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Impedance spectroscopy is a method of modeling materials with equivalent circuits to 
determine electrical properties, such as the resistivity and the dielectric constant.  We 

explore impedance spectroscopy, both theoretically and experimentally through applying 
the method to samples of BaCuS1-xSexF.  Grain boundary effects were dominant in the 
results, and although they prevented us from determining the resistivity and dielectric 
constant of the bulk material, we gained valuable knowledge about the limits of the 

samples in question and limits on the impedance spectroscopy method.  We discovered 
that although modeling the electric properties of samples with impedance spectroscopy is 

difficult, it is a versatile theory with many applications. 
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1 Introduction 

 The goal of our project is to develop an understanding of AC impedance 

spectroscopy, which involves analyzing the frequency dependence of the complex 

impedance of a material.  The hope is that it will provide a consistent and simple model 

for determining the electric properties of, in this instance, BaCuSF, a candidate for p-type 

transparent conductivity.  In particular, the resistivity and the dielectric constant can be 

determined through this method.  Resistivity can be measured by other means in our 

laboratory and checked against results from AC impedance spectroscopy, but the 

measurement of the dielectric constant would be new in our lab.  The end result of the 

process is indeed a greater understanding of impedance spectroscopy, but also a greater 

appreciation for the complexities of measurements on polycrystalline samples.  

 

 Impedance spectroscopy is widely used for determining ionic conductivities, 

mainly for electrolytic solutions.  Its application to solids has been limited, so the theory 

for solids exists but is somewhat incomplete in its details.  The major difference between 

impedance spectroscopy as applied to solids versus electrolytic solutions is that the 

physical limits imposed by the solution (e.g. magnitude of applied voltage, applicable 

frequency range, etc.) do not apply to the solids – effectively, there are few or no physical 

limits for the materials we are interested in.  The major challenge has therefore been 

overcoming the physical limits of our equipment, because the most interesting 

information is only extractable at high frequencies, voltages, etc.  The most frustrating 

example of this is our dilemma with grain boundaries, as discussed in section 2.3. 
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2  Background 
2.1  Modeling Impedance Responses with Basic Circuits 

 The response of a material to an electrical impulse can be described by a set of 

convenient properties, including the dielectric constant and the resistivity.  The goal of 

impedance spectroscopy is to model a bulk material with an equivalent circuit and 

thereby extract these properties.  

 

2.1.1  Basic Impedance Spectra 

 The basic principle of impedance spectroscopy is that any sample with a known 

complex impedance spectrum can be represented as some combination of resistors and 

capacitors that would produce the same spectrum.   

 

 In the simplest case, a sample could be represented as having only a real 

resistance, allowing us to model it with a resistor.  The impedance of an ideal resistor is 

just R – ideal because we are taking R as independent of frequency.  If we were to plot 

the impedance of a resistor as a function of frequency, the result would be a horizontal 

line, as shown in Fig. 2.1.  Likewise, if we were to plot the real versus the imaginary 

impedance of a resistor on a Nyquist plot, or a plot parameterized by frequency, then all 

we would see is one point on the real axis, as shown in Fig. 2.2. 

 

   
      Fig. 2.1: Impedance of a resistor as a       Fig. 2.2: Real v. imaginary components 
        function of frequency.        of a resistor’s impedance. 
 

 If a sample were purely capacitive, we could represent it with an ideal capacitor.  

The impedance of an ideal capacitor is (iwC)-1 – purely imaginary and inversely 

proportional to frequency, as shown in Fig. 2.3.  If we were to plot the real versus the 

imaginary impedance of a capacitor, we would see a vertical line located on the 
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imaginary axis, as shown in Fig. 2.4.  The magnitude of the impedance spans from 

infinite at direct current (frequency of zero) to zero at infinite frequency. 

 

   
         Fig. 2.3: Impedance of a capacitor as a       Fig. 2.4: Real v. imaginary components 
        function of frequency*.   of a capacitor’s impedance*.        

 

 If voltage is applied to a capacitive sample via metal contacts, it is likely that the 

contacts have an inherent resistance.  We can include this effect in our model circuit by 

placing the resistance of the contacts in series with the capacitance of the sample, as 

shown in Fig. 2.5.  The real and imaginary components of the impedance are the same as 

in Fig. 2.1 and 2.3, respectively, so the total, complex impedance is: 

Z = R – i/wC.      [2.1] 

If we plot the real impedance of the circuit versus its imaginary impedance, we see a 

superposition of the two as a function of frequency (see Fig. 2.6).   

