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Chapter 1: Introduction

Unsupervised anomaly detection is an important inference task with applications

across many different domains including identifying novel attacks in computer

security [27, 39, 28, 37], discovering novel astronomical phenomena [45], detecting

broken environmental sensors [13], identifying machine component failures [47, 48,

1], and finding cancer cells in normal tissue [38, 18]. In all of these application

domains, the data are a mixture of points that are “nominal” (i.e., reflecting normal

behavior) and “anomalous”. The anomalous data points are created by a process

that is distinct from the process that is generating the nominal data. In computer

security, for example, the anomalous points are created by adversarial attacks. In

detecting cancerous cells, it is the cancer that is creating the anomalies. Based on

this observation, we define an anomaly to be a data point that is generated by a

process that is different from the process that is generating the nominal data. The

goal of unsupervised anomaly detection algorithms is to detect these anomalous

data points without labels by instead leveraging the assumption that these points

are rare and meaningfully different from the nominal points.
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1.1 Objective

Unsupervised anomaly detection as described above may identify a general class of

problems but real applications of algorithms come from a variety of domains with

their own unique concerns. Computer security faces adversarial threats where

machine failure prediction does not. Particular cancers may have a well-defined

behavior profile but cancer in general might not. Domain experts in a particular

field may be able to select features for an application, and other times it may be

preferred to use as much information as is available.

The objective of this study is to present and evaluate a framework of exper-

imental design for testing unsupervised anomaly detection algorithms. We are

motivated to do this because of the lack of care in experimental design in much

of the unsupervised anomaly detection literature, particularly prior to our first

publication on the topic in [15]. Further, we want to apply this methodology to

make more nuanced claims about the success and a failure modes of various algo-

rithms as well as to demonstrate the deficiencies in the simpler and more common

approaches to experimental design found in the literature.

To achieve this, the methodology presented is used to create a large corpus of

anomaly detection benchmarks by taking standard datasets for supervised learn-

ing and systematically varying four dimensions important to real-world anomaly

detection applications: point difficulty, clusteredness of anomalies, relevance of

features and relative frequency of anomalies.

We apply eight state-of-the-art anomaly detection algorithms to the corpus.
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These algorithms are leading representatives of four main approaches to anomaly

detection: density estimation, quantile boundary estimation, distance-based and

projection methods. We summarize the result of each micro-experiment in terms

of the Area under the ROC Curve (AUC) and the Average Precision (AP).

To understand the relative importance of each factor, we fit regression models

at various scales to predict these metrics as a function of the benchmark factors

and provide analysis of variance (ANOVA) of these models.

1.2 Background

Despite the importance of anomaly detection, the field of statistical anomaly de-

tection lacks a standard methodology for understanding and evaluating proposed

algorithms. Most published experiments evaluate their algorithms via application-

specific case studies or ad hoc synthetic datasets. There are two consequences of

this. First, it is very difficult to compare different algorithms to assess progress in

the field. Second, it is difficult to understand the various factors or dimensions of

anomaly detection problems that influence the performance of anomaly detection

algorithms. This makes it difficult for experiments to guide research in algorithm

development.

This situation has recently begun to change. Our 2013 workshop paper [15]

introduced a systematic evaluation methodology based on repurposing existing

supervised learning datasets. A notable aspect of this methodology is that we

systematically vary aspects of the anomaly detection problem to gain more insight
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into the impact of these aspects on algorithm performance. Two other recent

papers report similar studies. Goldstein and Uchida [17] conducted a study of 19

different methods, and Campos, et al., [9] compared 12 different distance-based

methods. Neither of these studies incorporated systematic variation of problem

factors. An additional shortcoming of the Campos, et al. study is that many

algorithm parameters, such as the number of nearest neighbors, were selected to

optimize algorithm performance on test data. This favors algorithms with many

adjustable parameters and does not evaluate the extent to which parameter values

can be automatically selected.

Building on our previous work [15, 14], this thesis reports a careful bench-

marking study of state-of-the-art anomaly detection algorithms. We develop and

test a standardized evaluation methodology for statistical anomaly detection. The

methodology consists of taking existing supervised learning benchmark datasets

and converting them into anomaly detection benchmark datasets by manipulating

four factors that affect algorithm performance:

• Point difficulty: The degree to which the anomaly points are buried within

the nominal (i.e., non-anomaly) points.

• Clusteredness: The extent to which the anomaly points are clustered to-

gether.

• Irrelevant Features: The extent to which the average Euclidean distance

between points is determined by features that are completely irrelevant to

the problem.
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• Relative frequency: The proportion of anomalies in the dataset.

Greater detail on how this work differs from our previous work can be found

in Appendix A.

The remainder of this thesis is organized as follows. In Chapter 2 we first define

the anomaly detection problem that we are addressing and compare it to alter-

native formulations in Section 2.1. In Sections 2.2 and 2.3 we review and assess

existing approaches to the evaluation of anomaly detection methods. Based on

this, in Section 2.4 we identify a set of requirements for experimental methodology

and define the four factors to be manipulated in the experiments. In Chapters 3

and 4, we present our benchmarking methodology and provide detailed procedures

for meeting our requirements and manipulating the four factors. In Chapter 5,

we present the set of anomaly detection algorithms assessed in this study with

parameterization details provided in Appendix E. In Chapter 6 we validate the

quality of the benchmark corpus produced. In Section 6.1 we describe the sta-

tistical hypothesis tests we apply to each benchmark and provide a summary of

these hypothesis tests and their results. In Section 6.2 we introduce our first linear

regression models and evaluate our corpus in an algorithm-agnostic way. In Chap-

ter 7 we present a more in-depth analysis of algorithm performance across many

settings. In Chapter 8 we provide a global discussion of the findings presented

in this study and provide recommendations for how these findings should impact

future work in the field.
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Chapter 2: Topic Review and Problem Definitions

2.1 Anomaly Detection Tasks

Three different anomaly detection problem settings can be defined. In supervised

anomaly detection, we are given a collection of N data points x1, . . . , xN , each a

d-dimensional real-valued vector. Each data point is labeled as either “nominal” or

“anomalous”. The goal is to learn a classifier f : Rd 7→ {nominal, anomaly} that

can correctly label new data points drawn from the same distribution. While this is

no different than binary classification in theory, two important differences are often

observed. First, anomalies are typically rare, so there is a huge class imbalance

in favor of the nominal points. Second, each anomaly may be anomalous for a

different reason, so the anomaly points do not form a coherent class of the kind

that supervised learning algorithms are designed to model.

In clean anomaly detection, the training data all belong to the nominal class.

The goal is to output a scoring function f : Rd 7→ R that assigns low scores to

future nominal points but assigns high scores to future anomalies.

Finally, in unsupervised anomaly detection, the data consist of an unlabeled

mixture of the “nominal” and “anomalous” points. The goal is to learn a scoring

function f that assigns higher scores to all of the anomaly points and lower scores to

all of the nominal points. We can distinguish two flavors of unsupervised anomaly
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detection: “static” and “inductive”. In the static version, the goal is to determine

which of the training set points are anomalous, whereas in the inductive version,

the goal is to apply the learned function f to detect anomalies in future test data.

An important question in any application of anomaly detection is whether it

is safe to assume that the anomalous data points belong to a well-defined proba-

bility distribution. We call this the Well-Defined Anomaly Distribution (WDAD)

assumption. In some applications, such as detecting repeated machine failures, the

WDAD assumption is reasonable. But in other settings, such as detecting novel cy-

berattacks, the WDAD assumption is invalid. Some algorithmic approaches make

the WDAD assumption. For example, if we apply standard supervised learning

to the supervised anomaly detection task, we are assuming that future anomalies

will come from the same distribution as past anomalies. Similarly, in the inductive

unsupervised anomaly detection setting, one approach is to fit a mixture model to

the data with the idea that one mixture component will fit the nominal points and

the other component will fit the anomalous points. Applying this fitted model to

new data will not succeed unless the WDAD assumption holds.

An alternative approach that does not make the WDAD assumption is to search

for statistical outliers and then assert that these outliers are the anomalies. This is

known as the “outliers as anomalies” approach. It makes the Distinctive Anomaly

(DA) assumption that the anomalous points are sufficiently different from the

nominal points that they can be detected as outliers. The “outliers as anoma-

lies” approach can be applied to clean anomaly detection and to the static and

inductive flavors of unsupervised anomaly detection. In this study we will focus on
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this approach. We will evaluate performance in the static, unsupervised anomaly

detection setting.

2.2 Metrics for Evaluating Anomaly Detection Algorithms

There are two main ways that anomaly detection algorithms are applied. In data

cleaning applications, the goal is to screen out all of the anomalies from the data.

Hence, we choose a threshold θ and filter out all data points x for which f(x) > θ.

A natural metric for evaluating such methods is the Area Under the ROC Curve

(AUC), because it summarizes the behavior of the learned function f over all

possible settings of θ. The AUC is also equivalent to the probability that—given

one anomaly point xa and one nominal point xn selected uniformly at random—

the function f will assign a higher score to the anomaly point than to the nominal

point: f(xa) > f(xn).

In security and fraud detection settings, the anomaly detection system typically

presents the top k candidate anomaly points to an expert analyst who must then

decide whether to expend resources investigating the point further. In such cases,

we are interested in the quality of the ranking of anomalous points with a focus

on the points ranked at the top of the list. We could employ Precision-at-k, but

this requires us to choose a specific value of k, and this is generally determined

by application considerations. Hence, we adopted the Average Precision (AP)

metric. It summarizes the precision of the top-ranked elements for the values of k

corresponding to the ranks of the true anomaly points. The Average Precision is
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equal to the area under the Precision-Recall curve (if the area computation does

not use trapezoidal interpolation between true positives).

Many other metrics have been studied including Normalized Discounted Cumu-

lative Gain (NDCG), F1 (the harmonic mean of precision and recall), and Recall-

at-k. Each of these requires application-specific choices, so we decided not to

include them in our study.

In this study, we consider only AUC and AP.

2.3 Existing Experimental Methodology

In anomaly detection research, three kinds of data have been employed to analyze

and evaluate anomaly detection algorithms. First, there are datasets drawn from

specific application problems (e.g., [47, 28]). Second, there are synthetic datasets

[41]. Third, there are datasets constructed by taking an existing supervised clas-

sification problem and treating one or more of the classes as the anomalies.

Application-specific datasets are very useful. They can help us understand

and evaluate the algorithm refinements needed to achieve high performance in a

particular application. However, often these datasets are not publicly available

because of privacy or security considerations (e.g., [43]).

Synthetic datasets [29, 30, 41] permit the systematic manipulation of some

properties (e.g., the relative frequency of the anomalies, the distinctiveness of the

anomalies, etc). However, decades of experience in machine learning have shown

that real datasets are much more complex and idiosyncratic than synthetic data,
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which undermines the validity of this approach [31, 32].

Finally, the repurposing of supervised classification datasets has the desirable

property that the different classes are the result of different generating processes

and the data retain the idiosyncrasies of the real application (e.g., [29]). Most

studies have treated the datasets “as is” without trying to manipulate properties

of the data. Some researchers [24, 9, 17] downsample the anomaly class to reduce

the relative frequency of the anomalies. Another interesting case is the work of Das,

et al., [12], who generated anomalies by permuting features among a small subset

of the data. In a few cases, supervised regression datasets have been repurposed

by treating the data points with the most extreme values as anomalies [11].

We propose to combine the idea of repurposing supervised learning datasets

with the idea of systematically varying properties of the data. To better motivate

our methodology, we will define our requirements for a good anomaly detection

experiment and the properties of the experiment we wish to manipulate.

2.4 Requirements for Anomaly Detection Experiments

As discussed above, although anomaly detection algorithms work by searching for

statistical outliers, the goal is to identify points that are generated by a process

that is distinct from the process generating the “nominal” points. This distinction

leads to the first two requirements for benchmark datasets.

Requirement 1: Nominal data points should be drawn from a real-world
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generating process.

Requirement 2: Anomalous data points should also be drawn from a

real-world process, but one that is distinct from the process generating

the nominal points. The anomalous points should not just be points in the tails

of the “nominal” distribution. For example, Glasser and Lindauer’s [16] inside

threat anomaly generator takes care to define distinct processes for normal and

anomalous behavior.

Requirement 3: Many benchmark datasets are needed. If we employ

only a small number of datasets, we risk developing algorithms that only work

on those problems. More important, presenting results on many benchmarks at

a time makes for more robust and reliable reported results. While the corpus of

benchmarks presented in this study may be well in excess of what is needed for a

reliable experiment, Section 7.5 will illustrate the potential consequences of using

too few data sources.

Requirement 4: Benchmark datasets should be characterized in terms of

well-defined and meaningful problem dimensions. Applications of anomaly

detection often face different challenges across domains. Experiments in the lit-

erature sometimes describe such challenges and propose strategies for addressing

them, such as in Liu, Ting and Zhou [30]. It is of practical value to real-world

applications that experiments acknowledge which domain-specific challenges they

might be addressing.
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2.5 Proposed Problem Dimensions

There is currently no established set of problem dimensions for anomaly detection.

We have identified four dimensions that we believe are important, but we consider

this only the first step toward a full explanatory theory of anomaly detection.

We introduce the concepts here; how we measure these problem dimensions is

explained in Chapter 3; and how we use these measures to generate our benchmarks

is explained in Chapter 4.

2.5.1 Point difficulty

The outliers-as-anomalies assumption breaks down as the anomaly points become

harder to distinguish from the nominal points. One aspect of applying anomaly

detection in adversarial settings (e.g., intrusion detection or insider threat detec-

tion) is that adversaries try to blend in with the distribution of nominal points.

We propose point difficulty as a measure of the similarity of the anomalous data

points to the nominal ones. When the targets are not confined to extreme outliers,

or when the extreme outliers are not anomalies, the anomalies of interest will be

confused with nominal points or with uninteresting outliers.

This phenomenon has also been referred to as “swamping” [29].



13

2.5.2 Semantic Variation

A common aspect of many anomaly detection applications is that there can be

multiple processes generating anomalies. In a cyber-security setting, there can be

many different kinds of attacks and many different methods for stealing informa-

tion. In cancer detection, there can be many different biological processes that

result in cancerous cells. On the other hand, if there are many instances of anoma-

lies from one generating process, they may cease to appear as statistical outliers

at all; such anomalies are often described as clustered anomalies. We propose Se-

mantic Variation as a measure of the degree to which the anomalies are generated

by more than one underlying process, or, alternatively, the degree to which the

anomalies are dissimilar from each other.

When anomaly points are tightly clustered, this creates a region of high prob-

ability density, which can defeat density estimation-based methods. This phe-

nomenon has also been called “masking” [29].

2.5.3 Feature Relevance/Irrelevance

From the application perspective, there is a natural tendency to include any fea-

ture that could conceivably be informative, but this tendency also increases the

risk of including features that are irrelevant to the task. It is well-established that

irrelevant features can degrade the performance of supervised learning methods,

and we now have many good algorithms for identifying and removing irrelevant fea-

tures. We believe that irrelevant features are an even greater problem for anomaly
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detection. From the statistical perspective, each irrelevant feature increases the

dimensionality of the space, and the sample size required by (naive) density es-

timation methods tends to scale exponentially with the dimension. In addition,

as the dimensionality of the data increases, the “surface area” of the volume con-

taining the data also increases, which is a geometric way of saying that there are

more “tails” in which the data may lie. This increases the risk that nominal points

will fall in the tails of the distribution. For all these reasons, it is important to

measure the effect of irrelevant features on the performance of anomaly detection

algorithms.

2.5.4 Relative frequency

Relative frequency is the fraction of the incoming data points that are anomalies

of interest. This is the problem dimension that is most reliably reported in the

literature already and has also been called “plurality” and “contamination rate”.

Little is done to examine the impact it has on results, however. The behavior

of anomaly detection algorithms often changes with the relative frequency. If

anomalies are very rare, then methods that pretend that all training points are

“nominal” and fit a model to them may do well. If anomalies are more common,

then methods that attempt to fit a model of the anomalies may do well. In most

experiments in the literature, the anomalies have a relative frequency between

0.01 and 0.1, but some go as high as 0.3 [24, 29]. Many security applications are

estimated to have relative frequencies in the range of 10−5 or 10−6.
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Understanding the impact of relative frequency is a fundamental issue in anomaly

detection: How much can the data be contaminated by anomalies before the

anomalies can no longer be reliably detected?
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Chapter 3: Benchmarking Methodology

With the scope, requirements and definitions given in Chapter 2 we can now de-

scribe how we generate benchmarks for this study. In summary, we employed the

following steps to construct our benchmark datasets:

1. Select a set of existing supervised datasets (“parentsets”) derived from real-

world contexts.

2. Determine a ground truth label for each point: “nominal” or “anomaly”.

3. Compute point difficulty scores to each individual point.

4. Specify problem dimension settings for each benchmark.

5. Select points from a given parentset according to specifications to construct

each benchmark.

3.1 Selecting Datasets

We selected all UCI [3] datasets (as of the beginning of this study) that matched

the following criteria:

• task : Classification (binary or multi-class) or regression. No time series.

• instances : At least 1000. No upper limit.
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• features : No more than 200. No lower limit.

