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A stochastic process is given by a family of random variables indexed by elements

of a set. We have considered stochastic processes of three different types, each

involving an associated martingale structure. Martingale is a sequence of random

variables for which the conditional expectation at a certain time point given the

entire past is given by the present value of the sequence. Martingales possess nice

theoretical properties with wide applicability. We have exploited martingale tools

and techniques to derive the limiting results related to the stochastic processes.

The processes we have considered are given below.

• An evolutionary urn scheme based on the rock-paper-scissors game

• The random multiplicative cascade model for intermittent processes

• A set-indexed partial sum process with dependent increments



The evolutionary urn scheme based on the rock-paper-scissors game is known to

model species interactions in ecological systems. Therefore its limiting behavior

is of interest to ecologists to understand the long term species composition of a

certain ecological system. We have considered a generalization of the process to

accommodate more than three species. Simulations in the general set up suggest

interesting phenomena that are counter-intuitive when compared to the three-

player case.

The second chapter of this thesis is motivated by data sets with variable in-

termittency, which makes it difficult to use standard modeling tools. It has been

observed that a special class of multiplicative models, namely the Random Mul-

tiplicative Cascade models reproduce some characteristics of the data. We have

derived theoretical results related to the multiplicative cascade models under a

missing data set up. We have applied the method to the daily stock volume data

of Tesla. Also we have proposed a change point detection method for intermittent

time series. This can possibly be extended to spatial processes as well.

The last chapter of the thesis is related to a set indexed partial sum process,

with martingale differences as its increments. We have derived the weak limit of

the system under the Lindeberg type condition and the metric entropy integrability

condition.

In spite of a common martingale structure underlying each of these three pro-

cesses, they are fundamentally different. Therefore the methods to derive the

limiting properties are unique to each process. For example, in the case of the

rock-paper-scissors urn scheme, the key idea behind the derivation of almost sure



limit is noticing a connection between sub-martingale structures within the game

and a well known convergence theorem of polynomial sequence. However, for the

random multiplicative cascade model, the main challenge lies in deriving asymp-

totic theory on a tree structure. In the third chapter, we have used probabilistic

tools and techniques like generic chaining, symmetrization, and truncation to de-

rive weak limit of the set indexed partial sum process.



c©Copyright by Arpita Mukherjee
June 5, 2020

All Rights Reserved



Limiting Behavior of Stochastic Processes Involving Martingale
Structures

by

Arpita Mukherjee

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 5, 2020
Commencement June 2020



Doctor of Philosophy dissertation of Arpita Mukherjee presented on June 5, 2020.

APPROVED:

Major Professor, representing Statistics

Chair of the Department of Statistics

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Arpita Mukherjee, Author



ACKNOWLEDGEMENTS

Five years back, I left an industry job in India, moved to the US and joined the

PhD program at Oregon State University. The transition wasn’t easy. I would like

to express thanks to all those who have paved the path for me.

Thanks to my mother for her unconditional love and the sacrifices she has

made. Thanks to my father for being my role model. They together with my

grand-parents form a great support system.

I am extremely fortunate to have Prof. Mina Ossiander as my advisor. Thanks

for her patience and sincerity in listening and answering each of my questions. I

am grateful to her for the constant support and encouragement.

I am pleased to have Prof. Elaine Cozzi as my minor adviser. Taking the

Functional Analysis class with her has been one of the most profound experiences

of my graduate student life. I would like to thank Prof. Lisa Madsen, Prof. Sarah

Emerson, and Prof. Mike Rosulek for serving on my committee. I am thankful

to Prof. Debashis Mondal for partially supporting this research under NSF DMS-

1519890. My heartfelt thanks to Prof. Virginia Lesser for her support. My sincere

thanks to Prof. Javier Rojo for all his advice.

Thanks to my husband, Sharmodeep for always being there by my side with all

his generosity and kindness. Thanks to my younger brother, Arnab for making me

smile during the most difficult times. Thanks to my teachers, cousins, extended

family, in-laws, and neighbors in India for their love and support.

Thanks to my dear friend Si Liu for the wonderful time we shared together



learning and struggling. Thanks to Chenxiao, Jiarui, Aaron, and Connor for be-

ing amazing office-mates. Thanks to Srila, Priyadarshini, Pritha, Nilika, Laya,

Debashis, and Kashyap for making me feel at home in Corvallis.



TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The rock-paper-scissors urn . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The random multiplicative cascades . . . . . . . . . . . . . . . . . . . 5

1.4 A set indexed partial sum process . . . . . . . . . . . . . . . . . . . . 6

1.5 Martingale: The unifying theme . . . . . . . . . . . . . . . . . . . . . 8

2 Limiting behavior of the rock-paper-scissors urn 10

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Set up and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Standard rock-paper-scissors game . . . . . . . . . . . . . . . . . . . 15
2.4.1 Sub-martingale convergence . . . . . . . . . . . . . . . . . . 16
2.4.2 Martingale methods . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Identifying the limiting proportions . . . . . . . . . . . . . . 21

2.5 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 A four player extension . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6.2 Identifying the limiting Proportions . . . . . . . . . . . . . . 25
2.6.3 Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 A generalization to the k-player case . . . . . . . . . . . . . . . . . . 27
2.7.1 Set up and notation . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.2 Identifying the limiting proportions . . . . . . . . . . . . . . 28
2.7.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Urn processes with random step sizes . . . . . . . . . . . . . . . . . . 31
2.8.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 31

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Random multiplicative cascade models 35

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Notation and framework . . . . . . . . . . . . . . . . . . . . . . . . . 39



TABLE OF CONTENTS (Continued)

Page

3.4 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 h-cascades and its properties . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Strong Law of large number . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Pointwise Central limit theorem . . . . . . . . . . . . . . . . . . . . . 55

3.8 Tesla Stock Volume: Data Analysis . . . . . . . . . . . . . . . . . . . 64
3.8.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8.2 log-Normal Cascade generating distribution . . . . . . . . . 66
3.8.3 log-Poisson cascade generating distribution . . . . . . . . . 71
3.8.4 Observations from log-Poisson cascade . . . . . . . . . . . . 72
3.8.5 Beta cascade generating distribution . . . . . . . . . . . . . 74

3.9 Impact of Missing data in estimation . . . . . . . . . . . . . . . . . . 77
3.9.1 log-Normal cascade . . . . . . . . . . . . . . . . . . . . . . . 78
3.9.2 log-Poisson cascade . . . . . . . . . . . . . . . . . . . . . . . 78
3.9.3 Beta cascade . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.9.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.10 Distribution of stock volumes before and after the change point . . . 82
3.10.1 Data before changepoint . . . . . . . . . . . . . . . . . . . . 83
3.10.2 Data after change-point . . . . . . . . . . . . . . . . . . . . 84
3.10.3 A changepoint detection method . . . . . . . . . . . . . . . 87

3.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 A central limit theorem for a set-indexed partial sum process 92

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Set up and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Finite Dimensional Convergence . . . . . . . . . . . . . . . . . . . . . 99
4.5.1 Mean function . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.2 Covariance Function . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Canonical L2 Metric on A . . . . . . . . . . . . . . . . . . . . . . . . 102

4.7 Tightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.8 A symmetrization Lemma . . . . . . . . . . . . . . . . . . . . . . . . 106

4.9 Asymptotic Equicontinuity . . . . . . . . . . . . . . . . . . . . . . . . 110



TABLE OF CONTENTS (Continued)

Page

4.9.1 Exponential Bound on Rn(A) . . . . . . . . . . . . . . . . . 114
4.9.2 Choice of Parameters to bound Rn(A) . . . . . . . . . . . . . 116
4.9.3 Exponential bound on

∑kn
j=0 Sn,j(Aj \ Aj+1) . . . . . . . . . 117

4.9.4 Choice of Parameters to bound
∑kn

j=0 Sn,j(Aj \ Aj+1) . . . . 118

4.10 A Glivenko-Cantelli theorem . . . . . . . . . . . . . . . . . . . . . . . 121

4.11 An application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 Conclusion 125

Bibliography 128



LIST OF FIGURES

Figure Page

2.1 Convergence of a standard rock-paper-scissors urn . . . . . . . . . . 23

2.2 Proportions over time for different starting counts . . . . . . . . . 24

2.3 Proportions over time for different step sizes . . . . . . . . . . . . . 27

2.4 Game involving 5 object types, with same initial counts . . . . . . 29

2.5 Game involving 5 object types, with different initial counts . . . . . 29

2.6 Rock-paper-scissors game with Poisson step sizes . . . . . . . . . . 31

2.7 4 player cyclic game with Poisson step sizes . . . . . . . . . . . . . 32

2.8 5 player cyclic game with Poisson step sizes . . . . . . . . . . . . . 33

3.1 log-Normal cascades at different levels . . . . . . . . . . . . . . . . 45

3.2 Tesla stock volume over time . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Tesla stock volume: Estimated structure function . . . . . . . . . . 66

3.4 Estimated and actual(log-Normal with k = .055) structure function 68

3.5 Estimated and actual(log-Normal with k = .02) structure function 69

3.6 Actual data and a single sample realizations from log-Normal cascade 70

3.7 Histogram of Actual data and a single sample realizations from log-
Normal cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Histograms of 1000 realizations from log-Normal cascade . . . . . . 71

3.9 Estimated and actual log-Poisson(k = 0.85) structure function . . . 72

3.10 Actual data and a single realization from the log-Poisson cascade . 73

3.11 Histogram of actual data and a single realization from the log-
Poisson cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.12 Histogram of 1000 realizations from the log-Poisson cascade . . . . 74

3.13 Estimated and actual (Beta) structure function . . . . . . . . . . . 76



LIST OF FIGURES (Continued)

Figure Page

3.14 Histogram of multiple realizations from Beta cascades . . . . . . . . 76

3.15 Estimated structure functions for data with missing values . . . . . 77

3.16 log-Normal structure functions for data with missing values . . . . . 78

3.17 log-Poisson structure functions for data with missing values . . . . . 79

3.18 Beta structure functions for data with missing values . . . . . . . . 80

3.19 Histograms for data with and without missing values . . . . . . . . 81

3.20 Stock volume of Tesla before and after the changepoint . . . . . . . 82

3.21 Estimated structure function from the data before the changepoint 83

3.22 Different distributions and structure functions for the data before
the changepoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.23 Estimated structure function for the data after changepoint . . . . . 85

3.24 Different distributions and structure functions for data after change-
point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.25 Histograms corresponding to data before and after the changepoint 86

3.26 Distributions of the cascade generating random variables before and
after the changepoint . . . . . . . . . . . . . . . . . . . . . . . . . . 87



LIST OF ALGORITHMS

Algorithm Page

2.7.1 Algorithm to identify limiting proportions . . . . . . . . . . . . . . 30



Limiting Behavior of Stochastic Processes Involving Martingale

Structures

1 Introduction

1.1 Introduction

Stochastic processes are a family of random variables indexed by a set. Each

random variable of a stochastic process takes value from a common space, termed

as the state space of the process. Depending on the nature of the index set and

the state spaces stochastic processes can be classified into various categories. We

consider stochastic processes from three different classes and study their limiting

properties.

The study of limiting behavior of stochastic processes is of interest for many

reasons. Stochastic processes are often used to model the dynamics of a system or

naturally occurring physical phenomena. In that context in order to understand

the underlying process better it is crucial to answering all or some of the following

questions:

• Does the system converge?

• If yes, where does it converge?

• If no, are there conditions under which the system converges?

• How fast does the system converge?
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• Which factors contribute to determining the speed of convergence?

• What is the distributional limit of the process? i.e. is there a non-degenerate

distribution to which the distribution converges?

Each of these questions motivates the study of the long-term behavior of a pro-

cess. Also, various important test statistic can be represented as a supremum (or

infimum) of a stochastic process.

Example 1: Consider the Kolmogorov-Smirnov test that is used for testing the

equality of continuous distribution, i.e. for X1, . . . , Xn
iid∼ F it tests the following

hypothesis:

H0 : F = F0 vs HA : F 6= F0

where F0 is a fully specified cumulative distribution function. The test statistic in

this case is given by

Tstat =
√
n sup

x
|F̂n(x)− F0(x)|

where F̂n(x) is the sample analogue of cumulative distribution function, also termed

as the empirical distribution function. Thus the test statistic can be viewed as the

supremum of a stochastic process given by {Un(x) =
√
n
(
F̂n(x)− F0(x)

)
: x ∈

R}. In order to derive the null asymptotic distribution of Tstat, it is important to

study the limiting distribution of the process {Un(x)}.

Example 2: Another area of application includes bootstrap methodology. The

bootstrap method is a universal tool for obtaining the distribution of any statistics.

Let X1, . . . , Xn
iid∼ P with the empirical distribution given by Pn = 1

n

∑n
i=1 δXi .
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Suppose we are interested in the distribution of the statistic given by T (Pn), which

is a functional of Pn. Depending on the form of P , it might get too complicated

to derive the null distribution of such statistic. Thus bootstrap is used to derive

the null distribution in such cases. The idea behind bootstrap lies in the fact

that as Pn and P are close for sufficiently large n, therefore if we get a sample

X∗1 , . . . , X
∗
mn

iid∼ Pn, then conditional on Pn, T (P ∗mn) should approximate T (Pn),

where

P ∗mn =
1

mn

mn∑
i=1

δX∗i

Now in order to show that the bootstrap distribution converges weakly to the

actual distribution of the test statistic, the scaled difference between the two is

viewed as a stochastic process. Hence in order to justify bootstrap approximation,

it is important to study the limiting distribution of the corresponding stochastic

process. Further details on this can be found in Barbe and Bertail (2012).

Now that we have explained the motivation behind the study of stochastic

processes and their limiting behavior, we shall briefly describe each of the stochastic

processes that we have considered, followed by the commonality between them.

1.2 The rock-paper-scissors urn

The first process considered here is an evolutionary urn scheme based on the well-

known rock-paper-scissors game. The counts of rock, paper, and scissors in the urn

change according to a set of rules. The rules are governed by the basic principles of

the rock-paper-scissors game, in which each object enjoys equal power but when it
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comes to pairwise comparison one object is always more powerful than the other.

This is a discrete-time stochastic process with the state space N3, where N denotes

the set of all natural numbers. The current state of the process, given the entire

past, depends only on the recent past. Thus the process forms a vector-valued

Markov chain, with a time-inhomogeneous transition matrix, i.e. the transition

probabilities are dependent on the specific time point.

An ecological system is known to retain biodiversity only if the system is non-

hierarchical. The inherent nature of the rock-paper-scissors game makes it non-

hierarchical. Thus this game is natural to consider for modeling species interaction

in ecological systems. In spite of broad usage, the mathematical foundation related

to the long-term behavior of such a system has been unresolved. This thesis gives

a rigorous mathematical framework for such a system and provides a derivation of

limiting properties.

We have identified several martingale structures within the game and then

combined those with algebraic theorems related to polynomial convergence to come

up with a novel technique to prove almost sure limit convergence for such systems.

A central limit theorem has also been derived in this context.

We have also considered a generalization of the game in a k-player situation.

We have done extensive simulation studies to understand the dynamics of such

complicated systems and have come up with an algorithm to identify the limiting

proportions. However, the proof of convergence still remains unaddressed. There

seem to be nice mathematical structures in the three-player case that disappear in

more complex setups.
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1.3 The random multiplicative cascades

The second chapter of the thesis is about the random multiplicative cascade models;

these are used to model naturally occurring physical phenomena that are intermit-

tent in nature. The model is based upon the fact that the total amount of a certain

object (say, rainfall) divides randomly into smaller scales. These random splits are

determined by the distribution of a set of independent and identically distributed

random variables, known as cascade generating random variables. This splitting

mechanism gives rise to a tree structure, each level of which can be thought of

as a time point. Thus the entire process can be thought of as a stochastic pro-

cess, where the level of granularity at every step is higher than the previous step,

i.e. over the time the splitting process goes into finer and finer scale. Rainfall,

turbulence, internet traffic, etc displays such cascading characteristics.

The real data is considered as the fine-scale limit of the cascade measure at

a particular resolution. In order to simulate realizations from the system, it is

essential to estimate the cascade generating distribution from the data. A cru-

cial component of a multiplicative cascade model is the structure-function, which

uniquely determines the cascade generating distribution. The goal is to come up

with a sample statistic that converges to the structure-function of the cascade

generating random variable almost surely.

There is a good volume of work dedicated to the estimation of the structure-

function, which determines the cascade distribution. All of these works assume that

the complete data is available, i.e. observations on an entire grid at a particular
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resolution is observed. We have considered the case where there are observations

that are missing, which happens quite commonly in real datasets. We have pro-

posed an estimator of structure-function that can handle missing values. We have

also derived almost sure convergence of these estimators and a central limit the-

orem in this context. Here the key challenge is that the asymptotics is on a tree

structure.

We have demonstrated the use of a random multiplicative cascade model on the

stock volume data of Tesla. We have also demonstrated the missing data handling

technique by applying this model to the data containing missing observations. The

daily stock volume data over time seems to have changed patterns after a certain

time point. We have modeled the data before and after that point separately

and have proposed a naive approach for change point detection in intermittent

time series. The method can be significantly improved by deriving a uniform limit

theorem for the estimated structure-function, which still is an open problem in this

field.

1.4 A set indexed partial sum process

In the third chapter of the thesis we have considered a set indexed partial sum

process, which is defined on a ‘suitable’ collection of sets A, defined as follows.

Sn(A) :=
1

n

n∑
i=1

Xi1(Vi ∈ A) for A ∈ A
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Here we have considered Xi’s to be Fi-measurable martingale differences and Vi’s

to be Fi−1-measurable. We have derived a central limit theorem under a Lindeberg

type condition. The central theorem holds uniformly on A. In this case, the

limiting process is a set indexed Gaussian process. The proof of weak convergence of

the process relies on finite-dimensional convergence and tightness, which is implied

by asymptotic equicontinuity.

Let’s consider a motivating example to understand why this type of partial

sum process is of interest to the statisticians. As can be seen from example 1, the

Kolmogorov Smirnov statistics for testing equality of continuous distributions is

given by

Gn = sup
x
|
√
n(F̂n(x)− F0(x))|

The distribution of Gn is independent of F0 when Xi’s take values in R. How-

ever, when Xi’s are random vectors, the distribution of the test statistics is not

distribution-free anymore. Depending on the form of F0 it might get quite difficult

to derive the null distribution of Gn in such cases. Thus one easy way to go about it

is to use the bootstrap method. In a generalized bootstrap method we approximate

the empirical distribution function F̂n(x) by F̂W,n(x) given as follows:

F̂W,n(x) =
n∑
i=1

Wi1(Xi ≤ x)

where W corresponds to the weights of Bootstrap. In the standard bootstrap

procedure (W1, . . . ,Wn) ∼ Multinomial
(
1, 1

n
, 1
n
. . . , 1

n

)
. Now in order to prove

that the bootstrap distribution approximates the actual distribution we need to
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derive the weak limit of F̂W,n(x). It is easy to note that F̂W,n(x) can be viewed as

a set-indexed partial sum process, where the indexing set is of the form (−∞, x].