 

 
Fig. 2.6: Real vs. imaginary components of a series  

RC circuit’s impedance. 

 

What happens if we connect a resistor and capacitor in parallel? 
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*Note: The arc actually extends down from the real axis – here, and in the following plots, the imaginary impedance 
axis has been flipped, so all positive values are actually negative.  This convention is common in impedance 
spectroscopy texts. 

 

2.1.2  Parallel Circuit Impedance Spectra 

  

 Realistically, a material will nearly always have at least some bulk capacitance 

and some bulk resistance (even if one property dominates the other), along with some 

resistance due to the contacts.  We can then model the material as a parallel RC circuit, as 

shown in Fig. 2.7, where R and C represent the bulk properties of the sample, and RC 

represents the contact resistance.   

  
Fig. 2.7: Parallel RC circuit in series with contact resistance. 

 

 Because the current will always take the path with the lowest impedance, the total 

impedance for the circuit will not be as simple as the series circuit in Fig. 2.5.  For this 

circuit: 

  [2.2]* 

The key features of this circuit include: 

• At low frequency, the resistance of the sample dominates. 

• At high frequency, the capacitance of the sample dominates and effectively 

creates a short across the sample resistance. 

• At the top of the arc, w0, the imaginary impedance is maximized. 

• The contact resistance has the same effect on the impedance of the circuit, 

independent of frequency. 

 

 We can represent the effects of these characteristics mathematically by plotting 

the frequency dependent impedance response of this circuit on a Nyquist plot 

(parameterized by frequency), as shown in Fig. 2.8 and 2.9.   
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Fig. 2.8: Theoretical plot of both the real and imaginary components  

of the impedance for the circuit in Fig. 2.7. 
 

 
Fig. 2.9: Theoretical Nyquist plot of the complex impedance for the circuit in Fig. 2.7 

 

 If the impedance spectrum of the sample is similar to Fig. 2.8 and 2.9, the values 

for R and RC can be extracted directly from the plot: the span between the arc’s real 

intercepts gives R, while the high frequency intercept gives RC.   

 

 The time needed for the capacitor to completely discharge through the circuit is 

referred to as the “relaxation time” of the circuit.  For a parallel RC circuit such as in Fig. 

1, tR = RC.  At the resonant frequency w0, w0tR = 1, or for a parallel RC circuit, w0 = 

(RC)-1.  Therefore, determining R and w0 from our data allows us to determine C as well. 

 

2.2  Calculating Dielectric Constants and Resistivities 

 Now that we have a method to find R and C for the sample in question, we can 

use the appropriate expressions and geometry arguments to find the resistivity and 

dielectric constant of the bulk material.  If we can approximate the sample as a 

geometrically simple shape such as a cylinder or cube, then both bulk quantities relate to 
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the sample dependent quantities through the ratio of the sample’s depth L and cross-

sectional area A. 

 

The resistivity r is given by equation 2.3:         [2.3] 

The dielectric constant e  is given by equation 2.4:    [2.4] 

 

2.3  Grain Boundary Effects 

 The samples we have used in our experiments are compressed  powders.  Because 

they can be more accurately represented as stacks of grains (see Fig. 2.10) than as an 

ideal solid, other effects can dominate the sample’s bulk resistance and capacitance.  

 

 
Fig. 2.10: Grains of a compressed powder material. 

 

 Oxidation of the grain exteriors creates the largest effects.  The oxidized layer acts 

like a semiconductor, so interactions with the grain’s metal interior create a boundary 

resistance as well as a boundary capacitance5. 

 

2.3.1  Brick Layer Model 

 The easiest way to calculate the effect of grain boundaries is to model the grains 

as an array of cubes4, as shown in Fig. 2.11.  The grains have a side length D and the 

grain  boundaries a thickness d, where d << D.  The fraction of the total volume  

composed of grain boundaries is then 3d/D, or xgb (we assume xgi ~ 1).  The current flow 

is assumed to be perpendicular to the electrodes at either end, which gives it two possible 

paths through each cubic grain – either through the grain and across one of the horizontal 

grain boundaries, or through the vertical grain boundaries only3. 