• values : Numeric only. Categorical features are ignored if present. No missing

values, with one exception (see below).

To ensure objectivity, the choice of these criteria was not guided by the perfor-

mance of any specific anomaly detection algorithms.

Our criteria do not cover all settings in which anomaly detection is appropriate.

Instead, we focused on the common case: high-dimensional, continuous-valued,

independent and identically distributed (IID) data. Future work should explore

nominal and ordinal features [34] as well as more structured (non-IID) settings

such as time series [19, 33] and network data (e.g., [8]).

These criteria yielded a collection of 19 datasets, which we refer to as the

“parentsets”, since they will produce thousands of “child” benchmark datasets.

The 19 selected parentsets are the following:

• binary classification: MAGIC Gamma Telescope, MiniBooNE Particle Iden-

tification, Skin Segmentation, Spambase

• multi-class classification: Steel Plates Faults, Gas Sensor Array Drift, Image

Segmentation, Landsat Satellite, Letter Recognition, Optical Recognition of

Handwritten Digits, Page Blocks, Shuttle, Waveform, Yeast

• regression: Abalone, Communities and Crime, Concrete Compressive Strength,

Wine, Year Prediction
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Communities and Crime is the one exception to our rule against missing values.

In this case, there were some features for which the values where missing for the

majority of points. We removed these features from the dataset rather than remove

the dataset from our study.

In each of these parentsets, each feature was normalized to have zero mean and

unit sample variance.

3.2 Synthetic Control parentset

In our final statistical analysis, one value of each factor will be chosen as the ref-

erence or baseline value. To improve interpretability, it is useful to have a baseline

value for each factor that functions as the control group for that factor. While

the focus of our analysis will be on algorithm performance and the impact of our

problem dimensions, we should also be able to measure the impact of using “real”

datasets against a synthetic baseline. We created a synthetic control parentset for

this purpose. For details of its construction, see Appendix B.

3.3 Defining Nominal versus Anomalous Data Points

A central goal of our methodology is that the “nominal” and “anomalous” points

should be produced by semantically distinct processes (Requirements 1 and 2). To

achieve this for each of the 19 parentsets, we assign each point xi ∈ X a label yi

to indicate whether it is a candidate nominal or candidate anomaly, informed by
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the semantics of the original set. We employed the following methods to do this.

3.3.1 Binary Classification Problems

For datasets that were already binary classification problems, the data is already

partitioned into two semantically-distinct groups. We chose one class as “candidate

nominal” (i.e., the set from which we will select the “nominal” points) and the

other as “candidate anomaly” (i.e., the set from which we will select the “anomaly”

points). The class with fewer instances is chosen to be the candidate anomaly class.

We do this because the final benchmarks will subsample the candidate anomalies so

that the anomalies constitute a small fraction of all of the data points. The larger

the majority class, the easier this is to achieve. In the case that both classes are of

equal size, the class with greater variance is defined to be the candidate anomaly

class; we do this because the greater variance might give us additional flexibility

in selecting loosely or tightly clustered anomalies at benchmark construction time.

For parentsets that are regression or multi-class problems, our approach is to

transform them into binary classification problems and then treat them as de-

scribed here.

3.3.2 Regression Problems

For regression datasets, we compute the median of the regression response and

partition the data into two classes by thresholding on this value. To the extent that
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low versus high values of the response correspond to different generative processes,

this will create a semantic distinction between the candidate nominal and candidate

anomalous data points. We expect points near the median response will have high

point difficulty and points near the extremes will have a low point difficulty. We

expect benchmarks derived from regression problem sets might allow for flexible

(and easy) control of point difficulty.

3.3.3 Multi-class Problems

For multi-class datasets, we partitioned the available classes into two sets with the

goal of maximizing the difficulty of telling them apart. For parentsets with many

classes, it can be impractical to try every partition of the classes in the search of

the most confusing binary problem, so we employ an approximation that attempts

to maximize class confusion; see Appendix C for details.

3.4 Assigning Point Difficulty Scores

Before sampling parentsets to generate benchmarks, we need additional meta-data

so that we can characterize individual points better to meet benchmark specifi-

cations. In our case, the only additional meta-data we need is to assign point

difficulty scores to each point, but future research may wish to insert other meta-

data generating processes here.

We generate a vector of point difficulty scores φ by training an oracle that
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knows the true generating processes underlying the “nominal” and “anomalous”

points. The intuition is that some measure of how far away a point is from the

decision boundary will indicate how easy it is to distinguish from the opposite

class.

Our oracle is trained by a constructing a training set {(xi, yi)Ni=1} consisting of

all N points from the parentset and then applying kernel logistic regression (KLR;

[21, 49, 23]) to fit a probabilistic classifier that estimates the probability P (ŷi =

nominal|xi). The point difficulty of a candidate anomaly point xi|yi = anomaly

is defined as P (ŷi = nominal|xi). The intuition is that difficult anomalies will be

those that are “buried” inside the nominal points so that even an oracle trained

on the true labels assigns it high probability of being nominal. Similarly, the point

difficulty of a candidate nominal point xi|yi = nominal is the predicted probability

P (ŷi = anomaly|xi) that it belongs to the anomaly class.

The end result is that each data point xi is assigned a point difficulty score

φi = 1 − P (ŷi = yi|xi) where φi closer to 0 means the oracle correctly classified

xi with greater confidence, φi closer to 0.5 indicates xi is closer to the decision

boundary and φi closer to 1 means the oracle incorrectly classified xi with greater

confidence.

For further details on our implementation of KLR, see Appendix D.
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3.5 Specifying Problem Dimension Settings

We can now describe a fully labeled parentset as a set of data points X with

associated ground truth label y and point difficulty scores φ. As is common in

the literature, we will generate benchmarks by sampling data points from these

parentsets. However, with the exception of relative frequency, the problem dimen-

sions we propose to measure and manipulate are typically not addressed in other

experiments. To measure the impact of this, and to evaluate the value of apply-

ing our more rigorous methodology, we want a control setting for each problem

dimension that is equivalent to conducting an experiment where the problem di-

mension was not even considered at all. For example, elsewhere in the literature,

when an experiment does not consider clusteredness, the sampling process simply

did not consider the semantic variation among the candidate anomaly points; this

approach would be the control group setting.

For each problem dimension, we will define the control setting, describe how

the problem dimension can be measured as a property of the benchmark, and

suggest how it can manipulated. Keep in mind that for each control setting, the

benchmarks that result from that setting will still have a measuarable value in

that problem dimension. For example, a benchmark in the point difficulty control

group will not include consideration of point difficulty in the sampling process, but

the resulting benchmark will still have a real-valued point difficulty score.

The specifics of how our actual sampling process works will be covered in Chap-

ter 4.
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3.5.1 Point Difficulty

We described how we assigned point difficulty scores in Section 3.4. The con-

trol setting for point difficulty is simply to disregard point difficulty scores when

sampling points from the parentset. The measure of point difficulty a benchmark

receives is the mean φ̄ of the point difficulty scores of all points selected for it.

In addition to the control group, we propose four target range specifications for

benchmark point difficulty (pd). A benchmark created at the pd2 setting, for ex-

ample, would be required to have a final point difficulty score in the range specified

below.

• pd0: control group; (φ̄ ∈ (0, 1))

• pd1: φ̄ ∈ (0, 0.16)

• pd2: φ̄ ∈ [0.16, 0.3)

• pd3: φ̄ ∈ [0.3, 0.5)

• pd4: φ̄ ∈ [0.5, 1)

3.5.2 Semantic Variation and Clusteredness

We define the semantic variation among anomalies with a measure of normal-

ized clusteredness, which is a measure of the variance of the anomalies normalized

against the variance of the nominal points. Because we are assuming the par-
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entsets have independent features, we define the sample variance σ̂2 of a set of

d-dimensional points X to be the sum of the sample variances of each feature or

σ̂2
X = E[(X− E[X])(̇X− E[X])] =

d∑
i=1

V̂ar(Xi)

For a benchmark with a set of nominal points βn and anomaly points βa, we

define normalized clusteredness (ν) as follows

ν = log

(
σ̂2
βn

σ̂2
βa

)
. (3.1)

When ν is less than 0, the anomaly points exhibit greater semantic variation

than the nominal points (they are more scattered). When ν is greater than 0, the

anomaly points are more tightly packed than the nominal points (on average).

The control setting for normalized clusteredness is to not consider it during the

sampling process. In addition to the control group, we propose two target range

specifications for benchmark normalized clusteredness (nc).

• nc0: control; (clusteredness not considered, ν ∈ R).

• nc1: ν < 0; (scattered anomalies).

• nc2: ν > 0; (clustered anomalies).
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3.5.3 Feature Irrelevance

The right way to define irrelevant features for outlier detection is unclear. To

justify our desire to add irrelevant features to our benchmarks, we introduce the

notions of “feature precision” and “feature recall”.

In a supervised learning setting, it is assumed that all features necessary to

the task are present. In this way, we would say that a supervised learning dataset

has very high or even perfect “feature recall.” In contrast, a supervised learning

dataset might include many irrelevant features. Indeed, many supervised learning

algorithms are able to in some way determine that only some of the features are

required to attain optimal classification accuracy. In this way, we might describe a

supervised learning dataset with only a few necessary features to have low “feature

precision”.

Given that our parentsets exist in a supervised setting, we can assume that any

benchmark generated with them would already have high feature recall. However

in real-world unsupervised anomaly detection domains, there is no such guarantee

of high feature recall. To compensate for this, real-world applications could include

as many features as they can, knowingly trading off high feature precision for higher

feature recall. We want to add irrelevant features to some benchmarks in order

to simulate this process of sacrificing feature precision in order to obtain the high

feature recall that we already know is present in the data.

While the original parentsets might have varying amounts of feature precision,

we don’t seek to quantify this. Instead we simplify our assumptions and quantify
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the amount of feature irrelevance (α) as follows. For a set of points X with no added

features and a set X′ which is the same set but with some number of additional

features added, we measure feature irrelevance with α, which we define to be the

ratio of the sums of the pairwise distances between all points in X′ and X.

αX,X′ =

∑
x′i∈X′

∑
x′j 6=x′i∈X′

||x′i − x′j||2∑
xi∈X

∑
xj 6=xi∈X

||xi − xj||2

The control setting for feature irrelevance is to simply not add any irrelevant

features to the benchmark resulting in α = 1. In addition to the control group, we

propose three target specifications for benchmark feature irrelevance (fi).

• fi0: control group; α = 1 (no added irrelevant features).

• fi1: α̂ = 1.2

• fi2: α̂ = 1.5

• fi3: α̂ = 2.0

3.5.4 Relative Frequency

This problem dimension is very easily understood, measured and manipulated; if

we desire that a benchmark has a relative frequency (ρ) of 0.01 then we simply

ensure that the benchmark draws 0.99 of its points from the candidate nominals

and 0.01 of its points from the candidate anomalies.
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While it is a problem dimension that is commonly reported and manipulated

in the literature, there does not exist a rigorous examination of the impact of this

value on experimental outcomes.

Additionally, because this problem dimension is already frequently accounted

for in the literature, the control setting for this problem dimension might appear

counter-intuitive or even controversial. It can be easy to see that, for example,

the proper control setting for point difficulty is to not consider point difficulty at

all. It is less obvious that a correct control group setting for relative frequency is

to simply not enforce any particular ratio of of anomalies in the benchmark data.

Unlike our other control groups, this does not broadly reflect current practices

in unsupervised anomaly detection literature, but it does provide a proper base-

line for evaluating the impact that manipulating relative frequency can have on

experimental outcomes versus not manipulating it.

In addition to the control group, we propose five target specifications for bench-

mark relative frequency (rf).

• rf0: control group; (relative frequency is not considered, ρ ∈ (0, 1)).

• rf1: ρ = 0.001 of the benchmark is drawn from the candidate anomalies.

• rf2: ρ = 0.005 of the benchmark is drawn from the candidate anomalies.

• rf3: ρ = 0.01 of the benchmark is drawn from the candidate anomalies.

• rf4: ρ = 0.05 of the benchmark is drawn from the candidate anomalies.

• rf5: ρ = 0.1 of the benchmark is drawn from the candidate anomalies.
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Chapter 4: Benchmark Corpus Generation

Including all control settings, we have identified 20 parentsets, 5 point difficulty

specifications, 3 normalized clustered specifications, 4 feature irrelevance specifica-

tions and 6 relative frequency specifications resulting in 7,200 different benchmark

specifications. Because we don’t want any particular specification to be subject to

the whims of random selection, we further propose producing 5 benchmark repli-

cates at each specification setting, resulting in up to 36,000 benchmarks for our

corpus. However, five unique benchmarks at any given specification might not be

possible and for some parentsets certain problem dimension settings might not be

feasible, so the final corpus will be smaller than 36,000.

We formally define a benchmark specification as desired target ranges of (φ̄, ν, α, ρ)

over labeled parentset (X,y,φ) with the intent of outputting a benchmark set that

meets the specifications β ⊂ X where β = βn ∪ βa and βn = {xi|yi = nominal}

and βa = {xi|yi = anomaly}.

The process of achieving this can be very briefly summarized as follows: Points

are sampled for the benchmark from the parentset one at a time. For each sam-

pling, only feasible points are considered. (Points that don’t break the benchmark-

ing specifications). When the maximum budget of points is reached or when there

are no more feasible points for selection, the process ends. If necessary, a number

of irrelevant features are then added.
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Algorithm 4.1 provides greater detail, but understanding it requires introducing

a few more concepts.

4.1 Determining the Maximum Number of Points to Select

We have two practical concerns during this random procedure. The first is that

there are run-time concerns among some of the anomaly detection algorithms we

are going to use, and for this reason we want to institute a maximum benchmark

size. For this study we chose 6,000 as this maximum size but this would generally

be left as a design choice for any future experiments. In Eq. (4.1) this maximum

size is indicated as parameter Ω.

We also want to ensure diversity among benchmarks created at the same specifi-

cations. For parentsets smaller than our maximum size, we would end up choosing

the same nominal points nearly every time if we simply maximized the size of

a benchmark. Because of this, we also want to institute a maximum number of

nominal points selected to be some fraction of the total available. For this study

we set this rate at 0.9 but this is indicated as parameter λ in Eq. (4.1).

So, for given hyperparameters (Ω, λ) and (y, ρ) from the parentset and bench-

mark specification, we determine the maximum number of nominals cn and anoma-

lies ca to be selected as:

cn = bmin(Ω(1− ρ), λ(|{yi|yi = nominal}|))c (4.1)
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ca = d ρcn
(1− ρ)

e

cn and ca act as a budget during benchmark creation that enforce relative

frequency while allowing the algorithm to sample from either class until the budgets

are used up. If relative frequency is not being enforced, then cn + ca still acts as

the total budget of the benchmark.

4.2 Determining Feasibility

For each individually sampled point we must recompute the set of points that are

feasible to add to our benchmark set β. As the points are drawn from parentset

X and feasibility is determined by specification parameters (φ̄, ν, α, ρ), with some

abuse of notation we indicate the set of feasible points as X(φ̄,ν,α,ρ) ⊆ X\β to mean

the feasible set of points that can be added to β at a given sampling iteration. We

describe here how feasibility is enforced for each problem dimension.

For relative frequency, the budgets cn and ca are determined as in Eq. (4.1).

As long as |βn| < cn then nominal points remain feasible, or more precisely, when

|βn| ≥ cn all nominal points becomes infeasible. Similarly, when |βa| ≥ ca then

anomaly points become infeasible. If the specification is to use the relative fre-

quency control group, then class label does not impact feasibility.

For point difficulty we define value φ̄(β,xi)
to be the measure of φ̄ after point

xi is added to β. Any values of φ̄(β,xi)
that are outside our specified range of φ̄

render the corresponding xi infeasible for selection. Setting the feasibility range φ̄

to the entire interval (0, 1) implements the point difficulty control group.
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For normalized clusteredness we similarly define ν(β,xi) be the measure of ν after

point xi is added to β. If the specification wants anomalies to be more clustered

than nominals, then values of ν(β,xi) below 0 render point xi infeasible for selection.

Likewise, If the specification wants anomalies to be more scattered than nominals,

ν(β,xi) above 0 renders points xi infeasible for selection.

Irrelevant features are added at the end of the process and do not effect feasi-

bility.

For each point in X \ β, the above values are computed and used to construct

feasibility set X(φ̄,ν,α,ρ) from which the next point is sampled.

4.3 Determining Utility Scores for Feasible Points

It might suffice to simply sample uniformly at random from X(φ̄,ν,α,ρ). However, we

want our final benchmarks to exhibit a variety of normalized clusteredness levels

and we could not determine an efficient way to enforce this while maintaining

consideration of the other specifications. Instead, we simply chose to have our

sampling process favor more extreme values of normalized clusteredness (either

minimal or maximal, depending on the specifications).

However, minimizing or maximizing clusteredness can be at odds with selecting

point difficulties in so much as clustered anomalies or clustered nominals will likely

have similar point difficulty scores and conversely, restraining point difficulty scores

to a tight range might hinder selecting scattered points of either class. To help

mitigate this relationship, we also want want to aim for a diversity of point difficulty
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scores.

