

system to be a non-linear dynamical system, and thus be able to be modeled by empirical 

dynamical modeling, prediction skill should first increase, then saturate with library size.  
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Appendix D4, Figure 6. Library size by prediction skill (rho) for significant 

interactions from the network including only adult animals (>2 years old). For a 

system to be a non-linear dynamical system, and thus be able to be modeled by empirical 

dynamical modeling, prediction skill should first increase, then saturate with library size.  

 

 

  



214 

 

 
 

 

 

Table D1. Model selection tables for linear mixed models describing variation in PC1. 

Only the first eight models with the lowest AICc are presented. The global model 

included condition + white blood cell abundance (wbc PC1) + white blood cell 

composition (wbc PC2) + globulins + pregnancy status + mean corpuscular volume + 

NDVI + 1/2age + red blood cell count + sex + (1|animal ID). Only combinations of fixed 

effects are displayed as the random effect remained the same for all models. The final 

model reported in the manuscript is reported in bold. 

 

 

  

  AICc delta 

wbc composition + globulins + pregnancy status + mcv + NDVI + 1/2age 2307.60 0.00 

 

wbc composition + globulins + pregnancy status + mcv + NDVI +1/2age  + 

sex 

2308.53 0.93 

 

wbc composition + globulins + mcv + NDVI + 1/2age 

2308.68 1.07 

 

condition + wbc abundance + wbc composition + globulins + preganancy 

status + mcv + NDVI + 1/2age 

2308.94 1.34 

 

wbc abundance + wbc composition + globulins + pregnancy status + mcv + 

NDVI + 1/2age 

2309.00 1.40 

 

condition + wbc composition + globulins + pregnancy status + mcv + NDVI 

+ 1/2age 

2309.35 1.74 

 

condition + wbc abundance + wbc composition + globulins + mcv + NDVI + 

1/2age 

2309.47 1.87 

 

wbc composition + globulins + mcv + NDVI + 1/2age 

2309.56 1.96 
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Table D2. Model selection tables for linear mixed models describing variation in PC2. 

Only the first eight models with the lowest AICc are presented. The global model 

included condition + white blood cell abundance (wbc PC1) + white blood cell 

composition (wbc PC2) + globulins + pregnancy status + mean corpuscular volume + 

NDVI + 1/2age + red blood cell count + sex + (1|animal ID). Only combinations of fixed 

effects are displayed as the random effect remained the same for all models. The final 

model reported in the manuscript is reported in bold. 

 

  AICc delta 

age + condition + pregnancy status + NDVI 2180.27 0.00 

age + NDVI 2180.27 0.00 

age + condition + NDVI 2180.39 0.12 

age + NDVI + sex 2180.50 0.23 

age + pregnancy status + NDVI + sex 2180.57 0.31 

age + condition + NDVI + sex 2180.74 0.48 

condition + NDVI 2180.91 0.64 

age + condition + pregnancy status + NDVI 2180.96 0.70 
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Table D3. Model selection tables for linear mixed models describing variation in PC3. 

Only the first eight models with the lowest AICc are presented. The global model 

included condition + white blood cell abundance (wbc PC1) + white blood cell 

composition (wbc PC2) + globulins + pregnancy status + mean corpuscular volume + 

NDVI + 1/2age + red blood cell count + sex + (1|capture number) + (1|animal ID). Only 

combinations of fixed effects are displayed as the random effect remained the same for 

all models. The final model reported in the manuscript is reported in bold. 

 

  AICc delta 

NDVI 2102.80 0.00 

NDVI + pregnancy status 2103.75 0.95 

NDVI + sex 2103.92 1.12 

NDVI + condition 2104.57 1.76 

NDVI + rbc 2104.77 1.97 

NDVI + pregnancy status + sex 2104.88 2.07 

intercept only 2105.10 2.30 

NDVI + pregnancy status + condition 2105.38 2.58 
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Table D4. Model selection tables for generalized linear mixed models (negative binomial 

distribution) describing variation in Rhipicephalus abundance. Only the first eight models 

with the lowest AICc are presented. The global model included age + age2 + condition + 

NDVI + rainfall + (1| capture number). Only combinations of fixed effects are displayed 

as the random effect remained the same for all models. The final model reported in the 

manuscript is reported in bold. 