 

L
AR=r
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Fig. 2.11: The brick layer model for a powder such as that shown in Fig 2.10  

– an array of cubic grains, separated by flat grain boundaries. 
 

 If the conductivity of the interior is much greater than that of the boundaries, the 

current will primarily be conducted through the smaller vertical thickness of the 

horizontal boundary and across the interior.  Each phase (boundary or interior) acts like 

an independent layer of material, so the equivalent circuit model is simply two parallel 

RC circuits connected in series, as shown in Fig. 2.12.  Because the circuits are in series, 

we can add their resistivities, weighted by volume3: 

     [2.5] 

 
Fig. 2.12:  The equivalent circuit for current conducted  

through the grain interior (gi) and one grain boundary (gb). 
 

 If the conductivity of the boundaries is much less than that of the interior, the 

current will primarily be conducted only through the vertical grain boundaries.  In this 

case the separate sides act in parallel, so the equivalent circuit model is two parallel RC 

circuits connected in parallel, as shown in Fig. 2.13, which can be further reduced to one 

parallel RC circuit.  Because the circuits are in parallel, we can add their conductivities, 

again weighted by volume3: 

     [2.6] 
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Fig. 2.13: The equivalent circuit and its reduced form for current conducted  

along the grain boundaries only. 
 

 Because the interior of the grains is assumed to be metallic and the exterior 

semiconductive, the first case (sgi >> sgb ) is applicable to our samples.  Therefore, the 

equivalent circuit we will use in modeling the response of our samples is that of Fig. 

2.12.  Using equation 2.5, the parameters of the model circuit are: 

    Rgi = rgi  Cgi = egi 

    Rgb = xgbrgi/3  Cgb = 3egb/xgb 

 Dividing Cgi by Cgb gives an equation for the grain boundary volume fraction, and 

from that a relationship for the ratio d/D: 

,   

         [2.7] 

In practice, we can generally assume that egb » egi.  According to Macdonald, this 

approximation is valid because the uncertainty it introduces is considerably less than that 

due to variations in d along the grain boundary3.  Now we can state the capacitance of the 

grain interiors in terms of the capacitance of the grain boundaries: 

    [2.8] 

 Equation 2.8 with equation 2.4 gives the dielectric constant of the grain interior 

(bulk material) in terms of the sample’s dimensions and the capacitance of the grain 

boundaries: 

    [2.9] 
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 Generally, values for the grain diameter D in electroceramic materials such as 

BaCuS1-xSexF extend from 50-100 nm, while values for the grain boundary depth d vary 

between 1 and 10 nm.7  These values give a range for the d/D correction factor of 10-2 to 

0.2. 

 

2.3.2 Grain Boundary Nyquist Plots 

 If we include grain boundary effects and contact resistance in the model of our 

sample, we must apply the circuit (derived in section 2.3.1) shown in Fig. 2.14.  The 

impedance for such a circuit can be calculated simply by adding the boundary and 

interior impedances, both of the form of equation 2.2: 

   [2.10] 

 
Fig. 2.14: Parallel RC circuit with grain boundary effects included.  RG and CG represent grain boundary 

resistance and capacitance, while RB and CB represent bulk resistance and capacitance. 
 

 This circuit has an impedance Nyquist plot as shown in Fig. 2.15.  If the grain 

boundary arc is large enough, it is possible that the bulk arc will only occur at frequencies 

above the range of the lab equipment, and will therefore be completely obscured. 

 

 
Fig. 2.15: Nyquist plot of the complex impedance for the circuit shown in Fig. 2.14. 

 

 Some examples of Nyquist plots for different R and C values are shown in Fig. 

2.16.  It is worthwhile to note that the arcs will only have well defined intercepts and 

therefore extractable values for R and C if certain conditions are met.   

ú
ú
û

ù

ê
ê
ë

é

+
+

+
-

+
+

+
+= 222222222222 1111 gbgb

gbgb

gigi

gigi

gigi

gi

gbgb

gb
C CR

CR
CR

CR
i

CR
R

CR
R

RZ
w
w

w
w

ww



 13 

 

 First, for the center of the arcs (located at the resonant frequency for each phase) 

to be separate and to prevent overlap at the RB + RC intercept, CB and CG must differ by 

several orders of magnitude (more specifically, the actual limit depends on the R values).  

If CG and CB are equal, the arcs will combine into one large arc, as shown below.   