To do this we assign utility scores ξ to all feasible points and then define a

Boltzmann (or Softmax) distribution with these scores and use this to sample

from X(φ̄,ν,α,ρ). For this we use the metrics φ̄(β,xi)
and ν(β,xi) just described in

Section 4.2.

For both of these metrics we assign a utility score intended to push them

toward more extreme values. Keep in mind that feasibility constraints will already

have been applied before scoring, so these extremes will always be in the “correct”

direction and, as explained, will often be negatively correlated with each other. We

select utility score ξxi from four options depending on our benchmark specification.

Respectively, if point difficulty is being considered, normalized clusteredness is

being considered, both are being considered, or neither are being considered, then

ξxi is selected from:

ξ(φ̄,xi) =

∣∣∣∣∣log

(
φ̄(β,xi)

median(φ)

)∣∣∣∣∣ (4.2)

ξ(ν,xi) = |ν(β,xi)|

ξ(ν,φ̄,xi) = ξ(ν,xi) + ξ(φ̄,xi)

ξ(∅,xi) = 1

Note that in the simple case of ξxi = ξ(∅,xi) = 1 the resulting Boltzmann distri-

bution will be equivalent to sampling uniformly at random. While the Boltzmann

distribution is well known, for clarity we describe it here. For the set of all feasible
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points X(φ̄,ν,α,ρ) and utility scores ξ, point xi is selected with probability pξ(xi) as

defined:

pξ(xi) =
exp(ξxi)∑
j

exp(ξxj)

4.4 Adding Irrelevant Features

To simplify the process of determining how many irrelevant features are needed,

we compute an estimate of how many extra features will achieve the desired α.

Note that the expected distance between two vectors whose coordinates are drawn

at random (e.g., from the unit interval or from a standard normal Gaussian) grows

in proportion to
√
d, where d is the dimensionality of the data. Hence, if a dataset

already has d dimensions and we estimate d′, the number of dimensions needed

to increase the average pairwise distance by a factor of α, then we need (d′ − d)

irrelevant features and define d′:

d̂′ = (α
√
d)2 (4.3)

To generate a new irrelevant feature, we select a feature from the original

parentset (uniformly at random), add it as a new feature, and randomly permute

its values. This ensures that it provides no information about whether a point is a

candidate nominal or a candidate anomaly but it also does not require us to inject

purely synthetic data into our benchmarks. These features compose benchmark

data β(d′−d) and β is augmented with them to produce the final benchmark.
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4.5 Generating Benchmark Datasets

Finally, we present benchmark generation algorithm Algorithm 4.1:

Algorithm 4.1 Generating Experimental Benchmarks

1: procedure GenerateBenchmark((X,y,φ), (φ̄, ν, α, ρ),)
2: initialize cn, ca . As per Eq. (4.1)
3: βn ← ∅, βa ← ∅ . Note: β = βn ∪ βa
4: while |βn|+ |βa| < cn + ca do
5: determine φ̄(β,xi)

. As in Section 4.2
6: determine ν(β,xi)

7: determine X(φ̄,ν,α,ρ)

8: if X(φ̄,ν,α,ρ) = ∅ then . If we ran out of feasible points.
9: return failure . Because ρ has not been enforced.

10: end if
11: for all xi ∈ X(φ̄,ν,α,ρ) do
12: determine ξxi . As in Section 4.3
13: end for
14: sample i from Boltzmann(ξ)
15: if yi = nominal then
16: βn = βn ∪ {xi}
17: else
18: βa = βa ∪ {xi}
19: end if
20: end while
21: generate β(d′−d) . As in Section 4.4
22: β ←

(
β|β(d′−d)

)
23: return β
24: end procedure

It should be noted that even the above is slightly simplified. Notably, at line

9 of Algorithm 4.1 we do not instantly return failure, but rather, we reverse our

process, removing points from β following feasibility constraints until ρ is satisfied

and then return this smaller benchmark. If this removal process also fails, then
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the generation process finally quits.

4.6 Code, Datasets, and Replication

Ultimately, our process generated a corpus of 25,685 benchmarks.

The software for producing our corpus of benchmarks and the generated bench-

mark datasets are available at

http://ir.library.oregonstate.edu/xmlui/handle/1957/59114

http://ir.library.oregonstate.edu/xmlui/handle/1957/59114
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Chapter 5: Anomaly Detection Algorithms

Hundreds of anomaly detection algorithms have been published. We have grouped

them into four major approaches for the purposes of this study. We chose two of

the leading representatives from each approach.

We have also chosen two trivial algorithms to include in the study, bringing

the total number of algorithms to 10. We have several reasons for doing so. First,

we include them simply as a baseline point of comparison. Given the size of our

corpus, we expect a large variance in results and a straightforward summary of

metrics might be misleading for their simplicity, but more rigorous analysis might

be hard to interpret. Having simple algorithms as a point of comparison will help

make sense of broad results. Related is the fact that the regression models that

we will use to analyze results do well to have well-defined points of reference.

An even greater concern of ours is that some benchmarks might be trivially easy.

It is often the case in unsupervised anomaly detection literature that reported

results are highly accurate, such as in [35, 4, 25, 40, 2]. To make a particular

example, consider the work presented in [4]; the authors share the parameterization

of each algorithm on each benchmark and praise the algorithm iNNe for sometimes

performing well with parameter ψ = 2. However, an understanding of the iNNe

algorithm will reveal that at that particular parameter setting the algorithm is

doing little more than approximating the distance of each point from the mean of
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the data. While we acknowledge that this particular work is a smaller workshop

publication, it should serve as a warning that benchmarks for which all algorithms

perform well might be benchmarks that can be trivially solved.

It is usually taken for granted that benchmarks in the literature created by

means similar to our are reasonably challenging. We seek to scrutinize this as-

sumption - and account for the inevitability of trivially easy benchmarks appearing

in our corpus - by including trivially simple algorithms. They are described below

where appropriate.

Below are only short summaries of the approaches and algorithms. Full imple-

mentation and parameterization details of each algorithm are given in Appendix E.

5.1 Density-Based Approaches

These methods seek to estimate P (X), the density of the nominal data points.

They do this by fitting a density estimator to the given data. The anomaly score

assigned to a point x is defined as the negative logarithm of the estimated density:

− logP (x) or something proportional to it.

A potential drawback of these approaches is they make a strong assumption

that the data has high “feature precision” as described in Section 3.5.3
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5.1.1 Trivial Distance From Mean (tmd)

For clarity, this trivial algorithm simply computes the location of the arithmetic

mean of the data in feature space and then assigns anomaly scores to each point in

the data equal to their euclidean distance from this mean point. We include this

method as a density estimation technique because this distance from the mean

is a monotonic transformation of a probability density model that uses a single

Gaussian radial basis distribution with the mean of the data as the basis parameter.

5.1.2 Ensemble Gaussian Mixture Model (egmm)

A standard approach to density estimation is to fit a Gaussian mixture model

(GMM) using the EM algorithm. To fit a GMM, we must select the value of k,

the number of mixture components, and we must initialize the EM local search

procedure. To improve the robustness of the method, we fit an ensemble of GMMs

across several values of k. The final anomaly score for point x is the average

negative log probability density 1
L

∑L
`=1− logP`(x), where L is the number of fitted

GMMs and P`(x) is the density assigned by GMM ` to data point x.

5.1.3 Robust Kernel Density Estimation (rkde)

When the nominal data are contaminated with outliers, standard density estima-

tion may fail if the density estimator fits the outliers as well as the nominal points.

Kim, et al., [24] developed a kernel density estimation method that incorporates
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loss functions from robust statistics to reduce the risk of fitting the outliers. RKDE

fits a single probability distribution over the benchmark data and the final anomaly

score for point x is the negative log probability density − logP (x) assigned by the

model to data point x.

5.2 Precentile Methods

The second family of algorithms compute a decision boundary that includes frac-

tion 1−δ of the data. This is the δ quantile of the distribution. In high dimension,

there are many boundaries that achieve this. These algorithms seek to find a

boundary that is smooth and has a simple description. The anomaly score as-

signed to a point x is defined by some measure proportional to it’s distance inside

or outside of this decision boundary.

5.2.1 One-Class SVM (ocsvm)

The One-Class SVM algorithm (Scholkopf et al. [42]) solves an optimization prob-

lem to find a kernel-space decision boundary that separates fraction 1 − δ of the

data from the kernel-space origin. The outlier scores produced by this algorithm

are determined by the residual after each point x is projected onto the decision sur-

face. Points outside the decision boundary have positive residuals, where interior

points have negative residuals.
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5.2.2 Support Vector Data Description (svdd)

The SVDD algorithm (Tax and Duin [44]) is very similar to the One-Class SVM.

It seeks to find the smallest hypersphere in kernel space that encloses 1− δ of the

data. As with OCSVM, the outlier scores are determined by the residual after

each point is projected onto the decision surface.

5.3 Nearest Neighbor Approaches

Perhaps the oldest and simplest approach to anomaly detection is to measure the

distance from a given point x to its nearest neighbor (or its k nearest neighbors).

If this distance is large, then x is more likely to be an outlier. Many variants of

nearest neighbor methods have been developed (see [9]). In our study, we evaluated

two of the best methods.

A drawback of nearest neighbor methods is that they must compute the k

nearest neighbors of each data point. A naive implementation requires O(N2d2)

time, where N is the number of data points and d is the dimensionality of the fea-

ture space. Fortunately, there are many data structures that support fast nearest

neighbor search, so this cost can be greatly reduced.

A second potential drawback is that these methods all depend on a distance

metric. If the data are badly scaled or contain redundant and irrelevant features,

then the distance metric may be highly biased or meaningless.
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5.3.1 Trivial Distance to k-th Nearest Neighbor (knn)

Our second trivial algorithm is the simplest approximation of all algorithms in this

paradigm. It takes as a parameter k and, for each point in the data, assigns it an

anomaly score equal to its distance from its k-th nearest neighbor.

5.3.2 Local Outlier Factor (lof)

The popular Local Outlier Factor algorithm (Breunig, et al. [7]) computes the out-

lier score of a point x by computing its average distance to its k nearest neighbors.

It normalizes this distance by computing the average distance of each of those

neighbors to their k nearest neighbors. Consequently, it assigns a high anomaly

score to a point if it is significantly farther from its neighbors than they are from

each other.

5.3.3 KNN Angle-based Outlier Detection (abod)

Angle-Based Outlier Detection, as proposed by Kriegel, et al.[26] works as follows.

For each point xi, consider all pairs of other points (xj, xk) ∈ X, i 6= j 6= k and

compute the angle between them as “viewed from” xi. The sample variance of

these angles determines the outlier score of xi. If the variance is low, then xi is

likely to be an outlier, whereas if the variance is high, then xi is likely to be in

the middle of other data points. The outlier score is simply the negation of this

sample variance.
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5.4 Projection-Based Approaches

This family of algorithms employs low-dimensional projections of the data to assign

outlier scores.

5.4.1 Lightweight Online Detector Of Anomalies (loda)

LODA (Pevny [35]) generates an ensemble of random projections from the d-

dimensional data space to the real line. Each projection is constructed by choosing
√
d dimensions uniformly at random (without replacement), and assigning them

weights drawn from a standard normal distribution. In each of the projections,

LODA computes a histogram density estimator. The anomaly score assigned to a

point x is the average of the estimated negative log-likelihood of x in each of these

1-dimensional histograms.

5.4.2 Isolation Forest (iforest)

The Isolation Forest algorithm (Liu, et al. [29]) constructs an ensemble of isolation

trees. Each isolation tree is constructed top-down by randomly choosing a feature

j, computing the observed range [L,U ] of the feature values, and then selecting a

splitting threshold θ uniformly at random from this interval. The data are then

split according to whether xj <= θ or xj > θ to create two child nodes. The

process continues until every data point is isolated in its own leaf. The isolation

depth of x in an isolation tree is equal to the number of random splits required to
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isolate x. The anomaly score for x is computed from the average isolation depth

of x across all of the trees in the ensemble.

The intuition behind the isolation forest is that a data point is an outlier if

it can be separated from the rest of the data points using only a small number

of random splits. We view this as a projection method, because each splitting

decision is made by projecting the data onto one of the coordinate axes.
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Chapter 6: Evaluating the Benchmark Corpus

In this chapter we will evaluate our benchmark construction methodology agnostic

to any comparison of algorithms. Examining all 25,685 benchmarks with 10 algo-

rithms yields 256,850 micro-experiment results and reporting them all here is not

feasible. An additional concern is that because our benchmark construction pro-

cess is designed to be exhaustive and test the limits of algorithm performance it is

reasonable to assume that many benchmarks are not very reasonable articulations

of the unsupervised anomaly detection problem. We will use our micro-experiment

results to validate the usefulness of each benchmark.

6.1 Validating Benchmark Construction With Hypothesis Testing

The process described in Chapters 3 and 4 can generate very difficult benchmark

datasets. In reanalyzing our 2013 data, we discovered that these “impossible”

benchmarks were biasing the conclusions. Hence, we decided to filter out datasets

where our battery of algorithms do no better than random guessing.

Recall from Section 2.2 that we are considering both Area Under the Receiver

Operating Characteristic Curve (AUC) and Mean Average Precision (AP). These

figures of merit are both derived from the relative ranking of the entire dataset and

thus the behavior of a random algorithm can be simulated by assigning anomaly
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scores according to a random permutation of {1, . . . , n}.

For each benchmark in the corpus we conducted the following hypothesis test:

H0 : There does not exist an anomaly detection algorithm that produces a

ranking better than a random one.

H1 : There exists an anomaly detection algorithm that produces a ranking better

than a random one.

Even though the benchmark corpus was intentionally designed to push beyond

the boundaries of reasonable anomaly detection problems but we don’t want to

make assumptions about where those boundaries are. The intuition behind the

hypothesis test is that, in so much as anomaly detection algorithms are correlated

because they are trying to solve the same problem, if the algorithms universally

fail to differentiate themselves from random behavior on a particular benchmark

then we have reason to believe the benchmark does not represent a well-formed

anomaly detection problem, or at the very least, comparing algorithm performance

on that benchmark does not provide useful information.

To conduct our hypothesis test on a benchmark we treat AUC and AP as ran-

dom variables and compute the quantiles of interest of their distributions. Details

on how this can be done are provided in Appendix F.1. We compare this score

to the score of the best performing algorithm on the benchmark. We accept a

benchmark for further analysis if we can reject the above null hypothesis with high

probability.
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Table 6.1: Benchmark Acceptance Rate by Metric and
p-value

P (H0) AUC AP Both

p < 0.05 0.7501 0.7105 0.6716
p < 0.01 0.6653 0.5778 0.5465
p < 0.001 0.5862 0.4881 0.4628

The rate of rejecting the null hypothesis - or acceptance rate - of our construc-

tion methodology across the entire corpus is summarized in Table 6.1

The appropriate significance level for this study is debatable. Smaller p-values

trade away potential evidence (by accepting fewer benchmarks) for greater con-

fidence that the results from the benchmarks under consideration are relevant.

Ultimately we choose to apply the most stringent threshold of p < 0.001 and we

only accept benchmarks for further analysis if we can reject the null hypothesis

for both metrics; even though the acceptance rate by these standards is rather

low (46.28%) they still leave many benchmarks across all factors of interest (11,888

total).

We make note here that rejecting a benchmark for further analysis in this

study does not equate to discarding it from the corpus. If a new algorithm were

introduced to the corpus it may give a performance that allows for accepting more

benchmarks into future analysis.

We also present here the benchmark acceptance rates across our benchmark

specifications in Tables 6.2 to 6.5. Boldface values indicate an acceptance rate
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Table 6.2: Benchmark Acceptance Rate by Metric and Point
Difficulty Specification

pd-level AUC AP Both

pd0 : φ̄ ∈ (0, 1) 0.7090 0.5996 0.5723
pd1 : φ̄ ∈ (0, 0.16) 0.7182 0.5950 0.5774
pd2 : φ̄ ∈ [0.16, 0.3) 0.5785 0.4771 0.4523
pd3 : φ̄ ∈ [0.3, 0.5) 0.4323 0.3511 0.3234
pd4 : φ̄ ∈ [0.5, 1) 0.2266 0.1918 0.1569

greater than the global average for that metric. While the purpose of these hy-

pothesis tests is to ensure the validity of our analysis, the general trends in these

acceptance rates across our benchmark specification levels provide some evidence

that confirms some of our intuitions about the impact of these specifications. In

general, as point difficulty, normalized clusteredness and feature irrelevance in-

crease, acceptance rates go down, indicating that they all contribute to more diffi-

cult problems. The exception to this trend is that as relative frequency increases,

acceptance rates go up as well. One explanation for this is that the 0.999 quantile

for both random AUC and random AP fall drastically as the relative frequency

of anomalies increases. We note that the control setting of rf0 will, on average,

produce benchmarks with ρ = 0.5 and that the acceptance rate at this level is

lower than the one at rf5. This suggests that at some value of ρ the trend reverses

as the classes become balanced and the outliers-as-anomalies assumption breaks

down.