In our case, we have allowed dependence between and within the random variables

Xi’s and Vi’s. Also, we have considered a more general collection of indexing sets.

We have illustrated a possible application of our process in testing hypotheses

related to multiplicative error models of non-negative time series.

1.5 Martingale: The unifying theme

All of the processes considered so far involve martingales, which is a common

probabilistic structure to model dependence. A martingale is a sequence of random

variables for which the conditional expectation of the present given the entire past

is the same as the value of the sequence in the recent past. Let {Xn : n ≥ 1} be

a martingale sequence and Fn the history of the process up to time n. Thus for

each n ≥ 1, Xn must satisfy

E(Xn|Fn−1) = Xn−1

{Xn : n ≥ 1} is said to be a sub(super)-martingale if

E(Xn|Fn−1) ≶ Xn−1

Convergence results such as the strong law and the central limit theorem that holds

for a sequence of independent identically distributed random variables also have
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analogous versions for martingale sequences of random variables. Details on these

can be found in Hall and Heyde (2014).

For the rock paper scissors urn problem, we have identified martingale and

sub-martingale structures within the game. Almost sure convergence of these

martingales plays a crucial role in the derivation of the almost sure convergence

of the long term proportions of each individual object type, namely rock, paper,

and scissors. Also, the related central limit theorem is primarily based on the

martingale central limit theorem.

While constructing the random multiplicative cascade measure, the cascade

generating random variables are chosen to be random variables with mean one.

Thus the Radon-Nikodym derivative of the cascade measure with respect to the

Lebesgue measure forms a martingale sequence. The convergence results related

to the random multiplicative cascade process rely on the convergence of this mar-

tingale.

In the set-indexed partial sum process, the increments are considered to be

martingale differences. Here the primary goal was to work with a model that

allowed dependence between the increments; martingales seem to be the most

natural choice. Established results then allow the derivation of the weak and

strong convergence results related to the process.

Though each of the stochastic processes described above shares an underlying

martingale structure, they are fundamentally different. In the subsequent chapters,

we shall discuss each of the processes in detail, derive related results, present

interesting findings, and mention possible directions for future work.
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2 Limiting behavior of the rock-paper-scissors urn

2.1 Abstract

We consider a randomized urn scheme based on a stochastic version of the well-

known rock-paper-scissors game. The cyclic and non-hierarchical nature of the

scheme in conjunction with its simplicity yields an attractive model of competitive

population dynamics with applications in scientific fields ranging from ecology

and biology to physics and economics. The rock-paper-scissors game has a non-

hierarchical and non-transitive structure that mimics, for example, strategies that

help to maintain biodiversity in the long term in ecological settings. In this chapter,

our key focus is to study the limiting behavior of the stochastic urn model and to

derive a central limit theorem in this context. Techniques from both polynomial

and martingale theory are used. We also explore several extensions of the game

and present simulation studies suggesting future directions for research.

2.2 Introduction

In the well-known rock-paper-scissors game, rock crushes scissors, scissors cuts

paper, and paper wraps rock. This means the rock is more powerful than scis-

sors, scissors is more powerful than paper, and paper is more powerful than rock.

Thus each of the three objects is more powerful than one of the other two and
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less powerful than the remaining object leading to no clear winner in the game.

This unique cyclic and non-transitive nature resembles several naturally occurring

scientific and physical phenomena, and is used to model or describe these scientific

systems. This simple model thus provides a simple and flexible setting in which

to study the dynamics of cyclic systems.

In ecology, non-hierarchical systems are believed to play a pivotal role in main-

taining biodiversity. In other words, a system does not appear to retain its species

richness in the long term unless it is non-hierarchical. Rock-paper-scissors is among

the simplest model of a non-hierarchical system with applications in modeling

species diversity; see for example Kerr et al. (2002), Sinervo and Lively (1996),

Shi et al. (2010), Kirkup and Riley (2004), Frean and Abraham (2001), Mobilia

(2010).

Structural properties of rock-paper-scissors games have also been of interest

to game-theorists with analysis of theoretical and experimental aspects appearing

in Semmann et al. (2003), Cook et al. (2011), Xu et al. (2013) and Cason et al.

(2013).

Rock-paper-scissors games also appear in physics as models of interacting par-

ticle systems. In Tainaka (2000) the standard rock-paper-scissors is extended to

a two-dimensional lattice structure with applications to the voter and biological

systems. In Venkat and Pleimling (2010), Jiang et al. (2012), Hua et al. (2013),

Peltomäki and Alava (2008), the structural properties of the rock-paper-scissors

game is used to explore the Spatio-temporal dynamics of various physical systems.

The Lotka-Volterra model (Lotka (1926), Volterra (1927)) is widely used to
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analyze population systems. In Mao et al. (2003), Avelino et al. (2012), Bahar and

Mao (2004), Zhu and Yin (2009b), Li and Mao (2009), Liu and Fan (2017), Zhu

and Yin (2009a) several aspects of stochastic Lotka-Volterra system have been

studied. Stochastic version of the game have intriguing properties not present

in the deterministic counterpart. In Mao et al. (2003) and Dobrinevski and Frey

(2012) the authors have shown how the asymptotic properties of a stochastic Lotka-

Volterra model differ from its deterministic version. In Liu and Wang (2014),

Du and Sam (2006), Cattiaux and Méléard (2010) different versions of stochastic

Lotka-Volterra systems have been considered. The study of rock-paper-scissors

games provides insights into such systems.

In this chapter, we consider a stochastic version of the rock-paper-scissors game

by defining a competitive urn scheme. The urn is initially populated with one

object of each type, namely rock, paper, and scissors. Over time, the urn evolves as

follows: at each step, two objects of different types are drawn at random and then

returned to the urn together with an additional copy of the more powerful object.

Thus at each step, the urn size goes up exactly by one. This is a generalization

of the classical Polya’s urn model, as seen in Durrett (2019). We have studied

the limiting properties of the urn as time increases. In Pemantle et al. (2007),

Lasmar et al. (2018) and Laslier et al. (2017) various stochastic urn schemes have

been considered. However, none accommodates the competitive aspects of the

rock-paper-scissors urn considered here.

Contributions of our work include the following. (1) We show rigorously that

the rock-paper-scissors urn remains almost surely balanced in the long term and
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derive related central limit theorems. These results rely on a novel combination of

martingale methods with algebraic theorems related to polynomial convergence.

(2)We also consider a rock-paper-scissors urn with random step-sizes, i.e. a Poisson

number of additional balls are added to the urn at each time step. The limiting

properties of the Poissonized games correspond to those with deterministic step

sizes. (3)We propose an algorithm giving the limiting behavior of competitive

urn models with more than three object types and present related simulations.

Interestingly, the limiting properties of these generalized competitive urns do not

always correspond to that of the standard rock-paper-scissors model.

In Section 2.3 we describe the problem, introducing required notation. This

is followed by the derivation of our central results for the standard rock-paper-

scissors urn scheme in Section 2.4. Section 2.6 presents extension of the model

to urns containing 4 distinct objects. Simulation studies are included to illustrate

limiting properties. In Section 2.7 a generalized urn with k distinct object types

is considered. We present an algorithm that identifies the limiting proportions of

individual object types. Finally, in Section 2.8, we return to the standard urn with

three object types and introduce random population growth. At the end of each

section, we present simulation studies for illustration. Section 2.9 contains some

concluding remarks and suggestions for further research.
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2.3 Set up and Notation

Let n ≥ n0 denotes the step number and 1 ≤ i ≤ k the object type. Clearly,

for a standard rock-paper-scissors game, there are three distinct object types in

the urn, i.e. k = 3. The number of objects of type i at step n is denoted by

Xn,i with corresponding vector Xn = (Xn,1, . . . , Xn,k)
T . Let Fn be the σ-algebra

generated by {Xn0 , . . . ,Xn}; i.e. the history of the game up to time n. The game is

initialized at n0 = k with one object of each type in the urn, giving
∑k

i=1 Xn0,i = k.

At each step the total number of objects in the urn increases exactly by 1 so∑k
i=1 Xn,i = n for all n ≥ n0. Let Pn,i denotes the conditional probability that

Xn+1 = Xn + ei given Xn. Here the ei’s are the standard unit basis vectors.

The relationship between the Pn,i’s and the Xn,i’s depends on the specific game

structure. For example, in the standard three-type rock-paper-scissors game, the

conditional probabilities are given by Pn,i = pi(Xn) where

p1(x) =
x1x2

x1x2 + x1x3 + x3x2

p2(x) =
x2x3

x1x2 + x1x3 + x3x2

p3(x) =
x1x3

x1x2 + x1x3 + x3x2

.

Let Pn denote the vector {Pn,i : 1 ≤ i ≤ k}.
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2.4 Standard rock-paper-scissors game

The urn-scheme based on the rock-paper-scissors game begins with an urn con-

taining one rock, one paper, and one scissors. At each time point, two objects of

different types are drawn at random. Then they are returned to the urn together

with an additional copy of the more powerful object. In investigating the limiting

behavior of the urn we obtain the almost sure limits of the proportions of rocks,

papers, and scissors as the fixed point of a system of linear equations. In order to

model the dependence between subsequent steps, we identify key sub-martingales.

Properties of these will be exploited in combination with results from polynomial

theory to derive the almost sure limit of the system. Key findings describing limit-

ing properties of this urn scheme are summarized in Theorem 2.4.1 and Theorem

2.4.12.

Theorem 2.4.1 (Convergence of proportions). In the rock-paper-scissors urn pro-

cess, the long term proportions of each individual object type converges to
(

1
3
, 1

3
, 1

3

)
almost surely; that is P

(
limn

Xn

n
=
(

1
3
, 1

3
, 1

3

))
= 1.

The complete proof of Theorem 2.4.1 is deferred until the end of the section.

The following preliminary result provides an outline of how martingale methods

and polynomial theory are used in tandem.

Theorem 2.4.2. Xn

n
converges almost surely.

The proof relies on the following classical theorem which appears as proposition

(5.2.1) of Artin (2010).
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Theorem 2.4.3 (Convergence of roots of a real polynomial). Let qk(t) be a se-

quence of monic polynomials of degree ≤ m, and let q(t) be another monic polyno-

mial of degree m. Let αk,1, . . . αk,m and α1, α2, . . . αm be the roots of these polyno-

mials. If qk → q, the roots αk,v of qk can be numbered in such a way that αk,v → αv

for each v = 1, 2, . . .m.

Proof of Theorem 2.4.2. Define the functions t and u on R3 as t(x) = x1x2 +

x1x3 + x2x3 and u(x) = x1x2x3. Let Tn = t
(

Xn

n

)
and Un = u

(
Xn

n

)
. In the

following section we use martingale methods to show in Lemmas 2.4.4 and 2.4.8

respectively that Tn and Un converge almost surely to bounded r.v.’s. Thus the

polynomial Qn on R defined via Qn(r) = r3 − r2 + Tnr − Un converges pointwise.

It is easy to check that the roots of Qn are given by the components of Xn

n
. From

Theorem 2.4.3 we see that the almost sure convergence of Qn implies the almost

sure convergence of the proportions Xn

n
of different objects in the urn.

2.4.1 Sub-martingale convergence

In this section, some sub-martingale structures are derived that figure in the proof

of Theorem 2.4.2.

Lemma 2.4.4. Ũn = (n(n + 1)(n + 2))−1
∏3

i=1 Xn,i is a bounded sub-martingale

and converges almost surely.

Since Un and Ũn are asymptotically equivalent, an immediate consequence is

the following.
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Corollary 2.4.5. Un converges almost surely.

The following algebraic result is used in the proof of Lemma 2.4.4.

Lemma 2.4.6. If xi ≥ 1 for i = 1, 2, 3 with
∑
xi = n, then 2n−3

n2 ≤ t(x)
n2 ≤ 1

3
.

Proof. The upper bound is verified as follows. The usual Cauchy-Schwarz in-

equality gives t(x) ≤
∑
x2
i . Then t(x)

(x1+x2+x3)2
= t(x)

x21+x22+x23+2t(x)
≤ t(x)

3t(x)
= 1

3
. It is

straightforward to verify the lower bound via calculus.

Returning to the previous lemma we have the following.

Proof of Lemma 2.4.4. Recall that
∑

iXn,i = n.

E(Ũn+1|Xn = x) =

∏3
i=1 xi + x2x3p1(x) + x1x3p2(x) + x1x2p3(x)

(n+ 1)(n+ 2)(n+ 3)

=

∏3
i=1 xi(1 + n/t(x)

(n+ 1)(n+ 2)(n+ 3)

≥
∏3

i=1 xi(1 + 3/n)

(n+ 1)(n+ 2)(n+ 3)

= Ũn.

Thus E(Ũn+1|Fn) ≥ Ũn and {Ũn : n ≥ 1} is a non-negative sub-martingale with

upper bound

Ũn ≤ (n3)−1

3∏
i=1

Xn,i ≤
1

33
. (2.1)

Hence Ũn is almost surely convergent.

For n ≥ 3 let Vn =
∏3
i=1Xn,i

(n+3)(n+4) t1/2(Xn)
.
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Lemma 2.4.7. {Vn : n ≥ 3} is a bounded sub-martingale and converges almost

surely.

Proof. For
∑

i xi = n and ei the usual unit basis vector, t(x+ ei) = t(x) + n− xi,

so for β < 0

tβ(x+ ei)− tβ(x) = β

∫ 1

y=0

(n− xi)(t(x) + (n− xi)y)β−1dy

≥ β(n− xi)tβ−1(x)

In particular,

∑
i≥1

(xi + 1)xi+1t
−1/2(x+ ei) ≥

∑
i≥1

(xi + 1)xi+1(t−1/2(x)− (n− xi)t−3/2(x)/2)

=
(
t−1/2(x)− n

2
t−3/2(x)

)
(t(x) + n)

+
1

2
t−3/2(x)

∑
i

xi(xi + 1)xi+1

≥
(
t−1/2(x)− n

2
t−3/2(x)

)
(t(x) + n) +

1

2
t−3/2(x)(t(x) + t2(x)/n)

= t1/2(x)

(
1 +

n

t(x)

)(
2n+ 1

2n
− n

2t(x)

)

Above we have used the Cauchy-Schwarz inequality to derive the bound

∑
i≥1

x2
ixi+1 ≥

t2(x)

n

Notice that for
∑

i xi = n with xi ≥ 1, the function
(

1 + n
t(x)

)(
2n+1

2n
− n

2t(x)

)
is

minimized over the range of n/t(x) at the minimal value of n/t(x); n/t(x) = 3/n.
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That is,
(

1 + n
t(x)

)(
2n+1

2n
− n

2t(x)

)
≥ (n+ 3)(n− 1)/n2. Thus

E(
3∏
i=1

Xn+1,i t
−1/2(Xn+1)|Xn = x) = (

∏
1≤j≤3

xj)t
−1(x)

∑
i

(xi + 1)xi+1t
−1/2(x+ ei)

≥ (
∏

1≤j≤3

xj)t
−1/2(x)(n− 1)(n+ 3)/n2

and, after verifying that (n+3)2(n−1)
n2(n+5)

≥ 1, we see that E(Vn+1|Xn) ≥ (n−1)(n+3)2

n2(n+5)
Vn ≥

Vn. Consequently {Vn : n ≥ 1} is a sub-martingale. Observing that 3
∏3

i=1 xi ≤

nt(x) we see that Vn is bounded and thus converges almost surely.

Lemma 2.4.8. Tn = t(Xn)
n2 converges almost surely to a finite r.v. T .

Proof. After noting that T
1/2
n = (n+1)(n+2)Ũn

(n+3)(n+4)Vn
this follows from the almost sure

convergence of Ũn and Vn.

2.4.2 Martingale methods

The distribution of individual object types Xn at each step n depends only on the

immediate past Xn−1 rather the entire past history Fn. Thus {Xn : n ≥ 1} is a

vector valued Markov chain with corresponding vector-valued martingale

Mn = Xn −
n∑

l=n0+1

Pl−1. (2.2)

Lemma 2.4.9. {Mn : n ≥ n0} is a vector-valued martingale with respect to the

filtration {Fn : n ≥ n0}.
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Proof. Since

E(Xn −Xn−1|Fn−1) = Pn−1 (2.3)

therefore E(Mn|Fn−1) = Mn−1 Hence {Mn} is a Martingale.

The quadratic variation of the individual components of the martingale {Mn :

n ≥ 1} is given by

n∑
l=n0+1

E[(Ml,i −Ml−1,i)
2|Fl−1] =

n∑
l=n0+1

E[(δl,i − Pl−1,i)
2|Fl−1]

=
n∑

l=n0+1

Pl−1,i(1− Pl−1,i)

where δl,i = Xl,i −Xl−1,i.

Lemma 2.4.10. For every object type denoted by i, 1
n

(
Xn,i −

∑n
l=n0+1 Pl−1,i

) a.s.−−→

0

Proof. The term on left hand side can be rewritten as 1
n

∑n
l=n0+1(δl,i−Pl−1,i) where

δl,i is one or zero depending on whether or not the object of type i increased at step

l. Note that δl,i ∼ Bernoulli(Pl−1,i) Fix i and denote Sn =
∑n

l=n0+1(δl,i − Pl−1,i).

For fixed ε > 0 and N ≥ 1, Kolmogorov’s inequality gives the following:

P( max
n0+1≤n≤2N

|Sn| > 2Nε) ≤ 1

22Nε2

2N∑
l=n0+1

E(δ2
l,i) =

1

22N ε2

2N∑
l=n0+1

EPl−1,i

≤ 1

22Nε2
2N =

1

2Nε2

By the Borel-Cantelli lemma it follows that Sn
n

a.s.−−→ 0. Hence
Xn,i−

∑n
l=n0+1 Pl−1,i

n

a.s.−−→
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0

2.4.3 Identifying the limiting proportions

It remains to identify the almost sure limit of Xn/n given in Theorem 2.4.1.

Lemma 2.4.11. Π = limn Xn/n satisfies

Π =

(
π1π2

t(Π)
,
π2π3

t(Π)
,
π1π3

t(Π)

)
(2.4)

Proof. Since Xn/n converges almost surely, the vector Pn, which is scale invariant

and depends continuously on Xn also converges almost surely. From Lemma 2.4.10

we see that Π = limn
Xn

n
= lim

∑n−1
n0

Pl

n
= limn

Pn
n

=
(
π1π2
t(Π)

, π2π3
t(Π)

, π1π3
t(Π)

)
.

