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Chapter 1: Introduction

The emerging Internet of things (IoT) paradigm has revolutionized wireless communica-

tion, enabling sensor and device connectivity via networks. Radio frequency (RF) sensing

is one of the techniques that provide innovative solutions to various IoT applications

related to smart homes, smart cities, and smart industries. IoT devices sense the sur-

roundings of physical objects and interpret information from them. Smart sensors and

devices emit RF signals (e.g., WiFi, Bluetooth, Ultra-wideband (UWB), and 4G/5G

cellular) through the IoT environment. Any object within those spaces, such as humans,

equipment, furniture, and walls, will reflect, refract, diffract, and scatter the RF signals.

Thus, RF propagation can be analyzed from channel modeling and characterization to

extract information like an object’s presence, movement, position, and activity. This

technique is called RF sensing, which has gained increasing interest due to its low-cost,

pervasiveness, and unobtrusiveness [1, 2].

The following sections are organized as 1.1) summarizing the RF channel modeling

and characterization that further discussed in Chapters 2, 1.2) explaining the artificial

neural network (ANN) framework for RF sensing that showcased in Chapters 3 and 4,

and 1.3) discussing RF emission from wireless devices that case studied in Chapters 5.

1.1 RF Channel Modeling and Characterization

The first step to extracting meaningful information from the captured RF signal is under-

standing the characteristics of RF propagation. RF radiates from the transmitter (Tx)
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antenna and is received by the receiver (Rx) antenna. The RF propagation characteris-

tics are dictated by frequency, wavelength, and amplitude. Depending on the technology

and the part of the world the system is being deployed, regulatory bodies, e.g., Federal

Communications Commission (FCC) in the US, will govern and allocate the frequencies

and radio bands.

Regardless of the frequency, the same propagation characteristics apply. RF path mod-

eling describes the behavior of RF radiation from the point of transmission as the signal

travels through the environment. Channel modeling describes the over-the-air environ-

ment in wireless links. Traditional model-based RF sensing methods engage mathematical

models to describe the behavior of RF propagation. Model-based approaches oversimplify

the case and fail in the complex real-world environment. For example, multipath fading

and interference can make the models extremely complicated. However, propagation and

channel modeling analysis is essential in understanding how electromagnetic waves incur

losses and delay from a transmitter to a receiver in different scenarios [3].

1.2 ANN Framework for RF Sensing

On wireless transceivers, the data is modulated on one end, transmitted over RF links,

and demodulated on the other end. During signal transmission, time of flight (ToF), time

difference of flight (TDoF), angle of arrival (AoA), angle of departure (AoD), received sig-

nal strength indicator (RSSI), and channel state information (CSI) can be accessed at the

physical layer for RF sensing. Machine learning methods can represent data and extract

features from the physical layer data. An ANN framework can leverage deep learning to

process high-dimensional data and solve high-level RF sensing problems. Furthermore,

novel learning-based RF sensing ANNs distill cross-domain and environment-independent
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Figure 1.1: The conceptual ANN Framework for RF Sensing

knowledge from the training dataset, leading to better generalizability. The conceptual

ANN framework (Fig.1.1) confines four segments: physical (PHY) layer RF signals, ma-

chine learning schemes, learning generalization, and RF sensing application.

1.2.1 PHY Layer and RF Signals

For RF sensing, the PHY layer can use various signals such as WiFi [4], Bluetooth [5],

UWB [6, 7], radio-frequency identification (RFID), and millimeter wave (mm-Wave)[8].

WiFi is a technology that uses radio waves to provide network connectivity for devices
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additional infrastructures. The most commonly extracted data from WiFi are RSSI

and CSI. RSSI provides coarse-grained signal intensity information, and CSI has the

fine-grained characterization of an Orthogonal Frequency-Division Multiplexing (OFDM)

channel. WiFi also utilizes an antenna array to exploit multiple-input and multiple-

output (MIMO) that depicts the CSI of each subcarrier between every Tx-Rx antenna

pair. RF sensing exploiting WiFi CSI has emerged as CSI can be obtained from WiFi

devices with custom drivers or modified firmware [2].

1.2.2 Machine Learning Schemes

Before feeding the RF data into ANNs, preprocessing is demanded to remove the data

imperfection and accelerate the learning process. Filtering separates signal and noise

by transforming the RF signals into another domain. Additional de-noising methods

may be needed depending on system complexity and accuracy. Data preprocessing, like

dimension reduction, helps with a more robust model to not overfit the data.

The RF data is ready for feature extraction after preprocessing. Conventionally

model-based approaches compute the target’s position information and exploit them to

further spatial features. Moreover, deep learning networks often skip these intermediate

steps and extract spatial features using ANNs.

Type of ANN includes Convolutional Neural Network (CNN), Recurrent Neural Net-

work (RNN), and Long Short-Term Memory Network (LSTM). CNN encodes the prior

knowledge of translation invariance into itself. The convolution operation gives a constant

activation value regardless of the feature location; on the other hand, the pooling layer

downsamples the feature map to make it insensitive to the change of feature location.

CNN takes orders of magnitude and is well adapted for spatial feature extractor RNN



5

takes the current value as input and past inputs, which are stored as hidden states of

the RNN nodes. The nodes form a directed graph closely related to the time sequence,

displaying temporal behavior. Compared to CNN, RNN can process input series of any

length, and the complexity of the model does not increase with the input size. Therefore

RNN is chosen for extracting temporal features. LSTM maintains information in memory

for more extended periods. LSTM solves the vanishing and exploding gradient problem

of long RNN by introducing forget gate, input gate, and output gate into the network.

The gates work together to decide how much information will be thrown away, kept in

the node, taken as input, and used as output. By controlling the flow of information,

LSTM outperforms RNN when dealing with long dependencies.

1.2.3 Learning Generalization

Above mentioned ANNs work for RF sensing applications. However, it suffers from

domain shift and data scarcity. Domain shift indicates the performance drops when the

environment changes. Data scarcity means that not sufficient training data is collected.

Those two causes are related: domain shift entails a laborious process of collecting

and labeling new data. Some studies tried solving these challenges by handcrafting

domain-independent features (HCF). However, HCF depends on prior information such

as location, position, and environmental factors. Manually obtaining those data incurs

another time and labor-consuming process.

A generalization layer on top of ANNs extends the capability of the machine learning

process that is trained for a single domain. By employing corresponding generalization

logic (e.g., knowledge transfer and data generation), it generalizes the ML model from the

training domain to the target domains. As a result, deep learning models for RF sensing
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systems can be trained once, adaptive to other environments, and provide more extensible

services. Different techniques can be used in the generalization layer, including:

1) Generative Adversarial Network: Generative Adversarial Network (GAN) helps

generalize from small training datasets to larger, more universal datasets. GAN is a

two-player game in which the generative network (G) and the discriminative network

(D) are pitted against each other. During training, G generates fake data conforming to

the distribution of a given dataset, trying to confuse D; while D the classifier, tries to

discriminate fake data generated by G and true training data. After iterations, the data

generated by G is good to beat D, which can be used to extend the dataset. G helps

generate WiFi fingerprints for indoor localization. By extending the dataset, the RF

sensing system achieves a faster convergence time and requires less human effort. GAN

can also recover lost fingerprints for continuous localization and tracking.

2) Adversarial Domain Adaptation: Adversarial domain adaptation is an approach to

generalizing from one domain to another. It aims to learn models that transform different

domains into a common feature space. It is similar to GAN mentioned above, where

there is a competition between G and D. The difference is that in GAN, the output of

G is of interest, whereas in adversarial domain adaptation, we are interested in learning

features invariant across domains by playing the min-max game. Adversarial domain

adaptation is used to achieve environment-independent activity recognition by employing

it to transform and adapt the RF data tensor to new environments for pose estimation.

3) Transfer Learning: Transfer learning works by fine-tuning pre-trained models to

handle similar tasks since these tasks often share common knowledge. For example, the

trained weights of the first several layers of neural networks can be reused across different

tasks since the layers capture input features independent of specific tasks. We can transfer

this knowledge and fine-tune the rest of the model, therefore adapting the model to the
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new task with few samples and low cross-domain training cost. In the generalization

layer, the idea is to transfer knowledge from the source domain to the target domain.

Transfer learning can achieve accurate cross-domain gesture classification and leverage

the generalizability of transfer learning to predict previously unseen environments.

1.2.4 RF Sensing Applications

The development of RF sensing has enabled many interesting IoT applications. The

growing need for location-based services (LBS) requires accurate and robust solutions RF

sensing provides a solution for indoor localization where GPS fails to reach. Furthermore,

data-driven approaches are increasingly employed with RF sensing for localization pur-

poses. As an example, RF fingerprinting matches measured features extracted from RSSI

and CSI to predefined ones on an RF mapping. However, this method requires lots of

fingerprints to cover the space. Also, the performance is affected by the high variability of

RF signals caused by multipath fading and interference. Therefore, deep learning fully ex-

plores RF data and extracting deep features, irrelevant information can be stripped while

useful spatial features retained, and localization accuracy can be potentially improved.

1.3 RF Emission from Wireless Devices

Wireless devices like cell phones are regarded as the fundamental components of IoT and

have been commonly used in people’s daily lives. The involvement of RF sensing systems

improves how humans live, but as such technologies grow, RF radiation (RFR) exposure

has been a concern for the public, health authorities, and researchers [9]. Knowledge of

the RFR on or inside the human body is critical in understanding the health impact of
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RF devices and signals. However, the physical experiment is extremely difficult for the

human body. In the last part of this dissertation, collaborative work with the Department

of Environmental and Molecular Toxicology systematically used zebrafish as a surrogate

model to study how RFR might affect early development. A testing chamber is designed

specifically for 5G cellular exposure. With this established robust in vivo testing platform,

the changing RFR exposure scenarios are positioned to be modeled and measured, and

their biological effects to address concerns about broadband technology and human health.
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Chapter 2: Measurement-based Channel Modeling for mmWave

Wireless Links in Enclosed Server Platforms

Abstract: The large available bandwidths, demonstrations of fully-integrated silicon

transceivers and small physical antenna size make mm-wave frequencies attractive for

wireless links within a server chassis. In this paper, we focus on studying the feasibility

of a mm-wave wireless link within a commercial microserver chassis for high data-rate

links and for management and monitoring. Such servers have reflective metal walls and

are densely populated with microserver boards that create barriers for mm-wave signals.

A custom test setup is used for in-situ channel measurements at 57GHz for both line-

of-sight (LOS) and non-line-of-sight (NLOS) links across different TX-RX separations.

The NLOS links show RMS delay spread of 32ns@50% CDF (∼200ns@90% CDF) with

path loss >55dB, indicating a challenging environment for low-power high-speed links.

Therefore, a modified chassis with 10mm headroom between the top of the boards and

chassis cover is proposed. Measurements show that such an environment can make the

targeted wireless links feasible with ∼35dB loss, and RMS delay spread of 14ns@50%

CDF (∼20ns@90% CDF).