 

 Second, the range of frequencies applied must great enough so that the RC 

intercept is well defined – i.e. w must effectively approach infinity.  This second 

condition is the most difficult to deal with experimentally, because the range of our 

frequency sweeper extends to just over 5MHz.  In the plots below, this experimental limit 

is used, and many of the arcs are therefore incomplete.  Indeed, it is possible that the 

smaller resistivity of the bulk material (grain interior) could cause the bulk arc to be lost 

completely inside the gap.   

 

 It is still possible to determine the bulk resistance and capacitance from an 

impedance spectrum dominated by grain boundary effects.  In this case, we should be 

able to use equation 2.8 to determine the bulk capacitance from the boundary 

capacitance.  With negligible contact resistance, we should also be able to determine the 

resistance of the bulk by using a fitting program to determine the RB intercept. 
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R = 1 kW  
C = 1 µF  
RC = 1000 µs  

R1 = 200 W 
C1 = 10 nF 
R1C1 = 2 µs 

R = 1 kW 
C = 1 nF 
RC = 1 µs 

R1 = 200 W 
C1 = 1 µF 
R1C1 = 200 µs 

 

 
R  = 500 W 
C  = 1 µF  
RC = 500 µs  

R1 = 500 W 
C1 = 1 nF  
R1C1 = 0.5 µs 

R = 500 W 
C = 1 µF 
RC = 500 µs 

R1 = 500 W 
C1 = 10 nF 
R1C1 = 5 µs 

 

 
R  = 500 W 
C  = 100 nF  
RC = 50 µs 

R1 = 500 W 
C1 = 1 nF 
R1C1 = 0.5 µs 

R  = 500 W 
C  = 100 nF 
RC = 50 µs 

R1 = 500 W 
C1= 100 nF 
R1C1 = 50 µs 

      
Fig. 2.16:  Nyquist plots for various component values in two series R//C circuits, within the  

frequency range of our equipment (10Hz-5MHz).  For all: RC = 200W.  
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3  Samples 
 Our samples are compressed powders of BaCuS1-xSexF compounds, in steps of 

x=0.00, 0.25, 0.50, and 0.75.  The samples are cylindrical pellets, of average diameter 

6mm and average height 3mm.  The density of the pellets is approximately 5 g/cm3, or 

approximately 15% less dense than a solid crystal of the same material. 

 

 The powder was prepared by mixing stoichiometric proportions of BaF2, 

BaCu2S2, and BaCu2Se2.  Synthesis was achieved by heating the materials in an 

evacuated silica tube at 650 oC for 15 hours.6  The powder was then pressed into pellets 

as described above. 

 

 The interest in these materials stems from their potential to serve as transparent, 

p-type conductors10.  Also, BaCuSF emits visible light at orange wavelengths under ultra-

violet stimulus.  Doping with different elements changes the wavelength of the emitted 

light. 

 

3.1  Expected Resistivity and Dielectric Constant Values for BaCuS1-xSe1-xF 

 Although BaCuS1-xSexF is a new material that lacks thorough cataloguing, we can 

obtain a reasonable range of expected values by looking at the values obtained for the 

grain interior and boundary resistivities and dielectric constant for similar materials. 

 

 Materials considered chemically similar to BaCuS1-xSexF include ITO, Cu, 

BaCuSF, CuCrMgO2, CuScO2, and CuAlO2.  Resistivities for these materials have an 

order of magnitude rage of 10-4 W cm for Cu to 100 W cm for CuAlO2. 

 

 As for dielectric constants, most materials have a dielectric constant ranging from 

1-100 times the permittivity of free space (e0 = 8.8542x10-12 F/m).  More specifically, 

most semiconductors have a dielectric constant around 15 times the permittivity of free 

space.  BaF2 has a dielectric constant of approximately 7, while BaSO4 has a dielectric 

constant of approximately 12. 

 

 As long as our obtained values are reasonable compared to these given values, 

they will be within accepted ranges. 
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4  Equipment 
4.1  Hardware 

 The impedance spectroscopy experiment itself is relatively simple, and only 

requires basic analysis equipment.  In our setup, the sample is inserted between two 

spring-loaded metallic contacts with diameters approximately twice those of the pellets.  

The contacts connect through a coaxial cable to a frequency sweeping voltage source.  