  AICc delta 

age + age2 1528.70 0.00 

age + age2 + rainfall 1530.37 1.67 

age + age2 + NDVI 1530.46 1.76 

age + age2 + condition 1530.79 2.10 

age + age2  + NDVI + rainfall 1532.38 3.69 

age + age2 + condition + rainfall 1532.50 3.80 

age + age2 + condition + NDVI 1532.62 3.92 

age + age2 + condition + NDVI + rainfall 1534.56 5.86 
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Table D5. Model selection tables for generalized linear mixed models (negative binomial 

distribution) describing variation in Amblyomma abundance. Only the first eight models 

with the lowest AICc are presented. The global model included age + age2 + condition + 

NDVI + rainfall + (1|animal ID) + (1| capture number). Only combinations of fixed 

effects are displayed as the random effect remained the same for all models. The final 

model reported in the manuscript is reported in bold. 

 

  AICc delta 

age + age2 + rainfall 2165.38 0.00 

age +  age2 2166.36 0.98 

age + age2 + NDVI 2167.17 1.79 

age + age2 + NDVI + rainfall 2167.21 1.83 

age + age2  + condition + rainfall 2167.57 2.19 

age + age2 + condition 2168.52 3.14 

age + age2  + condition + NDVI 2169.15 3.77 

age + age2  + condition + NDVI + 

rainfall 2169.34 3.96 
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Table D6. Coordinates and variance explained (% variance) for the first 8 PCA axes. 

  PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 

% variance  50.85 13.36  9.57 8.07  4.76  4.35  2.75  2.34  

coordinate                 

T. velifera 0.07 0.01 -0.04 0.14 -0.04 0.14 -0.10 -0.02 

T. velifera B 0.20 0.19 -0.25 0.51 -0.29 0.56 0.18 -0.01 

T. velifera UD 0.03 -0.16 -0.02 0.00 0.00 -0.15 -0.67 -0.05 

T. mutans-like 1 -0.31 0.13 0.26 -0.01 0.09 -0.03 0.23 -0.48 

T. mutans-like 2 -0.27 0.08 0.35 0.13 0.08 0.04 -0.06 0.79 

T. mutans-like 3 -0.38 0.13 0.37 0.00 0.09 0.04 0.15 -0.24 

T. mutans MSD 0.50 -0.10 0.00 0.28 0.52 -0.43 0.33 0.04 

T. mutans 0.54 0.28 0.30 -0.60 -0.29 0.06 0.05 0.04 

T. mutans UD 0.09 -0.01 0.02 0.15 0.10 0.02 -0.50 -0.26 

T. sp. (bougasvlei) -0.24 0.30 -0.47 -0.01 -0.42 -0.59 0.09 0.07 

T. sp. (buffalo) -0.06 -0.85 0.01 -0.12 -0.33 0.02 0.24 0.02 

T. parva -0.17 0.01 -0.54 -0.48 0.49 0.33 0.05 0.09 
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Table D7. Linear mixed model evaluating the effect of host traits on Theileria 

assemblage composition along pca axis 1.  (A)   Describes PCA axis 1 coordinates and 

(B) describes model output. Continuous variables (white blood cell composition (wbc pca 

axis 2 coordinates), globulin concentration (g/dL), mean corpuscular volume (μm3), 1/2 
age (years) ,  and median ndvi) were transformed to standard deviation from the mean to 

compare effect size).                             

A. B. 

 

PC1  

subtype coordinate 

T. mutans-like 3 -2.35 

T. mutans-like 1 -1.88 

T. mutans-like 2 -1.66 

T. sp. 

(bougasvlei) -1.49 

T. parva -1.09 

T. sp. (buffalo) -0.30 

T. velifera UD 0.28 

T. velifera 0.47 

T. mutans UD 0.55 

T. velifera B 1.19 

T. mutans MSD 3.03 

T. mutans 3.26 

  Theileria composition P1 

Predictors β 
std. 