For compactness of presentation we present benchmark acceptance rates by
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Table 6.3: Benchmark Acceptance Rate by Metric and
Normalized Clusteredness Specification

nc-level AUC AP Both

nc0 : ν ∈ R 0.5503 0.4047 0.3953
nc1 : ν < 0 0.6321 0.5846 0.5379
nc2 : ν > 0 0.5773 0.4772 0.4571

Table 6.4: Benchmark Acceptance Rate by Metric and
Feature Irrelelvance Specification

fi-level AUC AP Both

fi0 : α = 1.0 0.6842 0.5908 0.5680
fi1 : α̂ = 1.2 0.6190 0.5208 0.4972
fi2 : α̂ = 1.5 0.5641 0.4632 0.4356
fi3 : α̂ = 2.0 0.4778 0.3778 0.3507

Table 6.5: Benchmark Acceptance Rate by Metric and
Relative Frequency Specification

rf-level AUC AP Both

rf0 : ρ ∈ (0, 1) 0.6401 0.5671 0.5583
rf1 : ρ = 0.001 0.2750 0.1536 0.1008
rf2 : ρ = 0.005 0.4580 0.3078 0.2680
rf3 : ρ = 0.01 0.5615 0.4171 0.3773
rf4 : ρ = 0.05 0.7631 0.6926 0.6805
rf5 : ρ = 0.1 0.7473 0.6997 0.6899
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parentset and by algorithm in Appendix F.2. Here we only make note of one finding

in Table F.1 which is that the yeast parentset has an extremely low acceptance

rate (below 3%in all cases).

6.2 Quantifying Impact of Benchmark Specifications

The remainder of this study only performs analyses on results from the 11,888

benchmarks accepted by hypothesis testing. We will incrementally introduce lin-

ear regression models for the purpose of examining factors that impact experi-

mental outcomes. Before we can do this, we need to ensure that all variables are

appropriate for such regression analysis.

6.2.1 Transformation of Metrics

Using linear models to predict metrics like AUC and AP is problematic because

they are both constrained to the range [0, 1]. Further, AP does not have a constant

expectation. For both metrics we need a function that maps f : [0, 1] 7→ R

For AUC this is relatively simple. Regardless of relative frequency of the bench-

mark, AUC has a random expectation of 0.5 and, as explained in Section 2.2, it can

be interpreted as parameter p of a Bernoulli distribution predicting correct ranking

of two points from opposite classes. A sensible transformation of this value is the

logit transform:
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logit(AUC) = log

(
AUC

1− AUC

)
(6.1)

For some intuition, the logit function is the inverse of the sigmoid function.

Random expectation (0.5) maps to 0, scores below expectation map to negative

values, and scores above expectation map to positive values.

We would like a function that exhibits the same properties for AP. Because AP

does not have a constant expectation, one way to normalize AP is to compute the

lift which is the ratio of AP to its expectation. It is commonly assumed that this

expectation is equivalent to the relative frequency of the anomalies in the bench-

mark, but Bestgen [5] shows that, while this can be a good approximation, it is not

exactly correct. More importantly it can be a bad approximation when relative

frequency is low, which is the case for most of our benchmarks. We compute lift

using the exact expectation. To map this ratio to all real numbers we simply take

the log:

log(lift) = log

(
AP

E[AP]

)
(6.2)

6.2.2 Algorithm Agnostic Regression

Our first regression models will, for each transformed metric, predict the outcome

given the benchmark specifications while remaining blind to which algorithm pro-

duced the score. For this model we use our problem dimension specification levels

as explained in Chapter 3 (pd,nc,fi,rf) and include the parentset that originated
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the benchmark. In the notation of R, we write this as

metric ∼ 1 + parentset + pd + nc + fi + rf. (6.3)

Note that Eq. (6.3) is fit twice, once for logit(AUC) and once for log((lift)).

These two models are only using discrete variables and not the real valued mea-

surements φ̄, ν, α, ρ which we will use in later models. For now we are trying to

assess the impact of our construction criterion and want to examine our construc-

tion specifications. More specifically, we want to explicitly separate our control

group settings from the rest.

Here we summarize an analysis of variance (ANOVA) of each model and provide

the R̂2 goodness-of-fit of each model. Table 6.6 shows the percentage of variance

explained by each specification factor. The factors that influence outcomes the

most (across all algorithms) are the choice of parentset and the relative frequency

setting. Relative frequency explains more variance in the log(lift) model, while

choice of parentset explains more variance in the logit(AUC) model.

Variance explained suggests the importance of each factor, but it does not

articulate how each specification impacts the experimental outcomes. For each

benchmark specification criterion we detail the linear model coefficients of each

setting; these coefficients are a measure of how much the experimental outcome

changes relative to the control group (which by definition will always have a coef-

ficient of zero). Tables 6.7 to 6.10 show these coefficients and the range of a con-

fidence interval for each of our problem dimension specifications. The minimum
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Table 6.6: Metric Variance Explained By Specification
Factors in Algorithm-Agnostic Models

specification logit(AUC) log(lift)

parentset 37.75% 26.78%

pd-level 4.28% 4.58%

nc-level 0.46% 2.01%

fi-level 4.34% 3.26%

rf-level 11.22% 32.92%

Residual σ2 41.95% 30.45%

R̂2 of Model 0.5805 0.6955

and maximum coefficients for each problem dimension level are in bold (excepting

the control group).

Keep in mind that the nature of the control groups at each setting are not

necessarily the “lowest” setting. The random expectation of the relative frequency

control group is 0.5; much higher than our tested levels. The random expectation

of the normalized clusteredness control group is zero (in between our other two

settings). The random expectation of the point difficulty control group cannot

be easily quantified and is dependent on the parentset and the oracle used. For

some intuition though, a good oracle will typically have that vast majority of point

difficulty scores below 0.5, and if those scores are evenly distributed they would

have an expectation of 0.25.

We can see the general trend in each problem dimension matches our intuition.
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Table 6.7: Point Difficulty Level Coefficients Estimating
Metrics in Algorithm-Agnostic Models

pd-level ∆logit(AUC) CI0.999 ∆ log(lift) CI0.999

pd0 : φ̄ ∈ (0, 1) 0.0000 0.0000
pd1 : φ̄ ∈ (0, 0.16) 0.1214 ±0.0204 0.0079 ±0.0150
pd2 : φ̄ ∈ [0.16, 0.3) -0.3682 ±0.0254 -0.2697 ±0.0187
pd3 : φ̄ ∈ [0.3, 0.5) -0.5261 ±0.0312 -0.4006 ±0.0230
pd4 : φ̄ ∈ [0.5, 1) -0.3610 ±0.0464 -0.3013 ±0.0342

σ2 Explained 4.28% 4.58%

R̂2 of Model 0.5805 0.6955

With one notable exception, general algorithm performance degrades as point diffi-

culty, normalized clusteredness, feature irrelevance and relative frequency increase.

The exception to the trend, in Table 6.7, is that the highest point difficulty set-

ting does not have as negative an impact as the second-highest. This might be

explained by the fact that the highest setting uses points with score above 0.5,

which means all points, nominals and anomalies alike, are on the wrong side of a

decision boundary and can therefore be differentiated from each other again.

For compactness of presentation, we present coefficients related to the par-

entsets in Appendix F.2. We note here that all of the parentsets have a large

negative impact on experimental outcomes relative to benchmarks created from

the synthetic control parentset; evidence that more idiosyncratic real world data

produces more challenging benchmarks.
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Table 6.8: Normalized Clusteredness Level Coefficients
Estimating Metrics in Algorithm-Agnostic Models

nc-level ∆logit(AUC) CI0.999 ∆ log(lift) CI0.999

nc0 : ν ∈ R 0.0000 0.0000
nc1 : ν < 0 0.0803 ±0.0199 0.1517 ±0.0147
nc2 : ν > 0 -0.0653 ±0.0213 -0.1197 ±0.0157

σ2 Explained 0.46% 2.01%

R̂2 of Model 0.5805 0.6955

Table 6.9: Feature Irrelelvance Level Coefficients Estimating
Metrics in Algorithm-Agnostic Models

fi-level ∆logit(AUC) CI0.999 ∆ log(lift) CI0.999

fi0 : α = 1.0 0.0000 0.0000
fi1 : α̂ = 1.2 -0.2092 ±0.0221 -0.1119 ±0.0163
fi2 : α̂ = 1.5 -0.4188 ±0.0231 -0.2172 ±0.0170
fi3 : α̂ = 2.0 -0.6122 ±0.0248 -0.3439 ±0.0183

σ2 Explained 4.34% 3.26%

R̂2 of Model 0.5805 0.6955
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Table 6.10: Relative Frequency Level Coefficients Estimating
Metrics in Algorithm-Agnostic Models

rf-level ∆logit(AUC) CI0.999 ∆ log(lift) CI0.999

rf0 : ρ ∈ (0, 1) 0.0000 0.0000
rf1 : ρ = 0.001 2.2254 ±0.0517 3.2253 ±0.0381
rf2 : ρ = 0.005 1.1854 ±0.0331 1.7529 ±0.0244
rf3 : ρ = 0.01 0.8639 ±0.0295 1.2800 ±0.0218
rf4 : ρ = 0.05 0.4159 ±0.0242 0.5553 ±0.0178
rf5 : ρ = 0.1 0.2908 ±0.0234 0.3503 ±0.0173

σ2 Explained 11.22% 32.92%

R̂2 of Model 0.5805 0.6955



56

Chapter 7: Analyzing Algorithm Performance

The R̂2 goodness-of-fit measures for each the models presented in Section 6.2 are

0.5805 and 0.6955 respectively. These are reasonably good measures, especially

since the models were blind to which algorithm produced each result, but they

still leave a lot of room for improvement.

7.1 Finding the Best First-Order Model

To guide further analysis, we produced four new regression models. First, for each

metric, we computed a linear model as in Eq. (6.3) but included choice of algorithm

as a factor.

metric ∼ 1 + algorithm + parentset + pd + nc + fi + rf (7.1)

We also wish to use the continuous measures of our problem dimensions to

predict our metrics to see if they produce better models. As in Section 6.2 we

want to make sure our variables are appropriate for linear modeling.
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7.1.1 Transformation of Problem Dimension Measures

Recall that each benchmark has associated real-valued problem dimension mea-

sures φ̄, ν, α, ρ. We describe here our transformation for each.

φ̄ : Point difficulty scores are restrained to the interval (0, 1) and can be in-

terpreted as a probability of misclassification. Because of this, the logit

function is an appropriate transformation.

ν : Normalized Clusteredness is formulated as the log of a ratio and so does not

require any transformation. It has a random expectation of 0 with positive

values indicating anomalies more clustered than nominal and negative scores

indicating anomalies more scattered than nominals.

α : Feature irrelevance is measured as a ratio, so taking its logarithm is an

appropriate transformation. Note that because a ratio of 1 is the lowest value

allowed in our benchmark construction methods, this transformed measure

will always be non-negative.

ρ : As with point difficulty scores, relative frequency is restrained to the interval

(0, 1) and can be interpreted as a probability that a point selected uniformly

at random is an anomaly. Because of this, the logit function is an appropriate

transformation.

This yields our second pair of models. For each metric, we computed the linear

model specified in Eq. (7.2)
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Table 7.1: R̂2 of First-Order Models by Metric
and Variable Type

Variable Type logit(AUC) log(lift)

Discrete Variables 0.5928 0.6955
Continuous Variables 0.6075 0.7145

metric ∼ 1 + algorithm + parentset + logit(φ̄) + ν + log(α) + logit(ρ) (7.2)

We compare the R̂2 measure for these four models in Table 7.1. The models

that explain the most variance in experimental outcomes are the models fitted

to our transformed continuous problem dimension measures. Tables 7.2 and 7.3

present model coefficients and ANOVA details of both of these first-order models.

We do not share parentset coefficients as they are numerous and uninteresting,

but we do share the amount of variance they explain as a group. The algorithm

coefficients are relative to the trivial mean distance (tmd) algorithm as the

control setting. We consider this a good reference algorithm because it accurately

models the true probability density of the nominal class in our synthetic control

parentset.

The algorithms with the greatest positive impact on outcomes have their co-

efficients in bold. Algorithms that fail to distinguish themselves from tmd have



59

their confidence intervals in bold. The coefficients for the benchmark specification

measures are not directly comparable, but their polarity indicates how these mea-

sures are correlated with outcomes. The impact of each specification measure is

better evaluated by comparing how much variance in outcomes it explains. The

most influential problem dimension has its variance in bold.

Surprisingly, the trivial knn algorithm achieves the best overall logit(AUC)

across the accepted benchmarks. In both metrics parentset of origin has the great-

est impact on outcomes while choice of algorithm has very little.

Because both models generally confirm the same trends, a simple argument

could be made to focus remaining analyses on the metric that receives the greater

R̂2, but we observe a problematic interaction that has appeared in all models so far:

A very large portion of the variance of log(lift) is explained by relative frequency.

This is because the computation of lift and the computation of ρ both depend

on knowledge of the number of anomalies and the number of nominals in the

benchmark. For this reason, log(lift) and ρ are naturally correlated (negatively)

and relative frequency has an oversized impact on analyzing AP-based results.

This does not mean AP is a poor metric, but its sensitivity to relative frequency

can make interpreting results of this study more difficult. For this reason we will

report analyses of both metrics, but for compactness of presentation we will put

the focus on logit(AUC) while relegating most presentation of analyses of log(lift)

outcomes to Appendix G.
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Table 7.2: First-Order Regression Model Predicting
logit(AUC)

∆logit(AUC) CI0.999

parentset σ2(%) 37.75%

algorithm σ2(%) 1.23%

tmd 0.0000
egmm 0.2632 ±0.0360

rkde 0.2458 ±0.0360
ocsvm -0.0528 ±0.0360

svdd 0.0131 ±0.0360
knn 0.4060 ±0.0360

lof 0.2387 ±0.0360
abod 0.1862 ±0.0360
loda 0.1590 ±0.0360

iforest 0.3849 ±0.0360
specifications σ2(%) 21.77%

pd (φ̄) 8.77% -0.4418 ±0.0131
nc (ν) 1.40% -0.1145 ±0.0079
fi (α) 3.82% -0.4084 ±0.0137
rf (ρ) 7.79% -0.2484 ±0.0053

Residual σ2 39.25% F 32
118847 ≥ 5749

R̂2 of Model 0.6075 p ≤ 0.001
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Table 7.3: First-Order Regression Model Predicting
log(lift)

∆ log(lift) CI0.999

parentset σ2(%) 26.78%

algorithm σ2(%) 0.63%

tmd 0.0000
egmm 0.1451 ±0.0265

rkde 0.1445 ±0.0265
ocsvm 0.0968 ±0.0265

svdd -0.0006 ±0.0265
knn 0.2846 ±0.0265

lof 0.1432 ±0.0265
abod 0.1477 ±0.0265
loda 0.1328 ±0.0265

iforest 0.2929 ±0.0265
specifications σ2(%) 44.04%

pd (φ̄) 7.87% -0.1966 ±0.0097
nc (ν) 8.26% -0.2341 ±0.0058
fi (α) 2.06% -0.2233 ±0.0101
rf (ρ) 25.85% -0.3915 ±0.0039

Residual σ2 28.55% F 32
118847 ≥ 9295

R̂2 of Model 0.7145 p ≤ 0.001
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7.2 Second-Order Modeling

The R̂2 measure of 0.6075 on our best logit(AUC)-predicting model can be im-

proved with second-order interactions. This would be especially true if there are

strong interactions between our specification measures and individual algorithm

performance. With some abuse of notation, Eq. (7.3) presents the formulation of

our second-order model. (We do not actually include the squares of individual

factors but include first-order terms and all pairwise terms.)

metric ∼
(
1 + algorithm + parentset + logit(φ̄) + ν + log(α) + logit(ρ)

)2
(7.3)

Table 7.4 presents the ANOVA for this second-order model, which has a much

improved R̂2 goodness-of-fit of 0.8138. We decompose the variance explained first

by grouping together all algorithm effects and interactions. Algorithm effects still

only account for 6.37% of the variance in experimental outcomes. Within algorithm

interactions, choice of parentset accounts for 63.68% of that variance (but only

4.06% overall).

Next we factor out all remaining parentset effects and interactions, which ac-

count for 51.79% of the variance. While first-order parentset effects are quite large

(37.75%), a large amount of variance is explained by the interactions between par-

entset and problem specification measures (14.04%). We also show the variance

explained by the interaction between parentset and point difficulty alone, because

it is notably strong among interactions between parentset and problem specifica-
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tions. At 7.83% this interaction alone explains more variance then all effects and

interactions involving choice of algorithm and is almost as strong as point diffi-

culty’s first-order effect. One explanation for the strength of this interaction is

that the assignment of point difficulty scores is dependent on a classifier run on

the parentset itself. While the assignment of these scores is consistent enough that

the factor has explanatory power on its own, it makes sense that the model would

benefit from being able to adjust the effect of point difficulty for each individual

parentset.

The remaining effects belong to first-order problem specification measures and

the interactions between them. As a group they explain 23.22% of the variance

in experimental outcomes, with point difficulty and relative frequency having the

strongest influence. Notably, the variance explained by interactions between our

specification measures is low; 6.23% of the variance is explained by this group

and only 1.45% overall. We believe this is evidence that the problem specification

measures are able to provide independent information about outcomes.