Our sweeper is a SI 1260 Schlumberger Impedance/Grain-Phase Analyzer, located in 

Gilbert Hall.  We applied a frequency range of 10 Hz to 5MHz to our samples.  

 The source applies a user-defined voltage across the sample, and measures the 

magnitude of the current and its phase with respect to the voltage.  The sweeping device 

then determines both components of the complex impedance from the data, and writes 

them to a data file 

 

4.2  Software 

 The Analyzer is controlled by a QuickBasic program written by an unknown 

member of Dr. Art Sleight’s research group.  To view and fit the data to ideal circuit 

models, we used Scribner’s ZView impedance arc analysis software, version 2.6 (demo). 

 

4.3  Verification 

 To verify the Analyzer’s output data, we ran several trials where some 

combination of off the shelf circuit components was connected directly to the setup.  

Plots of the data all appeared as expected.  Fig. 5.1 shows one example of the data for our 

test circuits. 
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5  Experimental Results 

5.1  A Note on Fitting Impedance Arcs  

 Impedance arcs are tricky functions to fit.  As can be seen in Fig. 2.16, changing 

the relative value of the capacitances or the RC time constant even slightly can cause big 

changes in the shape of the arc.  Furthermore, most fitting routines require a good initial 

estimate of the component values.  Unfortunately, the values of the capacitances are not 

obvious from the impedance spectrum – it takes quite a bit of guessing and checking to 

even find their order of magnitude.  Likewise, the contact and grain interior resistances 

are often beyond the frequency range of the plot, and are difficult to estimate in this case.  

In these situations, it is possible to attain irresolvable errors effectively over 100%. 

 

 For example, take the fit shown in Fig. 5.1 of one of the off the shelf circuit 

component plots from section 4 – in this case a parallel RC circuit like that shown in 

figure 2.12.  The fit looks good, but on closer inspection, the fit parameters are in error by 

1-20%.  The initial estimates of the components were several orders of magnitude 

different from the actual values, and a large error margin resulted (using the actual 

component values for initial guesses gives a fit error of less than 2%).  20% error would 

be sufficient for our purposes; however, the fitting program was unable to differentiate 

between a 0.1 nF capacitor and effectively zero.  This presents a serious problem, as we 

expect Cgi to be on the order of 10-12. Several of our samples exhibited such errors, 

especially with the grain interior capacitance.  Component values where this was the case 

have been labeled as unknown. 
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Test Circuit 3 Fit Parameters 
Component Actual Value Fit Value Error Error (%) 

R1 10 W 12.55 W ± 2.25 W 18.0 % 
R2 1000 W 970.6 W ± 20.6 W 2.13 % 
C1 0.1 nF .00000000294 nF ± 4.32 nF 1.47e11 % (!) 
C2 10 nF 9.94 nF ± 0.32 nF 3.23 % 

 
Fig. 5.1: Measured impedance arc and fitted arc for the test circuit shown in Fig. 5.2.  Fit parameters are shown 

in the accompanying table. 
 

 

5.2  Room Temperature Impedance Data 

 Our first goal was to obtain impedance spectra for each of the four samples at 

room temperature and constant applied voltage.  We ran a minimum of three trials for 

each sample under these conditions.  Averaged spectra and their best fits are shown on 

the following pages, Figs. 5.3-5.9 

 

 The model we chose to use for our samples is shown in Fig. 5.2, as derived in 

section 2.3.1. 

 
Fig. 5.2: Parallel RC circuit with grain boundary effects included.  RG and CG represent grain boundary 

resistance and capacitance, while RB and CB represent bulk resistance and capacitance. 
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 As per the problems discussed in section 5.1, achieving fits that were pleasing to 

the eye did not guarantee accurate component values.  In fact, only one sample of the four 

gave consistent results.  Fig. 5.5 shows the data for this sample, BaCuS0.75Se0.25F.  The 

spectrum clearly is composed of at least two arcs, emphasized by the fit.  Furthermore, 

the component values extracted from this spectrum have consistently small errors. 

 

 Unfortunately, the spectra of the other three samples did not extend to high 

enough frequencies to see such well-defined arcs.  The fits for these spectra were not able 

to find an accurate value of the grain interior capacitance, and so were inaccurate for all 

the components.  To compensate for this, we ran the fit again for one parallel RC circuit 

instead of two, as shown in Fig. 5.3.  This gives us a way to check the value for Rgb and 

Cgb given by the double RC model.  In the following data, all samples except 

BaCuS0.75Se0.25F are fitted to both models. 