2.1 Introduction

Wireless links within server chassis are useful for reconfigurable, short-range routing

and for management and monitoring without complex cable routing [10]. The large
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available spectrum at mm-wave frequencies, such as 60GHz, and the small antenna size

makes it attractive to implement short-range, high data rate wireless links within chassis,

particularly using fully-integrated mm-wave transceivers [11]. The objective of this paper

is to study propagation properties of mm-wave wireless links in a microserver chassis

and use measurement-based channel models to evaluate the feasibility of wireless links

within the enclosure. mm-Wave propagation channels for such highly-reflective enclosed

environments have been studied using ray-tracing simulations [12] and measurements

in metal enclosures emulating target systems [13]. Ray-tracing numerical simulations

underestimate the reflective/multi-path effects of the metallic environments, particularly

in a microserver chassis densely populated with server boards. The proposed dense

multipath environment also differs from the measurements in [13], that consider an

enclosure that is not densely populated. In this paper, we present line-of-sight (LOS)

and non-line-of-sight (NLOS) channel measurements in microserver chassis. Notably, the

measurements here include a typical planar patch antenna at both ends to evaluate the

feasibility of a short-range link within the commercial microserver chassis.

2.2 mmWave Channel Measurement Setup

The microserver chassis, measuring 534 × 178 × 127 mm3, is shown in Fig. 2.1(a)(b).

The original metal chassis cover is replaced by a custom 6061 aluminum alloy cover,

which has 8 × 6 slots to enable in-situ measurements using connectorized V-band patch

antennas across different TX-RX locations. Measurements are performed across different

slot combinations in Fig. 2.1(b), including both LOS and NLOS scenarios. The (x, y)

index for each position is based on Fig. 2.1(b). At each position, as shown in Fig. 2.2, four

different insertion depth, 5mm, 50mm, 70mm and 100mm, are measured. In our approach,
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Figure 2.1: Microserver chassis with server boards - (a) with cover removed, (b) with
custom-machined cover with slots.

Figure 2.2: Channel measurement across insertion depths for each antenna position.
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a Keysight network analyzer (PNA N5227A) is used to measure the S-parameters (S11,

S22, S21, and S12) up to 67GHz. S21, which represents the power transferred from TX to

RX, is extracted for subsequent CIR calculations [14], [15]. The reflection coefficient S11

is acquired to analyze the input matching of the antenna. In the following measurements,

the channel includes the antenna at both ends. Fig. 2.3(a)(b) shows the setup where two

antennas are inserted into the chassis through the slots in the cover for the in-situ test.

Input match of the antenna and a representative transfer function for LOS is shown in

Fig. 2.3(c).

Next, measurements are divided into three scenarios to understand LOS and NLOS

channel characteristics.

2.2.0.1 Scenario 1: LOS, without microserver boards

There is no microserver board obstructing the TX and RX antennas. This corresponds

to LOS measurements inside the empty metal chassis, similar to [13].

2.2.0.2 Scenario 2: LOS, with microserver boards

With the original metal cover, there is no vertical headroom between the top of the

microserver boards and the cover. However, as shown in Fig. 2.2, the custom cover is

designed to provide variable headroom. Four 210 × 120 mm2 microserver boards are

installed in the server chassis. Scenario 2 measurements correspond to 10mm space

between the top of microserver boards and the cover. In this setup, even with four

microserver boards installed, there can be a LOS link in the empty headroom space if

the TX and RX antennas are inserted 5mm into the chassis.
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2.2.0.3 Scenario 3: NLOS, with microserver board

The boards can block the LOS path if the TX-RX are separated by them. Channel

measurements are performed to evaluate NLOS link feasibility in the presence of such

barriers.

2.3 Measurement Results

2.3.1 Large-scale fading characteristics: path loss

2.3.1.1 Depth dependence

Fig. 2.4(a) shows the measured S21 of the link at various insertion depths in Scenario 1,

at the same 80mm TX-RX separation. The highest S21 is similar for different antenna

depths implying that insertion depth does not affect path loss significantly. Fig. 2.4(b)

shows the measured S21 in Scenarios 2 and 3. Notably, the path loss at 5mm depth

(Scenario 2) is >10dB better than NLOS in Scenario 3 with considerable less multipath

fading as well. However, in NLOS cases, the loss is not significantly depth-dependent.

2.3.1.2 Distance dependence

The path loss (dB) is expressed as

PL(d) = PL(d0) + α · 10 log10(d/d0) + χ (2.1)
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where d0 is a reference distance (20 mm), α is the path-loss exponent, and χ is a zero-

mean Gaussian random variable. Fig. 2.4(c) shows path loss measurements in Scenarios

2 and 3 that represent practical link scenarios. Using minimum mean square error fitting,

the pass loss in dB is given by

PL(d)LOS, scenario 1 = 29.62 + 1.66 · 10 log10(d) (2.2a)

PL(d)LOS, scenario 2 = 28.12 + 1.49 · 10 log10(d) (2.2b)

PL(d)NLOS, scenario 3 = 57.62 + 0.096 · 10 log10(d). (2.2c)

Measurements show that path loss parameters PL(d0) are very close in Scenarios 1

and 2, and have a weak dependence on distance. However in the NLOS condition in

Scenario 3 (Fig. 2.4(c)) the path loss curve is relatively flat since the dominant path is

blocked.

2.3.2 Small-scale fading characteristics: RMS delay spread

In this work, the squared-magnitude of the CIR is referred to as the power delay profile

(PDP). Fig. 2.5 shows the PDP measured for the 80mm TX-RX separation in Scenarios

2 and 3. In Scenario 2, at the same 80mm TX-RX separation and 5mm depth, the

LOS case has a smaller RMS delay spread (RDS), while Scenario 3 leads to significantly

different PDP across depths.

Delay spread is an important channel characteristic since a large delay spread intro-

duces more inter-symbol interference (ISI), limiting data rates. In the following, mean

delay (τ), maximum excess delay and RDS (τrms), for a multipath channel are defined as

per [16]. Fig. 2.6 shows the empirical cumulative distribution function (CDF) of the RDS

-



16

Table 2.1: Channel RMS delay spreads across scenarios.
Scenario 1 Scenario 2 Scenario 3

τrms (ns) 3.6032 14.4552 32.1202

values for Scenarios 2 and 3. The mean RDS values are larger than prior measurements

due to the inclusion of the microserver boards within chassis [13]. We obtained values of

14.4ns for Scenario 2, and 32.1ns for Scenario 3 at 50% CDF demonstrating the benefit

of the link through the headroom. Note that the RDS at 90% CDF is much larger

for scenario 3. The channel coherence bandwidth, as well as the frequency correlation

function, can be calculated from the RDS, which can be used to assess the frequency

selectivity for a given bandwidth [13].

Measurements also show a nearly linear relationship between τ and τrms, indicating

that the τ and τrms are highly correlated. This can be used for predicting τrms [17].

Summary of measured τrms values for Scenarios 1−3 is shown in Table 2.1. The wide

RDS distribution and >55dB path loss in Scenario 3 limits data rate and also increases

the required TX power, leading to higher power consumption. The ∼20dB lower loss

and lower RDS leads us to propose microserver chassis with ∼10mm headroom between

the boards and the cover to enable high-speed, lower-power short-range wireless links

without the use of multi-hop links from board to board.

2.4 Conclusion

This paper presents the channel model for mm-wave wireless links within a microserver

chassis. The model is derived from actual S-parameter measurements using a connector-

ized mm-wave patch antenna. Path loss models, power delay profiles, and RMS delay

spreads are obtained for both LOS and NLOS conditions. The measured environment is
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highly reflective. Based on measurements, we propose creating 10mm headroom between

the sidewalls and cover of the chassis to establish LOS links between TX and RX in order

to achieve better system performance.
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Figure 2.3: (a) Connectorized mm-wave rectangular patch antenna (center frequency:
56GHz), (b) inserted through slots in the chassis cover for different location and depths,
(c) measured antenna input matching and transfer function for an LOS link.
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Figure 2.4: Measured channel frequency response with the 56GHz patch antenna at
80mm TX-RX separation and different insertion depth (Fig. 2.2) for (a) Scenario 1, (b)
Scenarios 2 & 3. (c) Measured path loss across TX-RX separation in Scenarios 2 and 3.
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Figure 2.5: Measured PDP in Scenarios 2 and 3.
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Figure 2.6: Measured RDS distribution in Scenarios 2 and 3.
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Chapter 3: Dynamic Phase Calibration Method for CSI-based Indoor

Positioning

Abstract: The demand for location-based services (LBS) increases significantly with

the development of smart devices. Their built-in WiFi capability makes WiFi-based

approaches essential for a range of indoor positioning applications. In such LBS systems,

accessing received signal strength indicator (RSSI) and finer-grained channel state informa-

tion (CSI) is enabled by modifying commodity WiFi devices. Additionally, multiple-input

and multiple-output (MIMO) and orthogonal frequency-division multiplexing (OFDM)

provide the spatial and frequency diversity to build the fingerprint database with CSI.

However, due to hardware and environmental impacts, such systems suffer from phase

errors and fingerprint noise. In this paper, a novel phase calibration method is proposed

to reduce the fingerprint noise and improve the accuracy of CSI-based indoor positioning

systems. The CSI phase of each subcarrier is extracted from the WiFi access points

in a multi-antenna wireless network. First, the phase offset is calculated through the

conventional method that uses a linear transformation to remove phase errors. Then, a

dynamic phase calibration method is introduced to compensate for the phase offset by

tracking the anomalous phase difference between each CSI sample and neighboring sub-

carrier. Finally, a machine learning algorithm is trained to estimate the target position.

The performance of the proposed algorithm is investigated by evaluating the prediction

rate from a margin of error (MoE) model and calculating the average distance error

between the predicted grid and ground truth. Experimental results show the dynamic
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phase calibration method outperforms the conventional linear transformation calibration

method by a higher prediction rate and improves the average position accuracy.

3.1 Introduction

Wireless positioning systems play a significant role in various location-based services

(LBS) such as location awareness, navigation, and object tracking. The demand for such

services is envisioned to increase drastically as smart applications developing. For outdoor

positioning services, global navigation satellite systems (GNSS) like GPS, GLONASS,

Galileo, and Beidou provide a reliable solution. The aforementioned GNSS systems are

incapable of providing accurate positioning services for most indoor scenarios. However,

most human activities occur in indoor environments [18]. For indoor positioning, various

techniques such as ultra-wide band (UWB) [6, 7], Bluetooth [5], radio-frequency identifi-

cation (RFID) [19], and WiFi [4] have been proposed in the past two decades. Among

them, WiFi-based approaches have attracted widespread interest as ubiquitous, low-cost

solutions for indoor applications. WiFi-based indoor positioning systems can be catego-

rized into two types: 1) signal propagation approaches, in which propagation parameters

such as time of arrival (ToA) [20, 21], time difference of arrival (TDoA) [22–25], and

angle of arrival (AoA) are measured to estimate the target location; and 2) fingerprinting-

based approaches, in which a database is maintained with certain fingerprint features,

including received signal strength indicator (RSSI) and channel state information (CSI)

to match the target’s position. One advantage of fingerprint-based systems is that they

are device-free, meaning they can detect an object’s position without requiring the object

to carry additional hardware.