The analogous data pertaining to the log(lift) model is presented in Table G.1.

We call attention here to supplemental results offered in Table G.2 and Ta-

ble G.3. These tables present coefficients for interactions between algorithms and

choice of parentset in our second-order models. Positive interactions between algo-

rithms and parentsets are in bold. We do not suggest that any of these coefficients

are specifically interesting, but as a whole they do illustrate that the original source

of data can impact algorithm performance in unpredictable ways. We examine this

phenomenon in greater detail in Section 7.5.
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Table 7.4: ANOVA for Second-Order Regression Model
Predicting logit(AUC)

σ2(%) group(%) F -test

algorithm 6.37% p ≤ 0.001

– 1.23% 19.29% p ≤ 0.001

× parentset 4.06% 63.68% p ≤ 0.001

× specifications 1.08% 17.02% p ≤ 0.001

parentset 51.79% p ≤ 0.001

– 37.75% 72.90% p ≤ 0.001

× specifications 14.04% 27.10% p ≤ 0.001

× pd (φ̄) 7.83% 15.11% p ≤ 0.001

specifications 23.22% p ≤ 0.001

pd (φ̄) 8.77% 37.77% p ≤ 0.001

nc (ν) 1.40% 6.01% p ≤ 0.001

fi (α) 3.82% 16.47% p ≤ 0.001

rf (ρ) 7.79% 33.53% p ≤ 0.001

× specifications 1.45% 6.23% p ≤ 0.001

Residual σ2 18.62% F 321
118558 ≥ 1614

R̂2 of Model 0.8138 p ≤ 0.001
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We do not examine interactions between algorithms and our problem dimension

measures here, because we are bringing even tighter focus on algorithm interactions

in Section 7.3.

7.3 Third-Order Algorithm Models

To better evaluate the impact of our problem dimensions on individual algorithms,

we examine third-order algorithm interactions with models separately predicting

the behavior of each algorithm according to (Eq. (7.4)). The same abuse of notation

as in Eq. (7.3) applies here.

metric(algo) ∼
(
1 + parentset + logit(φ̄) + ν + log(α) + logit(ρ)

)2
(7.4)

The performances of each algorithm are individually summarized in Tables 7.5

to 7.14. These tables present each algorithm’s mean performance, (µ(logit(AUC))),

and the retransformed metric (µ′(AUC)) for some human-readable intuition about

this performance; this is not the arithmetic mean AUC, but the sigmoid of µ(logit(AUC))

which we feel is a more accurate accounting of the mean AUC anyway.

These tables also present the real-valued variance explained by each factor in

each model as these values are comparable across algorithms. Model coefficients

are not presented. The coefficients of interest would be those pertaining to our

problem setting measures, but because they are all negative and the strength of
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the interaction is better represented by variance explained, we do not show them

here for compactness of presentation. Where first-order parentset effects are the

strongest effect, this variance is in bold. The most influential problem dimension

setting is also in bold.

The analogous data pertaining to the log(lift) models is presented in Tables G.4

to G.13.

We do not discuss the information in these tables in detail here, but leave

them as an in-depth accounting of the different influences problem settings exert

on different algorithms. A summary of the information in these tables (for both

metrics) can be found in Table 7.15. In this table a direct comparison of algorithms

can be more easily digested. The top 3 algorithms for each category are in bold.

Algorithms with low unexplained variance might have more reliable performance

agnostic to the problem setting. Low variance in the remaining categories might

suggest a resilience to changes in the problem setting.

7.4 High-Contrast Setting Models

For a more explicitly quantified examination of how algorithm performance changes

in different settings, we analyze experimental outcomes with four mixed effect mod-

els. This time each model brings focus on one axis of benchmark specification by

constraining analysis to benchmarks in the most extreme settings of that problem

dimension. The problem dimension under examination is treated as a discrete

factor again as in our earliest models, and only two extreme levels of those factors
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Table 7.5: ANOVA For Model Predicting tmd
(logit(AUC))

µ(logit(AUC)) σ2(real) µ′(AUC)

tmd 0.7877 1.5468 0.6873

σ2(%) σ2(real) F -test

parentset 45.09% 0.6974 p ≤ 0.001

pd (φ̄) 15.38% 0.2380 p ≤ 0.001

– 5.99% 0.0927 p ≤ 0.001

× parentset 9.39% 0.1453 p ≤ 0.001

nc (ν) 4.47% 0.0691 p ≤ 0.001

– 1.44% 0.0222 p ≤ 0.001

× parentset 3.03% 0.0469 p ≤ 0.001

fi (α) 11.27% 0.1744 p ≤ 0.001

– 2.87% 0.0443 p ≤ 0.001

× parentset 8.41% 0.1301 p ≤ 0.001

rf (ρ) 7.13% 0.1103 p ≤ 0.001

– 4.72% 0.0730 p ≤ 0.001

× parentset 2.41% 0.0373 p ≤ 0.001

spec × spec 0.96% 0.0149 p ≤ 0.001

Residual σ2 15.69% 0.2427 F 105
11782 ≥ 602

R̂2 of Model 0.8431 1.3041 p ≤ 0.001
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Table 7.6: ANOVA For Model Predicting egmm
(logit(AUC))

µ(logit(AUC)) σ2(real) µ′(AUC)

egmm 1.0509 1.8023 0.7409

σ2(%) σ2(real) F -test

parentset 42.15% 0.7597 p ≤ 0.001

pd (φ̄) 17.94% 0.3234 p ≤ 0.001

– 10.62% 0.1913 p ≤ 0.001

× parentset 7.32% 0.1320 p ≤ 0.001

nc (ν) 3.68% 0.0663 p ≤ 0.001

– 2.20% 0.0397 p ≤ 0.001

× parentset 1.48% 0.0266 p ≤ 0.001

fi (α) 10.36% 0.1867 p ≤ 0.001

– 7.47% 0.1346 p ≤ 0.001

× parentset 2.89% 0.0520 p ≤ 0.001

rf (ρ) 9.09% 0.1638 p ≤ 0.001

– 7.27% 0.1310 p ≤ 0.001

× parentset 1.82% 0.0328 p ≤ 0.001

spec × spec 1.59% 0.0287 p ≤ 0.001

Residual σ2 15.19% 0.2738 F 105
11782 ≥ 626

R̂2 of Model 0.8481 1.5286 p ≤ 0.001
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Table 7.7: ANOVA For Model Predicting rkde
(logit(AUC))

µ(logit(AUC)) σ2(real) µ′(AUC)

rkde 1.0335 1.7034 0.7376

σ2(%) σ2(real) F -test

parentset 37.62% 0.6409 p ≤ 0.001

pd (φ̄) 16.94% 0.2886 p ≤ 0.001

– 7.72% 0.1315 p ≤ 0.001

× parentset 9.22% 0.1571 p ≤ 0.001

nc (ν) 2.26% 0.0384 p ≤ 0.001

– 1.05% 0.0179 p ≤ 0.001

× parentset 1.20% 0.0205 p ≤ 0.001

fi (α) 14.04% 0.2391 p ≤ 0.001

– 7.91% 0.1348 p ≤ 0.001

× parentset 6.12% 0.1043 p ≤ 0.001

rf (ρ) 9.82% 0.1672 p ≤ 0.001

– 8.03% 0.1368 p ≤ 0.001

× parentset 1.79% 0.0304 p ≤ 0.001

spec × spec 1.72% 0.0293 p ≤ 0.001

Residual σ2 17.60% 0.2998 F 105
11782 ≥ 525

R̂2 of Model 0.8240 1.4036 p ≤ 0.001
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Table 7.8: ANOVA For Model Predicting ocsvm
(logit(AUC))

µ(logit(AUC)) σ2(real) µ′(AUC)

ocsvm 0.7349 2.4944 0.6759

σ2(%) σ2(real) F -test

parentset 53.62% 1.3374 p ≤ 0.001

pd (φ̄) 14.56% 0.3633 p ≤ 0.001

– 7.05% 0.1760 p ≤ 0.001

× parentset 7.51% 0.1873 p ≤ 0.001

nc (ν) 5.94% 0.1482 p ≤ 0.001

– 1.95% 0.0486 p ≤ 0.001

× parentset 3.99% 0.0996 p ≤ 0.001

fi (α) 2.29% 0.0570 p ≤ 0.001

– 0.04% 0.0009 p ≤ 0.001

× parentset 2.25% 0.0561 p ≤ 0.001

rf (ρ) 10.67% 0.2662 p ≤ 0.001

– 7.72% 0.1926 p ≤ 0.001

× parentset 2.95% 0.0735 p ≤ 0.001

spec × spec 0.68% 0.0169 p ≤ 0.001

Residual σ2 12.25% 0.3055 F 105
11782 ≥ 803

R̂2 of Model 0.8775 2.1889 p ≤ 0.001
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Table 7.9: ANOVA For Model Predicting svdd
(logit(AUC))

µ(logit(AUC)) σ2(real) µ′(AUC)

svdd 0.8008 1.5296 0.6901

σ2(%) σ2(real) F -test

parentset 44.31% 0.6778 p ≤ 0.001

pd (φ̄) 15.75% 0.2408 p ≤ 0.001

– 6.37% 0.0974 p ≤ 0.001

× parentset 9.38% 0.1434 p ≤ 0.001

nc (ν) 4.28% 0.0655 p ≤ 0.001

– 1.30% 0.0198 p ≤ 0.001

× parentset 2.98% 0.0456 p ≤ 0.001

fi (α) 11.45% 0.1751 p ≤ 0.001

– 3.19% 0.0488 p ≤ 0.001

× parentset 8.26% 0.1263 p ≤ 0.001

rf (ρ) 7.26% 0.1110 p ≤ 0.001

– 4.87% 0.0744 p ≤ 0.001

× parentset 2.39% 0.0366 p ≤ 0.001

spec × spec 1.01% 0.0155 p ≤ 0.001

Residual σ2 15.95% 0.2440 F 105
11782 ≥ 591

R̂2 of Model 0.8405 1.2856 p ≤ 0.001
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Table 7.10: ANOVA For Model Predicting knn
(logit(AUC))

µ(logit(AUC)) σ2(real) µ′(AUC)

knn 1.1937 1.8626 0.7674

σ2(%) σ2(real) F -test

parentset 38.59% 0.7188 p ≤ 0.001

pd (φ̄) 19.75% 0.3679 p ≤ 0.001

– 10.51% 0.1957 p ≤ 0.001

× parentset 9.25% 0.1722 p ≤ 0.001

nc (ν) 2.66% 0.0495 p ≤ 0.001

– 1.21% 0.0226 p ≤ 0.001

× parentset 1.45% 0.0270 p ≤ 0.001

fi (α) 11.51% 0.2144 p ≤ 0.001

– 6.71% 0.1250 p ≤ 0.001

× parentset 4.80% 0.0894 p ≤ 0.001

rf (ρ) 12.35% 0.2300 p ≤ 0.001

– 10.15% 0.1891 p ≤ 0.001

× parentset 2.19% 0.0408 p ≤ 0.001

spec × spec 1.30% 0.0243 p ≤ 0.001

Residual σ2 13.84% 0.2577 F 105
11782 ≥ 698

R̂2 of Model 0.8616 1.6049 p ≤ 0.001
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Table 7.11: ANOVA For Model Predicting lof
(logit(AUC))

µ(logit(AUC)) σ2(real) µ′(AUC)

lof 1.0264 1.9117 0.7362

σ2(%) σ2(real) F -test

parentset 42.51% 0.8126 p ≤ 0.001

pd (φ̄) 17.24% 0.3296 p ≤ 0.001

– 10.79% 0.2062 p ≤ 0.001

× parentset 6.45% 0.1234 p ≤ 0.001

nc (ν) 2.50% 0.0478 p ≤ 0.001

– 1.31% 0.0250 p ≤ 0.001

× parentset 1.19% 0.0228 p ≤ 0.001

fi (α) 9.85% 0.1882 p ≤ 0.001

– 3.84% 0.0735 p ≤ 0.001

× parentset 6.00% 0.1148 p ≤ 0.001

rf (ρ) 12.12% 0.2317 p ≤ 0.001

– 9.69% 0.1852 p ≤ 0.001

× parentset 2.43% 0.0465 p ≤ 0.001

spec × spec 1.23% 0.0235 p ≤ 0.001

Residual σ2 14.56% 0.2783 F 105
11782 ≥ 658

R̂2 of Model 0.8544 1.6334 p ≤ 0.001
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Table 7.12: ANOVA For Model Predicting abod
(logit(AUC))

µ(logit(AUC)) σ2(real) µ′(AUC)

abod 0.9739 1.6466 0.7259

σ2(%) σ2(real) F -test

parentset 32.83% 0.5406 p ≤ 0.001

pd (φ̄) 16.63% 0.2739 p ≤ 0.001

– 10.82% 0.1781 p ≤ 0.001

× parentset 5.82% 0.0958 p ≤ 0.001

nc (ν) 5.17% 0.0852 p ≤ 0.001

– 0.99% 0.0163 p ≤ 0.001

× parentset 4.18% 0.0689 p ≤ 0.001

fi (α) 14.34% 0.2361 p ≤ 0.001

– 8.63% 0.1421 p ≤ 0.001

× parentset 5.71% 0.0940 p ≤ 0.001

rf (ρ) 10.15% 0.1672 p ≤ 0.001

– 7.31% 0.1204 p ≤ 0.001

× parentset 2.84% 0.0468 p ≤ 0.001

spec × spec 1.49% 0.0246 p ≤ 0.001

Residual σ2 19.37% 0.3190 F 105
11782 ≥ 466

R̂2 of Model 0.8063 1.3276 p ≤ 0.001
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Table 7.13: ANOVA For Model Predicting loda
(logit(AUC))

µ(logit(AUC)) σ2(real) µ′(AUC)

loda 0.9467 1.3784 0.7205

σ2(%) σ2(real) F -test

parentset 38.77% 0.5345 p ≤ 0.001

pd (φ̄) 19.62% 0.2705 p ≤ 0.001

– 8.99% 0.1239 p ≤ 0.001

× parentset 10.63% 0.1466 p ≤ 0.001

nc (ν) 3.63% 0.0501 p ≤ 0.001

– 1.51% 0.0209 p ≤ 0.001

× parentset 2.12% 0.0292 p ≤ 0.001

fi (α) 8.19% 0.1129 p ≤ 0.001

– 3.82% 0.0526 p ≤ 0.001

× parentset 4.37% 0.0603 p ≤ 0.001

rf (ρ) 10.25% 0.1412 p ≤ 0.001

– 8.16% 0.1125 p ≤ 0.001

× parentset 2.08% 0.0287 p ≤ 0.001

spec × spec 1.26% 0.0174 p = 0.0011

Residual σ2 18.27% 0.2518 F 105
11782 ≥ 501

R̂2 of Model 0.8173 1.1266 p ≤ 0.001
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Table 7.14: ANOVA For Model Predicting iforest
(logit(AUC))

µ(logit(AUC)) σ2(real) µ′(AUC)

iforest 1.1726 2.0048 0.7636

σ2(%) σ2(real) F -test

parentset 42.36% 0.8491 p ≤ 0.001

pd (φ̄) 20.98% 0.4205 p ≤ 0.001

– 11.40% 0.2285 p ≤ 0.001

× parentset 9.58% 0.1921 p ≤ 0.001

nc (ν) 3.37% 0.0676 p ≤ 0.001

– 1.37% 0.0274 p ≤ 0.001

× parentset 2.00% 0.0402 p ≤ 0.001

fi (α) 5.16% 0.1034 p ≤ 0.001

– 2.09% 0.0420 p ≤ 0.001

× parentset 3.06% 0.0614 p ≤ 0.001

rf (ρ) 14.39% 0.2885 p ≤ 0.001

– 12.11% 0.2428 p ≤ 0.001

× parentset 2.28% 0.0457 p ≤ 0.001

spec × spec 0.97% 0.0195 p ≤ 0.001

Residual σ2 12.78% 0.2562 F 105
11782 ≥ 766

R̂2 of Model 0.8722 1.7486 p ≤ 0.001



77

Table 7.15: Summary of Variance Explained by Third-Order Models
Predicting Both Metrics
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are under consideration. Also, the interaction effect between this problem dimen-

sion and the choice of algorithm is the only representation either factor has in the

model, and they are together treated as separate random effect. The remainder

of the model includes first and second-order interactions between all other factors.

For clarity the models for each problem dimension are specified here:

Contrast pd1,pd3: We use the pd3 level instead of pd4, because the results in

Table 6.7 suggest that pd3 is actually our most difficult setting. We contrast results

across algorithms in benchmarks constructed at the pd1 and pd3 levels with the

model:

metric ∼ (1 + parentset + ν + log(α) + logit(ρ))2 + (1|algorithm× pd(1,3)) (7.5)

Contrast ncs,ncc: For normalized clusteredness we only had two construction

specifications with a lot of variation within each of them, so we define two new

levels here to enforce greater contrast:

ncs: benchmarks with a measure of ν < − log(2) (highly scattered anomalies).

ncc: benchmarks with a measure of ν > log(2) (highly clustered anomalies).