Proof of Theorem 2.4.1. The only possible solution of this system of equations

(2.4) is given by Π = (π1, π2, π3) = (1
3
, 1

3
, 1

3
). By using Theorem 2.4.3 and Lemma

2.4.11, we can conclude that in a rock-paper-scissors game, the proportions of each

type of object converges almost surely to (1
3
, 1

3
, 1

3
).

2.4.3.1 A central limit theorem for the limiting proportions

The central limit theorem for the limiting proportions follows from the martingale

central limit theorem in Billingsley (2008).
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Theorem 2.4.12 (A central limit theorem for rock-paper-scissors urn process).

For any i 6= j with i, j ∈ {1, 2, 3} we have

√
n

((
Xn,i

n
,
Xn,j

n

)T
−
(

1

3
,
1

3

)T)
d−→ N2(0,Σ) (2.5)

where N2(0,Σ) denotes a 2-dimensional Gaussian random vector with mean zero

and covariance matrix Σ =

 2
9
−1

9

−1
9

2
9

 .
Proof. For i ∈ {1, 2, 3}, let Λi = {ω :

∑
l≥n0

Pl,i(1 − Pl,i) = ∞}. Since the Pn,i’s

converge almost surely to 1/3 from Lemma 2.4.11, P (∩3
i=1Λi) = 1. The martingale

difference sequence Mn−Mn−1 = δn−Pn−1, has uniformly bounded components.

Now note that

(δn,1, δn,2, δn,3|Fn−1) ∼ Multinomial(1, Pn,1, Pn,2, Pn,3) (2.6)

with the marginal distributions given by

(δn,i|Fn−1) ∼ Binomial(1, Pn,i) for all i ∈ {1, 2, 3} (2.7)

and

Cov (δn,i, δn,j|Fn−1) = −Pn,iPn,j for any i 6= j

Var(δn,i|Fn−1) = Pn,i(1− Pn,i) for all i.
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(a) stepsize=1000, initial counts=
(1, 1, 1)

(b) stepsize=100000, initial counts=
(1, 1, 1)

Figure 2.1: Convergence of a standard rock-paper-scissors urn

Clearly conditional on Fn−1, Pn−1,i’s are constants, therefore

Cov (Mn,i −Mn−1,i,Mn,j −Mn−1,j|Fn−1) = −Pn,iPn,j

Var(Mn,i −Mn−1,i|Fn−1) = Pn,i(1− Pn,i) for all i

Since as n → ∞ we have Pn,i
a.s.−−→ 1

3
for all i, therefore the result follows from

Billingsley (2008).

2.5 Simulation studies

Figure 2.1 represents the evolution of a standard rock-paper-scissors urn over time.

Object types are denoted by different colors. As shown previously, all three object

types in this game are exchangeable. Thus we have not attached labels to trajec-

tories of object proportions. The figure on the left includes 1000 steps and the

figure on the right includes 10000 steps. The convergence of long term proportions

to (1
3
, 1

3
, 1

3
) is evident from both of the diagrams.
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(a) stepsize=100000, initial counts=
(1, 10, 10)

(b) stepsize=100000, initial counts=
(1, 10, 100)

Figure 2.2: Proportions over time for different starting counts

Figure 2.2 shows the proportions of objects over time for different initial counts.

Here we have considered two cases. For the first case, initial counts of two object

types are the same and the other one is different. For the second case, the initial

counts of all three objects are very different. As we can see, the long term pro-

portions are independent of the initial counts. However, the speed of convergence

seems to depend on the initial composition of the urn. The more similar initial

counts are, the faster is the convergence to limiting proportions.

2.6 A four player extension

2.6.1 Introduction

Consider stochastic urn containing four distinct object types with cyclic and non-

transitive game structure. In this case, the underlying game is not unique. Also,

the limiting properties of the games are quite different. For example unlike the

standard urn process involving three object types, simulation suggests that in this
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case one of the object types eventually dies out as time goes off to infinity.

For a game involving 4 object types, denote the 4 different types of objects by

A,B,C,D. Unlike the rock-paper-scissors game, this game won’t be unique be-

cause, for 4 types of objects, there are total
(

4
2

)
= 6 possible pairwise comparisons.

If the cyclic structure of the game is kept fixed, i.e. A > B > C > D > A then

depending on whether (B ≶ D) and (A ≶ C), we shall end up having 2.2 = 4

possible distinct games. We look at the limiting behavior of each such game. The

object type that eventually dies out appears to be determined by the structure of

the game.

2.6.2 Identifying the limiting Proportions

If the proportions of individual object types converge then depending on the struc-

ture of the game their limit can be identified using the following lemmas.

Lemma 2.6.1. If A > B > C > D > A;A > C;B > D and Xn

n
converges almost

surely then C eventually dies out.

Proof. Suppose Xn

n

a.s.−−→ Π. In that case Pn
a.s.−−→ Π as well. Then

πA =
πAπB + πAπC

t(Π)
; πB =

πCπB + πBπD
t(Π)

πC =
πDπC
t(Π)

; πD =
πAπD
t(Π)
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where t(Π) = πAπB + πAπC + πAπD + πBπC + πBπD + πCπD.

πA =
πAπB + πAπC

t(Π)
=⇒ t(Π) = πB + πC

πB =
πCπB + πBπD

t(Π)
=⇒ t(Π) = πD + πC

πC =
πDπC
t(Π)

=⇒ t(Π) = πD

πD =
πAπD
t(Π)

=⇒ t(Π) = πA

Therefore πB = πD = πA = t(Π);πC = 0. Hence in this case the limiting propor-

tions will be given by (1
3
, 1

3
, 0, 1

3
).

Lemma 2.6.2. If A > B > C > D > A;A < C;B < D, then A eventually dies

out.

Lemma 2.6.3. If A > B > C > D > A;A > C;B < D, then B eventually dies

out.

Lemma 2.6.4. If A > B > C > D > A;A < C;B > D, then D eventually dies

out.

Remark 1. The proofs of the Lemma 2.6.2, 2.6.3, 2.6.4 will be similar to that of

Lemma 2.6.1.

2.6.3 Simulation studies

Now we shall illustrate some of the interesting features of the cyclic urn processes

involving four object types.
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(a) stepsize=1000, initial counts=
(1, 1, 1, 1)

(b) stepsize=100000, initial counts=
(1, 10, 20, 30)

Figure 2.3: Proportions over time for different step sizes

Figure 2.3 shows the proportions of distinct object types over time for different

starting counts. Note that proportion of one of the object types converges to zero

and the rest converge to (1
3
, 1

3
, 1

3
). The set up of Lemma 2.6.1 was considered to

simulate the observations. Note that just as standard rock paper scissors game,

in this case too the long term proportions are independent of the limiting counts.

However, the speed of convergence seems to depend on the initial composition of

the urn.

2.7 A generalization to the k-player case

2.7.1 Set up and notation

In this section we shall consider a generalization of the rock-paper-scissors urn

scheme to an urn, involving k distinct types of objects. The cyclic structure of

the game is maintained by assuming the following order of power. object1 >

object2 > object3 > . . . objectk > object1. For the remaining
((
k
2

)
− k
)

pairwise
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comparisons, there are 2 choices for the order of power between each pair. Hence

altogether 2(k2)−k = 2
k(k−3)

2 possible games are there. In this section we shall

illustrate how the limiting behavior of the game changes depending on structure

of the game. Let Ii denote the set of all object types that are less powerful than

object i. Clearly if j ∈ Ii, then i /∈ Ij. For n ≥ 1 and i = 1, 2, . . . , k, the probability

of choosing the i-th object type at n-th step is given by Pn,i =
Xn,i

∑
j∈Ii

Xn,j

t(Xn)
where

t(Xn) =
∑

1≤i<j≤kXn,iXn,j =
∑k

i=1Xn,i

∑
j∈Ii Xj.

2.7.2 Identifying the limiting proportions

If for i ∈ {1, 2, 3, . . . , k}, Pn,i converges to Πi almost surely we must have πi =

πiSi(Π)
t(Π)

where Si(Π) =
∑

j∈Ii πi,j. This implies t(Π) = Si(Π) for all i The limiting

proportions can be identified by solving this system of linear equations. We pro-

pose the following algorithm 2.7.1 to calculate the limiting proportions if all the

orderings in pairwise comparisons are known. The solution to this linear equation

gives the limiting proportions of each object type.

Remark 2. Unlike the games involving 3 or 4 objects types, it appears that the

game with k(k ≥ 5) types of objects can result in totally different limiting propor-

tions depending on the pairwise orderings between the distinct object types. We

shall illustrate such differences through the simulation studies.
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(a) Same limiting proportions (b) Different limiting proportion

Figure 2.4: Game involving 5 object types, with same initial counts

(a) Same limiting proportions (b) Different limiting proportion

Figure 2.5: Game involving 5 object types, with different initial counts

2.7.3 Simulation study

Figure 2.4 shows the convergence of proportions of individual object types in case

of a cyclic game involving five distinct object types. Two different game structures,

each involving five object types were considered. Let’s denote the individual object

types by A,B,C,D,E. The figure on the left corresponds to the game, with an

order of powers given as follows: A > B > C > D > E,E > A,A < C,A >

D,B < D,B > E,C < E. Note that in this case, the proportions converge to
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Algorithm 2.7.1 Algorithm to identify limiting proportions

Input: A square matrix B containing k rows, with the (i, j)-th entry given by

Bi,j = 1 if object i > object j

= 0 if object j > object i

for i=1,2,. . . , k-1 do
for j=1,2,. . . ,k do

Ci,j = B(i, j)−B(i+ 1, j)
end for

end for
for j=1,2,. . . ,k do

Ck,j = 1
end for
Define a vector b of length k as: b = (0, 0, . . . , 0, 1)T

Solve for x in Cx = b

(0.2, 0.2, 0.2, 0.2, 0.2). The figure on the right-hand side corresponds to the game

given by A > B > C > D > E,E > A,A > C,A < D,B < D,B > E,C > E. In

this case the proportions of individual object types converge to (1
3
, 0, 1

3
, 1

3
, 0). Note

that a slight change in pairwise ordering results in completely different system

dynamics. For both these games, we have considered the initial counts to be

(1, 1, 1, 1, 1), i.e. at the beginning counts of every object type are equal. In both

cases, the number of steps shown in the plot is 100000.

Figure 2.5 shows the convergence of the same two games as shown in Figure

2.4. However, in this case, instead of considering the same initial counts of all five

object types, the initial counts were chosen to be (1, 10, 1, 10, 1). Note that the

difference in initial counts results in a slower speed of convergence.
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(a) Stepsizes are Poi(10) random
variables

(b) Stepsizes are Poi(100) random
variables

Figure 2.6: Rock-paper-scissors game with Poisson step sizes

2.8 Urn processes with random step sizes

In this section a natural extension of the standard rock-paper-scissors game will

be considered, where the amount of increment at each step is not fixed, i.e. the

step sizes are random. We assume the random increment at step n is a Poisson(λ)

random variable. Surprisingly enough, the limiting behavior of this game seems to

have similar limiting properties as the standard rock-paper-scissors game.

2.8.1 Simulation results

In this section, we shall consider a wide variety of games, where the step-sizes are

random, specifically these step sizes are random realizations from a Poisson distri-

bution with a fixed mean. We shall begin with the rock-paper-scissors game with

random step-sizes, and then we shall go into its extension to cyclic games involv-

ing more than three objects. Clearly the random step-sizes mimic the population

dynamics of real-life data more closely.

Figure 2.6 shows the plots of proportions over time for each object type in
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(a) Stepsizes are Poi(10) random
variables

(b) Stepsizes are Poi(100) random
variables

Figure 2.7: 4 player cyclic game with Poisson step sizes

a rock-paper-scissors game with random step sizes. Here the step sizes were as-

sumed to be Poisson random variables. The figure on left corresponds to Poisson

increments with a mean 10. Whereas the figure on right corresponds to the Pois-

son increments with mean 100. In both cases, the initial counts are chosen to be

(1, 1, 1), and a total of 10000 steps were observed.

Figure 2.7 shows the plots of proportions over time for a cyclic game involving

four object types. Let’s denote the object types by A,B,C,D. Thus the game

considered here is specified as follows: A > B > C > D > A,A > C,B < D. Here

the plots correspond to Poisson increments with mean 10 and 100 respectively.

For both these cases, the initial counts were considered to be (1, 1, 1, 1), and 10000

steps were observed. Note that the convergence is much faster when the step-sizes

correspond to Poisson random variables with smaller mean. Note that in this case

too the limiting proportions are the same as in case of deterministic step-sizes, i.e.

when the increment at each step is fixed.

Figure 2.8 shows the plots of proportions over time in case of a cyclic game

involving five object types and random step sizes. Here the simulations correspond
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(a) Stepsizes are Poi(100) random
variables

(b) Stepsizes are Poi(100) random
variables

Figure 2.8: 5 player cyclic game with Poisson step sizes

to the Poisson random variables with means 10 (left) and 100 (right) respectively.

For both cases the initial counts were considered to be (1, 1, 1, 1, 1) and the number

of steps= 100000. In this case too lower value of the Poisson parameter results in

faster convergence of the proportions.

2.9 Conclusion

This chapter reviews some generalized stochastic versions of competitive games

with underlying cyclic and non-transitive structures with the simplest example be-

ing the rock-paper-scissors urn model. Competition in these games is completely

determined by pairwise orderings of distinct object types. Thus they can be char-

acterized by a complete, directed graph, where the nodes correspond to distinct

object types and the direction of edges indicate which of the connecting objects

is more powerful. The extensions considered can be categorized as (1) extensions

to cyclic games involving more than 3 distinct object types, and (2) extensions to

games with random step sizes.
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We have explicitly derived theoretical results for the stochastic rock-paper-

scissors urn and presented extensive simulation studies illustrating the extensions.

We have also given an algorithm that determines the long term proportions of

distinct object types for all such games conditional on the fact that proportions of

individual object types do converge. However, the theory behind convergence for

games involving more than 3 object types still remains unaddressed.

Another interesting problem would be to find the rate of convergence for such

processes. As mentioned at the beginning of the chapter, the proportions of each

object type over time can be viewed as a time-dependent Markov process. It is

known that Markov processes have exponential mixing times. Also, the simulation

results support the fact that the speed of convergence is extremely slow for this

type of urn processes and the rates are dependent on the urn composition at the

beginning. For processes with random (Poisson) step sizes, the speed of conver-

gence seems to depend on the parameter of the Poisson distribution. For scientific

processes, this will answer questions related to how long will it take for a system

to reach its steady-state.
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3 Random multiplicative cascade models

3.1 Abstract

Random multiplicative cascade models are useful in modeling physical systems that

exhibit intermittency in space and/or time. One of the key ingredients of this model

is the structure-function, which uniquely identifies the cascade generating random

variable. Thus the statistical estimation of the cascade model requires estimating

the structure-function. Statistical estimation for Multiplicative cascade models

is based on the assumption that the complete data is available at a particular

resolution. However in most real-life applications, we have incomplete data, i.e.

some of the data pointsat a particular resolution are missing. Thus we observe the

random masses at resolution b−n on a subset A of the whole space T . In the first

part of this chapter, our goal is to come up with sample quantities under this setup

that has the structure-function as their almost sure limit. We shall also derive a

central limit theorem in this context. In the later part of this chapter, we shall

apply the multiplicative cascade model to analyze the stock volume data of Tesla.

3.2 Introduction

Random multiplicative cascades are used to model physical systems for which the

total amount of a certain object iteratively splits from a coarser to finer scale ac-
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cording to a set of rules. The limit of such processes results in a multiplicative

cascade measure, which is the mathematical foundation for modeling highly inter-

mittent behavior of naturally occurring physical phenomena. Processes involving

such a splitting mechanism are non-linear in nature. Random multiplicative cas-

cades are a special class of multiplicative models, that can incorporate this non-

linearity of the data, which is otherwise difficult to handle. The self-symmetry or

multifractal structure is inherent in this type of model.

The idea of Random Multiplicative cascades dates back to Kolmogorov in his

seminal works (Kolmogorov (1941), Kolmogorov (1962)) on hypothesizing the local

structure of turbulence and energy dissipation from larger to smaller scales in a

highly turbulent fluid flow. Validation and further sophistication of Kolmogorov’s

hypotheses can be found in Mandelbrot (1974). Rigorous mathematical develop-

ments of Multiplicative cascade models are due to Kahane and Peyriere (1976),

JOFFE et al. (1973) Frisch and Kolmogorov (1995).

There are a wide variety of scientific fields in which the data displays an in-

termittent property. The earliest of such fields that used Random multiplicative

cascade models is the velocity field of fully developed turbulence. In Anselmet

et al. (1984), She and Leveque (1994), She and Waymire (1995) the authors have

explored theoretical properties of multiplicative cascade in this context. Applica-

tions of cascade model in real data of turbulence can be found in Arneodo et al.

(1997), Arneodo et al. (1998). In Schmiegel et al. (2004) the authors have con-

sidered the multiplicative cascade model in the context of wind tunnel turbulent

shear flow data.
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In Gupta and Waymire (1993) the authors have built a theoretical framework

to show that spatial rainfall and river flowdata share certain theoretical proper-

ties with turbulence velocities. The results developed in this paper provides a

foundation to study spatial variability in a variety of hydrologic processes. Study

of multiplicative cascade model in context of hydrologic data can also be found

in Over and Gupta (1994), Molnar and Burlando (2005), Schertzer and Lovejoy

(1997), Jothityangkoon et al. (2000).

The class of multiplicative cascade models in which the total mass is constant

at each stage is known as the conservative cascade. Conservative cascades are

building blocks of modeling internet traffic flow and understanding the local and

global scaling behavior of such processes. Examples include Gilbert et al. (1999),

Uhlig (2003), Resnick et al. (2003),Abry et al. (2002).

Another area of application of random multiplicative cascade models is financial

time series. The stochastic volatility processes underlying financial time-series

displays multiscaling behavior. Early works in this domain includes Mandelbrot

et al. (1997), Mandelbrot (2001). There have been significant developments in this

direction in later years. Some of the notable examples are Muzy et al. (2000),

Bacry et al. (2001), Bacry et al. (2008).

The key statistical problem in the area of the random multiplicative cascade

model is related to the estimation of the cascade parameters from the data. Pa-

rameters of the cascade generating distribution are uniquely identifiable from the

structure-function of the cascade. Hence the results in this direction involve de-

riving sample quantities that can be used to estimate the structure-function of the
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cascade. The pioneering paper in this area, namely Ossiander et al. (2000) derived

sample statistics that have the structure-function as their almost sure limits. The

authors have also derived the central limit theorem in this context. In Resnick

et al. (2003) the authors have come up with wavelet-based estimates of structure-

function in case of conservative cascades, which has an inherent dependency that

makes it mathematically more challenging. In Troutman et al. (1999) the authors

have proposed estimates of Renyi exponents in the case of Random Multiplicative

Cascade models. In Leövey and Lux (2012) the authors have obtained a generalized

method of moments estimator for cascade parameters.