In the WiFi 802.11 protocol, multiple-input and multiple-output (MIMO) and orthog-
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onal frequency-division multiplexing (OFDM) provide the spatial and frequency diversity,

enabling the receiver to access channel information. RSSI is widely used in fingerprint-

based schemes because of the simplicity and accessibility to extract the signal strength

information. RSSI-based fingerprint method for indoor positioning is introduced in [26]

and [27], where the target’s position is investigated using a probability model from the

RSSI measurements. However, RSSI only provides coarse-grained channel information

from the medium access control (MAC) layer. Because RSSI measures the average value

of the received data packet, it is sensitive to environmental variations. Study shows

that RSSI-based systems achieve an average accuracy of 2 to 4 meters [28]. In contrast,

CSI captures fine-grained channel information measured by OFDM subcarriers from the

physical (PHY) layer that contains the frequency diversity of the channels. Therefore,

the CSI-based method outperforms the RSSI-based approach in positioning accuracy,

and system stability [4] [29]. Moreover, CSI approaches are capable of detecting chan-

nel fading caused by environmental changes and multipath reflections [30]. In general,

comparing to the RSSI-based approach, the finer granularity and low susceptibility to

environmental factors make the CSI-based approach a better candidate in fingerprinting

systems.

Different features such as phase, amplitude, and the hybrid of both have been in-

vestigated in CSI-based fingerprint systems. In [31] and [32], the frequency diversity

of OFDM subcarriers is explored, and the sum of CSI amplitudes is used to create the

fingerprint database. However, multipath fading limits the accuracy and robustness of

this CSI amplitudes approach. The CSI phase is combined with its amplitude to im-

prove performance. FIFS [33] and CSI-MIMO [34] utilize both the CSI amplitude and

phase as fingerprints and adopt a probabilistic model to determine the target location

without proper phase calibration. To compensate for the phase offset caused by the lack
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of synchronization between the transmitter and receiver, PinLoc [35], and DeepFi [36]

use linear transformation to calibrate the CSI phase. A phase sanitization method is

also proposed in PhaseFi [37] to reduce the randomness of the CSI phase. However, the

phase offset keeps shifting due to dynamic environmental changes, such as temperature

fluctuation and the presence of obstacles.

In this paper, a novel dynamic phase calibration method is proposed to reduce the

fingerprint noise and improve the accuracy of CSI fingerprint-based indoor positioning

systems. A machine learning algorithm is employed to estimate the target’s position.

For both the offline and the online stage, the raw CSI phase of each OFDM subcarrier is

extracted from a multiple-antenna wireless network using modified firmware on two access

points. Then, the extracted phase information is processed with the conventional phase

calibration method explained in [37]. This linear transformation method eliminates the

phase errors produced on the transmitter and the receiver. To reduce phase errors from

environmental changes and object movements, a dynamic phase calibration is introduced

to adaptively compensate the offset by tracking the anomalous phase difference between

both the CSI sample and the neighboring OFDM subcarrier. For the offline stage, the

processed phase information is used to train a 1D convolutional neural network (CNN)

with long short-term memory (LSTM) to establish the mapping between the fingerprint

database and the corresponding position in the test site. During the online stage, the

calibrated CSI phase information is processed through continuous signal measurement.

The neural network estimates from the calibrated CSI phase information and provides a

prediction of the target’s position.



27

3.2 Preliminary

OFDM is commonly used in a variety of communication protocols, including the WiFi

standards. In OFDM schemes, data is transmitted and received over multiple orthogonal

subcarriers with different frequency spacing. A block diagram of an OFDM system

consisting of a transmitter and a receiver is shown in Fig. 3.1. At the transmitter,

input data is modulated and mapped to multiple subcarriers. The inverse fast Fourier

transform (IFFT) is performed on each subcarrier, and a cyclic prefix is added to the

digital data. Data is then converted by a digital-to-analog converter (DAC) and up-

converted to the carrier frequency. At the receiver, the inverse process is performed to

recover the data. Before the signal demodulation, the equalization process is conducted

to compensate for amplitude attenuation and phase error. During this process, the

instantaneous CSI is measured by the receiver. Therefore, CSI measurements are available

for extraction without any computational overhead. At the subcarrier level, the CSI

provides fine-grained information about channel conditions such as scattering, fading,

and delay parameters.

A WiFi channel can be described in a flat fading model, which is

y = Hx + n, (3.1)

where y, x and n represent the received signal vector, the transmitted signal vector, and

the additive white Gaussian noise (AWGN) vector, respectively. In a MIMO-OFDM

system, H ∈ CM×N×K denotes the channel matrix, where M and N are the numbers of

transmitter and receiver antennas, and K is the total number of subcarriers. H represents
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Figure 3.1: Block diagram of an OFDM transmitter and receiver.
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the CSI over K subcarriers that is given as

H = [H1, H2, . . . ,HK ]T . (3.2)

For M ×N MIMO antenna streams, let Hk defines the CSI matrix of the k-th subcarrier.

It can be written as

Hk =



h11 h12 · · · h1n

h21 h22 · · · h2n

. . . . . . · · · . . .

hm1 hm2 · · · hMN


, (3.3)

where hmn is a complex number representing the CSI of the m-th transmitter and the

n-th receiver antenna stream. hmn is defined as hmn = |hmn| exp (j∠hmn), where |hmn|

and ∠hmn are the amplitude and phase.

3.3 System configuration

In this section, we describe the architecture and the phase calibration process of the

proposed system.

3.3.1 System Architecture

The architecture of the proposed system is depicted in Fig. 3.2. As seen, the CSI is ex-

tracted with the commodity WiFi devices. Two TL-WR2543 access points manufactured

by TP-Link are used as the transmitter and the receiver.
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Figure 3.2: Architecture of the proposed system.
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Each access point has a built-in Atheros network interface card (NIC). The access

point can obtain the CSI with modified OpenWrt firmware released by the Atheros CSI

Tool [38]. Both access points are remotely controlled to process the data. The system is

configured as a 1 × 3 MIMO, with one transmitter and three receiver antennas.

In IEEE 802.11 WiFi protocol, there are 56 subcarriers for the 20 MHz bandwidth

and 114 subcarriers for the 40 MHz bandwidth channel, respectively. With the help

of the CSI toolkit, the Atheros NIC reports CSI from 56 available subcarriers in a 20

MHz channel [38]. The obtained CSI is represented as H ∈ C1×3×56. In total, 168 CSI

data points are collected from one received packet. Unlike RSSI, which only reports one

averaged value of each packet, CSI represents the channel response of each subcarrier,

which significantly improves the fine granularity of the data samples.

To use the phase information as the fingerprint, the phase pre-processing is conducted

on both offline and online stages for the deep learning process. Phase pre-processing

includes phase extraction and calibration. The steps of phase calibration comprise phase

unwrapping, phase offset estimation, and phase dynamic correction, which are explained

in the next section. The fingerprint features are obtained from the processed CSI phase

information and stored to train the neural network. In the neural network, the mapping

is established between the fingerprint database and the target location. During the online

stage, the real-time measurement of the CSI phase is calibrated and used as the input to

estimate the target’s position from the neural network.

3.3.2 CSI Phase Calibration and Feature Extraction

The purpose of the phase calibration procedure is to obtain a more reliable CSI phase

and reduce the fingerprint noise caused by the hardware and environmental fluctuation.
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The CSI phase measured by the NIC is wrapped, within the range of [−π, π], which

differs from the true phase by an integral multiple of 2π. The first step of phase calibration

is to unwrap the measured phase to restore the appropriate multiples of 2π. At the

moment of ε, for the k-th subcarrier, let ∆φε,k = φε,k+1 − φε,k represents the difference

between each of two neighboring subcarriers. The unwrapped phase θε,k+1 is calculated

through the following process:

θε,k+1 =


φε,k+1 − 2π, ∆φε,k > π

φε,k+1 + 2π, ∆φε,k < −π

φε,k+1, −π < ∆φε,k < π

. (3.4)

There are two primary sources of the phase errors from the hardware of a typical

OFDM system (Fig. 3.1). One is the carrier frequency offset (CFO) generated during the

down-conversion at the receiver. Errors can arise during this process when the central

frequencies between the transmitter and the receiver are not matched accurately due to

non-synchronized local oscillations. The CFO introduces phase errors for all measured

subcarriers, regardless of their subcarrier index. Another source of phase error is the

sampling frequency offset (SFO) generated by the analog-to-digital converter (ADC).

The SFO introduces a time delay, causing the CSI phase errors, which are proportional

to the subcarrier index. Thus, the raw CSI phase information has limited usefulness as

the fingerprint. The raw CSI must be calibrated before fingerprint information can be

extracted.

The measured CSI phase θε,k of the k-th subcarrier at ε moment can be expressed as

θε,k = ϕε,k + 2πIk

N
τε + βε, (3.5)-
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where ϕε,k represents the estimated CSI phase of k-th subcarrier at ε moment, Ik is the

subcarrier index, N is the fast Fourier transform (FFT) size, τε denotes a time delay

caused by SFO, and βε is an unknown phase offset from CFO.

The total number of OFDM subcarriers for the 20 MHz WiFi channel is K = 56.

To find ϕε,k via conventional phase calibration, let a and b be the linear transformation

coefficients that satisfy the following condition.

arg min
a,b

K∑
k=1

(θε,k − aIk − b)2 . (3.6)

Because the OFDM subcarrier is symmetric, in a simplified derivation [37], those coeffi-

cients can be defined as

a = θε,K − θε,1
IK − I1

,

b = 1
K

K∑
k=1

θε,k.

(3.7)

Fig. 3.3 shows a set of raw phases from 100 CSI measurements in blue squares and

the calibrated phase using the conventional linear transformation method in red dots.

This phase calibrated method is stable in a static environment. However, the phase

changes drastically in a dynamic environment with object movements. For example, in

a 2.4 GHz WiFi band, the phase cycles through a distance of its wavelength of 0.125 m.

The phase rotates when the object moves farther than the wavelength distance within

a short period. According to (4), during the phase unwrapping process, if the criteria

|∆φε,k| > π or |∆φε,k| < π is altered by the phase rotation, an error of |2π| will be

introduced. The phase difference can be used to overcome this problem. In the OFDM

scheme, the frequency spacing of other subcarriers is evenly distributed. With respect to
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Figure 3.3: Raw phase (blue) of 100 CSI measurements, same data after linear calibration
(red), and after dynamic calibration (yellow).
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the first subcarrier, the equivalent wavelength among those subcarriers becomes much

longer, which reduces the sensitivity to the object movement in a static environment.

Two metrics are defined: for the k-th subcarrier, 1) the phase difference between

neighboring subcarriers ∆ξk, and 2) the phase difference between adjacent CSI samples

∆ψk,
∆ξk = ϕε,k+1 − ϕε,k,

∆ψk = ϕε+∆t,k − ϕε,k,

(3.8)

where ε is the sampling time, and ∆t is the sampling interval. In our configuration,

the total number of subcarriers is K = 56. so the sets of those phase differences are

Ξε = {∆ξ1,∆ξ2, · · · ,∆ξK−1} and Ψε = {∆ψ1,∆ψ2, · · · ,∆ψK}.

To identity any error of |2π| occurred during phase unwrapping, ∆ξk is smoothed by

the following condition:

∆ξk =

 ∆ξk, |∆ξk| < σ| max(Ξ)|

∆ξ′
k, otherwise

, (3.9)

where ∆ξ′
k = avg(Ξ) + (1 − δ)∆ξk, δ is the correction factor, and σ defines a threshold

of the maximum value. Then, the smoothed ∆ξk is then added back to restore the

calibrated phase ϕε,k+1.