We contrast results across algorithms in benchmarks constructed at the ncs and

ncc levels with the model:

metric ∼
(
1 + parentset + logit(φ̄) + log(α) + logit(ρ)

)2
+ (1|algorithm× nc(s,c))

(7.6)
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Contrast fi0,fi3: Our control setting of adding no noise features makes sense here

so we contrast results across algorithms in benchmarks constructed at the fi0 and

fi3 levels with the model:

metric ∼
(
1 + parentset + logit(φ̄) + ν + logit(ρ)

)2
+ (1|algorithm× fi(0,3)) (7.7)

Contrast rf1, rf5: Ignoring our control setting, we contrast results across algo-

rithms in benchmarks constructed at the rf1 and rf5 levels with the model:

metric ∼
(
1 + parentset + logit(φ̄) + ν + log(α)

)2
+ (1|algorithm× rf(1,5)) (7.8)

We use mixed effects models to ensure that our coefficients of interest remained

linearly independent. Tables 7.16 to 7.19 present these results. Confidence inter-

vals across algorithms are computed relative to the tmd algorithm, while the

problem dimension confidence intervals are computed around the observed change

in performance. Confidence intervals that fail to differentiate themselves from their

reference group are in bold.

For each setting, the best performing algorithm is in bold. The minimum and

maximum statistically significant differences between settings are also in bold (that

is, the algorithms with the best change and worst change).

The analogous data pertaining to the log(lift) models is presented in Tables G.14

to G.17.

These tables further illustrate how a comparison of algorithms can be greatly

impacted by benchmark construction. Some highlights to observe are that isola-
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Table 7.16: Algorithm Performance When Contrasting pd1 and pd3

(logit(AUC))

logit(AUC)

algo CI
algo
0.999 pd1 pd3 pd3 − pd1 CI

pd
0.999

tmd 1.9666 1.2748 -0.6917 ±0.0809
egmm ±0.0548 2.2667 1.4550 -0.8117 ±0.0809

rkde ±0.0548 2.2364 1.5570 -0.6794 ±0.0809
ocsvm ±0.0548 1.9464 1.1820 -0.7643 ±0.0809

svdd ±0.0548 1.9836 1.2766 -0.7071 ±0.0809
knn ±0.0548 2.4418 1.6048 -0.8370 ±0.0809
lof ±0.0548 2.2595 1.4063 -0.8532 ±0.0809

abod ±0.0548 2.1737 1.4557 -0.7181 ±0.0809
loda ±0.0548 2.1640 1.3798 -0.7842 ±0.0809

iforest ±0.0548 2.4706 1.4463 -1.0242 ±0.0809

Table 7.17: Algorithm Performance When Contrasting ncs and ncc
(logit(AUC))

logit(AUC)

algo CI
algo
0.999 ncs ncc ncc − ncs CInc

0.999

tmd 0.4564 0.1441 -0.3123 ±0.0840
egmm ±0.0656 0.7900 0.6648 -0.1252 ±0.0840

rkde ±0.0656 0.5626 0.7500 0.1874 ±0.0840
ocsvm ±0.0656 0.7642 -0.1119 -0.8761 ±0.0840

svdd ±0.0656 0.4576 0.2171 -0.2405 ±0.0840
knn ±0.0656 0.7956 0.9416 0.1460 ±0.0840

lof ±0.0656 0.8379 0.6114 -0.2266 ±0.0840
abod ±0.0656 0.4721 0.9743 0.5021 ±0.0840
loda ±0.0656 0.4487 0.5177 0.0690 ±0.0840

iforest ±0.0656 0.9456 0.5727 -0.3728 ±0.0840
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Table 7.18: Algorithm Performance When Contrasting fi0 and fi3

(logit(AUC))

logit(AUC)

algo CI
algo
0.999 fi0 fi3 fi3 − fi0 CIfi0.999

tmd -0.3254 -0.8350 -0.5096 ±0.0715
egmm ±0.0621 0.1209 -0.8955 -1.0164 ±0.0715

rkde ±0.0621 0.1696 -0.8020 -0.9716 ±0.0715
ocsvm ±0.0621 -0.5661 -0.6781 -0.1120 ±0.0715

svdd ±0.0621 -0.2998 -0.8377 -0.5379 ±0.0715
knn ±0.0621 0.2911 -0.6896 -0.9806 ±0.0715

lof ±0.0621 -0.0669 -0.7495 -0.6826 ±0.0715
abod ±0.0621 0.0645 -0.9741 -1.0386 ±0.0715
loda ±0.0621 -0.1236 -0.7656 -0.6420 ±0.0715

iforest ±0.0621 0.0858 -0.5218 -0.6076 ±0.0715

Table 7.19: Algorithm Performance When Contrasting rf1 and rf5
(logit(AUC))

logit(AUC)

algo CI
algo
0.999 rf1 rf5 rf5 − rf1 CIrf0.999

tmd 0.5788 -0.9232 -1.5020 ±0.1247
egmm ±0.1601 1.3833 -0.7610 -2.1443 ±0.1247

rkde ±0.1601 0.9976 -0.7500 -1.7476 ±0.1247
ocsvm ±0.1601 1.6172 -1.0797 -2.6969 ±0.1247

svdd ±0.1601 0.5838 -0.9095 -1.4933 ±0.1247
knn ±0.1601 1.4466 -0.6519 -2.0986 ±0.1247

lof ±0.1601 1.3139 -0.8557 -2.1696 ±0.1247
abod ±0.1601 0.7845 -0.8258 -1.6104 ±0.1247
loda ±0.1601 0.7717 -0.7897 -1.5614 ±0.1247

iforest ±0.1601 1.7584 -0.6561 -2.4145 ±0.1247
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tion forest is the top performer on pd1 benchmarks but it is the most negatively

impacted by the change to pd3, while rkde is impacted the least. Isolation forest

is again the top performer on benchmarks with scattered anomalies, but the per-

formance of abod actually improves with the shift to highly clustered anomalies

and is the top performer in ncc, an effect that was not discovered in the third-order

regression models. Knn is, surprisingly, the top performer in many settings, in-

cluding fi0. Isolation forest is the top performer in fi3 (many irrelevant features),

something that runs counter to the claims of the algorithm’s authors, but that is

highly desirable.

When focusing on the log lift metric, some of these comparisons change. Ocsvm

is the top performer in rf1 (very few anomalies), while losing that honor to isola-

tion forest in the logit(AUC) metric.

7.5 Impact of Parentset Choices

Given the high impact that a benchmark’s parentset of origin can have on experi-

mental outcomes, we want to see if selecting only a few particular parentsets can

alter straightforward algorithm comparisons. We believe this is an important test,

because studies in the literature rarely use as many data sources as we do here.

We reproduce our first-order models as in Eq. (7.2), but this time we select only a

few parentsets of origin and compare this against results from a different selection

of parentsets. We are concerned here only with observing how a straightforward

comparison of algorithms can be changed drastically when the original data source
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Table 7.20: Algorithm Coefficients When Benchmarks
Constrained to Parentsets abalone particle wine and yearp

algo CI0.999 ∆logit(AUC) ∆ log(lift) CI0.999

tmd 0.0000 0.0000
egmm ±0.0646 -0.1182 -0.2682 ±0.0501

rkde ±0.0646 0.1792 0.0263 ±0.0501
ocsvm ±0.0646 -0.0741 -0.0339 ±0.0501

svdd ±0.0646 0.0083 -0.0209 ±0.0501
knn ±0.0646 0.1129 -0.0296 ±0.0501

lof ±0.0646 -0.1028 -0.2039 ±0.0501
abod ±0.0646 -0.1078 -0.2753 ±0.0501
loda ±0.0646 0.1024 0.0677 ±0.0501

iforest ±0.0646 0.0705 -0.0536 ±0.0501

changes. Tables 7.20 and 7.21 show the algorithm coefficients predicting both of

our metrics.

We note that in our study the overall best performing algorithms have been

isolation forest and the trivial knn algorithms. Table 7.20 shows results from

an analysis that only involves benchmarks constructed from parentsets abalone,

particle, wine and yearp. Here, in the logit(AUC) metric, rkde is the best overall

algorithm, and in the log(lift) metric, loda is the best overall algorithm.

Table 7.21 shows results from an analysis that only involves benchmarks con-

structed from parentsets spambase, landsat, gas and comm.and.crime. Here, in

the logit(AUC) metric, isolation forest is the best overall algorithm, and in the

log(lift) metric, ocsvm is the best overall algorithm.
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Table 7.21: Algorithm Coefficients When Benchmarks
Constrained to Parentsets spambase landsat gas and

comm.and.crime

algo CI0.999 ∆logit(AUC) ∆ log(lift) CI0.999

tmd 0.0000 0.0000
egmm ±0.0471 0.1897 0.1130 ±0.0467

rkde ±0.0471 0.1475 0.0869 ±0.0467
ocsvm ±0.0471 0.1464 0.3791 ±0.0467

svdd ±0.0471 0.0454 0.0136 ±0.0467
knn ±0.0471 0.3424 0.2640 ±0.0467

lof ±0.0471 0.3086 0.2722 ±0.0467
abod ±0.0471 0.2490 0.1364 ±0.0467
loda ±0.0471 0.1852 0.1129 ±0.0467

iforest ±0.0471 0.3914 0.3744 ±0.0467

Unlike our problem dimension settings, the impact of data source (and choice

of metric) on experimental outcomes is not as easily understood and yet it is also

the most dramatic.
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Chapter 8: Conclusions and Recommendations

Given the evidence provided, we feel confident making several conclusions and

recommendations. We acknowledge that many conclusions are only one possible

explanation.

8.1 Conclusions From Hypothesis Tests

Section 6.1 reveals that it is not uncommon for benchmarks created by methods

common in the literature to be of a quality such that many algorithms cannot

distinguish themselves from a random ranking in a statistical hypothesis test. We

recommend that this concern be addressed more often in future experiments.

The only benchmark construction specification with an unnacceptably low ac-

ceptance rate was point difficulty level pd4, which built benchmarks only from

points that an oracle misclassified. This is intuitively a bad choice anyway and

was only included in this study for thoroughness. We feel confident recommending

against constructing benchmarks at this setting.

Given the demonstrably high impact of choice of parentset on outcomes, we

recommend consulting Table F.3 when considering any of the data sources used

in this study. Specifically we recommend against using parentsets letter.rec, yeast

and yearp because of their particularly low acceptance rate.
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We do not recommend using an uncontrolled relative frequency for intuitively

obvious reasons, but we acknowledge that Table 6.5 does not provide sufficient

evidence to support this. The confidence intervals used in our hypothesis tests

are themselves functions of the relative frequency, so the acceptance rates in this

context are not as informative. However, the fact that the acceptance rates at

the uncontrolled level were higher than average does provide some evidence that

anomaly detection algorithms in general are capable of picking up some amount

of signal (albeit weak) as long as there is some imbalance in the classes. This

reinforces results published by Liu, et al. [29] where results were positive even

when the reported relative frequency was high.

Conversely, benchmarks with low relative frequency had a low acceptance rate,

but Tables 6.10 and 7.19 suggest that the remainder of those benchmarks were

also relatively easy compared to other benchmarks. This can be explained by

what should be intuitively obvious: that benchmarks with very few anomalies

are going to see much higher variance in their results, meaning more outstanding

successes and more abject failures.

8.2 Conclusions and Recommendations About Experiment Design

The average AUC scores for the highest performing algorithms across all accepted

benchmarks are between 0.7 and 0.8, yet AUC scores reported in the literature

are typically above 0.9. Given the very good overall performance of the trivial

knn method in this study and the inability of some algorithms to statistically
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distinguish themselves from the trivial tmd algorithm, we are concerned that the

overwhelmingly positive results reported in literature indicate benchmarks that

would have been easily solved by a trivial algorithm anyway. We recommend

the inclusion of more trivial baseline algorithms in future experiments to provide

perspective on the triviality or non-triviality of the benchmarks used.

Based on Table F.3, we recommend against using synthetic datasets in general

or at least recommend that the relative ease of solving synthetic problems be

seriously acknowledged when drawing conclusions.

Tables 7.2 and 7.4 and others suggest that the biggest factor impacting experi-

mental results is the selection of parentset or data source. This impact is explicitly

demonstrated in Tables 7.20 and 7.21 where evaluating algorithms by a simple

comparison of their mean performance can reach drastically different conclusions

depending on data source and metric used. We conclude that experiments that do

not well-justify their selection of datasets or their metric reported are simply not

reporting reliable information.

We took focus away from AP-based metrics, but we do not conclude that they

are poor metrics. Rather we point out that there are strong natural correlations

between relative frequency and accepting benchmarks for analysis and that there

are further correlations between relative frequency and the computation of log(lift)

itself. The outsized impact of relative frequency in our AP-based models suggests

to us that these results are simply hard to interpret in a useful way, not that

they are inaccurate. Our AUC-based models still suggest the impact of relative

frequency is significant and so the sensitivity of AP and lift to relative frequency
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may be a desired quality of the metric depending on use-case.

Tables 7.2, 7.4 and 7.16 to 7.19 and others suggest that our defined problem

dimensions all have an impact on experimental results. Unlike choice of parentset,

these factors offer dimensions of outcome manipulation that can be more specific

and more easily justified. For example, noting that abod does well when anomalies

are highly clustered or that isolation forest is more resilient to excessive irrel-

evant features is a more reliable and reproducible finding than simply comparing

algorithms across an unspecified problem setting with an unjustified selection of

data sources.

Based on this we are able to recommend using our methodology (or something

appropriately similar) for controlling and measuring these problem dimensions.

We encourage further work that focuses on specific contexts that can be defined

by these problem dimensions, especially if it maps these contexts to real-world

applications.

8.3 Algorithm Recommendations

Because isolation forest performed very well on average and also in several spe-

cific contexts and because it has very good runtime properties, we recommend it

for general use. However, we also recommend that context should impact your

choice of algorithm. Based on Table 7.18 we observe that if you are confident in

your feature space, probability density estimates such as egmm and rkde outper-

form isolation forest, but in large feature spaces of unknown quality they do not.
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Based on Table 7.17 we recommend abod or lof for highly clustered anomalies.

Even with the surprising effectiveness of trivial knn, we also observe that the

runtime properties of isolation forest and loda scale well to large datasets while

the other algorithms do not. Similarly, density estimating methods such as rkde

and egmm do not scale well to a large number of features (even when they are all

relevant).

In general svdd and ocsvm performed poorly compared to other algorithms.

We made our best effort to parameterize them well. Appendix E details our param-

eterization and what other works they are based on. However, we cannot conclude

that these are poor algorithms, but rather that they are difficult to parameterize

correctly and we were unable to get them to perform competitively with the other

algorithms in this study. However, difficulty of use would be a reason not to rec-

ommend an algorithm. We also point out that ocsvm was the top performing

algorithm in one category in Table G.17 and so we still recommend further work

be done to understand and improve these algorithms.

8.4 Final Recommendations

Among the other algorithms we point out that the difference in performance among

them is not very large, so while we do observe that isolation forest does very

well overall, we emphasize that our battery of anomaly detection algorithms are

more or less solving benchmarks with the same efficacy.

Experimental design and understanding the impact of different real world con-
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texts seem to be of more importance given the evidence in this study. Incremental

improvements in non-standardized environments demonstrate that a particular al-

gorithm is effective, but they do not demonstrate any particular breakthroughs in

the field. It is our opinion that on average most algorithms are roughly measur-

ing the same quantity and producing the same results. Worse, the performances

of tmd and knn in this study suggest that often algorithms are only marginally

better than a trivial solution.

Well-mastered benchmarks do not allow any room for improvement, and a lack

of standard benchmarks do not enable the recognition of true breakthroughs in

the field. We recommend our own corpus of benchmarks or a corpus produced by

similar methods as the beginning of a standardized test bed. Our corpus and the

software that produced it can be found at:

http://ir.library.oregonstate.edu/xmlui/handle/1957/59114

We welcome future contributions in this area as well as criticisms and refine-

ments of our existing corpus.

http://ir.library.oregonstate.edu/xmlui/handle/1957/59114
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[25] Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. Loop:
Local outlier probabilities. In Proceedings of the 18th ACM Conference on
Information and Knowledge Management, CIKM ’09, pages 1649–1652, New
York, NY, USA, 2009. ACM.

[26] Hans-Peter Kriegel, Arthur Zimek, et al. Angle-based outlier detection in high-
dimensional data. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 444–452. ACM,
2008.

[27] Terran Lane and Carla E Brodley. Sequence matching and learning in anomaly
detection for computer security. In AAAI Workshop: AI Approaches to Fraud
Detection and Risk Management, pages 43–49, 1997.

[28] Ar Lazarevic, Levent Ertoz, Vipin Kumar, Aysel Ozgur, and Jaideep Srivas-
tava. A comparative study of anomaly detection schemes in network intrusion
detection. In In Proceedings of SIAM Conference on Data Mining, 2003.

[29] F T Liu, K M Ting, and Z-H Zhou. Isolation forest. In Proceedings of the
IEEE International Conference on Data Mining, pages 413–422, 2008.



94

[30] F T Liu, K M Ting, and Z-H Zhou. On detecting clustered anomalies using
SCiForest. In Machine Learning and Knowledge Discovery in Databases, pages
274–290, 2010.