Error 
Statistic p 

(Intercept) -

0.16 

0.33 -0.47 0.636 

wbc composition  0.36 0.13 2.89 0.004 

globulin -

0.52 

0.19 -2.72 0.006 

pregnancy status 0.95 0.64 1.49 0.136 

mean corpuscular volume -

0.71 

0.23 -3.16 0.002 

median ndvi -

0.20 

0.13 -1.52 0.128 

1/2age 5.15 0.31 16.86 <0.001 

Random Effects 

σ2 6.25 

τ00 animal-ID  5.53 

N amo,a;s 60 

Observations 465 

Marginal R2 / Conditional 

R2 

0.744 / 0.864 
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Table D8. Model fit for the partial least squares regression. 

cumulative Q2         

  component 1 0.12         

  component 2 0.01         

  component 3 0.00         

  component 4 0.00         

  component 5 0.00         

MSEP   comp 1 comp 2 comp 3 comp 4 comp 5 

T. velifera 0.97 0.98 0.99 0.99 1.00 

T. velifera B 0.92 0.93 0.94 0.94 0.95 

T. velifera UD 0.92 0.84 0.84 0.83 0.82 

T. mutans-like 1 0.68 0.66 0.66 0.66 0.66 

T.mutans-like 2 1.01 1.01 1.01 1.01 1.02 

T. mutans-like 3 0.74 0.73 0.73 0.73 0.74 

T. mutans MSD 0.80 0.80 0.80 0.81 0.81 

T. mutans 0.86 0.86 0.86 0.86 0.86 

T. mutans UD 0.95 0.93 0.91 0.91 0.91 

T. sp. (bougasvlei) 0.86 0.83 0.84 0.84 0.83 

T. sp. (buffalo) 1.01 0.99 0.99 0.98 0.98 

T. parva 0.90 0.90 0.90 0.91 0.91 

R2             

    comp 1 comp 2 comp 3 comp 4 comp 5 

T. velifera 0.03 0.02 0.02 0.02 0.02 

T. velifera B 0.07 0.07 0.06 0.06 0.05 

T. velifera UD 0.08 0.16 0.16 0.17 0.18 

T. mutans-like 1 0.32 0.34 0.34 0.34 0.34 

T.mutans-like 2 0.00 0.00 0.00 0.00 0.00 

T. mutans-like 3 0.26 0.27 0.27 0.27 0.26 

T. mutans MSD 0.19 0.20 0.19 0.19 0.19 

T. mutans 0.14 0.13 0.14 0.14 0.14 

T. mutans UD 0.05 0.07 0.09 0.09 0.09 

T. sp. (bougasvlei) 0.13 0.16 0.16 0.16 0.17 

T. sp. (buffalo) 0.07 0.02 0.02 0.02 0.02 

T. parva 0.10 0.10 0.10 0.10 0.09 
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Table D9. Linear mixed model evaluating the effect of host traits on Theileria 

assemblage composition along pca axis 2.  (A)   Describes PCA axis 2 coordinates and 

(B) describes model output. Age (years) and median ndvi were transformed to standard 

deviations from the mean.                                                                                 

A. B. 

 

PC2    

subtype coordinate 

T. sp. (buffalo) -2.62 

T. velifera UD -0.25 

T. mutans MSD -0.24 

T. mutans UD -0.08 

T. velifera -0.02 

T. parva 0.06 

T. mutans-like 2 0.19 

T. mutans-like 3 0.35 

T. mutans-like 1 0.35 

T. velifera B 0.38 

T. mutans 0.90 

T. sp. 

(bougasvlei) 0.97 

 

  Theileria composition PC2 

Predictors β std. Error Statistic p 

(Intercept) -0.16 0.32 -0.48 0.391 

age -0.87 0.30 -2.86 0.004 

median ndvi 0.11 0.10 1.07 0.283 

pregnancy status 0.64 0.54 1.19 0.233 

Random Effects 

σ2 4.61 

τ00 animal-ID 5.71 

N animals 60 

Observations 471 

Marginal R2 / Conditional R2 0.065 / 0.583 
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Table D10. Mixed effects logistic regression estimating the effect of SNPs on T. sp. 

(buffalo) presence. Covariates were included if they were included in the best fit model 

for Theileria composition PCA axis 2 (table 3).  As opposed to the analysis presented in 

table 3, age (years) and median NDVI were not scaled to standard deviations from the 

mean to ease interpretation of log odds. 

 

  

  T. (sp) buffalo presence 

Predictors Odds ratios  
std. 