The contribution of this chapter in the study of multiplicative cascades is two-

fold in nature. The first part of the chapter deals with the theory of multiplicative

cascades in the context of missing data. The statistical theory of multiplicative cas-

cade models assumes that the complete data is available at a particular resolution.

However quite often in real datasets, some of the data points are missing. Thus it

is very important to have a well-developed theory for the set up when the observed

data is not complete. We have proposed sample quantities under this set up that

converges almost surely to the actual structure-function of the cascade generating

random variable. We have also derived a central limit theorem in this context. The

proposed sample statistics are motivated by the ones in Ossiander et al. (2000).

Towards the latter part of this chapter, we have used the random multiplicative

cascade model to analyze the data on the daily stock volume of Tesla. The data

analysis part can broadly be divided into the following three parts.

• The log-Normal, log-Poisson, and Beta distribution were used as cascade
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generating distribution to model the observed data.These cascade generating

distributions were compared to assess their fits to the actual data.

• Datasets with different proportions of missing values were considered. Impact

of the proportion of missing values in estimating the actual structure-function

was evaluated.

• The plot of the daily stock volume of Tesla shows that there is a point, before

and after which the data seems to have a different pattern. We have analyzed

the data before and after the change point separately to see how different

the estimated structure functions are for the two different time frames.

The organization of this chapter is as follows. We shall start by describing the

framework and notations in section 3.3, followed by the problem description in sec-

tion 3.4. Limiting results, as well as a central limit theorem in this context, will be

derived in section 3.5. A comparison of different cascade generating distributions

to fit the Tesla stock volume data will be presented in Section 3.8.The impact of

missing values on the estimation of the structure-function of the cascade will be

presented in Section 3.9. Analysis of the data before and after the changepoint

will be presented in Section 3.10.

3.3 Notation and framework

Let b ≥ 2 be a fixed and known natural number and T be the set of all infinite

sequences, with its elements in the set {0, 1, 2, . . . , b−1}, i.e T = {0, 1, 2, . . . , b−1}N,
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equipped with the metric ρ given by

ρ(t1, t2) = b−|t1∧t2| for t1, t2 ∈ T (3.1)

Here |t1 ∧ t2| = inf{i ≥ 0 : t1|i+ 1 6= t2|i+ 1} where t|n = (t1, t2, . . . , tn). Let’s

denote the Borel σ-field generated by T as B(T ). For n ≥ 1 and t ∈ T , denote

t = (t1, t2, . . . ). We can think of each t ∈ T as a path in a b-ary tree. In that case

vn = t|n ∈ {0, 1, , . . . , b− 1} represents the n-th stage vertex of the tree along the

path t. We write |vn| = n, i.e. |vn| is the level of the vertex in the b-ary tree. For

v = (v1, v2, . . . , vn) and u = (u1, u2, . . . , um) denote by v ∗ u the concatenation of v

and u given by:

(v1, v2, . . . , vn) ∗ (u1, u2, . . . , um) = (v1, v2, . . . , vn, u1, u2, . . . , um)

For t ∈ T and n ≥ 1, the closed ball around t of radius b−n is given by:

∆n(t) ≡ ∆n(t|n) = {s ∈ T : ρ(s, t) ≤ b−n} = {s ∈ T : ti = si∀i ≤ n} (3.2)

The normalized Haar measure on T is given by:

λ(∆n(t)) = b−n for all t ∈ T and n ≥ 1 (3.3)

There is a random cascade generator corresponding to each vertex of the b-ary

tree. The cascade generators are non-negative iid random variables with mean 1,
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defined on a common probability space (Ω,F , P ). Those are denoted by:

{Wv : v ∈ {0, 1, 2, . . . , b− 1}n, n ≥ 1} (3.4)

Wv corresponds to the random cascade generator corresponding to the vertex v.

In practice, common families of cascade generating distributions are log-normal,

log-Poisson and Gamma.

Define the increasing filtration {Fn : n ≥ 1} as follows:

Fn = σ(Wv : |v| ≤ n) (3.5)

i.e. Fn is the σ−field generated by all cascade generators up to the n-th stage.

{λn : n ≥ 1} is a sequence of random measures on (T,B(T )), defined as follows:

dλn
dλ

=
n∏
i=0

Wt|i for t ∈ T (3.6)

Here the cascade generator Wφ is an a.s. positive random variable which is inde-

pendent of Fn, n ≥ 1.

Lemma 3.3.1. For any bounded Borel measurable function f ,
∫
T
f(t)dλn(t) is a

L1− martingale.

This result follows because the cascade generators Wv have mean E(Wv) = 1.

Any L1 martingale converges almost surely. This asserts existence of a limiting
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random measure λ∞, with

λ∞(A) = lim
n→∞

λn(A)

where

P(λn
v−→ λ∞ as n→∞) = 1

Here ’
v−→’ denotes vague convergence of measures.

Definition 3.3.2. A sequence of measures µn converges vaguely to a measure µ if

∫
fdµn →

∫
fdµ as n→∞ for all continuous function f with bounded support

(3.7)

Now, consider the following new sequence of random variables Z∞(v) corre-

sponding to individual vertices v.

Z∞(v) = lim
N→∞

∑
u:|u|=N−n

N−n∏
i=1

Wv∗(u1,u2,...ui)b
N−n (3.8)

These can be thought of as multiplicative error terms in the context of multiplica-

tive cascades. To see that note for any N ≥ n+ 1, n = 1, 2, . . . one has:

λN(∆n(v) ∩ A) = Z
(n)
N (v).λn(∆n(v) ∩ A) (3.9)

where

Z
(n)
N (v) =

∑
u:|u|=N−n

N−n∏
i=1

Wv∗(u1,u2,...ui)b
N−n (3.10)
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Clearly for each n ≥ 1 and |v| = n, the sequence {Z(n)
N (v) : N = n+ 1, n+ 2, . . . }

is a non-negative martingale. Therefore it converges almost surely, hence Z
(n)
∞ (v)

exists a.s. and is independent of Fn. Thus we can get

λ∞(∆n(v) ∩ A) = Z∞(v|n)λn(∆n(v) ∩ A) (3.11)

Note that the limiting random measure of a set is expressed as the product of

random measure at a finite level and a multiplicative error term Z∞(v|n).

Definition 3.3.3. The structure function corresponding to a cascade generator W

is given by

χb(h) = logb E
(
W h1(W > 0)

)
− (h− 1) (3.12)

There is a one to one correspondence between the cascade generating distribu-

tion and the structure function. In Ossiander et al. (2000) the authors have shown

that under certain regularity conditions, {λ∞(∆n(v)) : v ∈ {0, 1, . . . , b− 1}n} for a

fixed n ≥ 1, uniquely determines the distribution of the cascade generator W . We

shall derive an analogous result in case of incomplete data, i.e. when observations

of λ∞(∆n(v) ∩ A) are available instead of λ∞(∆n(v)) for some A. Before going

into the problem description we shall state a theorem from Kahane and Peyriere

(1976) to establish the connection between the properties of structure function and

whether or not the cascade will eventually die out.

Theorem 3.3.4 (Kahane and Peyriere (1976)). The following statements hold.

1. E(λ∞(T )) > 0 iff χ′b(1−) < 0.
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2. E(λh∞(T )) < ∞ for 0 ≤ h ≤ 1, and if hc := sup{h ≥ 1 : χb(h) ≤ 0} > 1,

then E(λh∞(T )) <∞ for 1 ≤ h ≤ hc.

3. E(λ∞(T )) = 1 iff E(λ∞(T )) > 0.

Figure 3.1 shows the random multiplicative cascades at different levels denoted

by n, where the cascade generating distribution is log-normal with mean 1 and

variance 0.1.

3.4 Problem description

In real life usually we don’t get to observe the complete data at a resolution b−n,

given by {λ∞(∆n(v)) : v ∈ {0, 1, . . . , b − 1}n;n ≥ 1}. Almost always there are

some observations that are missing. Here we assume, that the data is observed on

a measurable proper subset A of T , i.e. we have observed {λ∞(∆n(v)∩A) : |v| = n}

where for each v : |v| = n we have ∆n(v) ∩ A 6= φ.

Our goal is to derive large sample results under this set up. We shall start

by defining sample quantities in this context that will have the actual structure

function of the cascade generating distribution as their almost sure limit. Then

we shall derive a central limit theorem. Here we shall assume χ′b(1−) < 0, so

that λ∞(T ) > 0. Then we shall consider a A ⊂ T such that λ∞(A) > 0 and

E(λ∞(A)) <∞. We shall also need the following convergence result:

λn(A)→ λ∞(A) P -a.s. (3.13)
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(a) log-Normal cascade at level 2

(b) log-Normal cascade at level 3

(c) log-Normal cascade at level 4

(d) log-Normal cascade at level 5

Figure 3.1: log-Normal cascades at different levels
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where λ∞ is the almost sure vague limit of λn and

λn(∆n(v)) =
n∏
i=1

Wv|i

b
(3.14)

3.5 h-cascades and its properties

The h-cascades Wv(h) are obtained by doing a size bias transformation of the

original cascade generating random variables. For any v, h-cascades are defined as

follows:

Wv(h) =
W h
v

E(W h
v )

for h ∈ R (3.15)

Clearly these are also non-negative random variables with mean 1. Hence these

can also be treated as cascade generating random variables. For n = 1, 2, . . . the

measure corresponding to the n-th h-cascades given by λn(h; .), are defined as

follows.

dλn(h; .)

dλ
(t) =

n∏
i=0

Wt|i(h) for t ∈ T (3.16)

Lemma 3.5.1. For a suitable A ∈ B(T )

λhn(∆n(v) ∩ A)

bnχb(h)Cn(v, h;A)
= λn(h; ∆n(v) ∩ A) (3.17)

where Cn(v, h;A) = (bnλ(∆n(v) ∩ A))h−1 is deterministic.
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Proof.

λhn(∆n(v) ∩ A) =
n∏
i=1

W h
v|iλ

h(∆n(v) ∩ A)

=

[
n∏
i=1

W h
v|i

E(W h)

]
λ(∆n(v) ∩ A)(E(W h))nλh−1(∆n(v) ∩ A)

=

[
n∏
i=1

W h
v|i

E(W h)

]
λ(∆n(v) ∩ A)bn[logb E(Wh)−(h−1)]

(
λh−1(∆n(v) ∩ A)

(1/bn)h−1

)
= λn(h; ∆n(v) ∩ A)bnχb(h)Cn(v, h;A)

Define the n-th scale sample moment corresponding to the observed data as

follows:

Mn(h;A) =
∑
v:|v|=n

λh∞(∆n(v) ∩ A)

Cn(v, h;A)
(3.18)

Correspondingly define

τ̂n(h;A) =
1

n
logbMn(h;A) (3.19)

τ̃n(h;A) = logb
Mn+1(h;A)

Mn(h;A)
(3.20)

The above definitions require Cn(v, h;A) to be non-zero for all v such that

|v| = n. We shall show that these sample quantities converge to some functionals

of the actual structure-function of the cascade generating distribution. Moreover if

the moment generating function of {logWv} is uniquely defined at the origin, then
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the collection {λ∞(∆n(v)) : n ≥ 1} uniquely determines the cascade generating

distribution, i.e. the distribution of Wv’s. Also, the central limit theorem for a

suitably normalized version of these estimators is presented towards the end.

Lemma 3.5.2.

Mn(h;A)

bnχb(h)
=
∑
v:|v|=n

Zh
∞(v)λn(h; ∆n(v) ∩ A) (3.21)

Proof. First note that for any N ≥ n+ 1, n = 1, 2, . . . one has:

λ∞(∆n(v) ∩ A) = Z∞(v|n)λn(∆n(v) ∩ A) (3.22)

Hence by the previous lemma:

λh∞(∆n(v) ∩ A)

Cn(v, h;A)bnχb(h)

d
= Zh

∞(v|n)
λhn(∆n(v) ∩ A)

Cn(v, h;A)bnχb(h)

= Zh
∞(v|n)λn(h; ∆n(v) ∩ A)

Mn(h;A)

bnχb(h)
=

∑
v:|v|=n

Zh
∞(v|n)λn(h; ∆n(v) ∩ A)

Remark 3. Note that bnλ(∆n(v)∩A) represents the ratio of the Lebesgue measure

of ∆n(v)∩A to that of ∆n(v). Thus whenever λ(∆n(v)∩A) is small, more weight

is given on the observed total mass that corresponds to the set ∆n(v). Thus this

constant acts as a normalizing constant. Also note that we can think of this ratio
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as

bnλ(∆n(v) ∩ A) =

∫
∆n(v)

dλA
dλ

dλ

where λA(C) = λ(A ∩ C). In this sense Mn(h;A) is a weighted mean, where the

weights depend on the set A and the value of h.

The following result about structure-function from Ossiander et al. (2000) will

be used to derive the asymptotic results in the next sections.

χb,h(r) = χb(hr)− rχb(h) (3.23)

where χb,h(.) is the structure function of the h-cascade.

3.6 Strong Law of large number

In this section, we shall prove the consistency of the point estimate of structure-

function under the missing data set up. We shall show that the proposed estimate

converges almost surely to the structure-function of the cascade generating distri-

bution. Before going into the theorem, first recall proposition 2.2 from Ossiander

et al. (2000).

Proposition 3.6.1. Assume that χ′b(1−) < 0 and let

H+
c = sup{h ≥ 1 : hχ′b(h)− χb(h) < 0}

H−c = inf{h ≤ 0 : hχ′b(h)− χb(h) < 0}
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Then H−c ≤ 0 < 1 ≤ H+
c , with hχ′b(h)−χb(h) < 0 for all H−c < h < H+

c . Further-

more for h ∈ [0, 1]∪ (H−c , H
+
c ), λn(h;T )→ λ∞(h;T ) P -a.s., where E(λ∞(h;T )) =

1.

Remark 4. To see that the condition χ′b(1−) < 0 is natural, first note that

−χ′b(1−) is the Hausdorff dimension of the subset of T that supports λ∞. See

Waymire and Williams (1995) for reference. Also for a fractal structure, the Haus-

dorff dimension exceeds the topological dimension, which is 0 in this case. Hence

we must have χ′b(1−) < 0.

Theorem 3.6.2. For h ∈ [0, 1] ∪ (H−c , H
+
c ),

Mn(h;A)

bnχb(h)
→ λ∞(h;A)E(Zh

∞(v)) (3.24)

P -a.s. as n→∞ uniformly for A that satisfies the desired conditions.

Proof. For any fixed h ∈ (H−c , H
+
c ), we can write :

Mn(h;A)

bnχb(h)
=
∑
v:|v|=n

Zh
∞(v)λn(h; ∆n(v) ∩ A) (3.25)

Choose ε > 0 small enough so that we have both χb,h(1 + ε) < 0 and h(1 + ε) ∈

(H−c , H
+
c ). Set α = bχb,h(1+ε). Note α < 1. Fix n > 1, and for |v| = n, let

Z̃(v) = Z∞(v)1(Zh
∞(v)λn(h; ∆n(v)) < αn/2(1+ε)) (3.26)

Now we shall use this Z̃ and a conditional centering to decompose Mn(h;A).
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Write

Mn(h;A)

bnχb(h)
− E(Zh

∞(v)).λn(h;A) =
∑
v:|v|=n

(Zh
∞(v)− Z̃h(v))λn(h;A ∩∆n(v))

+
∑
v:|v|=n

(Z̃h(v)− E(Z̃h(v)|Fn)λn(h;A ∩∆n(v))

−

E(Zh
∞(v))λn(h;A)−

∑
v:|v|=n

E[Z̃h(v)|Fn]λn(h;A ∩∆n(v))


(3.27)

We shall show that each of the term on the right hand side converges to 0 P -a.s.

as n→∞. That will imply

Mn(h;A)

bnχb(h)
− E(Zh

∞(v)).λn(h;A)→ 0

Hence the asserted result will follow, because:

λn(h;A)→ λ∞(h;A) P -a.s. (3.28)

Let An =
⋃

v:|v|=n
[Z∞(v) 6= Z̃(v)] Using union-sum inequality and Markov’s inequal-
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ity yields the following:

P (An) ≤
∑
v:|v|=n

P(Z∞(v) 6= Z̃(v))

= bnP(Zh
∞(v)λn(h; ∆n(v)) > αn/2(1+ε))

≤ bnE
[
Zh(1+ε)
∞ (v)λ1+ε

n (h; ∆n(v))α−
n
2

]
= bnE(Zh(1+ε)

∞ (v))E(λ1+ε
n (h; ∆n(v)))α−

n
2

= bnE(Zh(1+ε)
∞ (v))α−

n
2

[
n∏
i=1

W h
v|i

E(W h)

]1+ε

λ1+ε(∆n(v) ∩ A)

= bnE(Zh(1+ε)
∞ (v))α−

n
2 bn(χb,h(1+ε)−1)

(
λ(∆n(v) ∩ A).b−n

)1+ε

= α
n
2E(Zh(1+ε)

∞ (v))
(
λ(∆n(v) ∩ A)b−n

)1+ε

≤ αn/2E(Zh(1+ε)
∞ (v))

The following result was used to derive the above equalities:

bn(χb,h(1+ε)) = bn[logb E(Wh(1+ε))−(h(1+ε)−1)−(1+ε) logb E(Wh)+(1+ε)(h−1)]

=

[
E(W h(1+ε))

(E(W h))1+ε

]n
b−nε

By our assumption E(λ
h(1+ε)
∞ (A)) <∞ and we have α < 1, therefore

∑
n P(An) <

∞. Therefore by Borel-Cantelli lemma P(An i.o.) = 0. Thus as n → ∞, one has

P -a.s.
∑

v:|v|=n(Zh
∞(v)− Z̃h(v))λn(h;A ∩∆n(v))→ 0.
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Now let’s consider the third term in equation (3.27). It can be written as:

EZh
∞(v)λn(h;A) −

∑
v:|v|=n

E[Z̃h(v)|Fn]λn(h;A ∩∆n(v)) =
∑
v:|v|=n

[
E(Zh

∞(v)− E(Z̃h(v)|Fn))
]

E(λn(h; ∆n(v) ∩ A))

=
∑
v:|v|=n

E
[
Zh
∞(v)1{Zh

∞(v)λn(h;A ∩∆n(v)) > αn/2(1+ε)}|Fn
]

E(λn(h; ∆n(v) ∩ A))

≤
∑
v:|v|=n

E
[
Zh(1+ε)
∞ (v)λ1+ε

n (h; ∆n(v))
]
α−

nε
2(1+ε)

= E
(
Zh(1+ε)
∞ (v)

)
α−

nε
2(1+ε)

∑
v:|v|=n

λ1+ε
n (h; ∆n(v))

= E
(
Zh(1+ε)
∞ (v)

)
α
n(2+ε)
2(1+ε)∑

v:|v|=n

λn(h(1 + ε); ∆n(v))(λ(∆n(v))bn)ε

≤ E
(
Zh(1+ε)
∞ (v)

)
α
n(2+ε)
2(1+ε)∑

v:|v|=n

λn(h(1 + ε); ∆n(v))

= E(Zh(1+ε)
∞ (v))α

n(2+ε)
2(1+ε) λn(h(1 + ε), T )

Since E(Z
h(1+ε)
∞ (v)) < ∞ and λn(h(1 + ε), T ) → λ∞(h(1 + ε), T ) P -a.s. and

α < 1, therefore this sum converges to 0, P -a.s. as n→∞.