The received data samples are in a sequence of transmitted packets. In consonance
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with (5) and (8), the phase difference between measured CSI samples is described as

∆θk = θε+∆t,k − θε,k

= (ϕε+∆t,k − ϕε,k) + 2πIk

N
(τε+∆t − τε)

+ (βε+∆t − βε)

= ∆ψk + 2πIk

N
∆τk + ∆βk,

(3.10)

which holds the corresponding phase difference of all the subcarriers between the previous

and current packets with ∆t interval. In the ideal case, at the packet transmitting interval

of a few hundredths of a second, the variation of ∆τj and ∆βj are minimal, while the

phase from the adjacent CSI sample follows a relatively similar trend. Thus, ∆ψk fits

within a small number of phase differences. However, the environment can have a severe

impact from one moment to another, which causes phase errors during unwrapping. To

mitigate the impact of uncertain phase rotation in equation (10), the slope and intercept

point (a′, b′) can be solved by satisfying this condition:

arg min
a′,b′

K∑
k=1

(
∆θk − a′Ik − b′)2

. (3.11)

After linear transformation, the slope a′ indicates the variation of ∆ψk. Define a confident

interval η for slope a′, when a′ out of the range of η, the measured phase θε+1,k that

contains the corresponding ∆ψk is discarded.

Once each measured CSI phase has been updated by the aforementioned phase correc-

tion process, a and b can be derived from (6).An example of dynamic phase calibration

results is shown in Fig. 3.3 as the yellow circles. Depends on the testing environment,

the value of δ and η are optimized and maintained in a database as part of the fingerprint.
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The adaptively calibrated phase information is stored in the database for neural network

training.

3.3.3 Neural Network Model

The neural network includes the input layer, the 1-D convolutional neural network (CNN)

layers, the long short-term memory (LSTM) layers, the fully connected linear layer, and

the output layer. They are X × Y positions corresponding to the location grid on the

floor, where X and Y are the numbers of grids on the horizontal and vertical axis. The

input is a matrix ϕε ∈ CM×N×K that consist of the CSI phase information, where M

and N are the numbers of transmitter and receiver antennas, and K is the number of

subcarriers. The convolutional layer acts as a low-level feature extractor, which is applied

to reduce the data size and computational complexity. After the convolutional layer, the

LSTM and linear layers are used for better network expressiveness of the sequential data.

The neural network is trained by phase information that is labeled with grid index,

and using stochastic gradient descent with the negative log likelihood (NLL) loss function

shown in (12).

Loss = −
P∑

i=0

Q∑
j=0

ti,j ln (Ti,j) , (3.12)

where P is the batch size of the stochastic gradient descent and Q is the number of

classifiers. ti,j and Ti,j are the ground truth vector and predicted vector of the probability

distribution. The number of epochs impacts the performance of the network model,

respectively. An epoch is selected from the best validation results before overfitting

occurs. The system predicts the result by finding the class with the greatest softmax

output.
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Figure 3.5: MoE prediction rate per grid by different phase dataset: (a) dataset # 1:
Unwrapped raw phase. (b) dataset # 2: Conventionally calibrated phase (c) dataset #
3: Dynamically calibrated phase.
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Figure 3.4: Testsite topology: transmitter, receiver, and floor grid placement.
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Table 3.1: Prediction rate and position error across datasets.
Data #1 Data #2 Data #3

Predicted rate (%) 60.1 75.2 88.4
Averaged error (m) 2.35 1.69 1.33

3.4 Experiments

Fig. 3.4 shows the setup of the experiment system. The testing field is a 7 m × 6 m area

with the grids marked on the floor. Each grid is approximately 0.6 m × 0.6 m. A total

of 15 grids (rendered as a darker blue area in Fig. 3.4) in the central area comprise the

core testing site to evaluate the system performance. The light blue areas are secondary

areas for analyzing positioning errors.

The transmitter and receiver are placed on the short sides of the testing field. They are

set 5 m apart and directly facing each other. The transmitter and receiver are mounted

on a platform that is 1.2 m above the floor. A person moves among the center of each grid

to gather the data at each location. Position performance is analyzed by the successful

prediction rates and failure prediction rates with a margin of error (MoE) model. The

MoE model considers any predicted grid that lands on a surrounding grid as a successful

prediction. Grids that are close to the ground truth are more likely to be predicted as

being occupied. Even without a defined explicit distance metric in the loss function, the

network model learns features relevant to the regions of interest. The results include both

successful prediction and failure prediction are adopted to evaluate positioning accuracy.

The position error is calculated by averaging the distance between the predicted grid and

the actual grid, regardless of the MoE model.

The system is evaluated from three different sets of fingerprints: the unwrapped raw

phase, the conventional linear fitted phase, and the dynamically calibrated phase. The

heat map shown in Fig. 3.5 suggests that the proposed phase calibration method has a
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higher overall success rate than the conventional linear calibration and non-calibration

methods. Within the test site, the successful prediction rate is highest in the central

area and gradually degrades to the corners. Table I compares the overall prediction rates

and average position errors across three datasets. The dynamic calibrated CSI phase

reaches an 88.4% successful rate, while the prediction rates of the unwrapped raw CSI

phase and the linear calibrated phase are 60.1% and 75.2%, respectively. The average

position errors of those three datasets are 2.35 m, 1.69 m, and 1.33 m. Comparing to

the conventional linear transformation method, the proposed phase calibration method

improves the prediction rate by 13.2% and reduces the average position error from 1.69

m to 1.33 m by 21.3% .

3.5 Conclusions

In this paper, two commodity wireless access points with built-in Atheros NIC were

utilized for CSI phase extraction. A novel phase calibration method was proposed,

which introduced two phase correction factors to improve the phase calibration process

dynamically. A multi-layer neural network was trained to estimate the target’s position.

The results where evaluate both the prediction rate in an MoE model and the average

position error illustrated that the use of the conventional linear transformation calibration

method was suffered from a drop in prediction rate and, therefore, a lower position

accuracy. For the CSI-based positioning system, the proposed method outperformed the

conventional linear transformation calibration method by 13.2% higher prediction rate

and reduces the average position error 21.3%.
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Chapter 4: WiFi-based Environment Adaptive Positioning with

Transferable Fingerprint Features

Abstract: Channel state information (CSI)-based fingerprint approach for WiFi-based in-

door localization has attracted a lot of attention recently. The fine-grained CSI represents

the location-dependent channel characteristics more effectively than the coarse-grained

received signal strength indicator (RSSI). However, the CSI fingerprints can deviate dras-

tically with environmental variations. Consequently, the CSI-based fingerprint positioning

models need to be adapted for different environments and/or updated over time, which is

time-consuming and labor-intensive in practice. In this paper, an environment-adaptive

positioning system is proposed to transfer the fingerprint features that significantly reduce

reconstructing the fingerprint database. A CSI extraction platform is developed based

on the modified OpenWrt firmware, enabling access to CSI measurements on commod-

ity WiFi devices. To transfer the fingerprint features, a domain adaptation approach

is proposed to reconstruct the CSI fingerprint database from the existing fingerprints

with a limited number of new measurements. Experiments are conducted in several

real-world test sites, including the laboratory and the lounge, with environmental change.

The results show that the performance of the proposed system is promising in terms of

localization accuracy and adaptation efficiency.
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4.1 Introduction

With the rapid development of mobile devices and smart applications, location-based

services (LBS) have become essential in many fields, including route guidance, geolocation

social media, and mobile advertising. Because a lot of the mobile devices are operated

in indoor environments, many LBSs need indoor positioning solutions [20, 24, 25] to

acquire the object location, which has created extensive research interest. Most indoor

positioning solutions are based on radio frequency (RF) signals that are enabled by

either dedicated tags like Bluetooth and radio-frequency identification (RFID), WiFi

infrastructure [39] or transmitters such as ultra-wideband (UWB) [40, 41]. In both cases,

fingerprint-based approaches play an important role in indoor positioning systems [42][26].

Such systems do not require the physical attachment of any device on the object. The

basic principle of the fingerprint approach is to find an object location by comparing the

signal pattern between the transmitter and receiver to a pre-defined fingerprint database

of that pattern. Generally, the fingerprints used to represent the signal pattern are

received signal strength indicator (RSSI) and channel state information (CSI). Most of

the proposed indoor positioning fingerprinting approaches use WiFi as their RF signal

source because WiFi is widely available in buildings and enabled on most smart devices.

Moreover, the WiFi-based systems can be deployed without the installation of any other

dedicated infrastructures. In some approaches, RSSI is commonly used as the fingerprint

due to its simple nature [26] [27]. However, RSSI measures the average amplitude of

the received data and, therefore, only provides coarse-grained channel information. In

contrast, the CSI contains both amplitude and phase information measured on each

orthogonal frequency-division multiplexing (OFDM) subcarrier. In previous studies,

access to fine-grained CSI has been enabled through the use of modified firmware on
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commodity WiFi hardware[29, 43, 44]. For CSI, the finer granularity and less sensitivity

to background noise and environmental changes make it a better choice for fingerprint

features. Researchers have increasingly focused their attention on CSI rather than RSSI

when developing WiFi-based fingerprinting systems [4].

One of the significant challenges of CSI-based systems is improving their robustness

against environmental changes. Many applications have been developed using CSI, but

they have not considered the impact of environmental changes [45] [46]. The CSI describes

the signal propagation through multipath channels between the transmitter and receiver.

Due to reflection, diffraction, or scattering, environmental variations change the multipath

dynamic and lead to a biased distribution of the CSI fingerprint. Any change in the

environment, such as object movement or a rearranged setup, can cause a drastic deviation

of the real-time CSI measurements from the previously collected fingerprint, resulting in

a performance drop. The fingerprint database generated at a particular time in one area

cannot serve as a useful reference for consistent positioning in long-term deployments or

other test fields. This lack of robustness tends to degrade the reliability of such systems,

especially CSI-based systems dependent on machine learning algorithms to exploit the

fingerprint database [47–49]. In these cases, the database reconstruction of the whole

area is required, which is time-consuming and labor-intensive. In practice, it becomes

infeasible to rebuild the database and retrain the neural networks for the entire region

of interest over different times.

In this paper, a domain adaptation method is proposed, which generalizes the use

of CSI fingerprinting to work adaptively in dynamic environments. The WiFi-based

positioning system consists of the positioning models and the transfer learning models

with the adaptive neural network. A CSI-enabled platform is developed to access the

CSI directly from the commodity WiFi devices, rather than using the computer as a



46

receiver for CSI extraction. In the hardware, the non-synchronized local oscillations

between the transmitter and receiver, as well as sampling frequency shift during analog-

to-digital conversion, result in time-variant random phase offsets of the CSI. To overcome

this problem, a phase calibration scheme is adopted to sanitize the raw CSI data. The

sanitized CSI data preserves the position-related characteristics while removing the phase

offset from the hardware imperfections. Instead of CSI phases, the CSI phase differences

across each subcarrier are utilized to generate the fingerprint database. The positioning

model includes a neural network and an adaptation model. A discrepancy exists in the

position feature distribution between the source domain (training site) and the target

domain (untrained site) due to environmental divergence, and the neural networks can

learn transferable features for domain adaptation [50]. To transfer the fingerprint features

to the target domain, the proposed system aims to map the source domain and the target

domains as a common space and uses the CSI fingerprints from the source domain with

a few supplementary fingerprints from the target domain to minimize the disparities

between the two domains. As a result, with the help of transferring the position features

from the source site, the positioning system predicts the location of the object at the

target site with a limited number of fingerprint reconstructions.