 
Fig. 5.3: Parallel RC circuit in series with contact resistance.
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BaCuSF 

Room Temperature Fit Parameters 

Component Fit Value Error 

RC + Rgi 105 W ± 7.20 W 

Rgb 2390 W ± 1.56 W 

Cgi ? n/a 

Cgb 70 pF ± 1.10 pF 

 
Fig. 5.4: Data and corresponding fit to the circuit shown in Fig. 5.3 for  

1 volt applied to BaCuSF at room temperature.  
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BaCuSF  

Room Temperature Fit Parameters 

Component Software Fit Error 

RC 107 W ± 7.20 W 

Rgi 273 W ± 183 W 

Rgb 2156 W ± 190 W 

Cgi ? n/a 

Cgb 73.9 pF ± 3.27 pF 

 
Fig. 5.5: Data and corresponding fit to the circuit shown in Fig. 5.2  for  

1 volt applied to BaCuSF at room temperature.  
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BaCuS0.75Se0.25F  

Room Temperature Fit Parameters 

Component Fit Value Error 

RC 317 W ± 9.32 W 

Rgi 648 W ± 15.0 W 

Rgb 2453 W ± 24.6 W 

Cgi 148 pF ± 5.42 pF 

Cgb 824 pF ± 20.4 pF 

 
Fig. 5.6: Data and corresponding fit to the circuit shown in Fig. 5.2 for  

1 volt applied to BaCuS0.75Se0.25F at room temperature.  
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BaCuS0.5Se0.5F  

Room Temperature Fit Parameters 

Component Fit Value Error 

RC + Rgi 372 W ± 7.39 W 

Rgb 2290 W ± 9.72 W 

Cgi ? n/a 

Cgb 90.8 pF ± 0.91 pF 

 

Fig. 5.7: Data and corresponding fit to the circuit shown in Fig. 5.3  for  
1 volt applied to BaCuS0.5Se0.5F at room temperature.  
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BaCuS0.5Se0.5F  

Room Temperature Fit Parameters 

Component Fit Value Error 

RC 366 W ± 10.5 W 

Rgi 366 W ± 87.5 W 

Rgb 2520 W ± 75.8 W 

Cgi 119 pF ± 6.46 pF 

Cgb 418 pF ± 55.0 pF 

 
Fig. 5.8: Data and corresponding fit to the circuit shown in Fig. 5.2 for  

1 volt applied to BaCuS0.5Se0.5F at room temperature.  
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BaCuS0.25Se0.75F  

Room Temperature Fit Parameters 

Component Fit Value Error 

RC + Rgi 182 W ± 2.70 W 

Rgb 440 W ± 5.00 W 

Cgi ? n/a 

Cgb 251 pF ± 15.9 pF 

 

Fig. 5.9: Data and corresponding fit to the circuit shown in Fig. 5.3  for  
1 volt applied to BaCuS0.25Se0.75F at room temperature.  
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BaCuS0.25Se0.75F  

Room Temperature Fit Parameters 

Component Fit Value Error 

RC 190 W ± 5.40 W 

Rgi 53.1 W ± 8.20 W 

Rgb 136.5 W ± 6.71 W 

Cgi ? n/a 

Cgb 420.5 pF ± 14.0 pF 

 
Fig. 5.9: Data and corresponding fit to the circuit shown in Fig. 5.2  for  

1 volt applied to BaCuS0.25Se0.75F at room temperature.  
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5.2.1  Sample Resistivities 

 

 In summary, the bulk resistances of the four samples are shown in Fig. 5.10. 

Using equation 2.3 and the samples’ dimensions as given in section 3, we can calculate 

the resistivities of the samples shown also in Fig. 5.10: 

 
Fig. 5.10: Measured sample resistances and their corresponding resistivities. 

 

 These resistivities are much higher than our proposed range of 10-5 to 100 given in 

section 3.1.  To check these results, we ran the samples through a Van der Pauw 

system8,9, with the following results: 

 

Sample Resistivity 

BaCuSF 0.977 W cm 

BaCuS0.75Se0.25F 15.0 W cm 

BaCuS0.50Se0.50F  6.70 W cm 

BaCuS0.25Se0.75F 4.29 W cm 

 
Fig. 5.11: Sample resistivity as determined through Van der Pauw measurements. 