Finally we shall consider the middle term, given by

Sn(A) =
∑
v:|v|=n

(Z̃h(v)− E(Z̃h(v)|Fn))λn(h;A ∩∆n(v))
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Note that for any u 6= v with |v| = |u| = n, Z̃(u) and Z̃(v) are conditionally

independent and thus conditionally uncorrelated given Fn. Therefore

Var(Sn(A)) = E
[
E(Sn(A)2|Fn)

]
≤ E

∑
v:|v|=n

[
(Z̃h(v)− E(Z̃h(v)|Fn))2|Fn

]
λ2
n(h;A ∩∆n(v))

≤ E
∑
v:|v|=n

E(Z̃2h(v)λ2
n(h;A ∩∆n(v))|Fn)

≤ αn/2(1+ε)
∑
v:|v|=n

E(Z̃h(v)λn(h;A ∩∆n(v)))

≤ αn/2(1+ε)E(λh∞(T ))

Since α < 1 and E(λh∞(T )) <∞, therefore it follows
∑

n Var(Sn(A)) <∞ and

hence Sn → 0, P -a.s. as n→∞.

Corollary 3.6.3. On the set [λ∞(A) > 0], one has P -a.s. that

{τ̃n(h) : h ∈ [0, 1] ∪ (H−c , H
+
c )} → {χb(h) : h ∈ [0, 1] ∪ (H−c , H

+
c )} (3.29)

Proof. On the set [λ∞(A) > 0],

bτ̃n(h;A) =
Mn+1(h;A)

Mn(h;A)
= bχb(h)Mn+1(h;A)

b(n+1)χb(h)

(
Mn(h;A)

bnχb(h)

)−1

→ bχb(h) (3.30)

P -a.s. for h ∈ [0, 1] ∪ (H−c , H
+
c ).
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3.7 Pointwise Central limit theorem

For every n ≥ 1, let {Xn(v) : |v| = n} be a collection of independent random

variables which are also independent of Fn. Define

Sn(h;A) =
∑
v:|v|=n

Xn(v)λn(h; ∆n(v) ∩ A) (3.31)

and

Rn(h;A) =
Sn(h;A)(∑

v:|v|=n λ
2
n(h; ∆n(v) ∩ A)

)1/2
(3.32)

We assume Rn(h;A) = 0 when λn(A) = 0.

Theorem 3.7.1. If E(X2
n(v)) = 1 and E(Xn(v)) = 0 for each v with |v| = n, and

there exists δ > 0 such that

sup
n

sup
|v|=n

E|Xn(v)|2(1+δ) <∞

then for h ∈ (H−c /2, H
+
c /2) we have:

lim
n→∞

E
[
eizRn(h;A)|Fn

]
= 1[λ∞(A) = 0] + 1[λ∞(A) > 0]e−(1/2)z2 (3.33)

Proof. Fix h ∈ (H−c /2, H
+
c /2) and choose sufficiently small δ such that h(1 + δ) ∈

(H−c /2, H
+
c /2), supn sup|v|=n E|Xn(v)|2(1+δ) < ∞ and χ′b,2h(1 + δ) < 0. The last
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condition together with the convexity of χb,2h implies

χb(2h(1 + δ))− (1 + δ)χb(2h) < 0

For |v| = n, let

Yn(v;A) =
Xn(v)λn(h; ∆n(v) ∩ A)(∑
u:|u|=n λ

2
n(h; ∆n(v) ∩ A)

)1/2
(3.34)

Take Yn(v;A) = 0 when λn(A) = 0. Given Fn, Yn(v)’s are all conditionally

independent mean zero random variables. Therefore

E

 ∑
v:|v|=n

Yn(v;A)

2

|Fn

 =
∑
v:|v|=n

E(Y 2
n (v;A)|Fn) = 1(λn(A) > 0) (3.35)

Clearly

Bn := [λn(A) > 0] ↓ [λ∞(A) > 0] := B a.s. P. (3.36)

We shall show that Lindeberg’s condition holds conditionally on Fn. The following

relation is useful for the subsequent part of the proof:
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∑
v:|v|=n

λrn(h; ∆n(v) ∩ A) =
∑
v:|v|=n

λhrn (∆n(v) ∩ A)

bnrχb(h)Cr
n(v, h;A)

=
∑
v:|v|=n

λhrn (∆n(v) ∩ A)E−nr(W h)b−nr(h−1)C−rn (v, h;A)

=
∑
v:|v|=n

λn(hr; ∆n(v) ∩ A)bnχb(hr)Cn(v, hr;A)E−nr(W h)b−nr(h−1)

C−rn (v, h;A)

= bnχb,h(r)
∑
v:|v|=n

λn(hr; ∆n(v) ∩ A)C−rn (v, h;A)Cn(v, hr;A)

= bnχb,h(r)
∑
v:|v|=n

λn(hr; ∆n(v) ∩ A)(bnλ(∆n(v) ∩ A))hr−1−r(h−1)

= bnχb,h(r)
∑
v:|v|=n

λn(hr; ∆n(v) ∩ A)(bnλ(∆n(v) ∩ A))r−1

Now

E

 ∑
v:|v|=n

Y 2
n (v)1[|Yn(v)| > ε]|Fn

 ≤
∑
v:|v|=n

E
[
Y 2
n (v)1(|Yn(v)| > ε)|Fn

]
1[B] + 1[Bn −B]

≤ ε−2δ
∑
v:|v|=n

E
[
|Yn(v)|2(1+δ)|Fn

]
1[B] + 1[Bn −B]

≤ ε−2δ sup
|v|=n

E|Xn(v)|2(1+δ)

∑
v:|v|=n λ

2(1+δ)
n (h; ∆n(v) ∩ A)(∑

v:|v|=n λ
2
n(h; ∆n(v) ∩ A)

)1+δ
1[B] + 1[Bn −B]

≤ Cnε
−2δbn(χb(2h(a+δ)−(1+δ)χb(2h))∑
v:|v|=n λn(2h(1 + δ); ∆n(v) ∩ A)(bnλ(∆n(v) ∩ A))2(1+δ)−1

(
∑

v:|v|=n λn(2h; ∆n(v) ∩ A)(bnλ(∆n(v) ∩ A)))1+δ

1[B] + 1[Bn −B]
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Note that a sufficient condition to have (
∑

v:|v|=n λn(2h; ∆n(v)∩A)(bnλ(∆n(v)∩

A)) > 0 is given by λn(2h;A) > 0. Both
∑

v:|v|=n λn(2h; ∆n(v)∩A)→
∑

v:|v|=n λ∞(2h; ∆n(v)∩

A) and λn(2h;A) > 0 P -a.s. on the set B. By equation (3.36) and (χb(2h(a+ δ)−

(1 + δ)χb(2h)) < 0, therefore the right hand side of the above equation converges

to 0 P -a.s. as n→∞. Thus

lim
n

E

 ∑
v:|v|=n

Y 2
n (v)1[|Yn(v)| > ε]|Fn

 = 0

The rest of the proof is same as the usual proof of Lindeberg’s central limit theorem

as can be found in page 369 of Billingsley (1986).

Corollary 3.7.2. For h ∈ (H
−
c

2
, H

+
c

2
),

lim
n

E(eizRn(h;A)) = P(λ∞(A) = 0) + e−(1/2)z2P(λ∞(A) > 0) (3.37)

The proof of this corollary follows by simply applying the dominated conver-

gence theorem to the above result.

Corollary 3.7.3. For h ∈ (H
−
c

2
, H

+
c

2
),

Rn(h;A)
d−→ ηNh (3.38)

where Nh has a standard normal distribution and η has the same distribution as

1[λ∞(A) > 0].
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Proof. First note that E(eizηNh) = P(λ∞(A) = 0) + e−(1/2)z2P(λ∞(A) > 0). The

rest follows from the continuity theorem for characteristic functions.

Corollary 3.7.4. For h ∈ (H
−
c

2
, H

+
c

2
),

Mn(h;A)/bnχb(h) − E(λh∞(T ))λn(h;A)

[Var(λh∞(T ))]1/2
[∑

v:|v|=n λ
2
n(h; ∆n(v) ∩ A)

]1/2

d−→ ηNh (3.39)

where η and Nh are as mentioned before.

Proof. In theorem 3.7.1, put Xn(v) = (Zh
∞(v) − Eλh∞(T ))(Varλh∞(T ))−1/2 in the

expression of Rn(h;A) to get the desired result.

Corollary 3.7.5. For h ∈ (H
−
c

2
, H

+
c

2
),

Mn(h;A)/bnχb(h) − EZh
∞(v).λn(h;A)

(VarZh
∞(v))1/2

(∑
v:|v|=n λ

2
n(h; ∆n(v) ∩ A)

)1/2

d−→ ηNh (3.40)

Proof. PutXn(v) = Zh∞(v)−E(Zh∞(v))

Var(Zh∞(v))1/2
in equation 3.32 to obtain the desired result.

Corollary 3.7.6. For h ∈ (H
−
c

2
, H

+
c

2
),

Mn(h;A)/bnχb(h) −Mn+1(h;A)/b(n+1)χb(h)(∑
v:|v|=n λ

2
n(h; ∆n(v) ∩ A)

)1/2

d−→ chηNh (3.41)

where η and Nh are independent with η
d
= 1[λ∞(A) > 0], Nh has a standard normal

distribution and c2
h = Var(Xn(v).
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Proof. The numerator can be written as:
∑

v:|v|=nXn(v)λn(h; ∆n(v) ∩ A) with

Xn(v) = Zh
∞(v)−

b−1∑
i=0

W h
v∗i

bE(W h)
Zh
∞(v ∗ i) for v ∈ A

For each n, these are iid mean zero random variables that are independent of

Fn.

Now define an estimator of χb(h), given by τ̂n(h;A) = logb(Mn+1(h;A)/Mn(h;A)

We already have the asymptotic consistency of the estimator given by

logb(Mn+1(h)/Mn(h)) for h ∈ (H−c , H
+
c )

Now our aim is to develop an observable normalization for the estimator. This will

give an estimate of the variance, which is computable from the data. Define

D2
n(h;A) =

∑
v:|v|=n

(
λh∞(∆n(v) ∩ A)

Mn(h;A)C
1/2
n (v, 2h;A)

− 1

Mn+1(h;A)

b−1∑
i=0

λh∞(∆n+1(v ∗ i) ∩ A)

C
1/2
n (v, 2h;A)

)2

(3.42)

Corollary 3.7.7. For h ∈ (H−c /2, H
+
c /2),

(Mn+1(h;A)/Mn(h;A)b−χb(h)− 1)

Dn(h;A)

d−→ ηNh (3.43)
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Proof. We shall use the following equality to prove the corollary.

b−nχb,h(2) = b−nχb(2h)+2nχb(h)

= b−n{logb E(W 2h)−(2h−1)}+2n{logb E(Wh)−(h−1)}

= (E(W 2h))−nbn(2h−1)(E(W h))2nb−2n(h−1)

=
(E(W h))2n

(E(W 2h))n
b2nh−n−2nh+2n

=
(E(W h))2n

(E(W 2h))n
bn

Now note that,

∑
v:|v|=n

λ2
n(h; ∆n(v) ∩ A)b−nχb,h(2) =

∑
v:|v|=n

[
n∏
i=1

W h
v|i

E(W h)
λ(∆n(v) ∩ A)

]2
(E(W h))2n

(E(W 2h))n
bn

∑
v:|v|=n

n∏
i=1

(
W 2h
v|i

E(W 2h)

)
bnλ2(A ∩∆n(v)) =

∑
v:|v|=n

λn(2h; ∆n(v) ∩ A)(bnλ(∆n(v) ∩ A))

=
∑
v:|v|=n

λn(2h; ∆n(v) ∩ A)Cn(v, 2;A)

So,

∑
v:|v|=n

λ2
n(h; ∆n(v) ∩ A)

b−nχb,h(2)

Cn(v, 2;A)
=

∑
v:|v|=n

λn(2h; ∆n(v) ∩ A)

= λn(2h;A)→ λ∞(2h;A)
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Define,

X̃n(v;A) = Zh
∞(v)− Mn(h;A)

Mn+1(h;A)

b−1∑
i=0

b−hW h
v∗iZ∞(v ∗ i) (3.44)

Also note that by 3.5.1

√
λn(2h,∆n(v) ∩ A) =

√
λ2h
n (∆n(v) ∩ A)

bnχb(2h)Cn(v, 2h;A)

=
λhn(∆n(v) ∩ A)

bn/2χb(2h)C
1/2
n (v, 2h;A)

Let

X̃n(v;A) = Zh
∞(v)− Mn(h;A)

Mn+1(h;A)

b−1∑
i=0

b−hW h
v∗iZ

h
∞(v ∗ i) (3.45)

Now note that

M2
n(h;A)D2

n(h;A)b−nχb(2h) =
∑
v:|v|=n

X̃2
n(v)λn(2h; ∆n(v) ∩ A)→ c̃2

hλ∞(2h,A)

(3.46)

where c̃2
h = Var(X̃n(v))

To see that the above equality holds, first note that, it would be enough to

show that the square root of the individual summands are the same. To start with

firs consider the square root of the summands of the second term in the above

equation. This is given by:
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X̃n(v)
√
λn(2h; ∆n(v) ∩ A) = X̃n(v)

λhn(∆n(v) ∩ A)

bn/2χb(2h)C
1/2
n (v, 2h;A)

Zh
∞(v)λhn(∆n(v) ∩ A)

bn/2χb(2h)C
1/2
n (v, 2h;A)

− Mn(h;A)

Mn+1(h;A)

b−1∑
i=0

b−hW h
v∗iZ

h
∞(v ∗ i) λhn(∆n(v) ∩ A)

bn/2χb(2h)C
1/2
n (v, 2h;A)

=
1

bn/2χb(2h)

[
λh∞(∆n(v) ∩ A)

C
1/2
n (v, 2h;A)

− Mn(h;A)

Mn+1(h;A)

b−1∑
i=0

λh∞(∆n+1(v ∗ i) ∩ A)√
Cn(v, 2h;A)

]

Now consider the square root of the summands of the first termMn(h;A)Dn(h;A)b−n/2χb(2h),

given by :

b−n/2χb(2h)

[
λh∞(∆n(v) ∩ A)

C
1/2
n (v, 2h;A)

− Mn(h;A)

Mn+1(h;A)

b−1∑
i=0

λh∞(∆n+1(v ∗ i) ∩ A)√
Cn(v, 2h;A)

]
(3.47)

Hence the above equality holds. Note that

M2
n(h;A)D2

n(h;A)Cn(v, 2;A)

b2nχb(h)
∑

v:|v|=n λ
2
n(h; ∆n(v)

→ c̃2
h1[λ∞(A) > 0] (3.48)

Now rewrite

Mn(h;A)/bnχb(h) −Mn+1(h;A)/b(n+1)χb(h)

c̃h

(∑
v:|v|=n λ

2
n(h; ∆n(v) ∩ A)

)1/2

= − Mn(h;A)Dn(h;A)

bnχb(h)c̃h

(∑
v:|v|=n λ

2
n(h; ∆n(v) ∩ A)

)1/2

[
(Mn+1(h;A)/Mn(h;A))b−χb(h) − 1

Dn(h;A)

]

to get the desired result.
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Remark 5. The independence of the Nh’s as h varies implies that the errors in

the estimation of χb(h) by τ̃n(h) are asymptotically independent for different values

of h.

Corollary 3.7.8. For h ∈ (H−c /2, H
+
c /2),

τ̃n(h;A)− χb(h)

Dn(h;A)

d−→ ((log b)−1ηNh) (3.49)

The proof follows by taking a logarithm in the previous corollary and Taylor

approximation to the distributional limit.

Remark 6. The above corollary gives the asymptotic distribution of a completely

observable test statistic. Also note that the asymptotic distribution is completely

independent of the cascade generating distribution, which is unobservable.

3.8 Tesla Stock Volume: Data Analysis

3.8.1 Data description

The data on [Tesla stock market](https://www.kaggle.com/rpaguirre/tesla-stock-

price) was obtained from Kaggle. The data contains the daily opening, closing,

maximum, and minimum stock prices along with the stock volumes between June

29-th,2010, and March 17-th 2017. Note that not all days of the year are present in

the dataset, for example, the data on weekends or holidays are not available. The

total number of datapoints is 1692 in the dataset. We have focused on the stock
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Figure 3.2: Tesla stock volume over time

volume data only and the absolute stock volumes were converted into fractional

stock volumes so that the total amount of stock at any given time period is exactly

1.

Figure 3.2 shows the plot of the fractional stock volume of Tesla over time.

We shall consider the last 210 = 1024 datapoints of this data. We shall start by

estimating the structure-function from the data. This will requires us to calculate

Mn(h) and Mn+1(h) for n = 9. However this enables us to simulate data even for

n ≥ 9, i.e. we can simulate on a coarser as well as a finer grid. This means even

though the data is available at a daily level we can get predictions at the hourly

level for example. We shall combine every consecutive 2 points and form a coarse

grid to compute M9(h). Following is the structure-function estimated from the

observed data. The estimated structure-function is denoted by τ̃9(h).
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Figure 3.3: Tesla stock volume: Estimated structure function

Figure 3.3 shows the plot of the estimated structure-function τ̃9(h).

3.8.2 log-Normal Cascade generating distribution

First, we are attempting to find the parameters of a log-Normal distribution for

which the structure-function of the corresponding log-Normal random variable

closely matches this estimated structure-function. To begin with, we shall derive

the structure-function of a log-Normal random variable.

Suppose Z ∼ Normal(µ, σ2), with Z = logW , i.e. W is the log-Normal random
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variable corresponding to the standard normal random variable Z. Then,

E(W h) = EehZ

= E
(
eh(Z−µ)+hµ

)
= ehµ+h2σ2

2

We want the cascade generating random variable to have mean one, i.e. E(W ) = 1.

Thus we must have µ+ σ2

2
= 0, i.e. µ = −σ2

2
. Hence the structure function of the

log-Normal random variable will be given by:

χb(h) = logb(e
h2σ2

2
−hσ

2

2 )− (h− 1)

=
σ2h(h− 1)

2 ln b
− (h− 1)

= (h− 1)

(
σ2h

2 ln b
− 1

)

Let’s denote k = σ2

2 ln b
.