The rest of the paper is organized as follows. Section II summarizes the background

and related work. Section III introduces the detailed framework design of the proposed

system. Section IV explains the experiment procedure and presents the results and

analysis. Section V concludes the paper.
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4.2 Related Work and Background

4.2.1 Related Work

Various approaches are proposed in the previous studies to address the challenges of using

indoor positioning systems in a dynamic environment. Some non-learning based methods

use the signal propagation metrics such as the Doppler shifts and angle of arrival (AoA)

to reduce environmental impact. In [51], to find the subcarriers affected by multipath

signals, multiple transceivers are used to model the channel fading profile from the CSI

measurements. A probabilistic model of spatial Doppler and AoA information is proposed

in [52], which obtains the Doppler velocity from CSI and combines with the AoA to track

the object location. Multiple receivers are used to estimate the object trajectory, which

derive Doppler velocity and AoA from the CSI measurements simultaneously [53].

Other works rely on machine learning methods to fully exploit the channel information

for measurements. An environment-independent localization approach is introduced in

[54], which uses the fingerprints from multiple antennas to train the model and revise

the values affected by environmental variations. In [55], a neural network is employed

to train a model that provides training samples for each target domain from the source

domain. However, machine learning algorithms are frequently restricted by the number

of data points that need to be learned. Lack of sufficient input data limits the ability to

gain accurate knowledge. To mitigate this issue, transfer learning aims to gain knowledge

from one problem and apply it to another related problem with only a limited number

of known data.
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4.2.2 Transfer Learning

In general, transfer learning contains two domains: a source domain and a target domain

denoted by Ds and Dt, respectively [56]. The process of transferring the information

from the source domain Ds to the target domain Dt is to minimize the difference of

probability distribution between the source data and target data. Dynamic environment

positioning is one of the applications using transfer learning. The knowledge obtained

from CSI fingerprints in one location can be used to construct a prediction model in

another location. This transfer learning process is called domain adaptation, which

reduces the difference of feature distribution between the source and target and lowering

the risk of overfitting the model.

4.2.3 Channel State Information

Modern commodity WiFi devices with a built-in network interface card (NIC) are

equipped with multiple antennas for multiple-input and multiple-output (MIMO) com-

munication systems. The instantaneous CSI is estimated by the NIC for each OFDM

subcarrier. In time domain, the channel impulse response (CIR) of WiFi is described as,

h(τ) =
P∑

p=1
ap exp (jθp) δ (τ − τp) , (4.1)

where P indicates the total number of paths, ap, θp, and τp represent the amplitude,

phase, and propagation delay of the pth path, respectively, and δ(τ) is the Dirac delta

function. In the frequency domain, the CSI of all OFDM subcarriers are calculated by
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the receiver as the complex values, which can be represented as

h = |h| exp (j∠h) , (4.2)

where |h| and ∠h represent the amplitude and phase, respectively. Note that, a matrix

of h is contained in the CSI sample H ∈ CM×N×S , where M , N , and S are the number

of transmitter antennas, the number of receiver antennas, and the number of OFDM

subcarriers, respectively.

4.3 System Design

4.3.1 CSI enabled Platform

Most existing CSI-based systems adopt the Intel IWL5300 NIC tool to extract the CSI

data from a computer that equips with external WiFi NIC cards [43]. However, the driver

of the Intel IWL5300 NIC tool kit is proprietary and does not allow modification, and

the IWL5300 NIC tool only reports 30 out of 56 subcarriers for the 20MHz WiFi channel.

Moreover, the external NIC limits the usage of this tool for portable and large-scale

applications.

To overcome these problems, a CSI-enabled platform is developed in which the CSI

measurements are directly extracted from the commodity WiFi devices. In our case,

instead of the Intel IWL5300 NIC, two TP-Link access points are used, and each access

point has a built-in Atheros NIC. The access points are flashed with OpenWrt firmware,

which is a Linux-based open-source operating system designed for wireless routers and

access points. Then, a revised version of OpenWrt is modified based on the Atheros CSI
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Tool [44]. The platform reports CSI data on all the available subcarriers and therefore

provides more enriched information than the IWL5300 CSI tools. For the 20 MHz WiFi

channel, each transmitter and receiver antenna stream produces 56 CSI measurements.

4.3.2 Neural Networks

To apply domain adaptation, the probability distributions of the CSI fingerprints in both

the source and the target domains need to be unified by mapping them into a common

space. Thus, the positioning model using the CSI fingerprints for the target domain

can be generated from both the source and the target domains. A neural network is

built to accomplish the mapping. The input of the neural network is the CSI fingerprint

database from the source and the target domains, and the output is the transferable

features of the fingerprints in the common space. The goal is to minimize the divergence

of the probability distributions of the mapped fingerprints between the source and the

target domains. During CSI preprocessing, the CSI fingerprints are collected at each

location, and a phase calibration scheme is applied to sanitize the raw CSI data. The

phase offset of the CSI is calculated through a phase calibration method to remove phase

errors and fingerprint noise. The preprocessed CSI fingerprints are used for both the

offline training and the online testing step. For the offline training step, a fusion of

one-dimensional convolutional neural network (CNN) and the long-short-term-memory

(LSTM) is employed as the source positioning model that establishes the correlation

between CSI fingerprints and location grids. Then, the CNN-LSTM network is trained

using the CSI fingerprints labeled with the grid index of each location. During the online

step, the real-time CSI measurements are preprocessed and input into the CNN-LSTM

model, which predicts the object position. The source positioning model has one input
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layer and one output layer, along with fully connected layers between the 1D-convolutional

layer and LSTM layers.

4.3.3 Domain Adaptation Networks

The purpose of domain adaptation is to reduce the feature distribution difference be-

tween the source and target domain. The Euclidean distance is used to evaluate the

distribution discrepancy of CSI fingerprints. Define Ds = (ds
i , g

s
i ) and Dt =

(
dt

j , g
t
j

)
as the fingerprint datasets of the source domain and target domain, where ds

i and dt
j

represent the fingerprint features of CSI, gs
i and gt

j represent the labels of the location

grids, in which i = 1, 2, · · · , Ns and j = 1, 2, · · · , Nt. The numbers of training samples

of the source domain Ns and the target domain Nt satisfy this criteria Ns ≫ Nt. The

source domain fingerprint dataset Ds is used to train the source positioning model. The

loss function LP of the positioning model is defined as the mean distance error between

the actual grid and the predicted grid as

LP = 1
Ns

Ns∑
i=1

fD (fE (ds
i ) , gs

i )

= 1
Ns

Ns∑
i=1

√
(x̂s

i − xs
i )2 + (ŷs

i − ys
i )2,

(4.3)

where fD(·, ·) represents the Euclidean distance function, fE(·) is the position estimation

function, (xs
i , y

s
i ) and (x̂s

i , ŷ
s
i ) are the coordinates of the actual grid and the predicted

grid of the ith data point, respectively.

To match the probability distributions of CSI fingerprints between the source and the

target domains, a domain adaptation model is proposed to map the CSI fingerprints. The
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Euclidean distance is utilized to evaluate the training process of the domain adaptation

model. The object is to map the CSI fingerprints of the probability distributions between

the source domain and the target domain with minimized Euclidean distance. To train

the adaptive model, a small portion of data samples are randomly selected from both the

source and the target training datasets. Assume the number of selected location grids is

M , and the number of the fingerprint data points from each grid is N , the loss function

LD of the domain adaptation model is defined as

LD = 1
MN

M∑
m=1

N∑
n=1

fD

(
fM

(
ds

m,n

)
, fM

(
dt

m,n

))
, (4.4)

where fM (·) is the mapping function of the domain adaptation model, ds
m,n and dt

m,n are

the nth fingerprint of the mth location picked from the source and the target training

dataset. The domain adaptation network contains a combination of the source positioning

model and the domain adaptation model.

When the input is the dataset from the source domain, the adaptive network estimates

the object position and behaves as the positioning model fE(·) that is trained to minimize

the localization loss LP as described in (3). Otherwise, when using the selected data from

both the source and the target domains, instead of exporting the estimated position, the

adaptive network serves as the domain adaptation model fM (·) to minimize the domain

loss LD expressed in (4). By connecting the positioning and domain adaptation, the

objective is to train both models as one system that minimizes both the localization loss

LP and the domain loss LD. The domain adaptation network is established when the

---
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total loss L reaches its minimal, where

L = LP + LD = 1
Ns

Ns∑
i=1

fD (fE (ds
i ) , gs

i ) +

1
MN

M∑
m=1

N∑
n=1

fD

(
fM

(
ds

m,n

)
, fM

(
dt

m,n

))
.

(4.5)

To validate whether the CSI fingerprint fits the current domain, a domain discrimina-

tor is designed using a similarity checking model. The presence of a significant mismatch

in the discriminator indicates a significant event of environmental change. When those

events occur, a new target domain is created, and additional training data are requested

from the target domain to conduct the adaptation process.

4.4 Experiment and Evaluation

4.4.1 System Setup

The hardware setup consists of two TP-Link TL-WR2543 wireless routers, which are set

as access points. Each of the access points is equipped with an Atheros AR9380 NIC

that is compatible with the modified OpenWrt firmware. One access point operates as

the transmitter with one transmitter antenna. Another access point, with three receiver

antennas, operates as the receiver to extract the real-time CSI measurements. A laptop

connected to both access points controls the transmitted data sequence on the transmitter

and retrieves the recorded CSI from the receiver. Both NICs are configured to operate

on a 2.4 GHz WiFi channel with 20 MHz bandwidth. The packet transmitting rate is

set at 100 packet/second. The sampling rate on the receiver is set accordingly. In the

case of a packet loss, the CSI is padded with interpolation to ensure stable CSI data
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Figure 4.1: Topology of the test site: the laboratory (left) and the lounge (right).
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for fingerprint feature extraction. The gathered CSI data are transferred to another

computer for backend processing, which has an Intel Core i7-9700k CPU with 16 GB

RAM and a discrete Nvidia RTX GPU.

As shown in Fig. 4.1, the experiments are conducted in two different rooms, a

laboratory (10m× 10m) and a lounge (12m× 5m). The laboratory has metal cabinets

and other testing equipment, and the lounge has few pieces of furniture. A 5m× 5m test

site is located in each room. Each test site has grids marked on the floor, and each grid

is about 0.6m × 0.6m. The transmitter and receiver are placed 5m apart and directly

facing each other. In each room, the CSI is measured when a person stands at the center

of each grid. Extra datasets are captured during different times of the day to validate

the environment dynamics. Additional datasets are gathered to recalibrate the database

when the discriminator indicates significant environmental changes.