[31] Matthew V Mahoney and Philip K Chan. An analysis of the 1999
darpa/lincoln laboratory evaluation data for network anomaly detection. In
Recent Advances in Intrusion Detection, pages 220–237. Springer, 2003.

[32] John McHugh. Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by lincoln
laboratory. ACM transactions on Information and system Security, 3(4):262–
294, 2000.

[33] Qipei Mei and Mustafa Gul. An improved methodology for anomaly detection
based on time series modeling. In Topics in Dynamics of Civil Structures,
Volume 4, pages 277–281. Springer, 2013.

[34] Matthew Eric Otey, Amol Ghoting, and Srinivasan Parthasarathy. Fast dis-
tributed outlier detection in mixed-attribute data sets. Data Mining and
Knowledge Discovery, 12(2-3):203–228, 2006.
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Appendix A: Comparison to Our Previous Work

While the general goals and conclusions of our previously published work are sim-

ilar to this study there are many key differences in benchmark construction and

evaluation of results.

In [15] we identified the problem dimensions of relative frequency,point

difficulty and clusteredness and created a corpus of benchmarks varying these

properties across several values, using the same 19 parentsets as in this study.

In [14] we added the problem dimension of feature irrelevance.

These studies used a different battery of algorithms than the current study; we

believe this study uses a more representative set of algorithms for evaluation and

also includes trivial algorithms. This study also adds a control group setting for

each problem dimension, including the addition of the synthetic parentset. While

the previous studies may have made a convincing argument for the impact of the

problem dimensions, this study explicitly demonstrates that manipulating these

problem dimensions has a statistically significant impact in most cases.

In previous studies, evaluation was done with a linear regression model, but

here we construct multiple models and present more in depth ANOVA.

In this study the corpus of benchmarks itself is also evaluated more rigor-

ously. We perform a statistical hypothesis test on each algorithm’s output to each

benchmark. Benchmarks for which even the best performing algorithm fails to
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differentiate itself from a random ranking with high probability are discarded as

unsuitable.
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Appendix B: The Synthetic parentset

The synthetic parentset was generated by producing 10,000 candidate nominals

and 10,000 candidate anomalies from two different multivariate distributions with

the intention of being able to manipulate all problem dimensions with ease. The

candidate nominals are drawn from a multivariate gaussian with a covariance ma-

trix of I; that is, each feature is drawn from the standard normal distribution

independently of the others. The anomalies are drawn uniformly from the hyper-

cube defined by the range (−4, 4) in each dimension. Both distributions have ten

dimensions; that is, each point exists in R10.
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Appendix C: Choosing a Confusing Partition of Classes

Our heuristic procedure begins by training a Random Forest as in [6] to solve

the multi-class classification problem. Then we calculate the amount of confusion

between each pair of classes. For each data point xi, the Random Forest computes

an estimate of P (ŷi = k|xi), the predicted probability that xi belongs to class

k. We construct a confusion matrix C in which cell Cj,k contains the sum of

P (ŷi = k|xi) for all xi whose true class yi = j. We then define a graph in which

each node is a class and each edge (between two classes j and k) has a weight equal

to C[j, k] + C[k, j]. This is the (un-normalized) probability that a data point in

class j will be confused with a data point in class k or vice versa. We then compute

the maximum weight spanning tree of this (complete) graph to identify a graph of

“most-confusable” relationships between pairs of classes. We then two-color this

tree so that no adjacent nodes have the same color. The two colors define the two

classes of points.

This approximately maximizes the confusion between the candidate nominal

and candidate anomaly data points and also tends to make both classes diverse,

which increases semantic variation in both sets.
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Appendix D: Our Implementation of KLR

We implemented the kernel logistic regression algorithm described by Keerthi, et

al., [23] to assign point difficulty scores. Given a set of data points {(xi, yi)ni=1}

where each yi is a binary class label, general logistic regression can be summarized

as fitting a model to estimate the probability P (yi = 1|xi) by minimizing the

negative log-likelihood of the data given this model. The implementation suggested

by Keerthi, et al. in [23] identifies the dual of this optimization problem as a

convex optimization problem and solves the dual with methods similar to the

SMO algorithm presented by Platt in [36].

As is typical, a radial basis function RBF kernel was employed in our implemen-

tation. Two important hyperparameters for this algorithm are kernel bandwidth

σ and regularization penalty scalar C. σ was chosen with the Jaakkola heuristic

as described in [24] and attributed to [20] which works as follows: for all points

in the data set, determine the distance to their nearest neighbor, then select the

median of these distances.

The regularization penalty scalar C was chosen via 5-fold cross-validation from

the 11 values in {102i}5
i=−5.

For the RBF kernel the number of kernel parameters to optimize grows linearly

with the size of the data set, which makes individual optimization steps scale

quadratically with this value. Because many parentsets contain over 10,000 data
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points several others contain over 100,000, this made straightforward kernel logistic

regression impractical. On parentsets larger than 5,000 we employed a further

approximation of our own invention.

The justification for our approximation comes from an intuitive understanding

of the radial basis kernel. The kernel space defined by such a kernel has features

inversely proportional to the euclidean distance from each point in the original

feature space. In this way, the probability distribution of each class is defined by

a few “import vectors” [49] whose location defines regions of high probability.

In practice, despite the existence of a parameter for each data point, only

a fraction are needed, and selected import vectors can be well-approximated by

other points near them in feature space. Because of this, we simplify computation

costs by randomly (but preserving original class balance) sampling 5,000 data

points from each parentset larger than 5,000 data points. 10 samples of 5,000 are

taken from each parentset and KLR optimization is performed on each of these

samples. The sample model with the minimal negative log-likelihood given the

entire parentset is selected as our final model.

To validate our approach and verify that our implementation was performing

reasonably well, we present the final classification accuracy of our implementation

on each parentset in Table D.1. The original task of each parentset is noted as

well. parentsets larger than 5,000 requiring our sampling approximation are noted

in bold.
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Table D.1: Classification Accuracy of KLR Oracle

parentset Accuracy

Binary Classification

synthetic 0.9879
magic.gamma 0.8712

particle 0.8707
skin 0.9850

spambase 0.9948

Multiclass Classification

fault 0.9279
gas 0.9698

imgseg 1.0000
landsat 0.9565
letter.rec 0.9619

opt.digits 0.9979
pageb 0.9832

shuttle 0.9284
wave 0.9694
yeast 0.9710

Regression

abalone 0.8118
comm.and.crime 0.9714

concrete 0.9816
wine 0.9267

yearp 0.5510
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Appendix E: Parameterizing the Battery of Algorithms

We made a good faith effort to get every algorithm to perform well on our entire

corpus but individual algorithms might see their performance improve with differ-

ent formulations or better parameterizations. In an effort toward transparency we

report on literature source, implementation source, and parameterization details

for each algorithm.

Some algorithms have parameters that might make sense to scale proportion-

ately with the relative frequency or some other measurable property of the bench-

mark. Because this is an unsupervised problem we did not allow parameters to

be tuned according to any such information, but in real applications it is possible

that a domain expert might be able to estimate this information and make a more

informed parameter choice for an algorithm in practice.

E.1 TMD

This algorithm has no parameters, is easily understood, and was implemented

in R. It is worth noting, however, that in Appendix B we detail our synthetic

control parentset and we should point out that the true density function defined

by the distribution of the nominal points in the synthetic parentset is a monotonic

transformation of the output of this algorithm.
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E.2 EGMM

EGMM constructs an ensemble of Gaussian mixture models for density estimation.

The procedure was of our own design and implemented in C++.

To reduce the computational cost of fitting, and to improve the numerical sta-

bility of the process, we first transformed each benchmark via principle component

analysis. We selected principle components (in descending eigenvalue order) to

retain 95% of the variance.

To generate the members of the ensemble, we varied the number of clusters k

by trying all values in {1, 2, 3, 4, 5, 6}. For each value of k, we generated 15 GMMs

by training on 15 bootstrap replicates of the data and by randomly initializing

each replicate. We then computed the average out-of-bag log likelihood for each

value of k and discarded k values whose average log likelihood was less than 0.85

times the average log likelihood of the best value of k. The purpose of this was

to discard GMMs that do not fit the data very well. Finally, an anomaly score

is computed for each point x by computing the average “surprise”, which is the

average negative log probability density 1
L

∑L
`=1− logP`(x), where L is the number

of fitted GMMs and P`(x) is the density assigned by GMM ` to data point x. We

found in preliminary experiments that this worked better than using the mean

probability density 1
L

∑L
`=1 P`(x).
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E.3 RKDE

We followed the approach described by Kim and Scott in [24]. The authors pro-

vided their own Matlab implementation but we rewrote an implementation in R

for ease of interfacing with our study.

We employed a Gaussian radial basis kernel, with kernel bandwidth selected

as suggested by the authors and described in Appendix D. We optimized over

a Hampel loss function with the additional parameters set as suggested by the

authors.

E.4 OCSVM

We followed several approaches but the algorithm is present by Scholkopf et al. in

[42].

We employed the libsvm implementation of Chang and Lin [10] available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm/. For each benchmark, we em-

ployed a Gaussian radial basis function kernel. Selection of kernel bandwidth was

done using the DFN method proposed in [46], while the quantile parameter ν was

set to 0.1. We found this to be the best overall performing value of ν across a large

range of choices.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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E.5 SVDD

The original formulation is presented by Tax and Duin in [44]. The problem

is presented as a linear program and solving its dual is suggested as the solution.

The optimization is performed in kernel space. We used our own R implementation

and solve the dual with the simplex method.

We employed a radial basis function kernel with the kernel bandwidth selected

using the method of Kakde, et al. [22]. To generate the needed statistics, we tested

100 different kernel bandwidths.

As with OCSVM, we tried a large range of quantiles to estimate. Surprisingly,

a quantile boundary of 0.5 was the best performing quantile for this algorithm.

E.6 KNN

We implemented this trivial algorithm in R.

Like the others in its family, this algorithm requires a choice of k as a parameter.

As we did with all other algorithms in the study we made a good faith attempt to

get the best performance out of this algorithm as we could. Running this algorithm

with several values of k on our corpus, we chose k = 5 as the best performing value

of k on average.

To be clear, our implementation is as minimal as possible. We do not average

the distances to the k-th nearest neighbors or any similar normalization. The

anomaly score is derived from exactly one measure of distance: the distance to the

k-th nearest neighbor.
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E.7 LOF

We followed the algorithm as proposed by Breunig, et al. in [7]. We employed

the R package Rlof available at http://cran.open-source-solution.org/web/

packages/Rlof/.

We chose k to be 3% of the dataset. This was the largest value for which LOF

would complete in a practical amount of time on all benchmarks.

E.8 ABOD

We followed the algorithm proposed by Kriegel, et al. in [26]. The running time of

the canonical algorithm is very high: O(n3d2) where d is the number of dimensions.

For our R implementation we employed a simplified version of the algorithm as

suggested by the authors: We only compute angles with respect to the k nearest

neighbors of xi, where k is set to 0.005×n, where n is the number of points in the

benchmark dataset.

E.9 LODA

We used the algorithm as described in Pevny [35]. We provided our own R imple-

mentation. We followed the authors suggestion of using approximately
√
d features

for each random projection, where d is the number of dimensions in the benchmark

set. The total ensemble is built from 3× d random projections.

http://cran.open-source-solution.org/web/packages/Rlof/
http://cran.open-source-solution.org/web/packages/Rlof/
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E.10 IFOR

We used the algorithm as presented by Liu, et al. in [29]. The authors provided

their own R implementation. Each isolation tree is grown on a subsample of the full

dataset. The authors suggest a sample size of 256, but the choice feels motivated

by their run-time analysis which claims a linear run-time for the algorithm as long

as this parameter is constant.

For our study we found a subsample size of 2048 (or the entire dataset when

a benchmark is smaller than this) to work best instead of the suggestion by the

authors. It is likely that for even larger sets this parameter should be even larger.
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Appendix F: Corpus Evaluation Supplement

F.1 Treating AUC and AP as Random Variables

The AUC or AP of a random ranking of a benchmark can be seen as a discrete

parametric distribution with parameters |βn| (number of nominals) and |βa| (num-

ber of anomalies). The distribution is discrete because there are “only” (|βn|+|βa|)!

possible rankings, meaning there are a finite number of possible AUC or AP scores

for a given set of parameters.

In both cases it is possible to enumerate these scores and compute how much

probability mass each score carries, and thus quantiles of these distributions can

be computed. However for larger values of |βn|+|βa| this becomes computationally

inefficient.

Instead we computed the quantiles of interest empirically. For each set of

parameters present in our corpus, we produced 1 million random ranking samples,

computed the AUC and AP of each, and from this estimated the quantiles of

interest.

F.2 Supplemental Results

For compactness of presentation we have additional results tables related to Chap-

ter 6 here. Table F.1 shows the benchmark acceptance rate by parentset. Rates
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higher than the global average for the metric are in bold. There is one interest-

ing result in this table, which is that the acceptance rate of benchmarks from the

yeast parentset are extremely low. We do not eliminate the accepted benchmarks

from the final analysis, but future research might conclude that this parentset is

unsuitable for the task.

Table F.2 shows null hypothesis rejection rates by algorithm on benchmarks al-

ready accepted in that metric. This is not a rigorous examination of the algorithms

and so is not present in the main body of the test, but the numbers here do show

trends similar to the ones observed in our regression analyses. The most successful

algorithm in each metric is in bold; surprisingly knn, one of our trivial algorithms,

proves best at differentiating itself from random ranking.

Table F.3 shows the model coefficients and 0.999 confidence interval ranges for

the algorithm-agnostic model.
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Table F.1: Benchmark Acceptance Rate by Metric
and parentset

parentset AUC AP Both

synthetic 0.7583 0.7455 0.7273
magic.gamma 0.6700 0.6656 0.6117

particle 0.7517 0.6333 0.5822
skin 0.8920 0.6313 0.6313

spambase 0.6389 0.5133 0.4911
fault 0.6007 0.3947 0.3888

gas 0.6378 0.4167 0.4100
imgseg 0.7236 0.7444 0.6653
landsat 0.4720 0.4142 0.3835

letter.rec 0.3884 0.2807 0.2720
opt.digits 0.4258 0.2691 0.2544

pageb 0.9543 0.8021 0.8011
shuttle 0.8844 0.7167 0.7156

wave 0.5352 0.4157 0.3981
yeast 0.0256 0.0200 0.0078

abalone 0.6168 0.5559 0.5362
comm.and.crime 0.5121 0.5076 0.4515

concrete 0.4921 0.4184 0.3799
wine 0.5157 0.3669 0.3496

yearp 0.2967 0.2644 0.2328
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Table F.2: Algotihm H0 Rejection Rate on
Accepted Benchmarks

algorithm AUC AP Both

tmd 0.5346 0.5134 0.4972
egmm 0.6503 0.5847 0.5828

rkde 0.6616 0.6085 0.6063
ocsvm 0.4862 0.5348 0.4681

svdd 0.5490 0.5104 0.5028
knn 0.7916 0.7296 0.7204
lof 0.6796 0.6000 0.5767

abod 0.6998 0.6589 0.6482
loda 0.6505 0.6238 0.6063

iforest 0.7643 0.7141 0.7042
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Table F.3: Parentset Coefficients Estimating Metrics in
Algorithm-Agnostic Models

parentset ∆logit(AUC) CI0.999 ∆ log(lift) CI0.999

synthetic 0.0000 0.0000
magic.gamma -2.4216 ±0.0405 -0.9605 ±0.0299

particle -2.5212 ±0.0415 -1.3572 ±0.0306
skin -2.4766 ±0.0422 -1.7894 ±0.0311

spambase -2.8602 ±0.0528 -1.7090 ±0.0389
fault -2.2678 ±0.0489 -1.3085 ±0.0360

gas -3.1271 ±0.0562 -1.9265 ±0.0414
imgseg -2.6583 ±0.0513 -1.6481 ±0.0378
landsat -3.0020 ±0.0467 -1.7771 ±0.0344

letter.rec -3.1686 ±0.0561 -1.9893 ±0.0413
opt.digits -2.9680 ±0.0628 -1.9376 ±0.0463

pageb -1.8034 ±0.0444 -0.7998 ±0.0327
shuttle -2.5167 ±0.0465 -1.4467 ±0.0343

wave -2.9106 ±0.0532 -1.7491 ±0.0392
yeast -1.8674 ±0.3443 -1.1358 ±0.2537

abalone -1.9147 ±0.0425 -0.9039 ±0.0313
comm.and.crime -2.5092 ±0.0478 -1.2560 ±0.0352

concrete -2.0348 ±0.0531 -1.0750 ±0.0391
wine -2.8175 ±0.0537 -1.6420 ±0.0396

yearp -2.7097 ±0.0550 -1.4489 ±0.0405

σ2 Explained 37.75% 26.78%

R̂2 of Model 0.5805 0.6955
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Appendix G: Supplemental Tables for Chapter 7
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Table G.1: ANOVA for Second-Order Regression
Model Predicting log(lift)