After trying multiple values of k, we have come to the conclusion that k = .055

corresponds to the log-Normal random variable the structure-function of which

matches the estimated one most closely on (H−c , H
+
c ). The next plot shows the

structure-function estimated from the data and the structure-function of a log-

Normal random variable with k = .055.
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Figure 3.4: Estimated and actual(log-Normal with k = .055) structure function

From Figure 3.4, we can see that these two structure functions don’t match very

well towards the ends of the critical interval given by (H−c , H
+
c ). This suggests that

log-Normal distribution is not a good choice of a cascade generating distribution

for this data.

Also as the standard practice in physics literature suggests, we have tried to

find out a k for which the structure-function of the log-Normal variable is closest

to the estimated structure-function on (0, H+
c ). k = 0.02 seems to be the best

fit in this case. Figure 3.5 shows the structure-function of a log-Normal random

variable with k = 0.02 along with the estimated structure-function.
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Figure 3.5: Estimated and actual(log-Normal with k = .02) structure function

Remark 7. Note that the main theorem suggests that we should look for the ran-

dom variable, for which the structure-function matches the estimated structure-

function on the entire critical interval. But since there are multiple instances in

the physics literature where the comparison was made only on the positive real line,

therefore I decided to consider both and try to see if there is any significant differ-

ence in these two models and/or to figure out the reason behind such discrepancies.

3.8.2.1 Observations from log-Normal cascade

Figure 3.6 shows the actual data and a single sample realization from the ran-

dom multiplicative cascade model where the parameter of the log-Normal random

variable is k = 0.05 and k = 0.02 respectively.
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Figure 3.6: Actual data and a single sample realizations from log-Normal cascade

Figure 3.7 shows the respective histograms.

Figure 3.7: Histogram of Actual data and a single sample realizations from log-
Normal cascade

At this point, we have pulled together the data from multiple (1000) realizations
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from a random multiplicative cascade model and the histogram of the combined

data for both log-Normal models are shown in Figure 3.8.

Figure 3.8: Histograms of 1000 realizations from log-Normal cascade

3.8.3 log-Poisson cascade generating distribution

Now we shall try to see if a log-Poisson cascade generating distribution gives a

better fit to the data as compared to log-Normal. First note that W follows

a log-Poisson distribution if it is distributionally identical to b2/3βY where Y ∼

Poi(2 ln b/3(1− β). The structure-function of a log-Poisson random variable is

given by

χb(h) = (2βh − (1− β)h+ 1− 3β)/3(1− β)
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We have found that β = .85 gives the closest match to the estimated structure-

function. Figure 3.9 is a plot of the structure-function estimated from the data

and the actual structure function corresponding to a log-Poisson random variable

with β = .85.

Figure 3.9: Estimated and actual log-Poisson(k = 0.85) structure function

From the visual comparison, log-Poisson seems to be a better fit to the data as

compared to log-Normal.

3.8.4 Observations from log-Poisson cascade

The plots of an actual and a single sample realization from a log-Poisson cascade

model are shown in Figure 3.10
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Figure 3.10: Actual data and a single realization from the log-Poisson cascade

Figure 3.11 shows the histograms for the actual and a single realization from

the log-Poisson cascade model.

Figure 3.11: Histogram of actual data and a single realization from the log-Poisson
cascade
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We have simulated 1000 datasets using the above-mentioned cascade generating

random variable. The histogram of the combined data is shown in Figure 3.12.

Figure 3.12: Histogram of 1000 realizations from the log-Poisson cascade

3.8.5 Beta cascade generating distribution

In this section, we shall consider the cascade generating distribution to be a Beta

random variable with parameters p and (b − 1)p, so that the mean of the beta

distribution is given by 1
b

= 0.5. In this case, b = 2, therefore the cascade gen-

erating distribution will be given by W = 2 ∗ Beta(p, p), so that the mean of the

cascade generating random variable is 1. All we need to do is to find the beta

parameter p for which the structure-function of W closely matches the estimated

structure-function. We shall start by deriving the structure-function for W .
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χb(h) = logb
(
E((2W )h)

)
− (h− 1)

= logb

(
2h

Γ(p+ h)

Γ(2p+ h)

Γ(2p)

Γ(p)

)
− (h− 1)

= h+ logb

(
Γ(p+ h)

Γ(2p+ h)

Γ(2p)

Γ(p)

)
− (h− 1)

= logb

(
Γ(p+ h)

Γ(2p+ h)

Γ(2p)

Γ(p)

)
+ 1

Now in order to find the limits of the critical interval given by (H−c , H
+
c ) we

need to solve the following equation:

hχ′b(h)− χb(h) = 0

In this case

χ′b(h) = (log2 e) ∗ (ψ(p+ h)− ψ(2p+ h)) (3.50)

where ψ(.) is the digamma function. This equation reduces to the following:

h log2 e ∗ (ψ(p+ h)− ψ(2p+ h)) = log2

(
Γ(p+ h)

Γ(2p+ h)

Γ(2p)

Γ(p)

)
+ 1 (3.51)

For a fixed value of p, we need to solve this equation to get H−c and H+
c . This

can’t be solved analytically. We have used the ‘uniroot’ function in R to solve it

numerically. Figure 3.13 shows the plot of estimated and actual structure-function

within the critical interval for different values of p.
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Figure 3.13: Estimated and actual (Beta) structure function

The histogram of 1000 simulations from both of the Beta cascades are shown

in Figure 3.14.

Figure 3.14: Histogram of multiple realizations from Beta cascades
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3.9 Impact of Missing data in estimation

Now we shall consider the case when the entire data is not observed at a particular

resolution. Rather there are missing values in the dataset. We shall try to see how

much does the proportion of missing data impact the model, i.e. the change in the

value of the parameter of the cascade distribution for different amounts of missing

values. Here we are assuming that the data is missing systematically, i.e. the

missing data pointsare a systematic sample from the original data points, namely

from 1 : 1024. Note that if the missing data pointsare not a systematic sample of

the original dataset, then we have to consider the resolution bn, where n is such

that Cn(v, h;A) > 0 for all v such that |v| = n.

To begin with, we shall assume that a certain percentage of total observations

are missing. Figure 3.15 shows the estimated structure functions for different

proportions of missing data.

Figure 3.15: Estimated structure functions for data with missing values
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3.9.1 log-Normal cascade

Figure 3.16 shows the estimated structure functions and the structure functions of

the nearest log-Normal random variables for different proportions of missing data.

Figure 3.16: log-Normal structure functions for data with missing values

Note that as the proportion of missing observations has increased, the value of

k has gone further away from the true value of k, under complete observations.

3.9.2 log-Poisson cascade

Now we shall try to figure out the value of the log-Poisson parameter β, for which

the actual and estimated structure functions are closest to each other. The value of

structure-function along with the actual log-Poisson structure functions are shown
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in Figure 3.17.

Figure 3.17: log-Poisson structure functions for data with missing values

Note that for different proportions of missing data the estimated value of the

cascade parameter, i.e. β remains more or less the same. Thus the approximation

works really well in this case.

3.9.3 Beta cascade

Now we shall consider the case when the underlying distribution is Beta. In that

case, we shall try to find the parameter of the beta distribution, for which the

structure-function is closest to the ones estimated from the data with different

percentages of missing data. Figure 3.18 show the plots of estimated structure

functions for different proportions of missing data, along with the structure func-
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tions of the beta distributions that are closest to the estimated ones.

Figure 3.18: Beta structure functions for data with missing values

The plots suggest that when the proportion of missing data increase, the esti-

mated value of p, the parameters of beta distribution becomes more different from

the one estimated in the complete data case.

3.9.4 Comparison

In this part, we shall compare the histograms of overall stock volumes in case of

complete data and in case of data with 25% missing values. Figure ?? shows the

side by side plots in all three cases, namely- log-Normal, log-Poisson and Beta.
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Figure 3.19: Histograms for data with and without missing values

Note that change between complete and incomplete data is less in the case of

log-Poisson and Beta, as compared to log-Normal. However, in all three cases, the

histograms in the case of complete and incomplete datasets are not very different.

Thus our suggested estimate of structure-function in case of missing data performs

fairly well in general.
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3.10 Distribution of stock volumes before and after the change point

As can be seen from Figure 3.2, there is a change point in the stock-volume data,

before and after which the pattern seems to have changed. Our goal is to see how

different the underlying distributions are before and after this change point. The

following plot shows the plot of the entire data, with the change point marked by

a blue vertical line.

We shall analyze 512 data points before the change point and 512 datapoints

after the change point separately. Then we shall obtain the estimates of the un-

derlying cascade generating distribution in both cases. Figure 3.20 shows the

stock volume for the 512 datapoints both before and after the change point, i.e.

2/25/2013.

Figure 3.20: Stock volume of Tesla before and after the changepoint



83

Clearly, these two series are inherently different. The series before the change-

point has no specific overall trend, whereas the series after the changepoint has a

quadratic change. Also, the mean value of the series on the left is lower compared

to the one on the right.

3.10.1 Data before changepoint

In this part of the analysis, we shall consider the data between 2/10/2011 and

2/25/2013. The data consists of 512 data points. Figure 3.21 shows the structure-

function as estimated from the data.

Figure 3.21: Estimated structure function from the data before the changepoint

The structure functions corresponding to the different cascade generating dis-

tribution along with the estimated structure function are shown in Figure 3.22
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Figure 3.22: Different distributions and structure functions for the data before the
changepoint

The log-Poisson distribution with β = 0.89 seems to be the best fit to the data.

3.10.2 Data after change-point

In this part of the analysis, we shall consider the data between 2/26/2013 and

3/9/2015. The data consists of 512 data points. Figure 3.23 shows the structure-

function as estimated from the data.
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Figure 3.23: Estimated structure function for the data after changepoint

The structure functions corresponding to the different cascade generating dis-

tribution along with the estimated structure function are shown in Figure 3.24
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Figure 3.24: Different distributions and structure functions for data after change-
point

In this case, the log-Normal with k = .0875 seems to be the best fit for the

data. Figure 3.25 shows the histograms of 1000 simulations for the data before

and after the changepoint.

Figure 3.25: Histograms corresponding to data before and after the changepoint
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Clearly these two distributions are different. Unlike most changepoint detection

methods, in this case, we can see the difference in the overall distribution and not

just the difference in mean or variance. To have an idea about how different the

underlying distributions are, we have shown the histograms corresponding to the

two cascade generating distributions in Figure 3.26.

Figure 3.26: Distributions of the cascade generating random variables before and
after the changepoint

3.10.3 A changepoint detection method

The random multiplicative cascade models can be used to build a change point

detection method. That requires a uniform central limit theorem for the estimated

structure-function. This will enable testing the equality of structure-function be-
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fore and after the changepoint. However, the following naive approach can also be

used to accomplish the goal. We can start by considering the estimated structure

functions before and after the changepoint on a fine grid. Then for each point on

the grid, we can do multiple hypothesis tests. And based on the test result we can

decide whether or not the changepoint is truly a changepoint.

To make this idea concrete, let’s consider the case, where the data before

change point are denoted as λ∞(∆n(v)) and data after change point are denoted

as λ∞(∆n(u)). Let the estimated structure functions before and after change point

are given by τ̃n,1(h) and τ̃n,2(h) respectively. In order to check if the change point

is truly a change point, we need to test

H0,h : χb,1(h) = χb,2(h) vs H1,h : χb,1(h) 6= χb,2(h) for h ∈ H

where H is a grid and χb,1(h) and χb,2(h) correspond to the true structure functions

before and after the changepoint. Note that under the null both must have the same

mean, i.e. χb(h). The null distribution of the test statistics given by Tstat(h) =

τ̃n,1(h)−τ̃n,2(h) will be normal with mean zero and variance, that can be determined

from Corollary (3.7.8). Thus for each h on a grid we can perform the test. Suppose

the p-values obtained in this way are given by α1, . . . , αn, then after doing a level

correction (for example: Boneferroni, Holm, Scheffe) we can obtain the test results,

i.e. for each value of h on the grid whether or not the test results in a rejection.

If any one of these tests result in a rejection, we shall conclude that the structure

functions before and after the chanegpoint are different.
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By Corollary (3.7.8)

τ̃n,1(h)− χb,1(h)

Dn,1(h)

d−→ (log b)−1ηNh

and

τ̃n,2(h)− χb,2(h)

Dn,2(h)

d−→ (log b)−1ηNh

Under the null,

χb,1(h) = χb,2(h)

and we assume that under null, the data before and after the change poimt are

independent. Thus the distribuion of the test statistics under the null will be given

by:

τ̃n,1(h)− τ̃n,1(h)
d−→ N

(
0, (log b)−2ηNh

[
D2
n,1(h) +D2

n,2(h)
])

Thus under standard set up the test statistics can be writen as:

Tstat(h) :=
τ̃n,1(h)− τ̃n,1(h)

(log b)−1
√
D2
n,1(h) +D2

n,2(h)

d−→ N(0, 1)

for h in the intersection of the two critical intervals Thus the test results in a z-

test.
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3.11 Discussion

The methodology that we have developed here can be used for modeling datasets

that include missing values. In this case, we have considered that the locations

of missing datapoints are a systematic sample from the original data. However,

this is not a required condition. In general the proposed method holds as long as

the normalizing constant given by Cn(v, h;A) is non-zero for every pixel ∆n(v).

In the above data analysis, we have used the Random Multiplicative Cascade

model to analyze the variable intermittency in the daily stock volume data of

Tesla. In each of the scenarios, the plot of structure-function was obtained from

the data. Then the estimated structure-function was compared to the structure

functions of candidate cascade generating distributions. The one that is closest

to the estimated one, is considered to be the actual cascade generating random

variable, that controls the data generating mechanism. Here the observed data is

considered to be a single realization from the data generating procedure. Therefore

in order to understand the underlying distribution of the data, it is important

to simulate a good number of datasets and then aggregate those. Some of the

shortcomings of this modeling approach are as follows:

• Here we are using binary cascade. Therefore the number of data points has

to be of the form 2n for n ≥ 1.

• The Random Multiplicative Cascade model facilitates the understanding of

the physical system. However, the model is not meant to be used for predic-

tion. There have been some recent developments in this direction though.
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• The choice of the actual cascade generating distribution is based on a visual

check and thus subjective. Having a clear guideline for choosing the write

distribution family will be helpful for applied scientists.
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4 A central limit theorem for a set-indexed partial sum process

4.1 Abstract

In this chapter, we shall consider a partial sum process, indexed by sets. The

indexing set is assumed to belong to a suitable collection of sets, say A. We as-

sume that the summands or increments of the process form a martingale difference

sequence with respect to a filtration. We shall study the weak limit of the set

indexed partial sum process, derive a central limit theorem in this context, and

mention an application of the process in the context of Markovian multiplicative

error models for non-negative valued time series.

4.2 Introduction

The study of empirical processes theory dates back to 1930’s when the study of

the empirical distribution function began. For a set of independent and identically

distributed real-valued random variables X1, X2, . . . Xn with distribution function

F (.), the empirical distribution function is given by

F̂n(x) :=
1

n

n∑
i=1

1(Xi ≤ x)

The study of the limiting behavior of empirical distribution function is of great
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importance because of its vast applicability in proving asymptotic results of various

types. Two key results in the theory of empirical processes are the Glivenko-

Cantelli lemma and Donsker’s theorem. The first one gives the uniform convergence

of empirical distribution function to the true distribution function and the second

one derives a distributional limit for the process {F̂n(x) : x ∈ R}.

The generalization of these two fundamental results is the primary motivation

behind the study of empirical processes. When the random observations Xi’s take

value in a more general space (than R), then the idea of empirical distribution

function is not so natural anymore. Also the definition of in distribution conver-

gence is not well-defined in this context. So it makes more sense to define an

empirical measure Pn defined on a collection of functions F defined on a general

space, say χ and taking values in R. Let X1, . . . , Xn
iid∼ P, taking values in χ.

Then the empirical measure Pn is defined as:

Pn :=
1

n
δXi

where δx(y) = 1 if x = y and zero otherwise. Thus Pn puts equal mass at each

observed data point. For any Borel set A ⊂ χ,

Pn(A) :=
1

n

∑
1(Xi ∈ A)
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Let F is a collection of real-valued functions defined on χ. Then for any f ∈ F ,

Pnf :=

∫
f(x)dPn(x) =

1

n

n∑
i=1

f(Xi)

Assuming Pf :=
∫
f(x)dP(x) exists for each f ∈ F , let’s define the empirical

process {Gn(f) : f ∈ F} as follows

Gn(f) :=
√
n(Pnf − Pf)

The goal is to figure out conditions under which the uniform convergence holds,

i.e.

sup
f∈F
|Pnf − Pf | a.s.−−→ 0

and a distributional limit exists for the process given by {Gn(f) : f ∈ F}. It has

been found that the conditions under which the Glivenko-Cantelli or Donsker’s

theorem hold depend on the complexity or size of the set F . For detailed theory

on this see Sen (2018), Wellner (2005).

Note that Donsker’s theorem can be viewed as a generalization of the central

limit theorem(CLT). There are several versions of the central limit theorem that

corresponds to different moment conditions under which a sum of independent and

identically distributed random variables converges to a normal random variable.

Examples include the classical CLT, Lyapunov’s CLT and Lindeberg’s CLT. Details

on these can be found in Billingsley (2008). There exist generalizations of these

in multiple directions in the context of a dependent sequence of random variables,
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the most common one being in the case of martingales. Related results can be

found in Brown et al. (1971) and Hall and Heyde (2014).

In Slonowsky (1998) the author has considered a vectorized version of our

process, under Lyapunov type assumption and different types of complexity as-

sumption on the indexing sets. In Koul et al. (2012) the authors have constructed

a partial sum process with dependent increments which serves as a test statistic

of interest. However, the process is indexed by sets of the form (−∞, x). We

have considered the partial sum process indexed by a more general collection of

sets. We have derived the Donsker’s theorem in this context based on the metric

entropy integrability condition, which quantifies the complexity of the underlying

collection of sets. The central limit theorem is obtained under a Lindeberg type

condition, which is more general than the Lyapunov type conditions. We have also

derived a Glivenko-Cantelli type result in this context. We have used exponen-

tial inequalities for martingales that can be found in de la Pena et al. (1999) and

Freedman (1975).

The organization of this chapter is as follows. Section 4.3 describes the setup

and introduces the notation related to the problem. The assumptions are stated in

Section 4.4. The finite-dimensional convergence of the process is derived in Section

4.5. Section 4.6 defines an underlying metric for the process. Section 4.7 introduces

the notion of tightness in this context. Section 4.8 derives a symmetrization lemma

for the partial sum process. The symmetrization lemma is used to derive tightness

via asymptotic equicontinuity in Section 4.9. Section 4.10 derives a Glivenko-

Cantelli type result in this context. An application of the main results in testing



96

hypotheses related to Markovian multiplicative error models for non-negative time

series is mentioned in Section 4.11. Conclusion and possible directions for future

research are in 4.12.