 

 These results are one or two orders of magnitude lower than our calculations. the 

Van der Pauw measurement process is well developed and generally considered reliable.  

The only concern is that the thickness of the sample should be much less than its 

diameter9, which is not the case for our samples.  It is therefore possible that the 

resistivity measurements are in error, but even an error of 100% does not bring the results 

into agreement. 

 

 

Sample Bulk Resistance Resistivity 

BaCuSF 270 ± 183 W 254 ± 172 W cm 

BaCuS0.75Se0.25F 648 ± 15.0 W 610 ± 14 W cm 

BaCuS0.50Se0.50F 366 ± 87.5 W 344 ± 82 W cm 

BaCuS0.25Se0.75F 53.1 ± 8.20 W 49 ± 7.5 W cm 
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5.2.1  Sample Dielectric Constants 

 As discussed in section 5.1, we were unable to directly extrapolate the grain 

interior capacitances from the impedance spectra for most of the samples; however, we 

were able to extrapolate Cgi for BaCuS0.75Se0.25F.  As expected from the derivation in 

2.3.1, the correction factor between Cgi and Cgb is approximately 0.20.  By knowing this 

correction factor and Cgb, we can estimate Cgi. The bulk capacitances of the samples are 

shown in Fig. 5.12.   

 

Sample Boundary Capcitance Bulk Capacitance 

BaCuSF 73.9 ± 3.27 pF 14.8 ± 0.65 pF 

BaCuS0.75Se0.25F 824 ± 20.4 pF 148 ± 5.42 pF  

BaCuS0.50Se0.50F 418 ± 55.0 pF 119 ± 6.46 pF 

BaCuS0.25Se0.75F 420 ± 14.0 pF 83.6 ± 2.8 pF 

 
Fig. 5.12:  Measured sample boundary capacitances and inferred bulk capacitances. 

 

 Experimentally determining a value for the d/D correction factor also allows us to 

calculate a value for the grain boundary depth d.  With d/D = 0.20 and a typical grain size 

of 60 nm,7 we find an approximate grain boundary depth of 12 nm, which is on the larger 

end of the proposed values.  This could explain the dominant grain boundary effects we 

observed in the data. 

 

 Using equation 2.4 and the samples’ dimensions given in section 3, we can 

calculate the dielectric constants of the samples, listed in Fig. 5.13.  Taking the 

permittivity of free space to be 8.854 pF m-1, we can also calculate the samples’ relative 

dielectric constants: 

 

Sample Dielectric Constant Rel. Dielectric Const. 

BaCuSF 1560 ± 6.90 pF m-1 176 

BaCuS0.75Se0.25F 15600 ± 675 pF m-1 1761 

BaCuS0.50Se0.50F 14200 ± 675 pF m-1 1603 

BaCuS0.25Se0.75F 8870 ± 297 pF m-1 1001 

 
Fig. 5.13:  Calculated sample dielectric constants, absolute and relative to e0. 
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 These numbers are two orders of magnitude higher than we expected, similar to 

the effect of the resistivity.  We still expect that the actual values for the dielectric 

constant and resistivity are lower than the values we calculated, and that these high 

values are due to the inaccuracy of the modeling, as discussed in section 5.1. 

 

 One other effect to consider when approaching these numbers is the frequency 

dependence of the dielectric constant, especially in polar materials.  Values for the 

dielectric constants of most materials are given at visible wavelengths – much higher 

frequencies than we have applied in our experiments. It is possible that at higher 

frequencies, the dielectric constant would correspond to known values.  

 

 It is also possible that other effects are present, such as contact (blocking) 

capacitances, asymmetrical grains, or sample defects. 

 

 

6  Conclusions 
 AC impedance spectroscopy is a technique that, with care, can be used to give 

information about bulk and grain boundary properties of many materials.  The circuit 

must be carefully modeled, and an appropriate frequency range must be spanned to have 

useful data.   

 

 If powdered composites of these materials are used in AC circuits as proposed, 

then grain boundary effects could become the limiting factor for their range of use.  We 

hope that this is an issue that can be reduced with further research, including applying AC 

impedance spectroscopy at much higher frequencies (Ghz range) to more accurately plot 

the grain interior arc, developing more accurate circuit fitting programs, and producing 

materials with thinner – or less influential – grain boundaries. 
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