4.4.2 Performance within Same Room

The system performance is evaluated by execution time, including the initial training

time and the adaptation training time. The initial training time consists of the training

data collection time and the positioning model training time. The adaptation time

includes the time it takes to collect recalibration data, and the time it takes to train the

adaptation model. The execution times for both test sites are shown in Table I. Because

both test sites have a similar size and room setup, these execution times are very close

during both the initializing and recalibration processes. The positioning performance is

calculated based on the successful prediction rates for each location. In addition to the

direct match, a margin of error (MoE) model is applied, which considers any predicted

position that lands on a surrounding grid as a successful prediction. As shown in Table
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Figure 4.2: Obstacle present at the test site of the laboratory.
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Table 4.1: Predicted rate and averaged error within the same room.
Lab Lab (w/ table) Lounge

Predicted rate (%) 84.3 77.2 91.7
Averaged error (m) 1.51 1.77 1.26

Table 4.2: Predicted rate and averaged error across two rooms.
Lounge to Lab Lab to Lounge

Predicted rate (%) 60.2 63.5
Averaged error (m) 2.37 2.16

4.1, the average prediction rates for the laboratory and lounge are 84.3% and 91.7%,

and the averaged errors are 1.51m and 1.26m, respectively. In the lounge, the decreased

number of furniture and equipment causes fewer multipath reflections, which relates to

a 7.4% positioning prediction increase.

Additionally, to evaluate the system performance with room setup changes, a folding

table as an obstacle with the height of 1.8m and the width of 1.5m, is placed at the

side of the test site in the laboratory (Fig. 4.2). The domain discriminator does not

consider this change as a new target domain and does not request recalibration data.

The positioning estimation is completed with a successful prediction rate of 77.2%. The

presence of the obstacle in the laboratory decreases the prediction rate by 7.1%, and the

averaged estimation error drops from 1.51m to 1.77m.

Table 4.3: Execution time of both training and adaptation process.
Training Time (s) Adaptation Time (s)

Collection Modeling Collection Modeling
Lab 5070 1100 1360 1900

Lounge 4850 1050 1270 1880

I I I 

I I 

I I 
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4.4.3 Performance across Two Rooms

In this part of the experiment, the system performance is evaluated across two rooms.

First, the data from the lounge is selected as the source domain for training and uses

the laboratory as the target. The position estimation is conducted at the laboratory.

Then, the roles of the lounge and laboratory are switched for the source domain and

target domain, and the same procedure is done in the lounge. To accommodate the

environmental dynamics from one room to another, domain adaptation is performed to

save time and labor. The transferable features from the fingerprint database are adopted

from one room and applied to another. For both scenarios, the domain discriminator

detects a new target domain, and additional data are fulfilled.

As shown in Table 4.2, the successful prediction rates for these two scenarios are

60.2% and 63.5%, and the averaged errors are 2.37m and 2.16m, respectively. Comparing

the system performance degradation between Table 4.1 and Table 4.2, adapting the

fingerprint features from the lounge to the laboratory brings a 24.1% predicted rate drop,

and it is 28.2% when adapting the fingerprint features from the laboratory to the lounge.

The 4.1% difference indicates that the fingerprints of the lounge contain more transferable

features than the laboratory.

As shown in Table 4.3, the initialization of gathering a new set of fingerprints through

data collection and training is extremely time-consuming and labor-intensive. In the

laboratory, compared to the initialization data collection (5070 seconds) and training

time (1100 seconds), the recalibration process of the adaptation uses a total of 3260

seconds, which is 52.8% of the initial execution time. Similarly, it saves 46.7% of the

execution time in the lounge. For the recalibration process, the time difference between

the conventional and adaptive method is 2750 seconds.
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4.5 Conclusions

In this paper, a novel domain adaptation scheme was proposed to estimate the position

of an object in different environments. A WiFi-based platform was developed to access

the real-time CSI through specialized OpenWrt firmware. A neural network model was

designed for positioning and domain adaptation purposes. The model was trained by

labeled CSI fingerprints from the source domain. Then, the transferable features of the

CSI fingerprint between the source and the target domains are mapped into a common

space during the domain adaptation process. A discriminator was utilized to detect

the environmental changes and request a supplemental training set to recalibrate the

adaptation process. The results showed the system adapted to environmental changes

within the same test site when a large obstacle was blocking the area. Although it came

at the cost of a lower predicted rate and positioning accuracy, with additional adaptation

data, the system was able to transfer the feature knowledge from one room to another.
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Chapter 5: Impacts of High dose 3.5 GHz Cellphone Radio Frequency

on Zebrafish Embryonic Development

Abstract: The rapid deployment of 5G spectrum by the telecommunication industry is

intended to promote better connectivity and data integration among various industries.

However, since exposures to radio frequency radiations (RFR) greater than 2.4 GHz

are still uncommon, concerns about their potential health impacts are ongoing. In this

study, we used the embryonic zebrafish model to assess the impacts of a 3.5 GHz RFR

on biology - a frequency typically used by 5G-enabled cell phones and lies within the

4G and 5G bandwidth. We established a plate-based exposure setup for RFRs, exposed

developing zebrafish to 3.5 GHz RFR, specific absorption rate (SAR) ≈ 8.27 W/Kg

from 6 h post fertilization (hpf) to 48 hpf, and measured a battery of morphological and

behavioral endpoints at 120 hpf. Our results revealed no significant impacts on mortality,

morphology or photomotor response and a modest inhibition of startle response suggesting

some levels of sensorimotor disruptions. This suggests that the cell phone radiations at

low GHz-level frequencies are likely benign, with subtle sensorimotor effects. Through

this assessment, we have established a robust setup for zebrafish RFR exposures readily

amenable to testing various powers and frequencies. Future developmental exposure

studies in zebrafish will evaluate a wider portion of the radio frequency spectrum to

discover the bioactive regions, the potential molecular targets of RFR and the potential

long-term effects on adult behavior.
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5.1 Introduction

The advancement of wireless communication technologies over the past decade provides

faster connectivity and more bandwidth to a wider population integrating commerce,

education, healthcare and consumer applications through interconnected devices. A recent

step forward is the 5th generation or 5G wireless technology, currently under a gradual

coverage schedule limited by the rate at which necessary infrastructure upgrades can be

deployed. The 5G spectrum will cover radio frequencies from < 1 GHz to microwave

frequencies up 300 GHz; part of these frequencies (< 5 GHz) overlap with existing 4G

LTE and WiFi spectrums. Low band spectrums (< 1 GHz) will enable connection to

remote areas, whereas mid-band (1–6 GHz) and the spectrum range (> 24 GHz) will

ensure better and wider connectivity to individual devices as well as device-to-device

connectivity through the Internet of Things (IoT) [57, 58]. As we move to higher spectrum

ranges transmitted among our devices, the potential for health effects from higher radio

frequency radiation (RFR) should be examined.

Although no part of the radio or microwave range constitutes ionizing radiation,

several studies have associated RFR exposures with adverse health effects such as neu-

ropsychiatric problems, carcinogenicity, neurodegenerative diseases, genotoxicity, lowered

sperm quality and impacts on the circulatory, immune, endocrine and skeletal systems

[59–62]. Some of these effects are almost certainly thermal in origin, resulting from tissue

absorption of higher energy photons with increasing frequency [61, 63]. Thermal effects

are readily sensed and easily mitigated, and the ability of RFR to penetrate tissue declines

linearly with increasing frequency [64]. Despite many efforts, RFR impacts on biology by

non-thermal mechanism(s) remain poorly established, but not yet discountable either.

The impact of RFR on developmental health, in particular, needs better assessment.
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Developmental stages are the most sensitive to external stressors because the full reper-

toire of biological targets and molecular processes are operational during organogenesis.

Embryonic development thus represents the ideal biological window to determine whether

external stressors can interact with and perturb biological functions. Subtle adverse ef-

fects on development can also have long term consequences. Recently, the National

Toxicology Program conducted a chronic 2-year study on the effects of relatively high

dose RFR on carcinogenesis in rats (900 MHz exposure; up to a specific absorption

rate (SAR) of 6 W/kg and mice (1900 MHz exposure; up to SAR of 10 W/kg), with

RFR exposures beginning in utero during the prenatal phase of the test animals. For

comparison, the basic limits for human whole-body exposure in terms of SAR are 0.4

W/kg in occupational settings and 0.08 W/kg for general public exposure [65]. The

study revealed reduced body weight of both male and female pups and low but significant

incidences of malignant gliomas in the brain and schwannomas in the heart of male rats

[66]. Follow-up assessments from this study revealed significant DNA damage in the

brain and peripheral blood leukocytes of rats and mice [67]. This, and a limited number

of other mammal-based studies [61] suggest that developmental exposures to RFR can

result in adverse effects. However, there also exists evidence to the contrary, with several

epidemiological studies suggesting a lack of effects unequivocally attributable to RFR

exposure [68]. Most of the published RFR studies are based on previous generations of

telecommunication RFRs. With the advent of 5G RFR exposures from mobile phones and

other near proximity devices such as Wi-Fi routers and IoT appliances, public concerns

about the safety of these high frequency exposures is likely to increase. This will also

lead to a plethora of pseudoscience and well-meaning but poorly informed opinion. Thus,

good science in the form of carefully controlled studies aimed at non-thermal effects and

mechanisms of higher frequency RFR exposures are necessary and timely.
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Since RFR exposures are not chemical in nature, the potential biological mechanisms

and targets are expected to be very different from what we are more familiar with, but also

readily translatable. For example, chemical receptor mechanisms with species-specific

variation in receptor structure or downstream signaling processes may limit the translation

of toxicological data across species. Because RFR exposures are electromagnetic radiation,

one would expect non-thermal toxicological results, if they exist, to also be operant in

humans. In this study, we used zebrafish as a surrogate model to study how RFRs might

affect early development. Zebrafish constitutes an ideal model for this study since 1)

they undergo rapid development, accomplishing primary organogenesis within 48 h post

fertilization, 2) their ex utero development greatly facilitates monitoring abnormalities

and examination of temporal windows of sensitivity to a stressor 3) RFR exposures of

hundreds of embryos can be done uniformly in a multi-well plate inside a small Faraday

cage built for contained RFR exposures [69]. Previous studies have assessed the effects

of RFR on adult zebrafish. In one study, 2300 MHz 4G RFR (estimated SAR of 0.004

W/Kg) exposure from close proximity to a mobile phone was associated with altered

patterns of locomotor activity that were dependent on both time of exposure (morning

vs. evening) and duration of exposure, suggesting that RFR affected circadian rhythm

[70]. In another study, a 14-day exposure to RFR from a mobile phone emitting 900

MHz (estimated SAR of 0.004 W/Kg) by playing 1 h of music daily via a call from

another phone resulted in neurobehavioral and social deficits in adult fish; these effects

were also associated with oxidative stress in brain tissues [71]. Overall, these studies

suggested that relatively low dose RFR exposures altered neurobehavioral patterns in

adult zebrafish. To our knowledge, only one study assessed the effects of developmental

RFR exposures in zebrafish where exposure to 100 MHz RFR (SAR ≈ 0.04 W/Kg) from

0 to 72 h post fertilization (hpf) was associated with reduced growth, oxidative stress,
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increased apoptosis and altered cholesterol path- way [72]. This suggests that vertebrate

development may be impacted by RFR and that more research is needed to discover

the developmental effects and targets of RFR. The advantages of the zebrafish model

should enable rapid study of developmental stage sensitivity to varying RFR frequency

and field strength, specifically GHz levels of RFR that define much of the existing and

proposed cellular frequency spectrums. To achieve this, we standardized a plate based

RFR exposure chamber and conducted a multi-part study assessing potential effects of

continuous developmental exposure to high dose 3.5 GHz RFR, SAR ≈ 8.27 W/Kg. We

used a trans- mission range of 60 mm through air and 5 mm through water. The 3.5 GHz

frequency has been allocated by the US Federal Communications Commission (FCC)

for wireless device manufacturers for the 5G spectrum [73] and is within a frequency

range used by 4G and 5G bandwidths. This manuscript reports the first part of this

systematic study where we used rapid screening to assess RFR-induced impacts on

embryonic development and early life stage behavior.