4.3 Set up and notation

Let (A, d) be a separable metric space and (Ω,B, P ) be a probability space. {Xi}

and {Vi} be two sequences of random variables defined on (Ω,B, P ). Let Xi’s

form a martingale difference sequence, with respect to a filtration Fi, i.e. Xi is

Fi-measurable for each i ≥ 1 and Vi’s are Fi−1-measurable. Also let Vi and Vj be

independent ∀i 6= j. Note that we have not assumed the independence of Xi’s and

Vi’s. We shall consider the partial sum process given by:

Sn(A) =
1√
n

n∑
i=1

Xi1A(Vi) for A ∈ A

where A is a ‘suitable’ collection of sets. Thus note that here the increments

are given by Xi’s, which form a martingale difference sequence and whether an

increment takes place or not is controlled by another random variable Vi. We shall

derive a pointwise central limit theorem as well as a uniform central limit theorem

on A.

The main result of this paper is based on the uniform weak limit of the partial

sum process and the limit will be given by a Gaussian process indexed by sets.
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4.4 Assumptions

Before going into the details of the proof, we shall define the basic concepts and

state the necessary assumptions, upon which the proof will be built.

Assumption A1. There exists a non-negative measure µ(.) defined on A such

that

1

n

n∑
i=1

E
(
X2
i |Fi−1

)
1A(Vi)

a.s.−−→ σ2µ(A) (4.1)

where
a.s.−−→ denotes almost surely convergence of a sequence of random variables to

a limiting random variable. Here σ2 is a scaling factor. Without loss of generality

we shall assume σ2 = 1.

Definition 4.4.1 (Covering number). For δ > 0, the covering number of A with

respect to the metric d(., .) is the minimum number of spherical balls of radius δ,

required to cover (A, d) and it is denoted by N (δ,A, d). Therefore

N (δ,A, d) = min{|A(δ)| : A(δ) is a δ − net for A with respect to the metric d}

Definition 4.4.2 (Packing number). For δ > 0, the packing number of A with

respect to the metric d(., .) is the maximum number of spherical balls of radius δ,

that covers (A, d) and the centers of the balls are at least δ distance apart. It is

denoted by D(δ,A, d). Therefore

D(δ,A, d) = max{k : A ⊆ ∪ki=1Ai and d(Ai, Aj) ≥ δ∀i 6= j}
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Definition 4.4.3 (Metric entropy). The metric entropy of A with respect to d is

given by

H(δ,A, d) = lnN (δ,A, d)

where N (δ,A, d) denotes the covering number.

Assumption A2. For any fixed δ > 0, we have

∫ δ

0

√
H(u,A, d)du <∞

This condition is termed the metric entropy integrability condition. The fol-

lowing result from equation (1.5) of Talagrand (2014) is crucial to understand the

significance of this condition.

Proposition 4.4.4 (Dudley’s bound). If {Xt : t ∈ T} is a Gaussian process

defined on a metric space (T, d), and N (ε, T, d) is associated the covering number

then for some constant L,

E

[
sup

d(s,t)≤δ
|Xs −Xt|

]
≤ L

∫ δ

0

√
H(u)du.

It is clear than in order to ensure the regularity of the Gaussian process the

right-hand side needs to be finite.

Assumption A3. Given any set A ∈ A and any real number δ > 0, there exist

Aδ and Aδ, with Aδ ⊃ A ⊃ Aδ, such that

d(Aδ, Aδ) < δ
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Aδ and Aδ are called the lower and upper δ-approximations of the set A.

Assumption A4. There exist a fixed a0 ∈ R+ such that for all i

lim
n→∞

P(sup
i≤n
|Xi| ≥ a0

√
n)→ 0

First see that

P(sup
i≤n
|Xi| ≥ a0

√
n) ≤

n∑
i=1

P
(
|Xi| ≥ a0

√
n
)

≤
n∑
i=1

P(|Xi|1(|Xi| ≥ a0

√
n))

≤ 1

na2
0

n∑
i=1

E
(
X2
i 1[|Xi| ≥ a0

√
n]
)

The last step is a direct consequence of Chebyshev’s inequality. Note that in

order for A4 to hold we need the right-hand side of the above equation to go to

zero as n goes off to infinity. Thus we require

n∑
i=1

E
(
X2
i 1[|Xi| ≥ a0

√
n]
)

= o(n)

The choice of a0 will be specified in the latter part of the chapter.

4.5 Finite Dimensional Convergence

Finite dimensional convergence is defined as follows.

Definition 4.5.1. {Sn(A) : n ≥ 1, A ∈ A} is said to converge to {Z(A) : A ∈ A}
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in finite dimension if for any k ≥ 1 and A1, . . . Ak ∈ A we have

(Sn(A1), . . . , Sn(Ak))
d−→ (Z(A1), . . . , Z(Ak))

This means any finite-dimensional projection of the sequence of random vari-

ables Sn converges in distribution to those of the limiting random variable Z.

4.5.1 Mean function

Since the Xi’s form a martingale difference sequence, therefore

E(Xi) = EE(Xi|Fi−1) = 0

For any A ∈ A, mean function of the process is:

µ(A) = E

(
1√
n

n∑
i=1

Xi1A(Vi)

)

=
1√
n

n∑
i=1

E (E(Xi|Fi−1)1A(Vi))

= 0

4.5.2 Covariance Function

For any A,B ∈ A, let’s denote the covariance function by

Cn(A,B) = Cov(Sn(A), Sn(B)).
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This covariance function can be written as:

Cn(A,B) =
1

n

n∑
i=1

n∑
j=1

E (XiXj1A(Vi)1B(Vj))

=
1

n

n∑
i=1

E
(
X2
i 1A∩B(Vi)

)
+

1

n

∑∑
i 6=j

E (XiXj1A(Vi)1B(Vj))

We shall show that the summands of the second term on the RHS are 0. Without

loss of generality take i < j. Conditioning on Fj−1 we can get

E (XiXj1A(Vi)1B(Vj)) = E (E (XiXj1A(Vi)1B(Vj)|Fj−1))

= E (Xi1A(Vi)1B(Vj)E(Xj|Fj−1)) = 0

Therefore we can write,

Cn(A,B) =
1

n

n∑
i=1

E
(
X2
i 1A∩B(Vi)

)
=

1

n

n∑
i=1

E
(
E
(
X2
i 1A∩B(Vi)|Fi−1

))
=

1

n

n∑
i=1

E
(
1A∩B(Vi)E(X2

i |Fi−1)
)

By A1 the following holds true:

Cn(A,B)
a.s.−−→ σ2µ(A ∩B)
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The conditional covariance function can be written as:

C ′n(A,B) =
1

n

n∑
i=1

E
(
X2
i 1A∩B(Vi)|Fi−1

)
=

1

n

n∑
i=1

E(X2
i |Fi−1)1A∩B(Vi)

By A1

C ′n(A,B)
a.s.−−→ σ2µ(A ∩B)

Theorem 4.5.2 (Finite dimensional convergence). The finite-dimensional distri-

butions of Sn converge to those of Z, where Z is a mean zero set-indexed Gaussian

process with

lim
n→∞

Cov(Sn(A), Sn(B)) = Cov(Z(A), Z(B))

Proof. This follows from the classical pointwise central limit theorem and the fact

that a Gaussian process is fully characterized by its mean function and covariance

function.

4.6 Canonical L2 Metric on A

Now we shall define a pseudo-metric in A, given by

d(A,B) = lim
n→∞

(
E(Sn(A)− Sn(B))2

) 1
2 (4.2)
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This is the canonical L2-metric for such partial sum processes. For reference see

Ossiander (1987) for example.

Also define a distance metric at level n given by dn(., .), such that d(., .) is

obtained as the almost sure limit of this pseudo-metric. Note that

d2
n(A,B) := E(Sn(A)− Sn(B))2 = E(Sn(A)2) + E(Sn(B)2)− 2E(Sn(A)Sn(B))

We have already noticed that the mean function is zero for any fixed A ∈ A.

Therefore the above term reduces to the following:

E(Sn(A)2) + E(Sn(B)2)− 2Cov(Sn(A), Sn(B)) (4.3)

Since

Cn(A,A) = E(Sn(A)2)
a.s.−−→ σ2µ(A)

and

Cn(A,B) = E(Sn(A)Sn(B))
a.s.−−→ σ2µ(A ∩B)

therefore the canonical L2-metric will be given by

d(A,B) = σµ1/2(A4B)

If we had considered the conditional version of the covariance function this L2
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metric would have reduced to the same.

lim
n→∞

[C ′n(A,A) + C ′n(B,B)− 2C ′n(A,B)] = σµ(A4B) (4.4)

4.7 Tightness

Definition 4.7.1. A sequence of probability measures {Pn : n ≥ 1} is said to be

tight if for every ε > 0, there exists a compact set Kε such that

Pn(Kε) > 1− ε for all n

Thus tightness prevents the mass from escaping to infinity.

Following is the statement of Theorem (8.1) of Billingsley (2013), which shows

the connection between weak convergence and tightness.

Theorem 4.7.2. Let {Pn : n ≥ 1} and P be probability measures on (C, C). If

finite dimensional distributions of Pn converges to that of P and if Pn is tight, then

Pn
w−→ P .

Since we have already proven finite-dimensional convergence, therefore all we

need now is to prove tightness in order to derive weak convergence of the set

indexed partial sum process.

The following theorem from Wellner (2005) plays a crucial role in the derivation

of our result. It shows the equivalence of tightness and asymptotic equicontinuity.

Theorem 4.7.3. The followings are equivalent:
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1. All the finite dimensional distributions of the sample bounded process Sn con-

verges in distribution and there exists a pseudo metric ρ on A such that

• (A, ρ) is totally bounded.

• Xn is asymptotically equicontinuous in probability with respect to d, i.e.

for any ε > 0

lim
δ→0

lim sup
n→∞

P

[
sup

d(A,B)≤δ
|Sn(A)− Sn(B)| > ε

]
= 0

This can be interpreted as: For every ε > 0 and η > 0, there exists δ > 0

such that

P∗( sup
A,B:d(A,B)<δ

|Sn(A)− Sn(B)| > η) < ε for sufficiently large n

This condition is known as asymptotic equicontinuity.

2. There exists a process with tight Borel probability distribution on l∞(T ) such

that

Xn
L−→ X in l∞(T )

Thus we can conclude that in order to prove tightness, it will be enough to

show asymptotic equicontinuity.
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4.8 A symmetrization Lemma

In this section, we shall derive a symmetrization lemma to show that the tightness

of the original process is implied by the tightness of the symmetrized version of

the process. Now we shall go through the steps of construction of the symmetrized

process.

Suppose Xi’s be as mentioned before, i.e. {Xi : i ≥ 1} forms a martingale

difference sequence with respect to the filtration {Fi : i ≥ 1}. Consider {X ′i : i ≥

1} such that, for each i, Xi and X ′i are conditionally independent given Fi−1. Also

assume [(X1, V1), . . . (Xi, Vi)] and [(X ′1, V1), . . . (X ′i, Vi)] are distributionally equal

conditional on Fi−1 . Thus Xi’s can be thought of as conditionally independent

copies of Xi’s. Denote the corresponding partial sum process by S ′n(A). For A ∈ A

S ′n(A) :=
1√
n

n∑
i=1

X ′i1A(Vi)

Thus the symmetrized process is given by Sn − S ′n. And we shall show that the

tightness of Sn is implied by tightness of (Sn − S ′n).

To begin with, let’s define a decreasing sequence of summable real numbers

given by {δk : k ≥ 0}. Let Ak be a δk-net of A with Ak ⊆ Ak+1. Define D =

∪k≥1Ak. Thus D is a countable dense subset of A. Therefore, given any ε > 0 and

A ∈ A, there exists Ã ∈ D such that d(A, Ã) < ε. Define

Gn(A) :=
1

n

n∑
i=1

E(X2
i |Fi−1)1A(Vi) (4.5)
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G(A) = lim
n→∞

Gn(A) (4.6)

For A,B ∈ D, define

ρ(A,B) = |G(A)−G(B)| (4.7)

and for f : D → R, define

||f ||δ = sup
A,B∈D:ρ(A,B)<δ

|f(A)− f(B)| (4.8)

Since D is a countable, dense subset of A, therefore tightness of Sn on D will

imply tightness of Sn on A.

Note that here we are not assuming the independence of Xi’s and Vi’s. As

before we shall just assume that Xi’s are {Fi}-measurable martingale differences

and Vi are Fi−1-measurable.

Lemma 4.8.1. For fixed ε > 0, δ > 0, η > 0; ε < η and δ < ε√
5
, the following

holds true.

P(||Sn||δ > η) ≤
(

1− 3δ

ε2

)−1

P(||Sn − S ′n||δ > η − ε)

+ P(sup
k≥n

sup
A∈D
| 1
n

n∑
i=1

E(X2
i |Fi−1)− σ2µ(A)| > δ)
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Proof. Define,

F := σ{(Xi, Vi : i ≥ 1)}

ρn(A,B) := |Gn(A)−Gn(B)|

= | 1
n

n∑
i=1

E(X2
i |Fi−1)(1A(Vi)− 1B(Vi))|

=
1

n

n∑
i=1

E
(
X2
i |Fi−1

)
1A4B(Vi)

= Gn(A4B)

Bn(η;A,B) := {ω : |Sn(A)− Sn(B)| > η}

Bn(η, δ) := {ω : ||Sn||δ > η} = ∪A,B∈D:d(A,B)<δBn(η, A,B)

For fixed A,B ∈ D, with d(A,B) < δ,

Bn(η;A,B) ∩ [||Sn − S ′n||δ > η − ε] ⊇ Bn(η;A,B) ∩ [|S ′n(A)− S ′n(B)| < ε]

From Chebyshev’s inequality

P(|S ′n(A)− S ′n(B)| < ε|F) ≥ 1− ρn(A,B)

ε2

Therefore,

I(Bn(η;A,B))P(||Sn − S ′n||δ > η − ε|F) ≥ I(Bn(η;A,B))

(
1− ρn(A,B)

ε2

)
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Let,

An(δ) = ∪k≥n[sup
A∈D
|Gk(A)−G(A)| > δ]

Using the triangle inequality on Acn(δ) we can get for all A,B ∈ D and k ≥ n,

ρk(A,B) ≤ 2δ + ρ(A,B) (4.9)

Thus for A,B ∈ D with ρ(A,B) < δ we have

ρk(A,B) < 3δ

Hence,

I(Bn(η; δ) ∩ Acn(δ))

(
1− 3δ

ε2

)
≤ I(Bn(η; δ) ∩ Acn(δ))P(||Sn − S ′n||δ > η − ε|F)

≤ P(||Sn − S ′n||δ > η − ε|F)

Note that

I(Bn(η, δ)) ≤ I(Bn(η, δ) ∩ Acn(δ)) + I(An(δ))

≤
(

1− 3δ2

ε2

)−1

P(||Sn − S ′n||δ > η − ε|F) + I(An(δ))
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Taking expectation on both sides,

P(||Sn||δ > η) ≤
(

1− 3δ

ε2

)−1

P(||Sn − S ′n||δ > η − ε) + P(An(δ))

4.9 Asymptotic Equicontinuity

In order to prove tightness we shall show asymptotic equicontinuity of the stochas-

tic process given by {Sn(A) : A ∈ A}. As the symmetrization lemma (4.8.1)

suggests, this requires us to prove the following theorem for the symmetrized pro-

cess defined as:

Sn(A)− S ′n(A) =
1√
n

n∑
i=1

εiXi1A(Vi)

But for notational convenience now on we shall denote the symmetrized process

(Sn(A)− S ′n(A)) by Sn(A).

Theorem 4.9.1 (Tightness). If the metric entropy condition (A2) holds, then

given any ε > 0 and η > 0, there exists δ > 0, such that P∗(supA,B:d(A,B)<δ |Sn(A)−

Sn(B)| > η) < ε for sufficiently large n.

For fixed δ > 0, let δk = δ.βk, where β < 1 is a scaling factor. Fix a0 such that

assumption (A4) holds, i.e.

P(sup
i
|Xi| > a0

√
n)→ 0 as n→∞
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Now divide the interval [0, a0] into multiple disjoint subintervals, namely I1, I2, . . . Ikn+1

as follows:

Ik = (ak, ak−1] for k ≤ kn

Ikn+1 = [0, akn ]

This will allow kn to go to infinity as n→∞ at a rate that will be determined

later. Clearly ∪kn+1
k=0 Ik = [0, a0]. Let Īk = [0, ak−1] = ∪kn+1

j=k Ij. Denote A0 =

Aδ , Ak = Aδk , Āk = Aδk . Thus Ak and Āk denotes the lower and upper δk-

approximations of A.

Lemma 4.9.2. For any A ∈ A and A0 = Aδ, Sn(A0)− Sn(A) =
∑kn+1

j=1 Sn,j(Aj \

Aj+1) +Rn(A), where

Sn,j(B) =
1√
n

n∑
i=1

εiXi1Īj

(
Xi√
n

)
1B(Vi)

Rn,k(A) =
1√
n

n∑
i=1

εiXi1Ik

(
Xi√
n

)
1Ak\A(Vi)

Rn(A) =
1√
n

n∑
i=1

εi

[
kn+1∑
k=1

Xi1Ik

(
Xi√
n

)
1Ak\A(Vi)

]

Rn(A) =
kn+1∑
k=1

Rn,k(A)

Proof. Using a stratification based on ∪kn+1
k=0 Ik = [0, a0] and generic chaining to a

level depending on the stratification, namely (kn + 1), we can get
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Sn(A0)− Sn(A) =
1√
n

n∑
i=1

εiXi (1A0(Vi)− 1A(Vi))

=
1√
n

n∑
i=1

εiXi

kn+1∑
k=1

1Ik

(
Xi√
n

)
(1A0(Vi)− 1A(Vi))

=
1√
n

n∑
i=1

εi

kn+1∑
k=1

Xi1Ik

(
Xi√
n

)[k−1∑
j=0

1Aj\Aj+1
(Vi) + 1Ak\A(Vi)

]

=
1√
n

n∑
i=1

εi

kn∑
j=0

[
kn+1∑
k=j+1

Xi1Ik

(
Xi√
n

)
1Aj\Aj+1

(Vi)

]

+
1√
n

n∑
i=1

εi

[
kn+1∑
k=1

Xi1Ik

(
Xi√
n

)
1Ak\A(Vi)

]

=
1√
n

n∑
i=1

εi

kn∑
j=0

Xi1Īj

(
Xi√
n

)
1Aj\Aj+1

(Vi) +
kn+1∑
k=1

Rn,k(A)

=
kn∑
j=0

Sn,j(Aj \ Aj+1) +
kn+1∑
k=1

Rn,k(A)

There is an exchange of summation above.