σ2(%) group(%) F -test

algorithm 4.86% p ≤ 0.001

– 0.63% 13.01% p ≤ 0.001

× parentset 3.10% 63.85% p ≤ 0.001

× specifications 1.13% 23.14% p ≤ 0.001

parentset 35.26% p ≤ 0.001

– 26.78% 75.95% p ≤ 0.001

× specifications 8.48% 24.05% p ≤ 0.001

× pd (φ̄) 4.05% 11.49% p ≤ 0.001

specifications 46.43% p ≤ 0.001

pd (φ̄) 7.87% 16.96% p ≤ 0.001

nc (ν) 8.26% 17.79% p ≤ 0.001

fi (α) 2.06% 4.43% p ≤ 0.001

rf (ρ) 25.85% 55.67% p ≤ 0.001

× specifications 2.39% 5.15% p ≤ 0.001

Residual σ2 13.45% F 321
118558 ≥ 2377

R̂2 of Model 0.8655 p ≤ 0.001
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Table G.2: Second-Order Algorithm-parentset Coefficients Predicting
logit(AUC)
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Table G.3: Second-Order Algorithm-parentset Coefficients Predicting log(lift)
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Table G.4: ANOVA For Model Predicting tmd (log(lift))

µ(log(lift)) σ2(real) µ′(lift)

tmd 0.7569 1.2827 2.1317

σ2(%) σ2(real) F -test

parentset 34.19% 0.4386 p ≤ 0.001

pd (φ̄) 10.26% 0.1316 p ≤ 0.001

– 5.44% 0.0698 p ≤ 0.001

× parentset 4.82% 0.0618 p ≤ 0.001

nc (ν) 15.50% 0.1988 p ≤ 0.001

– 12.04% 0.1545 p ≤ 0.001

× parentset 3.45% 0.0443 p ≤ 0.001

fi (α) 2.92% 0.0375 p ≤ 0.001

– 1.21% 0.0155 p ≤ 0.001

× parentset 1.71% 0.0220 p ≤ 0.001

rf (ρ) 24.34% 0.3122 p ≤ 0.001

– 18.34% 0.2353 p ≤ 0.001

× parentset 6.00% 0.0769 p ≤ 0.001

spec × spec 2.21% 0.0284 p ≤ 0.001

Residual σ2 10.58% 0.1357 F 105
11782 ≥ 948

R̂2 of Model 0.8942 1.1470 p ≤ 0.001
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Table G.5: ANOVA For Model Predicting egmm
(log(lift))

µ(log(lift)) σ2(real) µ′(lift)

egmm 0.9020 1.3277 2.4646

σ2(%) σ2(real) F -test

parentset 29.38% 0.3900 p ≤ 0.001

pd (φ̄) 13.65% 0.1813 p ≤ 0.001

– 9.52% 0.1264 p ≤ 0.001

× parentset 4.13% 0.0548 p ≤ 0.001

nc (ν) 8.69% 0.1154 p ≤ 0.001

– 7.34% 0.0975 p ≤ 0.001

× parentset 1.35% 0.0179 p ≤ 0.001

fi (α) 6.03% 0.0801 p ≤ 0.001

– 4.78% 0.0634 p ≤ 0.001

× parentset 1.25% 0.0167 p ≤ 0.001

rf (ρ) 29.91% 0.3972 p ≤ 0.001

– 24.39% 0.3238 p ≤ 0.001

× parentset 5.52% 0.0733 p ≤ 0.001

spec × spec 2.01% 0.0267 p ≤ 0.001

Residual σ2 10.32% 0.1370 F 105
11782 ≥ 975

R̂2 of Model 0.8968 1.1907 p ≤ 0.001



122

Table G.6: ANOVA For Model Predicting rkde
(log(lift))

µ(log(lift)) σ2(real) µ′(lift)

rkde 0.9014 1.2473 2.4632

σ2(%) σ2(real) F -test

parentset 28.96% 0.3612 p ≤ 0.001

pd (φ̄) 11.67% 0.1456 p ≤ 0.001

– 7.24% 0.0903 p ≤ 0.001

× parentset 4.43% 0.0552 p ≤ 0.001

nc (ν) 8.72% 0.1088 p ≤ 0.001

– 5.72% 0.0713 p ≤ 0.001

× parentset 3.00% 0.0375 p ≤ 0.001

fi (α) 4.95% 0.0617 p ≤ 0.001

– 3.86% 0.0481 p ≤ 0.001

× parentset 1.09% 0.0136 p ≤ 0.001

rf (ρ) 31.14% 0.3884 p ≤ 0.001

– 26.93% 0.3358 p ≤ 0.001

× parentset 4.21% 0.0525 p ≤ 0.001

spec × spec 1.53% 0.0191 p ≤ 0.001

Residual σ2 13.03% 0.1626 F 105
11782 ≥ 748

R̂2 of Model 0.8697 1.0847 p ≤ 0.001
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Table G.7: ANOVA For Model Predicting ocsvm
(log(lift))

µ(log(lift)) σ2(real) µ′(lift)

ocsvm 0.8537 1.6480 2.3484

σ2(%) σ2(real) F -test

parentset 34.43% 0.5675 p ≤ 0.001

pd (φ̄) 11.20% 0.1845 p ≤ 0.001

– 6.84% 0.1128 p ≤ 0.001

× parentset 4.35% 0.0718 p ≤ 0.001

nc (ν) 12.65% 0.2085 p ≤ 0.001

– 10.21% 0.1683 p ≤ 0.001

× parentset 2.44% 0.0402 p ≤ 0.001

fi (α) 0.96% 0.0159 p ≤ 0.001

– 0.14% 0.0024 p ≤ 0.001

× parentset 0.82% 0.0135 p ≤ 0.001

rf (ρ) 32.59% 0.5371 p ≤ 0.001

– 26.67% 0.4395 p ≤ 0.001

× parentset 5.92% 0.0976 p ≤ 0.001

spec × spec 1.23% 0.0202 p ≤ 0.001

Residual σ2 6.94% 0.1144 F 105
11782 ≥ 1504

R̂2 of Model 0.9306 1.5336 p ≤ 0.001
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Table G.8: ANOVA For Model Predicting svdd
(log(lift))

µ(log(lift)) σ2(real) µ′(lift)

svdd 0.7563 1.2416 2.1303

σ2(%) σ2(real) F -test

parentset 34.92% 0.4335 p ≤ 0.001

pd (φ̄) 10.75% 0.1334 p ≤ 0.001

– 5.87% 0.0729 p ≤ 0.001

× parentset 4.88% 0.0605 p ≤ 0.001

nc (ν) 13.90% 0.1726 p ≤ 0.001

– 10.87% 0.1350 p ≤ 0.001

× parentset 3.03% 0.0376 p ≤ 0.001

fi (α) 3.05% 0.0379 p ≤ 0.001

– 1.41% 0.0176 p ≤ 0.001

× parentset 1.64% 0.0203 p ≤ 0.001

rf (ρ) 24.39% 0.3028 p ≤ 0.001

– 18.09% 0.2246 p ≤ 0.001

× parentset 6.29% 0.0781 p ≤ 0.001

spec × spec 2.10% 0.0261 p ≤ 0.001

Residual σ2 10.90% 0.1353 F 105
11782 ≥ 917

R̂2 of Model 0.8910 1.1063 p ≤ 0.001
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Table G.9: ANOVA For Model Predicting knn (log(lift))

µ(log(lift)) σ2(real) µ′(lift)

knn 1.0415 1.3339 2.8334

σ2(%) σ2(real) F -test

parentset 25.45% 0.3395 p ≤ 0.001

pd (φ̄) 12.99% 0.1733 p ≤ 0.001

– 8.81% 0.1175 p ≤ 0.001

× parentset 4.18% 0.0558 p ≤ 0.001

nc (ν) 9.02% 0.1203 p ≤ 0.001

– 6.72% 0.0896 p ≤ 0.001

× parentset 2.30% 0.0307 p ≤ 0.001

fi (α) 4.70% 0.0627 p ≤ 0.001

– 3.90% 0.0521 p ≤ 0.001

× parentset 0.80% 0.0106 p ≤ 0.001

rf (ρ) 37.84% 0.5048 p ≤ 0.001

– 35.04% 0.4673 p ≤ 0.001

× parentset 2.81% 0.0374 p ≤ 0.001

spec × spec 1.29% 0.0172 p ≤ 0.001

Residual σ2 8.70% 0.1160 F 105
11782 ≥ 1178

R̂2 of Model 0.9130 1.2179 p ≤ 0.001
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Table G.10: ANOVA For Model Predicting lof (log(lift))

µ(log(lift)) σ2(real) µ′(lift)

lof 0.9001 1.3384 2.4600

σ2(%) σ2(real) F -test

parentset 28.11% 0.3762 p ≤ 0.001

pd (φ̄) 12.76% 0.1708 p ≤ 0.001

– 9.23% 0.1235 p ≤ 0.001

× parentset 3.54% 0.0474 p ≤ 0.001

nc (ν) 9.82% 0.1315 p ≤ 0.001

– 8.57% 0.1147 p ≤ 0.001

× parentset 1.26% 0.0168 p ≤ 0.001

fi (α) 3.97% 0.0532 p ≤ 0.001

– 2.15% 0.0287 p ≤ 0.001

× parentset 1.83% 0.0245 p ≤ 0.001

rf (ρ) 32.94% 0.4408 p ≤ 0.001

– 29.78% 0.3986 p ≤ 0.001

× parentset 3.16% 0.0423 p ≤ 0.001

spec × spec 1.91% 0.0255 p ≤ 0.001

Residual σ2 10.49% 0.1404 F 105
11782 ≥ 957

R̂2 of Model 0.8951 1.1980 p ≤ 0.001
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Table G.11: ANOVA For Model Predicting abod
(log(lift))

µ(log(lift)) σ2(real) µ′(lift)

abod 0.9046 1.2764 2.4709

σ2(%) σ2(real) F -test

parentset 22.82% 0.2912 p ≤ 0.001

pd (φ̄) 12.04% 0.1537 p ≤ 0.001

– 9.41% 0.1201 p ≤ 0.001

× parentset 2.63% 0.0336 p ≤ 0.001

nc (ν) 7.90% 0.1009 p ≤ 0.001

– 4.57% 0.0583 p ≤ 0.001

× parentset 3.34% 0.0426 p ≤ 0.001

fi (α) 9.22% 0.1176 p ≤ 0.001

– 6.92% 0.0884 p ≤ 0.001

× parentset 2.29% 0.0293 p ≤ 0.001

rf (ρ) 31.06% 0.3964 p ≤ 0.001

– 26.12% 0.3334 p ≤ 0.001

× parentset 4.93% 0.0630 p ≤ 0.001

spec × spec 2.39% 0.0305 p ≤ 0.001

Residual σ2 14.58% 0.1861 F 105
11782 ≥ 657

R̂2 of Model 0.8542 1.0903 p ≤ 0.001
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Table G.12: ANOVA For Model Predicting loda
(log(lift))

µ(log(lift)) σ2(real) µ′(lift)

loda 0.8897 1.2547 2.4343

σ2(%) σ2(real) F -test

parentset 29.81% 0.3741 p ≤ 0.001

pd (φ̄) 13.08% 0.1641 p ≤ 0.001

– 8.04% 0.1009 p ≤ 0.001

× parentset 5.03% 0.0632 p ≤ 0.001

nc (ν) 13.04% 0.1637 p ≤ 0.001

– 10.72% 0.1345 p ≤ 0.001

× parentset 2.32% 0.0291 p ≤ 0.001

fi (α) 1.81% 0.0227 p ≤ 0.001

– 1.18% 0.0148 p ≤ 0.001

× parentset 0.63% 0.0079 p ≤ 0.001

rf (ρ) 28.78% 0.3612 p ≤ 0.001

– 24.30% 0.3048 p ≤ 0.001

× parentset 4.49% 0.0563 p ≤ 0.001

spec × spec 1.88% 0.0236 p ≤ 0.001

Residual σ2 11.59% 0.1454 F 105
11782 ≥ 855

R̂2 of Model 0.8841 1.1093 p ≤ 0.001
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Table G.13: ANOVA For Model Predicting iforest
(log(lift))

µ(log(lift)) σ2(real) µ′(lift)

iforest 1.0498 1.5073 2.8571

σ2(%) σ2(real) F -test

parentset 31.58% 0.4760 p ≤ 0.001

pd (φ̄) 13.71% 0.2066 p ≤ 0.001

– 9.63% 0.1451 p ≤ 0.001

× parentset 4.08% 0.0615 p ≤ 0.001

nc (ν) 9.27% 0.1398 p ≤ 0.001

– 8.05% 0.1213 p ≤ 0.001

× parentset 1.23% 0.0185 p ≤ 0.001

fi (α) 0.87% 0.0132 p ≤ 0.001

– 0.38% 0.0057 p ≤ 0.001

× parentset 0.50% 0.0075 p ≤ 0.001

rf (ρ) 36.81% 0.5549 p ≤ 0.001

– 32.65% 0.4921 p ≤ 0.001

× parentset 4.17% 0.0628 p ≤ 0.001

spec × spec 1.41% 0.0213 p ≤ 0.001

Residual σ2 6.34% 0.0956 F 105
11782 ≥ 1656

R̂2 of Model 0.9366 1.4117 p ≤ 0.001
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Table G.14: Algorithm Performance When Contrasting pd1 and pd3

(log(lift))

log(lift)

algo CI
algo
0.999 pd1 pd3 pd3 − pd1 CI

pd
0.999

tmd 0.1710 -0.0988 -0.2699 ±0.0574
egmm ±0.0389 0.3861 -0.0635 -0.4496 ±0.0574

rkde ±0.0389 0.3495 0.0666 -0.2830 ±0.0574
ocsvm ±0.0389 0.3175 -0.1087 -0.4262 ±0.0574

svdd ±0.0389 0.1810 -0.1047 -0.2857 ±0.0574
knn ±0.0389 0.5171 0.1232 -0.3939 ±0.0574
lof ±0.0389 0.3781 -0.0914 -0.4695 ±0.0574

abod ±0.0389 0.3912 -0.0003 -0.3915 ±0.0574
loda ±0.0389 0.3634 -0.0389 -0.4023 ±0.0574

iforest ±0.0389 0.5889 -0.0195 -0.6084 ±0.0574

Table G.15: Algorithm Performance When Contrasting ncs and ncc
(log(lift))

log(lift)

algo CI
algo
0.999 ncs ncc ncc − ncs CInc

0.999

tmd 0.1936 -0.6536 -0.8472 ±0.0717
egmm ±0.0560 0.2645 -0.3349 -0.5993 ±0.0717

rkde ±0.0560 0.1894 -0.1521 -0.3414 ±0.0717
ocsvm ±0.0560 0.4409 -0.6861 -1.1269 ±0.0717

svdd ±0.0560 0.1613 -0.6210 -0.7823 ±0.0717
knn ±0.0560 0.3694 0.0009 -0.3685 ±0.0717
lof ±0.0560 0.3259 -0.3166 -0.6425 ±0.0717

abod ±0.0560 0.1337 0.0482 -0.0854 ±0.0717
loda ±0.0560 0.2577 -0.3749 -0.6327 ±0.0717

iforest ±0.0560 0.4762 -0.4065 -0.8827 ±0.0717
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Table G.16: Algorithm Performance When Contrasting fi0 and fi3

(log(lift))

log(lift)

algo CI
algo
0.999 fi0 fi3 fi3 − fi0 CIfi0.999

tmd -0.1261 -0.3972 -0.2711 ±0.0476
egmm ±0.0414 0.2199 -0.5136 -0.7335 ±0.0476

rkde ±0.0414 0.1907 -0.3898 -0.5805 ±0.0476
ocsvm ±0.0414 -0.0640 -0.2069 -0.1429 ±0.0476

svdd ±0.0414 -0.1155 -0.4163 -0.3007 ±0.0476
knn ±0.0414 0.3585 -0.3135 -0.6720 ±0.0476

lof ±0.0414 0.0913 -0.3630 -0.4543 ±0.0476
abod ±0.0414 0.2917 -0.5645 -0.8562 ±0.0476
loda ±0.0414 0.0240 -0.2966 -0.3205 ±0.0476

iforest ±0.0414 0.1588 -0.0835 -0.2423 ±0.0476

Table G.17: Algorithm Performance When Contrasting rf1 and rf5
(log(lift))

log(lift)

algo CI
algo
0.999 rf1 rf5 rf5 − rf1 CIrf0.999

tmd 2.3438 -0.0458 -2.3896 ±0.0876
egmm ±0.1125 2.7192 0.0101 -2.7091 ±0.0876

rkde ±0.1125 2.4141 0.0442 -2.3699 ±0.0876
ocsvm ±0.1125 3.0606 -0.0638 -3.1245 ±0.0876

svdd ±0.1125 2.2258 -0.0405 -2.2664 ±0.0876
knn ±0.1125 2.9788 0.1051 -2.8737 ±0.0876
lof ±0.1125 2.7266 -0.0450 -2.7716 ±0.0876

abod ±0.1125 2.4630 0.0028 -2.4602 ±0.0876
loda ±0.1125 2.4499 0.0462 -2.4037 ±0.0876

iforest ±0.1125 2.9921 0.1243 -2.8678 ±0.0876
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