5.2 Materials and methods

5.2.1 RFR exposure setup

The exposure chambers (both for RFR exposure and sham control exposure) consisted

of in- house constructed 110 x 80 x 80 mm (L x W x H) Faraday cages made of 20-gauge

copper plate with a tight-fitting lid made of the same material. Electrical continuity

between the cage and lid was verified with an Ohm meter. The Faraday cages were sized

to accommodate a 6 well microtiter plate. The RFR exposure chamber lid was fitted

with a (model FR05-107) ultra-wide band, omnidirectional antenna with a 3.1–5 GHz
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frequency range, 84% aver- age efficiency, measuring 10 x 10 x 0.8 mm in dimensions. The

SMC bulkhead fitting at the antenna passed through the lid of the Faraday cage, insulated

from the copper with a nylon sleeve around the SMC barrel and nylon washers behind

the upper and lower mounting nuts. The Fractus antenna was thus centrally affixed

3 mm below the inside surface of the Faraday cage lid and was immobile. The sham

control chamber was identical to the RFR exposure chamber, but without an antenna

and served to shield against the impacts of background RFR present at the location of

the experiment.

Fig. 5.1A and 5.1B show our experimental setup for RFR exposure where the signal

was generated using a transmitter (Analog Devices, model ADRV9364-Z7020) connected

to a power amplifier (PA) (Mini-circuits ZHL-42+). Using a spectrum analyzer (Tek-

tronix RSA3408A) with a 30 dBm measurement threshold, we performed preliminary

assessments to measure the output from the PA. With a transmitter output of -9 dBm at

3.5 GHz, the PA output was 26.7 dBm. During our experiments, we set the transmitter

to an output of -6 dBm at 3.5 GHz and expected a PA output of 30–32 dBm signal

power. The amplified signal was administered to the zebrafish embryos via SMC cable

connection from the PA to antenna attached to the RFR chamber; the sham chamber

did not receive any signal.

The incident power density of the zebrafish embryo exposures, at the water surface,

was approximately 22 W/m2. This estimate considered the reported signal power, a 6

cm distance (≈ 0.2λ) from the antenna and unity gain at the antenna for use in the

equation:

PD = PoGtx

4πD2 (5.1)----
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Where: PD = W/m2;Po = output W from antenna; Gtx = antenna gain; D = distance

from the antenna in meters. Because of the high complexity in calculating the propagation

path loss in near-field propagation cases such as this, we believe that in our small volume,

highly reflective system, using the density equation provides sufficient insight.

To report the RFR exposures in more widely accepted health safety terms, we esti-

mated the specific absorption rate (SAR) to be 8.27 W/Kg. SAR is defined as the rate

at which RF energy is absorbed per unit mass, i.e., the ’dose rate’ in watts per kilogram

(W/kg) using the equation:

SAR = σE2

md
(5.2)

Where σ = conductivity of material (here zebrafish tissue, assumed isotonic with surround-

ing embryo medium which is approximately 1 Siemen/m conductivity); E = electric field

in V/m, where the incident power density of 22 W/m2 (above) is equal to 91 V/m; md =

the mass density of embryonic zebrafish, estimated from wet embryo weight, at approxi-

mately 1mg/mm3 or 1000Kg/m3.

Each chamber accommodated a Cell MicroControls well plate heater (model HWPT-

96) controlled remotely by an mTCII micro-temperature controller to maintain a constant

∼ 28◦C during embryonic development. The wire leads for the plate heater and thermistor

probe passed through a small hole drilled on the short edge of the cage bottom just above

the cage floor. The stack height (bottom to top) of cardboard thermal insulation, plate

heater and the well plate was 25mm. For the RFR exposure chamber, the distance from

the antenna face to the surface of the water column surface was consistently set at 60 mm.

We note that 3.5GHz permittivity in a vacuum (dielectric constant 1 = perfect) vs. air are

so similar that they are equal, for all practical purposes, over a 60 mm transmission range

---
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(the higher the dielectric constant of a substance, the greater the signal attenuation). To

reduce signal attenuation by the water component ( 1000µS/m conductivity, 28◦C, thus

dielectric constant > 88 and attenuation at least 88 times that of air), the water depth

above the embryos was limited to ∼ 5 mm, the minimum required to avoid potentially

confounding effects of evaporation. Fig. 5.2 contains an image of the actual experimental

setup.

5.2.2 Zebrafish husbandry

Adult Tropical 5D zebrafish were raised at Sinnhuber Aquatic Research Laboratory

(SARL) at Oregon State University. The zebrafish were raised in standard laboratory

conditions (28◦C with 14 h light: 10 h dark photo cycle). Adult zebrafish were fed size

appropriate Gemma Micro (Skretting Inc, Tooele, France) twice daily without supple-

mentation of any live feed [74]. Adult care and reproductive techniques followed approved

Institutional Animal Care and Use Committee protocol 5113 at Oregon State University.

5.2.3 Exposure regime

Embryos were collected in water from our recirculating system and sorted according

to Kimmel et al 1995 [75]. All exposures and analyses were done based on our well-

established high throughput pipeline (described in [76–79]), with some modifications.

At ∼ 6hpf, embryos were bleached and transferred to 6 well flat-bottom plates (Falcon,

Corning) with 50 embryos per well and 1 plate ( 6 wells) per treatment. The use of mul-

tiple embryos per well in a 6 well plate enabled the minimization of spatial variability of

RFR exposure across different embryos that may be a concern for 96 well plates with one



69

Figure 5.1: RFR embryonic exposure setup. (A) The transmitter generates RFR signal
at 3.5 GHz that is amplified by the PA and broadcast in the Faraday cage via antenna.
The Faraday cage contains a 6-well plate on a heating pad that maintains temperature
of the plate at around 28◦C. Each plate is fitted with a temperature probe to measure
temperature of the EM. Arrows represent direction of current. An image of the actual
setup is included in Fig. 5.2. (B) View of the 6-well plate from the top (left) and a
magnified view of each well from the side (right). Each well contains 3 mL embryo media
and 50 embryos. (C) Experimental flow chart, depicting start of exposure (6 hpf), end
of exposure (48 hpf) and time of data acquisition (120 hpf).
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Figure 5.2: Image of the actual experimental setup.
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embryo in each well typically used in our pipeline. Furthermore, plastic boundaries within

each well of 96 well plates may also attenuate RFRs and distribute uneven signal into

each well. All embryos were incubated in embryo media (EM), consisting of 15mM NaCl,

0.5mM KCl, 1mM MgSO, 0.15mM KH2PO4, 0.05mM Na2HPO4 and 0.7mM NaHCO3

[80]. The volume of EM in each well was minimized at 3mL to reduce RFR signal at-

tenuation through the 5 mm water column above the embryos; preliminary observations

showed that 50 embryos within this volume developed normally. To avoid evaporation,

the plates were sealed with ThermaSeal RTS (polyolefin, 50µm thick) pressure-sensitive

film and transferred to the temperature-controlled Faraday cages. A thermocouple tem-

perature probe (Fluke, type K), remotely connected to a handheld thermometer (Fluke

model 51–2), was placed into the water column of one well of each plate to serve as a

secondary monitor of temperature independent of the thermistor probe attached to each

well plate heater. RFR exposure was static, continued from 6–48 hpf and PA output

were verified by spectrum analyzer. At 48 hpf, a subset of exposed embryos (N = 48,

8 embryos from each well of the 6 well plate to maintain representation of every well)

were transferred into wells of a 96 well plate (1 embryo/well; prefilled with 100µL) for

downstream assessments; no mortality or morphological defects were seen in embryos at

48 hpf. The 96 well plates were then sealed and incubated at 28◦C in the dark for until

120 hpf when the plates were run through a battery of morphological and behavioral

assessments (see below). The experiments were run thrice to capture the variability

and to measure reproducibility; temperature and PA signal output remained stable and

consistent throughout the experiments. Fig. 5.1C shows a flow chart representing our

experimental paradigm.
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5.2.4 Developmental toxicity assessments

At 120 hpf, mortality, morphology and behavioral endpoints were rapidly assessed; data

for each treatment were combined from the 3 separate experiments N = 48 per experiment)

resulting in N = 144. Seventeen developmental morphology endpoints included yolk sac

edema (YSE) and pericardial edema (PE); body axis (AXIS), trunk length (TRUN),

caudal fin (CFIN), pectoral fin (PFIN), pigmentation (PIG), and somite (SOMI) de-

formities; eye (EYE), snout (SNOU), jaw (JAW), and otolith (OTIC) malformations;

gross brain development (BRAIN); notochord (NC) and circulatory (CIRC) deformities;

swim bladder presence and inflation (SWIM); and touch-responses (TR). T he presence

or absence of abnormality in each endpoint was entered into a laboratory information

management system called the Zebrafish Acquisition and Analysis Program (ZAAP) [76].

Behavioral assessments consisted of the larval photomotor response assay and the larval

startle response assay using the Viewpoint Behavior Technology ZebraBox and ZebraLab

motion tracking (Viewpoint Life Sciences, Lyon, France) and stimulus triggering software;

these were conducted just before morphological evaluation. For photomotor response,

larvae experience a total of 3 light cycles, each cycle consisting of 3 min of alternating

light and dark. The startle response assay consisted of an audible 100 dB, 600 Hz tone

occurring for 900 ms, 30 seconds after the conclusion of the photomotor response assay

(same instrument platform) with motion tracking commencing at the tone and for the

following 9 seconds.
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5.2.5 Statistical analyses

All statistical estimations were done within ZAAP which uses the R platform for analyses

of various morphological and behavioral endpoints; details of analyses are described in our

previous publications [77–79]. For mortality and morphology, statistical significance based

on binary responses was computed as described in [77, 78]. Briefly, significant differences

between control and exposed fish were computed using a one-sided Fisher’s exact test,

where adverse endpoints were tested to have a greater occurrence in exposed fish. For the

photomotor response assay, an entropy score was calculated for each light phase interval

and compared with the control group to compute a relative ratio, as described in [79].

For the startle response assay, the area under the curve (AUC) and peak response was

calculated for the first startle only and compared to the first control startle response.

This assay is performed in visible light. For both assays, statistical significance was

determined using a Kolmogorov–Smirnov test (p < 0.05). For all behavioral assays, dead

or severely deformed embryos were excluded from the analyses.