Suppose Aδ is the maximal subset of A such that

d(A0, B0) ≥ δ for A0 6= B0 ∈ Aδ
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Let A0 and B0 are sets in Aδ with

d(A,A0) < δ and d(B,B0) < δ

Thus we can write

{ω : sup
A,B:d(A,B)<δ

|Sn(A)− Sn(B)| > η} ⊂ {ω : sup
A,A0:d(A,A0)< δ

3

|Sn(A0)− Sn(A)| > η/3}

∪ {ω : sup
B,B0:d(A,B)< δ

3

|Sn(B0)− Sn(B)| > η/3}

∪ {ω : sup
A0,B0:d(A0,B0)<3δ

|Sn(A0)− Sn(B0)| > η/3}

Note that the first and the second set in the right-hand side of the above

equation are equivalent. Hence the above inclusion will reduce to the following:

{ω : sup
A,B:d(A,B)<δ

|Sn(A)− Sn(B)| > η} ⊂ {ω : sup
A,A0:d(A,A0)< δ

3

|Sn(A0)− Sn(A)| > η/3}

∪ {ω : sup
A0,B0:d(A0,B0)<3δ

|Sn(A0)− Sn(B0)| > η/3}

Union-sum inequality yields:

P

(
sup

A,B:d(A,B)<δ

|Sn(A)− Sn(B)| > η

)
≤ P

(
sup

A,A0:d(A,A0)< δ
3

|Sn(A0)− Sn(A)| > η/3

)

+ P

(
sup

A0,B0:d(A0,B0)<3δ

|Sn(A0)− Sn(B0)| > η/3

)

(4.10)
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We can construct a triangular array by defining:

Xni =
Xi√
n

Denote the corresponding σ-fields by Fn,i = σ(Xn1, . . . , Xni). let ˜̃η > 0 and η̃ > 0

are such that η̃ + ˜̃η < η/3.

We shall use the following Bernstein’s inequality for Martingales that can be

found as theorem (1.2A) of de la Pena et al. (1999).

Theorem 4.9.3 (Bernstein Inequality for martingales). Suppose {Xi : i ≥ 1} is

a martingale difference sequence with respect to the filtration {Fi : i ≥ 1}, i.e.

E(Xi|Fi) = 0. Let σ2
i = E(X2

i |Fi−1) and V 2
n =

∑n
i=1 σ

2
i . Assume that there exist

some finite c such that P(|Xi| ≤ c|Fi−1) = 1. Then for all x ∈ R and y ∈ R we

have the following:

P

(
n∑
i=1

Xi ≥ x, V 2
n ≤ y for some n

)
≤ exp{− x2

2(y + cx)
}

4.9.1 Exponential Bound on Rn(A)

Let’s start by obtaining a bound on

P(sup
A
|Rnk(A)| > η̃k) where

kn+1∑
k=1

η̃k ≤ η̃ (4.11)



115

Notice that

V 2
nk :=

n∑
i=1

E(X2
ni1Ik(Xni)|Fn,i−1).1Vi(Ak \ A)

≤ V̄ 2
nk :=

n∑
i=1

E(X2
ni|Fn,i−1).1Vi(Ak \ Āk)

By assumption(A1),

V̄ 2
nk

a.s.−−→ µ(Ak \ Āk)σ2 ≤ δ2
k (4.12)

This follows because µ(Ak Āk) = d2(Ak, Āk)/σ
2 and σ2 = 1 (Recall: Ak =

Aδk , Āk = Aδk and we have Āk ⊆ A ⊆ Ak).

We can get εnk > 0 such that V 2
nk < δ2

k(1 + εnk) with probability 1.

Denote cnk := 1 + εnk.

In this case Yi = εiXni1Ik

(
Xi√
n

)
1Ak\A(Vi) forms a martingale difference se-

quence with respect to the filtration {Fn,i}. To see this note that

E
(
εiXni1Ik

(
Xi√
n

)
1Ak\A(Vi)|Fn,i−1

)
= εi1Ak\A(Vi)E

[
Xni1Ik

(
Xi√
n

)
|Fn,i−1

]
= εi1Ak\A(Vi)E [Xni|Fn,i−1] P

(
Xi√
n
∈ Ik

)
+εi1Ak\A(Vi)E [Xni.0|Fn,i−1] P

(
Xi√
n
/∈ Ik

)
= 0
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We have

Yi = εiXni1Ik

(
Xi√
n

)
1Ak\A(Ui) ≤ ak−1

V 2
nk ≤ cnkδ

2
k

Theorem 4.9.3 gives

P(sup
A
|Rn(A)| > η̃) ≤

∑
k≥1

P(sup
A
|Rnk(A)| > η̃k)

≤
∑
k≥1

2N (δkA, d) exp

[
− η̃2

k

2(cnkδ2
k + ak−1η̃k)

]

4.9.2 Choice of Parameters to bound Rn(A)

To ensure the summability of the series we choose the parameters as follows:

η̃k = δk−1

√
H(δk)

ak−1 =
δk√
H(δk)

After plugging in the values,

k − th term = N (δk,A, d)
1−

δ2k−1

2(cnkδ
2
k
+δkδk−1) (4.13)
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The exponent of this term is :1− n
2(cnkβ2+β)

. To make the series summable we need:

1− n

2(cnkβ2 + β)
< 0 (4.14)

Now choose 0 < β <
√

1 + cnk − 1 so that the series is summable. Once the

summability is assured, given any ε̃ > 0, we can choose β and hence δ so that the

sum is less than the fixed ε̃. Denote this β by β̃ and the δ by δ̃.

4.9.3 Exponential bound on
∑kn

j=0 Sn,j(Aj \ Aj+1)

Individual terms of Sn,j(Aj \ Aj+1) are given by εiXni1Īj (Xni) 1Aj\Aj+1
(Vi). Since

E
(
εiXni1Īj (Xni) 1Aj\Aj+1

(Vi)|Fn,i−1

)
= 0

therefore these individual terms form a martingale difference sequence. Now con-

sider,

V 2
nj =

n∑
i=1

E
(
X2
ni1Īj (Xni) |Fn,i−1

)
1Aj\Aj+1

(Vi) ≤ V̄ 2
nj

=
n∑
i=1

E
(
X2
ni|Fn,i−1

)
1Aj\Aj+1

(Vi)

Assumption(A1) and Triangle inequality gives

V 2
nj ≤ V̄ 2

nj
a.s.−−→ µ(Aj \ Aj+1) ≤ δ2

j + δ2
j+1 (4.15)
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Therefore there exist cnj > 1 such that cnj → 1 and V 2
nj ≤ cnj(δ

2
j + δ2

j+1). Bern-

stein’s inequality for martingales (4.9.3) gives:

P( sup
A,A0∈A

kn∑
j=0

Sn,j(Aj \ Aj+1) > ˜̃η)

≤
kn∑
j=0

P( sup
Aj ,Aj+1∈A

Sn,j(Aj \ Aj+1) > ˜̃ηj)

≤
kn∑
j=0

(N (δj,A, d))2 2. exp

[
−

˜̃η2
j

2((δ2
j + δ2

j+1)cnj + aj−1
˜̃ηj)

]

with
∑kn

j=0
˜̃ηj < ˜̃η.

4.9.4 Choice of Parameters to bound
∑kn

j=0 Sn,j(Aj \ Aj+1)

The following parameter choices ensure summability of the series.

aj−1 =
δj√
H(δj)

˜̃ηj = λδj+1

√
H(δj)

λ is suitably chosen positive real number.

exponent of j-th term =

(
2−

λ2δ2
j

2((δ2
j + δ2

j+1)cnj + δjδj+1λ)

)
= 2− λ2

2(cnj(1 + β2) + βλ)
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Summability of the series requires the exponent to be negative.

2− λ2

2(cnj(1 + β2) + βλ)
< 0

4(1 + β2)cnj + 4βλ− λ2 < 0

4cβ2 + 4βλ+ (4cnj − λ2) < 0

The roots of the quadratic are :

β1 =
−4λ−

√
16λ2 − 16cnj(4cnj − λ2)

8λ

β2 =
−4λ+

√
16λ2 − 16cnj(4cnj − λ2)

8λ

Clearly β1 < 0. But we require β to be positive. Hence we shall go for β2. But we

need to make sure that β2 > 0, which follows under the following condition:

λ > 2cnj

This condition also ensures that the discriminant of the quadratic is positive.

If

0 < β <
−λ+

√
λ2 − cnj(4cnj − λ2)

2β

then the exponent of the j-th term in the series will be negative. The quadratic is

increasing in β. Hence it can be made arbitrarily small by choosing β sufficiently

small. Denote the chosen β by ˜̃β and the corresponding δ by ˜̃δ.
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Now that we have shown that the first term in equation (4.10) can be made ar-

bitrarily small, all we need to show is that the second term can be made arbitrarily

small as well. To begin with notice that in maxA0,B0∈Aδ:d(A0,B0)≤3δ |Sn(A0)−Sn(B0)|,

the maximum is over a finite set. To see this first note that the cardinality of Aδ

is given by

|Aδ| = D(A, δ, d)

with D(A; δ, d) denoting the packing number. Also since the covering number and

packing number are equivalent in the following sense:

D(A; 2δ, d) ≤ N (A; δ, d) ≤ D(A; δ, d)

therefore by metric entropy integrability condition D(A; 2δ, d) has to be finite.

Hence there must exist a finite C for which

|Sn(A0)− Sn(B0)| ≤ Cd(A0, B0)∀A0, B0 ∈ Aδ : d(A0, B0) ≤ 3δ

Thus given η > 0 and ε > 0, we can choose δ′ such that

P

(
sup

A0,B0:d(A0,B0)<3δ′
|Sn(A0)− Sn(B0)| > η/3

)
≤ ε/2

Proof of Theorem 4.9.1. Choose δ = min{δ̃, ˜̃δ, δ′} so that asymptotic equicontinu-

ity holds. Thus tightness will follow automatically.

Theorem 4.9.4 (Uniform central limit theorem). If {Z(A) : A ∈ A} is a mean
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zero Gaussian process with

Cov(Sn(A), Sn(B)) = Cov(Z(A), Z(B))

then under the metric entropy integrability condition as mentioned in A2, the fol-

lowing holds true.

Sn
w−→ Z

Proof. Finite-dimensional convergence together with tightness implies convergence

of {Sn(A) : A ∈ A} to the Gaussian process Z defined above.

4.10 A Glivenko-Cantelli theorem

By using the Dudley-Yechura-Skorohod representation theorem in page 47 (theo-

rem 4) of Shorack and Wellner (2009) we can claim that there exists a version of

the partial sum process and the limiting Gaussian process in some space where

sup
A∈A
|Sn(A)− Z(A)| a.s.−−→ 0

4.11 An application

In Koul et al. (2012), the authors have constructed a lack of fit test of a given

parametric form of multiplicative error model involving Markov structure. Multi-

plicative error models(MEM) are used for modeling non-negative time series. A
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multiplicative error model has the following form.

Yi = E(Yi|Hi−1)εi

where εi denotes the multiplicative error terms and Hi−1 denotes history of the

process upto time (i−1). Conditional on Hi−1, εi’s are independent and identically

distributed random variables with mean one and variance σ2. An MEM is said to

possess the Markov property if

E(Yi|Hi−1) = τ(Yi−1)

where τ(.) is a non-negative function defined on the positive real line. Let q be a

known natural number and Θ ∈ Rq. We want to test whether τ(.) has a specific

parametric form or not i.e.

H0 : τ(y) = ψ(y, θ) for some θ ∈ Θ vs HA : Not H0

In Koul et al. (2012), the authors have considered the following test statistic:

T (y, v) =

∫ y

0

[
τ(x)

ψ(x, v)
− 1

]
dG(x)

where v ∈ Θ. Clearly under H0 and when the true parameter value is known (given
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by θ) we must have

T (y, θ) = E1(Y0 ≤ y)

[
Y1

ψ(Y0, θ)
− 1

]
= 0 for all y ≥ 0

The authors claim that an unbiased estimator of T (y, θ) is given by

n−
1
2Un(y, v)

where

Un(y, v) =
1√
n

n∑
i=1

[
Yi

ψ(Yi−1, v)
− 1

]
1(Yi−1 ≤ y) for y > 0, v ∈ Θ

Clearly a more generalized test statistic in this case will be given by

T̃ (A, v) =

∫
A

[
τ(x)

ψ(x, v)
− 1

]
dG(x) for A ∈ A

where A is a suitable collection of sets that satisfy the metric entropy integrability

condition. An unbiased estimate of this statistic will be given by

Ũn(A, v) =
1√
n

n∑
i=1

[
Yi

ψ(Yi−1, v)
− 1

]
1(Yi−1 ∈ A) for A ∈ A

Under H0, when the true parameter value is known

T̃ (A, v) = E1(Y0 ∈ A)

[
Y1

ψ(Y0, θ)
− 1

]
= 0 for all A ∈ A
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It is easy to see that in this case Yi
ψ(Yi−1,v)

−1 forms a martingale difference sequence

that is Fi measurable and Yi−1 is Fi−1 measurable. Thus this is a partial sum

process of the form we have considered. As the regularity condition (C1) in section

2.2 of Koul et al. (2012) suggests, the authors had assumed a fourth moment

condition on the Y0, which is a stronger condition than that of assumption A1.

Thus our method can derive the null distribution of the test statistics under milder

conditions.

4.12 Conclusion

In this chapter, we have considered a partial sum process that is indexed by set,

where the set belongs to a suitable collection of sets A. The increments of the

process form a martingale difference sequence. We have derived a Donsker type

result, i.e. a central limit theorem (Lindeberg type) that holds uniformly on the

sets of A. Also, a Glivenko-Cantelli type result was derived that gives uniform

almost sure convergence of the process to a set-indexed Gaussian process. The

results were derived under the metric entropy integrability condition.

A natural extension of the process would be to consider the case when Vi

and Xi’s are random vectors instead of being random variables. In that case,

this process can be used as a test statistic to perform hypothesis tests for spatial

processes. Another extension of the process would be to consider a more general

class of indexing functions g ∈ G , instead of the indicator functions indexed by

sets.
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5 Conclusion

This thesis contains a study of the limiting behavior of three different stochastic

processes. Each of the processes has an inherent dependent structure that poses

a challenge in deriving their long-term behaviors. Also, each of the processes is

defined in a different state space with each requiring different techniques to derive

limiting properties.

The first process considered here is an evolutionary urn scheme based on the

well-known rock-paper-scissors game. The urn starts with one rock, one paper,

and one scissor. Over time the urn evolves based on the rules of this game. At

every step, the number of objects in the urn goes up exactly by one. We have found

the long term proportions of each individual object type by identifying martingale

structures within the game and connecting those with roots of cubic polynomials.

We have also considered a natural extension of the game, where instead of three,

there are k objects in the urn, which evolves according to a set of rules which can

be thought of as a generalization of the rock-paper-scissors game. The following

describes differences between the standard(involving three different object types)

and the generalized version of the problem.

• In the generalized set up involving k object types the game is not unique, i.e.

by maintaining the cyclic structure of the game, it is possible to construct

different versions of the game by considering different dominance rules of
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the remaining pairs. For example: Consider the game involving 4 different

object types, that are denoted by A,B,C,D. The cyclic structure of this

game is governed by the rule A > B > C > D > A. However, there are two

remaining pairwise comparisons, namely A,C and B,D. Based on whether

A ≶ C and B ≶ D, there exist four distinct versions of the game. The

limiting behavior of the urn depends on the particular version of the game.

• As we have already seen, in the case of the three-player game the limiting

proportions are uniform , i.e. each proportion converges to the same number

1
3
. As the simulation study suggests if the number of object types is an even

number then there is no chance that the proportions will converge to the

same number. Indeed every (2n)-player game gets reduced to a (2n − 1)

player game, and the proportion of the remaining object type converges to

zero.

The limiting behavior in the general set up (involving k object types) needs further

investigation. Though we have suggested an algorithm for finding the limiting

proportions, when it exists, the proof of almost sure convergence in the general

set up still remains unaddressed. Also, the speed of convergence is of interest.

The rate of convergence of the limiting proportions in a three-player and a general

k-player set up should depend on the initial composition of the urn and the rules

of the game. One promising technique to investigate the speed of convergence is

the use of Stein’s method, which involves the construction of exchangeable pair of

random variables.
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In the second chapter of the thesis, we have considered a special class of mul-

tiplicative models, namely the random multiplicative cascade models, that are

used for modeling data with variable intermittency. The key component of such

a model is the cascade generating distribution, which is uniquely identifiable from

the structure-function of the cascade. The structure-function is estimated from the

complete finite sample realization at a particular resolution. We have proposed an

estimator under the set up when the incomplete data is observed at a particular

resolution. Large sample properties, including a pointwise central limit theorem of

the estimators, were derived under this setup. Also, we have shown how the point-

wise limiting results extend to uniform limiting theorems, where the uniformity is

on set on which the data was observed. We have illustrated the method using the

daily stock volume data of Tesla. We have proposed a naive change point detection

method for intermittent data sets. Further refinement of the method is possible

by derivation of uniform central limit theorems for estimates of structure-function,

denoted by τn(h;A). A uniform central limit theorem of {τn(h;A) : h ∈ H} will

enable us to perform the hypothesis test of equality of two structure functions on

their overlapping domain set H. The null distribution of the test statistic can

be obtained from the uniform central limit theorem. Derivation of the uniform

central limit theorem is an important open problem in this field. The connections

between random multiplicative models and other spatio-temporal processes are

also of interest.

The last chapter of the thesis gives the derivation of limiting properties of a

set-indexed partial sum process. We have derived a Donsker type result and a
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Glivenko-Cantelli type result in this context under the standard metric entropy

integrability condition together with a Lindeberg type condition. This result can

be used to inform hypothesis tests in the context of multiplicative error models of

non-negative time series. The partial sum process is given by

Sn(A) =
1√
n

n∑
i=1

Xi1A(Vi) for A ∈ A

where 1A denotes an indicator function defined on A ∈ A. One possible extension

of the process would be in the direction where the class of indicator functions is

generalized to a broader class of functions defined on the respective sets. Exten-

sions of this process from random variables to random vectors and then to random

functions are also of interest as they would allow wider applicability of the pro-

cess for testing hypotheses related to multivariate time series and spatio-temporal

processes.

As pointed out earlier, each of these stochastic processes has an inherent mar-

tingale structure. Thus martingale tools and techniques have played a crucial role

in deriving the limiting properties of these processes. The key was to identify

the martingale structure and to understand how the martingales gradually evolve

with the process. Another key ingredient of this thesis is the application of a

wide variety of concentration inequalities that were instrumental in deriving the

probabilistic bounds.
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