Error 
Statistic p 

(Intercept) 0.15 0.96 -1.99 0.046 

snp488 [minor] 0.005 1.42 -3.78 <0.001 

snp678 [minor] 0.0156 1.10 -3.78 <0.001 

age 1.396 0.09 3.90 <0.001 

median NDVI 1.062 2.09 0.03 0.977 

pregnancy status 0.541 1.13 -0.54 0.588 

Axis1 1.066 0.04 1.76 0.078 

Axis2 1.176 0.05 3.39 0.001 

Axis3 1.488 0.10 4.17 <0.001 

Random Effects 

σ2 3.29 

τ00 Numeric.Animal.ID 1.08 

N Numeric.Animal.ID 52 

Observations 410 

Marginal R2 / Conditional R2 0.703 / 0.777 
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Table D11. Linear mixed model evaluating the effect of host traits on Theileria 

assemblage composition along pca axis 3.  (A)   Describes PC 3 coordinates and (B) 

describes model output. Median ndvi was transformed to standard deviation from the 

mean. 

 

 

 

  

PC3   

subtype coordinate 

T. parva -0.54 

T. sp. (bougasvlei) -0.47 

T. velifera B -0.25 

T. velifera -0.04 

T. mutans MSD 0.00 

T. sp. (buffalo) 0.01 

T. velifera UD 0.02 

T. mutans UD 0.02 

T. mutans-like 1 0.26 

T. mutans 0.30 

T. mutans-like 2 0.35 

T. mutans-like 3 0.37 
 

  Theileria composition PC3 

Predictors β 
std. 

Error 
Statistic p 

(Intercept) -

0.20 

0.33 -0.59 0.555 

median ndvi 0.21 0.15 1.40 0.162 

Random Effects 

σ2 3.83 

τ00 animal-ID 5.23 

τ00 capture-# 0.14 

N captures 10 

N animals 60 

Observations 465 

Marginal R2 / 

Conditional R2 

0.005 / 0.586 
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Table D12. Linear model describing the correlation between average age at first infection 

and average relative abundance in climax communities for each subtype (Figure 5.2). A 

linear model was fit with (A) and without (B) subtypes within the T. velifera subtype clade. 

Linear regressions were fit in base R (v 3.6.3). Average age of first infection and average relative 

abundance of climax communities were derived using the methods listed in section 2.3 and 

supplementary materials 2. 

 

A. All subtypes  

Predictors Estimates CI p 

(Intercept) 0.07 -0.01 – 0.15 0.070 

age 1st infection 0.01 -0.00 – 0.02 0.107 

Observations 9 

R2 / R2 adjusted 0.329 / 0.233 

 

B. No T. velifera subtypes 

Predictors Estimates CI p 

(Intercept) 0.01 -0.08 – 0.10 0.829 

age 1st infection 0.02 0.00 – 0.03 0.020 

Observations 7 

R2 / R2 adjusted 0.695 / 0.635 
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Table D13. Generalized linear mixed model (negative binomial distribution) evaluating 

the effect of age and median NDVI on Rhipicephalus tick abundance.  

Predictors Coeffecient SE Statistic p 

(Intercept) 2.01 1.02 1.97 0.049 

age 0.26 0.03 7.89 <0.001 

age2 -0.01 0.00 -5.87 <0.001 

median NDVI 2.03 3.24 0.63 0.532 

Random Effects 

σ2 0.28 

τ00 capture 0.36 

N capture 9 

Observations 178 

Marginal R2 / Conditional R2 0.268 / 0.682 
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Table D14. The effect of age and median NDVI on Amyblyomma tick abundance. 

Generalized linear mixed model (negative binomial distribution). 

 

Predictors Coeffecient SE Statistic p 

(Intercept) 3.32 0.47 7.13 <0.001 

age 0.43 0.04 11.05 <0.001 

age2 -0.02 0.00 -7.76 <0.001 

median NDVI 1.87 1.44 1.30 0.195 

Random Effects 

σ2 0.11 

τ00 animal ID 0.12 

τ00 capture 0.07 

N capture 9 

N animal ID 52 

Observations 178 

Marginal R2 / Conditional R2 0.695 / 0.886 
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Figure D1. (A) A map of southern Africa inlaid in a map of the south of Kruger National Park; (B) The boma within Kruger 

National Park (the red outline on (A) indicates the location and size of the boma relative to the park; (C) A photo of the 

perimeter of the boma.
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