5.2.6 Results and discussion

The primary objective of this study was to assess whether exposure to high dose rate GHz

frequency RFR is associated with any developmental perturbations during embryogenesis;

this frequency range is expected to be widely deployed by major cellular services and

hence most relevant for human exposures [73]. Importantly, we have created a microtiter

plate-based for- mat for studying the impacts of RFR that can effectively replicate RFR

exposures at different frequencies, field strengths and developmental windows. During

the experiment (6–48 hpf), the temperature of the water medium for both controls
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and RFR-exposed fish remained ∼ 28 − 29◦C, suggesting that, consistent with previous

studies [72, 81], RFR exposures did not detectably increase water temperatures in the

wells. Additionally, because of their small 1.5–2 mm size and composition, there is no

reason to expect that zebrafish embryos would experience any net thermal flux beyond

equilibrium with their environment. At 120 hpf, the RFR exposure did not lead to

changes in mortality rate or incidences of abnormal morphology (Fig. 5.3A). These

results are in contrast to a previous study that showed zebrafish embryonic exposure to

100 MHz RFR, estimated SAR ≈ 0.04 W/Kg, from 0–48 hpf resulted in developmental

delays [72]. Disparate results between the two studies may be due to the time of exposure

initiation (0 hpf in their study vs. 6 hpf in ours), since early developmental stages (<

6 hpf) span early developmental events (cleavage, blastulation, gastrulation) that can

be more sensitive to some stressors. Alternatively, because radio and micro-wave RFR

penetration of tissues declines exponentially as frequency increases [64, 82], the 100 MHz

exposure may have been substantially more bioactive than our 3.5 GHz exposure. The

RFR exposures did not alter the photomotor response, in either the light or the dark

phases (Fig. 5.3A and 5.3B). In the startle response assay, while the areas under the

curve between control and RFR exposed groups were not significantly different, the RFR

exposure did modestly reduce the peak height (peak swim distance); the acoustic startle

was ∼ 16.5% lower in the RFR exposed groups com- pared to the controls (p = 0.045)

(Fig. 5.3A and 5.3C). The startle response is primarily driven by a sensorimotor response

to acoustic cues and has been widely used to detect learning deficiencies in humans and

to screen for neuroactive drugs in zebrafish [83, 84]. Suppression of startle response

is indicative of depressed sensorimotor function which may result in adverse effects on

neurobehavioral during post-developmental stages.

Overall, our results did not reveal any large-scale effects of RFR exposure on embryonic
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survival or development but did reveal a modest depression of sensorimotor function. The

possibility remains that developmental RFR exposures may produce molecular or later life

stage effects not evaluated in this initial study. For example, the subtle startle response

effect could be an early indicator of adult neuropsychiatric outcomes, like those detected

in previous RFR studies [62]; though we note that published data suggesting non-thermal

RFR effects associated with the low Hz (extreme low frequency; ELF) range is generally

more conclusive than the published data suggesting non-thermal effects from exposure

to the high MHz—low GHz range. It is also possible that 3.5 GHz RFR at a SAR of 8.27

W/Kg simply does not interact with and perturb normal vertebrate development. The

combination of strong signal attenuation by the thin layer of EM (dielectric constant >88)

over the embryos may have resulted in incident radiation density below the threshold

for significant biological effects [81]. It is to be noted that we employed artificially high

signal strength to maximize the likelihood of detecting RFR impacts; the 8.27 W/Kg

SAR is approximately 200x larger than what a person using a mobile phone operating at

mid-band 5G would be exposed to, and at least 100x larger than the basic limit for whole

body exposure of 0.08 W/kg for general public exposure [65]. RFR tissue penetration

is predicted from extensive modeling to be no more than about 6 mm at 3.5 GHz and

rapidly declining to less than 1 mm in the upper 5G band and above [82]. The lack of

large-scale effects at this high signal strength shows that a 3.5 GHz RFR is likely benign

to users of devices usually emitting much lower signal strengths. Finally, it is possible

that any RFR effects induced in our study may have been transient and the embryos

may have recovered from or adapted to the static signal between the end of exposure

(48 hpf) and experimental measurements (120 hpf). Future studies should employ longer

continuous embryonic exposure periods with rapidly modulated frequencies to mimic

mobile network signals. Our exposure platform also provides us an ideal setup for testing
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higher frequency ranges, including the 5G-specific millimeter-wave range, in the future.

In addition, we will also be able to study the compounding effects of RFR and other

radiation types or chemical stressors on embryonic physiology.

5.3 Conclusion

Our study suggests that RFR, within the low GHz frequencies, is predominantly benign

during embryonic development, but it may mildly depress sensorimotor functions when

administered at a dose rate significantly higher than the general public exposure. This is

the spectrum portion currently used for 4G LTE and 5G mid-band signals. Importantly,

with this established, robust, in vivo testing platform, we are ideally positioned to model

changing RFR exposures scenarios and measure their biological effects to address the

concerns regarding broadband technology and human health.
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Figure 5.3: Effects of RFR on embryonic development. Embryos were exposed to 3.5
GHz, 30 dBm RFR, at a specific absorption rate (SAR) ≈ 8.27 W/Kg from 6–48 hpf
and developmental parameters were measured at 120 hpf. All assays (panels A-C) were
sequentially conducted from the same subset of embryos, with a total of 144 embryos from
3 replicate experiments used per treatment condition. (A) Summary of effects observed
within our study. Measured parameters include mortality (Mort), 17 morphological
parameters and 2 behavioral parameters (larval photomotor (LPR) and startle (LSR)
responses). “Any effect” indicates a combination of all 17 morphological parameters.
“LSR-All” indicates AUC and Peak measurements combined. (B) RFR exposure does not
have any significant effect on photomotor response. (C) RFR exposure results in reduced
peak height for startle response. Speaker icon denotes the acoustic signal. indicates a
statistically significant difference at p<0.05.
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Chapter 6: Conclusion and future works

6.1 Conclusion

This dissertation presents a set of studies, including RF channel model characterization,

the design of a novel RF sensing system for indoor localization, and the environmental

impact of RF exposure in such systems.

The first part covers a use case of measurement-based RF channel modeling in a

challenging environment. The model is derived from actual S-parameter measurements

using a connectorized mm-wave patch antenna. Path loss models, power delay profiles,

and RMS delay spreads are obtained for both LOS and NLOS conditions. We focused

on the feasibility of a mm-wave wireless link within a commercial server chassis for high

data-rate links and for management and monitoring. Such servers have reflective metal

walls and are densely populated with server boards that create barriers for mm-wave

signals. A custom test setup is used for in-situ channel measurements at 57GHz for both

line-of-sight (LOS) and non-line-of-sight (NLOS) links across different TX-RX separations.

The NLOS links show RMS delay spread of 32ns@50% CDF (∼200ns@90% CDF) with

path loss >55dB, indicating a challenging environment for low-power high-speed links.

Therefore, a modified chassis with 10mm headroom between the top of the boards and

chassis cover is proposed. Measurements show that such an environment can make the

targeted wireless links feasible with ∼35dB loss, and RMS delay spread of 14ns@50%

CDF (∼20ns@90% CDF).

The second part introduces an environment-adaptive RF sensing system for indoor
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localization that consists of a dynamic phase calibration de-noising method, and the

implementation of a localization system utilizes artificial neural network (ANN) with

transferable features. In dynamic phase calibration de-noising method, two commodity

wireless access points with built-in Atheros NIC were utilized for CSI phase extraction.

A novel phase calibration method was proposed, which introduced two phase correction

factors to improve the phase calibration process dynamically. A multi-layer neural net-

work was trained to estimate the target’s position. The results where evaluate both the

prediction rate in an MoE model and the average position error illustrated that the use

of the conventional linear transformation calibration method was suffered from a drop in

prediction rate and, therefore, a lower position accuracy. For the CSI-based positioning

system, the proposed method outperformed the conventional linear transformation cali-

bration method by 13.2% higher prediction rate and reduces the average position error

21.3%.

In the implementation of a localization system utilizes artificial neural network (ANN),

a novel domain adaptation scheme was proposed to estimate the position of an object

in different environments. A WiFi-based platform was developed to access the real-time

CSI through specialized OpenWrt firmware. A neural network model was designed for

positioning and domain adaptation purposes. The model was trained by labeled CSI

fingerprints from the source domain. Then, the transferable features of the CSI fingerprint

between the source and the target domains are mapped into a common space during the

domain adaptation process. A discriminator was utilized to detect the environmental

changes and request a supplemental training set to recalibrate the adaptation process.

The results showed the system adapted to environmental changes within the same test

site when a large obstacle was blocking the area. Although it came at the cost of a lower

predicted rate and positioning accuracy, with additional adaptation data, the system was
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able to transfer the feature knowledge from one room to another.

Lastly, a collaboration work that explores the potential impact of RF radiation and

how RF exposure could affect human health. This study suggests that RFR, within

the low GHz frequencies, is predominantly benign during embryonic development, but it

may mildly depress sensorimotor functions when administered at a dose rate significantly

higher than the general public exposure. This is the spectrum portion currently used

for 4G LTE and 5G mid-band signals. Importantly, with this established, robust, in

vivo testing platform, we are ideally positioned to model changing RFR exposures sce-

narios and measure their biological effects to address the concerns regarding broadband

technology and human health.

6.2 Future works

In this dissertation, we discussed an environment-independent transfer learning network

for WiFi CSI- based indoor positioning system, in combination with an adaptive CSI

phase calibration module to dynamically improve the data preprocessing. Although

this proposed system is state of the art, it requires implementation and further improve-

ments. The correction factors of the dynamic phase calibration process are semi-defined

via empirical values. The correction factors can be automatically adjusted based on

prediction for a higher dynamic range of phase noises. The current domain adaptation

model incorporates the unlabeled data from the fingerprint recalibration process. The

supplement dataset acquired during adaptation training has to be labeled to improve

transfer learning. In extreme cases, some samples can be assigned incorrectly. A confi-

dence constraint or semantics alignment should be considered to exploit prior knowledge

completely. When evaluating the performance of the positioning and domain adaptation
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models, the same-sized test site and placement of the transmitter and receiver are used in

two different rooms.While maintaining those conditions, the results reveal the impact of

environmental changes, such as the different number of obstacles and the type of furniture

(e.g., wooden vs. metallic).Other placements of transceivers and objects may affect the

estimation performance, such as the distance between the transmitter and receiver and

the direction and orientation of the object.Multiple subjects or personnel presenting in

the same area can be another challenging objective.

Besides localization and positioning, human activity recognition (HAR) is another

trending topic for WiFi-based RF sensing systems. As shown in Fig.1.1, the current

study of environmental variation, sensor placement, and user movement regarding do-

main adaption and transfer learning can be applied to HAR applications through our

proposed RF Sensing ANN Framework. In similar testing environments, we collected CSI

samples for multiple human activities, including sitting, standing, walking, and turning.

Initial analysis shows that the domain adaption mechanism and transfer learning network

designed for indoor positioning systems work sustainably as a learning generalization layer

for HAR proposes. However, the generalization layer is still open for further research of

new strategies and techniques. Future work requires identifying application-independent

factors related to the learning generalization across different RF sensing applications. For

example, instead of incorporating prior knowledge of the classifier from PHY measure-

ment, the measured RF data can be learned as feature vectors. The resemblance among

those feature vectors can reveal new insights for learning generalization.
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